WO2011065512A1 - サーメット皮膜とそれを形成する噴射用粒子、サーメット皮膜形成方法、皮膜形成品 - Google Patents

サーメット皮膜とそれを形成する噴射用粒子、サーメット皮膜形成方法、皮膜形成品 Download PDF

Info

Publication number
WO2011065512A1
WO2011065512A1 PCT/JP2010/071185 JP2010071185W WO2011065512A1 WO 2011065512 A1 WO2011065512 A1 WO 2011065512A1 JP 2010071185 W JP2010071185 W JP 2010071185W WO 2011065512 A1 WO2011065512 A1 WO 2011065512A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
cermet
particles
cermet film
hard reinforcing
Prior art date
Application number
PCT/JP2010/071185
Other languages
English (en)
French (fr)
Inventor
黒田 聖治
渡邊 誠
誠幸 小松
和人 佐藤
順也 北村
Original Assignee
独立行政法人物質・材料研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人物質・材料研究機構 filed Critical 独立行政法人物質・材料研究機構
Priority to JP2011543337A priority Critical patent/JP5769255B2/ja
Priority to US13/512,080 priority patent/US20120308776A1/en
Priority to EP10833357.6A priority patent/EP2505689A4/en
Publication of WO2011065512A1 publication Critical patent/WO2011065512A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
    • Y10T428/24372Particulate matter
    • Y10T428/24413Metal or metal compound

Definitions

  • the present invention relates to a cermet film composed of a hard reinforcing phase and a binder phase formed of spray particles having a hard reinforcing phase powder and a binder phase powder, and a jet particle for forming the cermet film, a cermet film forming method,
  • the present invention relates to a film-formed product.
  • Patent Document 1 it is already known that a cermet film is formed on the surface of a substrate by heating and spraying the particles for injection having a hard reinforcing phase and a binder phase onto the substrate at supersonic speed.
  • the Vickers hardness is far inferior to the hardness of the hard reinforcing phase of the jetting particles, and it cannot be said that the characteristics of the particles are fully utilized.
  • the present invention provides a cermet film that can further make use of the hardness of the powder for a hard reinforcing phase, a spray particle that forms the cermet film, a cermet film forming method, and a film-formed product. With the goal.
  • the cermet film of the present invention is a jet particle having ceramic powder as a hard reinforcing phase powder that forms a hard reinforcing phase of a cermet film, and metal powder as a binder phase powder that forms a binding phase of a cermet film
  • the surface roughness (centerline average roughness Ra) is preferably less than 3.0.
  • the spray particles are particles obtained by agglomerating a hard reinforcing phase powder and a binder phase powder, and the cermet film heats the spray particles to form a substrate at supersonic speed.
  • the hard reinforcing phase powder and the binder phase powder are formed integrally with each other.
  • the hard reinforcing phase powder may be one or more carbide ceramics selected from WC, Cr 3 C 2 , VC, NbC, TaC, TiC, ZrC, HfC, SiC, and B 4 C. Or at least one non-carbide ceramic selected from diamond, TiN, AlN, HfB 2 , ZrB 2 , TaB 2 and TiB 2 .
  • the binder phase powder is preferably one or more metals selected from Ni, Cr, Co, Ti, Al, and Fe, or alloys thereof.
  • the jetting particles of the present invention are jetting particles having a hard reinforcing phase powder and a binder phase powder for forming any one of the cermet films described above, wherein the binder phase powder is the entire jetting particle. 25% by mass or less and 8% by mass or more are contained.
  • the hard reinforcing phase powder and the binder phase powder are aggregated.
  • the film-formed product of the present invention is characterized by having a base material on which any of the above cermet films is formed.
  • the cermet film forming method of the present invention is any one of the above cermet film forming methods, wherein the ceramic powder as the hard reinforcing phase powder forming the hard reinforcing phase of the cermet film and the binder phase of the cermet film are combined.
  • a cermet film comprising a hard reinforcing phase and a binder phase is formed by heating spray particles having a metal powder as a binder phase powder to be formed and colliding with a substrate at supersonic speed. .
  • the particles for injection are heated to a temperature not lower than the melting point and lower than the melting point of the metal component constituting the binder phase powder and collide with the substrate.
  • the spray particles are preferably particles obtained by agglomerating the hard reinforcing phase powder and the binder phase powder.
  • the cermet film of the present invention is able to make use of the original hardness of the powder for a hard reinforcing phase, and not only exhibits a hardness about twice that shown in Patent Document 1, but also its surface. Was also very flat. Specifically, the surface roughness (centerline average roughness Ra) of the cermet film can be less than 3.0. This is because the Vickers hardness of the cermet film is increased by making the particle diameter of the particles for injection smaller than that shown in Patent Document 1. The result was an unexpected result in the fear of the quality change due to melting when the spray particles were heated.
  • the cermet film or the film-formed product could not only obtain a wide range of practicality but also improve its reliability.
  • FIG. 1 It is a schematic cross section which shows the cross section of the spray gun used for this invention. Photograph of particles for injection. Photograph of cermet film. In Example 2, it is a cross-sectional photograph of the cermet film
  • FIG. It is the result of measuring the surface roughness of the cermet film produced in Example 4. (A) is measurement data in the X direction, and (b) is measurement data in the orthogonal Y direction. It is the figure which plotted surface roughness Ra (centerline average roughness) of the cermet film produced in Example 4.
  • the present invention has the features as described above, and an embodiment thereof will be described below.
  • FIG. 1 is a cross-sectional view schematically illustrating a warm spray gun used for forming a cermet film by the warm spray method.
  • This warm spray gun has a combustion chamber (9) provided with a fuel inlet (1), an oxygen gas inlet (2) and a spark plug (3), and a supersonic nozzle (11). Between the combustion chamber (9) and the supersonic nozzle (11), a mixing chamber (10) provided with an inert gas inlet (5) such as nitrogen gas is provided. In the mixing chamber (10), the room temperature inert gas supplied from the inert gas inlet (5) is mixed with the combustion flame generated in the combustion chamber (9), and reaches the supersonic nozzle (11). The temperature and speed of the gas flow are controlled.
  • a raw material supply port (6) for spraying particles (8) is provided at the tip of the nozzle (11), and a barrel (12) is coupled to the tip.
  • the combustion chamber (9), the mixing chamber (10), the nozzle (11), and the barrel (12) are cooled by cooling water (4) (7).
  • the spray particles (8) are ceramic powder as a hard reinforcing phase powder that forms a hard reinforcing phase of the cermet coating (13), and metal powder as a binder phase powder that forms the binding phase of the cermet coating (13). And is composed of.
  • the injection particles (8) introduced from the raw material supply port (6) are generated by a high-speed gas flow generated by the combustion flame whose temperature is controlled in the mixing chamber (10) being expanded and accelerated by the supersonic nozzle (11). , Heated to a specific temperature and speed range, accelerated.
  • the heated and accelerated spraying particles (8) collide with and accumulate on the base material (14), whereby a cermet film (13) composed of a hard reinforcing phase and a binder phase is formed on the surface of the base material (14).
  • the key is to maintain the temperature of the particles for injection at a temperature below the melting point of the metal of the powder for the binder phase.
  • the melting point of the metal component constituting the binder phase powder is 1455 to 1857 ° C.
  • the injection particles (8) have a melting point higher than the softening temperature of the metal component constituting the binder phase powder. It is possible to heat to a temperature less than 1 and accelerate to a speed of Mach 1 or higher. In the present invention, the spray particles (8) are heated to a temperature not lower than the softening temperature of the metal component constituting the binder phase powder and lower than the melting point, and accelerated at a supersonic speed of Mach 1 or higher. During the flight of 8), the dissolution reaction and decomposition reaction of the particles for injection (8) can be remarkably reduced. As a result, it becomes possible to produce a dense cermet film (13) on the substrate (14) in which the dissolution of the hard reinforcing phase into the binder phase and the decomposition due to decarburization are suppressed.
  • inert gas such as nitrogen in the mixing chamber (10
  • a cermet film of better quality in order to form a cermet film of better quality, as a general composition of the powder for hard reinforcing phase constituting the particles for injection, WC, Cr 3 C 2 , VC, NbC, TaC, TiC, ZrC 1 or more carbides selected from carbide-based ceramics such as HfC, SiC, B 4 C, or non-carbide ceramics such as diamond, TiN, AlN, HfB 2 , ZrB 2 , TaB 2 and TiB 2 More than one compound is considered. Further, as the binder phase powder constituting the spray particles, one or more metals selected from Ni, Cr, Co, Ti, Al, and Fe, or alloys thereof are considered.
  • the substrate preheating temperature is in the range of 100 to 500 ° C. as a condition for forming a cermet film with better quality and forming a formed member.
  • the substrate preheating temperature is maintained at 500 ° C. or lower in order to prevent melting, structural change and oxidation of various materials used as the substrate.
  • the substrate preheating temperature is desirably 100 ° C. or higher in order to activate the substrate surface in the adhesion process of the film.
  • the particle diameter of the hard reinforcing phase powder is 0.1 to 2.0 ⁇ m, preferably 0.1 to 0.3 ⁇ m.
  • the binder phase powder preferably has a particle size of 2 ⁇ m or less.
  • the above “particle size” is evaluated by observation with a Fisher method (FSSS, “Fisher”, “Sub”, “Sieve”, Sizer) or an electron microscope.
  • the Fischer method is a method for evaluating the particle size by determining the specific surface area of a powder by filling a predetermined amount of powder into a test tube and the like, then passing through a gas, and measuring the flow velocity and pressure drop.
  • the spray particles are formed by agglomerating a hard reinforcing phase powder and a binder phase powder as shown in FIG.
  • the white angular particles are the hard reinforcing phase particles
  • the dark gray portions are the binder phase particles.
  • the particle diameter of the spray particles can be implemented as long as it is the same size as the spray particles used in the conventionally known high-speed flame spraying method, but even a finer powder can be implemented by the warm spray method. .
  • the average particle size is 5 to 45 ⁇ m, preferably 5 to 30 ⁇ m, more preferably 5 to 20 ⁇ m.
  • the average particle diameter is evaluated by a laser diffraction / scattering method. This method is a method of irradiating a particle with a laser and specifying the particle diameter from the light intensity distribution of the scattered light.
  • the surface roughness of the cermet film depends on the size of the adhered particles. For this reason, when the particle diameter of the particles for injection is excessive, there is a problem that the surface roughness of the cermet film becomes rough. In addition, if the particle size is excessive, sufficient speed cannot be obtained, resulting in a decrease in adhesion efficiency and porosity, and unevenness in the internal temperature of the particles due to non-uniform temperature in the particles, resulting in a non-uniform film. There is also.
  • the particle diameter of the jetting particles is too small, there is a problem that sufficient adhesion efficiency cannot be obtained because the jet flow is greatly affected by the turbulence of the jet.
  • the particle temperature is too high due to the particle size being too small, characteristic deterioration due to decarburization and penetration of the hard reinforcing phase into the binder phase, etc., it is difficult to supply particles at a constant speed for a long time due to adhesion of the particles for injection There is also a problem such as.
  • a phenomenon called spitting in which molten powder particles adhere and deposit in the spray gun and are discharged as coarse particles, is likely to occur, which has a serious adverse effect on the quality of the coating. In the warm spray method, this problem hardly occurs because the particles do not melt.
  • the relative proportion of the binder phase powder varies depending on the application.
  • the total amount of the injection particles is 8% by mass or more and 25%. It can set suitably in the range below mass%.
  • the relative amount of the powder for the binder phase is 8% by mass or more and 10% by mass or less, 11% by mass or more and 13% by mass or less, 16% by mass or more and 18% by mass or less, 23% by mass in the whole particles for injection. It can be set to 25% by mass or less.
  • the binder phase is soft, so that there is a problem that sufficient hardness cannot be obtained in the cermet film.
  • the cermet film of the present invention uses an injection particle having a hard reinforcing phase powder and a binder phase powder, so that the inherent Vickers hardness of the hard reinforcing phase powder is 50. %, 60% or more, 65% or more, and even 70% or more of Vickers hardness can be obtained. Comparing the cermet coatings produced by the warm spray method and the high-speed flame spraying method using the particles for injection having the same composition of the hard reinforcing phase powder and the binder phase powder and the same content of the binder phase powder. A cermet film produced by the warm spray method can be produced with higher hardness. Regarding the content of the binder phase powder in the jetting particles of 8% by mass or more and 25% by mass or less, the Vickers hardness of the cermet coating tends to increase as the content of the binder phase powder decreases within this range.
  • a cermet film produced by a warm spray method using particles for injection having an average particle diameter of 5 to 20 ⁇ m has a surface roughness Ra (centerline average roughness) of 3.0 or less, 2.5 or less, 2 or less. 0.0 or less, and further 1.5 or less.
  • the lower limit of the cermet film thickness is preferably 100 ⁇ m or more, preferably 150 ⁇ m or more, more preferably 200 ⁇ m or more.
  • the upper limit is desirably 800 ⁇ m or less, preferably 700 ⁇ m or less, more preferably 600 ⁇ m or less.
  • Example 1 The cermet film of this invention illustrates what was produced
  • FIG. As a comparative example, an example produced using a high-speed flame spraying method (HVOF) is also illustrated.
  • the fuel acid ratio in Table 1 represents the relative ratio when the stoichiometric ratio in the complete combustion of kerosene and oxygen supplied to the combustion chamber is 1.0. It becomes.
  • the combustion pressure is the value in the combustion chamber.
  • carbon steel JIS SS400 is used as a base material, and cermet particles (spraying particles) to be sprayed are composed of a hard phase powder WC and a binder phase powder Co— 12-25 wt% Co was used.
  • the particle size and the mutual ratio of the hard phase powder are as shown in Table 1.
  • the particles for jetting are obtained by agglomerating a hard reinforcing phase powder and a binder phase powder.
  • a slurry in which a hard reinforcing phase powder and a binder phase powder are mixed and dispersed in a liquid is granulated by gas spraying. After pre-sintering, this was obtained by crushing and sieving.
  • Table 1 shows the results of producing the cermet film shown in Table 1 and measuring its characteristics.
  • FIG. 3 shows a cross-sectional photograph of the film obtained under the conditions of WS3.
  • the white gray particles present on the entire surface are the hard layer powder WC and are densely and densely dispersed in the coating.
  • a cermet film produced by a warm spray method using particles for injection having an average particle diameter of 5 to 20 ⁇ m has a surface roughness of 3.0 or less, 2.5 or less, 2.0 or less, and 1. It could be 5 or less.
  • Carbon steel (JIS SS400, shape: 100 ⁇ 50 ⁇ 5 t mm) is used as a base material, and particles composed of hard phase powder WC and binder phase powder Co are used as sprayed cermet particles (injection particles).
  • a WC-Co film (cermet film) was prepared by WS method or HVOF method. The film thickness was about 300 ⁇ m.
  • Table 2 shows the types of jetting particles used and the types of film forming methods for producing cermet films
  • Table 3 shows the film forming conditions.
  • the injection particles are obtained by agglomerating the hard reinforcing phase powder and the binder phase powder, and are obtained in the same manner as in Example 1.
  • WC * particle size ( ⁇ m) of powder for hard reinforcing phase (WC) contained in particles for injection
  • D50 * average diameter of the particles for injection ( ⁇ m)
  • Co * Content (% by mass) of binder phase powder (Co) contained in the particles for injection
  • the surface roughness of the obtained cermet film was evaluated using a contact roughness meter (SJ-201R, Mitsutoyo). The measurement was performed with respect to the gun movement parallel direction (sample longitudinal direction). The measurement distance was 12.5 mm, and the centerline average roughness Ra was used as an index as a parameter. Further, after cutting the sample, resin filling and mirror polishing were performed, and the cross-sectional structure was observed with a scanning microscope (JEOL 6500).
  • D50 28.5 ⁇ m, 15.9 ⁇ m, 7.5 ⁇ m
  • the cross-sectional structure near the surface is shown. It was confirmed that the surface became smoother as the average particle size of the particles for injection became smaller.
  • FIG. 5 plots the Ra in the gun movement parallel direction of the cermet film against the average particle diameter of each spray particle.
  • a white circle represents a cermet film by WS method
  • a black circle represents a cermet film by HVOF method (WC particle size: 2 ⁇ m)
  • a black triangle represents a cermet film by HVOF method (WC particle size: 0.2 ⁇ m).
  • the surface roughness decreases dramatically as the average particle size of the particles for injection decreases.
  • the order of roughness is 1 to 6 ⁇ m, which is sufficiently larger than the WC particle diameter of 0.2 ⁇ m of the spray particles constituting the film.
  • the flame temperature is controlled and the spray particles are adhered without melting, so even spray particles with D50 ⁇ 20 ⁇ m can be formed without spitting. A very smooth film of Ra ⁇ 1.5 ⁇ m can be obtained.
  • Example 3 Using WC-12 mass% Co injection particles composed of powder WC for hard phase and powder Co for binder phase, carbon steel (JIS SS400) is used as a base material, and WC-Co is obtained by WS method or HVOF method. A film (cermet film) was prepared. Two types of particles having a particle size of 5 to 20 ⁇ m and 15 to 45 ⁇ m were used as the particles for injection.
  • FIG. 6 shows the surface roughness Ra (centerline average roughness) and the cross-sectional hardness (Vickers hardness, Hv) of the cermet film.
  • a cermet film having a hardness (1350 to 1650 Hv) could be produced by using fine injection particles in the WS method.
  • This cermet film has a Vickers hardness of 50% or more of the original Vickers hardness of the hard reinforcing phase powder.
  • a cermet film having a smoother surface such that Ra of the cermet film was 3.0 or less, 2.5 or less, 2.0 or less, or 1.5 or less could be produced.
  • Example 4 Using WC-12 mass% Co injection particles composed of powder WC for hard phase and powder Co for binder phase, carbon steel (JIS SS400, shape: 100 ⁇ 50 ⁇ 5 t mm) is used as a base material, and by WS method, A WC-Co film (cermet film) was prepared. The surface roughness of the cermet film is measured in the direction parallel to the movement of the gun (longitudinal direction of substrate, x direction) and the direction perpendicular to it (y direction) every time a film is formed on the substrate with a thickness of 50-60 ⁇ m. We evaluated the transition of the length. The injection particles used were obtained by agglomerating the hard reinforcing phase powder and the binder phase powder, and were obtained in the same manner as in Example 1.
  • FIG. 7A shows the result of measuring the surface roughness of the cermet film in the x direction
  • FIG. 7B shows the result of measuring the surface roughness of the cermet film in the y direction
  • 7A and 7B also show the surface roughness of the surface of the base material after blasting (base material before film formation).
  • the horizontal axis indicates the measurement distance
  • the left vertical axis indicates the surface profile
  • the right vertical axis indicates the film thickness.
  • FIG. 8 shows the surface roughness Ra (centerline average roughness) of the base material after blasting and the surface roughness Ra (center of the cermet film measured each time the film is formed on the base material with a thickness of 50 to 60 ⁇ m. Line average roughness) is plotted.
  • a black circle represents the surface roughness in the x direction
  • a white circle represents the surface roughness in the y direction.
  • a cermet film having an Ra of 3.0 or less is produced. It was confirmed that Ra is minimized when the thickness of the cermet film is about 100 to 200 ⁇ m, and that Ra increases gradually as the film thickness increases.
  • the cermet film having a film thickness of 100 ⁇ m or more which is formed every 50 to 60 ⁇ m thickness is compared with the cermet film having a film thickness of 100 ⁇ m or more formed by continuous thermal spraying. It was also confirmed that becomes larger.

Abstract

 本発明は、硬質強化相用粉末の持つ硬さをさらに生かすことができたサーメット皮膜とそれを形成する噴射用粒子を提供することを目的とする。 サーメット皮膜は、硬質強化相と結合相とからなる基材表面に形成されたサーメット皮膜であって、そのビッカース硬さが、硬質強化相用粉末が有する硬さの50%以上100%未満であること、また、その表面粗さ(中心線平均粗さRa)が3.0未満であり、前記サーメット皮膜において、硬質強化相用粉末と結合相用粉末とが凝集された噴射用粒子を加熱して超音速で基材に吹き付けられて前記硬質強化相用粉末が前記結合相用粉末により一体化されて形成されたものであることを特徴とする手段を用いた。

Description

サーメット皮膜とそれを形成する噴射用粒子、サーメット皮膜形成方法、皮膜形成品
 本発明は、硬質強化相用粉末と結合相用粉末とを有する噴射用粒子により形成された、硬質強化相と結合相とからなるサーメット皮膜とそれを形成する噴射用粒子、サーメット皮膜形成方法、皮膜形成品に関する。
 特許文献1に示されるように、硬質強化相と結合相とを有する噴射用粒子を加熱して超音速で基材に吹き付けることにより、基材表面にサーメット皮膜を構成することは既に公知である。
 当該公知発明において、このようなサーメット皮膜が、高いビッカース硬度を有することについて明らかにされている。
 しかし、当該ビッカース硬度は、前記噴射用粒子の硬質強化相の持つ硬度からすれば遥かに劣るものであり、その粒子の特性を十分に生かしているとはいえないものであった。
特開2008-69377号公報
 本発明は、このような実情に鑑み、硬質強化相用粉末の持つ硬さをさらに生かすことができたサーメット皮膜とそれを形成する噴射用粒子、サーメット皮膜形成方法、皮膜形成品を提供することを目的とする。
 本発明のサーメット皮膜は、サーメット皮膜の硬質強化相を形成する硬質強化相用粉末としてのセラミック粉末と、サーメット皮膜の結合相を形成する結合相用粉末としての金属粉末と、を有する噴射用粒子の基材への衝突により前記硬質強化相と結合相とからなる基材表面に形成されたサーメット皮膜であって、前記サーメット皮膜のビッカース硬さが、前記硬質強化相用粉末が有するビッカース硬さの50%以上100%未満であることを特徴とする。
 このサーメット皮膜において、その表面粗さ(中心線平均粗さRa)が3.0未満であることが好ましい。
 また、このサーメット皮膜において、前記噴射用粒子は、硬質強化相用粉末と結合相用粉末とが凝集された粒子であり、前記サーメット皮膜は、前記噴射用粒子を加熱して超音速で基材に吹き付けられて前記硬質強化相用粉末と前記結合相用粉末とが一体化されて形成されたものであることを特徴とする。
 さらにまたこのサーメット皮膜において、前記硬質強化相用粉末は、WC,Cr,VC,NbC,TaC,TiC,ZrC,HfC,SiC,およびBCから選ばれる1種以上の炭化物系セラミックス、または、ダイヤモンド、TiN、AlN、HfB、ZrB、TaBおよびTiBから選ばれる1種以上の非炭化物系セラミックスであることが好ましい。
 また、このサーメット皮膜において、前記結合相用粉末は、Ni,Cr,Co,Ti,AlおよびFeから選ばれる1種以上の金属またはこれらの合金であることが好ましい。
 本発明の噴射用粒子は、上記いずれかのサーメット皮膜を形成する為の硬質強化相用粉末と結合相用粉末とを有する噴射用粒子であって、前記結合相用粉末が噴射用粒子全体の25質量%以下8質量%以上含有されていることを特徴とする。
 この噴射用粒子において、硬質強化相用粉末と結合相用粉末とが凝集されていることが好ましい。
 本発明の皮膜形成品は、上記いずれかのサーメット皮膜が表面に形成されている基材を有することを特徴とする。
 また、本発明のサーメット皮膜形成方法は、上記いずれかのサーメット皮膜の形成方法であって、サーメット皮膜の硬質強化相を形成する硬質強化相用粉末としてのセラミック粉末と、サーメット皮膜の結合相を形成する結合相用粉末としての金属粉末と、を有する噴射用粒子を加熱して超音速で基材へ衝突させて硬質強化相と結合相とからなるサーメット皮膜を成膜することを特徴とする。
 このサーメット皮膜形成方法において、前記結合相用粉末を構成する金属成分の軟化温度以上かつ融点未満の温度に前記噴射用粒子を加熱して前記基材へ衝突させることが好ましい。
 また、このサーメット皮膜形成方法において、前記噴射用粒子は、硬質強化相用粉末と結合相用粉末とが凝集された粒子であることが好ましい。
 本発明のサーメット皮膜は、硬質強化相用粉末本来の硬さを生かすことができるようになったもので、前記特許文献1に示すものに比べ倍程度の硬さを示すのみならず、その表面も極めて平坦なものであった。具体的には、サーメット皮膜の表面粗さ(中心線平均粗さRa)を3.0未満とすることができる。これは、噴射用粒子の粒子径を特許文献1に示したものに比して微小化することによりサーメット皮膜のビッカース硬度が大きくなるという結果を得たことによる。当該結果は、噴射用粒子の加熱時、溶融による変質の影響が懸念されるなかでの意外な結果であった。
 これによりサーメット皮膜またはその皮膜形成品は広範な実用性を得られるのみならず、その信頼性をも向上することができた。
本発明に用いたスプレーガンの断面を示す模式断面図である。 噴射用粒子の写真。 サーメット皮膜の写真。 実施例2において、ウォームスプレー法で作製したサーメット皮膜の断面写真である。 実施例2において作製したサーメット皮膜の表面粗さを、各噴射用粒子の平均粒径に対してプロットした図である。 実施例3において作製したサーメット皮膜の、表面粗さRaと断面硬さ(Hv)との関係を示す図である。 実施例4において作製したサーメット皮膜の表面粗さを測定した結果である。(a)はX方向、(b)は直交するY方向の測定データである。 実施例4において作製したサーメット皮膜の表面粗さRa(中心線平均粗さ)をプロットした図である。
 本発明は上記の通りの特徴をもつものであるが、以下にその実施の形態について説明する。
 図1はウォームスプレー法でサーメット皮膜を形成するために使用されるウォームスプレーガンを模式的に例示した断面図である。このウォームスプレーガンは、燃料注入口(1)、酸素ガス注入口(2)および点火プラグ(3)を備えた燃焼室(9)と、超音速ノズル(11)とを有している。燃焼室(9)と超音速ノズル(11)との間には、窒素ガスなどの不活性ガス注入口(5)を備えた混合室(10)が設けられている。この混合室(10)では、燃焼室(9)にて生成された燃焼炎に不活性ガス注入口(5)から供給される室温の不活性ガスを混合し、超音速ノズル(11)に達するガス流の温度と速度が制御されるようになっている。
 ノズル(11)の先端部には噴射用粒子(8)の原料供給口(6)が設けられており、その先にバレル(12)が結合されている。この燃焼室(9)、混合室(10)、ノズル(11)、およびバレル(12)は冷却水(4)(7)によって冷却される。
 噴射用粒子(8)は、サーメット皮膜(13)の硬質強化相を形成する硬質強化相用粉末としてのセラミック粉末と、サーメット皮膜(13)の結合相を形成する結合相用粉末としての金属粉末と、で構成されている。原料供給口(6)から投入された噴射用粒子(8)は、混合室(10)において温度制御された燃焼炎が超音速ノズル(11)にて膨張・加速されて発生する高速ガス流により、特定の温度、速度範囲へと加熱、加速される。加熱および加速された噴射用粒子(8)が基材(14)に衝突して堆積することにより、硬質強化相と結合相とからなるサーメット皮膜(13)が基材(14)表面に形成される。
 サーメット皮膜の形成においては、硬質強化相の金属相(結合相)内への溶解によって脆性な合金相が形成したり脱炭反応によって硬質強化相の組成変化が生じたりするなどの課題を抱えており、その解決には結合相用粉末の金属の融点以下の温度に噴射用粒子の温度を保持することが鍵となる。なお、上記結合相用粉末を構成する金属成分の融点は1455~1857℃である。
 ウォームスプレー法では、混合室(10)での窒素等の不活性ガス送給量を制御することにより、噴射用粒子(8)を、結合相用粉末を構成する金属成分の軟化温度以上かつ融点未満の温度に加熱するとともに、マッハ1以上の速度へと加速することが可能である。本発明では、噴射用粒子(8)を、結合相用粉末を構成する金属成分の軟化温度以上かつ融点未満の温度に加熱するとともにマッハ1以上の超音速で加速することにより、噴射用粒子(8)の飛行中、噴射用粒子(8)の溶解反応や分解反応を著しく低減させることができる。その結果、基材(14)上に、硬質強化相の結合相への溶解や脱炭による分解を抑えた緻密なサーメット皮膜(13)を作製することが可能となる。
 さらに、本発明においては、より良質なサーメット皮膜形成のために、噴射用粒子を構成する硬質強化相用粉末の一般的組成として、WC,Cr,VC,NbC,TaC,TiC,ZrC,HfC,SiC,BCなどの炭化物系セラミックスから選ばれる1種以上の炭化物、もしくはダイヤモンド、TiN、AlN、HfB、ZrB、TaBおよびTiBなどの非炭化物系セラミックスから選ばれる1種以上の化合物が考慮される。また噴射用粒子を構成する結合相用粉末として、Ni,Cr,Co,Ti,AlおよびFeのうちから選ばれる1種以上の金属またはこれらの合金が考慮される。
 そして、本発明においては、より良質なサーメット皮膜形成および製膜された部材作成のための条件として、基材予熱温度を100~500℃の範囲とすることが考慮される。
 基材となる各種材料の溶融や組織変化および酸化を防ぐために基材予熱温度は500℃以下に保持されることが好適である。また、皮膜の密着過程において基材表面を活性化させるために基材予熱温度は100℃以上であることが望ましい。
 前記硬質強化相用粉末の粒径は、0.1~2.0μm、好ましくは0.1~0.3μmとするのが望ましい。
 当該粉末の粒径が過大であると、サーメット皮膜において硬質強化相の大きさが表面粗さに与える影響が大きくなり十分な平滑性が得られないことや、体積に対する表面積比の低下から表面エネルギーが低下し、より密着しづらくリバウンドしやすいといった問題がある。
 また硬質強化相用粉末の粒径が過小であると、ハンドリングが非常に困難になり、また価格も高いという問題がある。
 一方、結合相用粉末については、粒径が2μm以下であることが望ましい。
 以上の「粒径」は、フィッシャー法(FSSS, Fisher Sub Sieve Sizer)あるいは電子顕微鏡による観察により評価される。フィッシャー法は、所定量の粉末を試験管などに充填後、気体を透過して、流速と圧力降下を測定することにより、粉末の比表面積を求め、粒子径を評価する手法である。
 前記噴射用粒子は図2示すような硬質強化相用粉末と結合相用粉末とが凝集されたものであることが好ましい。図中、白い角張った粒子が硬質強化相用粒子であり、濃いグレーで示す部位が結合相用粒子である。このように凝集させることにより、一つの噴射用粒子を形成している。このものは、例えば、液中に硬質強化相用粉末と結合相用粉末とが混合分散されたスラリーをガス噴霧法によって生成した球状の顆粒として得られる。そして、これを仮焼結後に解砕、ふるい分けによって所定の粒度分布にすることができる。
 前記噴射用粒子の粒子径は、従来公知の高速フレーム溶射法で使用される噴射用粒子と変わりない大きさであれば実施可能であるが、ウォームスプレー法ではさらに細かい粉末までも実施可能である。例えば平均粒子径が5~45μm、好ましくは5~30μm、より好ましくは5~20μmとするのが望ましい。
 「平均粒子径」は、レーザ回折・散乱法により評価される。この手法は、粒子にレーザを照射し、その散乱光の光強度分布から粒子径を特定する手法である。
 サーメット皮膜の表面粗さは付着粒子サイズの大きさに依存する。このため噴射用粒子の粒子径が過大であると、サーメット皮膜の表面粗さが粗くなるという問題がある。また、粒子径が過大であると、十分な速度が得られず付着効率や気孔率が低下したり、粒子内温度の不均一性により皮膜内組織のばらつきが大きくなり均質な皮膜とならないといった問題もある。
 噴射用粒子の粒子径が過小であると基材に衝突するジェット流の乱れに大きく影響されるようになり十分な付着効率が得られないという問題がある。また、粒子径が過小であることにより粒子温度が上がりすぎ、脱炭や硬質強化相の結合相への溶け込みなどによる特性劣化、噴射用粒子の凝着により長時間一定速度での粒子供給が困難であるといった問題もある。また、高速フレーム溶射法では溶融状態の粉末粒子が溶射ガン内に付着・堆積して粗大粒子として吐き出されるスピッティングと呼ばれる現象が生じやすくなり、皮膜の品質に重大な悪影響を及ぼす。ウォームスプレー法では、粒子が溶融しないのでこの問題はほとんど生じない。
 また、硬質強化相用粉末と結合相用粉末とからなる噴射用粒子において、結合相用粉末の相対分量は、用途によって望ましい割合は変わるが、例えば、噴射用粒子全体中、8質量%以上25質量%以下の範囲で適宜設定することができる。具体的には、結合相用粉末の相対分量は、噴射用粒子全体中、8質量%以上10質量%以下、11質量%以上13質量%以下、16質量%以上18質量%以下、23質量%以上25質量%以下と設定することができる。
 結合相用粉末が過剰であると結合相が柔らかいために、サーメット皮膜において十分な硬さが得られないという問題がある。
 また結合相用粉末が過少であると硬質強化相同士の密着が十分でなく、サーメット皮膜においてやはり十分な硬さが得られないことや、付着効率の低下を引き起こすという問題がある。
 本発明のサーメット皮膜は、以下の実施例に示すように、硬質強化相用粉末と結合相用粉末とを有する噴射用粒子を用いることで、硬質強化相用粉末が有する本来のビッカース硬度の50%以上、60%以上、65%以上,さらには70%以上のビッカース硬度を有するものを得ることができる。硬質強化相用粉末および結合相用粉末の組成が同じでありかつ結合相用粉末の含有量が同じである噴射用粒子を用いてウォームスプレー法および高速フレーム溶射法で作製したサーメット皮膜を比較すると、ウォームスプレー法で作製したサーメット皮膜の方がより高硬度のものを作製できる。噴射用粒子における結合相用粉末の含有量8質量%以上25質量%以下に関して、この範囲内では結合相用粉末の含有量が少ないほどサーメット皮膜のビッカース硬さが高くなる傾向にある。
 また、特に平均粒子径5~20μmの噴射用粒子を用いてウォームスプレー法で作製したサーメット皮膜は、その表面粗さRa(中心線平均粗さ)を3.0以下、2.5以下、2.0以下、さらには1.5以下とすることができる。
 また、サーメット皮膜厚さの下限は、100μm以上、好ましくは150μm以上、より好ましくは200μm以上とするのが好ましい。上限は、800μm以下、好ましくは700μm以下、より好ましくは600μm以下とするのが望ましい。
 以下に実施例を示し、さらに詳しく例示説明する。以下の例によって発明が限定されることはない。
<実施例1> 本願発明のサーメット皮膜は、表1に示すウォームスプレー法(WS)を用いて基材表面に生成されたものを例示する。比較例として、高速フレーム溶射法(HVOF)を用いて生成されたものも例示してある。
表1における燃酸比とは燃焼室へ供給する灯油と酸素の完全燃焼における化学量論比を1.0としたときの相対比を表したものであり、酸素過剰の場合、1.0以下となる。
 また、燃焼圧は燃焼室内における値を示したものである。なお表1の条件にて皮膜を作製するに際し、基材として炭素鋼JIS SS400を使用し、スプレーするサーメット粒子(噴射用粒子)として硬質相用粉末WCと結合相用粉末CoとからなるWC-12~25重量%Coを使用した。前記硬質相用粉末の粒径と相互割合は、表1に示す通りである。噴射用粒子は、硬質強化相用粉末と結合相用粉末とが凝集されたものであり、液中に硬質強化相用粉末と結合相用粉末とが混合分散されたスラリーをガス噴霧法によって顆粒とし、これを仮焼結した後に解砕、ふるい分けによって得た。
 このようにして表1に示すサーメット皮膜を生成し、その特性を計測した結果を表1に示す。また、図3にはWS3の条件にて得られた皮膜の断面写真を示す。全面に存在している白いグレーの粒子が、硬質層用粉末WCであり、皮膜中に高密度で緻密に分散している。
Figure JPOXMLDOC01-appb-T000001
 表1において、硬質強化相用粉末と結合相用粉末とを有する噴射用粒子を用いてウォームスプレー法で作製することで、硬質強化相用粉末が有する本来のビッカース硬度の50%以上、60%以上、65%以上,さらには70%以上のビッカース硬度を有するものを得ることができた。
 また、特に平均粒子径5~20μmの噴射用粒子を用いてウォームスプレー法で作製したサーメット皮膜は、その表面粗さを3.0以下、2.5以下、2.0以下、さらには1.5以下とすることができた。
<実施例2> 基材として炭素鋼(JIS SS400、形状:100x50x5mm)を使用し、スプレーするサーメット粒子(噴射用粒子)として硬質相用粉末WCと結合相用粉末Coとからなる粒子を使用し、WS法またはHVOF法により、WC-Co皮膜(サーメット皮膜)を作製した。膜厚は約300μmであった。
 表2に使用した噴射用粒子の種類、および、サーメット皮膜を作製した成膜法の種類を示し、表3に成膜条件を示す。噴射用粒子は、硬質強化相用粉末と結合相用粉末とが凝集されたものであり、実施例1と同様にして得たものである。
Figure JPOXMLDOC01-appb-T000002
WC:噴射用粒子に含まれる硬質強化相用粉末(WC)の粒径(μm)
D50:噴射用粒子の平均直径(μm)
Co:噴射用粒子に含まれる結合相用粉末(Co)の含有量(質量%)
 得られたサーメット皮膜の表面粗さを、接触式粗さ計(SJ-201R,Mitsutoyo)を用いて評価した。測定は、ガンの移動平行方向(試料長手方向)に対して行った。測定距離は12.5mmであり、パラメータとして中心線平均粗さRaを指標として用いた。また、試料切断後、樹脂埋め、鏡面研磨を行い、走査型顕微鏡(JEOL 6500)にて、断面組織の観察を行った。
 図4には、Co量12質量%の組成の、異なる平均粒径(D50=28.5μm、15.9μm、7.5μm)を有する噴射用粒子を用いてWS法によって作製したサーメット皮膜について、表面近傍の断面組織を示している。噴射用粒子の平均粒径が小さくなるにつれて、表面がより平滑になっていることが確認できた。
 図5には、サーメット皮膜のガン移動平行方向のRaを、各噴射用粒子の平均粒径に対してプロットしている。白丸がWS法によるサーメット皮膜、黒丸がHVOF法によるサーメット皮膜(WC粒径:2μm)、黒三角がHVOF法によるサーメット皮膜(WC粒径:0.2μm)を表している。
 WS法、HVOF法いずれにおいても、噴射用粒子の平均粒径が小さくなるにつれて、表面粗さが劇的に小さくなっていくことがわかる。また、WS法によるサーメット皮膜の場合、粗さのオーダーは1~6μmであり、皮膜を構成する噴射用粒子のWC粒径0.2μmと比較すると十分に大きい。
 これらのことから、表面粗さは、一次粒径よりも二次粒径の影響が強く受けていると考えられる。このことは、図5中、HVOF法によるサーメット皮膜において、一次粒径0.2μmと2μmの粉末で表面粗さにほとんど差が認められないこととも一致している。
 図の傾向から、HVOF法によるサーメット皮膜の場合でも、平均粒径がより小さい噴射用粒子を用いれば、より平滑な皮膜が得られるものと期待される。ただ、HVOF法において、平均粒径が小さすぎる噴射用粒子を用いた場合、実施例1の実験番号HVOF3のように、スピッティングにより成膜できない可能性が高い。
 一方、WS法の場合、フレーム温度を制御し、噴射用粒子を溶融させずに密着させるため、D50<20μmといった噴射用粒子であってもスピッティングさせずに成膜することができており、Ra<1.5μmという非常に平滑な皮膜が得られる。
 同程度の大きさの噴射用粒子(D50=26~29μm)に対しては、WS法によるサーメット皮膜のRaとHVOF法によるサーメット皮膜のRaとを比較した場合、噴射用粒子を溶融し、より扁平しやすいHVOF法によって作製したサーメット皮膜の方が高い平滑性を示した。
<実施例3>
 硬質相用粉末WCと結合相用粉末CoとからなるWC-12質量%Co噴射用粒子を使用し、基材として炭素鋼(JIS SS400)を使用し、WS法またはHVOF法により、WC-Co皮膜(サーメット皮膜)を作製した。噴射用粒子は、粒径5~20μmおよび15~45のμmの二種類の粒子を使用した。これらの粒子は、硬質強化相用粉末と結合相用粉末とが凝集されたものであり、実施例1と同様にして得た。図6に、表面粗さRa(中心線平均粗さ)とサーメット皮膜の断面硬さ(ビッカース硬度、Hv)を示す。
 特にWS法において微小な噴射用粒子を用いることにより、硬度(1350~1650Hv)を有するサーメット皮膜を作製することができた。このサーメット皮膜は、硬質強化相用粉末が有する本来のビッカース硬度の50%以上のビッカース硬度を有する。またサーメット皮膜のRaが、3.0以下、2.5以下、2.0以下、さらには1.5以下であるなど、表面がより平滑なサーメット皮膜を作製することができた。
<実施例4>
 硬質相用粉末WCと結合相用粉末CoとからなるWC-12質量%Co噴射用粒子を使用し、基材として炭素鋼(JIS SS400、形状:100x50x5mm)を使用し、WS法により、WC-Co皮膜(サーメット皮膜)を作製した。基材上に50~60μm厚で成膜する毎にサーメット皮膜の表面粗さをガンの移動平行方向(基材の長手方向、x方向)およびその直交方向(y方向)に測定し、表面粗さの推移について評価した。使用した噴射用粒子は、硬質強化相用粉末と結合相用粉末とが凝集されたものであり、実施例1と同様にして得たものである。
 図7(a)はサーメット皮膜の表面粗さをx方向に測定した結果であり、図7(b)はサーメット皮膜の表面粗さをy方向に測定した結果である。また図7(a)(b)には、ブラスト後の基材(成膜前の基材)表面の表面粗さも示している。図7(a)(b)の横軸は測定距離を示しており、左縦軸はSurface profileを示しており、右縦軸は成膜の厚さを示している。
 図8には、ブラスト後の基材の表面粗さRa(中心線平均粗さ)、および、基材上に50~60μm厚で成膜する毎に計測したサーメット皮膜の表面粗さRa(中心線平均粗さ)をプロットしている。黒丸がx方向の表面粗さ、白丸がy方向の表面粗さを表している。
 図8によれば、3.0以下のRaを有するサーメット皮膜が作製されている。サーメット皮膜の膜厚が100~200μm程度においてRaが最小となり、膜厚が増大するにつれてRaも徐々に増加することが確認できた。また、50~60μm厚毎に成膜して最終的に100μm以上の膜厚になるサーメット皮膜は、連続的に溶射して成膜した100μm以上の膜厚を有するサーメット皮膜と比較して、Raが大きくなることも確認できた。
1   燃料注入口
2   酸素ガス注入口
3   点火プラグ
4,7 冷却水
5   不活性ガス注入口
6   原料供給口
8   噴射用粒子
9   燃焼室
10  混合室
11  超音速ノズル
12  バレル
13  サーメット皮膜
14  基材

Claims (11)

  1.  サーメット皮膜の硬質強化相を形成する硬質強化相用粉末としてのセラミック粉末と、サーメット皮膜の結合相を形成する結合相用粉末としての金属粉末と、を有する噴射用粒子の基材への衝突により前記基材表面に形成された硬質強化相と結合相とからなるサーメット皮膜であって、前記サーメット皮膜のビッカース硬さが、前記硬質強化相用粉末が有するビッカース硬さの50%以上100%未満であることを特徴とするサーメット皮膜。
  2.  請求項1に記載のサーメット皮膜において、その表面粗さ(中心線平均粗さRa)が3.0未満であることを特徴とするサーメット皮膜。
  3.  請求項1又は2に記載のサーメット皮膜において、前記噴射用粒子は、硬質強化相用粉末と結合相用粉末とが凝集された粒子であり、前記サーメット皮膜は、前記噴射用粒子を加熱して超音速で基材に吹き付けられて前記硬質強化相用粉末と前記結合相用粉末とが一体化されて形成されたものであることを特徴とするサーメット皮膜。
  4.  前記硬質強化相用粉末は、WC,Cr,VC,NbC,TaC,TiC,ZrC,HfC,SiC,およびBCから選ばれる1種以上の炭化物系セラミックス、または、ダイヤモンド、TiN、AlN、HfB、ZrB、TaBおよびTiBから選ばれる1種以上の非炭化物系セラミックスであることを特徴とする請求項1から3のいずれかに記載のサーメット皮膜。
  5.  前記結合相用粉末は、Ni,Cr,Co,Ti,AlおよびFeから選ばれる1種以上の金属またはこれらの合金であることを特徴とする請求項1から3のいずれかに記載のサーメット皮膜。
  6.  請求項1から5のいずれかに記載のサーメット皮膜を形成する為の硬質強化相用粉末と結合相用粉末とを有する噴射用粒子であって、前記結合相用粉末が噴射用粒子全体の25質量%以下8質量%以上含有されていることを特徴とする噴射用粒子。
  7.  硬質強化相用粉末と結合相用粉末とが凝集されていることを特徴とする請求項6に記載の噴射用粒子。
  8.  請求項1から5のいずれかに記載のサーメット皮膜が表面に形成されている基材を有することを特徴とする皮膜形成品。
  9.  請求項1から5のいずれかに記載のサーメット皮膜の形成方法であって、サーメット皮膜の硬質強化相を形成する硬質強化相用粉末としてのセラミック粉末と、サーメット皮膜の結合相を形成する結合相用粉末としての金属粉末と、を有する噴射用粒子を加熱して超音速で基材へ衝突させて硬質強化相と結合相とからなるサーメット皮膜を成膜することを特徴とするサーメット皮膜形成方法。
  10.  前記結合相用粉末を構成する金属成分の軟化温度以上かつ融点未満の温度に前記噴射用粒子を加熱して前記基材へ衝突させることを特徴とする請求項9に記載のサーメット皮膜形成方法。
  11.  前記噴射用粒子は、硬質強化相用粉末と結合相用粉末とが凝集された粒子であることを特徴とする請求項9または10に記載のサーメット皮膜形成方法。
PCT/JP2010/071185 2009-11-27 2010-11-26 サーメット皮膜とそれを形成する噴射用粒子、サーメット皮膜形成方法、皮膜形成品 WO2011065512A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011543337A JP5769255B2 (ja) 2009-11-27 2010-11-26 サーメット皮膜とそれを形成する噴射用粒子、サーメット皮膜形成方法、皮膜形成品
US13/512,080 US20120308776A1 (en) 2009-11-27 2010-11-26 Cermet coating, spraying particles for forming same, method for forming cermet coating, and coated article
EP10833357.6A EP2505689A4 (en) 2009-11-27 2010-11-26 CERMET COATING, SPRAY PARTICLES FOR FORMING THE SAME, METHOD FOR MANUFACTURING CERMET COATING AND ARTICLE HAVING COATING

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009270280 2009-11-27
JP2009-270280 2009-11-27

Publications (1)

Publication Number Publication Date
WO2011065512A1 true WO2011065512A1 (ja) 2011-06-03

Family

ID=44066617

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/071185 WO2011065512A1 (ja) 2009-11-27 2010-11-26 サーメット皮膜とそれを形成する噴射用粒子、サーメット皮膜形成方法、皮膜形成品

Country Status (4)

Country Link
US (1) US20120308776A1 (ja)
EP (1) EP2505689A4 (ja)
JP (1) JP5769255B2 (ja)
WO (1) WO2011065512A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013137233A1 (ja) 2012-03-12 2013-09-19 独立行政法人物質・材料研究機構 サーメット皮膜及び該皮膜を有する被覆金属体、サーメット皮膜の製造方法、及び被覆金属体の製造方法
CN115121789A (zh) * 2022-08-03 2022-09-30 四川苏克流体控制设备有限公司 一种抗热震性高耐磨涂层材料及其制备方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104789961B (zh) * 2015-04-28 2017-03-15 山东科技大学 一种带有多尺度强化相涂层的耐磨斗齿及等离子熔覆方法
KR101655121B1 (ko) * 2016-02-24 2016-09-22 주식회사 썬모아 확대된 방열면적을 갖는 난방용 금속성기재 및 그의 제조방법
CN111809134A (zh) * 2020-07-23 2020-10-23 矿冶科技集团有限公司 一种新型碳化钛-铁镍铬硅热喷涂粉末及其制备方法
CN113667974B (zh) * 2021-09-01 2022-06-03 燕山大学 钛合金表面耐磨金属-多元陶瓷复合改性涂层的制备方法
CN117070821B (zh) * 2023-08-16 2024-03-29 中国科学院兰州化学物理研究所 一种WC-Co金属陶瓷颗粒梯度增强铜基耐磨涂层及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10110252A (ja) * 1996-10-04 1998-04-28 Tocalo Co Ltd 電気めっき用コンダクターロールおよびその製造方法
JP2006176818A (ja) * 2004-12-21 2006-07-06 Fujimi Inc 溶射用粉末
JP2006299396A (ja) * 2005-04-19 2006-11-02 Seoul National Univ Industry Foundation 固溶体粉末、この固溶体粉末の製造方法、この固溶体粉末を用いるセラミック、このセラミックの製造方法、この固溶体粉末を含むサーメット粉末、このサーメット粉末の製造方法、このサーメット粉末を用いるサーメット、及びこのサーメットの製造方法。
JP2008069377A (ja) 2006-09-12 2008-03-27 National Institute For Materials Science サーメット皮膜形成方法とそれにより得られたサーメット被覆部材

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0714525B2 (ja) * 1987-09-30 1995-02-22 ト−カロ株式会社 軟質非鉄金属板搬送用ロール
JP3952252B2 (ja) * 2001-01-25 2007-08-01 株式会社フジミインコーポレーテッド 溶射用粉末およびそれを用いた高速フレーム溶射方法
KR100515608B1 (ko) * 2003-12-24 2005-09-16 재단법인 포항산업과학연구원 분말 예열 장치가 구비된 저온 스프레이 장치
WO2006034054A1 (en) * 2004-09-16 2006-03-30 Belashchenko Vladimir E Deposition system, method and materials for composite coatings
KR100802328B1 (ko) * 2005-04-07 2008-02-13 주식회사 솔믹스 내마모성 금속기지 복합체 코팅층 형성방법 및 이를이용하여 제조된 코팅층
US7892652B2 (en) * 2007-03-13 2011-02-22 United Technologies Corporation Low stress metallic based coating

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10110252A (ja) * 1996-10-04 1998-04-28 Tocalo Co Ltd 電気めっき用コンダクターロールおよびその製造方法
JP2006176818A (ja) * 2004-12-21 2006-07-06 Fujimi Inc 溶射用粉末
JP2006299396A (ja) * 2005-04-19 2006-11-02 Seoul National Univ Industry Foundation 固溶体粉末、この固溶体粉末の製造方法、この固溶体粉末を用いるセラミック、このセラミックの製造方法、この固溶体粉末を含むサーメット粉末、このサーメット粉末の製造方法、このサーメット粉末を用いるサーメット、及びこのサーメットの製造方法。
JP2008069377A (ja) 2006-09-12 2008-03-27 National Institute For Materials Science サーメット皮膜形成方法とそれにより得られたサーメット被覆部材

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013137233A1 (ja) 2012-03-12 2013-09-19 独立行政法人物質・材料研究機構 サーメット皮膜及び該皮膜を有する被覆金属体、サーメット皮膜の製造方法、及び被覆金属体の製造方法
US9403342B2 (en) 2012-03-12 2016-08-02 National Institute For Materials Science Cermet coating and coated metal body having the cermet coating, method of producing cermet coating, and method of producing coated metal body
CN115121789A (zh) * 2022-08-03 2022-09-30 四川苏克流体控制设备有限公司 一种抗热震性高耐磨涂层材料及其制备方法

Also Published As

Publication number Publication date
EP2505689A1 (en) 2012-10-03
US20120308776A1 (en) 2012-12-06
EP2505689A4 (en) 2015-09-02
JP5769255B2 (ja) 2015-08-26
JPWO2011065512A1 (ja) 2013-04-18

Similar Documents

Publication Publication Date Title
JP5769255B2 (ja) サーメット皮膜とそれを形成する噴射用粒子、サーメット皮膜形成方法、皮膜形成品
US6641917B2 (en) Spray powder and method for its production
US7670406B2 (en) Deposition system, method and materials for composite coatings
JP5013364B2 (ja) サーメット皮膜形成方法とそれにより得られたサーメット被覆部材
JP3653380B2 (ja) 炭化クロム−ニッケルクロム微粒化粉の製造方法
EP2390570B1 (en) Combustion cold spray
TWI415972B (zh) Spray powder and spray spray film
JP4359442B2 (ja) 溶射用粉末及びそれを用いた溶射皮膜の形成方法
US9394598B2 (en) Powder for thermal spraying and process for formation of sprayed coating
CN104745998A (zh) 金属粉末
WO2008076953A2 (en) Amorphous-nanocrystalline-microcrystalline coatings
Li et al. Effect of particle state on the adhesive strength of HVOF sprayed metallic coating
CN1637163B (zh) 热喷涂粉末
Li et al. Effect of solid carbide particle size on deposition behaviour, microstructure and wear performance of HVOF cermet coatings
US20060134343A1 (en) Thermal spraying powder, thermal spraying method, and method for forming thermal spray coating
JP2008231527A (ja) コールドスプレー用粉末及び皮膜形成方法
US20080113105A1 (en) Coating Formed By Thermal Spraying And Methods For The Formation Thereof
JP6683902B1 (ja) 溶射皮膜の形成方法
CN105296909A (zh) 一种耐锌液腐蚀硼化物及制备金属陶瓷梯度涂层的方法
JP2012112012A (ja) Hvaf溶射用粉末及び溶射皮膜の形成方法
Schwetzke et al. Microstructure and properties of tungsten carbide coatings sprayed with various HVOF spray systems
JP6169566B2 (ja) サーメット被覆材、サーメット被覆材を製造するための合金粉末、およびサーメット被覆材の製造方法
JP3410025B2 (ja) 炭化物サーメット溶射被覆部材およびその部材の製造方法
GB2415708A (en) High velocity oxy-fuel spraying system utilising superfine powder particles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10833357

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011543337

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2010833357

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13512080

Country of ref document: US