WO2011065033A1 - 移動無線端末、受信信号強度測定方法および基地局探索方法 - Google Patents
移動無線端末、受信信号強度測定方法および基地局探索方法 Download PDFInfo
- Publication number
- WO2011065033A1 WO2011065033A1 PCT/JP2010/054403 JP2010054403W WO2011065033A1 WO 2011065033 A1 WO2011065033 A1 WO 2011065033A1 JP 2010054403 W JP2010054403 W JP 2010054403W WO 2011065033 A1 WO2011065033 A1 WO 2011065033A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- communication system
- mobile communication
- processing
- frequency
- received signal
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
- H04W24/10—Scheduling measurement reports ; Arrangements for measurement reports
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B17/00—Monitoring; Testing
- H04B17/30—Monitoring; Testing of propagation channels
- H04B17/309—Measuring or estimating channel quality parameters
- H04B17/318—Received signal strength
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W48/00—Access restriction; Network selection; Access point selection
- H04W48/16—Discovering, processing access restriction or access information
Definitions
- the present invention relates to a mobile radio terminal, a received signal strength measurement method, and a base station search method, and relates to a mobile radio terminal, a received signal strength measurement method, and a base station search method that can measure the signal strength of a frequency band to be used.
- a base station search method that can measure the signal strength of a frequency band to be used.
- the frequency conversion unit receives the signal.
- the time / frequency conversion range is expanded for the received signal and the calculation is performed, and the frequency measurement unit measures the reception intensity of the received signal within the expanded frequency range, and the predetermined reception of the measured signals is received.
- the frequency of a signal higher than the intensity is detected, and the communication unit executes connection processing using the signal of that frequency.
- the maximum frequency bandwidth that a mobile radio terminal can use when communicating with a base station is defined as, for example, 20 MHz. Therefore, when the mobile radio terminal communicates with the base station using the maximum frequency bandwidth of 20 MHz, when the received signal received by the communication unit of the mobile radio terminal is less than a predetermined value, the mobile radio terminal is Even if the technique proposed in No. 1 is used, the time / frequency conversion range can no longer be expanded, and the received signal strength in a band other than during communication cannot be measured.
- Patent Document 1 basically assumes a case where a mobile radio terminal is handed over during communication, and how to search for a base station when the mobile radio terminal is in a standby state or transitions out of service area. Is not specifically described in Patent Document 1. Furthermore, not only mobile communication systems that employ OFDM modulation / demodulation schemes that use time / frequency conversion for baseband processing, but also mobile communication systems that employ modulation / demodulation schemes that do not use time / frequency conversion for baseband processing (for example, WCDMA, How to search for a base station in a mobile communication system that employs a radio access method that does not use time / frequency conversion for baseband processing in the case of mobile radio terminals that can also support CDMA2000, GSM, etc.) There is no description in Japanese Patent Application Laid-Open No. H10-33583.
- the present invention has been made in view of such circumstances, and uses a time / frequency conversion circuit to shorten the time required to measure the signal strength of the frequency band to be used, and to consume the signal strength measurement. It is an object of the present invention to provide a mobile radio terminal, a received signal strength measurement method, and a base station search method that can reduce power.
- a mobile radio terminal includes a radio reception unit that receives a radio signal from a base station belonging to a mobile communication system that uses time-frequency conversion for baseband processing, and a time-frequency conversion circuit.
- Each receiving signal processing means for processing a radio signal from a base station belonging to a mobile communication system, and each region when a frequency band used by the mobile communication system is divided into a plurality of regions with a predetermined bandwidth Mobile communication based on a time frequency conversion result for each predetermined bandwidth by a setting means for sequentially setting the center frequency in the wireless receiving means and a time frequency conversion circuit using each center frequency set by the setting means
- Received signal strength measuring means for measuring the signal strength of the received signal in the received signal processing means within the entire frequency band used by the system. Characterized in that it obtain.
- the mobile radio terminal of the present invention is a base station that belongs to the first mobile communication system that uses time-frequency conversion for baseband processing, or that does not use time-frequency conversion for baseband processing.
- a radio receiving means for receiving a radio signal from a base station belonging to two mobile communication systems, and a time-frequency conversion circuit; a first for processing a radio signal from a base station belonging to the first mobile communication system; Received signal processing means, second received signal processing means for processing a radio signal from a base station belonging to the second mobile communication system, and a frequency band used by the second mobile communication system as a predetermined band Setting means for sequentially setting the center frequency in each area in the wireless reception means when divided into a plurality of areas by width, and a time period using each center frequency set by the setting means Based on the time-frequency conversion result for each predetermined bandwidth by the number conversion circuit, the signal strength of the received signal in the first received signal processing means within the entire frequency band used by the second mobile communication system And receiving signal strength measuring means for measuring.
- a mobile radio terminal includes a radio reception unit that receives a radio signal from a base station belonging to a mobile communication system that uses time-frequency conversion for baseband processing, and a time-frequency conversion circuit.
- a detection means for detecting one or a plurality of null frequencies within the entire range of the frequency band used by the mobile communication system and a detection means
- a second setting unit configured to set the received null frequency as a center frequency in the radio receiving unit, and a symbol of a synchronization signal existing in a predetermined cycle in a radio signal transmitted from a base station belonging to the mobile communication system
- the signal strength of the received signal in the received signal processing means is measured based on the time frequency conversion result by the time frequency conversion circuit for the symbol in which the synchronization signal using the null frequency set as the center frequency by the second setting means exists.
- Receiving signal strength measuring means is measured based on the time frequency conversion result by the time frequency conversion circuit for the symbol in which the synchronization signal using the null frequency set as the center frequency by the second setting means exists.
- a received signal strength measuring method of the present invention includes a radio receiving step for receiving a radio signal from a base station belonging to a mobile communication system using time frequency conversion for baseband processing, and a time frequency.
- a radio receiving step for receiving a radio signal from a base station belonging to a mobile communication system using time frequency conversion for baseband processing, and a time frequency.
- a frequency band used by the mobile communication system based on a setting step for sequentially setting the center frequency in the region and a time frequency conversion result for each predetermined bandwidth using each center frequency set by the processing of the setting step
- the received signal strength measurement step measures the signal strength of the received signal in the processing of the received signal processing step. Characterized in that it comprises and.
- the received signal strength measurement method of the present invention uses a base station belonging to the first mobile communication system that uses time-frequency conversion for baseband processing, or uses time-frequency conversion for baseband processing.
- a radio reception step for receiving a radio signal from a base station belonging to a second mobile communication system not in operation, and a first for performing a time-frequency conversion and processing a radio signal from a base station belonging to the first mobile communication system A received signal processing step, a second received signal processing step for processing a radio signal from a base station belonging to the second mobile communication system, and a frequency band used by the second mobile communication system as a predetermined band
- a setting step that sequentially sets the center frequency in each region when dividing into multiple regions by width, and each center frequency set by the processing of the setting step The signal of the received signal in the process of the first received signal processing step within the entire range of the frequency band used by the second mobile communication system based on the time-frequency conversion result for each predetermined bandwidth using And a received signal strength measuring step for measuring the strength.
- a received signal strength measuring method of the present invention includes a radio receiving step for receiving a radio signal from a base station belonging to a mobile communication system using time frequency conversion for baseband processing, and a time frequency.
- Receiving signal processing step for performing conversion and processing a radio signal from a base station belonging to the mobile communication system, and each region when the frequency band used by the mobile communication system is divided into a plurality of regions with a predetermined bandwidth
- Mobile communication system on the basis of a first setting step for sequentially setting the center frequency at the time and a time-frequency conversion result for each predetermined bandwidth using each center frequency set by the processing of the first setting step
- the detection step detects one or more null frequencies within the entire frequency band used by the A second setting step of setting the null frequency as a center frequency, a symbol of a synchronization signal existing in a predetermined cycle in a radio signal transmitted from a base station belonging to the mobile communication system, and a second setting Received signal strength measurement step for measuring the signal strength of the received signal in the
- a base station search method of the present invention includes a radio reception step of receiving a radio signal from a base station belonging to a mobile communication system that uses time-frequency conversion for baseband processing, and time-frequency conversion.
- a radio reception step of receiving a radio signal from a base station belonging to a mobile communication system that uses time-frequency conversion for baseband processing, and time-frequency conversion.
- Each region when the received signal processing step for processing and processing the radio signal from the base station belonging to the mobile communication system and the frequency band used by the mobile communication system is divided into a plurality of regions with a predetermined bandwidth
- the frequency band used by the mobile communication system on the basis of the setting step for sequentially setting the center frequency at the base station and the time frequency conversion result for each predetermined bandwidth using each center frequency set by the processing of the setting step.
- a received signal strength measuring step for measuring the signal strength of the received signal in the processing of the received signal processing step within all ranges;
- a base station belonging to the mobile communication system is processed through the processing of the radio reception step and the processing of the reception signal processing step using the center frequency having the signal strength of the reception signal larger than a predetermined reference value regarding the signal strength of the reception signal.
- a base station search step for searching.
- the base station search method of the present invention does not use a base station belonging to the first mobile communication system that uses time-frequency conversion for baseband processing or time-frequency conversion for baseband processing.
- a radio reception step for receiving a radio signal from a base station belonging to the second mobile communication system; a first for performing time-frequency conversion and processing a radio signal from the base station belonging to the first mobile communication system;
- Steps for setting the center frequency in each region in the case of division into a plurality of regions in order and the center frequencies set by the processing of the setting step are used.
- the signal strength of the received signal in the processing of the first received signal processing step is calculated within the entire frequency band used by the second mobile communication system.
- a reception signal strength measurement step to be measured, and a wireless reception step processing and a second reception signal processing step processing using a center frequency having a signal strength of the reception signal larger than a predetermined reference value relating to the signal strength of the reception signal A base station search step of searching for a base station belonging to the second mobile communication system via
- a base station search method of the present invention includes a radio reception step of receiving a radio signal from a base station belonging to a mobile communication system that uses time-frequency conversion for baseband processing, and time-frequency conversion.
- a received signal processing step for processing a radio signal from a base station belonging to the mobile communication system, and each region when the frequency band used by the mobile communication system is divided into a plurality of regions with a predetermined bandwidth A mobile communication system based on a first setting step for sequentially setting the center frequency of the first frequency and a time-frequency conversion result for each predetermined bandwidth using each center frequency set by the processing of the first setting step.
- a second setting step for setting a null frequency as a center frequency, a symbol of a synchronization signal existing in a predetermined cycle in a radio signal transmitted from a base station belonging to a mobile communication system, and a second setting step A received signal strength measuring step for measuring the signal strength of the received signal in the processing of the received signal processing step based on the time-frequency conversion result for the symbol in which the synchronization signal using the null frequency set as the center frequency by processing exists;
- the present invention it is possible to shorten the time required to measure the signal strength of the frequency band to be used by using the time / frequency conversion circuit, and to reduce the power consumption accompanying the signal strength measurement.
- FIG. 1 is a block diagram showing an internal configuration of a mobile radio terminal according to a first embodiment of the present invention.
- FIG. 6 is a flowchart for explaining an initial base station search (initial base station search) process of the mobile communication system A (LTE system) in the mobile radio terminal of FIG.
- wireless terminal implements time and frequency conversion by step S21 of FIG. 5, and step S26 mentioned later.
- the mobile radio terminal 1 includes a mobile communication system (for example, WiMAX (World Interoperability for Microwave Access) or LTE (Long Term) that employs an OFDM modulation / demodulation method that uses time / frequency conversion for baseband processing. Evolution), etc.) as well as mobile communication systems (eg, WCDMA, CDMA2000, GSM, etc.) that employ a modulation / demodulation method that does not use time / frequency conversion for baseband processing.
- a mobile communication system for example, WiMAX (World Interoperability for Microwave Access) or LTE (Long Term) that employs an OFDM modulation / demodulation method that uses time / frequency conversion for baseband processing. Evolution), etc.
- mobile communication systems eg, WCDMA, CDMA2000, GSM, etc.
- a mobile communication system time / frequency conversion utilization system
- mobile communication system A time / frequency conversion utilization system
- time / frequency conversion is used for baseband processing
- mobile communication system B time / frequency conversion non-use system
- mobile communication system B time / frequency conversion non-use system
- FIG. 1 shows an internal configuration of the mobile radio terminal 1 according to the first embodiment of the present invention.
- the mobile radio terminal 1 includes a transmission / reception antenna 11, a transmission / reception duplexer 12, a radio reception unit 13, a reception signal processing unit 14, a data processing unit 15, a PCM codec 16, a reception amplifier 17, a receiver 18, a transmission amplifier 19, a microphone 20, A control unit 21, a received signal strength measurement unit 22, an operation unit 23, a display unit 24, a storage unit 25, and a transmission system circuit 26 are provided.
- the reception signal processing unit 14 includes a mobile communication system A reception signal processing unit 14a and a mobile communication system B reception signal processing unit 14b.
- the transmission / reception antenna 11 transmits a radio wave of the mobile communication system A or the mobile communication system B to which the mobile radio terminal 1 corresponds, or the mobile communication system A or the mobile communication system B to which the mobile radio terminal 1 corresponds. Receive radio waves.
- the transmission / reception duplexer 12 includes a circulator, a duplexer, and the like, and sends the radio wave received (received) by the transmission / reception antenna 11 to the wireless reception unit 13. Further, the transmission / reception duplexer 12 sends the signal input from the transmission system circuit 26 to the transmission / reception antenna 11.
- the radio reception unit 13 includes a bandpass filter, a gain adjustment circuit, an A / D converter, and the like, receives a radio signal having a carrier frequency instructed from the control unit 21, and outputs a local oscillation signal output from the frequency synthesizer. Mixing and frequency conversion (down-conversion) into an intermediate frequency signal, and orthogonal demodulation of the down-converted intermediate frequency signal generates a reception baseband signal.
- the band pass filter of the radio reception unit 13 receives a radio signal transmitted from a base station belonging to the mobile communication system A or the mobile communication system B, and removes noise outside the desired band from the received signal.
- the gain adjustment circuit of the wireless reception unit 13 adjusts the signal amplitude to be handled by an A / D converter provided at the subsequent stage of the gain adjustment circuit.
- the A / D converter of the wireless receiver 13 converts the signal that has passed through the band-pass filter into a baseband digital signal.
- the reception signal processing unit 14 performs baseband processing according to the system (mobile communication system A or mobile communication system B) that communicates the reception baseband signal (reception baseband digital signal) output from the wireless reception unit 13. Do.
- the reception signal processing unit 14 includes a mobile communication system A reception signal processing unit 14a as a baseband processing unit corresponding to the mobile communication system A and a mobile unit as a baseband processing unit corresponding to the mobile communication system B. It is provided with the received signal processing unit 14b for the communication system B.
- the received signal processing unit 14a for the mobile communication system A performs baseband processing corresponding to a mobile communication system (for example, LTE) that uses time / frequency conversion for baseband processing.
- a mobile communication system for example, LTE
- the received signal processing unit 14a for the mobile communication system A includes a DFT unit (time / frequency conversion circuit), a frequency channel separation unit, a descrambling unit, a channel estimation unit, a channel equalization unit, a data channel signal demodulation unit. And a data signal decoding unit.
- the baseband digital signal is converted from a time domain signal to a frequency domain signal, that is, a sub domain by a DFT unit (discrete Fourier transform unit, that is, time / frequency conversion circuit). Divided into signals for each carrier.
- the DFT unit outputs the output signal divided for each subcarrier to the frequency channel separation unit.
- the frequency channel separation unit separates the pilot channel signal and the data channel signal respectively assigned to the subcarriers.
- the frequency channel separation unit outputs each separated signal (pilot channel signal and data channel signal) to the descrambling unit 46.
- the descrambling unit 46 performs descrambling using the scrambling code sequence applied by the OFDM transmitter (base station) for each signal, and outputs the descrambled signal to the channel equalization unit. It is assumed that the scrambling code sequence applied by the OFDM transmitter (base station) is known on the mobile radio terminal 1 side as an OFDM receiver.
- the frequency channel separation unit outputs the separated pilot channel signal to the channel estimation unit.
- the channel estimator performs channel estimation by averaging or interpolating pilot channel signals.
- the channel estimation unit outputs a channel estimation value indicating the channel response to the channel equalization unit.
- the channel equalization unit performs channel equalization on each data channel signal using the channel estimation value from the channel estimation unit.
- the data channel signal after channel equalization is demodulated by the data channel signal demodulator, and the data signal decoding unit reproduces the bit string that is the source of the data signal.
- the time / frequency conversion circuit may use FFT (Fast Fourier Transform).
- the received signal processing unit 14b for the mobile communication system B performs baseband processing corresponding to a mobile communication system (for example, WCDMA) that does not use time / frequency conversion for baseband processing.
- the data processing unit 15 converts the baseband signal that has been baseband processed by the reception signal processing unit 14 into data and voice.
- the control unit 21 includes a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like.
- the CPU of the control unit 21 executes various processes in accordance with various application programs and control programs including an operating system (OS) loaded into the RAM from the program stored in the ROM or the storage unit 25 and performs various processes.
- the mobile radio terminal 1 is comprehensively controlled by generating a control signal and supplying it to each unit.
- the RAM appropriately stores data necessary for the CPU to execute various processes.
- the control unit 21 has a control function for realizing voice communication and data communication by the mobile communication system A or the mobile communication system B, and the carrier frequency used by the wireless reception unit 13 and the transmission system circuit 26. And a search for a pilot signal is performed based on the reception result in the wireless reception unit 13.
- the control unit 21 also has a control function for switching the wireless communication method set in the reception signal processing unit 14 at a required timing.
- the control unit 21 includes one or more CPUs as necessary. In the embodiment of the present invention, an example in which two CPUs are provided is shown. However, the present invention is not limited to this, and control may be performed with one CPU, or with three or more CPUs. It may be.
- the communication system control unit 21a includes a communication processing CPU (not shown) and performs control used for communication processing.
- the communication system control unit 21a includes an antenna 11, a radio reception unit 13, a transmission system circuit 26, a reception signal processing unit 14, a data processing unit 15, a PCM codec 16, a reception amplifier 17, a receiver 18, a transmission amplifier 19, and a microphone 20. Controls the communication process using etc.
- the UI system control unit 21b includes a UI processing CPU (not shown), and controls UI processing using the storage unit 25, the operation unit 23, the display unit 24, a clock circuit (not shown), and the like.
- the storage unit 25 includes, for example, a flash memory element that is an electrically rewritable and erasable nonvolatile memory, an HDD (Hard Disc Drive), and the like, and various application programs executed by the CPU of the control unit 21 and various types. Data group, control program and control data of the mobile radio terminal 1, and identification information uniquely assigned to the mobile radio terminal 1 or the user. In addition to this, the storage unit 25 appropriately stores telephone book data in which names and telephone numbers are associated, data acquired by data communication, and downloaded data.
- the mobile radio terminal 1 also includes a power supply circuit that generates a predetermined operating power supply voltage Vcc based on the output of the battery and supplies it to each circuit unit, and a clock circuit (timer) that measures the current time.
- the mobile radio terminal 1 includes a reception amplifier 17, a receiver 18 that outputs a reception voice signal, a transmission amplifier 19, a microphone 20 that inputs a transmission voice signal, an operation unit 23 that receives a request from a user, and reception data.
- the display part 24 which displays the image based on is provided.
- the received signal strength measuring unit 22 measures the received signal strength in the received signal processing unit 14 and outputs the measurement result to the control unit 21.
- the transmission system circuit 26 is a series of processes such as transmission baseband processing and radio processing for transmitting communication data to a base station belonging to the mobile communication system A or the mobile communication system B that can be used by the mobile radio terminal 1. I do.
- the mobile radio terminal 1 according to the first embodiment of the present invention uses not only the mobile communication system A that employs a radio access scheme based on OFDM, OFDMA, etc. that uses time / frequency conversion for baseband processing, but also baseband processing.
- a mobile communication system B that employs a radio access method that does not use time / frequency conversion can also be supported. Therefore, when searching for a base station of the mobile communication system B, the mobile radio terminal 1 according to the first embodiment of the present invention has a time / frequency conversion function of the received signal processing unit 14a for the mobile communication system A.
- the signal strength of the received signal from the base station of the mobile communication system B is measured, and the base station of the mobile communication system B is searched using the measurement result (search the base station).
- search the base station search process of the mobile communication system B using this method will be described.
- the base station search process of the mobile communication system B in the mobile radio terminal 1 of FIG. 1 will be described with reference to the flowchart of FIG. In the case of the base station search process of FIG. 2, it is basically assumed that the mobile radio terminal 1 is waiting at a base station belonging to the mobile communication system A. Without being limited thereto, the mobile radio terminal 1 may be in a state other than waiting in the base station belonging to the mobile communication system A, or may be in communication.
- base station search is a so-called cell search process, and the frequency, reception timing, and cell number (ID) of the cell with the smallest propagation loss to which the mobile radio terminal 1 should be connected. ) Is detected.
- step S1 when the mobile radio terminal 1 is in a standby state at a base station belonging to the mobile communication system A, the communication system control unit 21a of the control unit 21 searches for a base station (base station) of the mobile communication system B.
- the communication system control unit 21a controls the radio reception unit 13 so as to measure the signal strength of the frequency band used by the mobile communication system B, and sets the center frequency. To do. That is, the communication system control unit 21a sets a local oscillator frequency for down-conversion to this center frequency, and selects a band pass filter.
- step S2 the communication system control unit 21a controls the received signal processing unit 14a for the mobile communication system A, and uses the set center frequency, the time / frequency by the received signal processing unit 14a for the mobile communication system A. Perform the conversion.
- the reception signal processing unit 14a for the mobile communication system A is controlled by the time / frequency conversion circuit (for example, among the processing circuits in the reception signal processing unit 14a for the mobile communication system A) according to the control of the communication control unit 21a. Only the DFT unit, the FFT unit, etc.) are activated, time / frequency conversion processing is performed (dividing the time domain signal into the frequency domain signal), and the result is output to the received signal strength measuring unit 22.
- the reception signal strength measurement unit 22 measures the signal strength of the reception signal in the reception signal processing unit 14 a for the mobile communication system A, and outputs the measurement result to the control unit 21.
- the communication system control unit 21 a determines whether or not the time / frequency conversion process has been completed in the entire frequency band used by the mobile communication system B.
- the communication system control unit 21a has not completed the time / frequency conversion processing in the entire frequency band used by the mobile communication system B (that is, the mobile communication system B becomes a base station search target). If it is determined that there is still a frequency band for which the time / frequency conversion process has not yet been performed for the frequency band, the process returns to step S1. Thereby, the mobile radio terminal 1 can re-control the radio reception unit 13 so that the signal strength can be measured for the frequency band that has not yet been subjected to the time / frequency conversion process.
- step S4 when the communication system control unit 21a determines in step S3 that the time / frequency conversion process has been completed in the entire frequency band used by the mobile communication system B, the communication system control unit 21a performs step S4.
- the frequency (with a received signal strength greater than a predetermined reference value (Th) relating to the signal strength in the frequency band used by the mobile communication system B) It is determined whether or not there is a center frequency.
- the communication system control unit 21a determines in step S4 that there is at least one frequency having a received signal strength greater than a predetermined reference value (Th) regarding the signal strength for the frequency band used by the mobile communication system B, The process proceeds to step S5.
- step S4 when the communication system control unit 21a determines in step S4 that there is no frequency having a received signal strength greater than a predetermined reference value (Th) for the signal strength in the frequency band used by the mobile communication system B, the base station The search process ends.
- step S5 the communication system control unit 21a stores in the storage unit 25 all frequencies (center frequency) having a received signal strength greater than the predetermined reference value (Th) found in step S4.
- step S6 the communication system control unit 21a activates the mobile communication system B reception signal processing unit 14b, and selects a frequency having a reception signal strength greater than a predetermined reference value (Th) stored in the storage unit 25.
- the base station search (base station search) of the mobile communication system B is performed.
- the storage unit 25 stores a plurality of frequencies having a received signal strength greater than a predetermined reference value (Th)
- the communication system control unit 21a uses each frequency stored in the storage unit 25, A base station search of the mobile communication system B is performed.
- the mobile radio terminal 1 uses time / frequency conversion when the mobile radio terminal 1 is in a standby state at a base station belonging to the mobile communication system A.
- the base station search of the mobile communication system B that is not present is performed, the received signal strength in the frequency band used by the mobile communication system B using the time / frequency conversion circuit of the received signal processing unit 14a for the mobile communication system A Measure. By doing in this way, it becomes possible to shorten time required for the signal strength measurement of the frequency band which the mobile communication system B utilizes.
- FIGS. 3 and 4 the effect of the mobile radio terminal 1 according to the first embodiment of the present invention will be described with reference to FIGS. 3 and 4.
- FIG. 3 shows a state of a received signal strength measurement process when a conventional mobile radio terminal performs a base station search of a mobile communication system B that does not use time / frequency conversion.
- the conventional mobile radio terminal uses the center frequency candidates that can be used in the mobile communication system B that does not use time / frequency conversion. It must be carried out, and the center frequency must be adjusted for every available center frequency candidate, and the signal strength must be measured from the adjustment value of the gain adjustment circuit (corresponding to the wireless reception unit 13 in FIG. 1) in the wireless reception unit. did not become.
- the center frequency candidates are arranged at intervals determined by the standard.
- the received signal processing unit 14a for the mobile communication system A includes the received signal strength measurement at the time of the base station search of the mobile communication system B.
- a fixed bandwidth using the time / frequency conversion circuit for example, the maximum frequency bandwidth that can be used in the standard at the time of communication with the base station, etc.
- a bandwidth smaller than the maximum frequency bandwidth may be used.
- FIG. 4 shows a state of received signal strength measurement processing when the mobile radio terminal 1 according to the first embodiment of the present invention performs a base station search of the mobile communication system B that does not use time / frequency conversion. Yes. Specifically, as shown in FIG.
- the mobile radio terminal 1 sets the center frequencies f1 to fn by the processes of steps S1 to S3 in FIG. 2, and then receives the signal processing unit 14a for the mobile communication system A.
- the mobile communication system A is an LTE system and the mobile radio terminal 1 can execute time / frequency conversion processing for each frequency bandwidth of 20 [MHz]
- the third generation mobile according to the above example
- the mobile radio terminal 1 uses the time / frequency conversion circuit of the reception signal processing unit 14 a for the mobile communication system A to generate time.
- the frequency bandwidth for performing the frequency conversion process is a uniform bandwidth based on the center frequency set within the frequency bandwidth, but is not limited to such a case. It is only necessary to divide the entire range of the frequency band to be processed into a plurality of sections (regions), and the frequency bandwidth used when dividing the plurality of sections is a plurality of different bandwidths for each section. Alternatively, the bandwidth may be different by two.
- the mobile radio terminal 1 according to the first embodiment of the present invention has the following incidental effects compared to the conventional mobile radio terminal.
- the mobile radio terminal 1 according to the first embodiment of the present invention uses a mobile communication system B that does not use time / frequency conversion when waiting or communicating with the mobile communication system A using time / frequency conversion. 2 and 4, the received signal strength of the mobile communication system B is received using the time / frequency conversion circuit in the received signal processing unit 14 a for the mobile communication system A, as shown in FIGS. Therefore, it is only necessary to drive the received signal processing unit 14b for the mobile communication system B when the received signal strength is higher than a certain threshold value (predetermined reference value Th for the signal strength). Therefore, the mobile radio terminal 1 according to the first embodiment of the present invention can avoid unnecessary circuit activation when starting a signal strength measurement process from the beginning and performing a base station search. The processing time and current consumption required for starting a simple circuit can be reduced.
- the mobile radio terminal 1 performs not only a mobile communication system employing an OFDM modulation / demodulation method using time / frequency conversion for baseband processing, but also time / frequency conversion for baseband processing.
- the mobile communication system adopts a modulation / demodulation method that is not used.
- the mobile communication system A that uses time / frequency conversion is particularly suitable for standby or communication. Suppose that it is desired to perform a base station search of the mobile communication system B that does not use frequency conversion.
- the present invention is not limited to such a case, and the mobile radio terminal 1 compatible with the mobile communication system A that employs an OFDM modulation / demodulation method that uses time / frequency conversion for at least baseband processing can perform intermittent reception at a predetermined intermittent reception cycle.
- a mobile communication system that performs time / frequency conversion processing a plurality of times within 20 MHz of the maximum frequency bandwidth defined in the standard when performing operations and other than intermittent reception using PICH (Paging Indicator Channel)
- PICH Paging Indicator Channel
- the base station of the mobile communication system A uses a center frequency having a received signal strength larger than a predetermined reference value Th obtained as a result of performing time / frequency conversion processing in the entire frequency band used by A. You may make it search a station.
- the mobile radio terminal 1 performs an intermittent reception operation at a predetermined intermittent reception cycle (for example, a cycle of 5 seconds).
- the “intermittent reception operation” refers to wireless communication by activating the communication system control unit 21a only when a signal transmitted from the base station is necessary without any user operation in order to save power. This means an operation of starting the receiving unit 13 or the received signal processing unit 14 and executing predetermined processing (network synchronization processing or the like).
- the CPU of the communication system control unit 21a is activated to execute network synchronization processing (CPU activated state), and the CPU of the communication system control unit 21a is not activated (sleep mode). State).
- the mobile radio terminal 1 is in the standard sleep state when performing an intermittent reception operation at a predetermined intermittent reception cycle and when the mobile wireless terminal 1 is originally in a sleep state other than the intermittent reception using PICH (Paging Indicator Channel).
- the time / frequency conversion process is performed a plurality of times within 20 MHz of the maximum frequency bandwidth defined above, and the time / frequency conversion process is performed in the entire frequency band used by the mobile communication system A.
- the time / frequency conversion range exceeds the limit of 20 MHz of the maximum frequency bandwidth determined by the standard.
- the received signal strength of the entire frequency band used by the mobile communication system A can be measured when the mobile communication system A is not in communication.
- the mobile radio terminal 1 performs not only a mobile communication system employing an OFDM modulation / demodulation method using time / frequency conversion for baseband processing, but also time / frequency conversion for baseband processing.
- the mobile communication system adopts a modulation / demodulation method that is not used.
- the mobile communication system A that uses time / frequency conversion is particularly suitable for standby or communication. Suppose that it is desired to perform a base station search of the mobile communication system B that does not use frequency conversion.
- a mobile radio terminal 1 that can be used will be described in a second embodiment of the present invention below.
- the mobile radio terminal 1 according to the second embodiment of the present invention is configured to be compatible with at least a mobile communication system that employs an OFDM modulation / demodulation scheme that uses time / frequency conversion for baseband processing. It may or may not be configured to be compatible with a mobile communication system that employs a radio access scheme that does not use time / frequency conversion for band processing.
- the mobile radio terminal 1 is configured to be compatible with both mobile communication systems, like the mobile radio terminal 1 of FIG.
- the description of the configuration is the same as the description of FIG.
- the mobile communication system A that employs the OFDM modulation / demodulation method using time / frequency conversion for baseband processing is an LTE system.
- the initial base station search (initial base station search) process of the mobile communication system A (LTE system) in the mobile radio terminal 1 of FIG. 1 will be described with reference to the flowchart of FIG.
- the initial base station search refers to an LTE system base station search in a state in which the mobile radio terminal 1 has not previously acquired information on the center frequency, such as when searching for an unknown service frequency by international roaming or the like. It is defined as
- step S21 when it is determined that the communication system control unit 21a of the control unit 21 starts the base station search (base station search) of the mobile communication system A, the communication system control unit 21a
- the wireless reception unit 13 is controlled to set the center frequency so that the signal strength of the frequency band used by the communication system A can be measured. That is, the communication system control unit 21a sets a local oscillator frequency for down-conversion to this center frequency, and selects a band pass filter.
- FIG. 6 is an explanatory diagram illustrating a center frequency setting method when the mobile radio terminal 1 performs time / frequency conversion in step S21 of FIG. 5 and step S26 described later.
- P1 to P3 in FIG. 6 indicate the center frequency setting locations that the mobile radio terminal 1 implements in step S21 in FIG. P1 to P3 in FIG. 6 are set at predetermined frequency intervals.
- the mobile radio terminal 1 checks the distribution of the received signal power intensity over the entire band of the mobile communication system A based on this setting in order to detect the frequency that becomes null in step S24. Perform time / frequency conversion.
- the communication system control unit 21a controls the received signal processing unit 14a for the mobile communication system A, and uses the set center frequency, the time / frequency by the received signal processing unit 14a for the mobile communication system A. Perform the conversion.
- the reception signal processing unit 14a for the mobile communication system A is controlled by the time / frequency conversion circuit (for example, among the processing circuits in the reception signal processing unit 14a for the mobile communication system A) according to the control of the communication control unit 21a. Only the DFT unit, the FFT unit, etc.) are activated, time / frequency conversion processing is performed (dividing the time domain signal into the frequency domain signal), and the result is output to the received signal strength measuring unit 22.
- the reception signal strength measurement unit 22 measures the signal strength of the reception signal in the mobile communication system A reception signal processing unit 14a and outputs the measurement result to the communication system control unit 21a.
- the time / frequency conversion performed by the mobile radio terminal 1 in step S22 is a symbol time performed for decoding the received signal of the mobile communication system A (in the LTE system, this symbol time is approximately 71 [ ⁇ s]). Instead of every time / frequency conversion, it is a time / frequency conversion performed repeatedly over at least two or more symbol times (OFDM symbol times).
- the time for which the mobile radio terminal 1 repeats the time / frequency conversion is, for example, about one radio frame (in the LTE system, one radio frame is composed of ten 1 [ms] period subframes, and 10 [ms]. May be).
- the reason why the mobile radio terminal 1 repeatedly performs time / frequency conversion over a plurality of symbol times of at least two is that, in the case of an LTE system, the radio resource consisting of time and frequency This is because the data to be allocated may be sparsely arranged, so that it is difficult to detect a null frequency in step S24 described later simply by performing time / frequency conversion for each symbol time.
- step S23 the communication system control unit 21a determines whether or not the time / frequency conversion process has been completed in the entire frequency band used by the mobile communication system A. In step S23, the communication system control unit 21a has not completed the time / frequency conversion process in the entire frequency band used by the mobile communication system A (that is, the base station search target of the mobile communication system A). If it is determined that there is still a frequency band for which the time / frequency conversion process has not been performed for the frequency band, the process returns to step S21. Thereby, the mobile radio terminal 1 can re-control the radio reception unit 13 so that the signal strength can be measured for the frequency band that has not yet been subjected to the time / frequency conversion process.
- step S24 the communication system control unit 21a determines whether or not there is a frequency that becomes “null” based on the result of the time / frequency conversion performed in the processing of steps S21 to S23 (that is, there is a frequency).
- Detect null frequency refers to a frequency at which the signal intensity (signal amplitude) becomes almost zero (theoretically zero) at every frequency interval corresponding to the period of the digital signal.
- FIG. 7 is an explanatory diagram illustrating a method of determining a frequency that is “null”.
- the mobile radio terminal 1 performs time / frequency conversion at each of the times t1 to t11, and the result is plotted in f1 to f9.
- FIG. 7 is an explanatory diagram illustrating a method of determining a frequency that is “null”.
- the mobile radio terminal 1 performs time / frequency conversion at each of the times t1 to t11, and the result is plotted in f1 to f9.
- FIG. 7 is an explanatory diagram illustrating a method of determining a frequency that is “null”.
- the received signal power intensity is discretely displayed at times t1 to t11, but these time intervals can be considered as one symbol time of the LTE system.
- the received signal power intensity calculated from the result of the time / frequency conversion at the frequency f5 steadily shows 0 between t1 and t11. Therefore, in the case of FIG. 7, the communication system control unit 21a determines that the frequency f5 is a frequency at which the received signal power intensity is not detected steadily, and determines this as a frequency that becomes “null”.
- the received signal power intensity at the frequency f5 is displayed as 0, but in reality, it is not completely 0 due to the influence of noise or the like existing in the actual environment of the mobile radio terminal 1.
- step S24 If the communication system control unit 21a determines that there is a null frequency in step S24, the process proceeds to step S25. On the other hand, when the communication system control unit 21a determines in step S24 that there is no null frequency, the process ends. If the communication system control unit 21a determines that there is a null frequency in step S24, the communication system control unit 21a instructs the storage unit 25 to store all null frequencies (null frequency) in step S25. . The storage unit 25 stores all frequencies that are null.
- step S26 the communication system control unit 21a selects one null frequency stored in the storage unit 25, and sets the selected one null frequency as the center frequency received by the mobile radio terminal 1.
- the wireless receiver 13 is controlled so that the selected one null frequency matches the center frequency of the wireless receiver 13. That is, the communication system control unit 21a sets a local oscillator frequency for down-conversion to this center frequency, and controls the radio reception unit 13 so as to select a band pass filter.
- the mobile radio terminal 1 can detect the frequencies Q1 to Q3 in FIG. 6 as null frequencies.
- step S26 the communication system control unit 21a controls the wireless reception unit 13 and sets a center frequency for decoding P-SS in step S27.
- step S27 the communication system control unit 21a performs decoding (decoding) of P-SS (Primary Synchronization signal) among the downlink signals transmitted from the base stations belonging to the LTE system. -Identify symbol timing by performing SS decoding.
- the first synchronization signal is a signal used for cell search for detecting a base station to which the mobile radio terminal 1 is to be connected. Thereby, the mobile radio terminal 1 can specify P-SS symbols periodically present in radio signals transmitted from base stations belonging to the LTE system.
- the mobile radio terminal 1 can be used for power detection during the initial cell search by measuring the received signal power of the P-SS symbol.
- the mobile radio terminal 1 decodes the P-SS (first synchronization signal) and adjusts the symbol timing.
- SS Secondary Synchronization signal
- step S28 the communication system control unit 21a controls the received signal processing unit 14a for the mobile communication system A, and uses the center frequency set in step S26 for the mobile object for the symbol in which P-SS exists.
- the time / frequency conversion is performed by the received signal processing unit 14a for the communication system A.
- the received signal processing unit 14a for the mobile communication system A performs time / frequency conversion processing under the control of the communication system control unit 21a, and outputs the result to the received signal strength measuring unit 22.
- the reception signal strength measurement unit 22 measures the signal strength of the reception signal in the mobile communication system A reception signal processing unit 14a and outputs the measurement result to the communication system control unit 21a.
- the processing of step S27 and step S28 has been described separately.
- the received signal power measurement unit 22 simultaneously receives the P-SS received signal at the same time as the detection of P-SS in step S27. The strength may be measured.
- step S29 the communication system control unit 21a, based on the measurement result of the received signal from the received signal strength measuring unit 22, uses a predetermined reference value (Th) related to the signal strength for the frequency band used by the mobile communication system A. It is determined whether or not the frequency (center frequency) has a large received signal strength.
- the communication system control unit 21a determines in step S29 that the frequency band used by the mobile communication system A is a frequency having a received signal strength greater than a predetermined reference value (Th) relating to the signal strength, the process proceeds to step S30.
- step S29 when the communication system control unit 21a determines in step S29 that the frequency band used by the mobile communication system A is not a frequency having a received signal strength greater than a predetermined reference value (Th) regarding the signal strength, Proceed to step S31.
- step S30 the communication system control unit 21a stores in the storage unit 25 a frequency (center frequency) having a received signal strength greater than the predetermined reference value (Th) found in step S29.
- step S31 the communication system control unit 21a determines whether or not P-SS decoding has been performed on all null center frequencies stored in the storage unit 25 in step S25.
- step S31 If it is determined in step S31 that the communication system control unit 21a has not performed the P-SS decoding for all null center frequencies stored in the storage unit 25, the process returns to step S26, and the steps after step S26 are performed. The process is repeatedly executed, and P-SS decoding is performed for all null center frequencies stored in the storage unit 25. On the other hand, if it is determined in step S31 that the communication system control unit 21a has performed P-SS decoding for all null center frequencies stored in the storage unit 25, the communication system control unit 21a performs predetermined processing in step S32.
- a base station search (base station search) of the mobile communication system A is performed using a center frequency having a received signal strength larger than the reference value (Th). At this time, when there are a plurality of center frequencies having a received signal strength larger than a predetermined reference value (Th), the communication system control unit 21a performs a base station search of the mobile communication system A using each center frequency. To do.
- the signal strength measurement at the time of base station search of the mobile communication system A must be performed on the center frequency candidate (100 KHz unit) that can be used in the mobile communication system A.
- the received signal strength measurement at the time of base station search of the mobile communication system A exists in the received signal processing unit of the mobile communication system A.
- a time / frequency conversion circuit can be used for each band. Therefore, as shown in FIG. 6, the number of times the mobile radio terminal 1 sets the center frequency is reduced, and the signal strength measurement time in the base station search of the mobile communication system A can be greatly shortened.
- the mobile radio terminal 1 according to the second embodiment of the present invention can be applied to a mobile communication system that employs an OFDM modulation / demodulation method that uses time / frequency conversion for at least baseband processing.
- the present invention can also be applied to a terrestrial digital broadcast communication system employing an OFDM modulation / demodulation method using time / frequency conversion.
- a mobile radio terminal 1 receives a radio signal from a base station belonging to a mobile communication system that uses time-frequency conversion for baseband processing, has a time-frequency conversion circuit, and has a mobile communication system.
- a radio signal from a base station belonging to is processed and a frequency band used by the mobile communication system is divided into a plurality of areas with a predetermined bandwidth, a center frequency in each area is sequentially set in the radio receiving means. Based on the time frequency conversion result for each predetermined bandwidth by the time frequency conversion circuit using each set center frequency, the signal strength of the received signal within the entire frequency band used by the mobile communication system Can be measured.
- the steps of the flowchart show an example of processing that is performed in time series in the order described. However, even if they are not necessarily processed in time series, they are executed in parallel or individually. The processing to be performed is also included.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Quality & Reliability (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Mobile Radio Communication Systems (AREA)
- Circuits Of Receivers In General (AREA)
Abstract
本発明の移動無線端末は、ベースバンド処理に時間周波数変換を用いる移動体通信システムに属する基地局からの無線信号を受信し、時間周波数変換回路を有し、移動体通信システムに属する基地局からの無線信号を処理し、移動体通信システムが利用する周波数帯域を所定の帯域幅で複数の領域に分割した場合における各領域での中心周波数を順次無線受信手段に設定し、設定された各中心周波数を用いた時間周波数変換回路による所定の帯域幅ごとの時間周波数変換結果に基づいて、移動体通信システムが利用する周波数帯域のすべての範囲内で、受信信号処理手段における受信信号の信号強度を測定することを特徴とする。
Description
本発明は移動無線端末、受信信号強度測定方法および基地局探索方法に係り、利用する周波数帯域の信号強度を測定することができるようにした移動無線端末、受信信号強度測定方法および基地局探索方法に関する。
最近では、ベースバンド処理に時間・周波数変換を用いるOFDM(Orthogonal Frequency Division Multiplexing)変復調方式を採用する移動体通信システム(例えばWiMAX(World Interoperability for Microwave Access)やLTE(Long Term Evolution)など)が知られている。また、ベースバンド処理に時間・周波数変換を用いるOFDM変復調方式を採用する移動体通信システムにおいて、ハンドオーバなどの通信処理を高速かつ高品質に実現することができる通信装置及び通信方法が提案されている(例えば特許文献1参照)。具体的には、特許文献1に開示される移動通信用端末は、通信部で受信された受信信号が所定値以下になったと電力測定部において判断された場合、周波数変換部は、受信される受信信号に対して時間・周波数変換範囲を拡大して演算を行い、周波数測定部は、拡大された周波数範囲内の受信信号の受信強度を測定し、測定された信号のうち、予め定めた受信強度より高い信号の周波数を検出し、通信部はその周波数の信号を用いて接続処理を実行する。
例えばLTEの移動体通信システムの場合、移動無線端末が基地局との通信時に使用可能な最大の周波数帯域幅が例えば20MHzと規格上定められている。そのため、移動無線端末が最大の周波数帯域幅の20MHzを使用して基地局と通信する場合に移動無線端末の通信部が受信する受信信号が所定値以下になったとき、移動無線端末が特許文献1に提案されている技術を用いたとしても時間・周波数変換範囲をもはや拡大することはできず、通信中以外の帯域の受信信号強度を測定することができない。
また、特許文献1は移動無線端末が通信中にハンドオーバする場合を基本的に想定しており、移動無線端末が待ち受け中である場合や圏外に遷移した場合にどのように基地局を探索するかに関しては特許文献1に具体的に記載されていない。さらに、ベースバンド処理に時間・周波数変換を用いるOFDM変復調方式を採用する移動体通信システムだけでなく、ベースバンド処理に時間・周波数変換を用いない変復調方式を採用する移動体通信システム(例えばWCDMA、CDMA2000、GSMなど)にも対応することが可能な移動無線端末の場合に、ベースバンド処理に時間・周波数変換を用いない無線アクセス方式を採用する移動体通信システムでどのように基地局を探索するかに関しては特許文献1に何ら記載されていない。
本発明は、このような状況に鑑みてなされたものであり、時間・周波数変換回路を用いて、利用する周波数帯域の信号強度を測定するのに要する時間を短縮し、信号強度測定に伴う消費電力を低減することができる移動無線端末、受信信号強度測定方法および基地局探索方法を提供することを目的とする。
本発明の移動無線端末は、上述した課題を解決するために、ベースバンド処理に時間周波数変換を用いる移動体通信システムに属する基地局からの無線信号を受信する無線受信手段と、時間周波数変換回路を有し、移動体通信システムに属する基地局からの無線信号を処理する受信信号処理手段と、移動体通信システムが利用する周波数帯域を所定の帯域幅で複数の領域に分割した場合における各領域での中心周波数を順次無線受信手段に設定する設定手段と、設定手段により設定された各中心周波数を用いた時間周波数変換回路による所定の帯域幅ごとの時間周波数変換結果に基づいて、移動体通信システムが利用する周波数帯域のすべての範囲内で、受信信号処理手段における受信信号の信号強度を測定する受信信号強度測定手段とを備えることを特徴とする。
本発明の移動無線端末は、上述した課題を解決するために、ベースバンド処理に時間周波数変換を用いる第1の移動体通信システムに属する基地局、またはベースバンド処理に時間周波数変換を用いない第2の移動体通信システムに属する基地局からの無線信号を受信する無線受信手段と、時間周波数変換回路を有し、第1の移動体通信システムに属する基地局からの無線信号を処理する第1の受信信号処理手段と、第2の移動体通信システムに属する基地局からの無線信号を処理する第2の受信信号処理手段と、第2の移動体通信システムが利用する周波数帯域を所定の帯域幅で複数の領域に分割した場合における各領域での中心周波数を順次無線受信手段に設定する設定手段と、設定手段により設定された各中心周波数を用いた時間周波数変換回路による所定の帯域幅ごとの時間周波数変換結果に基づいて、第2の移動体通信システムが利用する周波数帯域のすべての範囲内で、第1の受信信号処理手段における受信信号の信号強度を測定する受信信号強度測定手段とを備えることを特徴とする。
本発明の移動無線端末は、上述した課題を解決するために、ベースバンド処理に時間周波数変換を用いる移動体通信システムに属する基地局からの無線信号を受信する無線受信手段と、時間周波数変換回路を有し、移動体通信システムに属する基地局からの無線信号を処理する受信信号処理手段と、移動体通信システムが利用する周波数帯域を所定の帯域幅で複数の領域に分割した場合における各領域での中心周波数を順次無線受信手段に設定する第1の設定手段と、前第1の記設定手段により設定された各中心周波数を用いた時間周波数変換回路による所定の帯域幅ごとの時間周波数変換結果に基づいて、移動体通信システムが利用する周波数帯域のすべての範囲内で、1または複数のヌル周波数を検出する検出手段と、検出手段により検出されたヌル周波数を中心周波数として無線受信手段に設定する第2の設定手段と、移動体通信システムに属する基地局から送信される無線信号に所定の周期で存在する同期シグナルのシンボルを特定し、第2の設定手段により中心周波数に設定されたヌル周波数を用いた同期シグナルが存在するシンボルに対する時間周波数変換回路による時間周波数変換結果に基づいて、受信信号処理手段における受信信号の信号強度を測定する受信信号強度測定手段とを備えることを特徴とする。
本発明の受信信号強度測定方法は、上述した課題を解決するために、ベースバンド処理に時間周波数変換を用いる移動体通信システムに属する基地局からの無線信号を受信する無線受信ステップと、時間周波数変換処理を行い、移動体通信システムに属する基地局からの無線信号を処理する受信信号処理ステップと、移動体通信システムが利用する周波数帯域を所定の帯域幅で複数の領域に分割した場合における各領域での中心周波数を順次設定する設定ステップと、設定ステップの処理により設定された各中心周波数を用いた所定の帯域幅ごとの時間周波数変換結果に基づいて、移動体通信システムが利用する周波数帯域のすべての範囲内で、受信信号処理ステップの処理における受信信号の信号強度を測定する受信信号強度測定ステップとを含むことを特徴とする。
本発明の受信信号強度測定方法は、上述した課題を解決するために、ベースバンド処理に時間周波数変換を用いる第1の移動体通信システムに属する基地局、またはベースバンド処理に時間周波数変換を用いない第2の移動体通信システムに属する基地局からの無線信号を受信する無線受信ステップと、時間周波数変換を行い、第1の移動体通信システムに属する基地局からの無線信号を処理する第1の受信信号処理ステップと、第2の移動体通信システムに属する基地局からの無線信号を処理する第2の受信信号処理ステップと、第2の移動体通信システムが利用する周波数帯域を所定の帯域幅で複数の領域に分割した場合における各領域での中心周波数を順次設定する設定ステップと、設定ステップの処理により設定された各中心周波数を用いた所定の帯域幅ごとの時間周波数変換結果に基づいて、第2の移動体通信システムが利用する周波数帯域のすべての範囲内で、第1の受信信号処理ステップの処理における受信信号の信号強度を測定する受信信号強度測定ステップとを含むことを特徴とする。
本発明の受信信号強度測定方法は、上述した課題を解決するために、ベースバンド処理に時間周波数変換を用いる移動体通信システムに属する基地局からの無線信号を受信する無線受信ステップと、時間周波数変換を行い、移動体通信システムに属する基地局からの無線信号を処理する受信信号処理ステップと、移動体通信システムが利用する周波数帯域を所定の帯域幅で複数の領域に分割した場合における各領域での中心周波数を順次設定する第1の設定ステップと、第1の設定ステップの処理により設定された各中心周波数を用いた所定の帯域幅ごとの時間周波数変換結果に基づいて、移動体通信システムが利用する周波数帯域のすべての範囲内で、1または複数のヌル周波数を検出する検出ステップと、検出ステップの処理により検出されたヌル周波数を中心周波数として設定する第2の設定ステップと、移動体通信システムに属する基地局から送信される無線信号に所定の周期で存在する同期シグナルのシンボルを特定し、第2の設定ステップの処理により中心周波数に設定されたヌル周波数を用いた同期シグナルが存在するシンボルに対する時間周波数変換結果に基づいて、受信信号処理ステップの処理における受信信号の信号強度を測定する受信信号強度測定ステップとを含むことを特徴とする。
本発明の基地局探索方法は、上述した課題を解決するために、ベースバンド処理に時間周波数変換を用いる移動体通信システムに属する基地局からの無線信号を受信する無線受信ステップと、時間周波数変換処理を行い、移動体通信システムに属する基地局からの無線信号を処理する受信信号処理ステップと、移動体通信システムが利用する周波数帯域を所定の帯域幅で複数の領域に分割した場合における各領域での中心周波数を順次設定する設定ステップと、設定ステップの処理により設定された各中心周波数を用いた所定の帯域幅ごとの時間周波数変換結果に基づいて、移動体通信システムが利用する周波数帯域のすべての範囲内で、受信信号処理ステップの処理における受信信号の信号強度を測定する受信信号強度測定ステップと、受信信号の信号強度に関する所定の基準値よりも大きい受信信号の信号強度を有する中心周波数を用いて、無線受信ステップの処理と受信信号処理ステップの処理を介して移動体通信システムに属する基地局を探索する基地局探索ステップとを含むことを特徴とする。
本発明の基地局探索方法は、上述した課題を解決するために、ベースバンド処理に時間周波数変換を用いる第1の移動体通信システムに属する基地局、またはベースバンド処理に時間周波数変換を用いない第2の移動体通信システムに属する基地局からの無線信号を受信する無線受信ステップと、時間周波数変換を行い、第1の移動体通信システムに属する基地局からの無線信号を処理する第1の受信信号処理ステップと、第2の移動体通信システムに属する基地局からの無線信号を処理する第2の受信信号処理ステップと、第2の移動体通信システムが利用する周波数帯域を所定の帯域幅で複数の領域に分割した場合における各領域での中心周波数を順次設定する設定ステップと、設定ステップの処理により設定された各中心周波数を用いた所定の帯域幅ごとの時間周波数変換結果に基づいて、第2の移動体通信システムが利用する周波数帯域のすべての範囲内で、第1の受信信号処理ステップの処理における受信信号の信号強度を測定する受信信号強度測定ステップと、受信信号の信号強度に関する所定の基準値よりも大きい受信信号の信号強度を有する中心周波数を用いて、無線受信ステップの処理と第2の受信信号処理ステップの処理を介して第2の移動体通信システムに属する基地局を探索する基地局探索ステップを含むことを特徴とする。
本発明の基地局探索方法は、上述した課題を解決するために、ベースバンド処理に時間周波数変換を用いる移動体通信システムに属する基地局からの無線信号を受信する無線受信ステップと、時間周波数変換を行い、移動体通信システムに属する基地局からの無線信号を処理する受信信号処理ステップと、移動体通信システムが利用する周波数帯域を所定の帯域幅で複数の領域に分割した場合における各領域での中心周波数を順次設定する第1の設定ステップと、第1の設定ステップの処理により設定された各中心周波数を用いた所定の帯域幅ごとの時間周波数変換結果に基づいて、移動体通信システムが利用する周波数帯域のすべての範囲内で、1または複数のヌル周波数を検出する検出ステップと、検出ステップの処理により検出されたヌル周波数を中心周波数として設定する第2の設定ステップと、移動体通信システムに属する基地局から送信される無線信号に所定の周期で存在する同期シグナルのシンボルを特定し、第2の設定ステップの処理により中心周波数に設定されたヌル周波数を用いた同期シグナルが存在するシンボルに対する時間周波数変換結果に基づいて、受信信号処理ステップの処理における受信信号の信号強度を測定する受信信号強度測定ステップと、受信信号の信号強度に関する所定の基準値よりも大きい受信信号の信号強度を有する中心周波数を用いて、無線受信ステップの処理と受信信号処理ステップの処理を介して移動体通信システムに属する基地局を探索する基地局探索手段を含むことを特徴とする。
本発明によれば、時間・周波数変換回路を用いて、利用する周波数帯域の信号強度を測定するのに要する時間を短縮し、信号強度測定に伴う消費電力を低減することができる。
以下、本発明の実施の形態について、図面を参照しながら説明する。
[第1実施形態]
本発明の第1実施形態に係る移動無線端末1は、ベースバンド処理に時間・周波数変換を用いるOFDM変復調方式を採用する移動体通信システム(例えばWiMAX(World Interoperability for Microwave Access)やLTE(Long Term Evolution)など)だけでなく、ベースバンド処理に時間・周波数変換を用いない変復調方式を採用する移動体通信システム(例えばWCDMA、CDMA2000、GSMなど)にも対応することが可能に構成されている。なお、以下において、ベースバンド処理に時間・周波数変換を用いるOFDM変復調方式を採用する移動体通信システム(時間・周波数変換利用システム)を「移動体通信システムA」と称し、ベースバンド処理に時間・周波数変換を用いない変復調方式を採用する移動体通信システム(時間・周波数変換非利用システム)を「移動体通信システムB」と称する。
本発明の第1実施形態に係る移動無線端末1は、ベースバンド処理に時間・周波数変換を用いるOFDM変復調方式を採用する移動体通信システム(例えばWiMAX(World Interoperability for Microwave Access)やLTE(Long Term Evolution)など)だけでなく、ベースバンド処理に時間・周波数変換を用いない変復調方式を採用する移動体通信システム(例えばWCDMA、CDMA2000、GSMなど)にも対応することが可能に構成されている。なお、以下において、ベースバンド処理に時間・周波数変換を用いるOFDM変復調方式を採用する移動体通信システム(時間・周波数変換利用システム)を「移動体通信システムA」と称し、ベースバンド処理に時間・周波数変換を用いない変復調方式を採用する移動体通信システム(時間・周波数変換非利用システム)を「移動体通信システムB」と称する。
図1は、本発明の第1実施形態に係る移動無線端末1の内部の構成を表している。移動無線端末1は、送受信アンテナ11、送受信共用器12、無線受信部13、受信信号処理部14、データ処理部15、PCMコーデック16、受話増幅器17、レシーバ18、送話増幅器19、マイクロフォン20、制御部21、受信信号強度測定部22、操作部23、表示部24、記憶部25、および送信系回路26を備える。受信信号処理部14は、移動体通信システムA用受信信号処理部14aと、移動体通信システムB用受信信号処理部14bを備える。以降、本発明の第1実施形態に係る移動無線端末1の各構成について述べる。
送受信アンテナ11は、移動無線端末1が対応する移動体通信システムAまたは移動体通信システムBの電波を送波し、または、移動無線端末1が対応する移動体通信システムAまたは移動体通信システムBの電波を受波する。送受信共用器12は、サーキュレータやデュプレクサなどからなり、送受信アンテナ11で受波(受信)された電波を無線受信部13に送る。また、送受信共用器12は、送信系回路26から入力された信号を送受信アンテナ11へ送る。無線受信部13は、帯域通過フィルタ、利得調整回路、およびA/D変換器などを備え、制御部21から指示されるキャリア周波数の無線信号を受信し、周波数シンセサイザから出力された局部発振信号とミキシングして中間周波数信号に周波数変換(ダウンコンバート)し、ダウンコンバートされた中間周波数信号を直交復調して受信ベースバンド信号を生成する。無線受信部13の帯域通過フィルタは、移動体通信システムAまたは移動体通信システムBに属する基地局から送信される無線信号を受信し、この受信した信号から所望帯域外の雑音を除去する。また、無線受信部13の利得調整回路は、利得調整回路の後段に設けられるA/D変換器が扱える信号振幅に調整する。無線受信部13のA/D変換器は、帯域通過フィルタを通過した信号をベースバンドのディジタル信号に変換する。
受信信号処理部14は、無線受信部13から出力された受信ベースバンド信号(受信ベースバンドディジタル信号)を通信するシステム(移動体通信システムAまたは移動体通信システムB)に合わせてベースバンド処理を行う。受信信号処理部14は、移動体通信システムAに応じたベースバンド処理部としての移動体通信システムA用受信信号処理部14aと、移動体通信システムBに応じたベースバンド処理部としての移動体通信システムB用受信信号処理部14bと備える。移動体通信システムA用受信信号処理部14aは、ベースバンド処理に時間・周波数変換を利用するような移動体通信システム(例えばLTEなど)に対応するベースバンド処理を行う。具体的には、移動体通信システムA用受信信号処理部14aは、DFT部(時間・周波数変換回路)、周波数チャネル分離部、デスクランブリング部、チャネル推定部、チャネル等化部、データチャネル信号復調部、およびデータ信号デコーディング部を少なくとも備える。
ベースバンドディジタル信号は、図示せぬGI除去部によってガードインターバルが除去された後、DFT部(離散フーリエ変換部、すなわち、時間・周波数変換回路)により時間領域の信号から周波数領域の信号、すなわちサブキャリア毎の信号に分割される。DFT部は、サブキャリア毎に分割された出力信号を周波数チャネル分離部に出力する。周波数チャネル分離部は、サブキャリアにそれぞれ割り当てられているパイロットチャネル信号とデータチャネル信号を分離する。周波数チャネル分離部は、分離された各信号(パイロットチャネル信号とデータチャネル信号)をデスクランブリング部46に出力する。デスクランブリング部46は、各信号毎にOFDM送信機(基地局)でかけられたスクランブリングコード系列を用いてデスクランブリングを行い、デスクランブリング後の信号をチャネル等化部に出力する。なお、OFDM送信機(基地局)でかけられたスクランブリングコード系列は、OFDM受信機としての移動無線端末1側で既知であるものとする。周波数チャネル分離部は、分離されたパイロットチャネル信号をチャネル推定部に出力する。チャネル推定部は、パイロットチャネル信号の平均化または補間などを行うことによりチャネル推定を行う。チャネル推定部は、チャネル応答を示すチャネル推定値をチャネル等化部に出力する。チャネル等化部は、チャネル推定部からのチャネル推定値を用いて各データチャネル信号に対してチャネル等化を行う。チャネル等化後のデータチャネル信号はデータチャネル信号復調部によって復調され、データ信号デコーディング部によってデータ信号の元となるビット列が再生される。なお、時間・周波数変換回路は、FFT(高速フーリエ変換)を用いてもよい。
移動体通信システムB用受信信号処理部14bは、ベースバンド処理に時間・周波数変換を利用しないような移動体通信システム(例えばWCDMAなど)に対応するベースバンド処理を行う。データ処理部15は、受信信号処理部14でベースバンド処理されたベースバンド信号をデータおよび音声に変換する。制御部21は、CPU(Central Processing Unit)、ROM(Read Only Memory)、およびRAM(Random Access Memory)などからなる。制御部21のCPUは、ROMに記憶されているプログラムまたは記憶部25からRAMにロードされた、オペレーティングシステム(OS)を含む各種のアプリケーションプログラムや制御プログラムに従って各種の処理を実行するとともに、種々の制御信号を生成し、各部に供給することにより移動無線端末1を統括的に制御する。RAMは、CPUが各種の処理を実行する上において必要なデータなどを適宜記憶する。具体的には、制御部21は、移動体通信システムAまたは移動体通信システムBによる音声通信やデータ通信を実現する制御機能を備えており、無線受信部13や送信系回路26が用いるキャリア周波数を制御し、無線受信部13での受信結果に基づいてパイロット信号の探索を行う。また、制御部21は、受信信号処理部14に設定された無線通信方式を所要のタイミングで切り替える制御機能も備える。
制御部21は、必要に応じて1または複数のCPUを備える。なお、本発明の実施形態では、2つのCPUが備えられる例を示すが、これに限定されず、1つのCPUで実施するように制御してもよいし、3つ以上のCPUで実施するようにしてもよい。通信系制御部21aは、図示せぬ通信処理CPUを備え、通信処理に用いる制御を行う。通信系制御部21aは、アンテナ11、無線受信部13、送信系回路26、受信信号処理部14、データ処理部15、PCMコーデック16、受話増幅器17、レシーバ18、送話増幅器19、およびマイクロフォン20などを用いた通信処理を制御する。一方、UI系制御部21bは、図示せぬUI処理CPUを備え、記憶部25、操作部23、表示部24、図示せぬ時計回路などを用いたUI処理に関して制御を行う。
記憶部25は、例えば、電気的に書換えや消去が可能な不揮発性メモリであるフラッシュメモリ素子やHDD(Hard Disc Drive)などからなり、制御部21のCPUにより実行される種々のアプリケーションプログラムや種々のデータ群、移動無線端末1の制御プログラムや制御データ、移動無線端末1またはユーザに固有に割り当てられた識別情報を格納する。この他にも、記憶部25は、名前と電話番号を対応づけた電話帳データや、データ通信により取得したデータやダウンロードしたデータを適宜記憶する。また、移動無線端末1は、バッテリの出力を基に所定の動作電源電圧Vccを生成して各回路部に供給する電源回路や、現在の時刻を測定する時計回路(タイマ)を備える。
なお、移動無線端末1は、受話増幅器17、受話音声信号を拡声出力するレシーバ18、送話増幅器19、送話音声信号を入力するマイクロフォン20、ユーザからの要求を受け付ける操作部23、および受信データに基づく画像を表示する表示部24を備える。
受信信号強度測定部22は、受信信号処理部14における受信信号強度を測定し、測定結果を制御部21に出力する。送信系回路26は、移動無線端末1が利用できる移動体通信システムAまたは移動体通信システムBに属する基地局に対して通信データを送信するための送信ベースバンド処理や無線処理等の一連の処理を行う。
本発明の第1実施形態に係る移動無線端末1は、ベースバンド処理に時間・周波数変換を用いるOFDMやOFDMAなどに基づく無線アクセス方式を採用する移動体通信システムAだけでなく、ベースバンド処理に時間・周波数変換を用いない無線アクセス方式を採用する移動体通信システムBにも対応することができる。そこで、本発明の第1実施形態に係る移動無線端末1は、移動体通信システムBの基地局を探索する場合に、移動体通信システムA用受信信号処理部14aが有する時間・周波数変換機能を用いて、移動体通信システムBの基地局からの受信信号の信号強度を測定し、その測定結果を用いて移動体通信システムBの基地局を探索する(基地局をサーチする)。以下、この方法を用いた移動体通信システムBの基地局探索処理について説明する。
図2のフローチャートを参照して、図1の移動無線端末1における移動体通信システムBの基地局探索処理について説明する。なお、図2の基地局探索処理の場合、移動無線端末1が移動体通信システムAに属する基地局で待ち受け中である状態を基本的に想定しているが、移動無線端末1の状態は特に限定されず、移動無線端末1が移動体通信システムAに属する基地局で待ち受け中以外の状態であってもよいし、通信中であってもよい。
また、本発明の実施形態の場合、「基地局探索」とはいわゆるセルサーチと呼ばれる処理であり、移動無線端末1が接続するべき最も伝搬ロスの小さいセルの周波数と受信タイミングおよびセル番号(ID)を検出する処理を意味する。
ステップS1において、移動無線端末1が移動体通信システムAに属する基地局で待ち受け中などの状態である場合に、制御部21の通信系制御部21aが移動体通信システムBの基地局探索(基地局サーチ)を開始すると判断したとき、通信系制御部21aは、移動体通信システムBが利用する周波数帯域の信号強度を測定することができるように無線受信部13を制御し、中心周波数を設定する。すなわち、通信系制御部21aは、この中心周波数にダウンコンバートするための局所発振器周波数を設定し、帯域通過フィルタを選択する。ステップS2において、通信系制御部21aは、移動体通信システムA用受信信号処理部14aを制御し、設定された中心周波数を用いて、移動体通信システムA用受信信号処理部14aによる時間・周波数変換を実施する。このとき、移動体通信システムA用受信信号処理部14aは、通信系制御部21aの制御に従い、移動体通信システムA用受信信号処理部14a内の処理回路のうちの時間・周波数変換回路(例えばDFT部やFFT部など)のみを起動し、時間・周波数変換処理を実施し(時間領域の信号から周波数領域の信号に分割し)、この結果を受信信号強度測定部22に出力する。受信信号強度測定部22は、移動体通信システムA用受信信号処理部14aにおける受信信号の信号強度を測定し、測定結果を制御部21に出力する。ステップS3において、通信系制御部21aは、移動体通信システムBが使用する周波数帯域のすべての範囲で時間・周波数変換処理を完了したか否かを判定する。ステップS3において通信系制御部21aが、移動体通信システムBが使用する周波数帯域のすべての範囲で時間・周波数変換処理を完了していない(すなわち、移動体通信システムBの基地局サーチ対象となる周波数帯域について未だ時間・周波数変換処理を実施していない周波数帯域が残っている)と判定した場合、処理はステップS1に戻る。これにより、移動無線端末1は、未だ時間・周波数変換処理を実施していない周波数帯域について信号強度を測定できるように無線受信部13を再制御することができる。
一方、ステップS3において通信系制御部21aが、移動体通信システムBが使用する周波数帯域のすべての範囲で時間・周波数変換処理を完了したと判定した場合には、通信系制御部21aはステップS4で、受信信号強度測定部22からの受信信号の測定結果に基づいて、移動体通信システムBが利用する周波数帯域について信号強度に関する所定の基準値(Th)よりも大きい受信信号強度をもつ周波数(中心周波数)があるか否かを判断する。ステップS4において通信系制御部21aが移動体通信システムBが利用する周波数帯域について信号強度に関する所定の基準値(Th)よりも大きい受信信号強度をもつ周波数が少なくとも1つ以上あると判断した場合、処理はステップS5に進む。一方、ステップS4において通信系制御部21aが移動体通信システムBが利用する周波数帯域について信号強度に関する所定の基準値(Th)よりも大きい受信信号強度をもつ周波数がないと判断した場合、基地局探索処理は終了する。ステップS5において、通信系制御部21aは、ステップS4で見つかった所定の基準値(Th)より大きい受信信号強度を有する周波数(中心周波数)を記憶部25にすべて記憶する。ステップS6において、通信系制御部21aは、移動体通信システムB用受信信号処理部14bを起動し、記憶部25に記憶される、所定の基準値(Th)より大きい受信信号強度を有する周波数を用いて、移動体通信システムBの基地局探索(基地局サーチ)を実施する。このとき、記憶部25が所定の基準値(Th)より大きい受信信号強度を有する複数の周波数を記憶している場合、通信系制御部21aは、記憶部25が記憶する各周波数を用いて、移動体通信システムBの基地局探索を実施する。
以上のように、本発明の第1実施形態に係る移動無線端末1は、移動無線端末1が移動体通信システムAに属する基地局で待ち受け中などの状態である場合に時間・周波数変換を用いない移動体通信システムBの基地局サーチを実施するとき、移動体通信システムA用受信信号処理部14aの時間・周波数変換回路を用いて、移動体通信システムBが利用する周波数帯域の受信信号強度を測定する。このようにすることで、移動体通信システムBの利用する周波数帯域の信号強度測定に必要な時間を短縮することが可能となる。以下、本発明の第1実施形態に係る移動無線端末1の効果について図3、図4を用いて説明する。
図3は、従来の移動無線端末が時間・周波数変換を用いない移動体通信システムBの基地局サーチを実施するときにおける受信信号強度の測定処理の様子を表している。図3が示すように、移動体通信システムBの基地局サーチ時における信号強度測定の場合、従来の移動無線端末は、時間・周波数変換を用いない移動体通信システムBで利用できる中心周波数候補について実施しなければならず、利用できる中心周波数候補すべてについて逐一中心周波数を合わせ、無線受信部にある利得調整回路(図1の無線受信部13に対応する)の調整値から信号強度測定しなければならなかった。この中心周波数候補は、規格上定められる間隔で配置され、例えば第3世代移動体通信システムであるWCDMAの場合には200kHz間隔で配置される。この場合、すべての中心周波数候補に関する信号強度測定に多くの時間がかかってしまう。例えば第3世代移動体通信システムで割り当てが決められているIMT-2000周波数帯域(60MHz)について従来の移動無線端末が信号強度を測定する場合、60[MHz]÷200[kHz]=300回の受信信号強度測定が必要になる。1つの中心周波数候補当たりの信号強度測定処理に5[ms]の時間がかかったと仮定すると、5[ms]×300回=1.5[s]の処理時間が全体としてかかってしまう。
これに対して、本発明の第1実施形態に係る移動無線端末1は、移動体通信システムBの基地局サーチ時における受信信号強度測定を、移動体通信システムA用受信信号処理部14aが備える時間・周波数変換回路を用いて一定の帯域幅(例えば基地局との通信時に規格上使用可能な最大の周波数帯域幅など。勿論、最大の周波数帯域幅よりも小さい帯域幅を用いてもよい。)毎に一括して実施できる。図4は、本発明の第1実施形態に係る移動無線端末1が時間・周波数変換を用いない移動体通信システムBの基地局サーチを実施するときにおける受信信号強度の測定処理の様子を表している。具体的には、図4が示すように、移動無線端末1は、図2のステップS1乃至S3の処理によって、中心周波数f1乃至fnを設定した上で移動体通信システムA用受信信号処理部14aが備える時間・周波数変換回路を用いて一定の帯域幅毎に一括して実施する(一括処理1乃至Nを実施する)ことができる。そのため、図4が示すように、中心周波数を設定する回数が従来の場合(図3の場合)に比べて少なくなり、時間・周波数変換を用いない移動体通信システムBの基地局サーチにおける信号強度測定の時間が大幅に短縮できる。例えば移動体通信システムAがLTEシステムであり、移動無線端末1が時間・周波数変換処理を20[MHz]の周波数帯域幅ごとに実行することができるものとすると、先の例による第3世代移動体通信システムのIMT-2000周波数帯域の受信信号強度測定は、60[MHz]÷20[MHz]=3回で済むことになる。LTEシステムに対応する時間・周波数変換処理はLTEの規格上、LTEの1無線シンボル(約70[μs])毎に実施されなければならないことから、少なくとも70[μs]以下の処理時間と見積もることができる。この場合に、本発明の第1実施形態に係る移動無線端末1が移動体通信システムBの受信信号強度測定にかかる処理時間は約70[μs]×3=約210[μs]となる。以上のことから、本発明の第1実施形態に係る移動無線端末1の場合、移動体通信システムBの受信信号強度測定にかかる処理時間を大幅に短縮でき、信号強度測定に伴う消費電力を低減することができる。
なお、図4の場合、説明を簡略化するために、本発明の第1実施形態に係る移動無線端末1が移動体通信システムA用受信信号処理部14aの時間・周波数変換回路を用いて時間・周波数変換処理を実施する周波数帯域幅は、その周波数帯域幅内で設定される中心周波数を基準とする均一の帯域幅であるようにしたが、このような場合に限られず、時間・周波数変換処理を施す周波数帯域の全範囲を複数の区分(領域)に分割することができさえすればよく、複数の区分に分割する際に用いられる周波数帯域幅は区分ごとに異なる複数の帯域幅であってもよいし、2つずつ帯域幅が異なるようにしてもよい。
さらに、本発明の第1実施形態に係る移動無線端末1の場合、従来の移動無線端末に比べて、次のような付随的な効果を有する。本発明の第1実施形態に係る移動無線端末1は、時間・周波数変換を用いる移動体通信システムAで待ち受けや通信などをしている際に、時間・周波数変換を用いない移動体通信システムBの基地局サーチを実施したい場合において、図2および図4が示すように、移動体通信システムA用受信信号処理部14a内の時間・周波数変換回路を用いて移動体通信システムBの受信信号強度を測定できることから、受信信号強度があるしきい値(信号強度に関する所定の基準値Th)より高い場合にのみにしか移動体通信システムB用受信信号処理部14bを駆動する必要がない。そのため、本発明の第1実施形態に係る移動無線端末1は、始めから信号強度測定処理を開始して基地局サーチをする場合に伴う不必要な回路の起動を回避することができ、不必要な回路の起動にかかる処理時間と消費電流を削減することができる。
なお、本発明の第1実施形態に係る移動無線端末1は、ベースバンド処理に時間・周波数変換を用いるOFDM変復調方式を採用する移動体通信システムだけでなく、ベースバンド処理に時間・周波数変換を用いない変復調方式を採用する移動体通信システムにも対応することが可能に構成されており、特に、時間・周波数変換を用いる移動体通信システムAで待ち受けや通信などをしている際に、時間・周波数変換を用いない移動体通信システムBの基地局サーチを実施したい場合を想定する。しかし、このような場合に限られず、少なくともベースバンド処理に時間・周波数変換を用いるOFDM変復調方式を採用する移動体通信システムAに対応可能な移動無線端末1が、所定の間欠受信周期で間欠受信動作を行う場合でかつPICH(Paging Indicator Channel)を用いた間欠受信時以外のときに、規格上定められる最大の周波数帯域幅の20MHz以内で複数回時間・周波数変換処理を行い、移動体通信システムAが使用する周波数帯域のすべての範囲で時間・周波数変換処理を行い、その結果得られた所定の基準値Thよりも大きい受信信号強度を有する中心周波数を用いて、移動体通信システムAの基地局を探索するようにしてもよい。ここで、移動無線端末1は、所定の間欠受信周期(例えば5秒間などの周期)で間欠受信動作を行う。「間欠受信動作」とは、具体的には、省電力化を図るために、ユーザ操作がない状態に、基地局から送出される信号を必要なときだけ通信系制御部21aを起動させて無線受信部13や受信信号処理部14などを起動させて所定の処理(網同期処理など)を実行する動作を意味する。間欠受信動作には、網同期処理などを実行するために通信系制御部21aのCPUが起動している状態(CPU起動状態)と、通信系制御部21aのCPUが起動していない状態(スリープ状態)とが含まれる。従って、上記の場合には、移動無線端末1は、所定の間欠受信周期で間欠受信動作を行う場合でかつPICH(Paging Indicator Channel)を用いた間欠受信時以外の本来スリープ状態のときに、規格上定められる最大の周波数帯域幅の20MHz以内で複数回時間・周波数変換処理を行い、移動体通信システムAが使用する周波数帯域のすべての範囲で時間・周波数変換処理を行う。
このように規格上定められる最大の周波数帯域幅の20MHz以内で複数回時間・周波数変換処理を行うことにより、規格上定められる最大の周波数帯域幅の20MHzという制限を超えて、時間・周波数変換範囲を実質的に拡大することはでき、通信中以外のときに、移動体通信システムAが使用する周波数帯域のすべての範囲の受信信号強度を測定することができる。
[第2実施形態]
ところで、本発明の第1実施形態に係る移動無線端末1は、ベースバンド処理に時間・周波数変換を用いるOFDM変復調方式を採用する移動体通信システムだけでなく、ベースバンド処理に時間・周波数変換を用いない変復調方式を採用する移動体通信システムにも対応することが可能に構成されており、特に、時間・周波数変換を用いる移動体通信システムAで待ち受けや通信などをしている際に、時間・周波数変換を用いない移動体通信システムBの基地局サーチを実施したい場合を想定する。
ところで、本発明の第1実施形態に係る移動無線端末1は、ベースバンド処理に時間・周波数変換を用いるOFDM変復調方式を採用する移動体通信システムだけでなく、ベースバンド処理に時間・周波数変換を用いない変復調方式を採用する移動体通信システムにも対応することが可能に構成されており、特に、時間・周波数変換を用いる移動体通信システムAで待ち受けや通信などをしている際に、時間・周波数変換を用いない移動体通信システムBの基地局サーチを実施したい場合を想定する。
しかし、上記の第1実施形態以外で、時間・周波数変換回路を用いて、利用する周波数帯域の信号強度を測定するのに要する時間を短縮し、信号強度測定に伴う消費電力を低減することができる移動無線端末1について以下の本発明の第2実施形態で説明する。本発明の第2実施形態に係る移動無線端末1は、少なくとも、ベースバンド処理に時間・周波数変換を用いるOFDM変復調方式を採用する移動体通信システムに対応することが可能に構成されており、ベースバンド処理に時間・周波数変換を用いない無線アクセス方式を採用する移動体通信システムに対応することが可能に構成されていてもよいし、そうでなくてもよい。以下の場合においては、図1の移動無線端末1と同様に、移動無線端末1は、両方の移動体通信システムに対応することが可能に構成されているものとする。その構成の説明は図1の説明と同様であり、繰り返しになるので省略する。また、本発明の第2実施形態の場合、ベースバンド処理に時間・周波数変換を用いるOFDM変復調方式を採用する移動体通信システムAは、LTEシステムであるものとする。
図5のフローチャートを参照して、図1の移動無線端末1における移動体通信システムA(LTEシステム)の初期基地局探索(初期基地局サーチ)処理について説明する。なお、初期基地局探索とは、国際ローミング等で未知のサービス周波数を探す場合のように、移動無線端末1が中心周波数に関する情報を予め取得していない状態におけるLTEシステムの基地局サーチを指すものと定義する。
ステップS21において、制御部21の通信系制御部21aが移動体通信システムAの基地局探索(基地局サーチ)を開始すると判断したとき、通信系制御部21aは、基地局サーチ対象である移動体通信システムAが利用する周波数帯域の信号強度を測定することができるように無線受信部13を制御し、中心周波数を設定する。すなわち、通信系制御部21aは、この中心周波数にダウンコンバートするための局所発振器周波数を設定し、帯域通過フィルタを選択する。
ここで、図6は、移動無線端末1が図5のステップS21および後述するステップS26で時間・周波数変換を実施する際の中心周波数の設定方法を説明する説明図である。図6のP1乃至P3は、図5のステップS21で移動無線端末1が実施する中心周波数の設定箇所を示している。図6のP1乃至P3は、所定の周波数間隔で設定される。後述するように移動無線端末1はステップS22で、ステップS24でヌルとなる周波数を検出するために、この設定に基づいて、移動体通信システムAの帯域全体の受信信号電力強度の分布を調べ、時間・周波数変換を実施する。
ステップS22において、通信系制御部21aは、移動体通信システムA用受信信号処理部14aを制御し、設定された中心周波数を用いて、移動体通信システムA用受信信号処理部14aによる時間・周波数変換を実施する。このとき、移動体通信システムA用受信信号処理部14aは、通信系制御部21aの制御に従い、移動体通信システムA用受信信号処理部14a内の処理回路のうちの時間・周波数変換回路(例えばDFT部やFFT部など)のみを起動し、時間・周波数変換処理を実施し(時間領域の信号から周波数領域の信号に分割し)、この結果を受信信号強度測定部22に出力する。受信信号強度測定部22は、移動体通信システムA用受信信号処理部14aにおける受信信号の信号強度を測定し、測定結果を通信系制御部21aに出力する。また、ステップS22で移動無線端末1が行う時間・周波数変換は、移動体通信システムAの受信信号の復号のために行われるシンボル時間(LTEシステムではこのシンボル時間は約71[μs]である)毎の時間・周波数変換ではなく、少なくとも2以上の複数のシンボル時間(OFDMシンボル時間)にわたって反復的に実施する時間・周波数変換である。移動無線端末1が時間・周波数変換を反復する時間は、例えば1無線フレーム程度(LTEシステムでは、1無線フレームは10個の1[ms]周期のサブフレームで構成されており、10[ms]となる)にわたっていてもよい。
なお、本発明の第2実施形態で移動無線端末1が少なくとも2以上の複数のシンボル時間にわたって反復的に時間・周波数変換を実施する理由は、LTEシステムの場合、時間と周波数からなる無線リソースに割り当てられるデータがまばらに配置されることもあるため、単にシンボル時間毎に時間・周波数変換を行っただけでは、後述するステップS24でヌルとなる周波数を検出することが困難となるからである。
ステップS23において、通信系制御部21aは、移動体通信システムAが使用する周波数帯域のすべての範囲で時間・周波数変換処理を完了したか否かを判定する。ステップS23において通信系制御部21aが、移動体通信システムAが使用する周波数帯域のすべての範囲で時間・周波数変換処理を完了していない(すなわち、移動体通信システムAの基地局サーチ対象となる周波数帯域について未だ時間・周波数変換処理を実施していない周波数帯域が残っている)と判定した場合、処理はステップS21に戻る。これにより、移動無線端末1は、未だ時間・周波数変換処理を実施していない周波数帯域について信号強度を測定できるように無線受信部13を再制御することができる。
次に、ステップS24において、通信系制御部21aは、ステップS21乃至S23の処理で実施された時間・周波数変換の結果に基づいて、“ヌル”となる周波数があるか否かを判断する(すなわち、ヌル周波数を検出する)。ここでいう「ヌル(ヌル点)」とは、ディジタル信号の周期に対応する周波数間隔ごとに信号強度(信号振幅)がほぼゼロ(理論上はゼロ)となる周波数をいう。ヌルの周波数間隔は、理論上、送信データ信号系列の信号長(信号1ビット当たりの時間長または周期)Tの逆数である周波数f(=1/T)となる。そして、通信系制御部21aは、複数のシンボル(OFDMシンボル)にわたって反復的に繰り返えされた時間・周波数変換の結果に基づいて、ヌルとなる周波数に隣接する周波数は受信信号電力が検出されるにも関わらず、かつヌルとなる周波数では複数シンボル期間についても受信信号電力強度が周辺ノイズレベル程度しか検出されない場合に、この周波数をヌルと判断する。図7は、“ヌル”となる周波数の判断方法について説明する説明図である。図7の場合、移動無線端末1は各時刻t1乃至t11においてそれぞれ時間・周波数変換を実施し、その結果がf1乃至f9にプロットされたものである。なお、図7の場合、時刻t1乃至t11で離散的に受信信号電力強度が表示されているが、これらの時間間隔はLTEシステムの1シンボル時間と考えることができる。図7を見ると、周波数f5における時間・周波数変換の結果から計算される受信信号電力強度がt1乃至t11の間にわたって定常的に0を示している。従って、図7の場合、通信系制御部21aは、この周波数f5は定常的に受信信号電力強度が検出されない周波数として判断し、これを“ヌル”となる周波数として判断する。なお、図7では周波数f5の受信信号電力強度が0として表示しているが、実際には移動無線端末1の実環境に存在する雑音等の影響で完全に0にはならない。そのため、通信系制御部21aは、ヌルとなる周波数か否かを判断する際に用いられる所定のしきい値(基準値)を予め設けておき、所定のしきい値以下であればヌルとなる周波数であると判断するようにしてもよい。また、ヌルの周波数間隔は、理論上、送信データ信号系列の信号長Tの逆数である周波数f(=1/T)となることから、複数のヌルとなる周波数がステップS24で検出されることもあり得る。
ステップS24において通信系制御部21aがヌルとなる周波数があると判断した場合には、処理はステップS25に進む。一方、ステップS24において通信系制御部21aがヌルとなる周波数がないと判断した場合には、処理は終了となる。ステップS24において通信系制御部21aがヌルとなる周波数があると判断した場合、通信系制御部21aはステップS25で、ヌルとなる周波数(ヌル周波数)をすべて記憶するように記憶部25に指示する。記憶部25は、ヌルとなる周波数をすべて記憶する。
続いて、ステップS26において、通信系制御部21aは、記憶部25に記憶されたヌルとなる周波数を1つ選び、選択された1つのヌル周波数を移動無線端末1が受信する中心周波数として設定し、選択された1つのヌル周波数と無線受信部13の中心周波数とが一致するように無線受信部13を制御する。すなわち、通信系制御部21aは、この中心周波数にダウンコンバートするための局所発振器周波数を設定し、帯域通過フィルタを選択するように無線受信部13を制御する。ここで、ステップS21乃至S23の処理により、時間・周波数変換を複数のシンボル時間にわたって繰り返し実施した結果が図6の受信信号電力強度分布となったとする。この場合、移動無線端末1は、図6のQ1乃至Q3の周波数をヌル周波数として検出することができる。この結果を元に、ステップS26においては、通信系制御部21aは、無線受信部13を制御し、ステップS27でP-SSのデコードするための中心周波数を設定する。ステップS27において、通信系制御部21aは、LTEシステムに属する基地局から送信されてくる下り信号のうち、P-SS(Primary Synchronization signal;第1同期シグナル)の復号(デコード)を実施し、P-SSの復号を実施することによりシンボルタイミングを特定する。なお、第1同期シグナルは、移動無線端末1が接続するべき基地局を検出するセルサーチに用いられるシグナルである。これにより、移動無線端末1は、LTEシステムに属する基地局から送信される無線信号に定期的に存在するP-SSのシンボルを特定することができる。例えば、デュプレックス(複信)方式としてFDD(周波数分割複信)方式が用いられるLTEシステムの場合には、1FDD無線フレーム中の0番目と10番目の無線スロットの6シンボル目(先頭番号を0から数えて6シンボル目)にP-SS(第1同期シグナル)が挿入されている。このP-SSは、ある基地局から送信される下りデータの送信状況によらず、常に一定の電力で送信されている。そのため、移動無線端末1は、このP-SSのシンボルの受信信号電力を測定することにより初期セルサーチ時の電力検出に利用することができる。なお、本発明の第2実施形態の場合、移動無線端末1は、P-SS(第1同期シグナル)をデコードしてシンボルタイミングを合わせるようにしたが、このような場合に限られず、S-SS(Secondary Synchronization signal;第2同期シグナル)をさらにデコードしてシンボルタイミングを合わせるようにしてもよい。
ステップS28において、通信系制御部21aは、移動体通信システムA用受信信号処理部14aを制御し、ステップS26で設定された中心周波数を用いて、P-SSが存在するシンボルに対して移動体通信システムA用受信信号処理部14aによる時間・周波数変換を実施する。このとき、移動体通信システムA用受信信号処理部14aは、通信系制御部21aの制御に従い、時間・周波数変換処理を実施し、この結果を受信信号強度測定部22に出力する。受信信号強度測定部22は、移動体通信システムA用受信信号処理部14aにおける受信信号の信号強度を測定し、測定結果を通信系制御部21aに出力する。なお、本発明の第2実施形態の場合、ステップS27とステップS28の処理を分けて説明したが、ステップS27でのP-SSの検出と同時に受信信号電力測定部22でP-SSの受信信号強度を測定をしてもよい。
ステップS29において、通信系制御部21aは、受信信号強度測定部22からの受信信号の測定結果に基づいて、移動体通信システムAが利用する周波数帯域について信号強度に関する所定の基準値(Th)よりも大きい受信信号強度をもつ周波数(中心周波数)であるか否かを判断する。ステップS29において通信系制御部21aが移動体通信システムAが利用する周波数帯域について信号強度に関する所定の基準値(Th)よりも大きい受信信号強度をもつ周波数であると判断した場合、処理はステップS30に進む。一方、ステップS29において通信系制御部21aが移動体通信システムAが利用する周波数帯域について信号強度に関する所定の基準値(Th)よりも大きい受信信号強度をもつ周波数ではないと判断した場合、処理はステップS31に進む。ステップS30において、通信系制御部21aは、ステップS29で見つかった所定の基準値(Th)より大きい受信信号強度を有する周波数(中心周波数)を記憶部25に記憶する。ステップS31において、通信系制御部21aは、ステップS25で記憶部25に記憶されたすべてのヌルとなる中心周波数についてP-SSのデコードを実施したか否かを判定する。ステップS31において通信系制御部21aが記憶部25に記憶されたすべてのヌルとなる中心周波数についてP-SSのデコードを実施していないと判定した場合、処理はステップS26に戻り、ステップS26以降の処理が繰り返し実行され、記憶部25に記憶されるすべてのヌルとなる中心周波数についてP-SSのデコードが実施される。一方、ステップS31において通信系制御部21aが記憶部25に記憶されたすべてのヌルとなる中心周波数についてP-SSのデコードを実施したと判定した場合、通信系制御部21aはステップS32で、所定の基準値(Th)より大きい受信信号強度を有する中心周波数を用いて、移動体通信システムAの基地局探索(基地局サーチ)を実施する。このとき、所定の基準値(Th)より大きい受信信号強度を有する複数の中心周波数がある場合、通信系制御部21aは、各中心周波数を用いて、移動体通信システムAの基地局探索を実施する。
従来においては、図3が示すように、移動体通信システムAの基地局サーチ時における信号強度測定には移動体通信システムAで利用できる中心周波数候補(100KHz単位)について実施しなければならず、利用できる中心周波数候補すべてについて逐一中心周波数を合わせ、無線受信部にある利得調整回路(図1の無線受信部13に対応する)の調整値から信号強度測定しなければならなかった。この場合には信号強度測定に時間がかかり、例えばLTEシステムとしてのバンド1(第3世代移動体通信システムIMT-2000周波数帯域と同じ、60[MHz])について実施した場合、60[MHz]÷100[kHz]=600回の受信信号強度測定が必要になる。1つの中心周波数候補当たりの信号強度測定処理に5[ms]の時間がかかったと仮定すると、5[ms]×600回=3[s]の処理時間が全体としてかかってしまう。一方で、本発明の第2実施形態に係る移動無線端末1によれば、移動体通信システムAの基地局サーチ時における受信信号強度測定を、移動体通信システムAの受信信号処理部に存在する時間・周波数変換回路を用いてある帯域毎に一括して実施できる。そのため、図6が示すように、移動無線端末1が中心周波数を設定する回数が少なくなり、移動体通信システムAの基地局サーチにおける信号強度測定の時間が大幅に短縮できる。例えば移動体通信システムAがLTEシステムに対応しており、時間・周波数変換の帯域が20[MHz]幅で実行できるものとすると、先の例によるLTEシステム バンド1の受信信号強度測定は、60[MHz]÷20[MHz]×(10[ms](ヌル周波数特定時間)+10[ms](P-SSデコード処理時間)))=60[ms]程度で済む。従って、LTEシステムに対応する受信信号強度測定にかかる処理を大幅に短縮でき、移動無線端末1の低消費電力化を図ることができる。
なお、本発明の第2実施形態に係る移動無線端末1は、少なくともベースバンド処理に時間・周波数変換を用いるOFDM変復調方式を採用する移動体通信システムに適用することができ、例えばベースバンド処理に時間・周波数変換を用いるOFDM変復調方式を採用する地上波ディジタル放送波の通信システムにも適用することが可能である。
本発明の実施形態に係る移動無線端末1は、ベースバンド処理に時間周波数変換を用いる移動体通信システムに属する基地局からの無線信号を受信し、時間周波数変換回路を有し、移動体通信システムに属する基地局からの無線信号を処理し、移動体通信システムが利用する周波数帯域を所定の帯域幅で複数の領域に分割した場合における各領域での中心周波数を順次前記無線受信手段に設定し、設定された各中心周波数を用いた時間周波数変換回路による所定の帯域幅ごとの時間周波数変換結果に基づいて、移動体通信システムが利用する周波数帯域のすべての範囲内で、受信信号の信号強度を測定することができる。
これにより、時間・周波数変換回路を用いて、利用する周波数帯域の信号強度を測定するのに要する時間を短縮し、信号強度測定に伴う消費電力を低減することができる。
なお、本発明の実施形態において説明した一連の処理は、ソフトウェアにより実行させることもできるが、ハードウェアにより実行させることもできる。
また、本発明の実施形態では、フローチャートのステップは、記載された順序に沿って時系列的に行われる処理の例を示したが、必ずしも時系列的に処理されなくとも、並列的あるいは個別実行される処理をも含むものである。
Claims (21)
- ベースバンド処理に時間周波数変換を用いる移動体通信システムに属する基地局からの無線信号を受信する無線受信手段と、
時間周波数変換回路を有し、前記移動体通信システムに属する基地局からの無線信号を処理する受信信号処理手段と、
前記移動体通信システムが利用する周波数帯域を所定の帯域幅で複数の領域に分割した場合における各領域での中心周波数を順次前記無線受信手段に設定する設定手段と、
前記設定手段により設定された各中心周波数を用いた前記時間周波数変換回路による前記所定の帯域幅ごとの時間周波数変換結果に基づいて、前記移動体通信システムが利用する周波数帯域のすべての範囲内で、前記受信信号処理手段における受信信号の信号強度を測定する受信信号強度測定手段とを備えることを特徴とする移動無線端末。 - 前記受信信号強度測定手段は、前記移動無線端末が所定の間欠受信周期で間欠受信動作を行う場合でかつ所定の処理が実行される間欠受信時以外のときに、前記受信信号処理手段における受信信号の信号強度を測定することを特徴とする請求項1に記載の移動無線端末。
- ベースバンド処理に時間周波数変換を用いる第1の移動体通信システムに属する基地局、またはベースバンド処理に時間周波数変換を用いない第2の移動体通信システムに属する基地局からの無線信号を受信する無線受信手段と、
時間周波数変換回路を有し、前記第1の移動体通信システムに属する基地局からの無線信号を処理する第1の受信信号処理手段と、
前記第2の移動体通信システムに属する基地局からの無線信号を処理する第2の受信信号処理手段と、
前記第2の移動体通信システムが利用する周波数帯域を所定の帯域幅で複数の領域に分割した場合における各領域での中心周波数を順次前記無線受信手段に設定する設定手段と、
前記設定手段により設定された各中心周波数を用いた前記時間周波数変換回路による前記所定の帯域幅ごとの時間周波数変換結果に基づいて、前記第2の移動体通信システムが利用する周波数帯域のすべての範囲内で、前記第1の受信信号処理手段における受信信号の信号強度を測定する受信信号強度測定手段とを備えることを特徴とする移動無線端末。 - 受信信号の信号強度に関する所定の基準値よりも大きい受信信号の信号強度を有する中心周波数を用いて、前記無線受信手段と前記第2の受信信号処理手段を介して前記第2の移動体通信システムに属する基地局を探索する基地局探索手段とをさらに備えることを特徴とする請求項3に記載の移動無線端末。
- 受信信号の信号強度に関する所定の基準値よりも大きい受信信号の信号強度を有する中心周波数が複数ある場合、前記基地局探索手段は、各中心周波数を用いて、順次、前記無線受信手段と前記第2の受信信号処理手段を介して前記第2の移動体通信システムに属する基地局を探索することを特徴とする請求項4に記載の移動無線端末。
- 前記第1の移動体通信システムはWiMAXまたはLTEに関するシステムであり、前記第2の移動体通信システムはWCDMA、CDMA2000、およびGSMのいずれかに関するシステムであることを特徴とする請求項3に記載の移動無線端末。
- 受信信号の信号強度に関する所定の基準値よりも大きい受信信号の信号強度を有する中心周波数をすべて記憶する記憶手段とを備えることを特徴とする請求項3に記載の移動無線端末。
- 前記設定手段が中心周波数を前記無線受信手段に設定する場合、前記第2の移動体通信システムが利用する周波数帯域は、同一の1つの帯域幅を用いて複数の領域に分割されるか、または、領域に応じて異なる複数の帯域幅を用いて複数の領域に分割されることを特徴とする請求項3に記載の移動無線端末。
- ベースバンド処理に時間周波数変換を用いる移動体通信システムに属する基地局からの無線信号を受信する無線受信手段と、
時間周波数変換回路を有し、前記移動体通信システムに属する基地局からの無線信号を処理する受信信号処理手段と、
前記移動体通信システムが利用する周波数帯域を所定の帯域幅で複数の領域に分割した場合における各領域での中心周波数を順次前記無線受信手段に設定する第1の設定手段と、
前第1の記設定手段により設定された各中心周波数を用いた前記時間周波数変換回路による前記所定の帯域幅ごとの時間周波数変換結果に基づいて、前記移動体通信システムが利用する周波数帯域のすべての範囲内で、1または複数のヌル周波数を検出する検出手段と、
前記検出手段により検出されたヌル周波数を中心周波数として前記無線受信手段に設定する第2の設定手段と、
前記移動体通信システムに属する基地局から送信される無線信号に所定の周期で存在する同期シグナルのシンボルを特定し、前記第2の設定手段により中心周波数に設定されたヌル周波数を用いた前記同期シグナルが存在するシンボルに対する前記時間周波数変換回路による時間周波数変換結果に基づいて、前記受信信号処理手段における受信信号の信号強度を測定する受信信号強度測定手段とを備えることを特徴とする移動無線端末。 - 受信信号の信号強度に関する所定の基準値よりも大きい受信信号の信号強度を有する中心周波数を用いて、前記無線受信手段と前記受信信号処理手段を介して前記移動体通信システムに属する基地局を探索する基地局探索手段をさらに備えることを特徴とする請求項9に記載の移動無線端末。
- 前記移動体通信システムはLTEシステムであることを特徴とする請求項9に記載の移動無線端末。
- 前記検出手段により複数のヌル周波数が検出された場合、前記第2の設定手段は、各ヌル周波数を中心周波数として前記無線受信手段に設定し、
前記受信信号強度測定手段は、前記第2の設定手段により中心周波数に設定された各ヌル周波数を用いた前記同期シグナルが存在するシンボルに対する前記時間周波数変換回路による時間周波数変換結果に基づいて、前記受信信号処理手段における受信信号の信号強度を測定することを特徴とする請求項9に記載の移動無線端末。 - 受信信号の信号強度に関する所定の基準値よりも大きい受信信号の信号強度を有する中心周波数を記憶する記憶手段をさらに備えることを特徴とする請求項9に記載の移動無線端末。
- 前記同期シグナルには、少なくとも第1同期シグナルと第2同期シグナルの1つ以上が含まれることを特徴とする請求項9に記載の移動無線端末。
- 前記第1の設定手段が中心周波数を前記無線受信手段に設定する場合、前記移動体通信システムが利用する周波数帯域は、同一の1つの帯域幅を用いて複数の領域に分割されるか、または、領域に応じて異なる複数の帯域幅を用いて複数の領域に分割されることを特徴とする請求項9に記載の移動無線端末。
- ベースバンド処理に時間周波数変換を用いる移動体通信システムに属する基地局からの無線信号を受信する無線受信ステップと、
時間周波数変換処理を行い、前記移動体通信システムに属する基地局からの無線信号を処理する受信信号処理ステップと、
前記移動体通信システムが利用する周波数帯域を所定の帯域幅で複数の領域に分割した場合における各領域での中心周波数を順次設定する設定ステップと、
前記設定ステップの処理により設定された各中心周波数を用いた前記所定の帯域幅ごとの時間周波数変換結果に基づいて、前記移動体通信システムが利用する周波数帯域のすべての範囲内で、前記受信信号処理ステップの処理における受信信号の信号強度を測定する受信信号強度測定ステップとを含むことを特徴とする受信信号強度測定方法。 - ベースバンド処理に時間周波数変換を用いる第1の移動体通信システムに属する基地局、またはベースバンド処理に時間周波数変換を用いない第2の移動体通信システムに属する基地局からの無線信号を受信する無線受信ステップと、
時間周波数変換を行い、前記第1の移動体通信システムに属する基地局からの無線信号を処理する第1の受信信号処理ステップと、
前記第2の移動体通信システムに属する基地局からの無線信号を処理する第2の受信信号処理ステップと、
前記第2の移動体通信システムが利用する周波数帯域を所定の帯域幅で複数の領域に分割した場合における各領域での中心周波数を順次設定する設定ステップと、
前記設定ステップの処理により設定された各中心周波数を用いた前記所定の帯域幅ごとの時間周波数変換結果に基づいて、前記第2の移動体通信システムが利用する周波数帯域のすべての範囲内で、前記第1の受信信号処理ステップの処理における受信信号の信号強度を測定する受信信号強度測定ステップとを含むことを特徴とする受信信号強度測定方法。 - ベースバンド処理に時間周波数変換を用いる移動体通信システムに属する基地局からの無線信号を受信する無線受信ステップと、
時間周波数変換を行い、前記移動体通信システムに属する基地局からの無線信号を処理する受信信号処理ステップと、
前記移動体通信システムが利用する周波数帯域を所定の帯域幅で複数の領域に分割した場合における各領域での中心周波数を順次設定する第1の設定ステップと、
前記第1の設定ステップの処理により設定された各中心周波数を用いた前記所定の帯域幅ごとの時間周波数変換結果に基づいて、前記移動体通信システムが利用する周波数帯域のすべての範囲内で、1または複数のヌル周波数を検出する検出ステップと、
前記検出ステップの処理により検出されたヌル周波数を中心周波数として設定する第2の設定ステップと、
前記移動体通信システムに属する基地局から送信される無線信号に所定の周期で存在する同期シグナルのシンボルを特定し、前記第2の設定ステップの処理により中心周波数に設定されたヌル周波数を用いた前記同期シグナルが存在するシンボルに対する時間周波数変換結果に基づいて、前記受信信号処理ステップの処理における受信信号の信号強度を測定する受信信号強度測定ステップとを含むことを特徴とする受信信号強度測定方法。 - ベースバンド処理に時間周波数変換を用いる移動体通信システムに属する基地局からの無線信号を受信する無線受信ステップと、
時間周波数変換処理を行い、前記移動体通信システムに属する基地局からの無線信号を処理する受信信号処理ステップと、
前記移動体通信システムが利用する周波数帯域を所定の帯域幅で複数の領域に分割した場合における各領域での中心周波数を順次設定する設定ステップと、
前記設定ステップの処理により設定された各中心周波数を用いた前記所定の帯域幅ごとの時間周波数変換結果に基づいて、前記移動体通信システムが利用する周波数帯域のすべての範囲内で、前記受信信号処理ステップの処理における受信信号の信号強度を測定する受信信号強度測定ステップと、
受信信号の信号強度に関する所定の基準値よりも大きい受信信号の信号強度を有する中心周波数を用いて、前記無線受信ステップの処理と前記受信信号処理ステップの処理を介して前記移動体通信システムに属する基地局を探索する基地局探索ステップとを含むことを特徴とする基地局探索方法。 - ベースバンド処理に時間周波数変換を用いる第1の移動体通信システムに属する基地局、またはベースバンド処理に時間周波数変換を用いない第2の移動体通信システムに属する基地局からの無線信号を受信する無線受信ステップと、
時間周波数変換を行い、前記第1の移動体通信システムに属する基地局からの無線信号を処理する第1の受信信号処理ステップと、
前記第2の移動体通信システムに属する基地局からの無線信号を処理する第2の受信信号処理ステップと、
前記第2の移動体通信システムが利用する周波数帯域を所定の帯域幅で複数の領域に分割した場合における各領域での中心周波数を順次設定する設定ステップと、
前記設定ステップの処理により設定された各中心周波数を用いた前記所定の帯域幅ごとの時間周波数変換結果に基づいて、前記第2の移動体通信システムが利用する周波数帯域のすべての範囲内で、前記第1の受信信号処理ステップの処理における受信信号の信号強度を測定する受信信号強度測定ステップと、
受信信号の信号強度に関する所定の基準値よりも大きい受信信号の信号強度を有する中心周波数を用いて、前記無線受信ステップの処理と前記第2の受信信号処理ステップの処理を介して前記第2の移動体通信システムに属する基地局を探索する基地局探索ステップを含むことを特徴とする基地局探索方法。 - ベースバンド処理に時間周波数変換を用いる移動体通信システムに属する基地局からの無線信号を受信する無線受信ステップと、
時間周波数変換を行い、前記移動体通信システムに属する基地局からの無線信号を処理する受信信号処理ステップと、
前記移動体通信システムが利用する周波数帯域を所定の帯域幅で複数の領域に分割した場合における各領域での中心周波数を順次設定する第1の設定ステップと、
前記第1の設定ステップの処理により設定された各中心周波数を用いた前記所定の帯域幅ごとの時間周波数変換結果に基づいて、前記移動体通信システムが利用する周波数帯域のすべての範囲内で、1または複数のヌル周波数を検出する検出ステップと、
前記検出ステップの処理により検出されたヌル周波数を中心周波数として設定する第2の設定ステップと、
前記移動体通信システムに属する基地局から送信される無線信号に所定の周期で存在する同期シグナルのシンボルを特定し、前記第2の設定ステップの処理により中心周波数に設定されたヌル周波数を用いた前記同期シグナルが存在するシンボルに対する時間周波数変換結果に基づいて、前記受信信号処理ステップの処理における受信信号の信号強度を測定する受信信号強度測定ステップと、
受信信号の信号強度に関する所定の基準値よりも大きい受信信号の信号強度を有する中心周波数を用いて、前記無線受信ステップの処理と前記受信信号処理ステップの処理を介して前記移動体通信システムに属する基地局を探索する基地局探索手段を含むことを特徴とする基地局探索方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP10832882A EP2506627A1 (en) | 2009-11-27 | 2010-03-16 | Mobile radio terminal, received signal intensity measuring method, and base station searching method |
JP2011543121A JP5435036B2 (ja) | 2009-11-27 | 2010-03-16 | 移動無線端末 |
CN2010800363429A CN102550069A (zh) | 2009-11-27 | 2010-03-16 | 移动无线终端、接收信号强度测定方法以及基站搜索方法 |
US13/354,914 US8676137B2 (en) | 2009-11-27 | 2012-01-20 | Mobile wireless terminal, a method of measuring signal strength of a received signal, and a method of searching for a base station |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009270620 | 2009-11-27 | ||
JP2009-270620 | 2009-11-27 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/354,914 Continuation US8676137B2 (en) | 2009-11-27 | 2012-01-20 | Mobile wireless terminal, a method of measuring signal strength of a received signal, and a method of searching for a base station |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011065033A1 true WO2011065033A1 (ja) | 2011-06-03 |
Family
ID=44066136
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/054403 WO2011065033A1 (ja) | 2009-11-27 | 2010-03-16 | 移動無線端末、受信信号強度測定方法および基地局探索方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US8676137B2 (ja) |
EP (1) | EP2506627A1 (ja) |
JP (1) | JP5435036B2 (ja) |
CN (1) | CN102550069A (ja) |
WO (1) | WO2011065033A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102638819A (zh) * | 2012-02-28 | 2012-08-15 | 成都定为电子技术有限公司 | 移动通信基站功率的无线测量方法及其装置 |
JP2015514358A (ja) * | 2012-03-19 | 2015-05-18 | クゥアルコム・インコーポレイテッドQualcomm Incorporated | Gsmチャネルを同時に監視する方法および装置 |
JP2015515771A (ja) * | 2012-03-02 | 2015-05-28 | クゥアルコム・インコーポレイテッドQualcomm Incorporated | Ltetddのためのシステム中心周波数を判断するための周波数走査方法 |
WO2018179114A1 (ja) * | 2017-03-28 | 2018-10-04 | 富士通株式会社 | 無線装置および無線ノイズ測定方法 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103582106B (zh) * | 2012-07-23 | 2017-02-08 | 京信通信系统(中国)有限公司 | 基于双载波跳频技术的信号处理方法、装置及塔顶放大器 |
US9451569B1 (en) | 2012-09-18 | 2016-09-20 | Marvell International Ltd. | Systems and methods for detecting a primary synchronization signal in a wireless communication system |
US9686690B2 (en) * | 2014-08-29 | 2017-06-20 | Blackberry Limited | Method and apparatus for calculating a coverage signal strength indicator |
US9749941B2 (en) * | 2015-12-10 | 2017-08-29 | Intel IP Corporation | Device and method for radio access technology search |
CN110022164A (zh) * | 2019-04-23 | 2019-07-16 | 上海寰创通信科技股份有限公司 | 一种多运营商移动通讯网络智能勘测工具及方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008010954A (ja) * | 2006-06-27 | 2008-01-17 | Toshiba Corp | マルチキャリア無線通信装置 |
JP2008270905A (ja) | 2007-04-16 | 2008-11-06 | Ntt Docomo Inc | 通信装置および通信方法 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7663502B2 (en) * | 1992-05-05 | 2010-02-16 | Intelligent Technologies International, Inc. | Asset system control arrangement and method |
JP3289610B2 (ja) * | 1996-07-31 | 2002-06-10 | 日本ビクター株式会社 | Ofdm復調装置及びその方法 |
FI103160B1 (fi) * | 1997-05-30 | 1999-04-30 | Nokia Mobile Phones Ltd | Mittauksien tekeminen rinnakkaisilla taajuuksilla radiotietoliikennelaitteessa |
US20020077151A1 (en) * | 2000-12-18 | 2002-06-20 | Gary Matthews | Polymorphic cellular network architecture |
GB0227506D0 (en) * | 2002-11-26 | 2002-12-31 | Koninkl Philips Electronics Nv | Low-if pre-preamble antenna diversity receiver |
JP2005198209A (ja) * | 2004-01-09 | 2005-07-21 | Nec Corp | クロストーク抑圧機能を備えた送受信システム、受信器及び送信器 |
US7433708B2 (en) * | 2004-02-04 | 2008-10-07 | Nokia Corporation | Variable bandwidth in a communication system |
WO2005109916A2 (en) * | 2004-04-15 | 2005-11-17 | Flarion Technologies, Inc. | Multi-carrier communications methods and apparatus |
US8155649B2 (en) * | 2006-05-12 | 2012-04-10 | Shared Spectrum Company | Method and system for classifying communication signals in a dynamic spectrum access system |
US8660086B2 (en) * | 2010-05-04 | 2014-02-25 | Nokia Corporation | Method and apparatus for admission control and forced handover in a multi-layer network configuration |
-
2010
- 2010-03-16 JP JP2011543121A patent/JP5435036B2/ja not_active Expired - Fee Related
- 2010-03-16 CN CN2010800363429A patent/CN102550069A/zh active Pending
- 2010-03-16 EP EP10832882A patent/EP2506627A1/en not_active Withdrawn
- 2010-03-16 WO PCT/JP2010/054403 patent/WO2011065033A1/ja active Application Filing
-
2012
- 2012-01-20 US US13/354,914 patent/US8676137B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008010954A (ja) * | 2006-06-27 | 2008-01-17 | Toshiba Corp | マルチキャリア無線通信装置 |
JP2008270905A (ja) | 2007-04-16 | 2008-11-06 | Ntt Docomo Inc | 通信装置および通信方法 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102638819A (zh) * | 2012-02-28 | 2012-08-15 | 成都定为电子技术有限公司 | 移动通信基站功率的无线测量方法及其装置 |
CN102638819B (zh) * | 2012-02-28 | 2014-11-05 | 成都定为电子技术有限公司 | 移动通信基站功率的无线测量方法及其装置 |
JP2015515771A (ja) * | 2012-03-02 | 2015-05-28 | クゥアルコム・インコーポレイテッドQualcomm Incorporated | Ltetddのためのシステム中心周波数を判断するための周波数走査方法 |
JP2015514358A (ja) * | 2012-03-19 | 2015-05-18 | クゥアルコム・インコーポレイテッドQualcomm Incorporated | Gsmチャネルを同時に監視する方法および装置 |
WO2018179114A1 (ja) * | 2017-03-28 | 2018-10-04 | 富士通株式会社 | 無線装置および無線ノイズ測定方法 |
JPWO2018179114A1 (ja) * | 2017-03-28 | 2019-11-07 | 富士通株式会社 | 無線装置および無線ノイズ測定方法 |
Also Published As
Publication number | Publication date |
---|---|
EP2506627A1 (en) | 2012-10-03 |
JP5435036B2 (ja) | 2014-03-05 |
US8676137B2 (en) | 2014-03-18 |
CN102550069A (zh) | 2012-07-04 |
US20120120999A1 (en) | 2012-05-17 |
JPWO2011065033A1 (ja) | 2013-04-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5435036B2 (ja) | 移動無線端末 | |
KR102633384B1 (ko) | 오프그리드 무선 서비스 시스템 설계 | |
US9980314B2 (en) | Method and apparatus for irregular signal transmission in a system with reception gaps | |
US11917544B2 (en) | Energy-saving signal transmission method and detection method, and device | |
US8923858B2 (en) | Parallel multi-RAT PLMN search | |
US8797965B2 (en) | Technique for automatic gain control in a multi-carrier communication system | |
US20130040666A1 (en) | Methods and apparatus for scheduling paging monitoring intervals in a multimode mobile station | |
US8989145B2 (en) | Methods and systems for a generic multi-radio access technology | |
KR20130032408A (ko) | 기지국 장치, 집적 회로 및 수신 방법 | |
US10405286B2 (en) | Apparatus and method for synchronization signal detection | |
JP2011512064A (ja) | 既存のtdd技術の利用によるfdd機能の実現 | |
US20100178877A1 (en) | Communication system, transmission device, reception device, and synchronization method | |
US10666489B2 (en) | Synchronization sequence design for device-to-device communication | |
US9510244B2 (en) | Apparatus and method for controlling cell reselection timer in communication system | |
JP5227213B2 (ja) | ダウンリンクタイムスロットで転送されるいずれのシンボルを半二重端末が選択しなければならないのかを判断する方法およびデバイス | |
CN115623592A (zh) | 通信的方法和装置 | |
US8706108B2 (en) | Frequency scanning technique for a cell search procedure | |
WO2010127312A1 (en) | Methods and systems for cdma evdo paging interval alignment with an overlaid wimax network | |
WO2021023157A1 (zh) | 分布式天线系统的时分双工同步方法、装置、设备和介质 | |
JP2010118726A (ja) | 基地局装置 | |
US10869275B2 (en) | Microsleep for machine-type communication devices | |
US20210400587A1 (en) | Apparatus and method for reducing power consumption of receiving data in wireless communication system | |
CN106161314A (zh) | 无线信号干扰方法及装置 | |
EP3667993B1 (en) | User equipment, base station, and related method | |
CN106488476B (zh) | 多模终端功率扫描的方法及多模终端 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080036342.9 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10832882 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011543121 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010832882 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |