WO2011065458A1 - 光学的情報処理装置及び光学的情報処理方法 - Google Patents

光学的情報処理装置及び光学的情報処理方法 Download PDF

Info

Publication number
WO2011065458A1
WO2011065458A1 PCT/JP2010/071084 JP2010071084W WO2011065458A1 WO 2011065458 A1 WO2011065458 A1 WO 2011065458A1 JP 2010071084 W JP2010071084 W JP 2010071084W WO 2011065458 A1 WO2011065458 A1 WO 2011065458A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength
light
optical information
recording medium
information processing
Prior art date
Application number
PCT/JP2010/071084
Other languages
English (en)
French (fr)
Inventor
龍一 片山
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Publication of WO2011065458A1 publication Critical patent/WO2011065458A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/0065Recording, reproducing or erasing by using optical interference patterns, e.g. holograms
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1353Diffractive elements, e.g. holograms or gratings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2222/00Light sources or light beam properties
    • G03H2222/10Spectral composition
    • G03H2222/13Multi-wavelengths wave with discontinuous wavelength ranges

Definitions

  • the present invention relates to an optical information processing apparatus and an optical information processing method that perform at least one of recording information on an optical information recording medium and reproducing information recorded on the optical information recording medium.
  • Non-patent document is a micro-hologram recording / reproducing technique for recording information on an optical information recording medium three-dimensionally by using not only the surface area of the optical information recording medium but also the region in the thickness direction of the optical information recording medium. It is disclosed in Document 1.
  • Non-Patent Document 1 An optical information recording / reproducing apparatus disclosed in Non-Patent Document 1 will be described with reference to FIG.
  • the optical information recording / reproducing apparatus 50 includes a light source 32, a concave lens 33, convex lenses 34a and 34b, beam splitters 35a and 35b, mirrors 36a to 36e, a shutter 37, and a quarter-wave plate. 38a and 38b, objective lenses 39a and 39b, and a photodetector 40.
  • the shutter 37 is controlled to open by a controller or the like (not shown).
  • the light source 32 emits light.
  • the light emitted from the light source 32 passes through the concave lens 33 and the convex lens 34a, is enlarged in diameter, and enters the beam splitter 35a.
  • a part for example, P-polarized light
  • a part for example, S-polarized light
  • the light that has passed through the beam splitter 35a is reflected by the mirror 36a and the mirror 36b, and passes through the beam splitter 35b and the quarter-wave plate 38a.
  • the quarter-wave plate 38a By transmitting through the quarter-wave plate 38a, the light is converted from linearly polarized light to circularly polarized light and transmitted through the objective lens 39a.
  • the objective lens 39 a By passing through the objective lens 39 a, the light is converted from parallel light into convergent light, and is condensed on the recording layer of the optical information recording medium 31.
  • the light reflected by the beam splitter 35a is reflected by the mirror 36c, the mirror 36d, and the mirror 36e, and passes through the shutter 37 and the quarter wavelength plate 38b.
  • the quarter-wave plate 38b By transmitting through the quarter-wave plate 38b, the light is converted from linearly polarized light to circularly polarized light and transmitted through the objective lens 39b.
  • the objective lens 39 b By passing through the objective lens 39 b, the light is converted from parallel light into convergent light and is condensed on the recording layer of the optical information recording medium 31.
  • the light emitted from the light source 32 becomes two lights facing each other, and is condensed at the same position of the recording layer of the optical information recording medium 31. Then, at this position (condensing point), two light beams facing each other interfere with each other to form a minute hologram.
  • the formed hologram represents bit data “1”, and information “1” included in the light emitted from the light source 32 can be recorded.
  • information “0” is recorded on the optical information recording medium 31
  • the light source 32 does not emit light. In this case, no hologram is formed on the recording layer of the optical information recording medium 31, and information “0” is recorded.
  • the optical information recording / reproducing apparatus 50 can move the condensing point not only in the surface direction of the recording layer of the optical information recording medium 31 but also in the thickness direction of the recording layer. Accordingly, holograms can be formed not only on the surface of the recording layer but also in the thickness direction of the recording layer, and information can be recorded three-dimensionally on the optical information recording medium 31.
  • the shutter 37 is controlled to be closed by a controller or the like (not shown).
  • the light source 32 emits light.
  • the light emitted from the light source 32 passes through the concave lens 33 and the convex lens 34a, is enlarged in diameter, and enters the beam splitter 35a.
  • a part for example, P-polarized light
  • a part for example, S-polarized light
  • the light that has passed through the beam splitter 35a is reflected by the mirror 36a and the mirror 36b, and passes through the beam splitter 35b and the quarter-wave plate 38a.
  • the quarter-wave plate 38a By transmitting through the quarter-wave plate 38a, the light is converted from linearly polarized light to circularly polarized light and transmitted through the objective lens 39a.
  • the objective lens 39 a By passing through the objective lens 39 a, the light is converted from parallel light into convergent light, and is condensed on the recording layer of the optical information recording medium 31.
  • the light reflected by the beam splitter 35a is reflected by the mirror 36c, the mirror 36d, and the mirror 36e, but is blocked by the shutter 37 and is not condensed on the recording layer of the optical information recording medium 31.
  • the light emitted from the light source 32 is collected from only one direction in the recording layer of the optical information recording medium 31, and if a hologram is formed at the condensing point, it is reflected by the hologram.
  • the light reflected by the hologram is transmitted through the objective lens 39a in the opposite direction to the above, converted from diverging light into parallel light, and transmitted through the quarter-wave plate 38a.
  • the quarter-wave plate 38a By passing through the quarter-wave plate 38a, the light is converted from circularly polarized light to linearly polarized light and reflected by the beam splitter 35b.
  • the light reflected by the beam splitter 35b passes through the convex lens 34b, is converted from parallel light into convergent light, and is received by the photodetector 40.
  • the reflected light is detected, a hologram is formed and the bit data “1” is reproduced.
  • no reflected light is detected, no hologram is formed and bit data “0” is reproduced.
  • the focal point is not only in the surface direction of the recording layer of the optical information recording medium 31 but also in the thickness direction of the recording layer. Can be moved. As a result, information can be read out not only from the hologram formed on the surface of the recording layer but also from the hologram formed in the thickness direction of the recording layer, and information is reproduced three-dimensionally from the optical information recording medium 31. It can be performed.
  • the information recorded at each recording position of the optical information recording medium is 1-bit data, the recording capacity is limited, and a sufficient recording capacity cannot be obtained. is there.
  • Patent Document 1 discloses wavelength multiplexing recording used for page-type hologram recording.
  • Wavelength multiplexing recording is to form a plurality of holograms (diffraction gratings) at the same wavelength interval at the same position of the recording layer of the optical information recording medium. Thereby, multiple-bit multiple recording / reproduction can be performed at the same position of the recording layer of the optical information recording medium.
  • the interval between wavelengths for forming a plurality of holograms must be set so as not to be affected by the crosstalk indicated by the ratio of the signal level received from another hologram to the signal level received from the hologram to be reproduced. . This is to prevent receiving information recorded on a hologram other than the hologram to be reproduced.
  • the wavelength interval In order to reduce the crosstalk, it is desirable that the wavelength interval is large, but if other conditions are the same, the recording density will be small. On the other hand, if the wavelength interval is reduced, if other conditions are the same, the recording density increases, but crosstalk increases. For this reason, it is desired to increase the recording density while suppressing the crosstalk to an allowable value or less, but the prior art does not disclose a technique for achieving this problem.
  • the present invention provides an optical information processing apparatus and an optical information processing method capable of recording information with high density and reproducing information recorded with high density while suppressing the influence of crosstalk on an optical information recording medium. For the purpose.
  • An optical information processing apparatus includes: An optical information processing apparatus that performs at least one of wavelength multiplexing recording and wavelength multiplexing reproduction on an optical information recording medium, Wavelength changing means for changing the wavelength of light emitted from the light source; Condensing means for condensing the light of the wavelength changed by the wavelength changing means on the optical information recording medium, The wavelength changing unit changes the wavelength of the light emitted from the light source at a wavelength interval determined based on the numerical aperture of the objective lens provided in the light collecting unit.
  • An optical information processing apparatus provides: An optical information processing apparatus that performs at least one of wavelength multiplexing recording and wavelength multiplexing reproduction on an optical information recording medium, Light emitting means for sequentially emitting a plurality of lights each having a different wavelength; Condensing means for condensing the light emitted from the light emitting means on the optical information recording medium; With The light emitting means sequentially emits the plurality of lights whose wavelengths are changed at an interval of wavelengths determined based on the numerical aperture of an objective lens provided in the condensing means.
  • An optical information processing method includes: An optical information processing method for performing at least one of wavelength multiplexing recording and wavelength multiplexing reproduction on an optical information recording medium, A wavelength changing step for changing the wavelength of the light emitted from the light source; A condensing step of condensing the light of the wavelength changed in the wavelength changing step on the optical information recording medium, In the wavelength changing step, the wavelength of the light emitted from the light source is changed at a wavelength interval determined based on the numerical aperture of the objective lens used in the condensing step.
  • An optical information processing method includes: An optical information processing method for performing at least one of wavelength multiplexing recording and wavelength multiplexing reproduction on an optical information recording medium, A light emitting step of sequentially emitting a plurality of lights each having a different wavelength; A condensing step of condensing the light emitted in the light emitting step on the optical information recording medium, In the light emitting step, the plurality of lights whose wavelengths are changed at an interval of wavelengths determined based on the numerical aperture of the objective lens used in the condensing step are sequentially emitted.
  • the present invention it is possible to perform high-density information recording and reproduction of high-density information on an optical information recording medium while suppressing the influence of crosstalk.
  • FIG. 1 is a diagram illustrating an overall configuration of an optical information processing apparatus according to an embodiment of the present invention. It is a figure which shows the structure of the optical information recording medium of FIG. It is a figure which shows the structure of the optical unit of FIG.
  • FIG. 6 is a diagram (No. 1) illustrating an incident optical path when information is recorded on an optical information recording medium in the optical information processing apparatus according to the present embodiment. In the optical information processing apparatus according to the present embodiment, it is a diagram (part 2) showing an incident optical path when information is recorded on the optical information recording medium.
  • FIG. 10 is a diagram (No. 3) illustrating an incident optical path when information is recorded on an optical information recording medium in the optical information processing apparatus according to the embodiment.
  • FIG. 6 is a diagram (No.
  • FIG. 10 is a diagram (No. 3) illustrating an incident optical path and a reflected optical path when reproducing information recorded on an optical information recording medium in the optical information processing apparatus according to the embodiment. It is a figure which shows an example of the hologram formed in the recording layer of the optical information recording medium in the optical information processing apparatus which concerns on this embodiment.
  • each signal level obtained from the hologram when the reproduction wavelength is changed with the recording wavelength as the center wavelength is a diagram.
  • it is a diagram showing the value of ⁇ 1 obtained when the wavelength ( ⁇ ), the numerical aperture (NA) is changed.
  • ⁇ 1 obtained when the wavelength ( ⁇ ), the numerical aperture (NA) is changed.
  • NA numerical aperture
  • DELTA (lambda) 2 obtained when the wavelength ((lambda)) and numerical aperture (NA) were changed in the optical information processing apparatus which concerns on this embodiment.
  • FIG. 1 is a diagram showing an overall configuration of an optical information processing apparatus 100 according to the present embodiment.
  • the optical information processing apparatus 100 includes an optical unit 1, an optical unit moving device 20, a controller 21, an active wave plate driving circuit 22, a modulation circuit 23, and a recording signal generation circuit 24.
  • a light source driving circuit 25 an amplifier circuit 26, a reproduction signal processing circuit 27, a demodulation circuit 28, a diffraction grating control circuit 29, and a condensing point control circuit 30.
  • the optical information recording medium 2 on which information is recorded or read (reproduced) by the optical information processing apparatus 100 has a recording layer 13 between the substrate 14a and the substrate 14b. It has a sandwiched configuration.
  • glass is used as the material of the substrates 14a and 14b.
  • a photopolymer is used as the material of the recording layer 13.
  • the optical unit 1 includes a light source 3, a diffraction grating 4, convex lenses 5a to 5f, an active wave plate 6, a polarization beam splitter 7, mirrors 8a to 8d, and a quarter wave plate. 9a, 9b, objective lenses 10a, 10b, a photodetector 11, and a diffraction grating tilting device 12.
  • the light source 3 is composed of a semiconductor laser having the diffraction grating 4 as an external resonator.
  • the light source 3 emits linearly polarized light having a single wavelength toward the diffraction grating 4 when a hologram is formed at the recording position of the optical information recording medium 2 under the control of the controller 21 (see FIG. 1).
  • the diffraction grating 4 is held by a diffraction grating tilting device 12 so as to be tiltable. By tilting the diffraction grating 4, the incident angle of light incident from the light source 3 changes and the wavelength changes.
  • the diffraction grating tilting device 12 tilts the diffraction grating 4 according to the control signal supplied from the diffraction grating control circuit 29.
  • the diffraction grating 4 and the diffraction grating tilting device 12 serve as wavelength changing means of the present invention.
  • the lenses 5a to 5f convert the light incident on each of the lenses 5a to 5f from diverging light into parallel light or from parallel light into convergent light.
  • the lenses 5a to 5f biconvex lenses are adopted as shown in FIG. 3, but aspherical lenses may be used.
  • the active wave plate 6 switches between a function as a quarter wave plate and a function as a half wave plate under the control of the controller 21.
  • the active wavelength plate 6 has a configuration in which a liquid crystal layer having uniaxial refractive index anisotropy is sandwiched between two substrates.
  • a transparent electrode for applying an AC voltage to the liquid crystal layer is provided on the surface of the two substrates facing the liquid crystal layer.
  • the direction of the optical axis of the liquid crystal layer is a direction perpendicular to the optical axis of incident light and a direction parallel to the optical axis.
  • the direction is the middle (angle 45 °).
  • the phase difference between the polarization component in the direction parallel to the plane including the optical axis and the optical axis, and the polarization component in the direction perpendicular to the plane including the optical axis, generated in the light transmitted through the liquid crystal layer is ⁇ / 2, and the active wavelength
  • the plate 6 functions as a quarter wavelength plate.
  • the active wave plate 6 functioning as a quarter wave plate converts incident linearly polarized light into circularly polarized light.
  • the direction of the optical axis of the liquid crystal layer becomes a direction perpendicular to the optical axis of the incident light.
  • the phase difference between the polarization component in the direction parallel to the plane including the optical axis and the optical axis and the polarization component in the direction perpendicular to the plane including the optical axis generated in the light transmitted through the liquid crystal layer is ⁇ .
  • the active wave plate 6 functioning as a half-wave plate changes the polarization direction of the incident linearly polarized light by 90 °.
  • the polarization beam splitter 7 branches the optical path according to the polarization component of the incident light.
  • the polarization beam splitter 7 transmits light having a P-polarized component parallel to the incident surface and reflects light having an S-polarized component perpendicular to the incident surface.
  • the mirrors 8a to 8d are arranged to change the optical path and guide the light incident from the former member to the latter member.
  • the quarter-wave plates 9a and 9b convert linearly polarized light into circularly polarized light when incident light is linearly polarized light, and convert circularly polarized light into linearly polarized light when incident light is circularly polarized light.
  • the objective lenses 10a and 10b collect the transmitted light at the focal length of the objective lenses 10a and 10b.
  • the light that passes through the objective lens 10 a is condensed on one surface of the optical information recording medium 2, and the light that passes through the objective lens 10 b is condensed on the other surface of the optical information recording medium 2.
  • the objective lenses 10a and 10b face each other via the optical information recording medium 2, and the recording light in the first optical path where the objective lens 10a condenses and the second that the objective lens 10b condenses.
  • the recording light in the optical path is provided so as to be condensed at the same position.
  • the objective lenses 10a and 10b are arranged so that the optical axis of the light passing through the objective lens 10a and the optical axis of the light passing through the objective lens 10b exist on the same straight line.
  • the objective lenses 10a and 10b biconvex lenses are adopted as shown in FIG. 3, but aspherical lenses may be used.
  • the photodetector 11 detects reflected light from the hologram formed on the optical information recording medium 2.
  • the photodetector 11 is composed of a light receiving element such as a CCD (Charge-Coupled Device) or a PIN photodiode, for example.
  • the controller 21 includes a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), etc. (none of which are shown), and the entire optical information processing apparatus 100 is configured. Take control.
  • a CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • the active wave plate driving circuit 22 When recording information on the optical information recording medium 2, the active wave plate driving circuit 22 applies an AC voltage (on the liquid crystal layer of the active wave plate 6 so that the active wave plate 6 of the optical unit 1 functions as a quarter wave plate. For example, an effective value of 2.5 V) is applied. Further, the active wave plate driving circuit 22 exchanges AC with the liquid crystal layer of the active wave plate 6 so that the active wave plate 6 of the optical unit 1 functions as a half wave plate when reproducing information from the optical information recording medium 2. A voltage (for example, effective value 0V) is applied.
  • the modulation circuit 23 When recording information on the optical information recording medium 2, the modulation circuit 23 modulates a signal input from the outside as recording data according to a predetermined modulation rule.
  • the recording signal generation circuit 24 generates a recording signal for driving the light source 3 of the optical unit 1 based on the signal modulated by the modulation circuit 23.
  • the light source driving circuit 25 drives the light source 3 by supplying a current corresponding to the recording signal to the light source 3 based on the recording signal generated by the recording signal generating circuit 24. To do.
  • the light source driving circuit 25 drives the light source 3 by supplying a constant current to the light source 3 so that the size of the light emitted from the light source 3 is constant when reproducing information from the optical information recording medium 2. To do.
  • the amplifying circuit 26 amplifies the voltage signal output from the photodetector 11 of the optical unit 1 when reproducing information from the optical information recording medium 2.
  • the reproduction signal processing circuit 27 performs generation, waveform equalization, and binarization of a reproduction signal representing information recorded on the optical information recording medium 2 based on the voltage signal amplified by the amplifier circuit 26.
  • the demodulation circuit 28 demodulates the signal binarized by the reproduction signal processing circuit 27 according to a predetermined demodulation rule, and outputs it as reproduction data to the outside.
  • the diffraction grating control circuit 29 sends a control signal for tilting the diffraction grating 4 so as to change the wavelength ⁇ at a predetermined wavelength interval (unit wavelength) ⁇ during information recording or information reproduction.
  • the wavelength interval ⁇ is determined in advance based on the numerical apertures (NA) of the objective lenses 10a and 10b, and is stored in advance in an internal memory or an external memory provided in the optical information processing apparatus 100.
  • the condensing point control circuit 30 supplies a control signal to the optical unit moving device 20.
  • the optical unit moving device 20 moves the condensing point in the optical information recording medium 2 in the direction of the recording layer 13 and the thickness direction by a control signal supplied from the condensing point control circuit 30.
  • the light source 3 When information “1” is recorded on the optical information recording medium 2, the light source 3 emits linearly polarized light having a single wavelength. Light emitted from the light source 3 is converted into light having a predetermined wavelength via the diffraction grating 4. At this time, the diffraction grating 4 is tilted by the diffraction grating tilting device 12 that is driven by receiving the control signal supplied from the diffraction grating control circuit 29, and changes the wavelength of incident light to a predetermined wavelength.
  • the light changed to the predetermined wavelength is incident on the active wavelength plate 6 through the convex lens 5a.
  • the active wave plate 6 functions as a quarter wave plate under the control of the controller 21.
  • the active wave plate 6 functioning as a quarter wave plate converts incident light from linearly polarized light to circularly polarized light.
  • the light converted into circularly polarized light is incident on the polarization beam splitter 7.
  • the polarization beam splitter 7 transmits light having a P-polarized component (approximately 50% of incident light) out of incident light and reflects light having an S-polarized component (approximately 50% of incident light).
  • the light having the S-polarized component reflected by the polarization beam splitter 7 is incident on the quarter-wave plate 9a via the convex lens 5b, the mirror 8a, the convex lens 5c, and the mirror 8b.
  • the quarter-wave plate 9a converts linearly polarized light into circularly polarized light by transmitting incident light.
  • the light converted into circularly polarized light enters the objective lens 10a.
  • the light By passing through the objective lens 10a, the light is converted from parallel light into convergent light, and is condensed on the recording layer 13 of the optical information recording medium 2.
  • the light having the P-polarized component transmitted through the polarization beam splitter 7 is incident on the quarter-wave plate 9b through the convex lens 5d, the mirror 8c, the convex lens 5e, and the mirror 8d.
  • the quarter-wave plate 9b converts linearly polarized light into circularly polarized light by transmitting incident light.
  • the light converted into circularly polarized light enters the objective lens 10b.
  • the light By passing through the objective lens 10b, the light is converted from parallel light into convergent light, and condensed on the recording layer of the optical information recording medium 2.
  • the light emitted from the light source 3 becomes two lights facing each other, and is condensed at the same position of the recording layer of the optical information recording medium 2. Then, at this position (condensing point), the two lights interfere with each other to form a minute hologram.
  • the formed hologram has 1-bit data information and records information “1” included in the light emitted from the light source 3.
  • the light source 3 does not emit light. At this time, information “0” is recorded by not forming a hologram on the recording layer of the optical information recording medium 2.
  • the diffraction grating control circuit 29 changes the wavelength ⁇ of the light emitted from the light source 3 at the wavelength interval ⁇ determined based on the numerical apertures (NA) of the objective lenses 10a and 10b for each information recording. Therefore, the diffraction grating control circuit 29 supplies a control signal for tilting the diffraction grating 4 to the diffraction grating tilting device 12 every time information is recorded, regardless of whether information “1” or “0” is recorded.
  • the diffraction grating tilting device 12 tilts the diffraction grating 4 for each information recording in accordance with a control signal supplied from the diffraction grating control circuit 29.
  • FIG. 4A shows an incident light path when the hologram 16a is formed by the light beams 17a and 18a having the wavelength ⁇ - ⁇ .
  • the information recorded on the recording layer 13 of the optical information recording medium 2 is “1”.
  • the light 17 a and the light 18 a are changed from the wavelength ⁇ of the light emitted from the light source 3 to the wavelength ⁇ by the diffraction grating control circuit 29, the diffraction grating tilting device 12, and the diffraction grating 4.
  • the light 17a and 18a interfere with each other at the condensing point 15a, thereby forming a minute hologram 16a at the position of the condensing point 15a.
  • the diffraction grating control circuit 29 controls the diffraction grating tilting device 12 to tilt the diffraction grating 4. Supply.
  • the diffraction grating tilting device 12 tilts the diffraction grating 4 according to the control signal supplied from the diffraction grating control circuit 29.
  • FIG. 4B shows an incident optical path when the hologram 16b is formed by the light 17b and the light 18b having the wavelength ⁇ .
  • the information recorded on the recording layer 13 of the optical information recording medium 2 is “1”.
  • the light 17b and the light 18b use the wavelength ⁇ of the light emitted from the light source 3, and change by the wavelength interval ⁇ as compared to the wavelengths ⁇ of the light 17a and 18a shown in FIG. 4A.
  • the light 17b and the light 18b interfere with each other at the condensing point 15b, thereby forming a minute hologram 16b at the position of the condensing point 15b.
  • the hologram 16 b is not formed, but the diffraction grating control circuit 29 controls the diffraction grating tilting device 12 to tilt the diffraction grating 4. Supply.
  • the diffraction grating tilting device 12 tilts the diffraction grating 4 according to the control signal supplied from the diffraction grating control circuit 29.
  • the hologram 16b has a wider grating pitch than the hologram 16a of FIG. 4A.
  • FIG. 4C shows an incident optical path when the hologram 16c is formed by the light 17c and the light 18c having the wavelength ⁇ + ⁇ .
  • the information recorded on the recording layer 13 of the optical information recording medium 2 is “1”.
  • the light 17c and the light 18c are changed from the wavelength ⁇ of the light emitted from the light source 3 to the wavelength ⁇ + ⁇ , and are changed by the wavelength interval ⁇ as compared with the wavelength ⁇ of the light used in FIG. 4B.
  • the light 17c and the light 18c interfere with each other at the condensing point 15c, thereby forming a minute hologram 16c at the position of the condensing point 15c.
  • the hologram 16 c is not formed, but the diffraction grating control circuit 29 controls the diffraction grating tilting device 12 to tilt the diffraction grating 4. Supply.
  • the diffraction grating tilting device 12 tilts the diffraction grating 4 according to the control signal supplied from the diffraction grating control circuit 29.
  • the hologram 16c has a wider grating pitch than the hologram 16b in FIG. 4B.
  • the condensing points 15a to 15c are moved in the plane of the recording layer 13 and in the thickness direction, and the same as described above at other recording positions of the recording layer 13 of the optical information recording medium 2.
  • information recording of 3-bit data can be performed three-dimensionally.
  • the light source 3 When reproducing information, the light source 3 emits linearly polarized light having a single wavelength. Light emitted from the light source 3 is converted into light having a predetermined wavelength via the diffraction grating 4.
  • the diffraction grating 4 is tilted by the diffraction grating tilting device 12 that is driven by receiving the control signal supplied from the diffraction grating control circuit 29, thereby changing the wavelength of incident light to a predetermined wavelength.
  • the light changed to the predetermined wavelength is incident on the active wavelength plate 6 through the convex lens 5a.
  • the active wave plate 6 functions as a half-wave plate under the control of the controller 21.
  • the active wave plate 6 functioning as a half-wave plate changes the polarization direction of incident light by 90 degrees.
  • the light whose polarization direction has been changed by 90 degrees is incident on the polarization beam splitter 7.
  • the polarizing beam splitter 7 reflects light having an S-polarized component of incident light (about 100% of incident light).
  • the light having the S-polarized component reflected by the polarization beam splitter 7 is incident on the quarter-wave plate 9a via the convex lens 5b, the mirror 8a, the convex lens 5c, and the mirror 8b.
  • the quarter-wave plate 9a converts linearly polarized light into circularly polarized light by transmitting incident light.
  • the light converted into circularly polarized light enters the objective lens 10a.
  • the light By passing through the objective lens 10a, the light is converted from parallel light into convergent light, and is condensed on the recording layer 13 of the optical information recording medium 2.
  • the light emitted from the light source 3 is focused on the recording layer of the optical information recording medium 2 only in one direction (objective lens 10a).
  • objective lens 10a object lens
  • the hologram is formed at this position (condensing point)
  • light is reflected by the hologram.
  • the hologram is not formed, the light passes through the recording layer 13, so that no reflected light can be obtained.
  • the light reflected by the hologram is transmitted through the objective lens 10a in the opposite direction, converted from diverging light to convergent light, and transmitted through the quarter-wave plate 9a.
  • the light By passing through the quarter-wave plate 9a, the light is converted from circularly polarized light to linearly polarized light.
  • the light converted into the linearly polarized light is incident on the polarization beam splitter 7 through the mirror 8b, the convex lens 5c, the mirror 8a, and the convex lens 5b.
  • the polarizing beam splitter 7 transmits light having a P-polarized component (approximately 100% of incident light) out of incident light.
  • the light having the P-polarized component transmitted through the polarization beam splitter 7 is received by the photodetector 11 through the convex lens 5f.
  • the diffraction grating control circuit 29 changes the wavelength ⁇ of the light emitted from the light source 3 at a wavelength interval ⁇ determined based on the numerical aperture (NA) of the objective lenses 10a and 10b, and each time information is reproduced, the diffraction grating A control signal for tilting the diffraction grating 4 is supplied to the tilting device 12.
  • the diffraction grating tilting device 12 tilts the diffraction grating 4 every time information is reproduced in accordance with the control signal supplied from the diffraction grating control circuit 29.
  • FIG. 5A shows an incident optical path and a reflected optical path when information is reproduced with light of wavelength ⁇ .
  • the light 19a is changed from the wavelength ⁇ of the light emitted from the light source 3 to the wavelength ⁇ by the diffraction grating control circuit 29, the diffraction grating tilting device 12, and the diffraction grating 4.
  • the hologram 16a is formed on the recording layer 13 of the optical information recording medium 2
  • the light 19a is reflected by the hologram 16a formed with the wavelength ⁇ - ⁇ at the position of the condensing point 15a and reflected light. Is received by the photodetector 11.
  • the information “1” is reproduced assuming that the hologram 16a is formed at the recording position.
  • the size of the lattice vector of the hologram 16a is 2 ⁇ / ( ⁇ ).
  • the hologram 16 a is not formed on the recording layer 13 of the optical information recording medium 2, the light 19 a is not reflected by the recording layer 13 and is not received by the photodetector 11.
  • information “0” is reproduced assuming that the hologram 16a is not formed at the recording position.
  • FIG. 5B shows an incident optical path and a reflected optical path when information is reproduced with the light 19b having the wavelength ⁇ .
  • the light 19b uses the wavelength ⁇ of the light emitted from the light source 3, and changes by the wavelength interval ⁇ as compared to the wavelength ⁇ of the light 19a shown in FIG. 5A.
  • the hologram 16b is formed on the recording layer 13 of the optical information recording medium 2
  • the light 19b is reflected by the hologram 16b formed with the wavelength ⁇ at the position of the condensing point 15b, and the reflected light is Light is received by the photodetector 11.
  • the information “1” is reproduced assuming that the hologram 16b is formed at the recording position.
  • the size of the lattice vector of the hologram 16b is 2 ⁇ / ⁇ .
  • the hologram 16 b is not formed on the recording layer 13 of the optical information recording medium 2, the light 19 b is not reflected by the recording layer 13 and is not received by the photodetector 11. At this time, information “0” is reproduced assuming that the hologram 16b is not formed at the recording position.
  • FIG. 5C shows an incident light path and a reflected light path when information is reproduced by the light 19c having the wavelength ⁇ + ⁇ .
  • the light 19c uses the wavelength ⁇ of the light emitted from the light source 3, and changes by the wavelength interval ⁇ as compared with the wavelength ⁇ of the light 19b shown in FIG. 5B.
  • the hologram 16c is formed on the recording layer 13 of the optical information recording medium 2
  • the light 19c is reflected by the hologram 16c formed with the wavelength ⁇ + ⁇ at the position of the condensing point 15c, and the reflected light is The light is received by the photodetector 11.
  • the information “1” is reproduced assuming that the hologram 16c is formed at the recording position.
  • the size of the lattice vector of the hologram 16c is 2 ⁇ / ( ⁇ + ⁇ ).
  • the hologram 16 c is not formed on the recording layer 13 of the optical information recording medium 2, the light 19 c is not reflected by the recording layer 13 and is not received by the photodetector 11. At this time, information “0” is reproduced assuming that the hologram 16c is not formed at the recording position.
  • the reflected light from the three types of holograms 16a to 16c having different grating pitches is received by the photodetector 11.
  • the information of the 3-bit data recorded on the recording layer 13 of the optical information recording medium 2 can be reproduced.
  • the light 19a having the wavelength ⁇ is reflected by the hologram 16a, but is not reflected by the holograms 16b and 16c formed at other wavelengths ⁇ and ⁇ + ⁇ .
  • the light 19b having the wavelength ⁇ is reflected by the hologram 16b, but is not reflected by the holograms 16a and 16c formed by other wavelengths ⁇ and ⁇ + ⁇ .
  • the light 19c having the wavelength ⁇ + ⁇ is reflected by the hologram 16c, but is not reflected by the holograms 16a and 16b formed by other wavelengths ⁇ and ⁇ .
  • FIG. 6 shows a hologram pattern formed on the recording layer 13 of the optical information recording medium 2.
  • the size in the optical axis direction of the condensing point in the recording layer 13 of the optical information recording medium 2 is that the wavelength of light is ⁇ , the numerical apertures of the objective lenses 10a and 10b are NA, and the refractive index of the recording layer 13 is n. Then, it is expressed by 4n ⁇ / NA 2 .
  • the size of the hologram formed in the recording layer 13 of the optical information recording medium 2 in the optical axis direction is approximately 4 n ⁇ / NA 2 .
  • NA numerical aperture
  • the horizontal axis represents the reproduction wavelength
  • the vertical axis represents the reproduction signal level.
  • the total signal level of the reflected light from the hologram formed by the light of wavelengths ⁇ ⁇ ⁇ before and after the recording wavelength ⁇ is 1 or less. It is necessary to set the wavelength interval ⁇ .
  • the wavelength interval between the signal levels 1 and 0.5 is ⁇ 1
  • the wavelength interval between the signal levels 1 and 0 is ⁇ 2.
  • ⁇ 1 2.49 nm
  • ⁇ 2 5.63 nm.
  • the hologram When ⁇ ⁇ ⁇ 1, the hologram is formed only with the light of the wavelength ⁇ ⁇ ⁇ before and after the recording wavelength ⁇ , and the hologram is not formed with the light of the recording wavelength ⁇ , information is reproduced using the light of the reproduction wavelength ⁇ .
  • each signal level obtained from holograms formed at the wavelengths before and after that becomes 0.5 or more, and the total of the signal levels becomes 1 or more.
  • the wavelength interval ⁇ needs to satisfy ⁇ 1 ⁇ in order to suppress the influence of crosstalk below an allowable value and correctly determine that the data corresponding to the wavelength 405 nm is “0”.
  • the wavelength interval ⁇ is preferably set so as to satisfy ⁇ ⁇ ⁇ 2.
  • the wavelength interval ⁇ is set so as to satisfy ⁇ 1 ⁇ and ⁇ ⁇ ⁇ 2.
  • an intermediate value between ⁇ 1 and ⁇ 2 is set as the wavelength interval ⁇ .
  • FIGS. 8A and 8B are graphs showing ⁇ 1 and ⁇ 2 when ⁇ and NA are changed, respectively.
  • the horizontal axis indicates the numerical aperture (NA)
  • the vertical axis indicates the half width (wavelength interval).
  • ⁇ 1 and ⁇ 2 are both proportional to the square of the numerical aperture (NA).
  • NA numerical aperture
  • ⁇ 1 and ⁇ 2 are both proportional to ⁇ .
  • the center wavelength of the light used for recording / reproduction is ⁇
  • the numerical aperture of the objective lens is NA
  • ⁇ 1 When ⁇ 2 is a value given by the above equation, the influence of crosstalk can be suppressed by setting ⁇ so that ⁇ 1 ⁇ is satisfied. Further, by determining ⁇ so as to satisfy ⁇ ⁇ ⁇ 2, the multiplicity can be increased (the recording density can be increased).
  • the diffraction grating 4 and the diffraction grating tilting device 12 have been described as wavelength changing means of the present invention.
  • the present invention is not limited to this, and the wavelength changing means is light emitted from the light source 3. Any configuration can be used as long as the wavelength can be changed.
  • the optical information processing apparatus 100 is configured to perform wavelength multiplexing recording and wavelength multiplexing reproduction with respect to the optical information recording medium 2, but is not limited to such a configuration.
  • a configuration capable of performing at least one of wavelength multiplexing reproduction may be used.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Holo Graphy (AREA)
  • Optical Recording Or Reproduction (AREA)

Abstract

 光学的情報処理装置は、光源(3)から出射した光の波長λを変化させる波長変化部、波長変化部で変化された波長の光を光情報記録媒体(2)に集光する集光部を備える。波長変化部は、集光部に設けられた対物レンズ(10a,10b)の開口数(NA)を基に決定された波長の間隔Δλで光源(3)から出射した光の波長λを変化させる。これにより、波長多重記録や波長多重再生において、クロストークの影響を抑えつつ、高密度な情報記録や高密度に記録した情報の再生を行うことができる。

Description

光学的情報処理装置及び光学的情報処理方法
 本発明は、光情報記録媒体への情報の記録及び光情報記録媒体に記録した情報の再生の少なくとも何れか一方を行う光学的情報処理装置及び光学的情報処理方法に関する。
 光情報記録媒体の面の領域だけでなく、光情報記録媒体の厚さ方向の領域も利用することにより、光情報記録媒体に3次元的に情報の記録を行うマイクロホログラム記録再生技術が非特許文献1に開示されている。
 非特許文献1に開示されている光学的情報記録再生装置を、図9を参照して説明する。
 図示するように、光学的情報記録再生装置50は、光源32と、凹レンズ33と、凸レンズ34a,34bと、ビームスプリッタ35a,35bと、ミラー36a~36eと、シャッタ37と、1/4波長板38a,38bと、対物レンズ39a,39bと、光検出器40と、から構成されている。
 この光学的情報記録再生装置50が光情報記録媒体31に情報を記録する動作を説明する。情報の記録時において、シャッタ37は、図示しないコントローラ等により開制御される。情報“1”を光情報記録媒体31に記録する場合、光源32は、光を出射する。光源32から出射した光は、凹レンズ33及び凸レンズ34aを透過して径が拡大され、ビームスプリッタ35aに入射する。ビームスプリッタ35aに入射した光のうち、一部(例えばP偏光)はビームスプリッタ35aを透過し、一部(例えばS偏光)はビームスプリッタ35bで反射される。
 ビームスプリッタ35aを透過した光は、ミラー36a、ミラー36bで反射され、ビームスプリッタ35b、1/4波長板38aを透過する。1/4波長板38aを透過することにより、光は直線偏光から円偏光に変換され、対物レンズ39aを透過する。対物レンズ39aを透過することにより、光は、平行光から収束光に変換され、光情報記録媒体31の記録層に集光される。
 また、ビームスプリッタ35aで反射された光は、ミラー36c、ミラー36d、ミラー36eで反射され、シャッタ37、1/4波長板38bを透過する。1/4波長板38bを透過することにより、光は直線偏光から円偏光に変換され、対物レンズ39bを透過する。対物レンズ39bを透過することにより、光は、平行光から収束光に変換され、光情報記録媒体31の記録層に集光される。
 これにより、光源32から出射した光は、互いに対向する2つの光となって、光情報記録媒体31の記録層の同一位置に集光される。そして、この位置(集光点)において、互いに対向する2つの光が干渉し合うことにより、微少なホログラムが形成される。形成されたホログラムは、ビットデータ“1”を表し、光源32から出射した光に含まれる情報“1”を記録することができる。一方、情報“0”を光情報記録媒体31に記録する場合、光源32は、光を出射しない。この場合、光情報記録媒体31の記録層にホログラムは形成されず、情報“0”が記録される。
 光学的情報記録再生装置50は、集光点を、光情報記録媒体31の記録層の面方向だけでなく、記録層の厚さ方向に移動させることができる。これにより、記録層の面だけでなく、記録層の厚さ方向にもホログラムを形成することができ、光情報記録媒体31に3次元的に情報を記録することができる。
 次に、光学的情報記録再生装置50が、光情報記録媒体31に記録されている情報を再生する動作を説明する。情報の再生時において、シャッタ37は、図示しないコントローラ等により閉制御される。再生時、光源32は、光を出射する。光源32から出射した光は、凹レンズ33及び凸レンズ34aを透過して径が拡大され、ビームスプリッタ35aに入射する。ビームスプリッタ35aに入射した光のうち、一部(例えば、P偏光)はビームスプリッタ35aを透過し、また、一部(例えば、S偏光)はビームスプリッタ35aで反射される。
 ビームスプリッタ35aを透過した光は、ミラー36a、ミラー36bで反射され、ビームスプリッタ35b、1/4波長板38aを透過する。1/4波長板38aを透過することにより、光は、直線偏光から円偏光に変換され、対物レンズ39aを透過する。対物レンズ39aを透過することにより、光は、平行光から収束光に変換され、光情報記録媒体31の記録層に集光される。
 一方、ビームスプリッタ35aで反射された光は、ミラー36c、ミラー36d、ミラー36eで反射されるが、シャッタ37で遮断され、光情報記録媒体31の記録層に集光されない。これにより、光源32から出射した光は、光情報記録媒体31の記録層において、一方向のみから集光され、集光点にホログラムが形成されていれば、ホログラムにより反射される。
 ホログラムで反射された光は、上記とは逆向きに対物レンズ39aを透過して発散光から平行光に変換され、1/4波長板38aを透過する。1/4波長板38aを透過することにより、光は、円偏光から直線偏光へ変換され、ビームスプリッタ35bで反射される。ビームスプリッタ35bで反射された光は、凸レンズ34bを透過することにより、平行光から収束光に変換され、光検出器40で受光される。これにより、反射光が検出されれば、ホログラムが形成されており、ビットデータ“1”が再生される。一方、反射光が検出されなければ、ホログラムが形成されておらず、ビットデータ“0”が再生される。
 光学的情報記録再生装置50は、情報の記録時と同様、情報の再生時においても、集光点を、光情報記録媒体31の記録層の面方向だけでなく、記録層の厚さ方向に移動させることができる。これにより、記録層の面に形成されたホログラムだけでなく、記録層の厚さ方向に形成されたホログラムから情報を読み出すことができ、光情報記録媒体31に対して3次元的に情報の再生を行うことができる。
 上記構成の光学的情報記録再生装置50では、光情報記録媒体の各記録位置に記録される情報が1ビットのデータであり、記録容量に限界があり、十分な記録容量が得られないことがある。
 光情報記録媒体の記録容量を増大する技術として、特許文献1には、ページ型のホログラム記録に用いられている波長多重記録が開示されている。波長多重記録は、光情報記録媒体の記録層の同一位置において、一定の波長の間隔で複数のホログラム(回折格子)を形成するものである。これにより、光情報記録媒体の記録層の同一位置で複数ビットの多重記録再生を行うことができる。
特開2008-203772号公報
ジャパニーズ・ジャーナル・オブ・アプライド・フィジックス・第45巻・第2B号・2006・第1239ページ~第1245ページ
 ここで、複数のホログラムを形成する波長の間隔は、再生すべきホログラムから受け取る信号レベルに対する、他のホログラムから受け取る信号レベルの比で示されるクロストークの影響を受けないように設定しなければならない。これは、再生対象となっているホログラム以外のホログラムに記録された情報を受け取らないようにするためである。
 クロストークを小さくするためには、波長の間隔は大きい方が望ましいが、他の条件が同一ならば、記録密度が小さくなってしまう。一方、波長の間隔を小さくすると、他の条件が同一ならば、記録密度は大きくなるが、クロストークが増大してしまう。このため、クロストークを許容値以下に抑えつつ、記録密度を大きくすることが望まれるが、従来技術には、この課題を達成する技術は開示されていない。
 本発明は、光情報記録媒体に対して、クロストークの影響を抑えつつ、高密度な情報記録や高密度に記録した情報の再生を行える光学的情報処理装置及び光学的情報処理方法を提供することを目的とする。
 本発明の第1の観点に係る光学的情報処理装置は、
 光情報記録媒体に対して、波長多重記録及び波長多重再生の少なくとも何れか一方を行う光学的情報処理装置であって、
 光源から出射した光の波長を変化させる波長変化手段と、
 前記波長変化手段で変化された波長の光を前記光情報記録媒体に集光する集光手段と、を備え、
 前記波長変化手段は、前記集光手段に設けられた対物レンズの開口数を基に決定された波長の間隔で前記光源から出射した光の波長を変化させる。
 本発明の第2の観点に係る光学的情報処理装置は、
 光情報記録媒体に対して、波長多重記録及び波長多重再生の少なくとも何れか一方を行う光学的情報処理装置であって、
 それぞれ波長が異なる複数の光を順次出射する光出射手段と、
 前記光出射手段から出射した光を前記光情報記録媒体に集光する集光手段と、
を備え、
 前記光出射手段は、前記集光手段に設けられた対物レンズの開口数を基に決定された波長の間隔で波長を変化させた前記複数の光を順次出射する。
 本発明の第3の観点に係る光学的情報処理方法は、
 光情報記録媒体に対して、波長多重記録及び波長多重再生の少なくとも何れか一方を行う光学的情報処理方法であって、
 光源から出射した光の波長を変化させる波長変化工程と、
 前記波長変化工程で変化された波長の光を前記光情報記録媒体に集光する集光工程と、を有し、
 前記波長変化工程では、前記集光工程で用いられる対物レンズの開口数を基に決定された波長の間隔で前記光源から出射した光の波長を変化させる。
 本発明の第4の観点に係る光学的情報処理方法は、
 光情報記録媒体に対して、波長多重記録及び波長多重再生の少なくとも何れか一方を行う光学的情報処理方法であって、
 それぞれ波長が異なる複数の光を順次出射する光出射工程と、
 前記光出射工程で出射した光を前記光情報記録媒体に集光する集光工程と、を有し、
 前記光出射工程では、前記集光工程で用いられる対物レンズの開口数を基に決定された波長の間隔で波長を変化させた前記複数の光を順次出射する。
 本発明によれば、光情報記録媒体に対して、クロストークの影響を抑えつつ、高密度な情報記録や高密度に記録した情報の再生を行うことができる。
本発明の一実施形態に係る光学的情報処理装置の全体構成を示す図である。 図1の光情報記録媒体の構造を示す図である。 図1の光学ユニットの構成を示す図である。 本実施形態に係る光学的情報処理装置において、光情報記録媒体に情報を記録する際の入射光路を示す図(その1)である。 本実施形態に係る光学的情報処理装置において、光情報記録媒体に情報を記録する際の入射光路を示す図(その2)である。 本実施形態に係る光学的情報処理装置において、光情報記録媒体に情報を記録する際の入射光路を示す図(その3)である。 本実施形態に係る光学的情報処理装置において、光情報記録媒体に記録された情報を再生する際の入射光路及び反射光路を示す図(その1)である。 本実施形態に係る光学的情報処理装置において、光情報記録媒体に記録された情報を再生する際の入射光路及び反射光路を示す図(その2)である。 本実施形態に係る光学的情報処理装置において、光情報記録媒体に記録された情報を再生する際の入射光路及び反射光路を示す図(その3)である。 本実施形態に係る光学的情報処理装置において、光情報記録媒体の記録層に形成されたホログラムの一例を示す図である。 本実施形態に係る光学的情報処理装置において、記録波長を中心波長として、再生波長を変化させた時にホログラムから得られた各信号レベルを示す図である。 本実施形態に係る光学的情報処理装置において、波長(λ)、開口数(NA)を変化させた場合に得られたΔλ1の値を示す図である。 本実施形態に係る光学的情報処理装置において、波長(λ)、開口数(NA)を変化させた場合に得られたΔλ2の値を示す図である。 従来の光学的情報処理装置における光学ユニットの構成を示す図である。
 以下、本発明の一実施形態について図面を参照して説明する。なお、本発明は、以下の実施形態及び図面の内容によって限定されるものではない。また、本発明は、その趣旨を変更しない範囲で以下の実施形態及び図面の内容に変更(構成要素の付加、変更、又は、削除)を適宜加えることができるのは勿論である。また、以下では、理解を容易にするために、本発明の実施形態において重要でない、公知の技術的事項については説明を適宜省略している。
 図1は、本実施形態に係る光学的情報処理装置100の全体構成を示した図である。図1に示すように、この光学的情報処理装置100は、光学ユニット1と、光学ユニット移動装置20と、コントローラ21と、アクティブ波長板駆動回路22と、変調回路23と、記録信号生成回路24と、光源駆動回路25と、増幅回路26と、再生信号処理回路27と、復調回路28と、回折格子制御回路29と、集光点制御回路30と、を備える。
 光学的情報処理装置100によって情報が記録され、又は、情報が読み出される(再生される)光情報記録媒体2は、図2に示すように、基板14aと基板14bとの間に記録層13が挟まれた構成となっている。基板14a、14bの材料としては、例えばガラスが用いられる。記録層13の材料としては例えばフォトポリマが用いられる。
 光学ユニット1は、図3に示すように、光源3と、回折格子4と、凸レンズ5a~5fと、アクティブ波長板6と、偏光ビームスプリッタ7と、ミラー8a~8dと、1/4波長板9a,9bと、対物レンズ10a,10bと、光検出器11と、回折格子傾斜装置12と、から構成される。
 光源3は、回折格子4を外部共振器とする半導体レーザから構成される。光源3は、コントローラ21(図1参照)の制御の下、光情報記録媒体2の記録位置にホログラムを形成する際に、回折格子4に向けて直線偏光の単一波長の光を出射する。
 回折格子4は、回折格子傾斜装置12により傾斜可能に保持される。回折格子4が傾斜されることにより、光源3から入射する光の入射角度が変わり、波長が変化する。
 回折格子傾斜装置12は、回折格子制御回路29から供給される制御信号に従って、回折格子4を傾斜させる。なお、本実施形態において、回折格子4及び回折格子傾斜装置12は、本発明の波長変化手段としての役割を担う。
 レンズ5a~5fは、それぞれに入射する光を、発散光から平行光又は平行光から収束光に変換する。なお、本実施形態において、レンズ5a~5fとして、図3に示すように、両凸レンズを採用しているが、非球面レンズを用いても良い。
 アクティブ波長板6は、コントローラ21の制御の下、1/4波長板としての機能と1/2波長板としての機能とを切り替える。アクティブ波長板6は、一軸の屈折率異方性を有する液晶層が2枚の基板に挟まれた構成となっている。2枚の基板の液晶層と向かい合う面には、液晶層に交流電圧を印加するための透明電極が設けられている。
 液晶層に所定の実効値(例えば2.5V)の交流電圧が印加されると、液晶層の光学軸の方向は、入射光の光軸に垂直な方向とその光軸に平行な方向との中間(角度45°)の方向となる。この時、液晶層を透過する光に生じる、光学軸と光軸とを含む面に平行な方向の偏光成分と垂直な方向との偏光成分との間の位相差はπ/2となり、アクティブ波長板6は1/4波長板として機能する。1/4波長板として機能するアクティブ波長板6は、入射した直線偏光を円偏光に変換する。
 一方、液晶層に所定の実効値(例えば0V)の交流電圧が印加されると、液晶層の光学軸の方向は、入射光の光軸に垂直な方向となる。この時、液晶層を透過する光に生じる、光学軸と光軸とを含む面に平行な方向の偏光成分と垂直な方向の偏光成分の間の位相差はπとなり、アクティブ波長板6は1/2波長板として機能する。1/2波長板として機能するアクティブ波長板6は、入射した直線偏光の偏光方向を90°変化させる。
 偏光ビームスプリッタ7は、入射される光の偏光成分にしたがって光路を分岐する。偏光ビームスプリッタ7は、入射面に平行なP偏光成分を有する光を透過し、入射面に垂直なS偏光成分を有する光を反射する。
 ミラー8a~8dは、光路を変更し、前段の部材から入射される光を後段の部材に導くために配置される。
 1/4波長板9a,9bは、入射する光が直線偏光の場合は、直線偏光を円偏光に変換し、また、入射する光が円偏光の場合は、円偏光を直線偏光に変換する。
 対物レンズ10a,10bは、透過する光を、対物レンズ10a,10bの焦点距離の位置に集光する。対物レンズ10aを透過する光は、光情報記録媒体2の一側の面に集光され、対物レンズ10bを透過する光は、光情報記録媒体2の他側の面に集光される。対物レンズ10a,10bは、図3に示すように、光情報記録媒体2を介して対向し、対物レンズ10aが集光する第1の光路における記録光と対物レンズ10bが集光する第2の光路における記録光とが同一位置に集光するように設けられている。さらに、対物レンズ10a,10bは、対物レンズ10aを透過する光の光軸と、対物レンズ10bを透過する光の光軸とが、同一直線上に存在するように配置されている。なお、本実施形態において、対物レンズ10a,10bとして、図3に示すように、両凸レンズを採用しているが、非球面レンズを用いても良い。
 光検出器11は、光情報記録媒体2に形成されるホログラムからの反射光を検出する。光検出器11は、例えば、CCD(Charge Coupled Device)やPINフォトダイオード等の受光素子で構成される。
 図1に戻り、コントローラ21は、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)等(何れも図示せず)から構成され、光学的情報処理装置100の全体の制御を行う。
 アクティブ波長板駆動回路22は、光情報記録媒体2へ情報を記録する際、光学ユニット1のアクティブ波長板6が1/4波長板として機能するよう、アクティブ波長板6の液晶層に交流電圧(例えば実効値2.5V)を印加する。また、アクティブ波長板駆動回路22は、光情報記録媒体2から情報を再生する際、光学ユニット1のアクティブ波長板6が1/2波長板として機能するよう、アクティブ波長板6の液晶層に交流電圧(例えば実効値0V)を印加する。
 変調回路23は、光情報記録媒体2へ情報を記録する際、記録データとして外部から入力された信号を所定の変調規則に従って変調する。
 記録信号生成回路24は、変調回路23で変調された信号に基づいて、光学ユニット1の光源3を駆動するための記録信号を生成する。
 光源駆動回路25は、光情報記録媒体2へ情報を記録する際、記録信号生成回路24で生成された記録信号に基づいて、光源3へ記録信号に応じた電流を供給して光源3を駆動する。また、光源駆動回路25は、光情報記録媒体2から情報を再生する際、光源3からの出射光の大きさが一定になるように、光源3へ一定の電流を供給して光源3を駆動する。
 増幅回路26は、光情報記録媒体2から情報を再生する際、光学ユニット1の光検出器11から出力される電圧信号を増幅する。
 再生信号処理回路27は、増幅回路26で増幅された電圧信号に基づいて、光情報記録媒体2に記録された情報を表す再生信号の生成、波形等化、二値化を行う。
 復調回路28は、再生信号処理回路27で二値化された信号を所定の復調規則に従って復調し、再生データとして外部へ出力する。
 回折格子制御回路29は、情報記録時又は情報再生時において、予め決定されている波長の間隔(単位波長)Δλで波長λを変化させるよう、回折格子4を傾ける制御信号を回折格子傾斜装置12に供給する。波長の間隔Δλは、対物レンズ10a,10bの開口数(NA)を基に予め決定され、光学的情報処理装置100が備える内部メモリ又は外部メモリに予め記憶されている。
 集光点制御回路30は、光学ユニット移動装置20に制御信号を供給する。
 光学ユニット移動装置20は、集光点制御回路30から供給される制御信号により、光情報記録媒体2における集光点を記録層13の面及び厚さ方向へ移動させる。
 次に、光学ユニット1が光情報記録媒体2に情報を記録する際の動作を説明する。
 情報“1”を光情報記録媒体2に記録する場合、光源3は直線偏光の単一波長の光を出射する。光源3から出射された光は、回折格子4を介して所定波長の光に変換される。この時、回折格子4は、回折格子制御回路29から供給される制御信号を受け取ることで駆動する回折格子傾斜装置12により傾斜され、入射する光の波長を所定波長に変化させる。
 所定波長に変化された光は、凸レンズ5aを介してアクティブ波長板6に入射される。アクティブ波長板6は、コントローラ21の制御の下、1/4波長板として機能する。1/4波長板として機能するアクティブ波長板6は、入射された光を直線偏光から円偏光に変換する。円偏光に変換された光は、偏光ビームスプリッタ7に入射される。
 偏光ビームスプリッタ7は、入射される光のうち、P偏光成分を有する光(入射光の約50%)を透過し、S偏光成分を有する光(入射光の約50%)を反射する。
 偏光ビームスプリッタ7で反射されたS偏光成分を有する光は、凸レンズ5b、ミラー8a、凸レンズ5c、ミラー8bを介して、1/4波長板9aに入射される。
 1/4波長板9aは、入射される光を透過することにより直線偏光から円偏光に変換する。円偏光に変換された光は、対物レンズ10aに入射される。
 対物レンズ10aを透過することにより、光は、平行光から収束光に変換され、光情報記録媒体2の記録層13に集光される。
 一方、偏光ビームスプリッタ7を透過したP偏光成分を有する光は、凸レンズ5d、ミラー8c、凸レンズ5e、ミラー8dを介して、1/4波長板9bに入射される。
 1/4波長板9bは、入射される光を透過することにより直線偏光から円偏光に変換する。円偏光に変換された光は、対物レンズ10bに入射される。
 対物レンズ10bを透過することにより、光は、平行光から収束光に変換され、光情報記録媒体2の記録層に集光される。
 これにより、光源3から出射した光は、互いに対向する2つの光となって、光情報記録媒体2の記録層の同一の位置において集光される。そして、この位置(集光点)において、2つの光が互いに干渉し合うことにより、微小なホログラムが形成される。形成されたホログラムは、1ビットデータの情報を有し、光源3から出射した光に含まれる情報“1”を記録する。
 一方、情報“0”を光情報記録媒体2に記録する場合、光源3は光を出射しない。このとき、光情報記録媒体2の記録層にホログラムを形成しないことにより、情報“0”を記録する。
 つづいて、波長多重記録を行う一例について、図4A~図4Cを参照して説明する。
 回折格子制御回路29は、情報記録毎に、光源3から出射する光の波長λを、対物レンズ10a,10bの開口数(NA)を基に決定された波長の間隔Δλで変化させる。このため、回折格子制御回路29は、情報“1”,“0”の何れを記録する場合でも、情報記録毎に、回折格子傾斜装置12に回折格子4を傾斜させる制御信号を供給する。回折格子傾斜装置12は、回折格子制御回路29から供給される制御信号に従って、情報記録毎に、回折格子4を傾斜させる。
 図4Aは、波長λ-Δλの光17a,18aでホログラム16aを形成する時の入射光路を示している。このとき、光情報記録媒体2の記録層13に記録する情報は“1”である。光17a及び光18aは、回折格子制御回路29、回折格子傾斜装置12、回折格子4により、光源3から出射した光の波長λから波長λ-Δλに変化したものである。この光17a及び18aが集光点15aにおいて互いに干渉し合うことにより、集光点15aの位置に微小なホログラム16aを形成する。
 一方、光情報記録媒体2の記録層13に記録する情報が“0”の時、ホログラム16aは形成されないが、回折格子制御回路29は、回折格子傾斜装置12に回折格子4を傾斜させる制御信号を供給する。回折格子傾斜装置12は、回折格子制御回路29から供給される制御信号に従って、回折格子4を傾斜させる。
 図4Bは、波長λの光17b,光18bでホログラム16bを形成する時の入射光路を示している。このとき、光情報記録媒体2の記録層13に記録する情報は“1”である。光17b及び光18bは、光源3から出射した光の波長λを用いるものであり、図4Aで示される光17a,18aの波長λ-Δλと比べて波長の間隔Δλ分変化している。この光17b及び光18bが集光点15bにおいて互いに干渉し合うことにより、集光点15bの位置に微小なホログラム16bを形成する。
 一方、光情報記録媒体2の記録層13に記録する情報が“0”の時、ホログラム16bは形成されないが、回折格子制御回路29は、回折格子傾斜装置12に回折格子4を傾斜させる制御信号を供給する。回折格子傾斜装置12は、回折格子制御回路29から供給される制御信号に従って、回折格子4を傾斜させる。なお、ホログラム16bは、図4Aのホログラム16aよりも格子のピッチが広い。
 図4Cは、波長λ+Δλの光17c、光18cでホログラム16cを形成する時の入射光路を示している。この時、光情報記録媒体2の記録層13に記録する情報は“1”である。光17c及び光18cは、光源3から出射した光の波長λから波長λ+Δλに変化したものであり、図4Bで用いた光の波長λと比べて波長の間隔Δλ分変化している。この光17c及び光18cが集光点15cにおいて互いに干渉し合うことにより、集光点15cの位置に微小なホログラム16cを形成する。
 一方、光情報記録媒体2の記録層13に記録する情報が“0”の時、ホログラム16cは形成されないが、回折格子制御回路29は、回折格子傾斜装置12に回折格子4を傾斜させる制御信号を供給する。回折格子傾斜装置12は、回折格子制御回路29から供給される制御信号に従って、回折格子4を傾斜させる。なお、ホログラム16cは、図4Bのホログラム16bよりも格子のピッチが広い。
 このように、波長の間隔Δλで波長を変化させて得られる3通りの光17a~17c、光18a~18cを用いて、それぞれ格子のピッチが異なる3種類のホログラム16a~16cを形成するか否かにより、光情報記録媒体2の記録層13の同一記録位置に3ビットデータの情報記録ができる。
 そして、コントローラ21の制御の下、集光点15a~15cを記録層13の面内及び厚さ方向へ移動し、光情報記録媒体2の記録層13の他の記録位置においても上記と同様の波長多重記録を行うことにより、3ビットデータの情報記録を3次元的に行うことができる。
 次に、本実施形態に係る光学ユニット1が光情報記録媒体2に記録されている情報を再生する際の動作を説明する。
 情報を再生する際、光源3は、直線偏光の単一波長の光を出射する。光源3から出射された光は、回折格子4を介して所定波長の光に変換される。回折格子4は、回折格子制御回路29から供給される制御信号を受け取ることで駆動する回折格子傾斜装置12により傾斜され、これにより、入射する光の波長を所定波長に変化させる。
 所定波長に変化された光は、凸レンズ5aを介してアクティブ波長板6に入射される。アクティブ波長板6は、コントローラ21の制御の下、1/2波長板として機能する。1/2波長板として機能するアクティブ波長板6は、入射された光の偏光方向を90度変化させる。偏光方向が90度変化された光は、偏光ビームスプリッタ7に入射される。
 偏光ビームスプリッタ7は、入射される光のS偏光成分を有する光(入射光の約100%)を反射する。
 偏光ビームスプリッタ7で反射されたS偏光成分を有する光は、凸レンズ5b、ミラー8a、凸レンズ5c、ミラー8bを介して、1/4波長板9aに入射される。
 1/4波長板9aは、入射される光を透過することにより直線偏光から円偏光に変換する。円偏光に変換された光は、対物レンズ10aに入射される。
 対物レンズ10aを透過することにより、光は、平行光から収束光に変換され、光情報記録媒体2の記録層13に集光される。
 これにより、光源3から出射した光は、光情報記録媒体2の記録層に一方向のみ(対物レンズ10a)に集光される。そして、この位置(集光点)においてホログラムが形成されている場合、光はホログラムで反射される。一方、ホログラムが形成されていない場合、光は記録層13を透過するので、反射光は得られない。
 ホログラムで反射された光は、上記とは逆向きに対物レンズ10aを透過して発散光から収束光に変換され、1/4波長板9aを透過する。
 1/4波長板9aを透過することにより、光は、円偏光から直線偏光に変換される。直線偏光に変換された光は、ミラー8b、凸レンズ5c、ミラー8a、凸レンズ5bを介して、偏光ビームスプリッタ7に入射される。
 偏光ビームスプリッタ7は、入射される光の内、P偏光成分を有する光(入射光の約100%)を透過する。
 偏光ビームスプリッタ7を透過したP偏光成分を有する光は、凸レンズ5fを介して、光検出器11で受光される。
 これにより、光検出器11において反射光が検出されれば、光情報記録媒体2の記録層にホログラムが形成されており、情報“1”が再生される。一方、反射光が検出されなければ、光情報記録媒体2の記録層にホログラムが形成されておらず、情報“0”が再生される。
 つづいて、波長多重再生を行う一例について、図5A~図5Cを参照して説明する。
 回折格子制御回路29は、光源3から出射する光の波長λを、対物レンズ10a,10bの開口数(NA)を基に決定された波長の間隔Δλで変化させ、情報再生毎に、回折格子傾斜装置12に回折格子4を傾斜させる制御信号を供給する。回折格子傾斜装置12は、回折格子制御回路29から供給される制御信号に従って、情報再生毎に、回折格子4を傾斜させる。
 図5Aは、波長λ-Δλの光で情報を再生する時の入射光路及び反射光路を示している。光19aは、回折格子制御回路29、回折格子傾斜装置12、回折格子4により、光源3から出射した光の波長λから波長λ-Δλに変化したものである。この場合、光情報記録媒体2の記録層13にホログラム16aが形成されていると、光19aは集光点15aの位置において波長λ-Δλで形成されたホログラム16aで反射され、反射された光は、光検出器11で受光される。これにより、当該記録位置にホログラム16aが形成されているとして情報“1”が再生される。なお、この時のホログラム16aの格子ベクトルの大きさは2π/(λ-Δλ)である。一方、光情報記録媒体2の記録層13にホログラム16aが形成されていないと、光19aは、記録層13で反射されず、光検出器11で受光されない。この時、当該記録位置にはホログラム16aが形成されていないとして情報“0”が再生される。
 図5Bは、波長λの光19bで情報を再生する時の入射光路及び反射光路を示している。光19bは、光源3から出射した光の波長λを用いるものであり、図5Aで示される光19aの波長λ-Δλと比べて波長の間隔Δλ分変化している。この場合、光情報記録媒体2の記録層13にホログラム16bが形成されていると、光19bは集光点15bの位置において波長λで形成されたホログラム16bで反射され、反射された光は、光検出器11で受光される。これにより、当該記録位置にホログラム16bが形成されているとして情報“1”が再生される。なお、この時のホログラム16bの格子ベクトルの大きさは2π/λである。一方、光情報記録媒体2の記録層13にホログラム16bが形成されていないと、光19bは、記録層13で反射されず、光検出器11で受光されない。この時、当該記録位置にはホログラム16bが形成されていないとして情報“0”が再生される。
 図5Cは、波長λ+Δλの光19cで情報を再生する時の入射光路及び反射光路を示している。光19cは、光源3から出射した光の波長λを用いるものであり、図5Bで示される光19bの波長λと比べて波長の間隔Δλ分変化している。この場合、光情報記録媒体2の記録層13にホログラム16cが形成されていると、光19cは、集光点15cの位置において波長λ+Δλで形成されたホログラム16cで反射され、反射された光は、光検出器11で受光される。これにより、当該記録位置にホログラム16cが形成されているとして情報“1”が再生される。なお、この時のホログラム16cの格子ベクトルの大きさは2π/(λ+Δλ)である。一方、光情報記録媒体2の記録層13にホログラム16cが形成されていないと、光19cは、記録層13で反射されず、光検出器11で受光されない。この時、当該記録位置にホログラム16cが形成されていないとして情報“0”が再生される。
 このように、波長の間隔Δλで変化させて得られる3通りの光19a~19cを用いて、それぞれ格子のピッチが異なる3種類のホログラム16a~16cからの反射光が光検出器11で受光されるか否かにより、光情報記録媒体2の記録層13に記録した3ビットデータの情報再生ができる。なお、波長λ-Δλの光19aは、ホログラム16aでは反射されるが、他の波長λ,λ+Δλで形成されたホログラム16b,16cでは反射されない。同様に、波長λの光19bは、ホログラム16bでは反射されるが、他の波長λ-Δλ,λ+Δλで形成されたホログラム16a,16cでは反射されない。また、波長λ+Δλの光19cは、ホログラム16cでは反射されるが、他の波長λ-Δλ,λで形成されたホログラム16a,16bでは反射されない。
 図6は、光情報記録媒体2の記録層13に形成されたホログラムのパターンを示す。上記波長多重記録により、記録層13の所定の各位置に3ビットデータの情報を記録し、波長多重再生により、記録した情報を再生することができる。そして、コントローラ21の制御の下、集光点15a~15cを記録層13の面内及び厚さ方向へ移動し、光情報記録媒体2の記録層13の他の記録位置においても上記と同様の波長多重再生を行うことにより、3ビットデータの情報再生を3次元的に行うことができる。
 ここで、光情報記録媒体2の記録層13における集光点の光軸方向の大きさは、光の波長をλ、対物レンズ10a,10bの開口数をNA、記録層13の屈折率をnとすると、4nλ/NAで表される。
 したがって、光情報記録媒体2の記録層13に形成されるホログラムの光軸方向の大きさは、ほぼ4nλ/NAである。なお、光の波長を変化させた場合のホログラムの回折効率(反射率)は、結合波理論により求めることができる。また、開口数(NA)は、対物レンズ10a,10bを透過する光の光軸に対する最大角度をθ、対物レンズ10a,10bと光情報記録媒体2の間の媒質の屈折率をnとすると、NA=nsinθで表される。
 記録・再生に用いる光の波長λを変化させた場合のホログラムの回折効率について図7を参照して説明する。ここでは、記録に用いる光の波長(記録波長)をλ=405nmとし、再生に用いる光の波長(再生波長)をλ=395nm~415nmの範囲で変化させた。また、NA=0.5、n=1.5とした。図7において、横軸は再生波長、縦軸は再生信号レベルを示す。なお、記録波長をλ=405nmから変化させた場合、図中の曲線は変化した波長だけシフトする。例えば、記録波長をλ=405nmから5nmだけ小さくした場合、曲線は変化した5nmだけ左方向へシフトし、λ=400nmで信号レベルがピークとなる。
 光情報記録媒体2の記録層13の記録位置に記録波長λ=405nmの光を用いてホログラムが形成された場合、再生波長λ=405nmの光を用いて当該ホログラムから得られる反射光の信号レベルとして1が検出される。この時、コントローラ21は、当該記録位置にホログラムが形成されているとしてビットデータ“1”を再生する。
 また、光情報記録媒体2の記録層13の記録位置に記録波長λ=405nmの光を用いてホログラムが形成されない場合において、再生波長λ=405nmの光を用いた時、反射光は得られず、信号レベルとして0が検出される。この時、コントローラ21は、当該記録位置にホログラムが形成されていないとしてビットデータ“0”を再生する。
 記録波長λ=405nm近傍の波長の光を用いてホログラムが形成された場合であっても、即ち、光情報記録媒体2の記録層13の記録位置に記録波長λ=405nmの光を用いてホログラムが形成されていなくても、再生波長λ=405nmの光を用いた時に、反射光の信号レベルが0にならないことがある。これは、記録波長λ=405nm近傍の波長で形成されたホログラムからの反射光を受光してしまう、即ち、クロストークの影響を受けてしまうためである。
 波長の間隔Δλで波長を変化させて波長多重記録を行う場合、記録波長λの前後の波長λ±Δλの光で形成されたホログラムからの反射光の信号レベルの合計が1以下となるように波長の間隔Δλを設定する必要がある。
 図7において、信号レベルが1と0.5の波長の間隔をΔλ1、信号レベルが1と0の波長の間隔をΔλ2とする。再生波長λ=405nmの場合、Δλ1=2.49nm、Δλ2=5.63nmである。
 Δλ≦Δλ1として、記録波長λの前後の波長λ±Δλの光でのみホログラムを形成し、記録波長λの光でホログラムを形成しなかった場合において、再生波長λの光を用いて情報再生する時、その前後の波長で形成されたホログラムから得られる各信号レベルが0.5以上となり、信号レベルの合計が1以上となる。このため、波長405nmに対応したデータが本来“0”であるにもかかわらず、“1”であると誤って判定される。つまり、クロストークの影響を許容値以下に抑え、波長405nmに対応したデータが“0”であると正しく判定されるためには、波長の間隔ΔλはΔλ1<Δλを満たす必要がある。
 また、Δλ=Δλ2として、再生波長λ=405nmの条件で再生したときの各ホログラムに対する信号レベルは0となり、信号レベルの合計は0となる。つまり、ΔλをΔλ2より大きくしても、クロストークの影響を抑えるという観点からは意味がない。波長多重記録における多重度を上げる(記録密度を大きくする)ためにはΔλは小さい方が良い。従って、波長の間隔ΔλはΔλ≦Δλ2を満たすように設定された方が良い。
 以上のことから、波長の間隔Δλは、Δλ1<Δλ、かつΔλ≦Δλ2を満たすように設定される。例えばΔλ1とΔλ2の中間値等を波長の間隔Δλとして設定する。
 例えば、λ=405nm、NA=0.5の場合、波長の間隔Δλ=3nmとし、記録・再生に用いる光の波長を、λ-2Δλ(=399nm)、λ-Δλ(=402nm)、λ(=405nm)、λ+Δλ(=408nm)、λ+2Δλ(=411nm)の5通りとする。そして、これらの光を用いて、それぞれ格子のピッチが異なる5種類のホログラムが形成されるか否かにより、光情報記録媒体2の記録層13の同一記録位置において、クロストークの影響を受けず、且つ、多重度が高い(高密度な)5ビットデータの情報記録再生ができる。
 図8A、図8Bは、それぞれλ、NAを変化させた場合のΔλ1、Δλ2を示すグラフである。各図において、横軸は開口数(NA)、縦軸は半幅(波長の間隔)を示す。また、図中の黒色の丸(下の曲線)、斜線模様の丸(中央の曲線)、白色の丸(上の曲線)は、それぞれλ=405nm、λ=532nm、λ=650nmの場合の結果を示している。
 図8A、図8Bに示すように、Δλ1、Δλ2はいずれも開口数(NA)の2乗に比例している。Δλ1とNAとの関係を式で表すと、λ=405nmの場合、Δλ1=10.0×NA(nm)、λ=532nmの場合、Δλ1=13.1×NA(nm)、λ=650nmの場合、Δλ1=16.0×NA(nm)である。また、Δλ2とNAとの関係を式で表すと、λ=405nmの場合、Δλ2=22.5×NA(nm)、λ=532nmの場合、Δλ2=29.6×NA(nm)、λ=650nmの場合、Δλ2=36.1×NA(nm)である。
 Δλ1、Δλ2はいずれもλに比例している。Δλ1とλ、NAとの関係を式で表すと、Δλ1=0.0247×λ×NA(nm)となる。また、Δλ2とλ、NAとの関係を式で表すと、Δλ2=0.0556×λ×NA(nm)となる。
 このように、記録・再生に用いる光の波長をΔλの間隔で変化させて波長多重記録再生を行う場合において、記録・再生に用いる光の中心波長をλ、対物レンズの開口数をNA、Δλ1、Δλ2を上式で与えられる値とするとき、Δλ1<Δλを満たすようにΔλを定めることにより、クロストークの影響を抑えることができる。さらに、Δλ≦Δλ2を満たすようにΔλを定めることにより、多重度を上げる(記録密度を大きくする)ことができる。
 なお、本実施形態において、回折格子4及び回折格子傾斜装置12を、本発明の波長変化手段として説明したが、これに限定されるわけではなく、波長変化手段は、光源3から出射される光の波長を変化できる構成であれば良い。
 また、本実施形態において、光学的情報処理装置100は、光情報記録媒体2に対して、波長多重記録及び波長多重再生を行える構成であったが、かかる構成に限定されず、波長多重記録及び波長多重再生の少なくとも何れか一方を行える構成であっても良い。
 本出願は、2009年11月26日に出願された日本国特許出願2009-269305号に基づく。本明細書中に、その明細書、特許請求の範囲、図面全体を参照して取り組むものとする。
 1 光学ユニット
 2 光情報記録媒体
 3 光源
 4 回折格子
 5a、5b、5c、5d、5e、5f 凸レンズ
 6 アクティブ波長板
 7 偏光ビームスプリッタ
 8a、8b、8c、8d ミラー
 9a、9b 1/4波長板
 10a、10b 対物レンズ
 11 光検出器
 12 回折格子傾斜装置
 13 記録層
 14a、14b 基板
 15a、15b、15c 集光点
 16a、16b、16c ホログラム
 17a、17b、17c 光(記録時)
 18a、18b、18c 光(記録時)
 19a、19b、19c 光(再生時)
 20 光学ユニット移動装置
 21 コントローラ
 22 アクティブ波長板駆動回路
 23 変調回路
 24 記録信号生成回路
 25 光源駆動回路
 26 増幅回路
 27 再生信号処理回路
 28 復調回路
 29 回折格子制御回路
 30 集光点制御回路
 100 光学的情報処理装置

Claims (8)

  1.  光情報記録媒体に対して、波長多重記録及び波長多重再生の少なくとも何れか一方を行う光学的情報処理装置であって、
     光源から出射した光の波長を変化させる波長変化手段と、
     前記波長変化手段で変化された波長の光を前記光情報記録媒体に集光する集光手段と、を備え、
     前記波長変化手段は、前記集光手段に設けられた対物レンズの開口数を基に決定された波長の間隔で前記光源から出射した光の波長を変化させる、光学的情報処理装置。
  2.  前記波長の間隔は、以下の条件
    Δλ1(nm)=0.0247×λ×NA
    Δλ1<Δλ
    λ(nm);中心波長
    NA;対物レンズの開口数
    Δλ(nm);波長の間隔
    を満たしていることを特徴とする請求項1に記載の光学的情報処理装置。
  3.  前記波長の間隔は、以下の条件
    Δλ2(nm)=0.0556×λ×NA
    Δλ≦Δλ2
    λ(nm);中心波長
    NA;対物レンズの開口数
    Δλ(nm);波長の間隔
    を満たしていることを特徴とする請求項1又は2に記載の光学的情報処理装置。
  4.  光情報記録媒体に対して、波長多重記録及び波長多重再生の少なくとも何れか一方を行う光学的情報処理装置であって、
     それぞれ波長が異なる複数の光を順次出射する光出射手段と、
     前記光出射手段から出射した光を前記光情報記録媒体に集光する集光手段と、
    を備え、
     前記光出射手段は、前記集光手段に設けられた対物レンズの開口数を基に決定された波長の間隔で波長を変化させた前記複数の光を順次出射する、光学的情報処理装置。
  5.  光情報記録媒体に対して、波長多重記録及び波長多重再生の少なくとも何れか一方を行う光学的情報処理方法であって、
     光源から出射した光の波長を変化させる波長変化工程と、
     前記波長変化工程で変化された波長の光を前記光情報記録媒体に集光する集光工程と、を有し、
     前記波長変化工程では、前記集光工程で用いられる対物レンズの開口数を基に決定された波長の間隔で前記光源から出射した光の波長を変化させる、光学的情報処理方法。
  6.  前記波長の間隔は、以下の条件
    Δλ1(nm)=0.0247×λ×NA
    Δλ1<Δλ
    λ(nm);中心波長
    NA;対物レンズの開口数
    Δλ(nm);波長の間隔
    を満たしていることを特徴とする請求項5に記載の光学的情報処理方法。
  7.  前記波長の間隔は、以下の条件
    Δλ2(nm)=0.0556×λ×NA
    Δλ≦Δλ2
    λ(nm);中心波長
    NA;対物レンズの開口数
    Δλ(nm);波長の間隔
    を満たしていることを特徴とする請求項5又は6に記載の光学的情報処理方法。
  8.  光情報記録媒体に対して、波長多重記録及び波長多重再生の少なくとも何れか一方を行う光学的情報処理方法であって、
     それぞれ波長が異なる複数の光を順次出射する光出射工程と、
     前記光出射工程で出射した光を前記光情報記録媒体に集光する集光工程と、を有し、
     前記光出射工程では、前記集光工程で用いられる対物レンズの開口数を基に決定された波長の間隔で波長を変化させた前記複数の光を順次出射する、光学的情報処理方法。
PCT/JP2010/071084 2009-11-26 2010-11-26 光学的情報処理装置及び光学的情報処理方法 WO2011065458A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-269305 2009-11-26
JP2009269305 2009-11-26

Publications (1)

Publication Number Publication Date
WO2011065458A1 true WO2011065458A1 (ja) 2011-06-03

Family

ID=44066562

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/071084 WO2011065458A1 (ja) 2009-11-26 2010-11-26 光学的情報処理装置及び光学的情報処理方法

Country Status (1)

Country Link
WO (1) WO2011065458A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111752131A (zh) * 2020-05-25 2020-10-09 北京邮电大学 一种基于led全息显示的失焦现象优化方法及系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006106734A (ja) * 2004-09-28 2006-04-20 General Electric Co <Ge> ホログラフィック記録およびホログラフィック検索の方法および装置
JP2008071434A (ja) * 2006-09-14 2008-03-27 Sony Corp 光ディスク装置、光ディスク、記録制御方法並びに再生制御方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006106734A (ja) * 2004-09-28 2006-04-20 General Electric Co <Ge> ホログラフィック記録およびホログラフィック検索の方法および装置
JP2008071434A (ja) * 2006-09-14 2008-03-27 Sony Corp 光ディスク装置、光ディスク、記録制御方法並びに再生制御方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111752131A (zh) * 2020-05-25 2020-10-09 北京邮电大学 一种基于led全息显示的失焦现象优化方法及系统
CN111752131B (zh) * 2020-05-25 2021-07-30 北京邮电大学 一种基于led全息显示的失焦现象优化方法及系统

Similar Documents

Publication Publication Date Title
US20110080815A1 (en) Optical recording and regenerating apparatus
JP2007220206A (ja) 光学記録再生装置
KR100965890B1 (ko) 홀로그래픽 정보 기록/재생 장치 및 방법
US7710849B2 (en) Optical head device and optical information recording or reproducing device
JPH0757271A (ja) 光情報再生方法
JP2007280592A (ja) 光情報再生装置、光情報記録再生装置及びこれを用いた光情報再生方法
WO2011065458A1 (ja) 光学的情報処理装置及び光学的情報処理方法
US20060280106A1 (en) Optical record carrier
KR100727779B1 (ko) 광정보 재생장치, 광정보 기록재생장치 및 이를 이용한광정보 재생방법
WO2011081108A1 (ja) 光学的情報処理装置及び光学的情報処理方法
JP2008175925A (ja) 光情報記録再生装置および光記録媒体
JP2007317266A (ja) 回折格子、アイソレータ及び光ピックアップ装置
WO2011065459A1 (ja) 光学的情報処理装置及び光学的情報処理方法
KR100787755B1 (ko) 광정보 처리장치 및 광정보 재생방법
JP5309008B2 (ja) 光情報記録再生装置および光情報再生装置
JP5445141B2 (ja) 光学的情報再生装置および光ヘッド装置
US20050058050A1 (en) Optical pick-up having a spherical aberration compensator and a method of compensating for spherical aberration
JPWO2008108138A1 (ja) 光ヘッド装置および光学式情報記録再生装置ならびに光学式情報記録再生方法
KR100767940B1 (ko) 광정보 재생장치, 광정보 기록재생장치 및 이를 이용한저장매체의 기울기검출방법
JP3970254B2 (ja) 光ピックアップ装置
KR20100011717A (ko) 홀로그래픽 정보 기록 방법
KR20070090578A (ko) 광정보 재생장치, 광정보 기록재생장치 및 이를 이용한광정보 재생방법
JP2006309851A (ja) 光ヘッド装置および情報記録再生装置
JP5239946B2 (ja) 光学ユニットおよび光学的情報記録再生装置
KR100486291B1 (ko) 호환형 광픽업장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10833304

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10833304

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP