WO2011065581A1 - Surface-treating composition, and surface-treated steel sheet - Google Patents

Surface-treating composition, and surface-treated steel sheet Download PDF

Info

Publication number
WO2011065581A1
WO2011065581A1 PCT/JP2010/071534 JP2010071534W WO2011065581A1 WO 2011065581 A1 WO2011065581 A1 WO 2011065581A1 JP 2010071534 W JP2010071534 W JP 2010071534W WO 2011065581 A1 WO2011065581 A1 WO 2011065581A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium
surface treatment
water
treatment composition
organic resin
Prior art date
Application number
PCT/JP2010/071534
Other languages
French (fr)
Japanese (ja)
Inventor
金子里江
藤林亘江
窪田隆広
中野多佳士
阿久井潤
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to CN201080053499.2A priority Critical patent/CN102666920B/en
Publication of WO2011065581A1 publication Critical patent/WO2011065581A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/60Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using alkaline aqueous solutions with pH greater than 8
    • C23C22/62Treatment of iron or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/60Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using alkaline aqueous solutions with pH greater than 8
    • C23C22/66Treatment of aluminium or alloys based thereon

Definitions

  • the present invention is a surface treatment composition and a surface-treated steel sheet suitable for use in automobiles, home appliances, and building materials, and uses an environment-adaptive surface treatment composition that does not contain any hexavalent chromium in the composition or coating film.
  • the present invention relates to a surface-treated steel sheet.
  • the chromate treatment uses hexavalent chromium which is a pollution control substance.
  • This hexavalent chromium is treated in a closed system in the treatment process, and the sealing action by the organic film formed on the upper layer causes the chromate film to contain Since the elution of chromium from can be made almost zero, the human body and the environment are not substantially polluted by hexavalent chromium.
  • laws and regulations that emphasize the conventional work environment and wastewater treatment, but also laws and regulations that emphasize environmental load and environmental harmony are beginning.
  • Patent Documents 1 and 2 propose a surface treatment agent containing Al, a phosphoric acid compound, silica, and a water-based organic resin emulsion, and a metal material coated therewith.
  • Patent Document 3 proposes a galvanized steel sheet in which an organic coating layer is formed after an amorphous film is formed by applying and drying a mixed aqueous solution of polyphosphate primary phosphate and metal oxide sol. Has been.
  • Patent Documents 4 and 5 a composite oxide film layer containing oxide fine particles, phosphoric acid and / or a phosphoric acid compound, and one or more metals selected from Mg, Mn, and Al is used as a lower layer.
  • a steel sheet having an organic film formed thereon is proposed.
  • Patent Documents 6 and 7 propose an inorganic rich film mainly composed of Mg-phosphate, colloidal silica, and a phosphonic acid compound.
  • Patent Document 8 proposes a two-layer coating in which an inorganic rich coating mainly composed of primary phosphate and colloidal silica is disposed as a lower layer, and a silicate coating and / or a silicon resin is disposed as an upper layer.
  • Patent Document 9 discloses that at least one titanium compound selected from hydrolyzable titanium compounds, low-condensates of hydrolyzable titanium compounds, titanium hydroxide, and low-condensates of titanium hydroxide is hydrogen peroxide.
  • a surface treatment composition containing a titanium-containing aqueous liquid obtained by mixing with water, an organic phosphoric acid, a water-soluble or water-dispersible organic resin, a vanadic acid compound, a zirconium fluoride compound, and a zirconium carbonate compound.
  • Patent Documents 6 and 7 have extremely low corrosion resistance levels and are difficult to apply as chromate coating substitutes.
  • the two-layer coating of Patent Document 8 has a corrosion resistance level applicable as a chromate coating substitute, but has a problem in terms of cost because it uses expensive silicate or silicon resin.
  • the coatings produced by these technologies are subject to a phenomenon of black discoloration (black discoloration) in a humid environment, making it difficult to apply to heat exchangers that are subject to dew condensation, and the storage environment during product transportation. Are also impractical and impractical.
  • Patent Document 9 improves the adhesion resistance when the fluoride contained therein improves the water-resistant adhesion and the corrosion resistance after alkaline degreasing, but has a relatively thick organic resin layer on the upper layer. I will invite you.
  • the adhesion of the organic resin layer is an important performance, but the conventional phosphating treatment that is performed as a base treatment has a crystalline film. Crystals are destroyed by strict processing, and the adhesion of the organic resin layer tends to be lowered.
  • the phosphate film is destroyed when the steel sheet is processed, and the organic resin layer is easily peeled off starting from this portion.
  • the plating metal on the substrate reacts with the treatment liquid to form a very thin, insoluble phosphate to prevent corrosion resistance and paint adhesion.
  • the adhesion and corrosion resistance when processed are likely to deteriorate.
  • an organic resin-coated steel sheet having an organic resin layer with a thickness of 100 ⁇ m or more since the film strength is high, a strong shearing force acts on the interface between the organic resin layer and its base during deformation, and the organic resin layer Peeling easily occurs.
  • Japanese Patent Application No. 2008-335387 has proposed a surface treatment composition capable of obtaining excellent adhesion properties, particularly when a thick organic resin layer having a thickness of 100 ⁇ m or more is deformed.
  • This surface treatment composition comprises at least one titanium compound selected from hydrolyzable titanium compounds, low-condensates of hydrolysable titanium compounds, titanium hydroxide, and low-condensates of titanium hydroxide with a hydrogen peroxide solution.
  • the film formed from the above-mentioned surface treatment composition has a relatively brittle nature. It was found that there was a problem that the film was scratched and the corrosion resistance was likely to be lowered.
  • the object of the present invention is to solve the above-mentioned problems, and does not contain hexavalent chromium at all, and provides excellent corrosion resistance, heat discoloration resistance and blackening resistance, and contact with a metal roll after forming a surface treatment film. Excellent adhesion to the organic resin layer formed on the upper layer of the surface treatment film, particularly a thick organic resin layer having a thickness of 100 ⁇ m or more is formed, and is severely processed.
  • An object of the present invention is to provide a surface-treated composition and a surface-treated steel sheet that can obtain excellent adhesion even when added.
  • Another object of the present invention is to provide an organic resin-coated steel sheet using such a surface-treated steel sheet.
  • the inventors of the present invention have studied a film composition that can solve the above-described problems, and as a result, on the surface of a metal material (preferably a zinc-based plated steel sheet or an aluminum-based plated steel sheet), a specific titanium-containing aqueous liquid.
  • a surface treatment film by a surface treatment composition in which a zirconium carbonate compound, an organic phosphate compound, a metal phosphate, silicon oxide, and a water-soluble organic resin and / or a water-dispersible organic resin are added in a predetermined ratio.
  • a surface treatment composition in which a zirconium carbonate compound, an organic phosphate compound, a metal phosphate, silicon oxide, and a water-soluble organic resin and / or a water-dispersible organic resin are added in a predetermined ratio.
  • a thick organic resin layer having a thickness of 100 ⁇ m or more is formed, and excellent adhesion can be obtained even when severe processing is applied.
  • the surface treatment film formed by the surface treatment composition of the present invention has a high level of barrier properties by being composed of a specific inorganic component, it has excellent corrosion resistance and blackening resistance comparable to a chromate film, In addition, it has excellent heat discoloration that hardly causes coloration or discoloration by heating. Furthermore, the scratch resistance when a metal roll or the like comes into contact after the surface treatment film is formed, and an organic resin layer, particularly a thick organic resin layer having a thickness of 100 ⁇ m or more is formed on the surface treatment film, Excellent adhesion is obtained even when harsh processing is applied.
  • the surface-treated steel sheet and the organic resin-coated steel sheet of the present invention are excellent in corrosion resistance, blackening resistance, heat discoloration resistance and scratch resistance, and are thick enough to have adhesion of the organic resin layer, particularly 100 ⁇ m or more. Excellent adhesion of organic resin layer.
  • the surface treatment composition of the present invention comprises a titanium-containing aqueous liquid (A), a zirconium carbonate compound (B), an organic phosphate compound (C), a metal phosphate (D), silicon oxide (E), and a water-soluble organic resin. And / or a water-dispersible organic resin (F).
  • This surface treatment composition does not contain hexavalent chromium (except for hexavalent chromium as an inevitable impurity).
  • the titanium-containing aqueous liquid (A) contains at least one titanium compound selected from hydrolyzable titanium compounds, hydrolyzable titanium compound low condensates, titanium hydroxide and titanium hydroxide low condensates. It is an aqueous liquid containing titanium obtained by mixing with hydrogen oxide water.
  • the hydrolyzable titanium compound is a titanium compound having a hydrolyzable group directly bonded to titanium, and generates titanium hydroxide by reacting with water such as water or water vapor.
  • the hydrolyzable titanium compound may be one in which all of the groups bonded to titanium are hydrolyzable groups, or a part of the groups bonded to titanium may be hydrolyzable groups.
  • the hydrolyzable group is not particularly limited as long as it generates titanium hydroxide by reacting with moisture as described above.
  • a lower alkoxyl group or a group that forms a salt with titanium for example, Halogen atoms such as chlorine, hydrogen atoms, sulfate ions, etc.).
  • the hydrolyzable titanium compound containing a lower alkoxyl group as the hydrolyzable group is particularly represented by the general formula Ti (OR) 4 (wherein R represents the same or different alkyl group having 1 to 5 carbon atoms). Tetraalkoxy titanium is preferred.
  • the alkyl group having 1 to 5 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an iso-propyl group, an n-butyl group, an iso-butyl group, a sec-butyl group, and a tert-butyl group.
  • Typical examples of the hydrolyzable titanium compound having a group capable of forming a salt with titanium as a hydrolyzable group include titanium chloride and titanium sulfate.
  • the low condensate of a hydrolysable titanium compound is a low condensate of the above-mentioned hydrolysable titanium compounds.
  • the low condensate may be one in which all of the groups bonded to titanium are hydrolyzable groups, or a part of the groups bonded to titanium may be hydrolyzable.
  • hydrolyzable titanium compounds whose hydrolyzable group forms a salt with titanium for example, titanium chloride, titanium sulfate, etc.
  • an aqueous solution of the hydrolyzable titanium compound and an alkaline solution such as ammonia or caustic soda are used.
  • Orthotitanic acid (titanium hydroxide gel) obtained by the reaction can also be used as a low condensate.
  • the low condensate of the hydrolyzable titanium compound and the low condensate of titanium hydroxide a compound having a condensation degree of 2 to 30 can be used, and a compound having a condensation degree of 2 to 10 is particularly preferable. If the degree of condensation is 30 or less, a stable titanium-containing aqueous liquid can be obtained by mixing with hydrogen peroxide.
  • the hydrolyzable titanium compounds, low condensates of hydrolysable titanium compounds, titanium hydroxide, and low condensates of titanium hydroxide can be used alone or in combination of two or more thereof. Tetraalkoxy titanium which is a hydrolyzable titanium compound represented by the formula is particularly preferable.
  • tetraalkoxytitanium does not affect the film performance such as corrosion resistance because the alcohol produced when hydrolyzed volatilizes in the process of drying the surface treatment composition, and has particularly excellent film performance. It is because it is obtained.
  • any conventionally known liquid can be used without particular limitation as long as it is an aqueous liquid containing titanium obtained by mixing the above-described titanium compound and hydrogen peroxide solution. Specifically, the following can be mentioned.
  • a liquid for forming a titania film obtained by synthesizing a titanium hydroxide gel produced from an aqueous solution of titanium chloride or titanium sulfate and a basic solution with a hydrogen peroxide solution (Japanese Patent Laid-Open No. 9-71418, (See Kaihei 10-67516).
  • titanium hydroxide gel called ortho titanic acid is precipitated by reacting an aqueous solution of titanium chloride or titanium sulfate having a salt forming group with titanium and an alkaline solution such as ammonia or caustic soda.
  • the titanium hydroxide gel is separated by decantation with water, washed thoroughly with water, further added with hydrogen peroxide water, and excess hydrogen peroxide is decomposed and removed, whereby a yellow transparent viscous liquid can be obtained.
  • the precipitated orthotitanic acid is in a gel state polymerized by polymerization of OH or hydrogen bonds, and cannot be used as an aqueous liquid containing titanium as it is.
  • hydrogen peroxide solution is added to this gel, a part of OH is in a peroxidized state, dissolved as a peroxotitanate ion or in a kind of sol state in which the polymer chain is divided into low molecules, and excess hydrogen peroxide Is decomposed into water and oxygen, and can be used as an aqueous liquid containing titanium for forming an inorganic film.
  • this sol contains only oxygen and hydrogen atoms in addition to titanium atoms, when it is changed to titanium oxide by drying or firing, only water and oxygen are generated, so carbon components necessary for thermal decomposition such as sol-gel method and sulfate Further, it is not necessary to remove the halogen component, and a titanium oxide film having a relatively high density can be formed even at a low temperature.
  • (Iii) Hydrogen peroxide is added to an aqueous solution of an inorganic titanium compound such as titanium chloride or titanium sulfate to form a peroxotitanium hydrate, and then the solution obtained by adding a basic substance is allowed to stand or be heated.
  • a titanium oxide forming solution obtained by forming a precipitate of a titanium hydrate polymer, and then removing hydrogen and other dissolved components derived from at least a titanium-containing raw material solution (Japanese Patent Application Laid-Open 2000-247638, JP-A-2000-247639).
  • the titanium-containing aqueous liquid (A) using a hydrolyzable titanium compound and / or a low condensate thereof as a titanium compound contains hydrolyzable titanium compound a. It can be obtained by reacting with hydrogen oxide water at a reaction temperature of 1 to 70 ° C. for about 10 minutes to 20 hours.
  • the hydrolyzable titanium compound a is hydrolyzed with water by reacting the hydrolyzable titanium compound a with hydrogen peroxide.
  • the titanium hydroxide gel used in the conventional manufacturing method is partially three-dimensionalized by Ti—O—Ti bonds, and the titanium-containing aqueous liquid (A) obtained by reacting this gel with hydrogen peroxide is composition and stable. Sex is essentially different.
  • the titanium-containing aqueous liquid (A) using the hydrolyzable titanium compound a is heated or autoclaved at 80 ° C. or higher, a titanium oxide dispersion liquid containing crystallized ultrafine particles of titanium oxide is obtained. If the heat treatment or autoclave treatment is performed at 80 ° C. or higher, the crystallization of titanium oxide can be sufficiently advanced.
  • the average particle size of the titanium oxide ultrafine particles of the titanium oxide dispersion thus produced is 10 nm or less, preferably about 1 to 6 nm. When the average particle diameter of the titanium oxide ultrafine particles is 10 nm or less, the film-forming property is excellent (when the film is dried after coating to form a film, cracking does not occur when the film thickness is 1 ⁇ m or more).
  • the average particle diameter of the titanium oxide ultrafine particles is 1 nm or more, it is preferable because the surface treatment composition can be maintained in a state where the viscosity does not increase.
  • the appearance of this titanium oxide dispersion is translucent.
  • Such a titanium oxide dispersion can also be used as the titanium-containing aqueous liquid (A).
  • the surface treatment composition (H) containing the titanium-containing aqueous liquid (A) using the hydrolyzable titanium compound a is applied to the surface of the plated steel plate and dried (for example, heat-dried at a low temperature), thereby adhering to itself.
  • a dense titanium oxide-containing film (surface treatment film) having excellent properties can be formed.
  • the heating temperature of the steel sheet after the application of the surface treatment composition (H) is, for example, preferably 200 ° C. or lower, particularly preferably 150 ° C. or lower.
  • Amorphous) titanium oxide-containing film can be formed.
  • the crystal can be obtained by simply applying the surface treatment composition (H). It is useful as a coating material for materials that cannot be heat-treated.
  • a titanium-containing aqueous liquid (A1) obtained by reacting the hydrolyzable titanium compound a with hydrogen peroxide in the presence of a titanium oxide sol can also be used.
  • the titanium oxide sol is a sol in which amorphous titania fine particles and / or anatase type titania fine particles are dispersed in water (for example, an aqueous organic solvent such as an alcohol or alcohol ether may be added if necessary).
  • an aqueous organic solvent such as an alcohol or alcohol ether may be added if necessary.
  • this titanium oxide sol conventionally known ones can be used.
  • An amorphous titania sol dispersed in water, or a sol in which the titanium oxide aggregates are calcined to form anatase-type titanium fine particles and this is dispersed in water can be used.
  • the amorphous titania can be converted to anatase titania by firing at a temperature at least higher than the crystallization temperature of anatase, for example, at a temperature of 400 ° C. to 500 ° C. or higher.
  • the aqueous sol of titanium oxide include, for example, TKS-201 (trade name, manufactured by Teika, anatase crystal form, average particle diameter 6 nm), TA-15 (trade name, manufactured by Nissan Chemical Co., anatase crystal form).
  • STS-11 trade name, manufactured by Ishihara Sangyo Co., Ltd., anatase crystal form).
  • the mass ratio x / y between the titanium oxide sol x and the titanium hydrogen peroxide reactant y is 1 /
  • the range of 99 to 99/1, preferably about 10/90 to 90/10 is appropriate. If the mass ratio x / y is 1/99 or more, the effect of adding the titanium oxide sol is sufficiently obtained in terms of stability, photoreactivity, and the like, and if it is 99/1 or less, excellent film formation is achieved. It is preferable because of its property.
  • the titanium-containing aqueous liquid (A1) can be obtained by reacting the hydrolyzable titanium compound a with hydrogen peroxide at a reaction temperature of 1 to 70 ° C. for about 10 minutes to 20 hours in the presence of a titanium oxide sol.
  • the production form and characteristics of the titanium-containing aqueous liquid (A1) are the same as those of the titanium-containing aqueous liquid (A) using the hydrolyzable titanium compound a described above, but in particular, by using a titanium oxide sol. , It is possible to suppress a partial condensation reaction during the synthesis to increase the viscosity. The reason is considered to be that the condensation reaction product is adsorbed on the surface of the titanium oxide sol, and polymerization in a solution state is suppressed.
  • titanium-containing aqueous liquid (A1) when heated or autoclaved at 80 ° C. or higher, a titanium oxide dispersion containing ultrafine particles of crystallized titanium oxide is obtained.
  • the titanium-containing aqueous liquid (A) using the hydrolyzable titanium compound a described above also describes the temperature conditions for obtaining this titanium oxide dispersion, the particle diameter of the crystallized titanium oxide ultrafine particles, the appearance of the dispersion, etc. It is the same.
  • Such a titanium oxide dispersion can also be used as the titanium-containing aqueous liquid (A1).
  • the surface treatment composition (G) containing the titanium-containing aqueous liquid (A1) is applied to the surface of the plated steel sheet and dried (for example, By heating and drying at a low temperature, it is possible to form a dense titanium oxide-containing film (surface-treated film) having excellent adhesion by itself.
  • the heating temperature of the steel sheet after the application of the surface treatment composition (G) is, for example, 200 ° C. or less, particularly preferably 150 ° C. or less. By heating and drying at such a temperature, anatase-type oxidation containing some hydroxyl groups. A titanium-containing film can be formed.
  • the titanium-containing aqueous liquid (A) and the titanium-containing aqueous liquid (A1) using the hydrolyzable titanium compound a are excellent in storage stability, corrosion resistance, and the like. It is particularly preferable to use these in the present invention.
  • the compounding ratio of hydrogen peroxide water to at least one titanium compound selected from hydrolyzable titanium compounds, hydrolyzable titanium compound low condensates, titanium hydroxide, titanium hydroxide low condensates is titanium compounds It is preferably 0.1 to 100 parts by mass, more preferably 1 to 20 parts by mass in terms of hydrogen peroxide with respect to 10 parts by mass. If the blending ratio of hydrogen peroxide water is 0.1 parts by mass or more in terms of hydrogen peroxide, chelate formation is sufficient so that no cloudy precipitation occurs. On the other hand, if it is 100 parts by mass or less, unreacted This is preferable because no hydrogen peroxide remains, and no active oxygen is released during storage.
  • the hydrogen peroxide concentration in the hydrogen peroxide solution is not particularly limited, but it is preferably about 3 to 30 mass% from the viewpoint of ease of handling and the solid content of the produced liquid related to the coating workability.
  • sols and pigments can be added and dispersed in the titanium-containing aqueous liquid (A) as necessary.
  • the additive include commercially available titanium oxide sol, titanium oxide powder, mica, talc, barita, clay, and the like, and one or more of these can be added.
  • the content of the titanium-containing aqueous liquid (A) in the surface treatment composition is preferably 1 to 100 g / L, preferably 5 to 50 g / L in terms of solid content from the viewpoint of the stability of the treatment liquid. .
  • the surface treatment composition of the present invention further improves the corrosion resistance by adding the zirconium carbonate compound (B) to the titanium-containing aqueous liquid (A), and an organic resin layer (an organic resin layer formed by lamination or coating).
  • the corrosion resistance after coating with the organic resin layer is significantly improved.
  • the organophosphate compound (C) increases the reactivity with the steel sheet to improve the corrosion resistance, and also improves the storage stability of the surface treatment composition.
  • metal phosphate (D) and silicon oxide (E) an organic resin layer formed as an upper layer, particularly a thick organic resin layer having a thickness of 100 ⁇ m or more (for example, formed by lamination).
  • the adhesion of the organic resin layer) during deformation of the steel sheet is improved.
  • a water-soluble organic resin and / or water-dispersible organic resin (F) the scratch resistance of the surface treatment film is improved, and even when roll contact occurs after the surface treatment film is formed, excellent corrosion resistance is achieved. It expresses.
  • the zirconium carbonate compound (B) ammonium zirconium carbonate, zirconium oxycarbonate and the like are suitable, and improvement of corrosion resistance can be achieved by using at least one of these.
  • the compounding amount of the zirconium carbonate compound (B) is 10 to 300 parts by mass, preferably 50 to 100 parts by mass with respect to 100 parts by mass of the solid content of the titanium-containing aqueous liquid (A).
  • the blending amount of the zirconium carbonate compound (B) is less than 10 parts by mass with respect to 100 parts by mass of the solid content of the titanium-containing aqueous liquid (A), the effect of improving the corrosion resistance is small. Tend to deteriorate.
  • organic phosphoric acid compound (C) examples include hydroxyl groups such as 1-hydroxymethane-1,1-diphosphonic acid, 1-hydroxyethane-1,1-diphosphonic acid, and 1-hydroxypropane-1,1-diphosphonic acid.
  • Group-containing organic phosphorous acid; carboxyl group-containing organic phosphorous acid such as 2-hydroxyphosphonoacetic acid and 2-phosphonobutane-1,2,4-tricarboxylic acid, and salts thereof are preferred. 1 type (s) or 2 or more types can be used.
  • the organic phosphoric acid compound (C) has the effect of improving the corrosion resistance and the storage stability of the titanium-containing aqueous liquid (A). Among them, 1-hydroxyethane-1,1-diphosphonic acid is particularly effective. Therefore, it is particularly preferable to use this.
  • the compounding amount of the organic phosphoric acid compound (C) is 50 to 200 parts by mass, particularly 70 to 150 parts by mass with respect to 100 parts by mass of the solid content of the titanium-containing aqueous liquid (A). It is preferable from the point.
  • the compounding amount of the organic phosphoric acid compound (C) is less than 50 parts by mass with respect to 100 parts by mass of the solid content of the titanium-containing aqueous liquid (A), the storage stability of the surface treatment composition is inferior and the corrosion resistance is reduced. It is done. On the other hand, when it exceeds 200 mass parts, water-resistant adhesiveness is inferior.
  • Metal phosphate (D) and silicon oxide (E) are blended in order to improve adhesion to an organic resin layer formed as an upper layer by laminating or the like, particularly a thick organic resin layer having a thickness of 100 ⁇ m or more. It is something to be made.
  • silicon oxide (E) include amorphous silica such as liquid phase silica produced by a liquid phase reaction method and gas phase silica produced by a dry method, and one or more of these are used. be able to. Specifically, as liquid phase silica, SNOWTEX (registered trademark) O, N, 20, 30, 40, C, S manufactured by Nissan Chemical Industries, Ltd., as gas phase silica, Nippon Aerosil Co., Ltd.
  • AEROSIL registered trademark 130, 200, 200V, 200CF, 300, 300CF, etc. manufactured by the company can be used.
  • vapor-phase silica produced by a dry method is very preferable from the viewpoint of adhesion to the organic resin layer, and good performance can be obtained.
  • metal phosphate (D) there are no special restrictions on the type of metal phosphate (D), but among them, aluminum salts, magnesium salts, and manganese salts are effective.
  • aluminum salt there is an advantage that the solubility of the phosphate is lowered and the effect in a humid environment is sustained. 1 type (s) or 2 or more types can be used for said metal phosphate.
  • the metal phosphate (D) it is preferable to apply a commercially available aqueous solution in which the phosphoric acid / metal cation component ratio is rich in phosphoric acid in advance so that it can exist as an aqueous solution.
  • the metal phosphate (D) and the silicon oxide (E) are mixed in advance, It is preferable to add in the form of this mixture. More excellent adhesion and corrosion resistance can be obtained when added in a premixed state than when added separately. Although this reason is not necessarily clear, it is thought that it is because the cohesive force of the film obtained by the surface treatment composition is increased by the effect of the phosphoric acid component. Moreover, the storage stability of the surface treatment composition is improved by mixing by this method.
  • the metal phosphate aqueous solution is obtained by adding the gas phase silica to the metal phosphate aqueous solution and stirring vigorously.
  • a silicon oxide dispersion liquid in which vapor phase silica is dispersed may be prepared in advance and mixed with other components.
  • the surface treatment composition may be prepared by vigorously stirring the vapor phase silica and the metal phosphate aqueous solution together with other compounding components and water.
  • vapor phase silica when vapor phase silica is dispersed in the surface treatment composition with a sand mill or the like, aggregation occurs in about one week to several weeks, and a precipitate is generated.
  • gas phase silica having a low bulk specific gravity it has been found that it is effective to use gas phase silica having a low bulk specific gravity in order to prevent such aggregation and improve storage stability (chemical solution stability). It was. Specifically, it is preferable to use gas phase silica having a bulk specific gravity of 40 g / L or less.
  • the bulk specific gravity of the vapor phase silica can be adjusted by controlling the deaeration conditions after the production by the dry method, whereby a vapor phase silica having a small bulk specific gravity can be obtained.
  • the adhesion of the organic resin layer is improved by blending the metal phosphate (D) and the silicon oxide (E).
  • the surface polarity of the surface treatment film is changed by blending the silicon oxide and the metal phosphate. It is thought that this is because it acts on the adhesiveness advantageously. Since silicon oxide increases the polarity, it has the effect of increasing the adhesion with the resin layer and the adhesive layer when the organic resin layer is directly applied to the upper layer or when the organic resin film is brought into close contact with the adhesive. On the other hand, if the polarity is too high, it becomes easy to take in moisture in a humid environment, which is disadvantageous for swelling.
  • nonpolar phosphoric acid metal phosphate
  • metal phosphate nonpolar phosphoric acid
  • secondary aggregation of silicon oxide forms surface irregularities on the order of submicrons, and the formation of such surface irregularities increases the effective area at the adhesion interface, thus effectively acting on adhesion. It is considered a thing.
  • the influence on the texture due to the incorporation of the metal phosphate is not sufficiently clear, it is considered that the texture is affected by acting on the secondary aggregation of silicon oxide.
  • the compounding amount of the metal phosphate (D) is 5 to 20 mass% as a ratio in the total solid content of the surface treatment composition, and the compounding amount of silicon oxide (E) is in the total solid content of the surface treatment composition.
  • the ratio is 32 to 40 mass%.
  • the blending amount of silicon oxide (E) is less than 32 mass% in the total solid content of the surface treatment composition, formation of irregularities on the order of submicron is insufficient, and the upper organic resin layer and Sufficient adhesion cannot be obtained.
  • it exceeds 40 mass% good adhesion can be obtained, but the surface treatment film becomes brittle, so the film is scratched by roll contact etc., and of course the bare corrosion resistance as well as the scratched part after coating with organic resin Corrosion progresses and blistering occurs.
  • the water-soluble organic resin and / or water-dispersible organic resin (F) is an organic resin that can be dissolved or dispersed in water, and a conventionally known method for water-solubilizing or dispersing the organic resin in water.
  • the method can be applied.
  • the organic resin contains a functional group (for example, a hydroxyl group, a polyoxyalkylene group, a carboxyl group, an amino (imino) group, a sulfide group, a phosphine group, etc.) that can be water-soluble or water-dispersed independently.
  • amine compounds such as ethanolamine and triethylamine if acidic resin (carboxyl group-containing resin, etc.); ammonia water; lithium hydroxide, sodium hydroxide, water Neutralized with alkali metal hydroxides such as potassium oxide, and basic resins (amino group-containing resins, etc.), fatty acids such as acetic acid and lactic acid; neutralized with mineral acids such as phosphoric acid, etc. Can be used.
  • water-soluble or water-dispersible organic resins include epoxy resins, phenolic resins, acrylic resins, urethane resins, olefin-carboxylic acid resins, nylon resins, resins having a polyoxyalkylene chain, and polyvinyl alcohol. , Polyglycerin, carboxymethylcellulose, hydroxymethylcellulose, hydroxyethylcellulose and the like.
  • the said organic resin can use 1 type (s) or 2 or more types.
  • a water-soluble or water-dispersible acrylic resin is prepared by a conventionally known method, for example, an emulsion polymerization method, a suspension polymerization method, a polymer having a hydrophilic group by solution polymerization, and neutralized or made aqueous if necessary. Or the like.
  • the polymer having a hydrophilic group includes, for example, an unsaturated monomer having a hydrophilic group such as a carboxyl group, an amino group, a hydroxyl group, and a polyoxyalkylene group, and, if necessary, other unsaturated monomers. It can be obtained by polymerizing the monomer.
  • the water-soluble or water-dispersible acrylic resin is preferably obtained by copolymerizing styrene from the viewpoint of corrosion resistance, and the amount of styrene in the total unsaturated monomer is 10 to 60 mass%, particularly 15 to 50 mass%. It is preferable. Further, the Tg (glass transition point) of the acrylic resin obtained by copolymerization is preferably 30 to 80 ° C., particularly 35 to 70 ° C. from the viewpoint of the toughness of the resulting film.
  • Examples of the carboxyl group-containing unsaturated monomer include acrylic acid, methacrylic acid, maleic acid, maleic anhydride, crotonic acid, and itaconic acid.
  • Examples of the nitrogen-containing unsaturated monomer such as the amino group-containing unsaturated monomer include N, N-dimethylaminoethyl (meth) acrylate, N, N-diethylaminoethyl (meth) acrylate, Nt- Nitrogen-containing alkyl (meth) acrylates such as butylaminoethyl (meth) acrylate; acrylamide, methacrylamide, N-methyl (meth) acrylamide, N-ethyl (meth) acrylamide, N-methylol (meth) acrylamide, N-methoxymethyl Polymerization of (meth) acrylamide, N-butoxymethyl (meth) acrylamide, N, N-dimethyl (meth) acrylamide, N, N-dimethyla
  • hydroxyl group-containing unsaturated monomer examples include 2-hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, 2,3-dihydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, polyethylene glycol mono Monoesterified product of polyhydric alcohol such as (meth) acrylate, polypropylene glycol mono (meth) acrylate and acrylic acid or methacrylic acid; ⁇ -caprolactone is opened to monoesterified product of polyhydric alcohol and acrylic acid or methacrylic acid. Examples include a ring-polymerized compound.
  • unsaturated monomers include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, 1 carbon number such as tert-butyl (meth) acrylate, 2-ethylhexyl acrylate, n-octyl (meth) acrylate, lauryl (meth) acrylate, tridecyl (meth) acrylate, octadecyl (meth) acrylate, isostearyl (meth) acrylate To 24 alkyl (meth) acrylates; vinyl acetate and the like.
  • the unsaturated monomer mentioned above can use 1 type (s) or 2 or more types.
  • (meth) acrylate” means “acrylate or methacrylate”.
  • the urethane-based resin examples include a chain extender which is a low molecular weight compound having two or more active hydrogens such as a diol and a diamine as needed, and a polyurethane composed of a polyol and a diisocyanate such as polyester polyol and polyether polyol.
  • a chain extender which is a low molecular weight compound having two or more active hydrogens such as a diol and a diamine as needed
  • a polyurethane composed of a polyol and a diisocyanate such as polyester polyol and polyether polyol.
  • Those which are chain-extended in the presence and stably dispersed or dissolved in water can be suitably used, and conventionally known ones can be widely used (for example, Japanese Patent Publication No. 42-24192, Japanese Patent Publication No. 42-24194, (See JP-B-42-5118, JP-B-49-986, JP-B-49-33104, JP-B
  • a method for stably dispersing or dissolving the polyurethane resin in water for example, the following method can be used.
  • a blocking agent such as oxime, alcohol, phenol, mercaptan, amine, sodium bisulfite, etc.
  • diisocyanate examples include aromatic, alicyclic or aliphatic diisocyanates. Specifically, hexamethylene diisocyanate, tetramethylene diisocyanate, 3,3′-dimethoxy-4, 4'-biphenylene diisocyanate, p-xylylene diisocyanate, m-xylylene diisocyanate, 1,3- (diisocyanatomethyl) cyclohexanone, 1,4- (diisocyanatomethyl) cyclohexanone, 4,4'-diisocyanato Cyclohexanone, 4,4'-methylenebis (cyclohexyl isocyanate), isophorone diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, p-phenylene diisocyanate, diphenylmethane di Isocyanate
  • 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, hexamethylene diisocyanate, and isophorone diisocyanate are particularly preferable.
  • commercially available polyurethane resins include Hydran (registered trademark) HW-330, HW-340, HW-350 (both trade names, manufactured by Dainippon Ink and Chemicals), Superflex (registered trademark) 100, 150, E-2500, F-3438D (all trade names, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) and the like.
  • a cationic epoxy resin obtained by adding an amine to an epoxy resin a modified epoxy resin such as acrylic modified or urethane modified
  • a modified epoxy resin such as acrylic modified or urethane modified
  • examples of cationic epoxy resins include adducts of epoxy compounds with primary mono- or polyamines, secondary mono- or polyamines, and primary and secondary mixed polyamines (see, for example, US Pat. No. 3,984,299).
  • An adduct of an epoxy compound and a secondary mono- or polyamine having a ketiminated primary amino group see, for example, US Pat. No. 4,017,438); an epoxy compound having a ketiminated primary amino group
  • Examples include etherification reaction products with hydroxyl compounds (see, for example, JP-A-59-43013).
  • the epoxy resin preferably has a number average molecular weight of 400 to 4000, particularly 800 to 2000, and an epoxy equivalent of 190 to 2000, particularly 400 to 1000.
  • Such an epoxy resin can be obtained, for example, by a reaction between a polyphenol compound and epirulhydrin, and examples of the polyphenol compound include bis (4-hydroxyphenyl) -2,2-propane, 4,4.
  • the blending amount of the water-soluble organic resin and / or the water-dispersible organic resin (F) is 2 to 10 mass% as a ratio in the total solid content of the surface treatment composition. If the blending amount of the water-soluble organic resin and / or water-dispersible organic resin (F) is less than 2 mass% in the total solid content of the surface treatment composition, the brittleness of the surface treatment film cannot be improved and the surface treatment is performed. The film is scratched by contact with the roll after the film is formed, and the corrosion starts from the scratched part after the organic resin coating as well as the bare corrosion resistance. On the other hand, if it exceeds 10 mass%, the heat discoloration and post-processing adhesion will be reduced.
  • the pH of the surface treatment composition is preferably adjusted to 7-12. If the pH is less than 7 or more than 12, aggregation of the surface treatment composition occurs with time, and a film cannot be formed.
  • the surface treatment composition of the present invention may further include, for example, an etching agent such as a silane coupling agent, resin fine particles, and an inorganic phosphate compound, a heavy metal compound other than the components specified by the present invention, a thickener, A surfactant, a lubricity-imparting agent (polyethylene wax, fluorine-based wax, carnauba wax, etc.), a rust inhibitor, a color pigment, an extender pigment, a rust preventive pigment, and a dye can be contained.
  • an etching agent such as a silane coupling agent, resin fine particles, and an inorganic phosphate compound, a heavy metal compound other than the components specified by the present invention, a thickener, A surfactant, a lubricity-imparting agent (polyethylene wax, fluorine-based wax, carnauba wax, etc.), a rust inhibitor, a color pigment, an extender pigment, a rust preventive pigment, and a dye can
  • the surface treatment composition of this invention can be diluted with hydrophilic solvents, such as methanol, ethanol, isopropyl alcohol, an ethylene glycol type solvent, a propylene glycol type solvent, for example as needed, and can be used.
  • hydrophilic solvents such as methanol, ethanol, isopropyl alcohol, an ethylene glycol type solvent, a propylene glycol type solvent, for example as needed, and can be used.
  • the surface treatment composition of the present invention preferably has a solid content of about 2 to 10 mass% from the viewpoint of storage stability and stability during coating.
  • the surface treatment composition of the present invention can be used as a surface treatment agent for various metal materials, but is particularly suitable as a surface treatment agent for zinc-based plated steel sheets and aluminum-based plated steel sheets described later.
  • the surface-treated steel sheet of the present invention has a surface-treated composition as described above, that is, a titanium-containing aqueous liquid (A), a zirconium carbonate compound (B), and an organic phosphate compound on the surface of a zinc-based plated steel sheet or an aluminum-based plated steel sheet. Formed by applying and drying a surface treatment composition containing (C), metal phosphate (D), silicon oxide (E), and water-soluble organic resin or / and water-dispersible organic resin (F) And having a surface-treated film having a predetermined coating amount. This surface-treated film does not contain hexavalent chromium (except for hexavalent chromium as an inevitable impurity). Further, the titanium-containing aqueous liquid (A) and the surface treatment composition may further contain other additive components as mentioned above, if necessary.
  • Examples of the galvanized steel sheet used as the base of the surface-treated steel sheet of the present invention include a galvanized steel sheet, a Zn—Ni alloy plated steel sheet, a Zn—Fe alloy plated steel sheet (electroplated steel sheet, galvannealed steel sheet), Zn -Cr alloy plated steel sheet, Zn-Mn alloy plated steel sheet, Zn-Co alloy plated steel sheet, Zn-Co-Cr alloy plated steel sheet, Zn-Cr-Ni alloy plated steel sheet, Zn-Cr-Fe alloy plated steel sheet, Zn-Al Alloy-plated steel sheets (for example, Zn-5 mass% Al alloy-plated steel sheets, Zn-55 mass% Al alloy-plated steel sheets), Zn-Mg alloy-plated steel sheets, Zn-Al-Mg alloy-plated steel sheets, and plating of these plated steel sheets Zinc-based composite plated steel sheet (for example, Zn-SiO2 dispersion plated steel sheet) in which metal
  • an aluminum system plated steel plate used as the base of the surface treatment steel plate of this invention an aluminum plating steel plate, an Al-Si alloy plating steel plate, etc. can be used.
  • the steel plate surface may be previously plated with lightness such as Ni, and various plating as described above may be performed thereon.
  • a plating method any feasible method among an electrolytic method (electrolysis in an aqueous solution or electrolysis in a nonaqueous solvent), a melting method, and a gas phase method can be adopted.
  • alkali degreasing, solvent degreasing, surface conditioning treatment (alkaline surface conditioning) is performed on the surface of the plating film as necessary in order to prevent film defects and unevenness from occurring. Treatment or acidic surface conditioning treatment) can be performed.
  • an iron group metal ion (one or more of Ni ion, Co ion, Fe ion) is previously applied to the plating surface as necessary.
  • Surface adjustment treatment with an acidic or alkaline aqueous solution containing can also be performed.
  • iron group metal ions one or more of Ni ions, Co ions, Fe ions
  • These metals can be contained in an amount of 1 mass ppm or more.
  • the adhesion amount of the surface treatment film formed by the surface treatment composition is 0.03 to 0.5 g / m 2 . If the coating amount is less than 0.03 g / m 2 , the corrosion resistance is inferior. On the other hand, if it exceeds 0.5 g / m 2 , the coating tends to break, and the adhesion during severe processing after coating with an organic resin is reduced.
  • the surface treatment composition as described above that is, the titanium-containing aqueous liquid (A), the zirconium carbonate compound (B), on the surface of the zinc-based plated steel sheet or the aluminum-based plated steel sheet,
  • a surface treatment composition (treatment liquid) containing an organic phosphate compound (C), metal phosphate (D), silicon oxide (E) and a water-soluble organic resin or / and a water-dispersible organic resin (F)
  • a surface treatment composition containing an organic phosphate compound (C), metal phosphate (D), silicon oxide (E) and a water-soluble organic resin or / and a water-dispersible organic resin (F)
  • the titanium-containing aqueous liquid (A) and the surface treatment composition may further contain other additive components as mentioned above, if necessary.
  • the means for applying the surface treatment composition (treatment liquid) is optional, for example, spray + roll squeezing, roll coater, etc.
  • the drying method after application is also, for example, a hot air method, induction heating method, electric furnace method, etc. Is optional.
  • the drying temperature (steel plate temperature) of the applied surface treatment composition (treatment liquid) is preferably about 60 to 200 ° C. When the drying temperature is 60 ° C. or higher, film formation is sufficient and a film having excellent corrosion resistance and the like is obtained. On the other hand, if the drying temperature is 200 ° C. or less, cracks are not generated in the film due to heat, so that a sufficient effect of improving corrosion resistance is obtained.
  • a more preferable drying temperature is 60 to 140 ° C., and a further preferable temperature is 60 to 100 ° C.
  • the organic resin-coated steel sheet of the present invention is obtained by forming an organic resin layer on the surface-treated film of the surface-treated steel sheet as described above.
  • the method for forming the organic resin layer is arbitrary, and for example, a method of applying and drying a coating composition, a method of laminating an organic resin film, and the like can be applied.
  • the surface treatment film of the present invention is particularly excellent in adhesion of a thick organic resin layer having a thickness of 100 ⁇ m or more
  • the organic resin-coated steel sheet of the present invention has an organic resin layer thickness of 100 ⁇ m or more. Is particularly useful.
  • the organic resin layer may contain various additives including non-chromium rust preventive additives, solid lubricants, color pigments and the like.
  • titanium-containing aqueous liquid (A) and components (B) to (F) used in the surface treatment composition are shown below.
  • Tianium-containing aqueous liquid T2 A mixture of 10 parts by mass of tetraiso-propoxytitanium and 10 parts by mass of iso-propanol was dropped into a mixture of 10 parts by mass of 30 mass% hydrogen peroxide and 100 parts by mass of deionized water while stirring at 20 ° C. over 1 hour. . Thereafter, aging was carried out at 25 ° C. for 2 hours to obtain a yellow transparent, slightly viscous titanium-containing aqueous liquid T2.
  • Production Example 3 (Titanium-containing aqueous liquid T3) A titanium-containing aqueous liquid T3 was obtained under the same production conditions as in Production Example 2 except that tetra-n-butoxy titanium was used instead of tetraiso-propoxy titanium used in Production Example 2.
  • Production Example 4 (Titanium-containing aqueous liquid T4)
  • a tetramer of tetraiso-propoxytitanium low condensation product of tetraiso-propoxytitanium
  • titanium was used instead of tetraiso-propoxytitanium used in Production Example 2
  • a contained aqueous liquid T4 was obtained.
  • Production Example 5 (Titanium-containing aqueous liquid T5) A titanium-containing aqueous liquid was produced under the same production conditions as in Production Example 2, except that hydrogen peroxide was used in 3 times the amount of Production Example 2, dropped at 50 ° C over 1 hour, and further aged at 60 ° C for 3 hours. T5 was obtained.
  • Production Example 6 (Titanium-containing aqueous liquid T6) The titanium-containing aqueous liquid T3 produced in Production Example 3 was further heat-treated at 95 ° C. for 6 hours to obtain a white yellow translucent titanium-containing aqueous liquid T6.
  • Production Example 7 (Titanium-containing aqueous liquid T7) A mixture of 10 parts by mass of tetraiso-propoxytitanium and 10 parts by mass of iso-propanol was mixed with 5 parts by mass (solid content) of “TKS-203” (trade name, manufactured by Teika Co., Ltd.), 10 mass% hydrogen peroxide solution 10 The mixture was added dropwise to a mixture of parts by mass and 100 parts by mass of deionized water at 10 ° C. with stirring for 1 hour. Thereafter, the mixture was aged at 10 ° C. for 24 hours to obtain a yellow transparent, slightly viscous titanium-containing aqueous liquid T7.
  • Silicon oxide (E) is added to the aqueous solution of metal phosphate (D) at the solid content blending ratio shown in Table 3, Table 5, Table 7, and Table 9 and stirred vigorously, and silicon oxide is added to the metal phosphate aqueous solution. A dispersed mixture was obtained.
  • Tables 7 and 8 No. 77 comparative examples contain only silicon oxide E4.
  • D1 primary aluminum phosphate
  • D2 primary magnesium phosphate
  • D3 primary manganese phosphate / silicon oxide
  • E1 Aerosil 300 (trade name, manufactured by Nippon Aerosil Co., Ltd., vapor phase silica, bulk specific gravity; 50 g / L)
  • E2 Aerosil 200 (trade name, manufactured by Nippon Aerosil Co., Ltd., vapor phase silica, bulk specific gravity; 35 g / L)
  • E3 Snowtex O (trade name, manufactured by Nissan Chemical Industries, colloidal silica)
  • E4 Aerosil 300CF (trade name, manufactured by Nippon Aerosil Co., Ltd., vapor phase silica, bulk specific gravity; 35 g / L)
  • Water-soluble or water-dispersible organic resin (F) Of the water-soluble or water-dispersible organic resins, water-dispersible acrylic resins F1 to F5 were produced according to Production Examples 8 to 12 shown below, and commercially available products were used for F6 to F13. In the following production examples, “part” and “%” are based on mass.
  • Production Example 8 Water-dispersible acrylic resin F1 265 parts deionized water, 9 parts Aqualon RN-50 (Note 1), Aqualon RN-2025 (Note 2) 87 in a 2-liter four-necked flask equipped with a reflux condenser, stirrer, thermometer, and dropping funnel 5% (28.9 parts) of a pre-emulsion obtained by forcibly emulsifying monomer mixture liquid 1 (first stage) having the following composition was added, and the temperature was raised after nitrogen substitution.
  • Monomer mixture 1 Deionized water 166.5 parts Aqualon RN-50 6.6 parts Aqualon RN-2025 53 parts Styrene 35 parts Methyl methacrylate 163.5 parts 2-Ethylhexyl acrylate 105 parts 2-Hydroxyethyl methacrylate 5 parts Methacrylic acid 3 parts Acrylonitrile 38.
  • the monomer mixed solution 2 (second stage) having the following composition was dropped over 1 hour from the end of dropping of the first stage pre-emulsion.
  • ⁇ Monomer mixture 2 >> Styrene 15 parts Methyl methacrylate 84.5 parts 2-Ethylhexyl acrylate 22.5 parts 2-hydroxyethyl methacrylate 4.25 parts Methacrylic acid 6 parts Acrylonitrile 15 parts ⁇ -Methacryloxypropyltrimethoxysilane 2.75 parts The temperature is kept at 60 ° C. for 1 hour, and then the temperature is lowered to 40 ° C. or less.
  • Production examples 9 to 12 water-dispersible acrylic resins F2 to F5
  • water-dispersible acrylic resins F2 to F5 were obtained in the same manner as in Production Example 8, except that the monomer composition of the first and second stages was changed to the blending ratio shown in Table 2.
  • Table 2 also shows the characteristic values of each water-dispersible acrylic resin.
  • F6 Superflex E-2500 (trade name, manufactured by Daiichi Kogyo Seiyaku Co., Ltd., aqueous polyurethane resin)
  • F7 Superflex 150 (trade name, manufactured by Daiichi Kogyo Seiyaku Co., Ltd., water-based polyurethane resin)
  • F8 Superflex 420 (trade name, manufactured by Daiichi Kogyo Seiyaku Co., Ltd., water-based polyurethane resin)
  • F9 Superflex 300 (trade name, manufactured by Daiichi Kogyo Seiyaku Co., Ltd., water-based polyurethane resin)
  • F10 Bironal MD-1100 (trade name, manufactured by Toyobo Co., Ltd., water-based polyester resin)
  • F11 Adeka Resin EM-0718 (trade name, manufactured by ADEKA, water-based epoxy resin)
  • F12 MODEPICS 303 (trade name, manufactured by Arakawa Chemical Industries, Ltd., water-based epoxy resin)
  • the plated steel plate shown in Table 1 was used as the base steel plate of the surface-treated steel plate.
  • Surface treatment composition in which components (B) to (F) and distilled water are appropriately blended and mixed with the titanium-containing aqueous liquid (A) described above, and the solid content is adjusted to 2 to 10 mass% and the pH is adjusted to 8.
  • the product was applied to the surface of the plated steel sheet and dried after 5 seconds so as to reach a predetermined drying temperature (maximum plate temperature) to prepare a surface-treated steel sheet.
  • the surface-treated steel sheet thus obtained is wound with a paper roll wrapped around a rubber roll (48 mm ⁇ ⁇ 205 mm) and scratched on the surface of the coating once without rotating the roll with a load of 690 g (including the roll's own weight). It processed and it was set as the test material 1.
  • the comparative example 46 does not perform the scratching process.
  • test materials 1 were evaluated for heat discoloration resistance, water adhesion resistance, corrosion resistance, and blackening resistance by the following test methods (1) to (4). Furthermore, after applying a general adhesive for a polyvinyl chloride film to the test material 1 so that the dry film thickness becomes 3 ⁇ m, the furnace temperature is heated in a heating furnace having a temperature of 100 ° C., and then a polyvinyl chloride film having a film thickness of 250 ⁇ m. Is pressed against the surface of the test material with a roll so that the steel plate temperature becomes 230 ° C., and a polyvinyl chloride film (organic resin layer) is adhered by thermocompression bonding, and an organic resin-coated steel plate (this is “test material 2”). And).
  • Adhesion after processing (peeling strength after processing) Using a test piece of 30 mm ⁇ 120 mm cut out from the specimen 2, draw a double line at 50 mm intervals perpendicular to the length direction at the center of the test piece in the length direction. Both ends in the vertical direction were grasped with a clamp of a tensile tester, and stretched in a uniaxial direction until the distance between the two lines reached 60 mm. Using the stretched test piece as a sample, the organic resin layer between the spread two wires was provided with a cut reaching the steel plate so as to have a width of 20 mm.
  • One end of the organic resin layer provided with this incision is forcibly peeled off, the end of the peeled organic resin layer is gripped by one clamp of a tensile tester, a steel plate is gripped by the other clamp of the tensile tester, and the peeling speed is 50 mm.
  • peel strength is 40 N / 20 mm width or more
  • B Peel strength is 30 N / 20 mm width or more and less than 40 N / 20 mm width
  • X Peel strength is less than 30 N / 20 mm width
  • Corrosion resistance (scratch resistance) A 50 mm ⁇ 100 mm test piece cut out from the test material 2 was used, a cross cut was made on the surface of the test piece, and a salt spray test was conducted for 1000 hours in accordance with the provisions of JIS-Z-2371-2000. The one-sided corrosion width from the crosscut was measured. The evaluation criteria are as follows. A: The average corrosion width from the cut portion is less than 5 mm. O: The average corrosion width from the cut portion is 5 mm or more and less than 10 mm. X: The average corrosion width from the cut portion is 10 mm or more. The film formed on the surface of the surface-treated steel sheet.
  • the scratch resistance is inferior, the coating is scraped off and a large number of scratches reaching the plated surface are formed. Since there is no film in the scratched part, the adhesion with the organic resin layer is poor, and water easily enters. Therefore, salt water that has entered from the cross cut portion penetrates into the scratch portion, and corrosion progresses. As a result, when the scratch resistance is inferior, the corrosion width from the cross cut portion increases. Therefore, the evaluation of the one-sided average corrosion width from the cross cut is an evaluation of scratch resistance.
  • Storage stability The surface treatment composition having a solid content of 8 mass% was aged at 40 ° C. for 2 weeks, and the precipitation state and viscosity of the solid content were visually evaluated. The evaluation criteria are as follows. ⁇ : No solid content precipitation and no change in viscosity ⁇ : Slight solid content precipitation or small viscosity change ⁇ : Many solid content precipitations or large viscosity change ⁇ : Many solid content precipitations Large change in viscosity (8) Storage stability (II) The surface treatment composition having a solid content of 8 mass% was maintained at 30 ° C., and the solid precipitation state was visually evaluated every week. The evaluation criteria are as follows. ⁇ : No precipitation after 4 weeks ⁇ : Precipitation occurs after 4 weeks ⁇ : Precipitation occurs after 2 to 3 weeks ⁇ : Precipitation occurs after 1 week

Abstract

Disclosed is a surface-treating composition having excellent corrosion resistance, thermal discoloration resistance, blackening resistance, scratch resistance, and post-processing adhesion to an organic resin layer that is formed thereon. The surface-treating composition comprises (A) an aqueous titanium-containing solution produced by mixing at least one titanium compound selected from a hydrolysable titanium compound, a low-condensed product of a hydrolysable titanium compound, titanium hydroxide and a low-condensed product of titanium hydroxide with aqueous hydrogen peroxide, (B) a zirconium carbonate compound, (C) an organic phosphoric acid compound, (D) a metal phosphate salt, (E) silicon oxide, and (F) a water-soluble organic resin and/or a water-dispersible organic resin at a specified proportion.

Description

表面処理組成物及び表面処理鋼板Surface treatment composition and surface treated steel sheet
 本発明は、自動車、家電、建材用途に好適な表面処理組成物及び表面処理鋼板であって、組成物や皮膜中に6価クロムを全く含まない環境適応型表面処理組成物及びこれを用いた表面処理鋼板に関するものである。 The present invention is a surface treatment composition and a surface-treated steel sheet suitable for use in automobiles, home appliances, and building materials, and uses an environment-adaptive surface treatment composition that does not contain any hexavalent chromium in the composition or coating film. The present invention relates to a surface-treated steel sheet.
 家電用鋼板、建材用鋼板、自動車用鋼板には、従来から亜鉛系めっき鋼板又はアルミニウム系めっき鋼板の表面に、耐食性(耐白錆性、耐赤錆性)を向上させる目的で、クロム酸、重クロム酸又はその塩類を主要成分とした処理液によるクロメート処理が施された鋼板が幅広く用いられている。このクロメート処理は、耐食性に優れかつ比較的簡単に行うことができる経済的な処理方法である。 Conventionally, steel plates for home appliances, steel plates for building materials, and steel plates for automobiles have been used for the purpose of improving corrosion resistance (white rust resistance, red rust resistance) on the surface of zinc-plated steel sheets or aluminum-plated steel sheets. Steel plates subjected to chromate treatment with a treatment liquid containing chromic acid or a salt thereof as a main component are widely used. This chromate treatment is an economical treatment method that is excellent in corrosion resistance and can be performed relatively easily.
 クロメート処理は公害規制物質である6価クロムを使用するものであるが、この6価クロムは処理工程においてクローズドシステムで処理されること、また、上層に形成する有機皮膜によるシーリング作用によってクロメート皮膜中からのクロム溶出もほぼゼロにできることから、実質的には6価クロムによって人体や環境が汚染されることはない。しかしながら、近年の地球環境問題に対する関心の高まりとともに、従来の作業環境や排水処理を重視した法規制だけではなく、環境負荷や環境調和を重視した法規制もはじまりつつある。また、製造者を環境貢献度で評価する時代背景もあり、6価クロムを含めた重金属の使用を削減しようとする動きが高まりつつある。 The chromate treatment uses hexavalent chromium which is a pollution control substance. This hexavalent chromium is treated in a closed system in the treatment process, and the sealing action by the organic film formed on the upper layer causes the chromate film to contain Since the elution of chromium from can be made almost zero, the human body and the environment are not substantially polluted by hexavalent chromium. However, with increasing interest in global environmental issues in recent years, not only laws and regulations that emphasize the conventional work environment and wastewater treatment, but also laws and regulations that emphasize environmental load and environmental harmony are beginning. In addition, with the background of the times when manufacturers are evaluated by their degree of environmental contribution, there is an increasing trend to reduce the use of heavy metals including hexavalent chromium.
 このような背景の下で、6価クロムを用いない亜鉛系めっき鋼板の白錆抑制技術(クロメートフリー技術)が数多く提案されている。例えば、特許文献1,2には、Alとリン酸化合物とシリカと水系有機樹脂エマルジョンを含有した表面処理剤及びこれを被覆した金属材料が提案されている。また、特許文献3には、多価金属の第一リン酸塩と金属酸化物ゾルの混合水溶液を塗布・乾燥した非晶質皮膜を形成後、有機被覆層を形成した亜鉛系めっき鋼板が提案されている。さらに、特許文献4,5には、酸化物微粒子とリン酸及び/又はリン酸化合物とMg、Mn、Alの中から選ばれる1種以上の金属とを含有する複合酸化物皮膜層を下層とし、その上層に有機皮膜を形成した鋼板が提案されている。 Against this background, a number of white rust suppression technologies (chromate-free technologies) for zinc-based plated steel sheets that do not use hexavalent chromium have been proposed. For example, Patent Documents 1 and 2 propose a surface treatment agent containing Al, a phosphoric acid compound, silica, and a water-based organic resin emulsion, and a metal material coated therewith. Patent Document 3 proposes a galvanized steel sheet in which an organic coating layer is formed after an amorphous film is formed by applying and drying a mixed aqueous solution of polyphosphate primary phosphate and metal oxide sol. Has been. Further, in Patent Documents 4 and 5, a composite oxide film layer containing oxide fine particles, phosphoric acid and / or a phosphoric acid compound, and one or more metals selected from Mg, Mn, and Al is used as a lower layer. A steel sheet having an organic film formed thereon is proposed.
 亜鉛系めっき鋼板が適用される用途の中で、亜鉛の融点以上の温度域(500~600℃程度)で加熱を受ける部品が少なからず存在する。例えば、エアコン室外機内の熱交換器では、銅管とアルミニウム製エバポレーターをロウ付けする際に、ガスバーナーを用いた加熱によるアルミニウムの溶解を防ぐため、亜鉛系めっき鋼板を銅管とエバポレーター間に配置して、バーナーの火炎が直接アルミニウムに触れないようにしている。このような用途に上記従来技術の表面処理鋼板を適用すると、有機樹脂主体の皮膜であるために熱分解により黄色や茶褐色に変色し、外観不良を生じてしまう。このため従来技術の表面処理鋼板を適用することはほとんど不可能である。 There are not a few parts that are heated in the temperature range above the melting point of zinc (about 500 to 600 ° C) among the applications where zinc-based plated steel sheets are applied. For example, in a heat exchanger in an air conditioner outdoor unit, when brazing a copper pipe and an aluminum evaporator, a zinc-based plated steel sheet is placed between the copper pipe and the evaporator to prevent melting of the aluminum by heating using a gas burner. Thus, the flame of the burner is prevented from touching the aluminum directly. When the above-described surface-treated steel sheet according to the prior art is applied to such a use, it is a film mainly composed of an organic resin, so that it is discolored to yellow or brown by thermal decomposition, resulting in poor appearance. For this reason, it is almost impossible to apply the surface-treated steel sheet of the prior art.
 このような課題を解決するため、耐熱変色性に優れるクロメートフリー技術が提案されている。例えば、特許文献6,7には、重リン酸Mgとコロイダルシリカとホスホン酸化合物を主成分とする無機リッチ皮膜が提案されている。また、特許文献8には、第一リン酸塩とコロイダルシリカを主成分とする無機リッチ皮膜を下層、シリケート皮膜及び/又はシリコン樹脂を上層に配した二層皮膜が提案されている。また、特許文献9には、加水分解性チタン化合物、加水分解性チタン化合物の低縮合物、水酸化チタン、水酸化チタンの低縮合物の中から選ばれる少なくとも1種のチタン化合物を過酸化水素水と混合して得られるチタン含有水性液と、有機リン酸、水溶性又は水分散性有機樹脂、バナジン酸化合物、弗化ジルコニウム化合物及び炭酸ジルコニウム化合物を含有する表面処理組成物が開示されている。 In order to solve such problems, a chromate-free technology with excellent heat discoloration has been proposed. For example, Patent Documents 6 and 7 propose an inorganic rich film mainly composed of Mg-phosphate, colloidal silica, and a phosphonic acid compound. Patent Document 8 proposes a two-layer coating in which an inorganic rich coating mainly composed of primary phosphate and colloidal silica is disposed as a lower layer, and a silicate coating and / or a silicon resin is disposed as an upper layer. Patent Document 9 discloses that at least one titanium compound selected from hydrolyzable titanium compounds, low-condensates of hydrolyzable titanium compounds, titanium hydroxide, and low-condensates of titanium hydroxide is hydrogen peroxide. Disclosed is a surface treatment composition containing a titanium-containing aqueous liquid obtained by mixing with water, an organic phosphoric acid, a water-soluble or water-dispersible organic resin, a vanadic acid compound, a zirconium fluoride compound, and a zirconium carbonate compound. .
特開平11−350157号公報Japanese Patent Laid-Open No. 11-350157 特開2000−26980号公報JP 2000-26980 A 特開2000−129460号公報JP 2000-129460 A 特開2002−53979号公報JP 2002-53979 A 特開2002−53980号公報JP 2002-53980 A 特開2000−79370号公報JP 2000-79370 A 特開2001−348672号公報JP 2001-348672 A 特開2004−91826号公報JP 2004-91826 A 特開2006−9121号公報Japanese Patent Laid-Open No. 2006-9121
 しかし、特許文献6,7の無機リッチ皮膜は、耐食性レベルが極めて低く、クロメート皮膜代替としての適用は困難である。一方、特許文献8の二層皮膜は、クロメート皮膜代替として適用可能な耐食性レベルであるが、高価なシリケートやシリコン樹脂を使用するため、コスト面で問題がある。また、これらの技術による皮膜は、湿潤環境下で黒色に変色する現象(黒変)が発生しやすいため、結露しやすい熱交換機での適用は困難であり、また、製品の輸送中の保管環境にも制約が生じ、実用的ではない。また、特許文献9の表面処理組成物は、これに含まれる弗化物が耐水付着性やアルカリ脱脂後の耐食性を向上させるものの、上層に比較的厚い有機樹脂層を有する場合、密着性の低下を招いてしまう。 However, the inorganic rich coatings of Patent Documents 6 and 7 have extremely low corrosion resistance levels and are difficult to apply as chromate coating substitutes. On the other hand, the two-layer coating of Patent Document 8 has a corrosion resistance level applicable as a chromate coating substitute, but has a problem in terms of cost because it uses expensive silicate or silicon resin. In addition, the coatings produced by these technologies are subject to a phenomenon of black discoloration (black discoloration) in a humid environment, making it difficult to apply to heat exchangers that are subject to dew condensation, and the storage environment during product transportation. Are also impractical and impractical. Further, the surface treatment composition of Patent Document 9 improves the adhesion resistance when the fluoride contained therein improves the water-resistant adhesion and the corrosion resistance after alkaline degreasing, but has a relatively thick organic resin layer on the upper layer. I will invite you.
 また、塗装鋼板やラミネート鋼板などの有機樹脂被覆鋼板では、有機樹脂層の密着性が重要な性能となるが、下地処理として行われる従来のリン酸塩処理は得られる皮膜が結晶質であるため、厳しい加工により結晶が破壊され、有機樹脂層の密着性が低下しやすい。特に、有機樹脂層の厚みが100μm以上となるような塗装鋼板やラミネート鋼板の場合、鋼板が加工を受ける際にリン酸塩皮膜が破壊され、この部分を起点として有機樹脂層が剥離しやすい。
 このような問題に対して、例えば、さきに挙げた特許文献3~5は、基板上のめっき金属と処理液とが反応し、ごく薄膜の難溶性リン酸塩を形成して耐食性や塗料密着性等が発現するものであるが、このような表面処理鋼板を有機樹脂被覆鋼板に用いた場合にも、加工を行った場合の密着性や耐食性が低下しやすい。特に、厚さが100μm以上となるような有機樹脂層を有する有機樹脂被覆鋼板の場合、皮膜強度が高いため、変形時に有機樹脂層とその下地との界面に強いせん断力が働き、有機樹脂層の剥離が生じやすくなる。
In addition, in organic resin-coated steel sheets such as coated steel sheets and laminated steel sheets, the adhesion of the organic resin layer is an important performance, but the conventional phosphating treatment that is performed as a base treatment has a crystalline film. Crystals are destroyed by strict processing, and the adhesion of the organic resin layer tends to be lowered. In particular, in the case of a coated steel sheet or a laminated steel sheet in which the thickness of the organic resin layer is 100 μm or more, the phosphate film is destroyed when the steel sheet is processed, and the organic resin layer is easily peeled off starting from this portion.
In order to deal with such problems, for example, in Patent Documents 3 to 5 listed above, the plating metal on the substrate reacts with the treatment liquid to form a very thin, insoluble phosphate to prevent corrosion resistance and paint adhesion. However, even when such a surface-treated steel sheet is used for an organic resin-coated steel sheet, the adhesion and corrosion resistance when processed are likely to deteriorate. In particular, in the case of an organic resin-coated steel sheet having an organic resin layer with a thickness of 100 μm or more, since the film strength is high, a strong shearing force acts on the interface between the organic resin layer and its base during deformation, and the organic resin layer Peeling easily occurs.
 本出願人らは、以上のような従来技術の課題に鑑み、優れた耐食性と耐熱変色性及び耐黒変性が得られ、且つ表面処理皮膜の上層に形成される有機樹脂層との優れた密着性、特に100μm以上の厚みを有するような厚い有機樹脂層の鋼板変形時における優れた密着性が得られる表面処理組成物を、さきに特願2008−335387号として提案した。この表面処理組成物は、加水分解性チタン化合物、加水分解性チタン化合物の低縮合物、水酸化チタン、水酸化チタンの低縮合物の中から選ばれる少なくとも1種のチタン化合物を過酸化水素水と混合して得られるチタン含有水性液と、炭酸ジルコニウム化合物、有機リン酸化合物、金属リン酸塩及び酸化ケイ素を特定の割合で含有するものである。
 しかし、本発明者らによるその後の研究により、上記表面処理組成物により形成される皮膜は比較的脆い性質があるため、表面処理鋼板を実機で製造する場合、皮膜形成後に金属ロール等に接触すると皮膜にキズが入り、耐食性が低下しやすい問題があることが判明した。
In view of the problems of the prior art as described above, the present applicants have excellent corrosion resistance, heat discoloration resistance and blackening resistance, and excellent adhesion to the organic resin layer formed on the surface treatment film. In particular, Japanese Patent Application No. 2008-335387 has proposed a surface treatment composition capable of obtaining excellent adhesion properties, particularly when a thick organic resin layer having a thickness of 100 μm or more is deformed. This surface treatment composition comprises at least one titanium compound selected from hydrolyzable titanium compounds, low-condensates of hydrolysable titanium compounds, titanium hydroxide, and low-condensates of titanium hydroxide with a hydrogen peroxide solution. A titanium-containing aqueous liquid obtained by mixing with a zirconium carbonate compound, an organic phosphoric acid compound, a metal phosphate, and silicon oxide in a specific ratio.
However, as a result of subsequent studies by the present inventors, the film formed from the above-mentioned surface treatment composition has a relatively brittle nature. It was found that there was a problem that the film was scratched and the corrosion resistance was likely to be lowered.
 したがって本発明の目的は、以上のような課題を解決し、6価クロムを全く含まず、優れた耐食性と耐熱変色性及び耐黒変性が得られるとともに、表面処理皮膜形成後に金属ロール等が接触した際の耐キズ付き性が優れ、しかも表面処理皮膜の上層に形成される有機樹脂層との優れた密着性、特に100μm以上の厚みを有するような厚い有機樹脂層が形成され、過酷な加工が加えられた時でも優れた密着性が得られる表面処理組成物及び表面処理鋼板を提供することにある。
 また、本発明の他の目的は、そのような表面処理鋼板を用いた有機樹脂被覆鋼板を提供することにある。
Accordingly, the object of the present invention is to solve the above-mentioned problems, and does not contain hexavalent chromium at all, and provides excellent corrosion resistance, heat discoloration resistance and blackening resistance, and contact with a metal roll after forming a surface treatment film. Excellent adhesion to the organic resin layer formed on the upper layer of the surface treatment film, particularly a thick organic resin layer having a thickness of 100 μm or more is formed, and is severely processed. An object of the present invention is to provide a surface-treated composition and a surface-treated steel sheet that can obtain excellent adhesion even when added.
Another object of the present invention is to provide an organic resin-coated steel sheet using such a surface-treated steel sheet.
 本発明者らは、上記課題を解決し得る皮膜組成について検討を行い、その結果、金属材料(好ましくは亜鉛系めっき鋼板又はアルミニウム系めっき鋼板)の表面に、特定のチタン含有水性液に対して炭酸ジルコニウム化合物、有機リン酸化合物、金属リン酸塩、酸化ケイ素、及び水溶性有機樹脂及び/又は水分散性有機樹脂を所定の割合で複合添加した表面処理組成物による表面処理皮膜を形成することにより、優れた耐食性と耐熱変色性及び耐黒変性が得られるとともに、表面処理皮膜形成後に金属ロール等が接触した際の耐キズ付き性が優れ、しかも表面処理皮膜の上層に有機樹脂層、特に100μm以上の厚みを有するような厚い有機樹脂層が形成され、過酷な加工が加えられた時でも優れた密着性が得られることを見出した。 The inventors of the present invention have studied a film composition that can solve the above-described problems, and as a result, on the surface of a metal material (preferably a zinc-based plated steel sheet or an aluminum-based plated steel sheet), a specific titanium-containing aqueous liquid. Forming a surface treatment film by a surface treatment composition in which a zirconium carbonate compound, an organic phosphate compound, a metal phosphate, silicon oxide, and a water-soluble organic resin and / or a water-dispersible organic resin are added in a predetermined ratio. Provides excellent corrosion resistance, heat discoloration resistance and blackening resistance, and excellent scratch resistance when contacting with a metal roll after the surface treatment film is formed. It has been found that a thick organic resin layer having a thickness of 100 μm or more is formed, and excellent adhesion can be obtained even when severe processing is applied.
 本発明は、このような知見に基づきなされたので、以下を要旨とするものである。
[1]加水分解性チタン化合物、加水分解性チタン化合物の低縮合物、水酸化チタン、水酸化チタンの低縮合物の中から選ばれる少なくとも1種のチタン化合物を過酸化水素水と混合して得られるチタン含有水性液(A)の固形分100質量部に対して、炭酸ジルコニウム化合物(B)を10~300質量部、有機リン酸化合物(C)を50~200質量部含有し、さらに、金属リン酸塩(D)を表面処理組成物の全固形分中での割合で5~20mass%、酸化ケイ素(E)を表面処理組成物の全固形分中での割合で32~40mass%、水溶性有機樹脂及び/又は水分散性有機樹脂(F)を表面処理組成物の全固形分中での割合で2~10mass%含有することを特徴とする表面処理組成物。
Since this invention was made | formed based on such knowledge, it makes the following a summary.
[1] Mixing at least one titanium compound selected from hydrolyzable titanium compounds, hydrolyzable titanium compound low-condensates, titanium hydroxide, and titanium hydroxide low-condensates with hydrogen peroxide. 10 to 300 parts by mass of the zirconium carbonate compound (B) and 50 to 200 parts by mass of the organic phosphate compound (C) with respect to 100 parts by mass of the solid content of the resulting titanium-containing aqueous liquid (A), 5 to 20 mass% of metal phosphate (D) in the total solid content of the surface treatment composition, 32 to 40 mass% of silicon oxide (E) in the total solid content of the surface treatment composition, A surface treatment composition comprising 2 to 10 mass% of a water-soluble organic resin and / or a water-dispersible organic resin (F) in a proportion in the total solid content of the surface treatment composition.
[2]上記[1]の表面処理組成物において、酸化ケイ素(E)が乾式法にて製造された気相シリカであることを特徴とする表面処理組成物。
[3]上記[2]の表面処理組成物において、気相シリカのかさ比重が40g/L以下であることを特徴とする表面処理組成物。
[4]上記[1]~[3]のいずれかの表面処理組成物において、pHが7~12であることを特徴とする表面処理組成物。
[5]亜鉛系めっき鋼板又はアルミニウム系めっき鋼板の表面に、上記[1]~[4]のいずれかの表面処理組成物を塗布し、乾燥させることにより形成された皮膜付着量が0.03~0.5g/mの表面処理皮膜を有することを特徴とする表面処理鋼板。
[6]上記[5]の表面処理鋼板の表面処理皮膜上に有機樹脂層を有することを特徴とする有機樹脂被覆鋼板。
[2] The surface treatment composition according to the above [1], wherein the silicon oxide (E) is vapor phase silica produced by a dry method.
[3] The surface treatment composition according to the above [2], wherein the bulk specific gravity of the vapor phase silica is 40 g / L or less.
[4] The surface treatment composition according to any one of the above [1] to [3], wherein the pH is 7 to 12.
[5] The coating amount formed by applying the surface treatment composition of any one of [1] to [4] above to the surface of a zinc-based plated steel sheet or an aluminum-based plated steel sheet and drying is 0.03. A surface-treated steel sheet having a surface-treated film of ˜0.5 g / m 2 .
[6] An organic resin-coated steel sheet having an organic resin layer on the surface-treated film of the surface-treated steel sheet of [5].
 本発明の表面処理組成物により形成される表面処理皮膜は、特定の無機成分で構成されることにより高度のバリア性を有するため、クロメート皮膜に匹敵する優れた耐食性と耐黒変性を有し、加えて、加熱による発色や変色を生じにくい優れた耐熱変色性を有する。さらに、表面処理皮膜形成後に金属ロール等が接触した際の耐キズ付き性が優れ、しかも表面処理皮膜の上層に有機樹脂層、特に100μm以上の厚みを有するような厚い有機樹脂層が形成され、過酷な加工が加えられた時でも優れた密着性が得られる。
 また、本発明の表面処理鋼板及び有機樹脂被覆鋼板は、耐食性、耐黒変性、耐熱変色性及び耐キズ付き性に優れるとともに、有機樹脂層の密着性、特に100μm以上の厚みを有するような厚い有機樹脂層の密着性に優れている。
Since the surface treatment film formed by the surface treatment composition of the present invention has a high level of barrier properties by being composed of a specific inorganic component, it has excellent corrosion resistance and blackening resistance comparable to a chromate film, In addition, it has excellent heat discoloration that hardly causes coloration or discoloration by heating. Furthermore, the scratch resistance when a metal roll or the like comes into contact after the surface treatment film is formed, and an organic resin layer, particularly a thick organic resin layer having a thickness of 100 μm or more is formed on the surface treatment film, Excellent adhesion is obtained even when harsh processing is applied.
In addition, the surface-treated steel sheet and the organic resin-coated steel sheet of the present invention are excellent in corrosion resistance, blackening resistance, heat discoloration resistance and scratch resistance, and are thick enough to have adhesion of the organic resin layer, particularly 100 μm or more. Excellent adhesion of organic resin layer.
 本発明の表面処理組成物は、チタン含有水性液(A)、炭酸ジルコニウム化合物(B)、有機リン酸化合物(C)、金属リン酸塩(D)、酸化ケイ素(E)及び水溶性有機樹脂及び/又は水分散性有機樹脂(F)を含有するものである。この表面処理組成物は6価クロム(但し、不可避不純物としての6価クロムを除く)を含有しない。
 前記チタン含有水性液(A)は、加水分解性チタン化合物、加水分解性チタン化合物の低縮合物、水酸化チタン、水酸化チタンの低縮合物の中から選ばれる少なくとも1種のチタン化合物と過酸化水素水とを混合して得られるチタンを含む水性液である。
The surface treatment composition of the present invention comprises a titanium-containing aqueous liquid (A), a zirconium carbonate compound (B), an organic phosphate compound (C), a metal phosphate (D), silicon oxide (E), and a water-soluble organic resin. And / or a water-dispersible organic resin (F). This surface treatment composition does not contain hexavalent chromium (except for hexavalent chromium as an inevitable impurity).
The titanium-containing aqueous liquid (A) contains at least one titanium compound selected from hydrolyzable titanium compounds, hydrolyzable titanium compound low condensates, titanium hydroxide and titanium hydroxide low condensates. It is an aqueous liquid containing titanium obtained by mixing with hydrogen oxide water.
 前記加水分解性チタン化合物は、チタンに直接結合する加水分解性基を有するチタン化合物であって、水、水蒸気などの水分と反応することにより水酸化チタンを生成するものである。また、加水分解性チタン化合物は、チタンに結合する基の全てが加水分解性基であるものでもよいし、チタンに結合する基の一部が加水分解性基であるものでもよい。
 前記加水分解性基としては、上記したように水分と反応することにより水酸化チタンを生成させるものであれば特に制限はないが、例えば、低級アルコキシル基やチタンと塩を形成する基(例えば、塩素などのハロゲン原子、水素原子、硫酸イオンなど)などが挙げられる。
The hydrolyzable titanium compound is a titanium compound having a hydrolyzable group directly bonded to titanium, and generates titanium hydroxide by reacting with water such as water or water vapor. The hydrolyzable titanium compound may be one in which all of the groups bonded to titanium are hydrolyzable groups, or a part of the groups bonded to titanium may be hydrolyzable groups.
The hydrolyzable group is not particularly limited as long as it generates titanium hydroxide by reacting with moisture as described above. For example, a lower alkoxyl group or a group that forms a salt with titanium (for example, Halogen atoms such as chlorine, hydrogen atoms, sulfate ions, etc.).
 加水分解性基として低級アルコキシル基を含有する加水分解性チタン化合物としては、特に、一般式Ti(OR)(式中、Rは同一若しくは異なる炭素数1~5のアルキル基を示す)で示されるテトラアルコキシチタンが好ましい。炭素数1~5のアルキル基としては、例えば、メチル基、エチル基、n−プロピル基、iso−プロピル基、n−ブチル基、iso−ブチル基、sec−ブチル基、tert−ブチル基などが挙げられる。
 加水分解性基として、チタンと塩を形成する基を有する加水分解性チタン化合物としては、塩化チタン、硫酸チタンなどが代表的なものとして挙げられる。
The hydrolyzable titanium compound containing a lower alkoxyl group as the hydrolyzable group is particularly represented by the general formula Ti (OR) 4 (wherein R represents the same or different alkyl group having 1 to 5 carbon atoms). Tetraalkoxy titanium is preferred. Examples of the alkyl group having 1 to 5 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an iso-propyl group, an n-butyl group, an iso-butyl group, a sec-butyl group, and a tert-butyl group. Can be mentioned.
Typical examples of the hydrolyzable titanium compound having a group capable of forming a salt with titanium as a hydrolyzable group include titanium chloride and titanium sulfate.
 また、加水分解性チタン化合物の低縮合物は、上記した加水分解性チタン化合物どうしの低縮合物である。この低縮合物は、チタンに結合する基の全てが加水分解性基であるものでもよいし、チタンに結合する基の一部が加水分解性であるものでもよい。
 加水分解性基がチタンと塩を形成する基である加水分解性チタン化合物(例えば、塩化チタン、硫酸チタンなど)については、その加水分解性チタン化合物の水溶液とアンモニアや苛性ソーダなどのアルカリ溶液との反応により得られるオルトチタン酸(水酸化チタンゲル)も低縮合物として使用できる。
Moreover, the low condensate of a hydrolysable titanium compound is a low condensate of the above-mentioned hydrolysable titanium compounds. The low condensate may be one in which all of the groups bonded to titanium are hydrolyzable groups, or a part of the groups bonded to titanium may be hydrolyzable.
For hydrolyzable titanium compounds whose hydrolyzable group forms a salt with titanium (for example, titanium chloride, titanium sulfate, etc.), an aqueous solution of the hydrolyzable titanium compound and an alkaline solution such as ammonia or caustic soda are used. Orthotitanic acid (titanium hydroxide gel) obtained by the reaction can also be used as a low condensate.
 加水分解性チタン化合物の低縮合物及び水酸化チタンの低縮合物としては、縮合度が2~30の化合物が使用可能であり、特に縮合度が2~10の化合物を使用することが好ましい。縮合度が30以下であれば、過酸化水素と混合して安定なチタン含有水性液が得られる。
 以上挙げた加水分解性チタン化合物、加水分解性チタン化合物の低縮合物、水酸化チタン、水酸化チタンの低縮合物は、1種又は2種以上を使用できるが、そのなかでも、上述した一般式で示される加水分解性チタン化合物であるテトラアルコキシチタンが特に好ましい。この理由は、テトラアルコキシチタンは、加水分解した時に生成されるアルコールが表面処理組成物を乾燥させる過程で揮発するため、耐食性などの皮膜性能に影響を与えることがなく、特に優れた皮膜性能が得られるからである。
As the low condensate of the hydrolyzable titanium compound and the low condensate of titanium hydroxide, a compound having a condensation degree of 2 to 30 can be used, and a compound having a condensation degree of 2 to 10 is particularly preferable. If the degree of condensation is 30 or less, a stable titanium-containing aqueous liquid can be obtained by mixing with hydrogen peroxide.
The hydrolyzable titanium compounds, low condensates of hydrolysable titanium compounds, titanium hydroxide, and low condensates of titanium hydroxide can be used alone or in combination of two or more thereof. Tetraalkoxy titanium which is a hydrolyzable titanium compound represented by the formula is particularly preferable. The reason for this is that tetraalkoxytitanium does not affect the film performance such as corrosion resistance because the alcohol produced when hydrolyzed volatilizes in the process of drying the surface treatment composition, and has particularly excellent film performance. It is because it is obtained.
 チタン含有水性液(A)としては、上記したチタン化合物と過酸化水素水を混合することにより得られるチタンを含む水性液であれば、従来公知のものを特に制限なしに使用することができる。具体的には、下記のものを挙げることができる。
(i)含水酸化チタンのゲル又はゾルに過酸化水素水を添加して得られるチタニルイオン過酸化水素錯体又はチタン酸(ペルオキソチタン水和物)水溶液(特開昭63−35419号公報、特開平1−224220号公報参照)。
As the titanium-containing aqueous liquid (A), any conventionally known liquid can be used without particular limitation as long as it is an aqueous liquid containing titanium obtained by mixing the above-described titanium compound and hydrogen peroxide solution. Specifically, the following can be mentioned.
(I) A titanyl ion hydrogen peroxide complex or an aqueous solution of titanic acid (peroxotitanium hydrate) obtained by adding hydrogen peroxide to a hydrous titanium oxide gel or sol (JP 63-35419 A, JP 1-2224220 gazette).
(ii)塩化チタンや硫酸チタンの水溶液と塩基性溶液から製造した水酸化チタンゲルに過酸化水素水を作用させ、合成することで得られるチタニア膜形成用液体(特開平9−71418号公報、特開平10−67516号公報参照)。
 このチタニア膜形成用液体を得る場合、チタンと塩を形成する基を有する塩化チタンや硫酸チタンの水溶液とアンモニアや苛性ソーダなどのアルカリ溶液とを反応させることによりオルトチタン酸と呼ばれる水酸化チタンゲルを沈殿させる。次いで、水を用いたデカンテーションによって水酸化チタンゲルを分離し、良く水洗し、さらに過酸化水素水を加え、余分な過酸化水素を分解除去することにより、黄色透明粘性液体を得ることができる。
(Ii) A liquid for forming a titania film obtained by synthesizing a titanium hydroxide gel produced from an aqueous solution of titanium chloride or titanium sulfate and a basic solution with a hydrogen peroxide solution (Japanese Patent Laid-Open No. 9-71418, (See Kaihei 10-67516).
When this titania film forming liquid is obtained, titanium hydroxide gel called ortho titanic acid is precipitated by reacting an aqueous solution of titanium chloride or titanium sulfate having a salt forming group with titanium and an alkaline solution such as ammonia or caustic soda. Let Next, the titanium hydroxide gel is separated by decantation with water, washed thoroughly with water, further added with hydrogen peroxide water, and excess hydrogen peroxide is decomposed and removed, whereby a yellow transparent viscous liquid can be obtained.
 沈殿した上記オルトチタン酸は、OHどうしの重合や水素結合によって高分子化したゲル状態にあり、そのままではチタンを含む水性液としては使用できない。このゲルに過酸化水素水を添加するとOHの一部が過酸化状態になり、ペルオキソチタン酸イオンとして溶解或いは高分子鎖が低分子に分断された一種のゾル状態になり、余分な過酸化水素は水と酸素になって分解し、無機膜形成用のチタンを含む水性液として使用できるようになる。
 このゾルはチタン原子以外に酸素原子と水素原子しか含まないので、乾燥や焼成によって酸化チタンに変化する場合、水と酸素しか発生しないため、ゾルゲル法や硫酸塩などの熱分解に必要な炭素成分やハロゲン成分の除去が必要でなく、低温でも比較的密度の高い酸化チタン膜を形成することができる。
The precipitated orthotitanic acid is in a gel state polymerized by polymerization of OH or hydrogen bonds, and cannot be used as an aqueous liquid containing titanium as it is. When hydrogen peroxide solution is added to this gel, a part of OH is in a peroxidized state, dissolved as a peroxotitanate ion or in a kind of sol state in which the polymer chain is divided into low molecules, and excess hydrogen peroxide Is decomposed into water and oxygen, and can be used as an aqueous liquid containing titanium for forming an inorganic film.
Since this sol contains only oxygen and hydrogen atoms in addition to titanium atoms, when it is changed to titanium oxide by drying or firing, only water and oxygen are generated, so carbon components necessary for thermal decomposition such as sol-gel method and sulfate Further, it is not necessary to remove the halogen component, and a titanium oxide film having a relatively high density can be formed even at a low temperature.
(iii)塩化チタンや硫酸チタンの無機チタン化合物水溶液に過酸化水素を加えてペルオキソチタン水和物を生成させた後に、塩基性物質を添加して得られた溶液を放置又は加熱することによってペルオキソチタン水和物重合体の沈殿物を生成させ、次いで、少なくともチタン含有原料溶液に由来する水以外の溶解成分を除去した後に過酸化水素を作用させて得られるチタン酸化物形成用溶液(特開2000−247638号公報、特開2000−247639号公報参照)。 (Iii) Hydrogen peroxide is added to an aqueous solution of an inorganic titanium compound such as titanium chloride or titanium sulfate to form a peroxotitanium hydrate, and then the solution obtained by adding a basic substance is allowed to stand or be heated. A titanium oxide forming solution obtained by forming a precipitate of a titanium hydrate polymer, and then removing hydrogen and other dissolved components derived from at least a titanium-containing raw material solution (Japanese Patent Application Laid-Open 2000-247638, JP-A-2000-247639).
 チタン化合物として加水分解性チタン化合物及び/又はその低縮合物(以下、説明の便宜上「加水分解性チタン化合物a」という)を用いるチタン含有水性液(A)は、加水分解性チタン化合物aを過酸化水素水と反応温度1~70℃で10分間~20時間程度反応させることにより得ることができる。
 この加水分解性チタン化合物aを用いたチタン含有水性液(A)は、加水分解性チタン化合物aと過酸化水素水とを反応させることにより、加水分解性チタン化合物aが水で加水分解されて水酸基含有チタン化合物を生成し、次いで、この水酸基含有チタン化合物に過酸化水素が配位するものと考えられ、この加水分解反応及び過酸化水素による配位が同時近くに起こることにより得られたものであり、室温域での安定性が極めて高く、長期の保存に耐えるキレート液を生成する。従来の製法で用いられる水酸化チタンゲルは、Ti−O−Ti結合により部分的に三次元化しており、このゲルと過酸化水素水を反応させたチタン含有水性液(A)とは組成及び安定性が本質的に異なる。
The titanium-containing aqueous liquid (A) using a hydrolyzable titanium compound and / or a low condensate thereof as a titanium compound (hereinafter referred to as “hydrolyzable titanium compound a” for convenience of explanation) contains hydrolyzable titanium compound a. It can be obtained by reacting with hydrogen oxide water at a reaction temperature of 1 to 70 ° C. for about 10 minutes to 20 hours.
In the titanium-containing aqueous liquid (A) using the hydrolyzable titanium compound a, the hydrolyzable titanium compound a is hydrolyzed with water by reacting the hydrolyzable titanium compound a with hydrogen peroxide. A product obtained by producing a hydroxyl group-containing titanium compound and then coordinating hydrogen peroxide to this hydroxyl group-containing titanium compound, and this hydrolysis reaction and coordination by hydrogen peroxide occur simultaneously. It produces a chelate solution that is extremely stable at room temperature and can withstand long-term storage. The titanium hydroxide gel used in the conventional manufacturing method is partially three-dimensionalized by Ti—O—Ti bonds, and the titanium-containing aqueous liquid (A) obtained by reacting this gel with hydrogen peroxide is composition and stable. Sex is essentially different.
 また、加水分解性チタン化合物aを用いたチタン含有水性液(A)を80℃以上で加熱処理又はオートクレーブ処理すると、結晶化した酸化チタンの超微粒子を含む酸化チタン分散液が得られる。前記加熱処理又はオートクレーブ処理を80℃以上で行えば、酸化チタンの結晶化を十分に進行させることができる。このようにして製造された酸化チタン分散液の酸化チタン超微粒子の平均粒子径は10nm以下、好ましくは1~6nm程度とすることが望ましい。酸化チタン超微粒子の平均粒子径を10nm以下とすると造膜性が優れる(塗布後乾燥して皮膜とした場合、膜厚1μm以上でワレを生じることがない)ので好ましい。また、酸化チタン超微粒子の平均粒子径が1nm以上であれば、表面処理組成物を粘度が高くならない状態に維持できるので好ましい。この酸化チタン分散液の外観は半透明状のものである。このような酸化チタン分散液も、チタン含有水性液(A)として使用することができる。 Further, when the titanium-containing aqueous liquid (A) using the hydrolyzable titanium compound a is heated or autoclaved at 80 ° C. or higher, a titanium oxide dispersion liquid containing crystallized ultrafine particles of titanium oxide is obtained. If the heat treatment or autoclave treatment is performed at 80 ° C. or higher, the crystallization of titanium oxide can be sufficiently advanced. The average particle size of the titanium oxide ultrafine particles of the titanium oxide dispersion thus produced is 10 nm or less, preferably about 1 to 6 nm. When the average particle diameter of the titanium oxide ultrafine particles is 10 nm or less, the film-forming property is excellent (when the film is dried after coating to form a film, cracking does not occur when the film thickness is 1 μm or more). Moreover, if the average particle diameter of the titanium oxide ultrafine particles is 1 nm or more, it is preferable because the surface treatment composition can be maintained in a state where the viscosity does not increase. The appearance of this titanium oxide dispersion is translucent. Such a titanium oxide dispersion can also be used as the titanium-containing aqueous liquid (A).
 加水分解性チタン化合物aを用いたチタン含有水性液(A)を含む表面処理組成物(H)を、めっき鋼板表面に塗布・乾燥(例えば、低温で加熱乾燥)することにより、それ自体で付着性に優れた緻密な酸化チタン含有皮膜(表面処理皮膜)を形成することができる。
 表面処理組成物(H)を塗布した後の鋼板の加熱温度としては、例えば200℃以下、特に150℃以下が好ましく、このような温度で加熱乾燥することにより、水酸基を若干含む非晶質(アモルファス)の酸化チタン含有皮膜が形成できる。
 また、上記したような80℃以上の加熱処理又はオートクレーブ処理を経て得られた酸化チタン分散液をチタン含有水性液(A)として用いた場合、表面処理組成物(H)を塗布するだけで結晶性の酸化チタン含有皮膜が形成できるため、加熱処理できない材料のコーティング材として有用である。
The surface treatment composition (H) containing the titanium-containing aqueous liquid (A) using the hydrolyzable titanium compound a is applied to the surface of the plated steel plate and dried (for example, heat-dried at a low temperature), thereby adhering to itself. A dense titanium oxide-containing film (surface treatment film) having excellent properties can be formed.
The heating temperature of the steel sheet after the application of the surface treatment composition (H) is, for example, preferably 200 ° C. or lower, particularly preferably 150 ° C. or lower. Amorphous) titanium oxide-containing film can be formed.
In addition, when the titanium oxide dispersion obtained through the heat treatment or autoclave treatment as described above at 80 ° C. or more is used as the titanium-containing aqueous liquid (A), the crystal can be obtained by simply applying the surface treatment composition (H). It is useful as a coating material for materials that cannot be heat-treated.
 また、チタン含有水性液(A)としては、酸化チタンゾルの存在下で、加水分解性チタン化合物aと過酸化水素水とを反応させて得られるチタン含有水性液(A1)を使用することもできる。
 前記酸化チタンゾルは、無定型チタニア微粒子又は/及びアナタース型チタニア微粒子が水(必要に応じて、例えばアルコール系、アルコールエーテル系などの水性有機溶剤を添加してもよい)に分散したゾルである。この酸化チタンゾルとしては、従来公知のものを使用することができ、例えば、(i)硫酸チタンや硫酸チタニルなどの含チタン溶液を加水分解して得られる酸化チタン凝集物、(ii)チタンアルコキシドなどの有機チタン化合物を加水分解して得られる酸化チタン凝集物、(iii)四塩化チタンなどのハロゲン化チタン溶液を加水分解又は中和して得られる酸化チタン凝集物、などの酸化チタン凝集物を水に分散した無定型チタニアゾル、或いは前記酸化チタン凝集物を焼成してアナタース型チタン微粒子とし、このものを水に分散したゾルを使用することができる。
Further, as the titanium-containing aqueous liquid (A), a titanium-containing aqueous liquid (A1) obtained by reacting the hydrolyzable titanium compound a with hydrogen peroxide in the presence of a titanium oxide sol can also be used. .
The titanium oxide sol is a sol in which amorphous titania fine particles and / or anatase type titania fine particles are dispersed in water (for example, an aqueous organic solvent such as an alcohol or alcohol ether may be added if necessary). As this titanium oxide sol, conventionally known ones can be used. For example, (i) a titanium oxide aggregate obtained by hydrolyzing a titanium-containing solution such as titanium sulfate or titanyl sulfate, (ii) titanium alkoxide, etc. Titanium oxide aggregates obtained by hydrolyzing organic titanium compounds of (ii), (iii) Titanium oxide aggregates obtained by hydrolyzing or neutralizing titanium halide solutions such as titanium tetrachloride, etc. An amorphous titania sol dispersed in water, or a sol in which the titanium oxide aggregates are calcined to form anatase-type titanium fine particles and this is dispersed in water can be used.
 前記無定形チタニアの焼成では、少なくともアナタースの結晶化温度以上の温度、例えば、400℃~500℃以上の温度で焼成すれば、無定形チタニアをアナタース型チタニアに変換させることができる。この酸化チタンの水性ゾルとしては、例えば、TKS−201(商品名,テイカ社製,アナタース型結晶形,平均粒子径6nm)、TA−15(商品名,日産化学社製,アナタース型結晶形)、STS−11(商品名,石原産業社製,アナタース型結晶形)などが挙げられる。
 チタン含有水性液(A1)において、上記酸化チタンゾルxとチタン過酸化水素反応物y(加水分解性チタン化合物aと過酸化水素水との反応生成物)との質量比率x/yは、1/99~99/1、好ましくは約10/90~90/10の範囲が適当である。質量比率x/yが1/99以上であれば、安定性、光反応性などの点において酸化チタンゾルを添加した効果が十分に得られ、一方、99/1以下であれば、優れた造膜性が得られるので好ましい。
In the firing of the amorphous titania, the amorphous titania can be converted to anatase titania by firing at a temperature at least higher than the crystallization temperature of anatase, for example, at a temperature of 400 ° C. to 500 ° C. or higher. Examples of the aqueous sol of titanium oxide include, for example, TKS-201 (trade name, manufactured by Teika, anatase crystal form, average particle diameter 6 nm), TA-15 (trade name, manufactured by Nissan Chemical Co., anatase crystal form). STS-11 (trade name, manufactured by Ishihara Sangyo Co., Ltd., anatase crystal form).
In the titanium-containing aqueous liquid (A1), the mass ratio x / y between the titanium oxide sol x and the titanium hydrogen peroxide reactant y (reaction product of the hydrolyzable titanium compound a and hydrogen peroxide solution) is 1 / The range of 99 to 99/1, preferably about 10/90 to 90/10 is appropriate. If the mass ratio x / y is 1/99 or more, the effect of adding the titanium oxide sol is sufficiently obtained in terms of stability, photoreactivity, and the like, and if it is 99/1 or less, excellent film formation is achieved. It is preferable because of its property.
 チタン含有水性液(A1)は、酸化チタンゾルの存在下で加水分解性チタン化合物aを過酸化水素水と反応温度1~70℃で10分間~20時間程度反応させることにより得ることができる。
 チタン含有水性液(A1)の生成形態やその特性は、さきに述べた加水分解性チタン化合物aを用いたチタン含有水性液(A)と同様であるが、特に、酸化チタンゾルを使用することにより、合成時に一部縮合反応が起きて増粘するのが抑えられる。その理由は、縮合反応物が酸化チタンゾルの表面に吸着され、溶液状態での高分子化が抑えられるためであると考えられる。
 また、チタン含有水性液(A1)を80℃以上で加熱処理又はオートクレーブ処理すると、結晶化した酸化チタンの超微粒子を含む酸化チタン分散液が得られる。この酸化チタン分散液を得るための温度条件、結晶化した酸化チタン超微粒子の粒子径、分散液の外観なども、さきに述べた加水分解性チタン化合物aを用いたチタン含有水性液(A)と同様である。このような酸化チタン分散液も、チタン含有水性液(A1)として使用することができる。
The titanium-containing aqueous liquid (A1) can be obtained by reacting the hydrolyzable titanium compound a with hydrogen peroxide at a reaction temperature of 1 to 70 ° C. for about 10 minutes to 20 hours in the presence of a titanium oxide sol.
The production form and characteristics of the titanium-containing aqueous liquid (A1) are the same as those of the titanium-containing aqueous liquid (A) using the hydrolyzable titanium compound a described above, but in particular, by using a titanium oxide sol. , It is possible to suppress a partial condensation reaction during the synthesis to increase the viscosity. The reason is considered to be that the condensation reaction product is adsorbed on the surface of the titanium oxide sol, and polymerization in a solution state is suppressed.
Further, when the titanium-containing aqueous liquid (A1) is heated or autoclaved at 80 ° C. or higher, a titanium oxide dispersion containing ultrafine particles of crystallized titanium oxide is obtained. The titanium-containing aqueous liquid (A) using the hydrolyzable titanium compound a described above also describes the temperature conditions for obtaining this titanium oxide dispersion, the particle diameter of the crystallized titanium oxide ultrafine particles, the appearance of the dispersion, etc. It is the same. Such a titanium oxide dispersion can also be used as the titanium-containing aqueous liquid (A1).
 さきに述べた加水分解性チタン化合物aを用いたチタン含有水性液(A)と同様、チタン含有水性液(A1)を含む表面処理組成物(G)を、めっき鋼板表面に塗布・乾燥(例えば、低温で加熱乾燥)することにより、それ自体で付着性に優れた緻密な酸化チタン含有皮膜(表面処理皮膜)を形成することができる。
 表面処理組成物(G)を塗布した後の鋼板の加熱温度としては、例えば200℃以下、特に150℃以下が好ましく、このような温度で加熱乾燥することにより、水酸基を若干含むアナタース型の酸化チタン含有皮膜が形成できる。
 以上述べたように、チタン含有水性液(A)の中でも、加水分解性チタン化合物aを用いたチタン含有水性液(A)やチタン含有水性液(A1)は、貯蔵安定性、耐食性などに優れた性能を有するので、本発明ではこれらを使用することが特に好ましい。
Similar to the titanium-containing aqueous liquid (A) using the hydrolyzable titanium compound a described above, the surface treatment composition (G) containing the titanium-containing aqueous liquid (A1) is applied to the surface of the plated steel sheet and dried (for example, By heating and drying at a low temperature, it is possible to form a dense titanium oxide-containing film (surface-treated film) having excellent adhesion by itself.
The heating temperature of the steel sheet after the application of the surface treatment composition (G) is, for example, 200 ° C. or less, particularly preferably 150 ° C. or less. By heating and drying at such a temperature, anatase-type oxidation containing some hydroxyl groups. A titanium-containing film can be formed.
As described above, of the titanium-containing aqueous liquid (A), the titanium-containing aqueous liquid (A) and the titanium-containing aqueous liquid (A1) using the hydrolyzable titanium compound a are excellent in storage stability, corrosion resistance, and the like. It is particularly preferable to use these in the present invention.
 加水分解性チタン化合物、加水分解性チタン化合物の低縮合物、水酸化チタン、水酸化チタンの低縮合物の中から選ばれる少なくとも1種のチタン化合物に対する過酸化水素水の配合割合は、チタン化合物10質量部に対して過酸化水素換算で0.1~100質量部、望ましく1~20質量部とすることが好ましい。過酸化水素水の配合割合が過酸化水素換算で0.1質量部以上であれば、キレート形成が十分であるため白濁沈殿が生じることがなく、一方、100質量部以下であれば、未反応の過酸化水素が残存することがなく、貯蔵中に活性酸素を放出することがないので好ましい。
 過酸化水素水の過酸化水素濃度は特に限定されないが、3~30mass%程度であることが、取り扱いやすさ、塗装作業性に関係する生成液の固形分の点で好ましい。
The compounding ratio of hydrogen peroxide water to at least one titanium compound selected from hydrolyzable titanium compounds, hydrolyzable titanium compound low condensates, titanium hydroxide, titanium hydroxide low condensates is titanium compounds It is preferably 0.1 to 100 parts by mass, more preferably 1 to 20 parts by mass in terms of hydrogen peroxide with respect to 10 parts by mass. If the blending ratio of hydrogen peroxide water is 0.1 parts by mass or more in terms of hydrogen peroxide, chelate formation is sufficient so that no cloudy precipitation occurs. On the other hand, if it is 100 parts by mass or less, unreacted This is preferable because no hydrogen peroxide remains, and no active oxygen is released during storage.
The hydrogen peroxide concentration in the hydrogen peroxide solution is not particularly limited, but it is preferably about 3 to 30 mass% from the viewpoint of ease of handling and the solid content of the produced liquid related to the coating workability.
 チタン含有水性液(A)には、必要に応じて、他のゾルや顔料を添加分散させることもできる。例えば、添加物としては、市販の酸化チタンゾルや酸化チタン粉末、マイカ、タルク、バリタ、クレーなどが挙げられ、これらの1種以上を添加することができる。
 表面処理組成物中でのチタン含有水性液(A)の含有量は、固形分で1~100g/L、好ましくは5~50g/Lとすることが、処理液の安定性などの点から好ましい。
Other sols and pigments can be added and dispersed in the titanium-containing aqueous liquid (A) as necessary. Examples of the additive include commercially available titanium oxide sol, titanium oxide powder, mica, talc, barita, clay, and the like, and one or more of these can be added.
The content of the titanium-containing aqueous liquid (A) in the surface treatment composition is preferably 1 to 100 g / L, preferably 5 to 50 g / L in terms of solid content from the viewpoint of the stability of the treatment liquid. .
 本発明の表面処理組成物は、チタン含有水性液(A)に、炭酸ジルコニウム化合物(B)を添加することで耐食性をさらに向上させ、有機樹脂層(ラミネート又は塗装により形成される有機樹脂層)で被覆されるまでの1次防錆と、有機樹脂層で被覆した後の耐食性を飛躍的に向上させるものである。また、有機リン酸化合物(C)は、鋼板との反応性を高めて耐食性を向上させるとともに、表面処理組成物の貯蔵安定性を良好とする。さらに、金属リン酸塩(D)と酸化ケイ素(E)を添加することで、上層に形成される有機樹脂層、特に100μm以上の厚みを有するような厚い有機樹脂層(例えば、ラミネートにより形成される有機樹脂層)の鋼板変形時における密着性が向上するものである。さらに、水溶性有機樹脂及び/又は水分散性有機樹脂(F)を添加することで、表面処理皮膜の耐キズ付き性が向上し、表面処理皮膜形成後にロール接触が生じる場合でも優れた耐食性を発現するものである。 The surface treatment composition of the present invention further improves the corrosion resistance by adding the zirconium carbonate compound (B) to the titanium-containing aqueous liquid (A), and an organic resin layer (an organic resin layer formed by lamination or coating). The corrosion resistance after coating with the organic resin layer is significantly improved. In addition, the organophosphate compound (C) increases the reactivity with the steel sheet to improve the corrosion resistance, and also improves the storage stability of the surface treatment composition. Furthermore, by adding metal phosphate (D) and silicon oxide (E), an organic resin layer formed as an upper layer, particularly a thick organic resin layer having a thickness of 100 μm or more (for example, formed by lamination). The adhesion of the organic resin layer) during deformation of the steel sheet is improved. Furthermore, by adding a water-soluble organic resin and / or water-dispersible organic resin (F), the scratch resistance of the surface treatment film is improved, and even when roll contact occurs after the surface treatment film is formed, excellent corrosion resistance is achieved. It expresses.
 炭酸ジルコニウム化合物(B)としては、炭酸ジルコニウムアンモニウム、オキシ炭酸ジルコニウムなどが好適であり、これらの1種以上を用いることで耐食性の向上を図ることができる。炭酸ジルコニウム化合物(B)の配合量は、チタン含有水性液(A)の固形分100質量部に対して10~300質量部、好ましくは50~100質量部とする。炭酸ジルコニウム化合物(B)の配合量が、チタン含有水性液(A)の固形分100質量部に対して10質量部未満では、耐食性の向上効果が少なく、一方、300質量部を超えると密着性が劣化する傾向がある。 As the zirconium carbonate compound (B), ammonium zirconium carbonate, zirconium oxycarbonate and the like are suitable, and improvement of corrosion resistance can be achieved by using at least one of these. The compounding amount of the zirconium carbonate compound (B) is 10 to 300 parts by mass, preferably 50 to 100 parts by mass with respect to 100 parts by mass of the solid content of the titanium-containing aqueous liquid (A). When the blending amount of the zirconium carbonate compound (B) is less than 10 parts by mass with respect to 100 parts by mass of the solid content of the titanium-containing aqueous liquid (A), the effect of improving the corrosion resistance is small. Tend to deteriorate.
 有機リン酸化合物(C)としては、例えば、1−ヒドロキシメタン−1,1−ジホスホン酸、1−ヒドロキシエタン−1,1−ジホスホン酸、1−ヒドロキシプロパン−1,1−ジホスホン酸などのヒドロキシル基含有有機亜リン酸;2−ヒドロキシホスホノ酢酸、2−ホスホノブタン−1,2,4−トリカルボン酸などのカルボキシル基含有有機亜リン酸、及びこれらの塩などが好適なものとして挙げられ、これらの1種又は2種以上を用いることができる。 Examples of the organic phosphoric acid compound (C) include hydroxyl groups such as 1-hydroxymethane-1,1-diphosphonic acid, 1-hydroxyethane-1,1-diphosphonic acid, and 1-hydroxypropane-1,1-diphosphonic acid. Group-containing organic phosphorous acid; carboxyl group-containing organic phosphorous acid such as 2-hydroxyphosphonoacetic acid and 2-phosphonobutane-1,2,4-tricarboxylic acid, and salts thereof are preferred. 1 type (s) or 2 or more types can be used.
 有機リン酸化合物(C)は、耐食性とチタン含有水性液(A)の貯蔵安定性を向上させる効果を有し、なかでも、1−ヒドロキシエタン−1,1−ジホスホン酸はその効果が特に大きいことから、これを使用するのが特に好ましい。
 有機リン酸化合物(C)の配合量は、チタン含有水性液(A)の固形分100質量部に対して50~200質量部とし、特に70~150質量部とすることが耐水付着性などの点から好ましい。有機リン酸化合物(C)の配合量が、チタン含有水性液(A)の固形分100質量部に対して50質量部未満では、表面処理組成物の貯蔵安定性が劣るとともに、耐食性の低下もみられる。一方、200質量部を超えると耐水付着性が劣る。
The organic phosphoric acid compound (C) has the effect of improving the corrosion resistance and the storage stability of the titanium-containing aqueous liquid (A). Among them, 1-hydroxyethane-1,1-diphosphonic acid is particularly effective. Therefore, it is particularly preferable to use this.
The compounding amount of the organic phosphoric acid compound (C) is 50 to 200 parts by mass, particularly 70 to 150 parts by mass with respect to 100 parts by mass of the solid content of the titanium-containing aqueous liquid (A). It is preferable from the point. When the compounding amount of the organic phosphoric acid compound (C) is less than 50 parts by mass with respect to 100 parts by mass of the solid content of the titanium-containing aqueous liquid (A), the storage stability of the surface treatment composition is inferior and the corrosion resistance is reduced. It is done. On the other hand, when it exceeds 200 mass parts, water-resistant adhesiveness is inferior.
 金属リン酸塩(D)及び酸化ケイ素(E)は、ラミネートなどによって上層に形成される有機樹脂層、特に100μm以上の厚みを有するような厚い有機樹脂層との密着性を向上させるために配合させるものである。酸化ケイ素(E)としては、例えば液相反応法で製造された液相シリカ、乾式法で製造された気相シリカなどの非晶質シリカが挙げられ、これらの1種又は2種以上を用いることができる。具体的には、液相シリカとしては、日産化学工業(株)製のスノーテックス(登録商標)O、N、20、30、40、C、S、気相シリカとしては、日本アエロジル(株)製のAEROSIL(登録商標)130、200、200V、200CF、300、300CFなどを用いることができる。
 なかでも乾式法で製造された気相シリカが有機樹脂層との密着性の点から非常に好ましく、良好な性能が得られる。
Metal phosphate (D) and silicon oxide (E) are blended in order to improve adhesion to an organic resin layer formed as an upper layer by laminating or the like, particularly a thick organic resin layer having a thickness of 100 μm or more. It is something to be made. Examples of silicon oxide (E) include amorphous silica such as liquid phase silica produced by a liquid phase reaction method and gas phase silica produced by a dry method, and one or more of these are used. be able to. Specifically, as liquid phase silica, SNOWTEX (registered trademark) O, N, 20, 30, 40, C, S manufactured by Nissan Chemical Industries, Ltd., as gas phase silica, Nippon Aerosil Co., Ltd. AEROSIL (registered trademark) 130, 200, 200V, 200CF, 300, 300CF, etc. manufactured by the company can be used.
Among these, vapor-phase silica produced by a dry method is very preferable from the viewpoint of adhesion to the organic resin layer, and good performance can be obtained.
 また、金属リン酸塩(D)の種類に特別な制限はないが、なかでもアルミニウム塩、マグネシウム塩、マンガン塩が有効である。特にアルミニウム塩の場合には、リン酸塩の溶解性が低くなり、湿潤環境下での効果が持続する利点がある。上記の金属リン酸塩は1種又は2種以上を用いることができる。また、金属リン酸塩(D)としては、水溶液として存在できるようにリン酸/金属カチオン成分比をあらかじめリン酸リッチとした市販の水溶液を適用することが好ましい。 Also, there are no special restrictions on the type of metal phosphate (D), but among them, aluminum salts, magnesium salts, and manganese salts are effective. In particular, in the case of an aluminum salt, there is an advantage that the solubility of the phosphate is lowered and the effect in a humid environment is sustained. 1 type (s) or 2 or more types can be used for said metal phosphate. Further, as the metal phosphate (D), it is preferable to apply a commercially available aqueous solution in which the phosphoric acid / metal cation component ratio is rich in phosphoric acid in advance so that it can exist as an aqueous solution.
 表面処理組成物中に金属リン酸塩(D)と酸化ケイ素(E)とを添加(配合)するには、金属リン酸塩(D)と酸化ケイ素(E)とを予め混合しておき、この混合物の形で添加することが好ましい。予め混合した状態で添加する方が、別々に添加する場合に較べてより優れた密着性と耐食性が得られる。この理由は必ずしも明らかではないが、リン酸成分の効果によって表面処理組成物により得られる皮膜の凝集力が高まるためであると考えられる。また、この方法による混合で表面処理組成物の貯蔵安定性が向上する。
 また、酸化ケイ素(E)として乾式法により製造されたシリカ(気相シリカ)を用いる場合には、金属リン酸塩水溶液に気相シリカを添加して強撹拌することにより、金属リン酸塩水溶液中に気相シリカが分散した酸化ケイ素分散液を予め作製し、これを他の成分と混合すればよい。または、気相シリカ及び金属リン酸塩水溶液を他の配合成分及び水とともに強撹拌して表面処理組成物を作製してもよい。
In order to add (compound) the metal phosphate (D) and the silicon oxide (E) in the surface treatment composition, the metal phosphate (D) and the silicon oxide (E) are mixed in advance, It is preferable to add in the form of this mixture. More excellent adhesion and corrosion resistance can be obtained when added in a premixed state than when added separately. Although this reason is not necessarily clear, it is thought that it is because the cohesive force of the film obtained by the surface treatment composition is increased by the effect of the phosphoric acid component. Moreover, the storage stability of the surface treatment composition is improved by mixing by this method.
When silica (gas phase silica) produced by a dry method is used as silicon oxide (E), the metal phosphate aqueous solution is obtained by adding the gas phase silica to the metal phosphate aqueous solution and stirring vigorously. A silicon oxide dispersion liquid in which vapor phase silica is dispersed may be prepared in advance and mixed with other components. Alternatively, the surface treatment composition may be prepared by vigorously stirring the vapor phase silica and the metal phosphate aqueous solution together with other compounding components and water.
 また、気相シリカをサンドミルなどで表面処理組成物中に分散させた場合、1週間~数週間程度で凝集が起こり、沈殿物を生成するようになる。詳細なメカニズムは明らかではないが、このような凝集を生じにくくし、貯蔵安定性(薬液安定性)を向上させるには、かさ比重の低い気相シリカを使用するのが有効であることが判った。具体的には、かさ比重が40g/L以下の気相シリカを使用するのが好ましい。気相シリカのかさ比重は、乾式法で製造した後の脱気条件を制御することにより調整可能であり、これによりかさ比重の小さい気相シリカを得ることができる。 Further, when vapor phase silica is dispersed in the surface treatment composition with a sand mill or the like, aggregation occurs in about one week to several weeks, and a precipitate is generated. Although the detailed mechanism is not clear, it has been found that it is effective to use gas phase silica having a low bulk specific gravity in order to prevent such aggregation and improve storage stability (chemical solution stability). It was. Specifically, it is preferable to use gas phase silica having a bulk specific gravity of 40 g / L or less. The bulk specific gravity of the vapor phase silica can be adjusted by controlling the deaeration conditions after the production by the dry method, whereby a vapor phase silica having a small bulk specific gravity can be obtained.
 金属リン酸塩(D)と酸化ケイ素(E)を配合することにより有機樹脂層との密着性が向上するのは、酸化ケイ素と金属リン酸塩の配合により表面処理皮膜の表面極性が変化し、密着性に有利に作用するためであると考えられる。酸化ケイ素は極性を高めるため、上層に有機樹脂層を直接塗布したり、有機樹脂皮膜を接着剤を介して密着させる際、樹脂層や接着剤層との密着力を高める作用がある。一方、極性が高すぎると、湿潤環境下で水分を取り込みやすくなり、膨れに対して不利になる。これに対して非極性のリン酸(金属リン酸塩)を配合することで、密着性と湿潤時の安定性を両立できる適度な表面極性が実現できる。さらに、酸化ケイ素は二次凝集することで、サブミクロンオーダーの表面凹凸を形成し、このような表面凹凸の形成は密着界面での有効面積を増大させるため、密着性に対して有効に作用するものと考えられる。金属リン酸塩を配合することによるテクスチャーへの影響は十分明らかではないが、酸化ケイ素の二次凝集に作用してテクスチャーに影響するものと考えられる。 The adhesion of the organic resin layer is improved by blending the metal phosphate (D) and the silicon oxide (E). The surface polarity of the surface treatment film is changed by blending the silicon oxide and the metal phosphate. It is thought that this is because it acts on the adhesiveness advantageously. Since silicon oxide increases the polarity, it has the effect of increasing the adhesion with the resin layer and the adhesive layer when the organic resin layer is directly applied to the upper layer or when the organic resin film is brought into close contact with the adhesive. On the other hand, if the polarity is too high, it becomes easy to take in moisture in a humid environment, which is disadvantageous for swelling. On the other hand, by blending nonpolar phosphoric acid (metal phosphate), it is possible to realize an appropriate surface polarity that can achieve both adhesion and stability when wet. Furthermore, secondary aggregation of silicon oxide forms surface irregularities on the order of submicrons, and the formation of such surface irregularities increases the effective area at the adhesion interface, thus effectively acting on adhesion. It is considered a thing. Although the influence on the texture due to the incorporation of the metal phosphate is not sufficiently clear, it is considered that the texture is affected by acting on the secondary aggregation of silicon oxide.
 金属リン酸塩(D)の配合量は、表面処理組成物の全固形分中での割合で5~20mass%とし、酸化ケイ素(E)の配合量は、表面処理組成物の全固形分中での割合で32~40mass%とする。
 金属リン酸塩(D)の配合量が、表面処理組成物の全固形分中での割合で5mass%未満では、その効果が発揮されず、鋼板との密着性が不十分となる。一方、20mass%を超えて過剰に添加すると、有機樹脂層を被覆するまでの保管時の黒変などの性能を悪化させる要因となる。
The compounding amount of the metal phosphate (D) is 5 to 20 mass% as a ratio in the total solid content of the surface treatment composition, and the compounding amount of silicon oxide (E) is in the total solid content of the surface treatment composition. The ratio is 32 to 40 mass%.
When the blending amount of the metal phosphate (D) is less than 5 mass% in the ratio of the total solid content of the surface treatment composition, the effect is not exhibited and the adhesion to the steel sheet becomes insufficient. On the other hand, when it exceeds 20 mass% and it adds excessively, it becomes a factor which deteriorates performance, such as blackening at the time of storage until it coat | covers an organic resin layer.
 酸化ケイ素(E)の配合量が、表面処理組成物の全固形分中での割合で32mass%未満では、サブミクロンオーダーの凹凸の形成が不十分となり、過酷な加工時に上層の有機樹脂層との十分な密着性が得られない。一方、40mass%を超えると、良好な密着性は得られるものの、表面処理皮膜が脆くなるためロール接触等により皮膜にキズが入り、裸耐食性はもちろんのこと、有機樹脂被覆後にはキズ部を起点とした腐食が進行し、膨れが発生する。 If the blending amount of silicon oxide (E) is less than 32 mass% in the total solid content of the surface treatment composition, formation of irregularities on the order of submicron is insufficient, and the upper organic resin layer and Sufficient adhesion cannot be obtained. On the other hand, if it exceeds 40 mass%, good adhesion can be obtained, but the surface treatment film becomes brittle, so the film is scratched by roll contact etc., and of course the bare corrosion resistance as well as the scratched part after coating with organic resin Corrosion progresses and blistering occurs.
 前記水溶性有機樹脂及び/又は水分散性有機樹脂(F)は、水に溶解又は分散することのできる有機樹脂であり、有機樹脂を水に水溶化又は分散化させる方法としては、従来公知の方法を適用することができる。具体的には、有機樹脂として、単独で水溶化や水分散化できる官能基(例えば、水酸基、ポリオキシアルキレン基、カルボキシル基、アミノ(イミノ)基、スルフィド基、ホスフィン基など)を含有するもの、及び必要に応じてそれらの官能基の一部又は全部を、酸性樹脂(カルボキシル基含有樹脂など)であればエタノールアミン、トリエチルアミンなどのアミン化合物;アンモニア水;水酸化リチウム、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物で中和したもの、また、塩基性樹脂(アミノ基含有樹脂など)であれば、酢酸、乳酸などの脂肪酸;リン酸などの鉱酸で中和したものなどを使用することができる。 The water-soluble organic resin and / or water-dispersible organic resin (F) is an organic resin that can be dissolved or dispersed in water, and a conventionally known method for water-solubilizing or dispersing the organic resin in water. The method can be applied. Specifically, the organic resin contains a functional group (for example, a hydroxyl group, a polyoxyalkylene group, a carboxyl group, an amino (imino) group, a sulfide group, a phosphine group, etc.) that can be water-soluble or water-dispersed independently. , And if necessary, part or all of these functional groups are amine compounds such as ethanolamine and triethylamine if acidic resin (carboxyl group-containing resin, etc.); ammonia water; lithium hydroxide, sodium hydroxide, water Neutralized with alkali metal hydroxides such as potassium oxide, and basic resins (amino group-containing resins, etc.), fatty acids such as acetic acid and lactic acid; neutralized with mineral acids such as phosphoric acid, etc. Can be used.
 水溶性又は水分散性有機樹脂としては、例えば、エポキシ系樹脂、フェノール系樹脂、アクリル系樹脂、ウレタン系樹脂、オレフィン−カルボン酸系樹脂、ナイロン系樹脂、ポリオキシアルキレン鎖を有する樹脂、ポリビニルアルコール、ポリグリセリン、カルボキシメチルセルロース、ヒドロキシメチルセルロース、ヒドロキシエチルセルロースなどが挙げられる。上記有機樹脂は1種又は2種以上を用いることができる。
 これらのなかでも特に、水溶性又は水分散性のアクリル系樹脂、ウレタン系樹脂及びエポキシ系樹脂の中から選ばれる少なくとも1種の有機樹脂を用いることが表面処理組成物の貯蔵安定性の面から好ましく、また特に、水溶性又は水分散性のアクリル系樹脂やウレタン系樹脂を主成分として用いることが、表面処理組成物の貯蔵安定性と塗膜性能とのバランスの面から好ましい。
Examples of water-soluble or water-dispersible organic resins include epoxy resins, phenolic resins, acrylic resins, urethane resins, olefin-carboxylic acid resins, nylon resins, resins having a polyoxyalkylene chain, and polyvinyl alcohol. , Polyglycerin, carboxymethylcellulose, hydroxymethylcellulose, hydroxyethylcellulose and the like. The said organic resin can use 1 type (s) or 2 or more types.
Among these, the use of at least one organic resin selected from water-soluble or water-dispersible acrylic resins, urethane resins, and epoxy resins from the viewpoint of storage stability of the surface treatment composition. In particular, it is preferable to use a water-soluble or water-dispersible acrylic resin or urethane resin as a main component from the viewpoint of the balance between the storage stability of the surface treatment composition and the coating film performance.
 水溶性又は水分散性アクリル樹脂は、従来公知の方法、例えば、乳化重合法、懸濁重合法、親水性の基を有する重合体を溶液重合により合成し、必要に応じて中和、水性化する方法などにより得ることができる。
 前記親水性の基を有する重合体は、例えば、カルボキシル基、アミノ基、水酸基、ポリオキシアルキレン基などの親水性の基を有する不飽和単量体、必要に応じて、さらにその他の不飽和単量体を重合させることにより得ることができる。
 水溶性又は水分散性アクリル樹脂は、耐食性などの点からスチレンを共重合してなるものが好ましく、全不飽和単量体中のスチレンの量は10~60mass%、特に15~50mass%であることが好ましい。また、共重合して得られるアクリル樹脂のTg(ガラス転移点)は30~80℃、特に35~70℃であることが、得られる皮膜の強靭性などの点から好ましい。
A water-soluble or water-dispersible acrylic resin is prepared by a conventionally known method, for example, an emulsion polymerization method, a suspension polymerization method, a polymer having a hydrophilic group by solution polymerization, and neutralized or made aqueous if necessary. Or the like.
The polymer having a hydrophilic group includes, for example, an unsaturated monomer having a hydrophilic group such as a carboxyl group, an amino group, a hydroxyl group, and a polyoxyalkylene group, and, if necessary, other unsaturated monomers. It can be obtained by polymerizing the monomer.
The water-soluble or water-dispersible acrylic resin is preferably obtained by copolymerizing styrene from the viewpoint of corrosion resistance, and the amount of styrene in the total unsaturated monomer is 10 to 60 mass%, particularly 15 to 50 mass%. It is preferable. Further, the Tg (glass transition point) of the acrylic resin obtained by copolymerization is preferably 30 to 80 ° C., particularly 35 to 70 ° C. from the viewpoint of the toughness of the resulting film.
 前記カルボキシル基含有不飽和単量体としては、アクリル酸、メタクリル酸、マレイン酸、無水マレイン酸、クロトン酸、イタコン酸などが挙げられる。
 前記アミノ基含有不飽和単量体などのような含窒素不飽和単量体としては、N,N−ジメチルアミノエチル(メタ)アクリレート、N,N−ジエチルアミノエチル(メタ)アクリレート、N−t−ブチルアミノエチル(メタ)アクリレートなどの含窒素アルキル(メタ)アクリレート;アクリルアミド、メタクリルアミド、N−メチル(メタ)アクリルアミド、N−エチル(メタ)アクリルアミド、N−メチロール(メタ)アクリルアミド、N−メトキシメチル(メタ)アクリルアミド、N−ブトキシメチル(メタ)アクリルアミド、N,N−ジメチル(メタ)アクリルアミド、N,N−ジメチルアミノプロピル(メタ)アクリルアミド、N,N−ジメチルアミノエチル(メタ)アクリルアミドなどの重合性アミド類;2−ビニルピリジン、1−ビニル−2−ピロリドン、4−ビニルピリジンなどの芳香族含窒素モノマー;アリルアミンなどが挙げられる。
Examples of the carboxyl group-containing unsaturated monomer include acrylic acid, methacrylic acid, maleic acid, maleic anhydride, crotonic acid, and itaconic acid.
Examples of the nitrogen-containing unsaturated monomer such as the amino group-containing unsaturated monomer include N, N-dimethylaminoethyl (meth) acrylate, N, N-diethylaminoethyl (meth) acrylate, Nt- Nitrogen-containing alkyl (meth) acrylates such as butylaminoethyl (meth) acrylate; acrylamide, methacrylamide, N-methyl (meth) acrylamide, N-ethyl (meth) acrylamide, N-methylol (meth) acrylamide, N-methoxymethyl Polymerization of (meth) acrylamide, N-butoxymethyl (meth) acrylamide, N, N-dimethyl (meth) acrylamide, N, N-dimethylaminopropyl (meth) acrylamide, N, N-dimethylaminoethyl (meth) acrylamide, etc. Amides; 2-vinylpyridine, - vinyl-2-pyrrolidone, aromatic nitrogen-containing monomers such as 4-vinylpyridine; and allylamine and the like.
 前記水酸基含有不飽和単量体としては、2−ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、2,3−ジヒドロキシブチル(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレートなどの多価アルコールとアクリル酸又はメタクリル酸とのモノエステル化物;上記多価アルコールとアクリル酸又はメタクリル酸とのモノエステル化物にε−カプロラクトンを開環重合した化合物などが挙げられる。 Examples of the hydroxyl group-containing unsaturated monomer include 2-hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, 2,3-dihydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, polyethylene glycol mono Monoesterified product of polyhydric alcohol such as (meth) acrylate, polypropylene glycol mono (meth) acrylate and acrylic acid or methacrylic acid; ε-caprolactone is opened to monoesterified product of polyhydric alcohol and acrylic acid or methacrylic acid. Examples include a ring-polymerized compound.
 その他の不飽和単量体としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n−プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n−ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、tert−ブチル(メタ)アクリレート、2−エチルヘキシルアクリレート、n−オクチル(メタ)アクリレート、ラウリル(メタ)アクリレート、トリデシル(メタ)アクリレート、オクタデシル(メタ)アクリレート、イソステアリル(メタ)アクリレートなどの炭素数1~24のアルキル(メタ)アクリレート;酢酸ビニルなどが挙げられる。
 以上挙げた不飽和単量体は、1種又は2種以上を用いることができる。なお、本願の記載において、「(メタ)アクリレート」とは「アクリレート又はメタアクリレート」を意味する。
Other unsaturated monomers include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, 1 carbon number such as tert-butyl (meth) acrylate, 2-ethylhexyl acrylate, n-octyl (meth) acrylate, lauryl (meth) acrylate, tridecyl (meth) acrylate, octadecyl (meth) acrylate, isostearyl (meth) acrylate To 24 alkyl (meth) acrylates; vinyl acetate and the like.
The unsaturated monomer mentioned above can use 1 type (s) or 2 or more types. In the description of the present application, “(meth) acrylate” means “acrylate or methacrylate”.
 前記ウレタン系樹脂としては、ポリエステルポリオール、ポリエーテルポリオールなどのポリオールとジイソシアネートからなるポリウレタンを必要に応じてジオール、ジアミンなどのような2個以上の活性水素を持つ低分子量化合物である鎖伸長剤の存在下で鎖伸長し、水中に安定に分散又は溶解させたものを好適に使用でき、従来公知のものを広く使用できる(例えば、特公昭42−24192号公報、特公昭42−24194号公報、特公昭42−5118号公報、特公昭49−986号公報、特公昭49−33104号公報、特公昭50−15027号公報、特公昭53−29175号公報参照)。 Examples of the urethane-based resin include a chain extender which is a low molecular weight compound having two or more active hydrogens such as a diol and a diamine as needed, and a polyurethane composed of a polyol and a diisocyanate such as polyester polyol and polyether polyol. Those which are chain-extended in the presence and stably dispersed or dissolved in water can be suitably used, and conventionally known ones can be widely used (for example, Japanese Patent Publication No. 42-24192, Japanese Patent Publication No. 42-24194, (See JP-B-42-5118, JP-B-49-986, JP-B-49-33104, JP-B-50-15027, JP-B-53-29175).
 ポリウレタン樹脂を水中に安定に分散又は溶解させる方法としては、例えば下記の方法が利用できる。
(1)ポリウレタンポリマーの側鎖又は末端に水酸基、アミノ基、カルボキシル基などのイオン性基を導入することにより親水性を付与し、自己乳化により水中に分散又は溶解する方法。
(2)反応の完結したポリウレタンポリマー又は末端イソシアネート基をオキシム、アルコール、フェノール、メルカプタン、アミン、重亜硫酸ソーダなどのブロック剤でブロックしたポリウレタンポリマーを乳化剤と機械的剪断力を用いて強制的に水中に分散する方法。さらに、末端イソシアネート基を持つウレタンポリマーを水、乳化剤及び鎖伸長剤と混合し、機械的剪断力を用いて分散化と高分子量化を同時に行う方法。
(3)ポリウレタン主原料のポリオールとしてポリエチレングリコールのごとき水溶性ポリオールを使用し、水に可溶なポリウレタンとして水中に分散又は溶解する方法。
 なお、ポリウレタン系樹脂は、上述した分散又は溶解方法のうち異なる方法で得られたものを混合して用いることもできる。
As a method for stably dispersing or dissolving the polyurethane resin in water, for example, the following method can be used.
(1) A method of imparting hydrophilicity by introducing an ionic group such as a hydroxyl group, an amino group, or a carboxyl group into the side chain or terminal of a polyurethane polymer, and dispersing or dissolving in water by self-emulsification.
(2) A polyurethane polymer whose reaction has been completed or a polyurethane polymer whose terminal isocyanate group has been blocked with a blocking agent such as oxime, alcohol, phenol, mercaptan, amine, sodium bisulfite, etc., is forcibly submerged using an emulsifier and mechanical shearing force. How to disperse. Further, a method in which a urethane polymer having a terminal isocyanate group is mixed with water, an emulsifier, and a chain extender, and dispersion and high molecular weight are simultaneously performed using mechanical shearing force.
(3) A method in which a water-soluble polyol such as polyethylene glycol is used as a polyol as a main polyurethane raw material and is dispersed or dissolved in water as a water-soluble polyurethane.
In addition, what was obtained by the different method among the dispersion | distribution or melt | dissolution methods mentioned above can also mix and use a polyurethane-type resin.
 前記ポリウレタン系樹脂の合成に使用できるジイソシアネートとしては、芳香族、脂環族又は脂肪族のジイソシアネートが挙げられ、具体的には、ヘキサメチレンジイソシアネート、テトラメチレンジイソシアネート、3,3′−ジメトキシ−4,4′−ビフェニレンジイソシアネート、p−キシリレンジイソシアネート、m−キシリレンジイソシアネート、1,3−(ジイソシアナトメチル)シクロヘキサノン、1,4−(ジイソシアナトメチル)シクロヘキサノン、4,4′−ジイソシアナトシクロヘキサノン、4,4′−メチレンビス(シクロヘキシルイソシアネート)、イソホロンジイソシアネート、2,4−トリレンジイソシアネート、2,6−トリレンジイソシアネート、p−フェニレンジイソシアネート、ジフェニルメタンジイソシアネート、m−フェニレンジイソシアネート、2,4−ナフタレンジイソシアネート、3,3′−ジメチル−4,4′−ビフェニレンジイソシアネート、4,4′−ビフェニレンジイソシアネートなどが挙げられる。これらなかでも、2,4−トリレンジイソシアネート、2,6−トリレンジイソシアネート、ヘキサメチレンジイソシアネート、イソホロンジイソシアネートが特に好ましい。
 ポリウレタン系樹脂の市販品としては、ハイドラン(登録商標)HW−330、同HW−340、同HW−350(いずれも商品名,大日本インキ化学工業社製)、スーパーフレックス(登録商標)100、同150、同E−2500、同F−3438D(いずれも商品名,第一工業製薬社製)などを挙げることができる。
Examples of the diisocyanate that can be used for the synthesis of the polyurethane resin include aromatic, alicyclic or aliphatic diisocyanates. Specifically, hexamethylene diisocyanate, tetramethylene diisocyanate, 3,3′-dimethoxy-4, 4'-biphenylene diisocyanate, p-xylylene diisocyanate, m-xylylene diisocyanate, 1,3- (diisocyanatomethyl) cyclohexanone, 1,4- (diisocyanatomethyl) cyclohexanone, 4,4'-diisocyanato Cyclohexanone, 4,4'-methylenebis (cyclohexyl isocyanate), isophorone diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, p-phenylene diisocyanate, diphenylmethane di Isocyanate, m- phenylene diisocyanate, 2,4-naphthalene diisocyanate, 3,3'-dimethyl-4,4'-biphenylene diisocyanate, 4,4'-biphenylene diisocyanate and the like. Among these, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, hexamethylene diisocyanate, and isophorone diisocyanate are particularly preferable.
Examples of commercially available polyurethane resins include Hydran (registered trademark) HW-330, HW-340, HW-350 (both trade names, manufactured by Dainippon Ink and Chemicals), Superflex (registered trademark) 100, 150, E-2500, F-3438D (all trade names, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) and the like.
 前記エポキシ系樹脂としては、エポキシ樹脂にアミンを付加してなるカチオン系エポキシ樹脂;アクリル変性、ウレタン変性などの変性エポキシ樹脂などが好適に使用できる。カチオン系エポキシ樹脂としては、例えば、エポキシ化合物と、1級モノ−又はポリアミン、2級モノ−又はポリアミン、1,2級混合ポリアミンなどとの付加物(例えば、米国特許第3984299号明細書参照);エポキシ化合物とケチミン化された1級アミノ基を有する2級モノ−又はポリアミンとの付加物(例えば、米国特許第4017438号明細書参照);エポキシ化合物とケチミン化された1級アミノ基を有するヒドロキシル化合物とのエーテル化反応生成物(例えば、特開昭59−43013号公報参照)などが挙げられる。 As the epoxy resin, a cationic epoxy resin obtained by adding an amine to an epoxy resin; a modified epoxy resin such as acrylic modified or urethane modified can be suitably used. Examples of cationic epoxy resins include adducts of epoxy compounds with primary mono- or polyamines, secondary mono- or polyamines, and primary and secondary mixed polyamines (see, for example, US Pat. No. 3,984,299). An adduct of an epoxy compound and a secondary mono- or polyamine having a ketiminated primary amino group (see, for example, US Pat. No. 4,017,438); an epoxy compound having a ketiminated primary amino group Examples include etherification reaction products with hydroxyl compounds (see, for example, JP-A-59-43013).
 エポキシ系樹脂としては、数平均分子量が400~4000、特に800~2000、エポキシ当量が190~2000、特に400~1000であるものが好ましい。そのようなエポキシ系樹脂は、例えば、ポリフェノール化合物とエピルロルヒドリンとの反応によって得ることができ、ポリフェノール化合物としては、例えば、ビス(4−ヒドロキシフェニル)−2,2−プロパン、4,4−ジヒドロキシベンゾフェノン、ビス(4−ヒドロキシフェニル)−1,1−エタン、ビス(4−ヒドロキシフェニル)−1,1−イソブタン、ビス(4−ヒドロキシ−tert−ブチルフェニル)−2,2−プロパン、ビス(2−ヒドロキシナフチル)メタン、1,5−ジヒドロキシナフタレン、ビス(2,4−ジヒドロキシフェニル)メタン、テトラ(4−ヒドロキシフェニル)−1,1,2,2−エタン、4,4−ジヒドロキシジフェニルスルホン、フェノールノボラック、クレゾールノボラックなどが挙げられる。 The epoxy resin preferably has a number average molecular weight of 400 to 4000, particularly 800 to 2000, and an epoxy equivalent of 190 to 2000, particularly 400 to 1000. Such an epoxy resin can be obtained, for example, by a reaction between a polyphenol compound and epirulhydrin, and examples of the polyphenol compound include bis (4-hydroxyphenyl) -2,2-propane, 4,4. -Dihydroxybenzophenone, bis (4-hydroxyphenyl) -1,1-ethane, bis (4-hydroxyphenyl) -1,1-isobutane, bis (4-hydroxy-tert-butylphenyl) -2,2-propane, Bis (2-hydroxynaphthyl) methane, 1,5-dihydroxynaphthalene, bis (2,4-dihydroxyphenyl) methane, tetra (4-hydroxyphenyl) -1,1,2,2-ethane, 4,4-dihydroxy Diphenylsulfone, phenol novolak, cresol novolak, etc. That.
 水溶性有機樹脂及び/又は水分散性有機樹脂(F)の配合量は、表面処理組成物の全固形分中での割合で2~10mass%とする。水溶性有機樹脂及び/又は水分散性有機樹脂(F)の配合量が、表面処理組成物の全固形分中での割合で2mass%未満では表面処理皮膜の脆さを改善できず、表面処理皮膜形成後のロール接触等により皮膜にキズが入り、裸耐食性はもちろんのこと、有機樹脂被覆後にはキズ部を起点とした腐食が進行し、膨れが発生する。一方、10mass%を超えると耐熱変色性及び加工後密着性が低下する。
 表面処理組成物のpHは7~12に調整することが好ましい。pHが7未満および12超では、経時により表面処理組成物の凝集が発生し、皮膜を形成できなくなる。
The blending amount of the water-soluble organic resin and / or the water-dispersible organic resin (F) is 2 to 10 mass% as a ratio in the total solid content of the surface treatment composition. If the blending amount of the water-soluble organic resin and / or water-dispersible organic resin (F) is less than 2 mass% in the total solid content of the surface treatment composition, the brittleness of the surface treatment film cannot be improved and the surface treatment is performed. The film is scratched by contact with the roll after the film is formed, and the corrosion starts from the scratched part after the organic resin coating as well as the bare corrosion resistance. On the other hand, if it exceeds 10 mass%, the heat discoloration and post-processing adhesion will be reduced.
The pH of the surface treatment composition is preferably adjusted to 7-12. If the pH is less than 7 or more than 12, aggregation of the surface treatment composition occurs with time, and a film cannot be formed.
 本発明の表面処理組成物には、さらに必要に応じて、例えば、シランカップリング剤、樹脂微粒子、無機リン酸化合物などのエッチング剤、本発明が規定する成分以外の重金属化合物、増粘剤、界面活性剤、潤滑性付与剤(ポリエチレンワックス、フッソ系ワックス、カルナバワックスなど)、防錆剤、着色顔料、体質顔料、防錆顔料、染料などを含有することができる。特に、有機樹脂層との密着性を高めるためには、シランカップリング剤を含有させることが好ましい。
 また、本発明の表面処理組成物は、必要に応じて、例えばメタノール、エタノール、イソプロピルアルコール、エチレングリコール系溶剤、プロピレングリコール系溶剤などの親水性溶剤で希釈して使用することができる。
 本発明の表面処理組成物は、貯蔵安定性や塗装時の安定性などの観点から、その固形分含有量を2~10mass%程度とすることが好ましい。
 本発明の表面処理組成物は、種々の金属材料の表面処理剤として用いることができるが、後述する亜鉛系めっき鋼板、アルミニウム系めっき鋼板の表面処理剤として特に好適である。
If necessary, the surface treatment composition of the present invention may further include, for example, an etching agent such as a silane coupling agent, resin fine particles, and an inorganic phosphate compound, a heavy metal compound other than the components specified by the present invention, a thickener, A surfactant, a lubricity-imparting agent (polyethylene wax, fluorine-based wax, carnauba wax, etc.), a rust inhibitor, a color pigment, an extender pigment, a rust preventive pigment, and a dye can be contained. In particular, in order to improve the adhesion with the organic resin layer, it is preferable to contain a silane coupling agent.
Moreover, the surface treatment composition of this invention can be diluted with hydrophilic solvents, such as methanol, ethanol, isopropyl alcohol, an ethylene glycol type solvent, a propylene glycol type solvent, for example as needed, and can be used.
The surface treatment composition of the present invention preferably has a solid content of about 2 to 10 mass% from the viewpoint of storage stability and stability during coating.
The surface treatment composition of the present invention can be used as a surface treatment agent for various metal materials, but is particularly suitable as a surface treatment agent for zinc-based plated steel sheets and aluminum-based plated steel sheets described later.
 本発明の表面処理鋼板は、亜鉛系めっき鋼板又はアルミニウム系めっき鋼板の表面に、上述したような表面処理組成物、すなわちチタン含有水性液(A)、炭酸ジルコニウム化合物(B)、有機リン酸化合物(C)、金属リン酸塩(D)、酸化ケイ素(E)、及び水溶性有機樹脂又は/及び水分散性有機樹脂(F)を含有する表面処理組成物を塗布し、乾燥させることにより形成された所定の皮膜付着量の表面処理皮膜を有するものである。この表面処理皮膜は6価クロム(但し、不可避不純物としての6価クロムを除く)を含有しない。
 また、チタン含有水性液(A)や表面処理組成物には、さらに必要に応じて、さきに挙げたような他の添加成分を含有させてもよい。
The surface-treated steel sheet of the present invention has a surface-treated composition as described above, that is, a titanium-containing aqueous liquid (A), a zirconium carbonate compound (B), and an organic phosphate compound on the surface of a zinc-based plated steel sheet or an aluminum-based plated steel sheet. Formed by applying and drying a surface treatment composition containing (C), metal phosphate (D), silicon oxide (E), and water-soluble organic resin or / and water-dispersible organic resin (F) And having a surface-treated film having a predetermined coating amount. This surface-treated film does not contain hexavalent chromium (except for hexavalent chromium as an inevitable impurity).
Further, the titanium-containing aqueous liquid (A) and the surface treatment composition may further contain other additive components as mentioned above, if necessary.
 本発明の表面処理鋼板のベースとなる亜鉛系めっき鋼板としては、例えば、亜鉛めっき鋼板、Zn−Ni合金めっき鋼板、Zn−Fe合金めっき鋼板(電気めっき鋼板、合金化溶融亜鉛めっき鋼板)、Zn−Cr合金めっき鋼板、Zn−Mn合金めっき鋼板、Zn−Co合金めっき鋼板、Zn−Co−Cr合金めっき鋼板、Zn−Cr−Ni合金めっき鋼板、Zn−Cr−Fe合金めっき鋼板、Zn−Al合金めっき鋼板(例えば、Zn−5mass%Al合金めっき鋼板、Zn−55mass%Al合金めっき鋼板)、Zn−Mg合金めっき鋼板、Zn−Al−Mg合金めっき鋼板、さらには、これらのめっき鋼板のめっき皮膜中に金属酸化物、ポリマーなどを分散した亜鉛系複合めっき鋼板(例えば、Zn−SiO2分散めっき鋼板)などを用いることができる。また、上記のようなめっきのうち、同種又は異種のものを2層以上めっきした複層めっき鋼板を用いることもできる。 Examples of the galvanized steel sheet used as the base of the surface-treated steel sheet of the present invention include a galvanized steel sheet, a Zn—Ni alloy plated steel sheet, a Zn—Fe alloy plated steel sheet (electroplated steel sheet, galvannealed steel sheet), Zn -Cr alloy plated steel sheet, Zn-Mn alloy plated steel sheet, Zn-Co alloy plated steel sheet, Zn-Co-Cr alloy plated steel sheet, Zn-Cr-Ni alloy plated steel sheet, Zn-Cr-Fe alloy plated steel sheet, Zn-Al Alloy-plated steel sheets (for example, Zn-5 mass% Al alloy-plated steel sheets, Zn-55 mass% Al alloy-plated steel sheets), Zn-Mg alloy-plated steel sheets, Zn-Al-Mg alloy-plated steel sheets, and plating of these plated steel sheets Zinc-based composite plated steel sheet (for example, Zn-SiO2 dispersion plated steel sheet) in which metal oxide, polymer, etc. are dispersed in the coating Etc. can be used. Moreover, the multilayer plating steel plate which plated two or more layers of the same kind or different kind among the above plating can also be used.
 また、本発明の表面処理鋼板のベースとなるアルミニウム系めっき鋼板としては、アルミニウムめっき鋼板、Al−Si合金めっき鋼板などを用いることができる。
 また、めっき鋼板としては、鋼板面に予めNiなどの薄目付めっきを施し、その上に上記のような各種めっきを施したものであってもよい。
 めっき方法としては、電解法(水溶液中での電解又は非水溶媒中での電解)、溶融法、気相法のうち、実施可能ないずれの方法を採用することができる。
 また、表面処理皮膜をめっき皮膜表面に形成した際に皮膜欠陥やムラが生じないようにするため、必要に応じて、予めめっき皮膜表面にアルカリ脱脂、溶剤脱脂、表面調整処理(アルカリ性の表面調整処理又は酸性の表面調整処理)などの処理を施しておくことができる。
Moreover, as an aluminum system plated steel plate used as the base of the surface treatment steel plate of this invention, an aluminum plating steel plate, an Al-Si alloy plating steel plate, etc. can be used.
Moreover, as a plated steel plate, the steel plate surface may be previously plated with lightness such as Ni, and various plating as described above may be performed thereon.
As a plating method, any feasible method among an electrolytic method (electrolysis in an aqueous solution or electrolysis in a nonaqueous solvent), a melting method, and a gas phase method can be adopted.
In addition, when the surface treatment film is formed on the surface of the plating film, alkali degreasing, solvent degreasing, surface conditioning treatment (alkaline surface conditioning) is performed on the surface of the plating film as necessary in order to prevent film defects and unevenness from occurring. Treatment or acidic surface conditioning treatment) can be performed.
 また、使用環境下での黒変(めっき表面の酸化現象の一種)を防止する目的で、必要に応じて予めめっき表面に鉄族金属イオン(Niイオン,Coイオン,Feイオンの1種以上)を含む酸性又はアルカリ性水溶液による表面調整処理を施しておくこともできる。
 また、電気亜鉛めっき鋼板を下地鋼板として用いる場合には、黒変を防止する目的で電気めっき浴に鉄族金属イオン(Niイオン,Coイオン,Feイオンの1種以上)を添加し、めっき皮膜中にこれらの金属を1mass ppm以上含有させておくことができる。この場合、めっき皮膜中の鉄族金属濃度の上限については特に限定はない。
 表面処理組成物により形成される表面処理皮膜の付着量は、0.03~0.5g/mとする。皮膜付着量が0.03g/m未満では耐食性が劣り、一方、0.5g/mを超えると皮膜が割れやすく、有機樹脂被覆後の過酷な加工時の密着性が低下する。
In addition, for the purpose of preventing blackening in the usage environment (a kind of oxidation phenomenon on the plating surface), an iron group metal ion (one or more of Ni ion, Co ion, Fe ion) is previously applied to the plating surface as necessary. Surface adjustment treatment with an acidic or alkaline aqueous solution containing can also be performed.
When using an electrogalvanized steel sheet as the base steel sheet, iron group metal ions (one or more of Ni ions, Co ions, Fe ions) are added to the electroplating bath for the purpose of preventing blackening, and the plating film These metals can be contained in an amount of 1 mass ppm or more. In this case, there is no particular limitation on the upper limit of the iron group metal concentration in the plating film.
The adhesion amount of the surface treatment film formed by the surface treatment composition is 0.03 to 0.5 g / m 2 . If the coating amount is less than 0.03 g / m 2 , the corrosion resistance is inferior. On the other hand, if it exceeds 0.5 g / m 2 , the coating tends to break, and the adhesion during severe processing after coating with an organic resin is reduced.
 本発明の表面処理鋼板を製造するには、亜鉛系めっき鋼板又はアルミニウム系めっき鋼板の表面に、上述したような表面処理組成物、すなわちチタン含有水性液(A)、炭酸ジルコニウム化合物(B)、有機リン酸化合物(C)、金属リン酸塩(D)、酸化ケイ素(E)及び水溶性有機樹脂又は/及び水分散性有機樹脂(F)を含有する表面処理組成物(処理液)を塗布した後、水洗することなく乾燥する。
 また、チタン含有水性液(A)や表面処理組成物には、さらに必要に応じて、さきに挙げたような他の添加成分を含有させてもよい。
In order to produce the surface-treated steel sheet of the present invention, the surface treatment composition as described above, that is, the titanium-containing aqueous liquid (A), the zirconium carbonate compound (B), on the surface of the zinc-based plated steel sheet or the aluminum-based plated steel sheet, Application of a surface treatment composition (treatment liquid) containing an organic phosphate compound (C), metal phosphate (D), silicon oxide (E) and a water-soluble organic resin or / and a water-dispersible organic resin (F) Then, it is dried without washing with water.
Further, the titanium-containing aqueous liquid (A) and the surface treatment composition may further contain other additive components as mentioned above, if necessary.
 表面処理組成物(処理液)の塗布手段は、例えば、スプレー+ロール絞り、ロールコーターなど任意であり、また、塗布後の乾燥方式についても、例えば、熱風方式、誘導加熱方式、電気炉方式など任意である。
 塗布した表面処理組成物(処理液)の乾燥温度(鋼板温度)は60~200℃程度とすることが好ましい。乾燥温度が60℃以上であれば、皮膜形成が十分となって耐食性等が優れた皮膜となる。一方、乾燥温度が200℃以下であれば、熱により皮膜にクラックが生じることがないため、十分な耐食性の向上効果が得られる。また、より好ましい乾燥温度は60~140℃であり、さらには好ましいのは60~100℃である。
The means for applying the surface treatment composition (treatment liquid) is optional, for example, spray + roll squeezing, roll coater, etc. Also, the drying method after application is also, for example, a hot air method, induction heating method, electric furnace method, etc. Is optional.
The drying temperature (steel plate temperature) of the applied surface treatment composition (treatment liquid) is preferably about 60 to 200 ° C. When the drying temperature is 60 ° C. or higher, film formation is sufficient and a film having excellent corrosion resistance and the like is obtained. On the other hand, if the drying temperature is 200 ° C. or less, cracks are not generated in the film due to heat, so that a sufficient effect of improving corrosion resistance is obtained. A more preferable drying temperature is 60 to 140 ° C., and a further preferable temperature is 60 to 100 ° C.
 また、本発明の有機樹脂被覆鋼板は、以上述べたような表面処理鋼板の表面処理皮膜上に有機樹脂層を形成したものである。この有機樹脂層の形成方法は任意であり、例えば、塗料組成物を塗布・乾燥させる方法や有機樹脂フィルムをラミネートする方法などを適用することができる。
 また、本発明の表面処理皮膜は、特に100μm以上の厚みを有するような厚い有機樹脂層の密着性に優れているため、本発明の有機樹脂被覆鋼板は、有機樹脂層の厚さが100μm以上である場合に特に有用である。
 なお、有機樹脂層には、非クロム系防錆添加剤、固形潤滑剤、着色顔料などをはじめとする種々の添加剤を配合することができる。
The organic resin-coated steel sheet of the present invention is obtained by forming an organic resin layer on the surface-treated film of the surface-treated steel sheet as described above. The method for forming the organic resin layer is arbitrary, and for example, a method of applying and drying a coating composition, a method of laminating an organic resin film, and the like can be applied.
Moreover, since the surface treatment film of the present invention is particularly excellent in adhesion of a thick organic resin layer having a thickness of 100 μm or more, the organic resin-coated steel sheet of the present invention has an organic resin layer thickness of 100 μm or more. Is particularly useful.
The organic resin layer may contain various additives including non-chromium rust preventive additives, solid lubricants, color pigments and the like.
 表面処理組成物に用いたチタン含有水性液(A)と成分(B)~(F)を以下に示す。[チタン含有水性液(A)の製造]
・製造例1(チタン含有水性液T1)
 四塩化チタン60mass%溶液5ccを蒸留水で500ccとした溶液にアンモニア水(1:9=アンモニア:水の質量比)を滴下し、水酸化チタンの低縮合物を沈殿させた。蒸留水で洗浄後、過酸化水素水30mass%溶液を10cc加えてかき混ぜ、チタンを含む黄色半透明の粘性のあるチタン含有水性液T1を得た。
The titanium-containing aqueous liquid (A) and components (B) to (F) used in the surface treatment composition are shown below. [Production of titanium-containing aqueous liquid (A)]
Production Example 1 (Titanium-containing aqueous liquid T1)
Ammonia water (1: 9 = ammonia: water mass ratio) was added dropwise to a solution of 5 cc of titanium tetrachloride 60 mass% in 500 cc of distilled water to precipitate a low condensation product of titanium hydroxide. After washing with distilled water, 10 cc of a 30 mass% hydrogen peroxide solution was added and mixed to obtain a yellow translucent viscous titanium-containing aqueous liquid T1 containing titanium.
・製造例2(チタン含有水性液T2)
 テトラiso−プロポキシチタン10質量部とiso−プロパノール10質量部の混合物を30mass%過酸化水素水10質量部と脱イオン水100質量部の混合物中に20℃で1時間かけて撹拌しながら滴下した。その後25℃で2時間熟成し、黄色透明の少し粘性のあるチタン含有水性液T2を得た。
・製造例3(チタン含有水性液T3)
 製造例2で使用したテトラiso−プロポキシチタンの代わりにテトラn−ブトキシチタンを使用した以外は製造例2と同様の製造条件で、チタン含有水性液T3を得た。
Production Example 2 (Titanium-containing aqueous liquid T2)
A mixture of 10 parts by mass of tetraiso-propoxytitanium and 10 parts by mass of iso-propanol was dropped into a mixture of 10 parts by mass of 30 mass% hydrogen peroxide and 100 parts by mass of deionized water while stirring at 20 ° C. over 1 hour. . Thereafter, aging was carried out at 25 ° C. for 2 hours to obtain a yellow transparent, slightly viscous titanium-containing aqueous liquid T2.
Production Example 3 (Titanium-containing aqueous liquid T3)
A titanium-containing aqueous liquid T3 was obtained under the same production conditions as in Production Example 2 except that tetra-n-butoxy titanium was used instead of tetraiso-propoxy titanium used in Production Example 2.
・製造例4(チタン含有水性液T4)
 製造例2で使用したテトラiso−プロポキシチタンの代わりにテトラiso−プロポキシチタンの3量体(テトラiso−プロポキシチタンの低縮合物)を使用した以外は製造例2と同様の製造条件で、チタン含有水性液T4を得た。
・製造例5(チタン含有水性液T5)
 製造例2に対して過酸化水素水を3倍量用い、50℃で1時間かけて滴下し、さらに60℃で3時間熟成した以外は製造例2と同様の製造条件で、チタン含有水性液T5を得た。
Production Example 4 (Titanium-containing aqueous liquid T4)
In the same production conditions as in Production Example 2, except that a tetramer of tetraiso-propoxytitanium (low condensation product of tetraiso-propoxytitanium) was used instead of tetraiso-propoxytitanium used in Production Example 2, titanium was used. A contained aqueous liquid T4 was obtained.
Production Example 5 (Titanium-containing aqueous liquid T5)
A titanium-containing aqueous liquid was produced under the same production conditions as in Production Example 2, except that hydrogen peroxide was used in 3 times the amount of Production Example 2, dropped at 50 ° C over 1 hour, and further aged at 60 ° C for 3 hours. T5 was obtained.
・製造例6(チタン含有水性液T6)
 製造例3で製造したチタン含有水性液T3を、さらに95℃で6時間加熱処理することにより、白黄色の半透明なチタン含有水性液T6を得た。
・製造例7(チタン含有水性液T7)
 テトラiso−プロポキシチタン10質量部とiso−プロパノール10質量部の混合物を、「TKS−203」(商品名,テイカ社製,酸化チタンゾル)5質量部(固形分)、30mass%過酸化水素水10質量部及び脱イオン水100質量部の混合物中に10℃で1時間かけて撹拌しながら滴下した。その後10℃で24時間熟成し、黄色透明の少し粘性のあるチタン含有水性液T7を得た。
Production Example 6 (Titanium-containing aqueous liquid T6)
The titanium-containing aqueous liquid T3 produced in Production Example 3 was further heat-treated at 95 ° C. for 6 hours to obtain a white yellow translucent titanium-containing aqueous liquid T6.
Production Example 7 (Titanium-containing aqueous liquid T7)
A mixture of 10 parts by mass of tetraiso-propoxytitanium and 10 parts by mass of iso-propanol was mixed with 5 parts by mass (solid content) of “TKS-203” (trade name, manufactured by Teika Co., Ltd.), 10 mass% hydrogen peroxide solution 10 The mixture was added dropwise to a mixture of parts by mass and 100 parts by mass of deionized water at 10 ° C. with stirring for 1 hour. Thereafter, the mixture was aged at 10 ° C. for 24 hours to obtain a yellow transparent, slightly viscous titanium-containing aqueous liquid T7.
[ジルコニウム化合物(B)]
 B1:炭酸ジルコニウムアンモニウム
 B2:オキシ炭酸ジルコニウム
 B3:ジルコン弗化アンモニウム
[有機リン酸化合物(C)]
 C1:1−ヒドロキシメタン−1,1−ジホスホン酸
 C2:1−ヒドロキシエタン−1,1−ジホスホン酸
[Zirconium compound (B)]
B1: Ammonium zirconium carbonate B2: Zirconium oxycarbonate B3: Zircon ammonium fluoride [Organic phosphate compound (C)]
C1: 1-hydroxymethane-1,1-diphosphonic acid C2: 1-hydroxyethane-1,1-diphosphonic acid
[金属リン酸塩(D)と酸化ケイ素(E)との混合物]
 表3、表5、表7、表9に示す固形分配合割合で金属リン酸塩(D)の水溶液に酸化ケイ素(E)を添加して強撹拌し、金属リン酸塩水溶液に酸化ケイ素が分散した混合物を得た。なお、表7及び表8のNo.77の比較例は、酸化ケイ素E4のみを含む。
・金属リン酸塩(D)
 D1:第1リン酸アルミニウム
 D2:第1リン酸マグネシウム
 D3:第1リン酸マンガン
・酸化ケイ素(E)
 E1:アエロジル300(商品名,日本アエロジル(株)製,気相シリカ,かさ比重;50g/L)
 E2:アエロジル200(商品名,日本アエロジル(株)製,気相シリカ,かさ比重;35g/L)
 E3:スノーテックスO(商品名,日産化学工業(株)製,コロイダルシリカ)
 E4:アエロジル300CF(商品名,日本アエロジル(株)製,気相シリカ,かさ比重;35g/L)
[Mixture of metal phosphate (D) and silicon oxide (E)]
Silicon oxide (E) is added to the aqueous solution of metal phosphate (D) at the solid content blending ratio shown in Table 3, Table 5, Table 7, and Table 9 and stirred vigorously, and silicon oxide is added to the metal phosphate aqueous solution. A dispersed mixture was obtained. In Tables 7 and 8, No. 77 comparative examples contain only silicon oxide E4.
・ Metal phosphate (D)
D1: primary aluminum phosphate D2: primary magnesium phosphate D3: primary manganese phosphate / silicon oxide (E)
E1: Aerosil 300 (trade name, manufactured by Nippon Aerosil Co., Ltd., vapor phase silica, bulk specific gravity; 50 g / L)
E2: Aerosil 200 (trade name, manufactured by Nippon Aerosil Co., Ltd., vapor phase silica, bulk specific gravity; 35 g / L)
E3: Snowtex O (trade name, manufactured by Nissan Chemical Industries, colloidal silica)
E4: Aerosil 300CF (trade name, manufactured by Nippon Aerosil Co., Ltd., vapor phase silica, bulk specific gravity; 35 g / L)
[水溶性又は水分散性有機樹脂(F)]
 水溶性又は水分散性有機樹脂のうち、F1~F5の水分散性アクリル樹脂は、以下に示す製造例8~12に従って製造し、F6~F13は市販品を使用した。なお、下記製造例の「部」及び「%」は質量基準である。
・製造例8(水分散性アクリル樹脂F1)
 還流冷却器、撹拌器、温度計、滴下ロートを装備した容量2リットルの4つ口フラスコに脱イオン水665部、アクアロンRN−50(注1)9部、アクアロンRN−2025(注2)87部、下記組成のモノマー混合液1(1段目)を強制乳化してなるプレエマルションの5%(28.9部)を加え、窒素置換後、昇温した。
《モノマー混合液1》
 脱イオン水 166.5部
 アクアロンRN−50 6.6部
 アクアロンRN−2025 53部
 スチレン 35部
 メチルメタクリレート 163.5部
 2−エチルヘキシルアクリレート 105部
 2−ヒドロキシエチルメタクリレート 5部
 メタクリル酸 3部
 アクリロニトリル 38.5部
 ターシャリードデカンチオール 1部
 55℃以上に達したら、パーブチルH(注3)5部を脱イオン水83.5部に溶解させてなる酸化剤水溶液の5%(4.43部)及びナトリウムホルムアルデヒドスルホキシレート2.5部を脱イオン水83.5部に溶解させてなる還元剤水溶液の5%(4.3部)を添加し、さらに昇温して60℃の温度で保持した。添加15分後から、残りのプレエマルションを1.5時間、酸化剤水溶液を3.5時間、還元剤水溶液を3.5時間にわたって滴下した。酸化剤水溶液と還元剤水溶液の滴下を続けている間、1段目プレエマルションの滴下終了1時間後より下記組成のモノマー混合液2(2段目)を1時間にわたって滴下した。
《モノマー混合液2》
 スチレン 15部
 メチルメタクリレート 84.5部
 2−エチルヘキシルアクリレート 22.5部
 2−ヒドロキシエチルメタクリレート 4.25部
 メタクリル酸 6部
 アクリロニトリル 15部
 γ−メタクリロキシプロピルトリメトキシシラン 2.75部
 全ての滴下終了時からさらに1時間60℃の温度に保持し、その後40℃以下に温度を下げ、25%アンモニア水3.35部、スラオフEX(注4)0.35部、2,2,4−トリメチル−1,3−ペンタンジオールモノイソブチレート83.5部を添加し、pH8.0、不揮発分31%の水分散性アクリル樹脂F1を得た。
 (注1)アクアロンRN−50:商品名、第一工業製薬(株)製、ノニオン性乳化剤、固形分60%
 (注2)アクアロンRN−2025:商品名、第一工業製薬(株)製、ノニオン性乳化剤、固形分25%
 (注3)パーブチルH:商品名、日本油脂(株)製、t−ブチルハイドロキシパーオキサイド、有効成分69%
 (注4)スラオフEX:商品名、日本エンバイロケミカルズ(株)製、防腐剤
[Water-soluble or water-dispersible organic resin (F)]
Of the water-soluble or water-dispersible organic resins, water-dispersible acrylic resins F1 to F5 were produced according to Production Examples 8 to 12 shown below, and commercially available products were used for F6 to F13. In the following production examples, “part” and “%” are based on mass.
Production Example 8 (Water-dispersible acrylic resin F1)
265 parts deionized water, 9 parts Aqualon RN-50 (Note 1), Aqualon RN-2025 (Note 2) 87 in a 2-liter four-necked flask equipped with a reflux condenser, stirrer, thermometer, and dropping funnel 5% (28.9 parts) of a pre-emulsion obtained by forcibly emulsifying monomer mixture liquid 1 (first stage) having the following composition was added, and the temperature was raised after nitrogen substitution.
<< Monomer mixture 1 >>
Deionized water 166.5 parts Aqualon RN-50 6.6 parts Aqualon RN-2025 53 parts Styrene 35 parts Methyl methacrylate 163.5 parts 2-Ethylhexyl acrylate 105 parts 2-Hydroxyethyl methacrylate 5 parts Methacrylic acid 3 parts Acrylonitrile 38. 5 parts Tertiary decanethiol 1 part When the temperature reaches 55 ° C or higher, 5% (4.43 parts) of an oxidizing agent aqueous solution obtained by dissolving 5 parts of perbutyl H (Note 3) in 83.5 parts of deionized water and sodium 5% (4.3 parts) of a reducing agent aqueous solution prepared by dissolving 2.5 parts of formaldehyde sulfoxylate in 83.5 parts of deionized water was added, and the temperature was further raised and maintained at 60 ° C. 15 minutes after the addition, the remaining pre-emulsion was added dropwise over 1.5 hours, the oxidizing agent aqueous solution for 3.5 hours, and the reducing agent aqueous solution over 3.5 hours. While the dropping of the oxidizing agent aqueous solution and the reducing agent aqueous solution was continued, the monomer mixed solution 2 (second stage) having the following composition was dropped over 1 hour from the end of dropping of the first stage pre-emulsion.
<< Monomer mixture 2 >>
Styrene 15 parts Methyl methacrylate 84.5 parts 2-Ethylhexyl acrylate 22.5 parts 2-hydroxyethyl methacrylate 4.25 parts Methacrylic acid 6 parts Acrylonitrile 15 parts γ-Methacryloxypropyltrimethoxysilane 2.75 parts The temperature is kept at 60 ° C. for 1 hour, and then the temperature is lowered to 40 ° C. or less. 3.35 parts of 25% aqueous ammonia, 0.35 parts of Suraoff EX (Note 4), 2,2,4-trimethyl-1 , 3-pentanediol monoisobutyrate 83.5 parts was added to obtain a water-dispersible acrylic resin F1 having a pH of 8.0 and a non-volatile content of 31%.
(Note 1) Aqualon RN-50: trade name, manufactured by Daiichi Kogyo Seiyaku Co., Ltd., nonionic emulsifier, solid content 60%
(Note 2) Aqualon RN-2025: trade name, manufactured by Daiichi Kogyo Seiyaku Co., Ltd., nonionic emulsifier, solid content 25%
(Note 3) Perbutyl H: trade name, manufactured by NOF Corporation, t-butylhydroxyperoxide, 69% active ingredient
(Note 4) Sura-off EX: trade name, manufactured by Nippon Enviro Chemicals, Inc., preservative
・製造例9~12(水分散性アクリル樹脂F2~F5)
 製造例8において、1段目、2段目のモノマー組成を表2に示す配合比とする以外は、製造例8と同様の方法で水分散性アクリル樹脂F2~F5を得た。
 表2に各水分散性アクリル樹脂の特性値を併せて示す。
・ Production examples 9 to 12 (water-dispersible acrylic resins F2 to F5)
In Production Example 8, water-dispersible acrylic resins F2 to F5 were obtained in the same manner as in Production Example 8, except that the monomer composition of the first and second stages was changed to the blending ratio shown in Table 2.
Table 2 also shows the characteristic values of each water-dispersible acrylic resin.
 F6:スーパーフレックスE−2500(商品名,第一工業製薬(株)製,水性ポリウレタン樹脂)
 F7:スーパーフレックス150(商品名,第一工業製薬(株)製,水性ポリウレタン樹脂)
 F8:スーパーフレックス420(商品名,第一工業製薬(株)製,水性ポリウレタン樹脂)
 F9:スーパーフレックス300(商品名,第一工業製薬(株)製,水性ポリウレタン樹脂)
 F10:バイロナールMD−1100(商品名,東洋紡績(株)製,水性ポリエステル樹脂)
 F11:アデカレジンEM−0718(商品名,(株)ADEKA製,水性エポキシ系樹脂)
 F12:モデピクス303(商品名,荒川化学工業(株)製,水性エポキシ系樹脂)
 F13:ウォーターゾールS−370(商品名,大日本インキ化学工業(株)製,水性エポキシ系樹脂)
F6: Superflex E-2500 (trade name, manufactured by Daiichi Kogyo Seiyaku Co., Ltd., aqueous polyurethane resin)
F7: Superflex 150 (trade name, manufactured by Daiichi Kogyo Seiyaku Co., Ltd., water-based polyurethane resin)
F8: Superflex 420 (trade name, manufactured by Daiichi Kogyo Seiyaku Co., Ltd., water-based polyurethane resin)
F9: Superflex 300 (trade name, manufactured by Daiichi Kogyo Seiyaku Co., Ltd., water-based polyurethane resin)
F10: Bironal MD-1100 (trade name, manufactured by Toyobo Co., Ltd., water-based polyester resin)
F11: Adeka Resin EM-0718 (trade name, manufactured by ADEKA, water-based epoxy resin)
F12: MODEPICS 303 (trade name, manufactured by Arakawa Chemical Industries, Ltd., water-based epoxy resin)
F13: Watersol S-370 (trade name, manufactured by Dainippon Ink and Chemicals, water-based epoxy resin)
 表面処理鋼板のベース鋼板としては、表1に示すめっき鋼板を用いた。
 上記したチタン含有水性液(A)に対して成分(B)~(F)および蒸留水を適宜配合して混合し、固形分含有量を2~10mass%、pHを8に調整した表面処理組成物をめっき鋼板表面に塗布し、5秒後に所定の乾燥温度(最高到達板温)となるように乾燥して表面処理鋼板を作製した。このようにして得られた表面処理鋼板に対し、ゴムロール(48mmφ×205mm)にコピー用紙を巻き付け、690gの荷重(ロール自重含む)でロールを回転させることなく1回、皮膜の表面を擦るキズ付け処理を行ない、供試材1とした。なお、表5及び表6に記載No.46の比較例は、上記キズ付け処理を行っていない。
As the base steel plate of the surface-treated steel plate, the plated steel plate shown in Table 1 was used.
Surface treatment composition in which components (B) to (F) and distilled water are appropriately blended and mixed with the titanium-containing aqueous liquid (A) described above, and the solid content is adjusted to 2 to 10 mass% and the pH is adjusted to 8. The product was applied to the surface of the plated steel sheet and dried after 5 seconds so as to reach a predetermined drying temperature (maximum plate temperature) to prepare a surface-treated steel sheet. The surface-treated steel sheet thus obtained is wound with a paper roll wrapped around a rubber roll (48 mmφ × 205 mm) and scratched on the surface of the coating once without rotating the roll with a load of 690 g (including the roll's own weight). It processed and it was set as the test material 1. In addition, as described in Table 5 and Table 6, The comparative example 46 does not perform the scratching process.
 これら供試材1について、下記(1)~(4)の試験方法により耐熱変色性、耐水付着性、耐食性及び耐黒変性を評価した。
 さらに、供試材1に一般的な塩ビフィルム用接着剤を乾燥膜厚が3μmとなるように塗布した後、炉内温度が100℃の加熱炉で加熱し、続いて膜厚250μmの塩ビフィルムをロールで供試材表面に押し付け、鋼板温度が230℃となるようにして、熱圧着することにより塩ビフィルム(有機樹脂層)を接着させ、有機樹脂被覆鋼板(これを「供試材2」とする)を作製した。このようにして作製した供試材2について、下記(5),(6)の試験方法により加工後密着性及び耐食性を評価した。
 さらに、下記(7)、(8)の試験方法により表面処理組成物の貯蔵安定性を評価した。
 以上の結果を、各供試材に適用した表面処理組成物の組成及びその塗装条件とともに、表3~表10に示す。
These test materials 1 were evaluated for heat discoloration resistance, water adhesion resistance, corrosion resistance, and blackening resistance by the following test methods (1) to (4).
Furthermore, after applying a general adhesive for a polyvinyl chloride film to the test material 1 so that the dry film thickness becomes 3 μm, the furnace temperature is heated in a heating furnace having a temperature of 100 ° C., and then a polyvinyl chloride film having a film thickness of 250 μm. Is pressed against the surface of the test material with a roll so that the steel plate temperature becomes 230 ° C., and a polyvinyl chloride film (organic resin layer) is adhered by thermocompression bonding, and an organic resin-coated steel plate (this is “test material 2”). And). With respect to the specimen 2 thus produced, the post-processing adhesion and corrosion resistance were evaluated by the following test methods (5) and (6).
Furthermore, the storage stability of the surface treatment composition was evaluated by the following test methods (7) and (8).
The above results are shown in Tables 3 to 10 together with the composition of the surface treatment composition applied to each specimen and the coating conditions.
(1)耐熱変色性
 供試材1を赤外線イメージ炉にて30秒で板温500℃に加熱し、30秒間保持した後、室温まで自然放冷した時の表面外観を目視観察した。その評価基準は以下のとおりである。
 ○:変色なし
 △:淡黄色に変色
 ×:黄色~茶色に変色
(2)耐水付着性
 供試材1に純水1mLを滴下し、100℃のオーブンにて10分間乾燥させた時の表面外観を目視観察した。その評価基準は以下のとおりである。
 ◎:変化なし
 ○:ほとんど変化なし
 △:滴下部輪郭のみ観察される
 ×:滴下部全体が変色する
(1) Heat-resistant discoloration The specimen 1 was heated to a plate temperature of 500 ° C. in 30 seconds in an infrared image furnace, held for 30 seconds, and then visually observed on the surface appearance when naturally cooled to room temperature. The evaluation criteria are as follows.
○: No color change Δ: Color change to pale yellow ×: Color change from yellow to brown (2) Water-resistant adhesion Surface appearance when 1 mL of pure water is dropped on the test material 1 and dried in an oven at 100 ° C. for 10 minutes. Was visually observed. The evaluation criteria are as follows.
◎: No change ○: Almost no change △: Only the outline of the dropping part is observed ×: The whole dropping part is discolored
(3)耐食性
 供試材1から切り出された50mm×100mmの試験片を用い、その試験片の端部と裏面をシールして、JIS−Z−2371−2000の塩水噴霧試験を行い、白錆発生面積率が5%となる試験時間を測定した。その評価基準は以下のとおりである。
 ◎:36時間以上
 ○:24時間以上、36時間未満
 △:12時間以上、24時間未満
 ×:12時間未満
(4)耐黒変性
 供試材1を温度80℃、相対湿度95%雰囲気に制御された恒温恒湿機に24時間静置した際の白色度(L値)変化をΔL(試験後のL値−試験前のL値)で算出した。その評価基準は以下のとおりである。
 ○:ΔL≧−5.0
 △:−5.0>ΔL≧−10.0
 ×:−10.0>ΔL
(3) Corrosion resistance Using a test piece of 50 mm × 100 mm cut out from the test material 1, the end and the back of the test piece are sealed, a salt spray test of JIS-Z-2371-2000 is performed, and white rust is obtained. The test time at which the generation area ratio was 5% was measured. The evaluation criteria are as follows.
◎: 36 hours or more ○: 24 hours or more, less than 36 hours Δ: 12 hours or more, less than 24 hours ×: Less than 12 hours (4) Blackening resistance The test material 1 is controlled to an atmosphere of 80 ° C. and 95% relative humidity. The change in whiteness (L value) when left in a constant temperature and humidity chamber for 24 hours was calculated as ΔL (L value after test−L value before test). The evaluation criteria are as follows.
○: ΔL ≧ −5.0
Δ: −5.0> ΔL ≧ −10.0
×: −10.0> ΔL
(5)加工後密着性(加工後剥離強度)
 供試材2から切り出された30mm×120mmの試験片を用い、その試験片の長さ方向のほぼ中央部に、長さ方向に対して直角に二本線を50mm間隔で描き、試験片の長さ方向両端を引張試験機のクランプでつかみ、前記二本線の間隔が60mmになるまで一軸方向に延伸した。この延伸した後の試験片を試料とし、広げられた二本線間の有機樹脂層に、幅20mmになるように鋼板に達する切込みを設けた。この切込みを設けた有機樹脂層の一端を強制的に剥離し、この剥離した有機樹脂層の端を引張試験機の一方のクランプでつかみ、引張試験機の他方クランプで鋼板をつかみ、剥離速度50mm/分の条件下で剥離試験を行った。この剥離試験では、有機樹脂層は、鋼板表面から180度の方向(反対方向)に剥離するが、この剥離する際の最大強度(=剥離強度)を測定した。この剥離強度が大きいほど、有機樹脂層は金属板から剥離し難く、折り曲げ加工や絞り加工後の密着性に優れていることになる。測定された剥離強度に基づき、加工後密着性を下記基準で評価した。
 ◎:剥離強度が40N/20mm幅以上
 ○:剥離強度が30N/20mm幅以上、40N/20mm幅未満
 ×:剥離強度が30N/20mm幅未満
(5) Adhesion after processing (peeling strength after processing)
Using a test piece of 30 mm × 120 mm cut out from the specimen 2, draw a double line at 50 mm intervals perpendicular to the length direction at the center of the test piece in the length direction. Both ends in the vertical direction were grasped with a clamp of a tensile tester, and stretched in a uniaxial direction until the distance between the two lines reached 60 mm. Using the stretched test piece as a sample, the organic resin layer between the spread two wires was provided with a cut reaching the steel plate so as to have a width of 20 mm. One end of the organic resin layer provided with this incision is forcibly peeled off, the end of the peeled organic resin layer is gripped by one clamp of a tensile tester, a steel plate is gripped by the other clamp of the tensile tester, and the peeling speed is 50 mm. A peel test was performed under the conditions of / min. In this peeling test, the organic resin layer peeled in the direction of 180 degrees (opposite direction) from the steel sheet surface, and the maximum strength (= peeling strength) at the time of peeling was measured. The higher the peel strength, the harder the organic resin layer is peeled from the metal plate, and the better the adhesion after bending or drawing. Based on the measured peel strength, the post-processing adhesion was evaluated according to the following criteria.
A: Peel strength is 40 N / 20 mm width or more B: Peel strength is 30 N / 20 mm width or more and less than 40 N / 20 mm width X: Peel strength is less than 30 N / 20 mm width
(6)耐食性(耐キズ付き性)
 供試材2から切り出された50mm×100mmの試験片を用い、その試験片表面にクロスカットを入れ、JIS−Z−2371−2000の規定に準拠して塩水噴霧試験を1000時間行った。クロスカットからの片側腐食幅を測定した。その評価基準は以下のとおりである。
 ◎:カット部からの平均腐食幅が5mm未満
 ○:カット部からの平均腐食幅が5mm以上、10mm未満
 ×:カット部からの平均腐食幅が10mm以上
 表面処理鋼板の表面に形成された皮膜の耐キズ付き性が劣ると、皮膜が削り取られ、めっき面に到達するキズが多数形成される。このキズ部には皮膜が存在しないため、有機樹脂層との密着性が乏しく、水が侵入し易い。したがって、このキズ部にクロスカット部から侵入した塩水が浸透し、腐食が進行する。その結果、耐キズ付き性が劣る場合には、クロスカット部からの腐食幅が大きくなる。そこで、クロスカットからの片側平均腐食幅の評価は耐キズ付き性の評価になる。
(6) Corrosion resistance (scratch resistance)
A 50 mm × 100 mm test piece cut out from the test material 2 was used, a cross cut was made on the surface of the test piece, and a salt spray test was conducted for 1000 hours in accordance with the provisions of JIS-Z-2371-2000. The one-sided corrosion width from the crosscut was measured. The evaluation criteria are as follows.
A: The average corrosion width from the cut portion is less than 5 mm. O: The average corrosion width from the cut portion is 5 mm or more and less than 10 mm. X: The average corrosion width from the cut portion is 10 mm or more. The film formed on the surface of the surface-treated steel sheet. If the scratch resistance is inferior, the coating is scraped off and a large number of scratches reaching the plated surface are formed. Since there is no film in the scratched part, the adhesion with the organic resin layer is poor, and water easily enters. Therefore, salt water that has entered from the cross cut portion penetrates into the scratch portion, and corrosion progresses. As a result, when the scratch resistance is inferior, the corrosion width from the cross cut portion increases. Therefore, the evaluation of the one-sided average corrosion width from the cross cut is an evaluation of scratch resistance.
(7)貯蔵安定性(I)
 固形分8mass%とした表面処理組成物を40℃で2週間経時させ、固形分の沈殿状態と粘性について目視で評価した。その評価基準は以下のとおりである。
 ◎:固形分の沈殿なし且つ粘性に変化なし
 ○:僅かな固形分の沈殿あり又は小さい粘性の変化あり
 △:固形分の沈殿が多い又は粘性の変化が大きい
 ×:固形分の沈殿が多く且つ粘性の変化が大きい
(8)貯蔵安定性(II)
 固形分8mass%とした表面処理組成物を30℃に保持し、1週間毎に固形分の沈殿状態を目視で評価した。その評価基準は以下のとおりである。
 ◎:4週間後も沈殿なし
 ○:4週間後沈殿発生
 △:2週間~3週間後沈殿発生
 ×:1週間後沈殿発生
(7) Storage stability (I)
The surface treatment composition having a solid content of 8 mass% was aged at 40 ° C. for 2 weeks, and the precipitation state and viscosity of the solid content were visually evaluated. The evaluation criteria are as follows.
◎: No solid content precipitation and no change in viscosity ○: Slight solid content precipitation or small viscosity change △: Many solid content precipitations or large viscosity change ×: Many solid content precipitations Large change in viscosity (8) Storage stability (II)
The surface treatment composition having a solid content of 8 mass% was maintained at 30 ° C., and the solid precipitation state was visually evaluated every week. The evaluation criteria are as follows.
◎: No precipitation after 4 weeks ○: Precipitation occurs after 4 weeks △: Precipitation occurs after 2 to 3 weeks ×: Precipitation occurs after 1 week
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表3、表5、表7、表9において、*1~*9は以下の内容を示す。
 *1 表1に記載のめっき鋼板No.1~No.9
 *2 明細書本文に記載のチタン含有水性液T1~T7
 *3 明細書本文に記載のジルコニウム化合物B1~B3
 *4 明細書本文に記載の有機リン酸化合物C1,C2
 *5 明細書本文に記載の金属リン酸塩D1~D3
 *6 明細書本文に記載の酸化ケイ素E1~E4
 *7 明細書本文に記載の水溶性又は水分散性有機樹脂F1~F13
 *8 表面処理組成物(水性処理液)1リットル中の固形分質量(g)
 *9 表面処理組成物(水性処理液)の全固形分中での割合(mass%)
In Table 3, Table 5, Table 7, and Table 9, * 1 to * 9 indicate the following contents.
* 1 Plated steel plate No. 1-No. 9
* 2 Titanium-containing aqueous liquids T1 to T7 described in the main text of the specification
* 3 Zirconium compounds B1 to B3 described in the specification text
* 4 Organophosphate compounds C1, C2 described in the main text of the specification
* 5 Metal phosphates D1 to D3 described in the specification text
* 6 Silicon oxides E1 to E4 described in the specification text
* 7 Water-soluble or water-dispersible organic resins F1 to F13 described in the main text of the specification
* 8 Solid content mass (g) in 1 liter of surface treatment composition (aqueous treatment liquid)
* 9 Ratio of the surface treatment composition (aqueous treatment liquid) in the total solid content (mass%)
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010

Claims (6)

  1.  加水分解性チタン化合物、加水分解性チタン化合物の低縮合物、水酸化チタン、水酸化チタンの低縮合物の中から選ばれる少なくとも1種のチタン化合物を過酸化水素水と混合して得られるチタン含有水性液(A)の固形分100質量部に対して、炭酸ジルコニウム化合物(B)を10~300質量部、有機リン酸化合物(C)を50~200質量部含有し、さらに、金属リン酸塩(D)を表面処理組成物の全固形分中での割合で5~20mass%、酸化ケイ素(E)を表面処理組成物の全固形分中での割合で32~40mass%、水溶性有機樹脂及び/又は水分散性有機樹脂(F)を表面処理組成物の全固形分中での割合で2~10mass%含有することを特徴とする表面処理組成物。 Titanium obtained by mixing at least one titanium compound selected from hydrolyzable titanium compounds, low-condensates of hydrolyzable titanium compounds, titanium hydroxide, and low-condensates of titanium hydroxide with hydrogen peroxide water 10 to 300 parts by mass of the zirconium carbonate compound (B) and 50 to 200 parts by mass of the organic phosphoric acid compound (C) with respect to 100 parts by mass of the solid content of the aqueous solution (A). 5 to 20 mass% of salt (D) in the total solid content of the surface treatment composition, and 32 to 40 mass% of silicon oxide (E) in the total solid content of the surface treatment composition, water-soluble organic A surface treatment composition comprising 2 to 10 mass% of a resin and / or a water-dispersible organic resin (F) in a proportion in the total solid content of the surface treatment composition.
  2.  酸化ケイ素(E)が乾式法にて製造された気相シリカであることを特徴とする請求項1に記載の表面処理組成物。 The surface treatment composition according to claim 1, wherein the silicon oxide (E) is vapor phase silica produced by a dry method.
  3.  気相シリカのかさ比重が40g/L以下であることを特徴とする請求項2に記載の表面処理組成物。 The surface treatment composition according to claim 2, wherein the bulk specific gravity of the vapor phase silica is 40 g / L or less.
  4.  pHが7~12であることを特徴とする請求項1~3のいずれか一項に記載の表面処理組成物。 The surface treatment composition according to any one of claims 1 to 3, wherein the pH is 7 to 12.
  5.  亜鉛系めっき鋼板又はアルミニウム系めっき鋼板の表面に、請求項1~4のいずれか一項に記載の表面処理組成物を塗布し、乾燥させることにより形成された皮膜付着量が0.03~0.5g/mの表面処理皮膜を有することを特徴とする表面処理鋼板。 A coating amount formed by applying the surface treatment composition according to any one of claims 1 to 4 to the surface of a zinc-based plated steel sheet or an aluminum-based plated steel sheet and drying the film is 0.03-0. A surface-treated steel sheet having a surface-treated film of 0.5 g / m 2 .
  6.  請求項5に記載の表面処理鋼板の表面処理皮膜上に有機樹脂層を有することを特徴とする有機樹脂被覆鋼板。 An organic resin-coated steel sheet comprising an organic resin layer on the surface-treated film of the surface-treated steel sheet according to claim 5.
PCT/JP2010/071534 2009-11-25 2010-11-25 Surface-treating composition, and surface-treated steel sheet WO2011065581A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201080053499.2A CN102666920B (en) 2009-11-25 2010-11-25 Surface-treating composition, and surface-treated steel sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-267086 2009-11-25
JP2009267086A JP5600416B2 (en) 2009-11-25 2009-11-25 Surface treatment composition and surface treated steel sheet

Publications (1)

Publication Number Publication Date
WO2011065581A1 true WO2011065581A1 (en) 2011-06-03

Family

ID=44066684

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/071534 WO2011065581A1 (en) 2009-11-25 2010-11-25 Surface-treating composition, and surface-treated steel sheet

Country Status (4)

Country Link
JP (1) JP5600416B2 (en)
CN (1) CN102666920B (en)
TW (1) TWI463036B (en)
WO (1) WO2011065581A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013226842A (en) * 2012-03-30 2013-11-07 Nisshin Steel Co Ltd Coated metal formed and fabricated material
JP2013226796A (en) * 2012-03-30 2013-11-07 Nisshin Steel Co Ltd Composite body produced by bonding shaped and coated metallic material to molded body of thermoplastic resin composition, and method for producing the same
JP2014141021A (en) * 2013-01-24 2014-08-07 Nisshin Steel Co Ltd Coated metal shaped material, composite body and method of producing the same
JP2014532815A (en) * 2011-11-03 2014-12-08 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Preparation for passivating a metal surface comprising a polymer having acid groups and a Ti or Zr compound
JP2015074743A (en) * 2013-10-10 2015-04-20 共栄社化学株式会社 Aqueous rust-removing paint
CN114423886A (en) * 2019-09-20 2022-04-29 日本制铁株式会社 Non-oriented electromagnetic steel sheet

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103011358B (en) * 2012-12-20 2014-03-05 山东大学 Polymeric titanium sulfate inorganic polymeric flocculant, and preparation method and application of flocculant
WO2015029259A1 (en) * 2013-09-02 2015-03-05 日本パーカライジング株式会社 Surface treatment agent for metallic material, surface-treated metallic material and method for manufacturing said material
PT3070186T (en) * 2013-11-14 2019-11-20 Nippon Steel Nisshin Co Ltd Chemical conversion treatment solution and chemically converted steel sheet
CN104109473A (en) * 2014-06-19 2014-10-22 锐展(铜陵)科技有限公司 Surface treating agent for starter aluminum alloy casing
MX2017011743A (en) 2015-03-31 2017-11-13 Nippon Steel & Sumitomo Metal Corp Hot-dip galvanized steel sheet.
CN107829082A (en) * 2017-11-07 2018-03-23 北京安邦之星科技有限公司 Environment-friendly galvanizing layer film agent, preparation method and the rust-preventing film comprising the film agent
CN110294963B (en) * 2019-08-12 2022-02-08 厦门欧化实业有限公司 Water-based UV treatment-free surface printing ink and processing method and processing equipment thereof
EP4136174A4 (en) * 2020-04-15 2023-12-20 Henkel AG & Co. KGaA Anti-blackening coating composition
CN112538294B (en) * 2020-12-04 2022-10-11 攀钢集团攀枝花钢铁研究院有限公司 Environment-friendly zinc-aluminum-magnesium coating surface treating agent and preparation method and use method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004238638A (en) * 2002-12-09 2004-08-26 Kansai Paint Co Ltd Surface treatment composition and surface-treated metal strip
JP2005148684A (en) * 2003-11-20 2005-06-09 Seiko Epson Corp Method for manufacturing toner
JP2006009121A (en) * 2004-06-29 2006-01-12 Kansai Paint Co Ltd Metal surface treatment composition and metal surface-treated steel sheet
JP2008115442A (en) * 2006-11-07 2008-05-22 Nippon Steel Corp Aluminum plated steel material having excellent discoloration resistance upon heating and corrosion resistance after heating, and water-based treating agent therefor
JP2008169470A (en) * 2006-12-13 2008-07-24 Jfe Steel Kk Surface-treated zinc-coated steel sheet excellent in planar part corrosion resistance, blackening resistance, and appearance and corrosion resistance after press forming, and aqueous surface-treating liquid for zinc-coated steel sheet
JP2009191284A (en) * 2008-02-12 2009-08-27 Kansai Paint Co Ltd Metal surface treatment agent

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1050603B1 (en) * 1998-11-08 2007-01-10 JFE Steel Corporation Surface treated steel sheet having excellent corrosion resistance
JP4041368B2 (en) * 2002-08-30 2008-01-30 新日本製鐵株式会社 Galvanized steel sheet with excellent heat resistance and corrosion resistance

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004238638A (en) * 2002-12-09 2004-08-26 Kansai Paint Co Ltd Surface treatment composition and surface-treated metal strip
JP2005148684A (en) * 2003-11-20 2005-06-09 Seiko Epson Corp Method for manufacturing toner
JP2006009121A (en) * 2004-06-29 2006-01-12 Kansai Paint Co Ltd Metal surface treatment composition and metal surface-treated steel sheet
JP2008115442A (en) * 2006-11-07 2008-05-22 Nippon Steel Corp Aluminum plated steel material having excellent discoloration resistance upon heating and corrosion resistance after heating, and water-based treating agent therefor
JP2008169470A (en) * 2006-12-13 2008-07-24 Jfe Steel Kk Surface-treated zinc-coated steel sheet excellent in planar part corrosion resistance, blackening resistance, and appearance and corrosion resistance after press forming, and aqueous surface-treating liquid for zinc-coated steel sheet
JP2009191284A (en) * 2008-02-12 2009-08-27 Kansai Paint Co Ltd Metal surface treatment agent

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014532815A (en) * 2011-11-03 2014-12-08 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Preparation for passivating a metal surface comprising a polymer having acid groups and a Ti or Zr compound
JP2013226842A (en) * 2012-03-30 2013-11-07 Nisshin Steel Co Ltd Coated metal formed and fabricated material
JP2013226796A (en) * 2012-03-30 2013-11-07 Nisshin Steel Co Ltd Composite body produced by bonding shaped and coated metallic material to molded body of thermoplastic resin composition, and method for producing the same
JP2014141021A (en) * 2013-01-24 2014-08-07 Nisshin Steel Co Ltd Coated metal shaped material, composite body and method of producing the same
JP2015074743A (en) * 2013-10-10 2015-04-20 共栄社化学株式会社 Aqueous rust-removing paint
CN114423886A (en) * 2019-09-20 2022-04-29 日本制铁株式会社 Non-oriented electromagnetic steel sheet
CN114423886B (en) * 2019-09-20 2023-09-29 日本制铁株式会社 Non-oriented electromagnetic steel sheet

Also Published As

Publication number Publication date
TWI463036B (en) 2014-12-01
JP2011111638A (en) 2011-06-09
CN102666920A (en) 2012-09-12
JP5600416B2 (en) 2014-10-01
TW201131018A (en) 2011-09-16
CN102666920B (en) 2014-07-30

Similar Documents

Publication Publication Date Title
JP5600417B2 (en) Surface treatment composition and surface treated steel sheet
JP5600416B2 (en) Surface treatment composition and surface treated steel sheet
JP5431721B2 (en) Surface treatment composition for zinc-based plated steel sheet or aluminum-based plated steel sheet and surface-treated steel sheet
JP4972240B2 (en) Surface-treated steel sheet
JP5160866B2 (en) Surface-treated molten Zn-Al alloy-plated steel sheet
JP4575047B2 (en) Metal surface treatment composition and metal surface treatment steel plate
US7527876B2 (en) Surface-treated steel sheet
JP5317516B2 (en) Surface-treated molten Zn-Al alloy-plated steel sheet
JP5577782B2 (en) Surface-treated steel sheet
JP2006022370A (en) Surface-treated steel sheet
JP5097311B2 (en) Surface-treated steel sheet and organic resin-coated steel sheet
JPWO2002061005A1 (en) Coating agent for forming titanium oxide film, method for forming titanium oxide film, and metal substrate coated with titanium oxide film
JP4916913B2 (en) Surface-treated steel sheet and organic resin-coated steel sheet
JP2009287078A (en) Highly corrosion resistant surface-treated steel sheet
JP5490657B2 (en) High corrosion resistance surface-treated steel sheet
JP5101271B2 (en) Surface-treated steel sheet
JP5441109B2 (en) High corrosion resistance surface-treated steel sheet
JP5222491B2 (en) Surface-treated steel sheet
JP2002275653A (en) Metallic surface treated steel sheet
JP2002275642A (en) Coated steel sheet excellent in corrosion resistance
JP5649394B2 (en) High corrosion resistance surface-treated steel sheet
WO2008136496A1 (en) Surface-treated, hot-dip zn-al alloy coated steel sheet
KR100963734B1 (en) Surface treated steel sheet

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080053499.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10833424

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10833424

Country of ref document: EP

Kind code of ref document: A1