WO2021023157A1 - 分布式天线系统的时分双工同步方法、装置、设备和介质 - Google Patents

分布式天线系统的时分双工同步方法、装置、设备和介质 Download PDF

Info

Publication number
WO2021023157A1
WO2021023157A1 PCT/CN2020/106601 CN2020106601W WO2021023157A1 WO 2021023157 A1 WO2021023157 A1 WO 2021023157A1 CN 2020106601 W CN2020106601 W CN 2020106601W WO 2021023157 A1 WO2021023157 A1 WO 2021023157A1
Authority
WO
WIPO (PCT)
Prior art keywords
pbch block
pbch
time division
division duplex
index
Prior art date
Application number
PCT/CN2020/106601
Other languages
English (en)
French (fr)
Inventor
陈青松
王鑫
任爱林
毛建洋
褚如龙
吴文权
Original Assignee
三维通信股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三维通信股份有限公司 filed Critical 三维通信股份有限公司
Priority to AU2020325358A priority Critical patent/AU2020325358B2/en
Priority to EP20849624.0A priority patent/EP3965483A4/en
Priority to US17/614,561 priority patent/US11870632B2/en
Priority to CA3140010A priority patent/CA3140010A1/en
Publication of WO2021023157A1 publication Critical patent/WO2021023157A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2656Frame synchronisation, e.g. packet synchronisation, time division duplex [TDD] switching point detection or subframe synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1469Two-way operation using the same type of signal, i.e. duplex using time-sharing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others

Definitions

  • This application relates to the field of communication technology, and in particular to a time division duplex synchronization method, device, equipment and medium of a distributed antenna system.
  • DAS Distributed antenna system
  • 5G NR adopts Time Division Duplexing (TDD) frame structure in most frequency bands, so the DAS system needs to obtain accurate time division duplex synchronization for uplink and downlink switching of the transceiver.
  • the traditional centralized antenna system uses the Global Positioning System (GPS) for time division duplex synchronization; the difference from the centralized antenna system deployed outdoors is that the distributed antenna system is deployed inside the building, There is often no GPS signal in the basement, so even if the GPS receiver is configured in the distributed antenna system, it is difficult to directly perform time division duplex synchronization; installing an outdoor GPS antenna can solve the problem of GPS signal coverage, but it will increase the deployment of distributed antenna systems. Engineering complexity.
  • a time division duplex synchronization method of a distributed antenna system including decoding SS/PBCH blocks from a time division duplex cell to obtain the index of the SS/PBCH block; according to the SS The index of the /PBCH block determines the start position of the radio frame where the SS/PBCH block is located; and the time division duplex synchronization is performed according to the start position of the radio frame and the preset radio frame uplink and downlink configuration.
  • the SS/PBCH block from the time division duplex cell is decoded to obtain the index of the SS/PBCH block; the start position of the radio frame where the SS/PBCH block is located is determined according to the index of the SS/PBCH block; according to the start position of the radio frame and
  • the uplink and downlink configuration of the wireless frame is preset, and the time division duplex synchronization is performed, which solves the problem of increased deployment cost of the distributed antenna system caused by the time division duplex synchronization of the distributed antenna system in the related technology through GPS, and reduces the distributed antenna The deployment cost of the system.
  • decoding the SS/PBCH block from the time division duplex cell includes: decoding the SS/PBCH block through a cell search and downlink synchronization process.
  • decoding the SS/PBCH block through a cell search and downlink synchronization process includes: selecting a target cell by searching for a PSS signal;
  • determining the index of the SS/PBCH block according to the decoded PBCH DM-RS signal includes:
  • the decoded PBCH DM-RS signal determine the 3 least bit information of the index of the SS/PBCH block; use the PBCH DM-RS signal for channel estimation, decode the PBCH, and obtain the main information block information; where The information of the 3 highest bits of the index of the SS/PBCH block is carried in the main information block information.
  • determining the start position of the radio frame where the SS/PBCH block is located according to the index of the SS/PBCH block includes:
  • determining the start position of the radio frame where the SS/PBCH block is located according to the index of the SS/PBCH block and the mode of the SS/PBCH block includes:
  • the index of the SS/PBCH block and the mode of the SS/PBCH block determine the position of the first OFDM symbol of the SS/PBCH block in the radio frame; according to the first OFDM symbol of the SS/PBCH block The position of one OFDM symbol in the wireless frame is used to locate the start position of the wireless frame.
  • the subcarrier spacing of the SS/PBCH block includes but is not limited to one of the following: 15kHz, 30kHz, 120kHz, and 240kHz.
  • performing time division duplex synchronization according to the start position of the radio frame and the preset uplink and downlink configuration of the radio frame includes:
  • switching between downlink and uplink is performed according to the preset uplink and downlink configuration of the wireless frame.
  • a time division duplex synchronization device of a distributed antenna system including:
  • the decoding module is used to decode the SS/PBCH block from the time division duplex cell to obtain the index of the SS/PBCH block;
  • the determining module is used to determine the start position of the radio frame where the SS/PBCH block is located according to the index of the SS/PBCH block; the time division duplex synchronization module is used to determine the start position and presets of the radio frame Wireless frame uplink and downlink configuration for time division duplex synchronization.
  • a time division duplex synchronization device of a distributed antenna system including: at least one processor, at least one memory, and computer program instructions stored in the memory.
  • the program instructions implement the above-mentioned method when executed by the processor.
  • a computer-readable storage medium having computer program instructions stored thereon, and the above-mentioned method is implemented when the computer program instructions are executed by a processor.
  • FIG. 1 is a flowchart of a time division duplex synchronization method of a distributed antenna system according to an embodiment of the present application
  • Figure 2 is a schematic diagram of time-frequency resource allocation of SS/PBCH blocks in related technologies
  • Fig. 3 is a flowchart of decoding SS/PBCH blocks by a distributed antenna system according to an embodiment of the present application
  • FIG. 5 is a structural block diagram of a time division duplex synchronization device of a distributed antenna system according to an embodiment of the present application
  • FIG. 6 is a schematic diagram of the hardware structure of the time division duplex synchronization device of the distributed antenna system according to an embodiment of the present application.
  • 3GPP TS 38.104v15.6.0 (published in June 2019), 3GPP TS 38.211v15.6.0 (published in June 2019) and 3GPP released by the 3rd Generation Partnership Project (3 rd Generation Partnership Project, referred to as 3GPP)
  • 3GPP 3rd Generation Partnership Project
  • a time division duplex synchronization method of a distributed antenna system is provided.
  • Fig. 1 is a flowchart of a time division duplex synchronization method of a distributed antenna system according to an embodiment of the present application. As shown in Fig. 1, the process includes the following steps:
  • Step S101 Decode the SS/PBCH block from the time division duplex cell to obtain the index of the SS/PBCH block;
  • Step S102 Determine the start position of the radio frame where the SS/PBCH block is located according to the index of the SS/PBCH block;
  • Step S103 Perform time division duplex synchronization according to the start position of the radio frame and the preset uplink and downlink configuration of the radio frame.
  • 5G New Radio (5th-Generation New Radio, referred to as 5G NR) in the user equipment (User Equipment, referred to as UE) and 5G base station (gNode B, referred to as gNB) downlink synchronization and Long Term Evolution (Long Term Evolution, referred to as LTE) ) Similar, it is also achieved by searching for Primary Synchronization Signal (PSS)/Secondary Synchronization Signal (SSS), Decoding Synchronization Signal Block (SSB), mainly The purpose is that the UE obtains the time division duplex synchronization and radio frame synchronization of the Orthogonal Frequency Division Multiplexing (OFDM) symbols, and can also obtain the Physical-layer Cell identity (PCI), Information such as system messages.
  • PPS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • SSB Decoding Synchronization Signal Block
  • SSB is composed of synchronization signal (Synchronization Signal, SS) and physical broadcast channel (Physical Broadcast Channel, PBCH). Because the synchronization signal and PBCH channel are always packaged together, SSB is also called SS/PBCH block .
  • Figure 2 is a schematic diagram of the time-frequency resource allocation of the SS/PBCH block in related technologies.
  • the SS/PBCH block contains the primary synchronization signal (Primary Synchronization Signal, referred to as PSS), The synchronization signal (Secondary Synchronization Signal, referred to as SSS), PBCH, and PBCH decoding reference signal (Demodulation Reference Signal, referred to as DM-RS) occupy 4 OFDM symbols in the time domain and 240 subcarriers in the frequency domain.
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • PBCH PBCH
  • PBCH decoding reference signal Demodulation Reference Signal
  • the PSS is on the first OFDM symbol of the SS/PBCH block and occupies 127 subcarriers in the middle of the SS/PBCH block. There are 56 and 57 subcarriers on the two sides respectively without transmitting any signal.
  • This design makes the PSS and other signals have Larger frequency isolation makes it easy for UE to distinguish PSS from other signals.
  • the PSS sequence has three values, and there is a one-to-one mapping relationship with the identification N ID (2) ⁇ ⁇ 0, 1, 2 ⁇ in the physical cell identity group.
  • SSS is on the third OFDM symbol of the SS/PBCH block, which also occupies 127 sub-carriers in the middle of the SS/PBCH block. There are 8 and 9 sub-carriers on both sides and no signal is transmitted. This design makes full use of the third OFDM symbol On the other hand, it is convenient for UE to distinguish SSS from PBCH.
  • the SSS sequence has 336 values, and has a one-to-one mapping relationship with the physical cell identity group N ID (1) ⁇ ⁇ 0, 1, ..., 335 ⁇ .
  • PCI physical cell identities
  • N ID Cell N ID (1) + N ID (2) (1);
  • the PBCH is on the 2nd to 4th OFDM symbols of the SS/PBCH block, where there are 240 subcarriers on the 2nd and 4th OFDM symbols, 96 subcarriers on the 3rd OFDM symbol, and PBCH has a total of 576 subcarriers.
  • the master information block (Master Information Block, MIB for short) message is transmitted on the PBCH.
  • Each PBCH resource block (Resource Block, referred to as RB) has 3 DM-RSs, so DM-RS has 4 frequency domain offsets. Setting different frequency domain offsets in the same frequency neighboring cell is helpful to reduce the pilot frequency Interference, frequency domain offset is calculated by formula (2):
  • the DM-RS sequence r(m) used for PBCH is defined by formula (3):
  • the DM-RS scrambling code sequence generator must be initialized in each SS/PBCH block according to N ID Cell , the number n hf of the half frame where the PBCH is located, and the index i SSB of the SS/PBCH block.
  • the DM-RS in 5G NR changes with the physical cell identity (PCI); the SS/PBCH block may appear multiple times in a radio frame, that is, there may be multiple SS/PBCH blocks in the radio frame.
  • Candidate positions the position of the first OFDM symbol of the SS/PBCH block in the radio frame represents the candidate position of the SS/PBCH block, and each candidate position corresponds to a sequence number
  • the SS/PBCH in each candidate position The DM-RS signal of the PBCH block is different, and the DM-RS signal indicates the index of the SS/PBCH block. Therefore, the position of the SS/PBCH block in the radio frame can be obtained by decoding the SS/PBCH block, which facilitates downlink synchronization between the UE and the 5G base station.
  • the period of 5G NR SS/PBCH block is variable and can be configured as 5ms, 10ms, 20ms, 40ms, 80ms and/or 160ms ,
  • SS/PBCH block is only transmitted in a certain half frame (5ms).
  • the time position of the candidate SS/PBCH block has 5 modes, A, B, C, D, E, and the structure of each mode is as follows:
  • Mode A The subcarrier spacing of the SS/PBCH block is 15kHz, and the position indicator of the first OFDM symbol of the candidate SS/PBCH block is ⁇ 2, 8 ⁇ +14 ⁇ n.
  • Mode D The subcarrier spacing of SS/PBCH is 120kHz, and the position indicator of the first OFDM symbol of the candidate SS/PBCH block is ⁇ 4, 8, 16, 20 ⁇ +28 ⁇ n.
  • n 0,1,2,3,5,6,7,8,10,11,12,13,15,16,17,18
  • Mode E The subcarrier spacing of SS/PBCH is 240kHz, and the position indicator of the first OFDM symbol of the candidate SS/PBCH block is ⁇ 8,12,16,20,32,36,40,44 ⁇ +56 ⁇ n,
  • n 0, 1, 2, 3, 5, 6, 7, 8, SS/PBCH blocks are transmitted on subframes 0, 1, and 2 of a certain half-frame.
  • L max 64).
  • each radio frame consists of 140 OFDM symbols; when the subcarrier interval is 30kHz, each radio frame consists of 280 OFDM symbols; when the subcarrier interval is 120kHz, each radio The frame is composed of 1120 OFDM symbols; when the subcarrier spacing is 240kHz, each radio frame is composed of 2240 OFDM symbols. Therefore, regardless of the above-mentioned mode A to mode E, the SS/PBCH block is always sent on the first half frame.
  • Table 5.4.3.3 in Chapter 5 of 3GPP TS 38.104 further defines the specific SS/PBCH block pattern (ie SS Blockpattern) used by SS/PBCH blocks of different frequency bands and different subcarrier spacing (SCS). Among them, the frequency band of the SS/PBCH block is identified by the Global Synchronization Channel Number (GSCN).
  • GSCN Global Synchronization Channel Number
  • the mode of the SS/PBCH block can be determined according to the definition of 3GPP TS 38.104; according to the index of the SS/PBCH block and the mode of the SS/PBCH block,
  • the definition of 3GPP TS 38.213 can determine the start position of the radio frame where the SS/PBCH block is located.
  • the DAS can determine which OFDM symbol of the first half frame of the radio frame the first OFDM symbol of the SS/PBCH block is located according to the index of the SS/PBCH block. Also, according to the definition of 3GPP, the number of OFDM symbols in each radio frame is determined under a certain subcarrier spacing configuration. Therefore, the first OFDM symbol of the SS/PBCH block is determined to be in the first half of the radio frame.
  • DAS can determine the start time of the following radio frame; after determining the start time of the radio frame, switch between uplink and downlink according to the preset radio frame uplink and downlink configuration to achieve time division Duplex synchronization.
  • the distributed antenna system that uses the above steps to perform the time division duplex synchronization does not need to add a GPS receiver, so it solves the problem that the distributed antenna system performs time division through GPS.
  • the problem of increased deployment cost of the distributed antenna system caused by duplex synchronization reduces the deployment cost of the distributed antenna system.
  • the SS/PBCH block is decoded through the cell search and downlink synchronization process in step S101.
  • the cell search and downlink synchronization process is the process by which the UE obtains the time and frequency synchronization with the cell and detects the physical cell identity.
  • the SS/PBCH block will be decoded according to the standard process; but in 3GPP TS38.
  • the cell search and downlink synchronization process defined in 211 is limited to the time and frequency synchronization between the UE and the cell.
  • the distributed antenna system implements cell search and downlink synchronization processes to achieve decoding of SS/PBCH blocks.
  • Fig. 3 is a flowchart of decoding an SS/PBCH block by a distributed antenna system according to an embodiment of the present application. As shown in Fig. 3, the distributed antenna system decoding an SS/PBCH block includes the following steps:
  • Step S301 the distributed antenna system searches for PSS signals in the time domain and frequency domain, and selects a target cell; where the target cell is a cell of the TDD standard; during the UE searching for a cell, the target cell is the cell to be camped on by the UE;
  • the target cell is used as the time division duplex synchronization source of the distributed antenna system, and the distributed antenna system is not a UE, so the distributed antenna system will not camp on the target cell.
  • the distributed antenna system can determine the starting position of the OFDM symbol after searching for the PSS, realize the time synchronization of the OFDM symbol and the synchronization of the SS/PBCH block, and determine the N ID (2) through blind decoding.
  • Fig. 4 is a flowchart of PSS search performed by the distributed antenna system according to an embodiment of the present application.
  • the signal received by the distributed antenna system is first amplified and converted into a digital signal by analog-to-digital conversion (ADC). Because the SS/PBCH block only occupies 240 subcarriers, digital down-conversion (DDC) can be performed to reduce the sampling rate to save calculations.
  • ADC analog-to-digital conversion
  • DDC digital down-conversion
  • the down-converted signal is subjected to sliding correlation operation with the locally generated PSS signal, and the result of the correlation operation is judged with a period of 20ms: if the maximum correlation within 20ms is greater than the predefined threshold, it means that the PSS signal has been found and the operation is stopped ; Otherwise, switch the frequency of the Numerically Controlled Oscillator (NCO) and perform the search again.
  • NCO Numerically Controlled Oscillator
  • Step S302 when the distributed antenna system searches for the PSS signal carrying the group identification N ID (2) of the target cell, it receives the SS/PBCH block from the target cell; after receiving the SS/PBCH block, the SS The /PBCH block is stored locally in the distributed antenna system; since the time-frequency domain resources occupied by the SS/PBCH block are fixed, the location of the SSS signal can be determined after the PSS signal is searched.
  • Step S303 The distributed antenna system decodes the SSS signal in the SS/PBCH block to obtain the group identification N ID (1) of the target cell; in this step, the distributed antenna system determines N ID (1) by blind decoding.
  • Step S304 the distributed antenna system calculates the cell identification N ID Cell of the target cell according to the group identification N ID (2) and the group identification N ID (1) ; the cell identification N ID Cell is the PCI, which is calculated according to formula (1) get.
  • Step S305 the distributed antenna system decodes the PBCH DM-RS signal in the SS/PBCH block according to the cell identification N ID Cell ; after the distributed antenna system obtains the N ID Cell , it determines that the DM-RS of the PBCH is in the SS according to formula (2) The frequency domain position on the /PBCH block.
  • Step S306 The distributed antenna system determines the index of the SS/PBCH block according to the decoded PBCH DM-RS signal. After determining the frequency domain position of the DM-RS of the PBCH on the SS/PBCH block, through blind decoding, all or part of the information of the index i SSB of the SS/PBCH block can be determined.
  • Blind decoding methods include: First, according to N ID Cell , all possible PBCH DM-RS signals are generated. Taking the 3.5GHz frequency band as an example, there are 8 possible PBCH DM-RS signals, which correspond to the indexes of the 8 possible SS/PBCH blocks in the SS/PBCH.
  • the generated PBCH DM-RS signal is sequentially subjected to a cross-correlation operation with the PBCH DM-RS part of the received SS/PBCH block to obtain all or part of the index of the SS/PBCH block.
  • the PBCH in the SS/PBCH block can also be decoded to obtain the 3 highest bit information of the index i SSB of the SS/PBCH block.
  • the distributed antenna system uses the PBCH DM-RS signal for channel estimation,
  • the PBCH is decoded to obtain the master information block (MIB) information; wherein the master information block (MIB) information carries the 3 highest bits of information of the index of the SS/PBCH block.
  • MIB master information block
  • the index of the SS/PBCH block indicates which candidate position the SS/PBCH block is in. Therefore, each case of the candidate SS/PBCH block can be based on the SS/PBCH block.
  • the position of the first OFDM symbol of the PBCH block in the radio frame locates the start position of the radio frame:
  • the first OFDM symbol of the candidate SS/PBCH block is located in the ⁇ 2, 8, 16 of the radio frame , 22 ⁇ OFDM symbols, respectively corresponding to the index ⁇ 0, 1, 2, 3 ⁇ of the SS/PBCH block; for the carrier frequency greater than 3GHz and less than or equal to 6GHz, the first OFDM symbol of the candidate SS/PBCH block is located
  • the ⁇ 2, 8, 16, 22, 30, 36, 44, 50 ⁇ th OFDM symbols of the radio frame correspond to the index of the SS/PBCH block ⁇ 0, 1, 2, 3, 4, 5, 6, 7 ⁇ .
  • the first OFDM symbol of the candidate SS/PBCH block is located at ⁇ 4,8,16, 20 ⁇ OFDM symbols correspond to the indexes ⁇ 0, 1, 2, 3 ⁇ of the SS/PBCH block respectively; for the carrier frequency greater than 3GHz and less than or equal to 6GHz, the first OFDM symbol of the candidate SS/PBCH block is located in the wireless
  • the ⁇ 4, 8, 16, 20, 32, 36, 44, 48 ⁇ th OFDM symbols of the frame correspond to the index of the SS/PBCH block ⁇ 0, 1, 2, 3, 4, 5, 6, 7 ⁇ .
  • the first OFDM symbol of the candidate SS/PBCH block is located at ⁇ 2, 8, 16, 22 ⁇ OFDM symbols correspond to the indexes ⁇ 0, 1, 2, 3 ⁇ of the SS/PBCH block respectively; for the carrier frequency greater than 3GHz and less than or equal to 6GHz, the first OFDM symbol of the candidate SS/PBCH block is located in the wireless
  • the ⁇ 2, 8, 16, 22, 30, 36, 44, 50 ⁇ th OFDM symbols of the frame correspond to the index of the SS/PBCH block ⁇ 0, 1, 2, 3, 4, 5, 6, 7 ⁇ .
  • the first OFDM symbol of the candidate SS/PBCH block is located at ⁇ 4, 8, 16, 20, 32, 36, 44, 48, 60, 64, 72, 76, 88, 92, 100, 104, 144, 148, 156, 160, 172, 176, 184, 188, 200, 204, 212, 216, 228, 232,240,244,284,288,296,300,312,316,324,328,340,344,352,356,368,372,380,384,424,428,436,440,452,456, 464, 468, 480, 484, 492, 496, 508, 512, 520, 524 ⁇ OFDM symbols, respectively corresponding to the index of the SS/PBCH block ⁇ 0, 1, 2, 3, 4, 5, 6, 7, 8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,
  • the first OFDM symbol of the candidate SS/PBCH block is located at ⁇ 8, 12, 16, 20, 32, 36, 40, 44, 64, 68, 72, 76, 88, 92, 96, 100, 120, 124, 128, 132, 144, 148, 152, 156, 176, 180, 184, 188, 200, 204,208,212,288,292,296,300,312,316,320,324,344,348,352,356,368,372,376,380,400,404,408,412,424,428, 432, 436, 456, 460, 464, 468, 480, 484, 488, 492 ⁇ OFDM symbols correspond to the index of the SS/PBCH block ⁇ 0, 1, 2, 3, 4, 5, 6, 7, 8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,
  • SIB1 System Information Block Type 1
  • the distributed antenna system can determine the start position of the radio frame through the above steps S301 to S306; when the subcarrier interval is configured as 120kHz or 240kHz, the distributed antenna system The distributed antenna system can determine the start position of the wireless frame by decoding the master information block (MIB) information in the PBCH through the above steps S301 to S306, so the distributed antenna system does not continue to decode SIB1.
  • MIB master information block
  • performing time division duplex synchronization may specifically include: at the beginning of the next half-frame period of the wireless frame, up and down according to the preset wireless frame Line configuration switches between downlink and uplink.
  • time division duplex (TDD) mode the entire radio frame is divided into three parts: downlink time slot, guard interval, and uplink time slot.
  • the uplink and downlink configuration of the radio frame includes: TDD switching period, downlink time slot length, guard time interval length, and uplink time slot length.
  • the distributed antenna system can accurately identify uplink and downlink time slots based on these parameters, and realize time division dual Work synchronization.
  • the above-mentioned preset wireless frame uplink and downlink configuration can be manually set from the parameter interface of the distributed antenna system.
  • the user inputs these parameters from the parameter interface, and the distributed antenna system can automatically realize time division duplex synchronization.
  • the TDD switching period, downlink time slot length, guard interval length, and uplink time slot length are all fixed values.
  • the distributed antenna system can set these parameters as default values, and no user configuration is required.
  • a time division duplex synchronization device of a distributed antenna system is also provided, which is used to implement the above-mentioned embodiments and preferred implementations, and the descriptions that have been made will not be repeated.
  • the terms “module”, “unit”, etc. can implement a combination of software and/or hardware that can implement predetermined functions.
  • the devices described in the following embodiments are preferably implemented by software, hardware or a combination of software and hardware is also possible and conceived.
  • Fig. 5 is a structural block diagram of a time division duplex synchronization device of a distributed antenna system according to an embodiment of the present application. As shown in Fig. 5, the device includes:
  • the decoding module 51 coupled to the determining module 52, is used to decode the SS/PBCH block from the time division duplex cell to obtain the index of the SS/PBCH block;
  • the determining module 52 coupled to the time division duplex synchronization module 53, is used to determine the start position of the radio frame where the SS/PBCH block is located according to the index of the SS/PBCH block;
  • the time division duplex synchronization module 53 is configured to perform time division duplex synchronization according to the start position of the wireless frame and the preset uplink and downlink configuration of the wireless frame.
  • the decoding module 51 is used to decode the SS/PBCH block through the cell search and downlink synchronization process.
  • the decoding module 51 includes: a searching unit, configured to select a target cell by searching for PSS signals;
  • the receiving unit is configured to receive the SS/PBCH block from the target cell when the PSS signal carrying the group identification N ID (2) of the target cell is searched;
  • the first decoding unit is used to decode the SSS signal in the SS/PBCH block to obtain the group identification N ID (1) of the target cell;
  • the calculation unit is configured to calculate the cell identity N ID Cell of the target cell according to the group identity N ID (2) and the group identity N ID (1) ;
  • the second decoding unit is configured to decode the PBCH DM-RS signal in the SS/PBCH block according to the cell identifier N ID Cell ;
  • the determining unit is used to determine the index of the SS/PBCH block according to the decoded PBCH DM-RS signal.
  • the determining unit is configured to determine the 3 least significant bits of the index of the SS/PBCH block according to the decoded PBCH DM-RS signal; and use the PBCH DM-RS signal for channel estimation , Decode the PBCH to obtain main information block information; wherein the main information block information carries the 3 highest bits of information of the index of the SS/PBCH block.
  • the determining module 52 includes: a first determining module for determining the mode of the SS/PBCH block according to the subcarrier spacing of the SS/PBCH block and the frequency band of the SS/PBCH block; and a second determining module, It is used to determine the start position of the radio frame where the SS/PBCH block is located according to the index of the SS/PBCH block and the mode of the SS/PBCH block.
  • the second determining module is configured to determine that the first OFDM symbol of the SS/PBCH block is in the radio frame according to the index of the SS/PBCH block and the mode of the SS/PBCH block And used to locate the start position of the wireless frame according to the position of the first OFDM symbol of the SS/PBCH block in the wireless frame.
  • the index of the SS/PBCH block indicates which candidate position the SS/PBCH block is in. Therefore, each case of the candidate SS/PBCH block can be based on the SS/PBCH block.
  • the position of the first OFDM symbol of the PBCH block in the radio frame locates the start position of the radio frame:
  • the first OFDM symbol of the candidate SS/PBCH block is located in the ⁇ 2, 8, 16 of the radio frame , 22 ⁇ OFDM symbols, respectively corresponding to the index ⁇ 0, 1, 2, 3 ⁇ of the SS/PBCH block; for the carrier frequency greater than 3GHz and less than or equal to 6GHz, the first OFDM symbol of the candidate SS/PBCH block is located
  • the ⁇ 2, 8, 16, 22, 30, 36, 44, 50 ⁇ th OFDM symbols of the radio frame correspond to the index of the SS/PBCH block ⁇ 0, 1, 2, 3, 4, 5, 6, 7 ⁇ .
  • the first OFDM symbol of the candidate SS/PBCH block is located at ⁇ 4,8,16, 20 ⁇ OFDM symbols correspond to the indexes ⁇ 0, 1, 2, 3 ⁇ of the SS/PBCH block respectively; for the carrier frequency greater than 3GHz and less than or equal to 6GHz, the first OFDM symbol of the candidate SS/PBCH block is located in the wireless
  • the ⁇ 4, 8, 16, 20, 32, 36, 44, 48 ⁇ th OFDM symbols of the frame correspond to the index of the SS/PBCH block ⁇ 0, 1, 2, 3, 4, 5, 6, 7 ⁇ .
  • the first OFDM symbol of the candidate SS/PBCH block is located at ⁇ 2, 8, 16, 22 ⁇ OFDM symbols correspond to the indexes ⁇ 0, 1, 2, 3 ⁇ of the SS/PBCH block respectively; for the carrier frequency greater than 3GHz and less than or equal to 6GHz, the first OFDM symbol of the candidate SS/PBCH block is located in the wireless
  • the ⁇ 2, 8, 16, 22, 30, 36, 44, 50 ⁇ th OFDM symbols of the frame correspond to the index of the SS/PBCH block ⁇ 0, 1, 2, 3, 4, 5, 6, 7 ⁇ .
  • the first OFDM symbol of the candidate SS/PBCH block is located at ⁇ 4, 8, 16, 20, 32, 36, 44, 48, 60, 64, 72, 76, 88, 92, 100, 104, 144, 148, 156, 160, 172, 176, 184, 188, 200, 204, 212, 216, 228, 232,240,244,284,288,296,300,312,316,324,328,340,344,352,356,368,372,380,384,424,428,436,440,452,456, 464, 468, 480, 484, 492, 496, 508, 512, 520, 524 ⁇ OFDM symbols, respectively corresponding to the index of the SS/PBCH block ⁇ 0, 1, 2, 3, 4, 5, 6, 7, 8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,
  • the first OFDM symbol of the candidate SS/PBCH block is located at ⁇ 8, 12, 16, 20, 32, 36, 40, 44, 64, 68, 72, 76, 88, 92, 96, 100, 120, 124, 128, 132, 144, 148, 152, 156, 176, 180, 184, 188, 200, 204,208,212,288,292,296,300,312,316,320,324,344,348,352,356,368,372,376,380,400,404,408,412,424,428, 432, 436, 456, 460, 464, 468, 480, 484, 488, 492 ⁇ OFDM symbols, respectively corresponding to the index of the SS/PBCH block ⁇ 0, 1, 2, 3, 4, 5, 6, 7, 8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23
  • the time division duplex synchronization module 53 is configured to switch between the downlink and the uplink according to the preset uplink and downlink configuration of the wireless frame with the start position of the radio frame as the start time.
  • FIG. 6 shows a schematic diagram of the hardware structure of a time division duplex synchronization device of a distributed antenna system provided by an embodiment of the present application.
  • the time division duplex synchronization device of the distributed antenna system may include a processor 61 and a memory 62 storing computer program instructions.
  • the aforementioned processor 61 may include a central processing unit (CPU), or a specific integrated circuit (Application Specific Integrated Circuit, ASIC), or may be configured to implement one or more integrated circuits of the embodiments of the present application.
  • CPU central processing unit
  • ASIC Application Specific Integrated Circuit
  • the memory 62 may include a mass memory for data or instructions.
  • the memory 62 may include a hard disk drive (Hard Disk Drive, HDD), a floppy disk drive, a flash memory, an optical disk, a magneto-optical disk, a magnetic tape or a Universal Serial Bus (USB) drive or two or more Multiple combinations of these.
  • the storage 62 may include removable or non-removable (or fixed) media.
  • the memory 62 may be internal or external to the data processing device.
  • the memory 62 is a non-volatile solid state memory.
  • the memory 62 includes read-only memory (ROM).
  • the ROM can be mask-programmed ROM, programmable ROM (PROM), erasable PROM (EPROM), electrically erasable PROM (EEPROM), electrically rewritable ROM (EAROM) or flash memory or A combination of two or more of these.
  • the processor 61 reads and executes the computer program instructions stored in the memory 62 to implement any one of the time division duplex synchronization methods of the distributed antenna system in the foregoing embodiments.
  • the time division duplex synchronization device of the distributed antenna system may further include a communication interface 63 and a bus 60.
  • the processor 61, the memory 62, and the communication interface 63 are connected through the bus 60 and complete mutual communication.
  • the communication interface 63 is mainly used to implement communication between various modules, devices, units and/or devices in the embodiments of the present application.
  • the bus 60 includes hardware, software, or both, and couples the components of the time division duplex synchronization device of the distributed antenna system to each other.
  • the bus may include accelerated graphics port (AGP) or other graphics bus, enhanced industry standard architecture (EISA) bus, front side bus (FSB), hypertransport (HT) interconnect, industry standard architecture (ISA) Bus, unlimited bandwidth interconnect, low pin count (LPC) bus, memory bus, microchannel architecture (MCA) bus, peripheral component interconnect (PCI) bus, PCI-Express (PCI-X) bus, serial advanced technology Attachment (SATA) bus, Video Electronics Standards Association Local (VLB) bus or other suitable bus or a combination of two or more of these.
  • the bus 60 may include one or more buses.
  • the time division duplex synchronization device of the distributed antenna system can execute the time division duplex synchronization method of the distributed antenna system in the embodiment of the present application based on the acquired SS/PBCH block, thereby realizing the distributed antenna system described in conjunction with FIG. 1 The time division duplex synchronization method.
  • the embodiment of the present application may provide a computer-readable storage medium for implementation.
  • the computer-readable storage medium stores computer program instructions; when the computer program instructions are executed by the processor, any one of the time division duplex synchronization methods of the distributed antenna system in the foregoing embodiments is realized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及一种分布式天线系统的时分双工同步方法、装置、设备和介质。其中,该方法包括:解码来自时分双工小区的SS/PBCH块,得到SS/PBCH块的索引;根据SS/PBCH块的索引,确定SS/PBCH块所在无线帧的起始位置;根据无线帧的起始位置和预设无线帧上下行配置,进行时分双工同步。通过本申请的方案,解决了相关技术中的分布式天线系统通过GPS进行时分双工同步导致的分布式天线系统部署成本增加的问题,降低了分布式天线系统的部署成本。

Description

分布式天线系统的时分双工同步方法、装置、设备和介质
相关申请
本申请要求2019年8月6日申请的,申请号为201910722762.5,发明名称为“分布式天线系统的时分双工同步方法、装置、设备和介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,特别是涉及一种分布式天线系统的时分双工同步方法、装置、设备和介质。
背景技术
5G时代来临,移动通信数据流量将呈现爆发式增长,对无线网络覆盖水平尤其是接入网(Radio Access Network,简称为RAN)提出了更高的要求。分布式天线系统(Distributed antenna system,简称为DAS)是RAN的重要组成部分,分布式天线系统分散部署在建筑物内部以解决建筑物内部的信号覆盖问题。分布式天线系统方便、快捷的部署方式有利于运营商快速、灵活地构建满足用户需求的无线网络。
5G NR在大多数频段内采用时分双工(Time Division Duplexing,简称为TDD)帧结构,所以DAS系统需要获取精确的时分双工同步,用于收发信机的上下行切换。传统的集中式天线系统采用全球定位系统(Global Positioning System,简称为GPS)进行时分双工同步;而与部署在室外的集中式天线系统不同之处在于:分布式天线系统部署的建筑物内部、地下室中往往没有GPS信号,因此即使在分布式天线系统内配置GPS接收机,也难以直接进行时分双工同步;安装室外GPS天线可以解决GPS信号覆盖的问题,但会增加部署分布式天线系统的工程复杂程度。
针对相关技术中的分布式天线系统通过GPS进行时分双工同步导致的分布式天线系统部署成本增加的问题,目前尚未提出有效的解决方案。
发明内容
根据本申请的各种实施例,提供一种分布式天线系统的时分双工同步方法,包括解码来自时分双工小区的SS/PBCH块,得到所述SS/PBCH块的索引;根据所述SS/PBCH块的索引,确定所述SS/PBCH块所在无线帧的起始位置;根据所述无线帧的起始位置和预设无线帧上下行配置,进行时分双工同步。
上述分布式天线系统的时分双工同步方法具有以下优点:
采用解码来自时分双工小区的SS/PBCH块,得到SS/PBCH块的索引;根据SS/PBCH块的索引,确定SS/PBCH块所在无线帧的起始位置;根据无线帧的起始位置和预设无线帧上下行配置,进行时分双工同步的方式,解决了相关技术中的分布式天线系统通过GPS进行时分双工同步导致的分布式天线系统部署成本增加的问题,降低了分布式天线系统的部署成本。
在其中一个实施例中,解码来自时分双工小区的SS/PBCH块包括:通过小区搜索和下行同步过程,解码所述SS/PBCH块。
在其中一个实施例中,通过小区搜索和下行同步过程,解码所述SS/PBCH块包括:通过搜索PSS信号,选择目标小区;
在搜索到携带有所述目标小区的组内标识N ID (2)的PSS信号时,接收来自所述目标小区的SS/PBCH块;
解码所述SS/PBCH块中的SSS信号,得到所述目标小区的组标识N ID (1)
根据所述组内标识N ID (2)和所述组标识N ID (1),计算所述目标小区的小区标识N ID Cell
根据所述小区标识N ID Cell,解码所述SS/PBCH块中的PBCH DM-RS信号;
根据解码的所述PBCH DM-RS信号,确定所述SS/PBCH块的索引。
在其中一个实施例中,根据解码的所述PBCH DM-RS信号,确定所述SS/PBCH块的索引包括:
根据解码的所述PBCH DM-RS信号,确定所述SS/PBCH块的索引的3个最低比特位信息;利用所述PBCH DM-RS信号进行信道估计,解码PBCH,获得主信息块信息;其中,所述主信息块信息中携带有所述SS/PBCH块的索引的3个最高比特位信息。
在其中一个实施例中,根据所述SS/PBCH块的索引,确定所述SS/PBCH块所在无线帧的起始位置包括:
根据所述SS/PBCH块的子载波间隔和所述SS/PBCH块的频段,确定所述SS/PBCH块的模式;根据所述SS/PBCH块的索引和所述SS/PBCH块的模式,确定所述SS/PBCH块所在无线帧的起始位置。
在其中一个实施例中,根据所述SS/PBCH块的索引和所述SS/PBCH块的模式,确定所述SS/PBCH块所在无线帧的起始位置包括:
根据所述SS/PBCH块的索引和所述SS/PBCH块的模式,确定所述SS/PBCH块的第1个OFDM符号在所述无线帧中的位置;根据所述SS/PBCH块的第1个OFDM符号在所述无线帧中的位置,定位所述无线帧的起始位置。
在其中一个实施例中,所述SS/PBCH块的子载波间隔包括但不限于以下之一:15kHz、 30kHz、120kHz和240kHz。
在其中一个实施例中,根据所述无线帧的起始位置和预设无线帧上下行配置,进行时分双工同步包括:
以所述无线帧的起始位置为起始时刻,按照所述预设无线帧上下行配置进行下行和上行的切换。
根据本申请的各种实施例,还提供一种分布式天线系统的时分双工同步装置,所述装置包括:
解码模块,用于解码来自时分双工小区的SS/PBCH块,得到所述SS/PBCH块的索引;
确定模块,用于根据所述SS/PBCH块的索引,确定所述SS/PBCH块所在无线帧的起始位置;时分双工同步模块,用于根据所述无线帧的起始位置和预设无线帧上下行配置,进行时分双工同步。
根据本申请的各种实施例,还提供一种分布式天线系统的时分双工同步设备,包括:至少一个处理器、至少一个存储器以及存储在所述存储器中的计算机程序指令,当所述计算机程序指令被所述处理器执行时实现上述的方法。
根据本申请的各种实施例,还提供一种计算机可读存储介质,其上存储有计算机程序指令,当所述计算机程序指令被处理器执行时实现上述的方法。
附图说明
为了更好地描述和说明这里公开的那些发明的实施例和/或示例,可以参考一幅或多幅附图。用于描述附图的附加细节或示例不应当被认为是对所公开的发明、目前描述的实施例和/或示例以及目前理解的这些发明的最佳模式中的任何一者的范围的限制。
图1是本申请实施例的分布式天线系统的时分双工同步方法的流程图;
图2是相关技术的SS/PBCH块的时频资源分配示意图;
图3是本申请实施例分布式天线系统解码SS/PBCH块的流程图;
图4是本申请实施例的分布式天线系统进行PSS搜索的流程图;
图5是本申请实施例的分布式天线系统的时分双工同步装置的结构框图;
图6是本申请实施例的分布式天线系统的时分双工同步设备的硬件结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中 的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
第三代合作伙伴计划(3 rd Generation Partnership Project,简称为3GPP)发布的3GPP TS 38.104v15.6.0(公开日2019年6月)、3GPP TS 38.211v15.6.0(公开日2019年6月)和3GPP TS 38.213v15.6.0(公开日2019年6月)的全部内容通过引用的方式并入本文中,且成为本申请说明书的一部分。
在本实施例中提供了一种分布式天线系统的时分双工同步方法。图1是根据本申请实施例的分布式天线系统的时分双工同步方法的流程图,如图1所示,该流程包括如下步骤:
步骤S101:解码来自时分双工小区的SS/PBCH块,得到SS/PBCH块的索引;
步骤S102:根据SS/PBCH块的索引,确定SS/PBCH块所在无线帧的起始位置;
步骤S103:根据无线帧的起始位置和预设无线帧上下行配置,进行时分双工同步。
5G新空口(5th-Generation New Radio,简称为5G NR)中用户设备(User Equipment,简称为UE)与5G基站(gNode B,简称为gNB)下行同步与长期演进(Long Term Evolution,简称为LTE)类似,也是通过搜索主同步信号(Primary Synchronization Signal,简称为PSS)/辅同步信号(Secondary Synchronization Signal,简称为SSS)、解码同步信号块(Synchronization Signal Block,简称为SSB)来实现的,主要目的是UE获得正交频分复用(Orthogonal Frequency Division Multiplexing,简称为OFDM)符号的时分双工同步、无线帧同步,同时还可以获取物理小区标识(Physical-layer Cell identity,简称为PCI)、系统消息等信息。
SSB由同步信号(Synchronization Signal,简称为SS)和物理广播信道(Physical Broadcast Channel,简称为PBCH)组成,由于同步信号和PBCH信道一直是打包在一起的,因此SSB也被称为SS/PBCH块。图2是相关技术的SS/PBCH块的时频资源分配示意图,如图2所示,根据3GPP TS 38.211的定义,SS/PBCH块包含了主同步信号(Primary Synchronization Signal,简称为PSS)、辅同步信号(Secondary Synchronization Signal,简称为SSS)、PBCH、PBCH解码参考信号(Demodulation Reference Signal,简称为DM-RS),占用时域上的4个OFDM符号以及频域上的240个子载波。
其中,PSS在SS/PBCH块的第1个OFDM符号上,占用SS/PBCH块中间的127个子载波,两边分别有56、57个子载波不发射任何信号,该设计使PSS与其他信号之间有较大的频率隔离,便于UE把PSS与其他信号区分处理。PSS序列有3种取值,与物理小区标识组内标识N ID (2)∈{0,1,2}有一对一的映射关系。
SSS在SS/PBCH块的第3个OFDM符号上,也是占用SS/PBCH块中间的127个子载波,两边分别有8、9个子载波不发射任何信号,该设计既充分利用了第3个OFDM符号 上的资源,又便于UE把SSS与PBCH区分出来。SSS序列有336种取值,与物理小区标识组N ID (1)∈{0,1,…,335}有一对一的映射关系。
5G NR共有336×3=1008个物理小区标识(PCI),PCI根据公式(1)计算:
N ID Cell=N ID (1)+N ID (2)  (1);
PBCH在SS/PBCH块的第2至4个OFDM符号上,其中第2和第4个OFDM符号上分别有240个子载波,第3个OFDM符号上有96个子载波,PBCH共计有576个子载波。PBCH上传输主信息块(Master Information Block,简称为MIB)消息。
PBCH的每个资源块(Resource Block,简称为RB)上有3个DM-RS,因此DM-RS有4个频域偏移,同频邻区设置不同的频域偏移有利于降低导频干扰,频域偏移由公式(2)计算:
Figure PCTCN2020106601-appb-000001
用于PBCH的DM-RS序列r(m)由公式(3)定义:
Figure PCTCN2020106601-appb-000002
DM-RS的扰码序列发生器在每个SS/PBCH块都要根据N ID Cell、PBCH所在半帧的编号n hf和SS/PBCH块的索引i SSB被初始化。
根据3GPP的定义,在5G NR中DM-RS是随着物理小区标识(PCI)变化的;SS/PBCH块在一个无线帧中可能多次出现,即SS/PBCH块在无线帧中可能存在多个候选位置(用SS/PBCH块的第1个OFDM符号在无线帧中的位置表示SS/PBCH块的候选位置,每个侯选位置对应一个序号),而在每个候选位置上的SS/PBCH块的DM-RS信号不同,DM-RS信号指示了SS/PBCH块的索引。因此,通过解码SS/PBCH块可以得到SS/PBCH块在无线帧中的位置,便于UE与5G基站进行下行同步。
根据3GPP TS 38.213的定义,与LTE的SSS/PSS以及PBCH的固定周期不同,5G NR的SS/PBCH块的周期是可变的,可以配置为5ms、10ms、20ms、40ms、80ms和/或160ms,在每个周期内,SS/PBCH块只在某个半帧(5ms)上传输。根据SS/PBCH块的子载波间隔的不同,候选SS/PBCH块的时间位置有A、B、C、D、E 5种模式,每种模式的结构如下:
模式A:SS/PBCH块的子载波间隔是15kHz,候选的SS/PBCH块的第1个OFDM符号位置指示是{2,8}+14×n,对于载波频率小于或者等于3GHz,n=0,1,SS/PBCH块在某个半帧的子帧0,1上传输,共有4个候选位置(L max=4);对于载波频率大于3GHz且小于或等于6GHz,n=0,1,2,3,SS/PBCH块在某个半帧的子帧0,1,2,3上传输,共有8个候选位置(L max=8)。
模式B:SS/PBCH的子载波间隔是30kHz,候选的SS/PBCH块的第1个OFDM符号 位置指示是{4,8,16,20}+28×n,对于载波频率小于或者等于3GHz,n=0,SS/PBCH块在某个半帧的子帧0上传输,共有4个候选位置(L max=4);对于载波频率大于3GHz且小于或等于6GHz,n=0,1,SS/PBCH块在某个半帧的子帧0,1上传输,共有8个候选位置(L max=8)。
模式C:SS/PBCH的子载波间隔是30kHz,候选的SS/PBCH块的第1个OFDM符号位置指示是{2,8}+14×n,对于载波频率小于或者等于3GHz,n=0,1,SS/PBCH块在某个半帧的子帧0上传输,共有4个候选位置(L max=4);对于载波频率大于3GHz且小于或等于6GHz,n=0,1,2,3,SS/PBCH块在某个半帧的子帧0,1上传输,共有8个候选位置(L max=8)。
模式D:SS/PBCH的子载波间隔是120kHz,候选的SS/PBCH块的第1个OFDM符号位置指示是{4,8,16,20}+28×n,对于载波频率大于6GHz,n=0,1,2,3,5,6,7,8,10,11,12,13,15,16,17,18,SS/PBCH块在某个半帧的子帧0,1,2,3,4上传输,共有64个候选位置(L max=64)。
模式E:SS/PBCH的子载波间隔是240kHz,候选的SS/PBCH块的第1个OFDM符号位置指示是{8,12,16,20,32,36,40,44}+56×n,对于载波频率大于6GHz,n=0,1,2,3,5,6,7,8,SS/PBCH块在某个半帧的子帧0,1,2上传输,共有64个候选位置(L max=64)。
由于在子载波间隔为15kHz时,每个无线帧由140个OFDM符号组成;在子载波间隔为30kHz时,每个无线帧由280个OFDM符号组成;在子载波间隔为120kHz时,每个无线帧由1120个OFDM符号组成;在子载波间隔为240kHz时,每个无线帧由2240个OFDM符号组成。因此,无论上述模式A至模式E中的哪一种情况,SS/PBCH块总是在第一个半帧上发送。
在3GPP TS 38.104第5章表5.4.3.3中进一步定义了不同频段、不同子载波间隔(SCS)的SS/PBCH块具体采用的SS/PBCH块的模式(即SS Blockpattern)。其中,SS/PBCH块的频段采用全局同步信道号(Global Synchronization Channel Number,简称为GSCN)来标识。因此,根据SS/PBCH块的子载波间隔和SS/PBCH块的频段,按照3GPP TS 38.104的定义可以确定SS/PBCH块的模式;根据SS/PBCH块的索引和SS/PBCH块的模式,按照3GPP TS 38.213的定义可以确定SS/PBCH块所在无线帧的起始位置。
由此可见,由于时分双工小区发送的SS/PBCH块的DM-RS指示了SS/PBCH块在无线帧第一个半帧中的位置,那么,通过上述步骤S101至步骤S103,由DAS解码该SS/PBCH块得到SS/PBCH块的索引后,DAS根据SS/PBCH块的索引就可以确定SS/PBCH块的第1个OFDM符号在无线帧的第一个半帧的哪个OFDM符号上。又由于根据3GPP的定义,在确定的子载波间隔配置下,每个无线帧的OFDM符号数是确定的,因此在确定了SS/PBCH块 的第1个OFDM符号在无线帧的第一个半帧中的位置之后,DAS就能够确定在此之后的无线帧的起始时刻;在确定无线帧的起始时刻之后,按照预设无线帧上下行配置进行上行和下行的切换,就能够实现时分双工同步。相对于相关技术中分布式天线系统通过GPS进行时分双工同步而言,采用上述步骤进行时分双工同步的分布式天线系统无需新增GPS接收机,因此解决了分布式天线系统通过GPS进行时分双工同步导致的分布式天线系统部署成本增加的问题,降低了分布式天线系统的部署成本。
在其中一个实施例中,步骤S101中通过小区搜索和下行同步过程,解码SS/PBCH块。根据3GPP TS 38.211的定义,小区搜索和下行同步过程是UE获取与小区的时间和频率同步并检测物理小区标识的过程,在该过程中将按照标准流程解码SS/PBCH块;但是在3GPP TS38.211的定义的小区搜索和下行同步过程仅限于UE和小区之间的时间和频率的同步。在本申请实施例中,分布式天线系统通过执行小区搜索和下行同步过程,从而实现SS/PBCH块的解码。
图3是根据本申请实施例的分布式天线系统解码SS/PBCH块的流程图,如图3所示,分布式天线系统解码SS/PBCH块包括如下步骤:
步骤S301,分布式天线系统在时域和频域上搜索PSS信号,选择目标小区;其中,该目标小区为TDD制式的小区;在UE搜索小区过程中,目标小区为UE的待驻留小区;而在本实施例中,目标小区作为分布式天线系统的时分双工同步源,分布式天线系统不是UE,因此分布式天线系统不会驻留到该目标小区上。
由于3GPP定义了SS/PBCH块在频域上的可能位置以及时域上的重复周期(20ms),因此需要在时域和频域两个维度上进行PSS的搜索。分布式天线系统搜索到PSS后可以确定OFDM符号的起始位置,实现OFDM符号的时间同步和SS/PBCH块的同步,并通过盲解码的方式确定N ID (2)
图4是根据本申请实施例的分布式天线系统进行PSS搜索的流程图,如图4所示,分布式天线系统接收到的信号首先经过放大、模数转换(ADC),变为数字信号。因为SS/PBCH块仅占用了240个子载波,因此可以进行数字下变频(DDC)来降低采样率,以节省计算量。下变频后的信号与本地产生的PSS信号进行滑动相关运算,以20ms为周期对相关运算的结果进行判决:如果20ms内的最大相关度大于预定义的门限,则说明已经找到PSS信号,停止运算;否则切换数字控制振荡器(Numerically Controlled Oscillator,简称为NCO)的频率,重新进行搜索。
步骤S302,分布式天线系统在搜索到携带有目标小区的组内标识N ID (2)的PSS信号时,接收来自目标小区的SS/PBCH块;在接收到SS/PBCH块后,可以将SS/PBCH块保存在分布 式天线系统本地;由于SS/PBCH块占用的时频域资源是固定的,因此在搜索到PSS信号后,就可以确定SSS信号的位置。
步骤S303,分布式天线系统解码SS/PBCH块中的SSS信号,得到目标小区的组标识N ID (1);在本步骤中,分布式天线系统通过盲解码的方式确定N ID (1)
步骤S304,分布式天线系统根据组内标识N ID (2)和组标识N ID (1),计算目标小区的小区标识N ID Cell;小区标识N ID Cell即为PCI,根据公式(1)计算得到。
步骤S305,分布式天线系统根据小区标识N ID Cell,解码SS/PBCH块中的PBCH DM-RS信号;分布式天线系统获得N ID Cell后,根据公式(2)确定PBCH的DM-RS在SS/PBCH块上的频域位置。
步骤S306,分布式天线系统根据解码的PBCH DM-RS信号,确定SS/PBCH块的索引。在确定PBCH的DM-RS在SS/PBCH块上的频域位置后,通过盲解码的方式,可以确定SS/PBCH块的索引i SSB的全部或者部分信息。盲解码的方式包括:首先,根据N ID Cell,产生所有可能的PBCH DM-RS信号。以3.5GHz频段为例,共有8种可能的PBCH DM-RS信号,对应于SS/PBCH可能出现的8个SS/PBCH块的索引。然后,将产生的PBCH DM-RS信号依次与接收到的SS/PBCH块中的PBCH DM-RS部分进行互相关运算,获取SS/PBCH块的索引的全部或者部分信息。
在子载波间隔为15kHz或者30kHz的情况下:对于L max=4,通过上述的过程可以得到完整的SS/PBCH块的索引i SSB(2bit)信息,进而确定无线帧的起始位置;对于L max=8,通过上述的过程可以得到完整的SS/PBCH块的索引i SSB(3bit)信息,进而确定无线帧的起始位置。
在子载波间隔为120kHz或者240kHz的情况下,L max=64,通过上述过程可以得到SS/PBCH块的索引i SSB的3个最低bit位信息。为了能够得到SS/PBCH块的索引i SSB的3个最高bit位信息,则还可以解码SS/PBCH块中的PBCH得到SS/PBCH块的索引i SSB的3个最高bit位信息。具体而言,是在分布式天线系统根据解码的PBCH DM-RS信号得到SS/PBCH块的索引i SSB的3个最高bit位信息之后,分布式天线系统利用PBCH DM-RS信号进行信道估计,解码PBCH,获得主信息块(MIB)信息;其中,主信息块(MIB)信息中携带有SS/PBCH块的索引的3个最高比特位信息。
由于3GPP TS 38.213定义了SS/PBCH块的候选位置,SS/PBCH块的索引指示了SS/PBCH块在哪一个候选位置上,因此,对于候选SS/PBCH块的每种情况都可以根据SS/PBCH块的第1个OFDM符号在无线帧中的位置定位无线帧的起始位置:
对于模式A:当SS/PBCH块的子载波间隔是15kHz的情况下,对于载波频率小于或 者等于3GHz,候选的SS/PBCH块的第1个OFDM符号位于无线帧的第{2,8,16,22}个OFDM符号上,分别对应SS/PBCH块的索引{0,1,2,3};对于载波频率大于3GHz且小于或等于6GHz,候选的SS/PBCH块的第1个OFDM符号位于无线帧的第{2,8,16,22,30,36,44,50}个OFDM符号上,分别对应SS/PBCH块的索引{0,1,2,3,4,5,6,7}。
对于模式B:当SS/PBCH的子载波间隔是30kHz的情况下,对于载波频率小于或者等于3GHz,候选的SS/PBCH块的第1个OFDM符号位于无线帧的第{4,8,16,20}个OFDM符号上,分别对应SS/PBCH块的索引{0,1,2,3};对于载波频率大于3GHz且小于或等于6GHz,候选的SS/PBCH块的第1个OFDM符号位于无线帧的第{4,8,16,20,32,36,44,48}个OFDM符号上,分别对应SS/PBCH块的索引{0,1,2,3,4,5,6,7}。
对于模式C:当SS/PBCH的子载波间隔是30kHz的情况下,对于载波频率小于或者等于3GHz,候选的SS/PBCH块的第1个OFDM符号位于无线帧的第{2,8,16,22}个OFDM符号上,分别对应SS/PBCH块的索引{0,1,2,3};对于载波频率大于3GHz且小于或等于6GHz,候选的SS/PBCH块的第1个OFDM符号位于无线帧的第{2,8,16,22,30,36,44,50}个OFDM符号上,分别对应SS/PBCH块的索引{0,1,2,3,4,5,6,7}。
对于模式D:当SS/PBCH的子载波间隔是120kHz的情况下,对于载波频率大于6GHz,候选的SS/PBCH块的第1个OFDM符号位于无线帧的第{4,8,16,20,32,36,44,48,60,64,72,76,88,92,100,104,144,148,156,160,172,176,184,188,200,204,212,216,228,232,240,244,284,288,296,300,312,316,324,328,340,344,352,356,368,372,380,384,424,428,436,440,452,456,464,468,480,484,492,496,508,512,520,524}个OFDM符号上,分别对应SS/PBCH块的索引{0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63}。
对于模式E:当SS/PBCH的子载波间隔是240kHz的情况下,对于载波频率大于6GHz,候选的SS/PBCH块的第1个OFDM符号位于无线帧的第{8,12,16,20,32,36,40,44,64,68,72,76,88,92,96,100,120,124,128,132,144,148,152,156,176,180,184,188,200,204,208,212,288,292,296,300,312,316,320,324,344,348,352,356,368,372,376,380,400,404,408,412,424,428,432,436,456,460, 464,468,480,484,488,492}个OFDM符号上,分别对应SS/PBCH块的索引{0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63}。
对于UE的小区搜索和下行同步过程而言,至少还需要解码系统信息块类型1(System Information Block Type1,简称为SIB1)才能够完成UE与小区之间的同步。在本实施例中,在子载波间隔配置为15kHz或者30kHz时,分布式天线系统通过上述步骤S301至步骤S306就能够确定无线帧的起始位置;在子载波间隔配置为120kHz或者240kHz时,分布式天线系统通过上述步骤S301至步骤S306,解码出PBCH中的主信息块(MIB)信息就能够确定无线帧的起始位置,因此分布式天线系统不再继续解码SIB1。
在其中一个实施例中,根据无线帧的起始位置和预设无线帧上下行配置,进行时分双工同步具体可以包括:在无线帧的下一个半帧周期开始时,按照预设无线帧上下行配置进行下行和上行的切换。
时分双工(TDD)模式下,整个无线帧被分为下行时隙、保护间隔和上行时隙3部分。无线帧上下行配置包括:TDD切换周期、下行时隙长度、保护时间间隔长度和上行时隙长度等参数,分布式天线系统根据这些参数就能够准确识别上行时隙和下行时隙,实现时分双工同步。
上述的预设无线帧上下行配置可以从分布式天线系统的参数接口手动设置,用户从参数接口输入这些参数,分布式天线系统即可自动实现时分双工同步。在一些应用场景下,为了避免上下行干扰,TDD切换周期、下行时隙长度、保护间隔长度以及上行时隙长度都是固定值。如中国移动的2.6GHz频段,为了实现5G NR与LTE TDD共存,采用了与LTE TDD相同的5ms切换周期、下行和上行长度3:1的配置。在这些场景下,分布式天线系统可以将这些参数设置为默认值,不再需要用户进行配置。
在本实施例中还提供了一种分布式天线系统的时分双工同步装置,该装置用于实现上述实施例及优选实施方式,已经进行过的说明不再赘述。如以下所使用的,术语“模块”、“单元”等可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图5是根据本申请实施例的分布式天线系统的时分双工同步装置的结构框图,如图5所示,该装置包括:
解码模块51,耦合至确定模块52,用于解码来自时分双工小区的SS/PBCH块,得到SS/PBCH块的索引;
确定模块52,耦合至时分双工同步模块53,用于根据SS/PBCH块的索引,确定SS/PBCH块所在无线帧的起始位置;
时分双工同步模块53,用于根据无线帧的起始位置和预设无线帧上下行配置,进行时分双工同步。
在其中一个实施例中,解码模块51用于通过小区搜索和下行同步过程,解码SS/PBCH块。
在其中一个实施例中,解码模块51包括:搜索单元,用于通过搜索PSS信号,选择目标小区;
接收单元,用于在搜索到携带有目标小区的组内标识N ID (2)的PSS信号时,接收来自目标小区的SS/PBCH块;
第一解码单元,用于解码SS/PBCH块中的SSS信号,得到目标小区的组标识N ID (1)
计算单元,用于根据组内标识N ID (2)和组标识N ID (1),计算目标小区的小区标识N ID Cell
第二解码单元,用于根据小区标识N ID Cell,解码SS/PBCH块中的PBCH DM-RS信号;
确定单元,用于根据解码的PBCH DM-RS信号,确定SS/PBCH块的索引。
在其中一个实施例中,确定单元,用于根据解码的PBCH DM-RS信号,确定所述SS/PBCH块的索引的3个最低比特位信息;以及利用所述PBCH DM-RS信号进行信道估计,解码PBCH,获得主信息块信息;其中,所述主信息块信息中携带有所述SS/PBCH块的索引的3个最高比特位信息。
在其中一个实施例中,确定模块52包括:第一确定模块,用于根据SS/PBCH块的子载波间隔和SS/PBCH块的频段,确定SS/PBCH块的模式;以及第二确定模块,用于根据SS/PBCH块的索引和SS/PBCH块的模式,确定SS/PBCH块所在无线帧的起始位置。
在其中一个实施例中,第二确定模块用于根据所述SS/PBCH块的索引和所述SS/PBCH块的模式,确定所述SS/PBCH块的第1个OFDM符号在所述无线帧中的位置;以及用于根据所述SS/PBCH块的第1个OFDM符号在所述无线帧中的位置,定位所述无线帧的起始位置。
由于3GPP TS 38.213定义了SS/PBCH块的候选位置,SS/PBCH块的索引指示了SS/PBCH块在哪一个候选位置上,因此,对于候选SS/PBCH块的每种情况都可以根据SS/PBCH块的第1个OFDM符号在无线帧中的位置定位无线帧的起始位置:
对于模式A:当SS/PBCH块的子载波间隔是15kHz的情况下,对于载波频率小于或者等于3GHz,候选的SS/PBCH块的第1个OFDM符号位于无线帧的第{2,8,16,22}个OFDM符号上,分别对应SS/PBCH块的索引{0,1,2,3};对于载波频率大于3GHz且小 于或等于6GHz,候选的SS/PBCH块的第1个OFDM符号位于无线帧的第{2,8,16,22,30,36,44,50}个OFDM符号上,分别对应SS/PBCH块的索引{0,1,2,3,4,5,6,7}。
对于模式B:当SS/PBCH的子载波间隔是30kHz的情况下,对于载波频率小于或者等于3GHz,候选的SS/PBCH块的第1个OFDM符号位于无线帧的第{4,8,16,20}个OFDM符号上,分别对应SS/PBCH块的索引{0,1,2,3};对于载波频率大于3GHz且小于或等于6GHz,候选的SS/PBCH块的第1个OFDM符号位于无线帧的第{4,8,16,20,32,36,44,48}个OFDM符号上,分别对应SS/PBCH块的索引{0,1,2,3,4,5,6,7}。
对于模式C:当SS/PBCH的子载波间隔是30kHz的情况下,对于载波频率小于或者等于3GHz,候选的SS/PBCH块的第1个OFDM符号位于无线帧的第{2,8,16,22}个OFDM符号上,分别对应SS/PBCH块的索引{0,1,2,3};对于载波频率大于3GHz且小于或等于6GHz,候选的SS/PBCH块的第1个OFDM符号位于无线帧的第{2,8,16,22,30,36,44,50}个OFDM符号上,分别对应SS/PBCH块的索引{0,1,2,3,4,5,6,7}。
对于模式D:当SS/PBCH的子载波间隔是120kHz的情况下,对于载波频率大于6GHz,候选的SS/PBCH块的第1个OFDM符号位于无线帧的第{4,8,16,20,32,36,44,48,60,64,72,76,88,92,100,104,144,148,156,160,172,176,184,188,200,204,212,216,228,232,240,244,284,288,296,300,312,316,324,328,340,344,352,356,368,372,380,384,424,428,436,440,452,456,464,468,480,484,492,496,508,512,520,524}个OFDM符号上,分别对应SS/PBCH块的索引{0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63}。
对于模式E:当SS/PBCH的子载波间隔是240kHz的情况下,对于载波频率大于6GHz,候选的SS/PBCH块的第1个OFDM符号位于无线帧的第{8,12,16,20,32,36,40,44,64,68,72,76,88,92,96,100,120,124,128,132,144,148,152,156,176,180,184,188,200,204,208,212,288,292,296,300,312,316,320,324,344,348,352,356,368,372,376,380,400,404,408,412,424,428,432,436,456,460,464,468,480,484,488,492}个OFDM符号上,分别对应SS/PBCH块的索引{0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24, 25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63}。
在其中一个实施例中,时分双工同步模块53用于以无线帧的起始位置为起始时刻,按照预设无线帧上下行配置进行下行和上行的切换。
另外,结合图1描述的本申请实施例的分布式天线系统的时分双工同步方法可以由分布式天线系统的时分双工同步设备来实现。图6示出了本申请实施例提供的分布式天线系统的时分双工同步设备的硬件结构示意图。
分布式天线系统的时分双工同步设备可以包括处理器61以及存储有计算机程序指令的存储器62。
具体地,上述处理器61可以包括中央处理器(CPU),或者特定集成电路(Application Specific Integrated Circuit,ASIC),或者可以被配置成实施本申请实施例的一个或多个集成电路。
存储器62可以包括用于数据或指令的大容量存储器。举例来说而非限制,存储器62可包括硬盘驱动器(Hard Disk Drive,HDD)、软盘驱动器、闪存、光盘、磁光盘、磁带或通用串行总线(Universal Serial Bus,USB)驱动器或者两个或更多个以上这些的组合。在合适的情况下,存储器62可包括可移除或不可移除(或固定)的介质。在合适的情况下,存储器62可在数据处理装置的内部或外部。在特定实施例中,存储器62是非易失性固态存储器。在特定实施例中,存储器62包括只读存储器(ROM)。在合适的情况下,该ROM可以是掩模编程的ROM、可编程ROM(PROM)、可擦除PROM(EPROM)、电可擦除PROM(EEPROM)、电可改写ROM(EAROM)或闪存或者两个或更多个以上这些的组合。
处理器61通过读取并执行存储器62中存储的计算机程序指令,以实现上述实施例中的任意一种分布式天线系统的时分双工同步方法。
在一个示例中,分布式天线系统的时分双工同步设备还可包括通信接口63和总线60。其中,如图6所示,处理器61、存储器62、通信接口63通过总线60连接并完成相互间的通信。
通信接口63,主要用于实现本申请实施例中各模块、装置、单元和/或设备之间的通信。
总线60包括硬件、软件或两者,将分布式天线系统的时分双工同步设备的部件彼此耦接在一起。举例来说而非限制,总线可包括加速图形端口(AGP)或其他图形总线、增强工业标准架构(EISA)总线、前端总线(FSB)、超传输(HT)互连、工业标准架构(ISA)总线、无限带宽互连、低引脚数(LPC)总线、存储器总线、微信道架构(MCA)总线、外 围组件互连(PCI)总线、PCI-Express(PCI-X)总线、串行高级技术附件(SATA)总线、视频电子标准协会局部(VLB)总线或其他合适的总线或者两个或更多个以上这些的组合。在合适的情况下,总线60可包括一个或多个总线。尽管本申请实施例描述和示出了特定的总线,但本申请考虑任何合适的总线或互连。
该分布式天线系统的时分双工同步设备可以基于获取到的SS/PBCH块,执行本申请实施例中的分布式天线系统的时分双工同步方法,从而实现结合图1描述的分布式天线系统的时分双工同步方法。
另外,结合上述实施例中的分布式天线系统的时分双工同步方法,本申请实施例可提供一种计算机可读存储介质来实现。该计算机可读存储介质上存储有计算机程序指令;该计算机程序指令被处理器执行时实现上述实施例中的任意一种分布式天线系统的时分双工同步方法。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种分布式天线系统的时分双工同步方法,其特征在于,所述方法包括:
    解码来自时分双工小区的SS/PBCH块,得到所述SS/PBCH块的索引;
    根据所述SS/PBCH块的索引,确定所述SS/PBCH块所在无线帧的起始位置;
    根据所述无线帧的起始位置和预设无线帧上下行配置,进行时分双工同步;
    根据所述SS/PBCH块的索引,确定所述SS/PBCH块所在无线帧的起始位置包括:
    根据所述SS/PBCH块的子载波间隔和所述SS/PBCH块的频段,确定所述SS/PBCH块的模式;进而确定所述SS/PBCH块所在无线帧的起始位置。
  2. 根据权利要求1所述的方法,其特征在于,解码来自时分双工小区的SS/PBCH块包括:
    通过小区搜索和下行同步过程,解码所述SS/PBCH块。
  3. 根据权利要求2所述的方法,其特征在于,通过小区搜索和下行同步过程,解码所述SS/PBCH块包括:
    通过搜索PSS信号,选择目标小区;
    在搜索到携带有所述目标小区的组内标识N ID (2)的PSS信号时,接收来自所述目标小区的SS/PBCH块;
    解码所述SS/PBCH块中的SSS信号,得到所述目标小区的组标识N ID (1)
    根据所述组内标识N ID (2)和所述组标识N ID (1),计算所述目标小区的小区标识N ID Cell
    根据所述小区标识N ID Cell,解码所述SS/PBCH块中的PBCH DM-RS信号;
    根据解码的所述PBCH DM-RS信号,确定所述SS/PBCH块的索引。
  4. 根据权利要求3所述的方法,其特征在于,根据解码的所述PBCH DM-RS信号,确定所述SS/PBCH块的索引包括:
    根据解码的所述PBCH DM-RS信号,确定所述SS/PBCH块的索引的3个最低比特位信息;
    利用所述PBCH DM-RS信号进行信道估计,解码PBCH,获得主信息块信息;其中,所述主信息块信息中携带有所述SS/PBCH块的索引的3个最高比特位信息。
  5. 根据权利要求1所述的方法,其特征在于,根据所述SS/PBCH块的索引和所述SS/PBCH块的模式,确定所述SS/PBCH块所在无线帧的起始位置还包括:
    根据所述SS/PBCH块的索引和所述SS/PBCH块的模式,确定所述SS/PBCH块的第1个OFDM符号在所述无线帧中的位置;进而定位所述无线帧的起始位置。
  6. 根据权利要求1所述的方法,其特征在于,所述SS/PBCH块的子载波间隔包括以下 之一:15kHz、30kHz、120kHz和240kHz。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,根据所述无线帧的起始位置和预设无线帧上下行配置,进行时分双工同步包括:
    以所述无线帧的起始位置为起始时刻,按照所述预设无线帧上下行配置进行下行和上行的切换。
  8. 一种分布式天线系统的时分双工同步装置,其特征在于,包括:
    解码模块,用于解码来自时分双工小区的SS/PBCH块,得到所述SS/PBCH块的索引;
    确定模块,用于根据所述SS/PBCH块的索引,确定所述SS/PBCH块所在无线帧的起始位置;
    时分双工同步模块,用于根据所述无线帧的起始位置和预设无线帧上下行配置,进行时分双工同步;
    所述确定模块包括:第一确定模块,用于根据SS/PBCH块的子载波间隔和SS/PBCH块的频段,确定SS/PBCH块的模式;以及第二确定模块,用于根据SS/PBCH块的索引和SS/PBCH块的模式,确定SS/PBCH块所在无线帧的起始位置。
  9. 一种分布式天线系统的时分双工同步设备,其特征在于,包括:至少一个处理器、至少一个存储器以及存储在所述存储器中的计算机程序指令,当所述计算机程序指令被所述处理器执行时实现如权利要求1至7中任一项所述的方法。
  10. 一种计算机可读存储介质,其上存储有计算机程序指令,其特征在于,当所述计算机程序指令被处理器执行时实现如权利要求1至7中任一项所述的方法。
PCT/CN2020/106601 2019-08-06 2020-08-03 分布式天线系统的时分双工同步方法、装置、设备和介质 WO2021023157A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2020325358A AU2020325358B2 (en) 2019-08-06 2020-08-03 Method, device and apparatus for time division duplex synchronization for distributed antenna system, and medium
EP20849624.0A EP3965483A4 (en) 2019-08-06 2020-08-03 METHOD, DEVICE AND APPARATUS FOR TIME DIVISION DUPLEXING SYNCHRONIZATION FOR DISTRIBUTED ANTENNA SYSTEMS, AND MEDIA
US17/614,561 US11870632B2 (en) 2019-08-06 2020-08-03 Method, device and apparatus for time division duplex synchronization for distributed antenna system, and medium
CA3140010A CA3140010A1 (en) 2019-08-06 2020-08-03 Method, device and apparatus for time division duplex synchronization for distributed antenna system, and medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910722762.5A CN110519838B (zh) 2019-08-06 2019-08-06 分布式天线系统的时分双工同步方法、装置、设备和介质
CN201910722762.5 2019-08-06

Publications (1)

Publication Number Publication Date
WO2021023157A1 true WO2021023157A1 (zh) 2021-02-11

Family

ID=68625277

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/106601 WO2021023157A1 (zh) 2019-08-06 2020-08-03 分布式天线系统的时分双工同步方法、装置、设备和介质

Country Status (6)

Country Link
US (1) US11870632B2 (zh)
EP (1) EP3965483A4 (zh)
CN (1) CN110519838B (zh)
AU (1) AU2020325358B2 (zh)
CA (1) CA3140010A1 (zh)
WO (1) WO2021023157A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110519838B (zh) 2019-08-06 2021-07-13 三维通信股份有限公司 分布式天线系统的时分双工同步方法、装置、设备和介质
CN112423381B (zh) * 2021-01-25 2021-04-20 江苏永鼎通信有限公司 5g小区搜索中ssb实际起始符号的判定方法、装置
CN115567357A (zh) * 2022-09-09 2023-01-03 京信网络系统股份有限公司 时频同步方法、装置、设备、存储介质和程序产品

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014071579A1 (zh) * 2012-11-07 2014-05-15 华为技术有限公司 一种小区之间定时同步的方法及装置
CN107197486A (zh) * 2016-03-15 2017-09-22 中兴通讯股份有限公司 一种驻留目标选择方法、传输方法及装置
CN107404754A (zh) * 2017-06-13 2017-11-28 深圳市市政设计研究院有限公司 一种轨道交通行业lte基站间时钟同步方法和系统
WO2018208219A1 (en) * 2017-05-12 2018-11-15 Telefonaktiebolaget Lm Ericsson (Publ) Radio network node, wireless device, and methods for performing random access in a wireless communication network
CN110035028A (zh) * 2019-03-29 2019-07-19 宇龙计算机通信科技(深圳)有限公司 基于非授权频谱的同步信号传输方法、装置和存储介质
CN110519838A (zh) * 2019-08-06 2019-11-29 三维通信股份有限公司 分布式天线系统的时分双工同步方法、装置、设备和介质

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018008219A1 (ja) 2016-07-05 2018-01-11 株式会社トクヤマ アジルサルタン中間体、アジルサルタン、及びこれらの製造方法
US10362610B2 (en) * 2016-09-19 2019-07-23 Samsung Electronics Co., Ltd. Method and apparatus for mapping initial access signals in wireless systems
US10425264B2 (en) * 2017-01-09 2019-09-24 Lg Electronics Inc. Method of transmitting synchronization signal and apparatus therefor
US10440672B2 (en) * 2017-02-06 2019-10-08 Lg Electronics Inc. Method and device for transmitting and receiving signal between user equipment and base station in wireless communication system
US10523354B2 (en) * 2017-02-24 2019-12-31 Samsung Electronics Co., Ltd. Method and apparatus for design of NR-SS burst set
KR101915997B1 (ko) 2017-06-15 2018-11-07 엘지전자 주식회사 동기 신호 블록을 송수신하는 방법 및 이를 위한 장치
US20180368181A1 (en) * 2017-06-16 2018-12-20 Lg Electronics Inc. Method and user equipment for monitoring random access response, and method and base station for transmitting random access response
JP7005618B2 (ja) 2017-06-16 2022-01-21 エルジー エレクトロニクス インコーポレイティド 下りリンクチャネルを送受信する方法及びそのための装置
WO2018236256A1 (en) * 2017-06-19 2018-12-27 Telefonaktiebolaget Lm Ericsson (Publ) MEASURES TAKING INTO ACCOUNT THE CONFIGURATION OF SS BLOCKS
US10778321B2 (en) * 2017-06-27 2020-09-15 Lg Electronics Inc. Method and device for relaying signal in mobile communication system
KR102276347B1 (ko) * 2017-06-28 2021-07-13 텔레호낙티에볼라게트 엘엠 에릭슨(피유비엘) 인트라-주파수 및 인터-주파수 동작들 간의 결정을 위한 방법
CN110521146B (zh) * 2017-07-28 2021-05-11 Lg电子株式会社 接收同步信号块的方法及其设备
US10512072B2 (en) * 2017-09-11 2019-12-17 Lg Electronics Inc. Method and apparatus for transmitting downlink control information in wireless communication system
JP6974482B2 (ja) * 2017-11-17 2021-12-01 エルジー エレクトロニクス インコーポレイティドLg Electronics Inc. 下りリンクチャネルを送受信する方法及びそのための装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014071579A1 (zh) * 2012-11-07 2014-05-15 华为技术有限公司 一种小区之间定时同步的方法及装置
CN107197486A (zh) * 2016-03-15 2017-09-22 中兴通讯股份有限公司 一种驻留目标选择方法、传输方法及装置
WO2018208219A1 (en) * 2017-05-12 2018-11-15 Telefonaktiebolaget Lm Ericsson (Publ) Radio network node, wireless device, and methods for performing random access in a wireless communication network
CN107404754A (zh) * 2017-06-13 2017-11-28 深圳市市政设计研究院有限公司 一种轨道交通行业lte基站间时钟同步方法和系统
CN110035028A (zh) * 2019-03-29 2019-07-19 宇龙计算机通信科技(深圳)有限公司 基于非授权频谱的同步信号传输方法、装置和存储介质
CN110519838A (zh) * 2019-08-06 2019-11-29 三维通信股份有限公司 分布式天线系统的时分双工同步方法、装置、设备和介质

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
3GPP TS 38.104
3GPP TS 38.104, June 2019 (2019-06-01)
3GPP TS 38.211
3GPP TS 38.211, June 2019 (2019-06-01)
3GPP TS 38.213
3GPP TS 38.213, June 2019 (2019-06-01)
See also references of EP3965483A4

Also Published As

Publication number Publication date
AU2020325358A1 (en) 2022-01-06
AU2020325358B2 (en) 2023-03-09
EP3965483A4 (en) 2022-06-22
US11870632B2 (en) 2024-01-09
US20220231896A1 (en) 2022-07-21
EP3965483A1 (en) 2022-03-09
CN110519838A (zh) 2019-11-29
CN110519838B (zh) 2021-07-13
CA3140010A1 (en) 2021-02-11

Similar Documents

Publication Publication Date Title
US11626947B2 (en) Communication method and communications device
CN109565873B (zh) 用于灵活的无线电通信的同步信号和随机接入的方法和装置
CN110176980B (zh) 一种数据传输的方法和无线网络设备
WO2021023157A1 (zh) 分布式天线系统的时分双工同步方法、装置、设备和介质
JP5855280B2 (ja) ユーザ装置および無線ネットワークノード、およびその方法
CN110366863B (zh) 传输信号的方法、终端设备和网络设备
US20140247808A1 (en) Method and apparatus for enhancing synchronization in a heterogeneous network
EP3403333B1 (en) Spreading techniques for frequency-shift keying modulation
CN115244998A (zh) 一种同步信号块的确定方法以及相关装置
WO2019029346A1 (zh) 用于传输参考信号的方法和通信装置
US20150312851A1 (en) Wireless communication system, wireless terminal, and wireless communication method
CN111972007A (zh) 一种信息的指示方法及装置、计算机存储介质
CN110537386B (zh) 同步广播块的发送方法、接收方法、装置、设备及介质
CN110138504B (zh) 一种资源配置方法、资源选择方法、信息接收方法及设备
US11051265B2 (en) Method and device for synchronization between base stations
US9924408B1 (en) Methods and devices for interference cancellation in cell search
KR102604254B1 (ko) Nr v2x 시스템을 위한 동기화 절차 수행 방법 및 그 장치
EP3927083A1 (en) Initial signal transmission method and device
EP3927083B1 (en) Initial signal transmission method and device
KR101670748B1 (ko) 경쟁 기반 하향링크 신호 전송 스케줄링 방법
CN113993089A (zh) 一种广播数据传输的方法和装置及设备
CN114270977A (zh) 下行链路控制信息的发送和接收

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20849624

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3140010

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2020849624

Country of ref document: EP

Effective date: 20211129

ENP Entry into the national phase

Ref document number: 2020325358

Country of ref document: AU

Date of ref document: 20200803

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE