WO2011063572A1 - 有源电子标签及其应用系统和方法 - Google Patents

有源电子标签及其应用系统和方法 Download PDF

Info

Publication number
WO2011063572A1
WO2011063572A1 PCT/CN2009/075227 CN2009075227W WO2011063572A1 WO 2011063572 A1 WO2011063572 A1 WO 2011063572A1 CN 2009075227 W CN2009075227 W CN 2009075227W WO 2011063572 A1 WO2011063572 A1 WO 2011063572A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
electronic tag
active electronic
filtering
received signal
Prior art date
Application number
PCT/CN2009/075227
Other languages
English (en)
French (fr)
Inventor
廖应成
孙长征
Original Assignee
西安西谷微功率数据技术有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安西谷微功率数据技术有限责任公司 filed Critical 西安西谷微功率数据技术有限责任公司
Priority to PCT/CN2009/075227 priority Critical patent/WO2011063572A1/zh
Priority to EP09851585.1A priority patent/EP2509032B1/en
Publication of WO2011063572A1 publication Critical patent/WO2011063572A1/zh
Priority to US13/482,734 priority patent/US9070061B2/en
Priority to US14/702,427 priority patent/US9405942B2/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/10009Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/0723Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips the record carrier comprising an arrangement for non-contact communication, e.g. wireless communication circuits on transponder cards, non-contact smart cards or RFIDs

Definitions

  • the present invention relates to information transmission technologies, and in particular to active electronic tags and their application systems and methods.
  • BACKGROUND OF THE INVENTION Existing active electronic tags are mainly used for remote identification and management of objects such as people, objects and vehicles.
  • the basic working method is to read the ID number of the active electronic tag installed on the identified target by means of radio frequency communication, and then call the pre-stored in the database of the control processor (such as a computer) by the ID number corresponding to The ID number is related to the identification and management of the target. Therefore, the application of this technology must be connected to the relevant database in the control processor.
  • One of the most common methods of active electronic tags currently used is to periodically transmit their own ID numbers.
  • the crystal oscillator and the frequency synthesizer in the electronic tag are activated at a certain time interval (for example, 1 second, 5 seconds, or 10 minutes) by an internal clock setting, and a certain length of packet information is transmitted.
  • a certain time interval for example, 1 second, 5 seconds, or 10 minutes
  • problems with this approach include electromagnetic pollution of the environment, signal congestion, and mutual flexibility, flexibility and adaptability.
  • an intelligent electronic label system which uses two-way communication to reduce electromagnetic pollution, signal congestion and mutual problems to the environment, but active electronic
  • the tag When the tag recognizes the short signal sent by the signal after the periodic wake-up, it will perform software identification on many invalid signals received to determine whether it is the required short message, which undoubtedly causes the active electronic tag to consume a large amount of power.
  • the crystal oscillator and the frequency synthesizer in the high frequency transceiver After detecting the low frequency command signal by using the low frequency detection circuit, the crystal oscillator and the frequency synthesizer in the high frequency transceiver are activated, and the high frequency transceiver enters a state in which the signal can be transmitted and received.
  • the active electronic tag that works with the wake-up circuit of the frequency detection circuit not only has a limited reading and writing distance, but also has a large device size and lacks flexibility in use. and, The cost of the system is also high. Therefore, its application range is also greatly limited.
  • some active electronic tags also use a method in which two sets of communication systems operate at the same time.
  • the present invention provides a system for applying an active electronic tag, comprising: a control processor; a coordinator for repeatedly transmitting a command signal continuously and continuously on a first channel; an active electronic tag, Receiving a command signal during a listening period; the reader/writer is connected to the control processor, and configured to establish communication with the active electronic tag on the second channel after the active electronic tag receives the command signal, where
  • the active electronic tag includes: a first filtering module, configured to perform first filtering on the received signal received by the active electronic tag on the first channel to exclude an invalid signal; and a second filtering module, configured to pass the first The filtered received signal is judged for legality to confirm whether the received signal is a command signal.
  • the first filtering module is a hard filtering module, and the receiving signal is filtered on the hardware side; the second filtering module is a soft filtering module, configured after the first filtering module, and legally determining whether the address code of the received signal is correct.
  • the hard filtering module includes a modulation mode filtering submodule, and the modulation mode filtering submodule demodulates the received signal, and reads the received signal strength indicating the RSSI value of the demodulated signal, and rejects when the RSSI value is not greater than the environmental noise. Subsequent processing of the received signal causes the active electronic tag to transition from the listening state to the sleep state in the standby state.
  • the hard filtering module includes a decoding mode filtering submodule, and the decoding mode filtering submodule decodes the received signal, and reads the decoded signal, and rejects the received signal when determining that the decoded signal is no signal or other garbled signal.
  • the active electronic tag is switched from the listening state to the sleep state in the standby state.
  • the coordinator is controlled by the control processor, or the coordinator is root Work independently according to pre-set processes. Among them, the coordinator and the reader are integrated in one module.
  • the present invention further provides a system for applying an active electronic tag, comprising: a control processor; a coordinator, configured to continuously and continuously transmit an instruction signal on the first channel, the instruction signal including a wake-up instruction and an action
  • An active electronic tag configured to be woken up by receiving a wake-up command during a listening period, and operating according to the action instruction;
  • the active electronic tag includes: a first filter module, configured to use the active electronic tag The received signal received on the first channel performs a first filtering to exclude an invalid signal.
  • the second filtering module is configured to perform a legality judgment on the received signal that passes the first filtering to confirm whether the received signal is an instruction signal.
  • the present invention further provides a method for applying an active electronic tag, comprising: step S502: the coordinator repeatedly transmits the command signal continuously and continuously on the first channel; Step S504: time when the active electronic tag is in the listening state Receiving the command signal in the segment; Step S506: The reader/writer establishes communication with the active electronic tag on the second channel, wherein step S504 includes sub-step S5042: performing the received signal received by the active electronic tag on the first channel The first filtering is to exclude the invalid signal, and wherein the step S504 further includes the sub-step S5044: determining the legality of the received signal passing the first filtering to confirm whether the received signal is the command signal.
  • the sub-step S5042 further includes: demodulating the received signal, and reading the received signal strength indicating the RSSI value of the demodulated signal, and rejecting the subsequent processing of the received signal when the RSSI value is not greater than the ambient noise,
  • the source electronic tag transitions from the listening state to the sleep state in the standby state.
  • the sub-step S5042 further includes: decoding the received signal, and reading the decoded signal, and when determining that the decoded signal is no signal or other garbled signal, rejecting the subsequent processing of the received signal, the active electronic label Transition from the listening state to the sleep state in the standby state.
  • the present invention also provides an active electronic tag, comprising: a first filtering module, configured to perform first filtering on a received signal received by the active electronic tag on the first channel to exclude an invalid signal;
  • the second filtering module is configured to perform legality judgment on the received signal that passes the first filtering to confirm whether the received signal is a command signal.
  • the first filtering module is a hard filtering module, and the receiving signal is filtered on the hardware side;
  • the second filtering module is a soft filtering module, configured after the first filtering module, and legally determining whether the address code of the received signal is correct.
  • the hard filtering module includes a modulation mode filtering submodule, and the modulation mode filtering submodule demodulates the received signal, and reads the received signal strength indicating the RSSI value of the demodulated signal, and rejects when the RSSI value is not greater than the environmental noise. Subsequent processing of the received signal causes the active electronic tag to transition from the listening state to the sleep state in the standby state.
  • the hard filtering module includes a decoding mode filtering submodule, and the decoding mode filtering submodule decodes the received signal, and reads the decoded signal, and rejects the receiving when determining that the decoded signal is no signal or other garbled signal.
  • Another object of the present invention is to provide an active electronic tag for bidirectional communication and a system and method for applying the same, thereby minimizing the time of active electronic tag air communication to alleviate signal congestion. , effectively reduce the probability of signal collision and mutual interference.
  • the present invention provides a system for applying an active electronic tag, comprising: a control processor; a coordinator for repeatedly transmitting a wake-up command continuously and continuously on the first channel; Receiving a wake-up command during a listening period; the reader is coupled to the control processor, and configured to establish communication with the active electronic tag on the second channel after the active electronic tag receives the wake-up command, and Sending an action instruction index to the active electronic tag, where the active electronic tag includes: an instruction receiving module, configured to receive an action instruction index from the reader/writer; and a storage module, configured to store a preset index-action mapping relationship; The action execution module is configured to find and execute an action instruction corresponding to the action instruction index in the index-action mapping relationship.
  • the action instruction index includes an action code and a corresponding parameter, and the action instruction includes a control function.
  • the corresponding parameter includes at least one of the following groups: a signal transmission channel, a signal transmission interval time, a transmission power, a number of signal transmission times, a number of a component read by the active electronic tag, and a signal transmitted by the active electronic tag.
  • the coordinator is operated by the control of the control processor, or the coordinator operates independently according to a preset process. Among them, the coordinator and the reader are integrated in one module.
  • the present invention also provides another system for applying an active electronic tag, comprising: a control processor; a coordinator for repeatedly transmitting the command signal continuously and uninterruptedly on the first channel, the command letter The number includes a wake-up instruction and an action instruction index; the active electronic tag is configured to be woken up by receiving the wake-up instruction during the listening period, and is operated according to the action instruction index; wherein the active electronic tag includes: the instruction receiving a module, configured to receive an action instruction index from the coordinator; a storage module, configured to store a preset index-action mapping relationship; and an action execution module, configured to find an index corresponding to the action instruction in the index-action mapping relationship The action instructions are executed.
  • the present invention further provides a method for applying an active electronic tag, comprising: step S602: the coordinator repeatedly transmits the wake-up signal continuously and continuously on the first channel; Step S604: time when the active electronic tag is in the listening state Receiving a wake-up signal in the segment; Step S606: the reader establishes communication with the active electronic tag on the second channel, and sends an action instruction index to the active electronic tag; and step S608: the active electronic tag receives the input from the reader
  • the action instruction index finds and executes the action instruction corresponding to the action instruction index in the index-action mapping relationship set in advance.
  • the action instruction index includes an action code and a corresponding parameter, and the action instruction includes a control function.
  • the corresponding parameter includes at least one of the following groups: a signal transmission channel, a signal transmission interval time, a transmission power, a number of signal transmission times, a number of a component read by the active electronic tag, and a signal transmitted by the active electronic tag.
  • the number of the reader also provides an active electronic tag, comprising: an instruction receiving module, configured to receive an action instruction index from an external; a storage module, configured to store a preset index-action mapping relationship; and an action execution module, It is used to find and execute an action instruction corresponding to the action instruction index in the index-action mapping relationship.
  • the action instruction index includes an action code and a corresponding parameter, and the action instruction includes a control function.
  • the corresponding parameter includes at least one of the following groups: a signal transmission channel, a signal transmission interval time, a transmission power, a number of signal transmission times, a number of a component read by the active electronic tag, and a signal transmitted by the active electronic tag.
  • the number of the reader According to an aspect of the present invention, a large number of invalid signals are filtered by a simple hardware filtering method and an optimal hardware filtering method, which greatly reduces the necessity of further discriminating using software and the time spent receiving invalid signals.
  • the active electronic tag can perform on-demand work and long-distance information transmission on the basis of two-way communication; Moreover, the technology of the present invention is simple in implementation and low in cost , confidentiality is good.
  • the program by pre-storing a program operating in a fixed mode into an active electronic tag, the program is called and executed by transmitting a wake-up instruction number whose length is greatly shortened to the active electronic tag, thereby reducing
  • the time of active electronic tag air communication improves the communication efficiency of the wireless communication system, reduces the pressure of signal congestion, and effectively reduces the probability of signal collision and mutual interaction.
  • the active electronic tag is based on two-way communication.
  • FIG. 1 is a system diagram of an active electronic tag of the present invention, wherein the coordinator is connected to a control processor (ie, a network and a control computer in the figure);
  • FIG. 2 is a diagram in accordance with the present invention.
  • FIG. 1 is a system diagram of an active electronic tag of the present invention, wherein the coordinator is connected to a control processor (ie, a network and a control computer in the figure);
  • FIG. 2 is a diagram in accordance with the present invention.
  • FIG. 1 is a system diagram of an active electronic tag of the present invention, wherein the coordinator is connected to a control processor (ie, a network and a control computer in the figure);
  • FIG. 2 is a diagram
  • FIG. 3 is a schematic diagram of the operating state of the active electronic tag according to the present invention.
  • Figure 4 is a schematic diagram showing the time required for the active electronic tag to filter the invalid signal using hardware and software according to the present invention;
  • Figure 5 is a flow chart showing the application method of the active electronic tag according to the present invention;
  • BRIEF DESCRIPTION OF THE DRAWINGS FIG. 7 is a schematic diagram of a periodic transmission and monitoring receipt of an active electronic tag according to the present invention; and
  • FIG. 8 is an active embodiment according to the present invention.
  • a system for applying an active electronic tag comprising: a control processor (ie, the network and the control computer in FIG. 1, FIG. 2) a coordinator for continuously transmitting the command signal continuously and continuously on the first channel; an active electronic tag for use in the listening period (in the listening state as shown in FIG. 3, when the active electronic For the purpose of power saving, the tag uses periodic sleep, and when the wake-up signal is monitored, the low-power mode of operation is instantaneous.
  • a control processor ie, the network and the control computer in FIG. 1, FIG. 2
  • a coordinator for continuously transmitting the command signal continuously and continuously on the first channel
  • an active electronic tag for use in the listening period (in the listening state as shown in FIG. 3, when the active electronic For the purpose of power saving, the tag uses periodic sleep, and when the wake-up signal is monitored, the low-power mode of operation is instantaneous.
  • the time period of the monitoring state is the instant of monitoring the signal after waking up; the length of the time period depends on Receiving an instruction signal for an active electronic tag to eliminate an invalid signal or receiving a valid signal; a reader/writer coupled to the control processor for receiving the command signal after the active electronic tag receives the command signal The tag establishes communication on the second channel.
  • the active electronic tag When the active electronic tag processes the received signal, it is a state in which the frequency synthesizer and the crystal oscillator have been turned on and have been stably operated, and the process of processing the signal includes: a soft filter module (not shown) for judging the active electronic tag in the first Whether the address code of the signal received on the channel is correct; and a hard filtering module (not shown) for filtering the signal on the hardware side to eliminate the invalid signal before the signal is processed by the soft filtering module.
  • a control processor ie, the network in FIG. 1, FIG.
  • the active electronic tag comprises: a soft filter module (not shown) for determining whether the address code of the signal received by the active electronic tag on the first channel is correct; and a hard filter module (not shown) for The signal is filtered on the hardware side to eliminate invalid signals before the signal is processed by the soft filter module.
  • Step S502 The coordinator repeatedly transmits the command signal continuously and continuously on the first channel under the control of the control processor;
  • Step S504 Active electronic tag Receiving the command signal during the listening period;
  • Step S506 The reader/writer establishes communication with the active electronic tag on the second channel, wherein step S504 includes sub-step S5044: determining that the active electronic tag is received on the first channel The address code of the signal is correct, and wherein step S504 further includes sub-step S5042: before sub-step S5044, the signal is filtered on the hardware side to exclude the invalid signal.
  • an active electronic tag is disclosed, as shown in FIG. 1 and FIG. 2, including: a soft filter module (not shown) for determining an address of a signal received by the active electronic tag on the wake-up channel. The code is correct; and a hard filter module (not shown) is used to filter the signal on the hardware side to eliminate invalid signals before the signal is processed by the soft filter module.
  • 1 is a system diagram of an active electronic tag of the present invention in which a coordinator is coupled to a control processor.
  • 2 is a schematic diagram of another system of an active electronic tag in accordance with the present invention in which the coordinator is separated from the control processor. As shown in FIG. 1 and FIG.
  • the system of active electronic tags includes: a coordinator, a reader/writer, a tag (ie, an active electronic tag), and a control processor (ie, a network and a control computer).
  • the reader is connected to the control processor
  • the coordinator is connected to the control processor (as shown in FIG. 1) or separated (as shown in FIG. 2).
  • Active electronic tags, readers, and coordinators have signal reception strength indication (RSSI function), including low-cost, low-power micro-power single-chip wireless micro-power transceivers and microcontrollers that control transceivers, or include low Cost, low-power micro-power A single chip with transceiver and microcontroller functions.
  • the active electronic tag can receive command signals from the coordinator or communicate with the reader.
  • the active electronic tags can be powered by batteries, such as lithium batteries, which can be switched between different channels, such as: wake-up channels and Working channel;
  • the control processor can perform control A computer, microcontroller, or other smart device that functions and processes data and stores it.
  • the reader can also have the function of the coordinator, so that the system does not need a separate coordinator.
  • the reader can work in a continuous manner without delay for a certain time on the wake-up channel (the transmission time should be at least The command signal exceeds the sleep cycle of the active electronic tag, and then switches to the working channel to communicate with the active electronic tag.
  • the reader has a microcontroller that can handle the same data processing and storage as the control processor, the reader can further have the function of controlling the processor so that the system does not require a separate coordinator. Therefore, the system may also be composed of a reader/writer and an active electronic tag having both a control processor function, a coordinator function and a reader function, or a read with both a coordinator function and a reader function. Composed of a writer, a control processor and an active electronic tag.
  • the control processor sends an indication to the coordinator by means of a wired (as in the case of Figure 1) or wireless (as in the case of Figure 2) where and when the active electronic tag is required to perform a certain task.
  • the message the control coordinator repeatedly transmits the command signal to the electronic tag continuously and uninterruptedly on the wake-up channel (ie, the first channel F1) (as shown in FIG. 3).
  • 3 is a schematic view showing the working state of the active electronic tag of the present invention
  • FIG. 4 is a schematic view showing the comparison of the time required for filtering the invalid signal by the hardware and software of the active electronic tag of the present invention.
  • active electronic tags are in a low-power standby state most of the time, and only when they receive work orders at the time and place when they need to work, will they enter the required work in a short time. Status, and after completing the work task, quickly return to standby.
  • the active electronic tag When in standby mode, the active electronic tag periodically sleeps or listens. In the sleep state, the crystal oscillator and the frequency synthesizer are all in the off state, and the power consumption is lower than 4; while in the listening state, the crystal oscillator is in the standby state.
  • the frequency synthesizer is in the open state, the active electronic tag, such as the periodic sleep and wake-up, the low-power state of monitoring the signal on the first channel for a moment is collectively referred to as the standby state, which is a long-term maintenance of the active electronic tag.
  • Basic state after receiving the coordinator work instruction, jump to the second channel to communicate with the reader, or perform other actions according to the instruction, called the working state, which is an electronic tag can only be maintained for a short period of time
  • the high-power state; the sleep cycle in the standby state can be set, and the length of the listening signal after the sleep wakes up depends on the time required for the active electronic tag to eliminate the invalid signal or to receive the valid signal.
  • the active electronic tag In practical applications, there is very little time for the active electronic tag to be in a high-power operation state, and its share of the total power consumption of the general active electronic tag is very small, and its main power consumption is active.
  • the power consumption of the electronic tag periodically monitors the signal. That is to say, the shorter the time that the active electronic tag monitors the invalid signal after waking up, the smaller the duty cycle of the standby state, and the more power is saved.
  • the duty cycle here refers to the ratio of the time during which the active electronic tag monitors the received signal during each sleep cycle, and the total time of the sleep time plus the monitored received signal. As shown in FIG.
  • the crystal oscillator is started by the clock timing inside the active electronic tag to enter the state of the monitor signal.
  • the active electronic tag After using the hard filter module to determine that the received signal is an invalid signal, the active electronic tag will immediately go to sleep, waiting for the next chance to wake up. This eliminates the amount of time that conventional routines rely on by filtering the invalid signal through the address code soft filtering process (as shown in Figure 4). Only when hard filtering cannot determine whether the received signal is invalid or not, the active electronic tag uses the soft filtering process to continue filtering the signal until it can be determined that the signal is invalid and terminates reception, or the valid signal continues to be received. The entire signal, and the action is performed according to the signal command.
  • the active electronic tag switches the information to a working channel different from the wake-up channel (ie, the second channel F2) Communicates with the reader, performs tasks issued by the control processor through the reader, and passes the acquired data to the reader.
  • the reader transfers the data acquired from the active electronic tag to the control processor for processing by the application that controls the processor. If the control processor sends an instruction signal through the coordinator, only the active electronic tag is required to transmit the data information, the control processor can send the data to the active electronic tag after receiving the data from the active electronic tag from the reader/writer.
  • the receipt information informs the coordinator to stop sending the command signal; after receiving the receipt information, the active electronic tag switches to the sleep state in the low power standby state, waiting for the next chance of waking up.
  • the operating frequency, transmit power, receiving sensitivity, sleep-listening period and other parameters of the active electronic tag can be transmitted wirelessly by the coordinator or the reader, or by the control signal sent by the own MCU through the wired mode.
  • the hardware filtering and software identification are discussed in further detail below, and the power consumption of hardware filtering and software identification is evaluated by simple calculation.
  • the use of the hard filter module to eliminate the invalid signal in the received signal can be implemented by the demodulation filtering sub-module or the decoding mode filtering sub-module, and the demodulation filtering sub-module implements invalid signal filtering (simple hardware filtering method) as follows:
  • the electronic tag reads the received signal strength indicating the RSSI value of the signal after demodulation, and immediately terminates the reception when the RSSI value is not greater than the ambient noise, and switches to the low power standby state, otherwise, continues to receive the signal after the demodulation, so that
  • the software identification is used to further determine the signal after demodulation as the command signal;
  • the decoding mode filtering sub-module implements invalid signal filtering (optimal hardware filtering method), specifically: directly using the active electronic tag using spread spectrum or other coding technology
  • the communication code decodes the signal.
  • the software identification is started to further determine whether This signal is the command signal. Since the simple hardware filtering method has two layers of filtering that must be the same in frequency and modulation mode, the best hardware filtering method must pass the same three-layer filtering in frequency, modulation mode and encoding mode. Therefore, in comparison, the best hardware filtering The method can filter out more invalid signals.
  • the advantages of the simple hardware filtering method are: simple, more power-saving than pure software recognition, and more extensive hardware support; the disadvantage is that when using the hardware to determine the RSSI value, the RSSI value may fluctuate greatly, often requiring reading Take the method of averaging multiple values, for example, take the average value in the time period around lOOuS. In addition, Since only the signal that does not satisfy the modulation mode is filtered out, the invalid signal that is not filtered out will be more, and the time spent receiving the invalid signal will be more.
  • the advantages of the best hardware filtering method are: not only the required time is short (only about lOuS is needed), but also because of the spread spectrum or coding gain, the signal transmission distance is farther; because of this discriminating method, the filtering and filtering of the signal is finer. Therefore, in addition to the effective signal, the invalid signal (only the signal with different address codes) that the active electronic tag needs to be recognized by the software will be less, and the power is saved.
  • the disadvantage of using the best hardware filtering method is that some existing spread spectrum transceiver chips do not provide this judgment result.
  • the software identification is to identify the address code of the received signal through the soft filtering module, and the received signal has been filtered by two or even three layers of frequency, modulation mode or external coding mode before identification.
  • the conventional signal receiving method is to receive a complete data signal packet
  • the received signal when the active electronic tag starts to receive the signal is usually not the starting position of the signal, in order to receive a complete signal
  • the reception time must be at least twice the time required to receive a complete command signal. If the calculation is based on a packet length of 16 bytes and a communication rate of 115.2 k bps, it often takes more than 2 mS to receive.
  • the signal reception can be immediately aborted, that is, the subsequent portion is no longer continued, and the low power consumption standby state is switched; only the address code of the software identification signal is correct, that is, The signal is a command signal that continues to receive subsequent portions of the signal.
  • the time it takes to listen for an invalid signal is about half of the time it takes to listen to a valid signal.
  • the advantages of software identification are: simple, direct identification of the command signal, and, if the signal is a spread or encoded signal with spread spectrum gain or coding gain, the transmission distance is far.
  • the disadvantage of software recognition is that it requires receiving a large number of invalid signals, and the time for receiving the identification signal is long, which undoubtedly increases power consumption.
  • the power consumption of hardware filtering and software identification is evaluated by simple calculations. For the sake of conservatism, the active electronic tag sleep monitoring period is 1 second, the frequency synthesizing crystal oscillator starts and stabilizes for 1 ms, and consumes 1 mA.
  • the average power consumption of the frequency synthesizing crystal oscillator is luA. If you use simple hardware filtering method, according to conservative calculations, after the frequency of the comprehensive crystal oscillator is stable, the time of each monitoring (receiving) is lOOuS, and the current during monitoring is 25mA, the average standby power consumption is 2.5 uA. Consider the delay monitoring invalid signal. More power consumption lOuA, also assume that the active electronic tag works 10 times a day, each communication data volume is 2000 bytes, each time takes 250 mS, the average working current is 24 mA, the average working power consumption is 7 uA, sleep With a current of 5 uA, the total power consumption is 24.5 uA. When using a No.
  • the ultra-long-distance (2000 m) active electronic tag calculates the battery life of the ultra-long-distance (2000 m) active electronic tag.
  • the ultra-long-range active electronic tag is generally only used for ship identification, search, etc., so the average working time is much smaller than the general range of about 100 meters.
  • Close-range active electronic tags Assume that the active electronic tag works four times a day on average, and the amount of data per communication is 1000 bytes (25 mA operating current), 1000 bytes (200 mA), and 125 mS per time. The current is 1.3 uA. Since the average operating current is 4 ⁇ less than other currents, it is not the main aspect determining the life of an active electronic tag battery.
  • the battery life of an ultra-long-range active electronic tag and the battery of a general close-range active electronic tag. There is no difference in service life.
  • Another typical application of ultra-long-range active electronic tags the transmission of the sensor quantity - a temperature set: the current when transmitting the signal is 200 mA, such as the super long-distance active electronic tag reports the temperature every 30 seconds, each time The report transmits 16 bytes of data, each time taking 2mS. After each report 5 times, it listens to a receipt and command lms.
  • the monitor current is 35mA
  • the active electronic tag sleep current is 5 uA.
  • the average operating current is 18 uA, and the life of a No. 5 lithium battery is up to 10 years.
  • the average time of each monitoring is (including the effective signal 3mS, and the invalid signal is 1.5mS) 2 ms, and the monitoring power consumption is 25mA.
  • the average standby current is 5 luA; assume that the active electronic tag works 10 times a day, each communication data volume is 2000 bytes, each time takes 250mS, the working current is 24mA, then the average working power consumption is 7 uA, smart signing With a sleep current of 5uA, the total power consumption is 63 uA.
  • the battery life of the active electronic tag is 3.6 years. If the sleep cycle is 2 seconds, the battery life can reach 6 years. If the sleep cycle is adjusted to 8 seconds, in theory, the life of the active electronic tag battery can reach more than 10 years. Therefore, the hardware filters out a large number of invalid signals, and then determines whether it is a valid signal through software identification, so that the working time of the active electronic tag is greatly reduced, that is, the working duty ratio is reduced, thereby greatly reducing the power consumption. As mentioned above, using only the hardware filtering method, it is impossible to completely determine whether the signal received by the active electronic tag is a valid signal, but the hardware judgment method can eliminate the vast majority in a very short time (if within a few microseconds).
  • the invalid signal reduces the time that the active electronic tag spends listening to the invalid signal, thereby greatly reducing the power consumption of the active electronic tag.
  • the active electronic tag is based on the hardware signal filtering, and then uses the software filtering working method to basically solve the problem of low power consumption of the active electronic tag.
  • the power consumption in the working state is no longer the main factor affecting the life of the active electronic label battery, and the problem of prolonging the battery life is converted into the problem of reducing the leakage of the battery itself, and these problems are relatively easy. solve.
  • the sleep current of the active electronic tag is further lowered, the working efficiency of the active electronic tag is further improved, and the sleep cycle is further lengthened, so that the low-cost, small-sized lithium-manganese button cell can be used to drive the active electron.
  • Labels which will greatly increase the range of applications for active electronic tags.
  • the active electronic tag using the hardware filtering method can realize two-way communication and work on demand, and the technology is simple to implement, low in cost and good in confidentiality, and solves the electromagnetic pollution, signal congestion and mutual interference of the existing tags. , lack of flexibility and adaptability of work, limited reading and writing distance.
  • the flow of the application method of the active electronic tag according to the present invention is as shown in FIG.
  • Step S502 The coordinator repeatedly transmits the command signal continuously and continuously on the first channel under the control of the control processor.
  • the filtering method uses an active electronic tag of spread spectrum or other technology to directly decode the signal using its own communication code. If the signal conforming to the communication code is not obtained, the reception is immediately terminated, and step S401 is performed.
  • the active electronic tag can be powered by a lithium battery, using direct sequence spread spectrum or other coding communication technology, and the international 2.4GHz free frequency band or other frequency bands.
  • Sub-step S5044 It is judged whether the address code of the signal received by the active electronic tag on the first channel is correct. When it is determined that the address code is incorrect, the reception is immediately terminated, and step 4 is performed S510.
  • Step S506 The reader and the active electronic tag establish communication on the second channel, and the data acquired from the active electronic tag is transmitted to the control processor.
  • Step S508 If the control processor sends the data information through the coordinator only by requesting the active electronic tag to transmit the data information, the control processor sends the data acquired from the active electronic tag to the active electronic device via the reader/writer.
  • Step S510 Enter a low power standby state.
  • Active electronic tags can be applied to the attendance management of public transport vehicles, and an active electronic tag can be installed on each bus. Each tag has an ID number that corresponds to the license plate. The active electronic tag is in a state of periodic listening signals on the wake-up channel. At each bus stop, we have a coordinator connected to the infrared detector or ground sense.
  • the coordinator When the infrared sensor or the ground sense line detects that there is a bus stop platform, the coordinator will be activated to continuously transmit the required electronic tag for storing the station number every 5-10 seconds for 2 consecutive seconds. And the command information of the current time. If the station reader does not receive any signal for two consecutive minutes, the coordinator will stop transmitting the command signal until the new vehicle is inbound to restart the coordinator. After receiving this information, the active electronic tag will record the station number and the time information of the stop station according to the requirements of the instruction. Active electronic tags will not store two identical station numbers in a row, but will store two times under the same station number. The first and last time is used to calculate the total time the bus stops at the station.
  • the coordinator installed at the entrance point of the terminal station, when the vehicle comes back through the infrared or the ground sense line, will start the coordinator continuously and continuously to emit the active electronic tag.
  • the recorded information is sent to the reader/writer connected to the management computer using the reader working channel.
  • the management computer After receiving the record information of the vehicle, the management computer will send a receipt to the active electronic tag on the working channel. After receiving the receipt, the active electronic tag will return to the standby state of the monitor signal, and temporarily no longer receive the message. Any signal.
  • the computer will also notify the coordinator to stop working until other vehicles arrive.
  • the management computer at the terminal can count the information required for each bus, the time of picking up the car every day, the specific route to travel, the station to stop, and the time of each stop. If a reader/writer connected to the GPRS module is installed at each station, the entire system can also realize real-time positioning of all bus vehicles.
  • Step S602 The coordinator repeatedly transmits the wake-up signal to the active electronic tag continuously and continuously on the wake-up channel independently or under the control of the control processor.
  • Step S604 The active electronic tag receives the wake-up signal in the listening period;
  • Step S606 the reader/writer establishes communication with the active electronic tag on the second channel, and sends an action instruction index to the active electronic tag;
  • step S608 the active electronic tag receives the action instruction index from the reader/writer, in advance In the set index-action mapping relationship, find the action instruction corresponding to the action instruction index and execute it.
  • the wake-up signal includes at least information such as an address code, a task number, and a task parameter.
  • the active electronic tag can identify the wake-up signal by the address code, and invoke (or query) the pre-existing active electronic tag by the task number.
  • a program for fixed mode operation refers to a program in which an active electronic tag performs certain tasks, and a program (fixed mode operation program) in which one or more tasks can be prestored in an active electronic tag, each program corresponding to a number, for example, Three programs with numbers "1", "2", and "3" are pre-stored in the active electronic tag.
  • the fixed mode operation performed by the program 1 that can be applied to the access control is: at intervals of m seconds, at n On the channel, the transmission ID of the P size is transmitted, and the ID number is transmitted k times; the fixed mode operation performed by the program 2 applicable to the sensor data collection is: reading the data of the Lth sensor, And on the n channel, transmitting data in the communication mode of S to the receiver of the Rth with the transmission power of the P size, the operation performed by the program 3 is: first transmitting on the working channel After the ID number, wait for the reader to return m milliseconds. If there is no receipt, repeat the transmission n times, until the receipt is received, establish a 'conversation, communication contact with the reader, otherwise return to the low-power standby state.
  • the active electronic tag with temperature sensor, including the normal temperature upper and lower limits, the alarm action when the limit is exceeded, and the interval between the normal temperature range and the abnormal temperature. For example, if the temperature is normal, 4 times will be reported in 10 minutes, and if it is not long, 4 times will be reported in 10 seconds. You can also adjust these working parameters at any time by wireless means. Since this power consumption mode generally has a long signal transmission interval, the signal duty cycle is very low. Therefore, even if the active electronic tag always actively transmits signals outward, various problems such as signal congestion caused by the general active electronic tag do not occur.
  • the number of the program that requires the fixed mode operation to be executed is set by one byte (8 bits), it is theoretically possible to set the number for the program of 256 fixed mode operations, usually according to the specific item. The requirement is to write one or more programs in the active electronic tag that satisfy the fixed mode operation of the particular item.
  • the byte following the byte of the program for setting the fixed mode operation is used to set the parameter corresponding to the fixed mode operation, and the type of the parameter required for a fixed mode operation program. And the number is determined. When the number is determined, the type and number of parameters after the number are determined.
  • the reason why the action mode is used is mainly because the coordinator in the prior art must be in the wake-up signal, clearly explain the specific tasks required for the active electronic tag, or use "requires active electronic tags and readers to establish The dialogue, the instruction, causes the control processor to establish a communication link between the active electronic tag and the reader, and then the reader performs the specific task to be completed. Both of these methods mean a long time.
  • the communication process therefore, occupies a large amount of time in the air channel, which is easy to cause problems such as signal congestion and mutual interference.
  • the task number and the short wake-up signal of the corresponding parameters will greatly reduce the time of air communication, improve the efficiency of communication, and also perform a variety of different tasks to achieve multiple functions, thereby increasing the flexibility of its application.
  • the active electronic tag is periodically in a sleep state or a listening state.
  • the crystal oscillator and the frequency synthesizer receive the wake-up signal, and when the software recognizes the address code to determine that the received wake-up signal is received, according to the task
  • the code calls a program pre-existing in the fixed-mode operation corresponding to the task code in the active electronic tag, and assigns the value to the program by using the parameter, and then executes the program (the program usually includes switching to the working channel after executing the program)
  • the acquired data is transmitted to the reader/writer or the program that performs the fixed mode operation in the communication channel (one-way or two-way communication) between the working channel (usually the active electronic tag will be acquired during the execution of the program) Data is transmitted to the reader).
  • the reader/writer transfers data acquired from the active electronic tag to the control processor for processing.
  • the control processor sends the receipt information to the active electronic tag through the reader/writer after receiving the data acquired from the active electronic tag via the reader/writer.
  • the active electronic tag After receiving the receipt information, the active electronic tag enters a low-power standby state, or switches to another preset fixed mode operation, or delays receiving the instruction sent by the control processor through the reader, and then executes according to the instruction. Conversion action.
  • the method for receiving the receipt information of the active electronic tag can be used in various manners. For example, the manner of listening (receiving) the receipt after each data transmission can be used, and the transmission can be periodic, as shown in FIG.
  • the active electronic tag monitors whether there is receipt information from the reader/writer; it can also use the receiver to listen to the receipt information after multiple times of transmitting information, and the transmission is usually periodic, as shown in FIG. Shows that after completing 5 data transmissions, it listens for a receipt. In order to save the waiting time, the active electronic tag can also utilize the automatic receipt function of many single-chip wireless transceivers, so that the active electronic tag can further delay the reception after receiving the automatic receipt information.
  • the instruction sent by the reader if an instruction is received, performs the corresponding conversion action according to the instruction.
  • the operating frequency, transmit power, receiving sensitivity, standby-duty cycle and other parameters of the active electronic tag can be transmitted wirelessly by the coordinator or reader/writer or by the control signal of its own microcontroller.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • General Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Near-Field Transmission Systems (AREA)

Abstract

本发明提供了一种多功能的有源电子标签及其应用的系统及方法,系统包括:控制处理器;协调器;有源电子标签,用于在监听状态的时间段内接收指令信号,以及读写器;其中,有源电子标签包括:软过滤模块,用于判断有源电子标签在第一频道上接收的信号的地址码是否正确;以及硬过滤模块,用于在信号被软过滤处理之前,在硬件侧对信号进行过滤,以排除无效的信号。本发明实现了有源电子标签低功耗,双向通信按需工作和远距离信息传输,进而优化了有源电子标签的标准通信流程,延长了标签的使用寿命。此外,还提供了一种具有多个固定模式动作的有源电子标签及其应用系统和方法,从而提高了无线通信系统的通信效率,有效减少信号碰撞及相互干扰的几率。

Description

有源电子标签及其应用系统和方法 技术领域 本发明涉及信息传输技术, 具体涉及有源电子标签及其应用系统和方 法。 背景技术 现有的有源电子标签, 主要用于对人、 物和车辆等目标的远距离身份识 别和管理。 其基本工作方法是, 通过射频通信的方式, 读取被识别目标上所 安装的有源电子标签的 ID号,再通过该 ID号调用预先储存在控制处理器(如 计算机) 的数据库中对应于该 ID 号的相关资料, 来实现对目标的识别和管 理。 因而, 这种技术的应用, 必须要和控制处理器中相关数据库相连接。 目前有源电子标签最普遍使用的一种工作方式是周期性主动发射自身 的 ID号。 即预先通过内部时钟设置, 每隔一定的时间间隔 (例如, 1秒、 5 秒或 10分钟) 启动电子标签中的晶振和频综, 发射一定长度的数据包信息。 为了省电的原因, 往往仅只发射短的 ID 信息, 然后再进入睡眠状态, 这减 少了系统的工作时间,在一定程度上起到了延长电池使用寿命的作用。 然而, 使用这种方法存在的问题包括造成环境的电磁污染、 信号拥堵和相互千 4尤, 缺乏工作的灵活性和适应性等。 在申请号为 200710196801.X的专利申请文件中公开了一种智能电子标 签系统, 其釆用双向通信, 减少了对环境的电磁污染、 信号拥堵和相互千 4尤 等问题, 但是, 有源电子标签在周期性的苏醒后对信号机发送的短信号进行 识别时, 会对接收到的许多无效信号进行软件识别以确定是否为需要的短信 息, 这样无疑使有源电子标签消耗掉大量的电力。 使用低频检波电路检测到低频指令信号后,启动高频收发机中的晶振和 频综等, 使高频收发机进入可收发信号的状态。 尽管在检波电路检测到指令 信号前, 系统并不耗电, 然而, 由于一般低频检波电路的灵敏度非常低, 所 能检测到信号的距离就非常近。即使要想通过增大低频信号发射功率的办法, 来增加唤醒距离也非常困难。 因而, 釆用 氐频检波电路唤醒办法来工作的有 源电子标签, 不仅读写距离有限, 设备体积较大, 使用缺乏灵活性。 而且, 系统的成本也高。 因而其应用范围也就受到很大的限制。 为了增加电子标签的功能, 以及使用灵活性, 有的有源电子标签, 还釆 用了高氐频两套通信系统同时工作的方法。 例如, 釆用了 氐频 125KHZ和高 频 2.4GHz两套收发系统, 还有的则釆用超宽带 UWB和 2.4GHz两套收发系 统。 这不仅大大增加了标签的复杂性, 增大了成本, 而且所能发挥的作用也 非常有限。 现有的有源电子标签一般釆用, 窄带点频的工作方式。 而一般窄带点频 的工作方式, 很容易受到外界的千扰。 而且, 由于温度变化, 晶振自身老化 造成的晶振工作频率的偏移, 以及实际应用中可能存在的多径效应、 多普勒 效应等, 都将使系统工作的可靠性和稳定性受到很大的影响, 特别是在那些 千扰较大的工业现场, 以及被识别目标处于快速移动的应用场合。 现有的有源电子签, 正如在 IEEE有源电子标签国际标准制定工作组, 新近 ( 2009年 3月, 7月和 9月 )提供的文件中所陈述的一样: "为了减少 能耗, 当今大多数有源标签使用的都是单向发射 ID 的方式。 其唯一的目的 就是识别和定位, 而没有考虑拥堵和信号碰撞问题。 有源电子标签需要具有 双向和远距离通信的能力, 需要具有处理海量标签的能力, 但同时消耗的功 率要非常低。 但目前还没有一个建议的方案能够满足这个需要。" 随着物联网概念的提出, 人们希望利用有源电子标签结构简单体积小, 成本低, 功耗低等优点, 来解决物联网信息传输中, 如何在人或物与公共通 信网络几米到上千米的距离之间, 建立起一种简单可靠的, 低成本和低功耗 的无线通信联系这个关键问题。 这就要求有源电子标签必须要具有按需工作 的双向通信能力, 更大的工作适应性和灵活性。 此外, 随着物联网概念的提出, 人们希望利用有源电子标签结构简单体 积小, 成本低, 功耗低等优点, 来解决物联网信息传输中, 如何在人或物与 公共通信网络几米到上千米的距离之间, 建立起一种简单可靠的, 氐成本和 低功耗的无线通信联系这个关键问题。 通过这种通信联系, 有关人或物的身 份识别信息和状态信息(标签和传感器信息),可以快速地传到相关控制中心。 对现有有源电子标签来讲, 这无疑是一个极大的挑战。 除了低功耗, 低成本 和工作灵活性等要求外,如何解决信号拥堵问题,也是一个非常关键的问题。 尽管我们可以通过双向通信的方式, 使电子标签可以按需工作, 然而, 在处 理海量标签信息的时候, 如何尽量减少空中通信时间, 提高空中通信效率显 然至关重要。 特别是物联网的信息传输, 比起一般身份识别应用时仅仅传输 一个 ID 号要复杂得多。 在物联网信息传输中, 可能通信双方需要往返若千 次才能完成一件简单的工作; 而且, 每次传输的信息量越多, 出错重传的几 率也就越高。 这不仅多耗电, 而且, 还在关键的时候, 关键的地方占用了空 中通道更多的时间, 从而增加了空中的拥堵, 并导致可能的相互千 4尤。 因此, 缩短空中通信时间显得至关重要。 发明内容 本发明的一个目的是为了提供一种双向通信的有源电子标签及应用该 有源电子标签的系统及方法, 从而减少有源电子标签接收无效信号并识别的 时间。 为实现上述目的, 本发明提供了一种应用有源电子标签的系统, 包括: 控制处理器; 协调器, 用于在第一频道上连续不间断地重复发送指令信号; 有源电子标签, 用于在监听状态的时间段内接收指令信号; 读写器, 与控制 处理器相连接, 用于在有源电子标签接收到指令信号之后与有源电子标签在 第二频道上建立通信, 其中, 有源电子标签包括: 第一过滤模块, 用于对有 源电子标签在第一频道上接收到的接收信号进行第一过滤, 以排除无效的信 号; 第二过滤模块, 用于对通过第一过滤的接收信号进行合法性判断, 以确 认接收信号是否为指令信号。 其中, 第一过滤模块为硬过滤模块, 在硬件侧对接收信号进行过滤; 第 二过滤模块为软过滤模块, 配置在第一过滤模块之后, 通过判断接收信号的 地址码是否正确来进行合法性判断。 其中, 硬过滤模块包括调制方式过滤子模块, 调制方式过滤子模块对接 收信号进行解调, 并读取解调之后的信号的接收信号强度指示 RSSI值, 当 RSSI值不大于环境噪声时, 拒绝对该接收信号进行后续处理, 有源电子标签 从监听状态转换至待机状态中的睡眠状态。 其中, 硬过滤模块包括解码方式过滤子模块, 解码方式过滤子模块对接 收信号进行解码, 并读取解码之后的信号, 当确定解码后的信号为无信号或 其它乱码信号时, 拒绝该接收信号进行后续处理, 有源电子标签从监听状态 转换至待机状态中的睡眠状态。 其中, 协调器是受控制处理器的控制而进行工作的, 或者, 协调器是根 据预先设置的进程独立工作的。 其中, 协调器与读写器集成在一个模块中。 此外, 本发明还提供了另一种应用有源电子标签的系统, 包括: 控制处 理器; 协调器, 用于在第一频道上连续不间断地重复发送指令信号, 指令信 号包括唤醒指令和动作指令; 有源电子标签, 用于在监听状态的时间段内接 收唤醒指令而被唤醒, 并根据动作指令进行操作; 其中, 有源电子标签包括: 第一过滤模块, 用于对有源电子标签在第一频道上接收到的接收信号进行第 一过滤, 以排除无效的信号; 第二过滤模块, 用于对通过第一过滤的接收信 号进行合法性判断, 以确认接收信号是否为指令信号。 此外,本发明还提供了一种应用有源电子标签的方法,包括:步骤 S502: 协调器在第一频道上连续不间断地重复发送指令信号; 步骤 S504: 有源电子 标签在监听状态的时间段内接收指令信号; 步骤 S506: 读写器与有源电子标 签在第二频道上建立通信, 其中, 步骤 S504包括子步骤 S5042: 对有源电子 标签在第一频道上接收到的接收信号进行第一过滤, 以排除无效的信号, 以 及其中, 步骤 S504还包括子步骤 S5044: 对通过第一过滤的接收信号进行合 法性判断, 以确认接收信号是否为指令信号。 其中, 子步骤 S5042进一步包括: 对接收信号进行解调, 并读取解调之 后的信号的接收信号强度指示 RSSI值, 当 RSSI值不大于环境噪声时, 拒绝 对该接收信号进行后续处理, 有源电子标签从监听状态转换至待机状态中的 睡眠状态。 其中, 子步骤 S5042进一步包括: 对接收信号进行解码, 并读取解码之 后的信号, 当确定解码后的信号为无信号或其它乱码信号时, 拒绝对该接收 信号进行后续处理,有源电子标签从监听状态转换至待机状态中的睡眠状态。 此外, 本发明还提供了一种有源电子标签, 包括: 第一过滤模块, 用于 对有源电子标签在第一频道上接收到的接收信号进行第一过滤, 以排除无效 的信号; 以及第二过滤模块, 用于对通过第一过滤的接收信号进行合法性判 断, 以确认接收信号是否为指令信号。 其中, 第一过滤模块为硬过滤模块, 在硬件侧对接收信号进行过滤; 第 二过滤模块为软过滤模块, 配置在第一过滤模块之后, 通过判断接收信号的 地址码是否正确来进行合法性判断。 其中, 硬过滤模块包括调制方式过滤子模块, 调制方式过滤子模块对接 收信号进行解调, 并读取解调之后的信号的接收信号强度指示 RSSI值, 当 RSSI值不大于环境噪声时, 拒绝对该接收信号进行后续处理, 有源电子标签 从监听状态转换至待机状态中的睡眠状态。 其中, 硬过滤模块包括解码方式过滤子模块, 解码方式过滤子模块对接 收信号进行解码, 并读取解码之后的信号, 当确定解码后的信号为无信号或 其它乱码信号时, 拒绝对该接收信号进行后续处理, 有源电子标签从监听状 态转换至待机状态中的睡眠状态。 此外 ,本发明的另一目的是为了提供一种双向通信的有源电子标签及应 用该有源电子标签的系统及方法, 从而尽量减少有源电子标签空中通信的时 间, 以緩解信号拥堵的状况, 有效减少信号碰撞及相互千扰的几率。 为实现上述目的, 本发明提供了一种应用有源电子标签的系统, 包括: 控制处理器; 协调器, 用于在第一频道上连续不间断地重复发送唤醒指令; 有源电子标签, 用于在监听状态的时间段内接收唤醒指令; 读写器, 与控制 处理器相连接, 用于在有源电子标签接收到唤醒指令之后, 与有源电子标签 在第二频道上建立通信, 并向有源电子标签发送动作指令索引, 其中, 有源 电子标签包括: 指令接收模块, 用于接收来自读写器的动作指令索引; 存储 模块, 用于存储预先设置的索引-动作映射关系; 以及动作执行模块, 用于在 索引 -动作映射关系中找出与动作指令索引相对应的动作指令并执行。 其中, 动作指令索引包括动作代码和相应的参数, 动作指令包括控制函 数。 其中, 相应的参数包括如下组中的至少一个: 信号发送频道、 信号发送 间隔时间、 发送功率、 信号发送次数、 被有源电子标签读取参数的部件的编 号以及接收有源电子标签发送的信号的读写器的编号。 其中, 协调器是受控制处理器的控制而进行工作的, 或者, 协调器是根 据预先设置的进程独立工作的。 其中, 协调器与读写器集成在一个模块中。 此外, 本发明还提供了另一种应用有源电子标签的系统, 包括: 控制处 理器; 协调器, 用于在第一频道上连续不间断地重复发送指令信号, 指令信 号包括唤醒指令和动作指令索引; 有源电子标签, 用于在监听状态的时间段 内接收唤醒指令而被唤醒, 并才艮据动作指令索引进行操作; 其中, 有源电子 标签包括: 指令接收模块, 用于接收来自协调器的动作指令索引; 存储模块, 用于存储预先设置的索引-动作映射关系; 以及动作执行模块, 用于在索引- 动作映射关系中找出与动作指令索引相对应的动作指令并执行。 此外,本发明还提供了一种应用有源电子标签的方法,包括:步骤 S602: 协调器在第一频道上连续不间断地重复发送唤醒信号; 步骤 S604: 有源电子 标签在监听状态的时间段内接收唤醒信号; 步骤 S606: 读写器与有源电子标 签在第二频道上建立通信, 并向有源电子标签发送动作指令索引; 以及步骤 S608: 有源电子标签接收来自读写器的动作指令索引, 在预先设置的索引- 动作映射关系中找出与动作指令索引相对应的动作指令并执行。 其中, 动作指令索引包括动作代码和相应的参数, 动作指令包括控制函 数。 其中, 相应的参数包括如下组中的至少一个: 信号发送频道、 信号发送 间隔时间、 发送功率、 信号发送次数、 被有源电子标签读取参数的部件的编 号以及接收有源电子标签发送的信号的读写器的编号。 此外, 本发明还提出了一种有源电子标签, 包括: 指令接收模块, 用于 接收来自外部的动作指令索引; 存储模块, 用于存储预先设置的索引-动作映 射关系; 以及动作执行模块, 用于在索引 -动作映射关系中找出与动作指令索 引相对应的动作指令并执行。 其中, 动作指令索引包括动作代码和相应的参数, 动作指令包括控制函 数。 其中, 相应的参数包括如下组中的至少一个: 信号发送频道、 信号发送 间隔时间、 发送功率、 信号发送次数、 被有源电子标签读取参数的部件的编 号以及接收有源电子标签发送的信号的读写器的编号。 才艮据本发明的一个方面,通过简单硬件过滤法和最佳硬件过滤法过滤掉 大量的无效信号, 大大减少了使用软件做进一步判别的必要性, 以及花费在 接收无效信号上的时间, 从而更显著地实现了有源电子标签低功耗的目的; 此外, 有源电子标签在双向通信的基础上, 能够做到按需工作和远距离信息 传输; 而且, 本发明技术实施简单, 成本低, 保密性好。 另夕卜, 根据本发明的另一方面, 通过将固定模式操作的程序预存到有源 电子标签中, 再通过向有源电子标签发射长度大大缩短的唤醒指令号调用该 程序并执行, 从而减少了有源电子标签空中通信的时间, 提高了无线通信系 统的通信效率, 减轻了信号拥堵的压力, 有效减少信号碰撞及相互千 4尤的几 率; 此外, 有源电子标签在双向通信的基础上, 能够做到按需工作; 还将一 般仅只用于身份识别的低成本, 低功耗的有源电子标签, 变为能够满足物联 网信息传输工作多样, 使用灵活的多功能标签。 附图说明 下面结合附图详细说明本发明的详细技术方案。 在附图中: 图 1为 居本发明的有源电子标签的系统示意图, 其中, 协调器与控制 处理器 (即, 图中的网络及控制计算机) 相连接; 图 2为根据本发明的有源电子标签的另一系统示意图, 其中, 协调器与 控制处理器 (即, 图中的网络及控制计算机) 相分离; 图 3为才艮据本发明的有源电子标签的工作状态的示意图; 以及 图 4 为根据本发明的有源电子标签使用硬件和软件对无效信号进行过 滤所需时间比较的示意图; 图 5为才艮据本发明的有源电子标签的应用方法的流程图; 图 6为才艮据本发明的有源电子标签的应用方法流程图; 图 7为根据本发明的有源电子标签的周期性发射并监听回执的示意图; 以及 图 8 为才艮据本发明的有源电子标签的周期性发射多次并监听一次回执 的示意图。 具体实施方式 本发明所提出的一种有源电子标签及应用该有源电子标签的系统及方 法, 现结合附图和具体实施例详细说明本发明的技术方案。 第一实施例 首先, 在第一实施例中披露了一种应用有源电子标签的系统, 如图 1、 图 2中所示, 包括: 控制处理器 (即, 图 1、 图 2中的网络及控制计算机); 协调器, 用于在第一频道上连续不间断地重复发送指令信号; 有源电子标签, 用于在监听状态的时间段内 (在如图 3中所示的监听状态, 当有源电子标签 为了省电的目的, 釆用周期性睡眠, 苏醒后监听信号一瞬间的低功耗工作方 式时。 这里的监听状态的时间段就是这苏醒后监听信号的瞬间; 这个时间段 的长短,取决于有源电子标签排除无效信号,或接收完有效信号所需的时间) 接收指令信号; 读写器, 与控制处理器相连接, 用于在有源电子标签接收到 指令信号之后与有源电子标签在第二频道上建立通信。 有源电子标签在处理 接收信号时, 是一个频综和晶振已经开启并已经稳定工作的状态, 其处理信 号过程包括: 软过滤模块(未示出), 用于判断有源电子标签在第一频道上接 收的信号的地址码是否正确; 以及硬过滤模块(未示出), 用于在信号被软过 滤模块处理之前, 在硬件侧对信号进行过滤, 以排除无效的信号。 此外,还披露了另一种应用有源电子标签的系统,包括:控制处理器(即, 图 1、 图 2中的网络及控制计算机); 协调器, 用于在第一频道上连续不间断 地重复发送指令信号, 指令信号包括唤醒指令和动作指令; 有源电子标签, 用于在监听状态的时间段内 (在如图 3中所示的监听状态)接收唤醒指令而 被唤醒, 并根据动作指令进行动作。 优选地, 有源电子标签包括: 软过滤模 块(未示出), 用于判断有源电子标签在第一频道上接收的信号的地址码是否 正确; 以及硬过滤模块(未示出), 用于在信号被软过滤模块处理之前, 在硬 件侧对信号进行过滤, 以排除无效的信号。 在这种系统中, 仅完成了控制端 (即, 协调器) 向有源电子标签的单向通信, 但是实现了有源电子标签不用 与读写器交互就可以接收来自控制端的指令并执行, 简化了控制流程。 此外, 进一步披露了一种应用有源电子标签的方法, 包括: 步骤 S502: 协调器在控制处理器的控制下在第一频道上连续不间断地重复发送指令信 号; 步骤 S504: 有源电子标签在监听状态的时间段内接收指令信号; 步骤 S506: 读写器与有源电子标签在第二频道上建立通信, 其中, 步骤 S504 包 括子步骤 S5044: 判断有源电子标签在第一频道上接收的信号的地址码是否 正确, 以及其中, 步骤 S504还包括子步骤 S5042: 在子步骤 S5044之前, 在 硬件侧对信号进行过滤, 以排除无效的信号。 此外, 还披露了一种有源电子标签, (如图 1、 图 2所示) 包括: 软过 滤模块(未示出), 用于判断有源电子标签在唤醒频道上接收到的信号的地址 码是否正确; 以及硬过滤模块(未示出),用于在信号被软过滤模块处理之前, 在硬件侧对信号进行过滤, 以排除无效的信号。 图 1为 居本发明的有源电子标签的系统示意图,其中协调器与控制处 理器相连接。 图 2为根据本发明的有源电子标签的另一系统示意图, 其中协 调器与控制处理器相分离。 如图 1、 图 2所示, 有源电子标签的系统包括: 协调器、 读写器、 标签 (即, 有源电子标签)以及控制处理器(即, 网络及控制计算机)。 其中, 读 写器与控制处理器相连接, 协调器与控制处理器相连接 (如图 1中所示) 或 相分离 (如图 2 中所示)。 有源电子标签、 读写器以及协调器具有信号接收 强度指示功能 (RSSI功能), 分别包括低成本, 低功耗的微功率单芯片无线 微功率收发机和控制收发机的单片机, 或者包括低成本, 低功耗的微功率具 有收发机及单片机功能的单一芯片, 有源电子标签既可接收来自协调器的指 令信号, 也可以与读写器进行通信。 为了避免一般窄带点频通信方式所带来 的易受外界千扰、温度变化引起的晶振自身老化而造成晶振工作频率的偏移, 以及实际应用中可能存在的多径效应, 多普勒效应等诸多问题, 同时也是为 能对无效信号进行更有效的硬件过滤, 以进一步降低电子标签的功耗, 并通 过扩频或编码增益, 增加它们之间的通信距离。 建议釆用宽带直序扩频通信 方式或其它编码技术。 它们之间可以实现远距离通信; 距离在 0.1 - 2000米 的范围内可调; 有源电子标签可以釆用电池供电, 如锂电池供电, 可以在不 同的频道之间切换, 如: 唤醒频道和工作频道; 为了增加系统的通用性, 还 建议釆用国际通用的 2.4GHz免费频段, 也可以釆用其他频段; 还可 居需 要, 提供与传感器相连的各种接口; 控制处理器是能够执行控制功能并对数 据进行处理并存储的计算机、 单片机、 或其它智能设备。 另外, 读写器还可以同时具有协调器的功能, 从而使系统不需要单独的 协调器, 读写器釆用的工作方式可以是先在唤醒频道上连续不间断发射一定 时间 (发射时间至少应超过有源电子标签的睡眠周期) 的指令信号, 然后再 切换到工作频道上与有源电子标签通信。 如果读写器中具有可以承担与控制 处理器相同的数据处理和储存工作的单片机, 读写器进一步还可以具有控制 处理器的功能, 从而使系统不需要单独的协调器。 因此, 所述系统也可以是 由同时具有控制处理器功能、 协调器功能及读写器功能的读写器和有源电子 标签组成, 或者是由同时具有协调器功能及读写器功能的读写器、 控制处理 器和有源电子标签组成。 控制处理器在需要有源电子标签执行某项任务的地方和时间,通过有线 (如图 1中所示的情况) 或无线 (如图 2中所示的情况) 的方式向协调器发 送指示或消息, 控制协调器在唤醒频道(即第一频道 F1 )向电子标签连续不 间断地重复发送指令信号 (如图 3中所示)。 图 3为 居本发明的有源电子标签的工作状态示意图,图 4为 居本发 明的有源电子标签的在釆用硬件和软件过滤无效信号时所需时间的比较的示 意图。如图 3中所示,有源电子标签绝大多数时间都处于低功耗的待机状态, 只有在被需要工作的时间和地点, 接收到工作指令时, 才会在短时间内进入 要求的工作状态, 并在完成工作任务后, 迅速回到待机状态。 处于待机状态 时, 有源电子标签周期性的处于睡眠状态或监听状态, 其中, 处于睡眠状态 时, 晶振以及频综都处于关闭状态, 此时功耗 4艮低; 而处于监听状态时, 晶 振以及频综都处于开启状态, 有源电子标签这种周期性睡眠和苏醒后在第一 频道上监听信号一瞬间的低功耗状态统称为待机状态, 这是有源电子标签可 以长期维持的一个基本状态; 而在接收到协调器工作指令后, 跳转到第二频 道上与读写器进行通信, 或根据指令执行其它动作的状态, 称为工作状态, 这是一个电子标签只能短期维持的高功耗状态; 待机状态的睡眠周期可以设 定, 而睡眠苏醒后监听信号时间的长短, 则取决于有源电子标签排除无效信 号, 或接收完有效信号所需的时间。 而在实际应用中, 真正需要有源电子标 签处于高功耗工作状态的时间非常少, 其在一般有源电子标签的总功耗中占 的份额非常小, 而其主要耗电是在有源电子标签周期性监听信号时的耗电, 这就是说, 有源电子标签每次苏醒后监听无效信号的时间越短, 待机状态的 工作占空比就越小, 就越省电。 这里工作占空比是指有源电子标签每个睡眠 周期中监听接收信号的时间,与睡眠时间加上监听接收信号的总时间的比值。 如图 4中所示,处于待机状态的有源电子标签在处于睡眠状态一段时间 后,由有源电子标签内部的时钟定时启动晶振频综使其进入监听信号的状态。 在利用硬过滤模块确定所接收信号是无效信号后, 有源电子标签将立即进入 睡眠状态, 等待下一次苏醒监听的机会。 这就省去了常规仅仅依靠通过地址 码软过滤过程, 来过滤无效信号时需要使用的大量时间 (如图 4 所示)。 只 有当硬过滤不能确定所接收的信号是否无效信号时, 有源电子标签才使用软 过滤过程, 继续对信号进行过滤, 直到能够确定该信号是无效信号并终止接 收, 或是有效信号继续接收完整个信号, 并按信号指令执行动作为止。 或者, 如果指令信号中包含的是要求多功能标签与读写器建立通信的信息, 则有源 电子标签 居该信息切换到不同于唤醒频道的工作频道 (即, 第二频道 F2 ) 与读写器通信, 执行由控制处理器通过读写器下达的任务, 并将获取的数据 传递到读写器。 读写器将从有源电子标签获取的数据传输到控制处理器,由控制处理器 的应用程序进行处理。 如果控制处理器通过协调器发出的指令信号,仅仅是要求有源电子标签 发送数据信息,则控制处理器在从读写器接收到来自有源电子标签的数据后, 可向有源电子标签发送回执信息并通知协调器停止发送指令信号; 有源电子 标签在收到回执信息后, 切换到低功耗待机状态中的睡眠状态, 等待下一次 苏醒监听的机会。 有源电子标签的工作频率、 发射功率、 接收灵敏度、 睡眠 -监听周期等 参数, 可以由协调器或读写器通过无线方式发送, 或由自身的单片机通过有 线方式发送的控制信号改变。 下面再对硬件过滤及软件识别作进一步详细讨论 ,并通过简单的计算来 评估硬件过滤法和软件识别的功耗。 利用硬过滤模块排除所接收信号中的无效信号可以通过解调方式过滤 子模块或解码方式过滤子模块来实现, 解调方式过滤子模块实现无效信号过 滤 (简单硬件过滤法) 具体为: 有源电子标签对解调之后的信号读取接收信 号强度指示 RSSI值, 当 RSSI值不大于环境噪声时, 立即终止接收, 切换到 低功耗待机状态, 否则, 继续接收该解调之后的信号, 以便利用软件识别进 一步确定解调之后的信号为指令信号; 解码方式过滤子模块实现无效信号过 滤 (最佳硬件过滤法) 具体为: 对使用扩频或其它编码技术的有源电子标签 直接使用自己的通信编码对信号进行解码,如果得不到符合通信编码的信号, 则立即终止接收, 切换到低功耗待机状态中的睡眠状态, 等待下一次苏醒监 听的机会, 否则, 启动软件识别进一步确定是否该信号为指令信号。 由于简单硬件过滤法经过了频率和调制方式必须相同的两层过滤,而最 佳硬件过滤法要经过频率、 调制方式以及编码方式必须相同的三层过滤, 因 此, 相比之下, 最佳硬件过滤法能过滤掉更多的无效信号。 简单硬件过滤法 优点是: 简单, 比单纯的软件识别更省电, 且具有较广泛的硬件支持; 其缺 点是, 在利用硬件判断 RSSI值时, RSSI值可能波动比较大, 往往需要釆用 读取多次数值取平均的方式, 例如, 取 lOOuS左右时间段内的平均值。 另夕卜, 由于只过滤掉不满足调制方式的信号,没有过滤掉的无效信号也会更多一些, 花费在接收无效信号的时间也会多一些。 最佳硬件过滤法的优点在于: 不仅 所需时间短 (只需要 lOuS左右), 而且由于具有扩频或编码增益, 因而信号 传输的距离更远; 由于这种判别方式对信号的筛选过滤更细, 因而除了有效 信号外, 需要有源电子标签通过软件识别的无效信号 (仅只有地址码不同的 信号) 将更少, 也就更省电。 釆用最佳硬件过滤法的缺点在于, 现有的扩频 收发机芯片, 有的并没有向外提供这个判断结果。 软件识别是通过软过滤模块对接收到的信号的地址码进行识别 ,该接收 到的信号在识别之前已经过了频率、 调制方式或外加编码方式两层甚至三层 过滤。 由于常规的信号接收方法, 是要接收完一个完整的数据信号包, 而有 源电子标签开始接收信号时所接收到的信号通常不是该信号的起始位置, 为 了能接收到一个完整的信号, 接收时间至少要两倍于接收一个完整的指令信 号所需的时间。 如果按一个包长为 16个字节和 115.2k bps 的通信速率计算, 往往需要 2mS以上接收时间。 当通过软件识别信号的地址码确定接收的是无 效信号时, 可立即中止信号接收, 即不再继续接收后续部分, 并切换到低功 耗待机状态; 只有通过软件识别信号的地址码正确, 即该信号是指令信号, 继续接收该信号的后续部分。 总的来说, 监听无效信号时所花费的时间, 平 均约为监听到有效信号时所需时间的一半。 软件识别的优点在于: 简单, 可 直接识别指令信号, 另外, 如果该信号是经过扩频或编码后的信号, 具有扩 频增益或编码增益, 则传输距离较远。 但软件识别的缺点是需要接收大量的 无效信号, 而且接收识别信号的时间长, 这无疑增加了功耗。 下面通过简单的计算来评估硬件过滤法和软件识别的功耗。 为保守起 见, 定有源电子标签睡眠监听周期为 1秒, 频综晶振启动并稳定需时 1ms, 耗电 1mA,则频综晶振每次启动平均耗电为 luA。 假如釆用简单硬件过滤法, 按保守计算起见, 频综晶振稳定后, 每次监 听 (接收) 时间为 lOOuS , 监听时电流为 25mA, 则平均待机耗电为 2.5 uA; 考虑延时监听无效信号多耗电 lOuA, 同样再假定有源电子标签每天工作 10 次, 每次通信数据量 2000字节, 每次耗时 250 mS , 平均工作电流为 24 mA, 则平均工作耗电为 7 uA, 睡眠电流为 5 uA, 则总耗电为 24.5 uA。 使用一只 5号锂电池, 容量为 2300mA时, 考虑其它各种因素, 可用容量为 2000mA 时, 则有源电子标签的电池寿命为 9.3年。 如果监听周期延长为 2 秒, 理论 上电池寿命则可达 12年。 假如釆用最佳硬件过滤法, 按保守计算起见, 频综晶振稳定后, 每次监 听时间为 20 uS , 监听时电流为 25mA, 则平均待机电流为 0.5 uA; 考虑延时 监听无效信号多耗电 5uA, 同样再假定有源电子标签每天工作 10次,每次通 信数据量 2000字节, 每次耗时 250mS , 平均工作电流为 24mA, 则平均工作 耗电为 7 uA, 睡眠电 ¾ϊ为 5uA, 则总耗电为 17.5 uA。 使用一只 5号锂电池, 容量为 2300mA时, 考虑其它各种因素, 可用容量为 2000mA时, 则有源电 子标签电池的理论寿命为 13年。 通过比较可以认识到, 当釆用硬件过滤无效信号时, 有源电子标签每次 从睡眠状态切换到监听状态后监听信号时的耗电, 已经不再是决定有源电子 标签电池寿命的主要方面。 因而, 为了提高有源电子标签对工作指令的反应 速度, 我们还可将有源电子标签的睡眠周期缩短一倍, 从 1秒改为 0.5秒。 釆用简单硬件过滤法, 上述其它假定不变, 频综晶振启动耗电(2uA ) , 平均待机耗电(5uA)和监听无效信号耗电 (20uA)增加了一倍,总耗电为 39 uA。 电池寿命为 5年。 釆用最佳硬件过滤法, 其它假定不变, 频综晶振启动耗电(2uA ) ,待机 电流(luA)和监听无效信号的耗电(lOuA)增加了一倍, 总耗电为 25 uA。 电池 寿命为 9年。 这里再计算超远距离 (2000 米) 有源电子标签的电池使用寿命, 超远 距离有源电子标签一般仅只用于船只识别、 搜 ¾等, 因而其平均工作时间, 远小于一般 100米左右范围的近距离有源电子标签。 假定有源电子标签平均 一天工作 4次, 每次通信数据量为接收 1000字节 (工作电流 25 mA ), 发射 1000字节 (工作电流 200mA ) , 每次耗时收发各 125 mS , 则平均工作电流 为 1.3 uA。 由于平均工作电流与其它电流相比 4艮小, 因而其不是决定有源电 子标签电池寿命的主要方面, 显然, 超远距离有源电子标签的电池寿命, 与 一般近距离有源电子标签的电池使用寿命并无差别。 超远距离有源电子标签另一种典型应用情况:传感器量的传输一温度釆 集: 其发射信号时的电流为 200mA, 如超远距离有源电子标签每 30秒钟 报告一次温度, 每次报告发射数据 16个字节, 每次耗时 2mS , 每报告 5次后 监听一次回执和指令 lms, 监听电流为 35mA, 有源电子标签睡眠电流为 5 uA。 则其平均工作电流为 18 uA, 则一只 5号锂电池的寿命为可达 10年。 假如釆用软件过滤法, 按保守计算起见, 频综晶振稳定后, 每次监听的 平均时间为 (包括有效信号 3mS , 和无效信号一 1.5mS在内) 2 ms, 监听耗 电为 25mA ,则平均待机电流为 5 luA; 再假定有源电子标签每天工作 10次, 每次通信数据量 2000字节, 每次耗时 250mS , 工作电流为 24mA, 则平均工 作耗电为 7 uA, 智能签的睡眠电流为 5uA, 则总耗电为 63 uA。 使用一只 5 号锂电池, 容量为 2300mA时, 考虑其它各种因素, 可用容量为 2000mA时, 则有源电子标签的电池寿命为 3.6年。 如果睡眠周期为 2秒, 电池寿命则可 达到 6年。 如果睡眠周期调整为 8秒, 理论上, 有源电子标签电池的使用寿 命则可达到 10年以上。 因此, 经过硬件过滤掉大量的无效信号, 再通过软件识别来确定是否为 有效信号, 使有源电子标签的工作时间大大减少, 即工作占空比减少, 从而 使功耗大大降低。 如上所述, 仅仅使用硬件过滤法, 不能完全确定有源电子标签接收到的 信号是否为有效信号,但硬件判断方法却能在非常短的时间内(若千微妙内), 排除了绝大多数无效信号, 减少了有源电子标签花费在监听无效信号上的时 间, 从而大大降低了有源电子标签的功耗。 这样, 有源电子标签在硬件信号 过滤的基础上, 再使用软件过滤的工作方法, 基本解决了有源电子标签低功 耗问题。 釆用了硬件过滤信号的方法后,工作状态时的耗电已不再是影响有源电 子标签电池寿命的主要因素, 延长电池寿命问题转化成降低电池本身漏电的 问题, 而这些问题相对比较容易解决。 如果将有源电子标签的睡眠电流再降氏一些 ,有源电子标签工作效率再 提高一些, 睡眠周期再加长一些, 就完全可以使用一般成本低, 体积小的锂 锰纽扣电池来驱动有源电子标签,这必将大大增加有源电子标签的应用范围。 釆用硬件过滤方法的有源电子标签能够氏功耗地实现双向通信、按需工 作, 并且技术实施简单, 成本低, 保密性好, 解决了现有标签的电磁污染、 信号拥堵和相互千扰, 缺乏工作的灵活性和适应性, 读写距离有限等问题。 才艮据本发明的有源电子标签的应用方法的流程如图 5所示。 步骤 S502: 协调器在控制处理器的控制下在第一频道上连续不间断地 重复发送指令信号。 步骤 S504: 有源电子标签在监听状态的时间段内接收指令信号, 包括: 子步骤 S5042: 在硬件侧对信号进行过滤, 以排除无效的信号。具体为: 釆用简单硬件过滤法, 读取解调之后的信号的接收信号强度指示 RS SI值, 当 RSSI值不大于环境噪声时, 立即终止接收, 并执行步骤 S510; 或者釆用 最佳硬件过滤法, 釆用扩频或其它技术的有源电子标签, 直接使用自己的通 信编码对信号进行解码,如果得不到符合通信编码的信号, 则立即终止接收, 并执行步 4聚 S510。 其中, 有源电子标签可以釆用锂电池供电, 釆用直序扩频或其它编码通 信技术, 以及国际通用的 2.4GHz免费频段或其他频段。 子步骤 S5044: 判断有源电子标签在第一频道上接收的信号的地址码是 否正确。 当确定该地址码不正确时, 立即终止接收, 并执行步 4聚 S510。 步骤 S506: 读写器与有源电子标签在第二频道上建立通信, 将从有源 电子标签获取的数据传输到控制处理器。 步骤 S508: 如果控制处理器通过协调器发出的指令信号, 仅仅是要求 有源电子标签发送数据信息, 则控制处理器在经由读写器接收从有源电子标 签获取的数据后, 向有源电子标签发送回执信息, 有源电子标签在收到回执 信息后, 并执行步 4聚 S510。 步骤 S 510: 进入低功耗待机状态。 下面再结合实例来进一步说明上述电子标签的应用。 可将有源电子标签应用于公交车辆的考勤管理, 可在每辆公交车上, 安 装一个有源电子标签。 每个标签都有一个与车牌对应的 ID 号。 有源电子标 签在唤醒频道上处于周期性监听信号的状态。 我们在每个公交车站, 安装有 一个与红外探测仪或地感线圏相连接的协调器。 当红外传感器或地感线圏探 测到有公交车停靠站台时, 将启动协调器, 使其每隔 5-10秒钟, 连续 2秒钟 不间断地发射要求有源电子标签储存该站台编号,以及当前时间的指令信息。 如果连续两分钟, 站台读写器都没收到任何信号, 协调器将停止发射指令信 号, 直到新的车辆进站重新启动协调器。 有源电子标签在收到这个信息后, 将按照指令的要求, 记录下该站台编号和停靠站台的时间信息。 有源电子标 签将不会连续储存两个相同的站台编号, 但在同一站台编号下将储存两个时 间, 最早一个和最后一个时间, 用于计算该辆公交车在该站停靠的总时间。 当公交车行走完一圏回到终点站时, 安装在终点站进口位置的协调器, 通过 红外或地感线圏感到有车辆回来时, 将启动协调器连续不间断地发射要求有 源电子标签将所记录的信息, 使用读写器工作频道, 发送给与管理计算机相 连的读写器的指令。 管理计算机在接收到该车的记录信息后, 将在工作频道 上向该有源电子标签发送一个回执, 收到回执后, 有源电子标签将回到监听 信号的待机状态, 并暂时不再接收任何信号。 与此同时, 计算机也将通知协 调器停止工作, 直到其它车辆到来。 终点站的管理计算机就可以统计出每辆公交车, 每天出车收车的时间, 行经的具体线路, 停靠的车站以及每站停靠的时间等管理所需的信息了。 如 果在每个车站上, 再安装一个与 GPRS模块相连接的读写器, 整个系统还可 实现对所有公交车辆的实时定位。 第二实施例 下面再才艮据图 6并结合图 7、 图 8对本发明作进一步详细说明。 步骤 S602: 协调器独立地或在控制处理器的控制下在唤醒频道向有源 电子标签连续不间断地重复发送唤醒信号; 步骤 S604: 有源电子标签在监听 状态的时间段内接收唤醒信号; 步骤 S606: 读写器与有源电子标签在第二频 道上建立通信, 并向有源电子标签发送动作指令索引; 以及步骤 S608: 有源 电子标签接收来自读写器的动作指令索引,在预先设置的索引-动作映射关系 中找出与动作指令索引相对应的动作指令并执行。 唤醒信号至少包含有地址码、 任务的编号及任务的参数等信息, 其中, 有源电子标签可以通过地址码识别唤醒信号, 通过任务的编号调用 (或查询 到) 预存在有源电子标签中的对应该编号的固定模式操作的程序, 通过参数 对对应该编号的固定模式操作的程序赋值。 固定模式操作的程序是指有源电子标签执行某些特定任务的程序,可以 在有源电子标签中预存一个或多个任务的程序(固定模式操作程序),每个程 序对应一个编号, 例如, 在有源电子标签中预存了编号分别为 " 1"、 "2" "3" 的三个程序, 可应用于门禁管理的程序 1执行的固定模式操作是: 以 m秒的 发射间隔, 在 n信道上, 以 P大小的发射功率, 发射 k次 ID号; 可应用于 传感器数据釆集的程序 2执行的固定模式操作是:读取第 L个传感器的数据, 并在 n频道上, 以 P大小的发射功率, 将数据以 S的通信方式, 发送给第 R 号接收机, ... ...; 程序 3执行的操作是: 以先在工作频道上发射 ID号后, 等待读写器回执 m毫秒, 若无回执, 再重复发射 n 次, 直到接收到回执, 与读写器建立 '对话, 通信联系, 否则回到低功耗待机状态。 当需要有源电 子标签执行某项任务时, 只需将该项任务对应的编号及相应参数发射到有源 电子标签, 例如, 在唤醒信号中, 动作编号的位置输入 1 , 而在随后的发射 间隔位置输入 1 , 信道位置输入 3 , 功率位置输入 2, 发射次数位置输入 20, 即 " 1-1-3-2-20"。 就意味着系统要求标签每隔 1秒钟, 在 1信道上, 以 3档 的功率, 连续发射 20次 ID号。 另外, 不同于执行时间很短的固定模式操作, 固定模式操作还可以完成 一些延续时间很长, 功耗相对较低的任务。 可以是发射时间间隔较长, 对改 变工作方式的时间反应要求不高的应用场合。 例如城市供暖温度监控系统。 我们预先对带有温度传感器的有源电子标签进行设置,包括正常温度上下限, 超限值时的报警动作, 以及正常温度范围内和非正常温度时报告温度的间隔 时间等。 例如温度正常时, 10分钟 4艮告一次, 不正长时, 10秒钟 4艮告一次。 还可以通过无线的方式, 随时 居需要调整这些工作参数。 由于这种氏功耗 模式一般信号发射间隔时间长, 信号占空比非常低。 因而, 即使有源电子标 签始终在向外主动发送信号, 也并不会出现一般有源电子标签带来的信号拥 塞等各种问题。 在协调器的唤醒指令中, 如果以一个字节( 8个 bit )来设置要求执行的 固定模式操作的程序的编号, 理论上可以为 256个固定模式操作的程序设置 编号, 通常是根据具体项目的要求, 在有源电子标签中写入一个或几个满足 该具体项目的固定模式操作的程序。 唤醒指令中, 用于设置固定模式操作的 程序的编号的字节之后紧随着的字节用于设定该固定模式操作对应的参数, 对于一个固定模式操作的程序, 其需要的参数的类型及个数是确定的, 当确 定了编号, 也就确定了编号之后的参数的类型及个数。 之所以釆用动作定式的工作方式,主要因为现有技术中协调器必须要在 唤醒信号中, 清楚说明要求有源电子标签承担的具体任务, 或者利用 "要求 有源电子标签与读写器建立对话联系,, 的指令, 使控制处理器在有源电子标 签与读写器建立起通信联系后, 由读写器来下达要完成的具体任务。 这两种 方式都意味着一个较长时间的通信过程, 因此大量占用空中信道的时间, 易 引起信号拥堵、 互相千扰等问题。 而釆用动作定式的方式, 只需发射包括有 任务编号以及对应参数的短的唤醒信号, 这将大大减少空中通信的时间, 提 高了通信的效率, 同时也可执行多项不同的任务, 实现多种功能, 从而提高 其应用的灵活性。 有源电子标签周期性的处于睡眠状态或监听状态,当从睡眠状态切换到 监听状态时, 启动晶振和频综接收唤醒信号, 在通过软件识别地址码确定接 收到的是唤醒信号时, 根据任务的编码调用预存在有源电子标签中的与该任 务编码对应的固定模式操作的程序, 并利用参数对程序进行赋值, 之后执行 该程序 (程序中通常包含执行完该程序后切换到工作频道将获取的数据发射 到读写器的操作) 或者在工作频道与读写器通信 (单向或双向通信) 中执行 固定模式操作的程序 (通常在执行该程序的过程中有源电子标签将获取的数 据发射到读写器)。 另外, 如图 7、 8所示, 读写器将从有源电子标签获取的数据传输到控 制处理器以进行处理。 控制处理器在经由读写器接收从有源电子标签获取的 数据后, 通过读写器向有源电子标签发送回执信息。 有源电子标签在收到回 执信息后, 进入低功耗待机状态, 或转换到其他预先设定的固定模式操作, 或延时接收控制处理器通过读写器发送的指令, 再根据指令执行相应的转换 动作。 此外, 有源电子标签接收回执信息方式可以釆用多种方式, 例如, 可以 釆用在每次发射完数据后监听(接收)回执的方式, 该发射可以是周期性的, 如图 7所示, 有源电子标签在每次发射 ID后, 监听是否有来自读写器的回 执信息; 还可以釆用在多次发射信息之后监听一次回执信息, 该发射通常是 周期性的, 如图 8所示, 在完成 5次数据发射之后, 监听一次回执。 为了节 省等待回执的时间, 有源电子标签还可以利用许多单芯片无线收发机所具有 的自动回执功能, 这样, 有源电子标签在接收到自动回执信息后还可以进一 步延时接收是否有控制处理器通过读写器发送的指令, 如果接收到指令, 则 根据指令执行相应的转换动作。 有源电子标签的工作频率、 发射功率、 接收灵敏度、 待机 -工作周期等 参数可以由协调器或读写器通过无线方式发送信号或由自身的单片机的控制 信号改变。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本 领域的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的 ^"神和 原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护 范围之内。

Claims

权 利 要 求 书
1. 一种应用有源电子标签的系统, 其特征在于, 包括:
控制处理器;
协调器, 用于在第一频道上连续不间断地重复发送指令信号; 有源电子标签, 用于在监听状态的时间段内接收所述指令信号; 读写器, 与所述控制处理器相连接, 用于在所述有源电子标签接收 到所述指令信号之后与所述有源电子标签在第二频道上建立通信,
其中, 所述有源电子标签包括:
第一过滤模块,用于对所述有源电子标签在所述第一频道上接收到 的接收信号进行第一过滤, 以排除无效的信号;
第二过滤模块 ,用于对通过所述第一过滤的所述接收信号进行合法 性判断, 以确认所述接收信号是否为所述指令信号。
2. 根据权利要求 1所述的系统, 其特征在于,
所述第一过滤模块为硬过滤模块,在硬件侧对所述接收信号进行过 滤;
所述第二过滤模块为软过滤模块, 配置在所述第一过滤模块之后, 通过判断所述接收信号的地址码是否正确来进行所述合法性判断。
3. 根据权利要求 2所述的系统, 其特征在于, 所述硬过滤模块包括调制方 式过滤子模块, 所述调制方式过滤子模块对所述接收信号进行解调, 并 读取解调之后的信号的接收信号强度指示 RSSI值, 当所述 RSSI值不大 于环境噪声时, 拒绝对该接收信号进行后续处理, 所述有源电子标签从 所述监听状态转换至待机状态中的睡眠状态。
4. 根据权利要求 2所述的系统, 其特征在于, 所述硬过滤模块包括解码方 式过滤子模块, 所述解码方式过滤子模块对所述接收信号进行解码, 并 读取解码之后的信号,当确定解码后的信号为无信号或其它乱码信号时, 拒绝该接收信号进行后续处理, 所述有源电子标签从所述监听状态转换 至待机状态中的睡眠状态。 根据权利要求 1至 4中任一项所述的系统, 其特征在于, 所述协调器是 受所述控制处理器的控制而进行工作的, 或者, 所述协调器是根据预先 设置的进程独立工作的。 根据权利要求 1至 4中任一项所述的系统, 其特征在于, 所述协调器与 所述读写器集成在一个模块中。 一种应用有源电子标签的系统, 其特征在于, 包括:
控制处理器;
协调器, 用于在第一频道上连续不间断地重复发送指令信号, 所述 指令信号包括唤醒指令和动作指令; 有源电子标签 ,用于在监听状态的时间段内接收所述唤醒指令而被 唤醒, 并 居所述动作指令进行操作;
其中, 所述有源电子标签包括:
第一过滤模块,用于对所述有源电子标签在所述第一频道上接收到 的接收信号进行第一过滤, 以排除无效的信号;
第二过滤模块 ,用于对通过所述第一过滤的所述接收信号进行合法 性判断, 以确认所述接收信号是否为所述指令信号。 一种应用有源电子标签的方法, 其特征在于, 包括:
步骤 S502: 协调器在第一频道上连续不间断地重复发送指令信号; 步骤 S504: 有源电子标签在监听状态的时间段内接收所述指令信 号;
步骤 S506: 读写器与所述有源电子标签在第二频道上建立通信, 其中, 所述步骤 S504 包括子步骤 S5042: 对所述有源电子标签在 所述第一频道上接收到的接收信号进行第一过滤, 以排除无效的信号, 以及其中, 所述步骤 S504还包括子步骤 S5044: 对通过所述第一 过滤的所述接收信号进行合法性判断, 以确认所述接收信号是否为所述 指令信号。
. 根据权利要求 8所述的方法, 其特征在于, 所述子步骤 S5042进一步包 括:
对所述接收信号进行解调,并读取解调之后的信号的接收信号强度 指示 RSSI值, 当所述 RSSI值不大于环境噪声时, 拒绝对该接收信号进 行后续处理, 所述有源电子标签从所述监听状态转换至待机状态中的睡 眠状态。
10. 根据权利要求 8所述的方法, 其特征在于, 所述子步骤 S5042进一步包 括: 对所述接收信号进行解码, 并读取解码之后的信号, 当确定解码后 的信号为无信号或其它乱码信号时, 拒绝对该接收信号进行后续处理, 所述有源电子标签从所述监听状态转换至待机状态中的睡眠状态。
11. 一种有源电子标签, 其特征在于, 包括:
第一过滤模块,用于对所述有源电子标签在所述第一频道上接收到 的接收信号进行第一过滤, 以排除无效的信号; 以及
第二过滤模块 ,用于对通过所述第一过滤的所述接收信号进行合法 性判断, 以确认所述接收信号是否为所述指令信号。
12. 根据权利要求 11所述的标签, 其特征在于,
所述第一过滤模块为硬过滤模块,在硬件侧对所述接收信号进行过 滤;
所述第二过滤模块为软过滤模块, 配置在所述第一过滤模块之后, 通过判断所述接收信号的地址码是否正确来进行所述合法性判断。
13. 根据权利要求 11所述的标签, 其特征在于, 所述硬过滤模块包括调制方 式过滤子模块, 所述调制方式过滤子模块对所述接收信号进行解调, 并 读取解调之后的信号的接收信号强度指示 RSSI值, 当所述 RSSI值不大 于环境噪声时, 拒绝对该接收信号进行后续处理, 所述有源电子标签从 所述监听状态转换至待机状态中的睡眠状态。
14. 根据权利要求 11所述的标签, 其特征在于, 所述硬过滤模块包括解码方 式过滤子模块, 所述解码方式过滤子模块对所述接收信号进行解码, 并 读取解码之后的信号,当确定解码后的信号为无信号或其它乱码信号时, 拒绝对该接收信号进行后续处理, 所述有源电子标签从所述监听状态转 换至待机状态中的睡眠状态。
15. —种应用有源电子标签的系统, 其特征在于, 包括:
控制处理器;
协调器, 用于在第一频道上连续不间断地重复发送唤醒指令; 有源电子标签, 用于在监听状态的时间段内接收所述唤醒指令; 读写器, 与所述控制处理器相连接, 用于在所述有源电子标签接收 到所述唤醒指令之后, 与所述有源电子标签在第二频道上建立通信, 并 向所述有源电子标签发送动作指令索引,
其中, 所述有源电子标签包括:
指令接收模块, 用于接收来自所述读写器的所述动作指令索引; 存储模块, 用于存储预先设置的索引-动作映射关系; 以及 动作执行模块, 用于在所述索引 -动作映射关系中找出与所述动作 指令索引相对应的动作指令并执行。
16. 根据权利要求 15所述的系统, 其特征在于, 所述动作指令索引包括动作 代码和相应的参数, 所述动作指令包括控制函数。
17. 根据权利要求 16所述的系统, 其特征在于, 所述相应的参数包括如下组 中的至少一个: 信号发送频道、 信号发送间隔时间、 发送功率、 信号发 送次数、 被所述有源电子标签读取参数的部件的编号以及接收所述有源 电子标签发送的信号的读写器的编号。
18. 根据权利要求 15至 17中任一项所述的系统, 其特征在于, 所述协调器 是受所述控制处理器的控制而进行工作的, 或者, 所述协调器是根据预 先设置的进程独立工作的。
19. 根据权利要求 15至 17中任一项所述的系统, 其特征在于, 所述协调器 与所述读写器集成在一个模块中。
20. 一种应用有源电子标签的系统, 其特征在于, 包括:
控制处理器;
协调器, 用于在第一频道上连续不间断地重复发送指令信号, 所述 指令信号包括唤醒指令和动作指令索引; 有源电子标签,用于在监听状态的时间段内接收所述唤醒指令而被 唤醒, 并根据所述动作指令索引进行操作;
其中, 所述有源电子标签包括:
指令接收模块, 用于接收来自所述协调器的动作指令索引; 存储模块, 用于存储预先设置的索引-动作映射关系; 以及 动作执行模块, 用于在所述索引 -动作映射关系中找出与所述动作 指令索引相对应的动作指令并执行。
21. 一种应用有源电子标签的方法, 其特征在于, 包括:
步骤 S602: 协调器在第一频道上连续不间断地重复发送唤醒信号; 步骤 S604: 有源电子标签在监听状态的时间段内接收所述唤醒信 号;
步骤 S606: 读写器与所述有源电子标签在第二频道上建立通信, 并向所述有源电子标签发送动作指令索引; 以及
步骤 S608: 所述有源电子标签接收来自所述读写器的所述动作指 令索引, 在预先设置的索引 -动作映射关系中找出与所述动作指令索引相 对应的动作指令并执行。
22. 才艮据权利要求 21所述的系统, 其特征在于, 所述动作指令索引包括动作 代码和相应的参数, 所述动作指令包括控制函数。
23. 根据权利要求 22所述的系统, 其特征在于, 所述相应的参数包括如下组 中的至少一个: 信号发送频道、 信号发送间隔时间、 发送功率、 信号发 送次数、 被所述有源电子标签读取参数的部件的编号以及接收所述有源 电子标签发送的信号的读写器的编号。
24. 一种有源电子标签, 其特征在于, 包括:
指令接收模块, 用于接收来自外部的动作指令索引; 存储模块, 用于存储预先设置的索引-动作映射关系; 以及 动作执行模块, 用于在所述索引 -动作映射关系中找出与所述动作 指令索引相对应的动作指令并执行。
25. 才艮据权利要求 24所述的系统, 其特征在于, 所述动作指令索引包括动作 代码和相应的参数, 所述动作指令包括控制函数。
26. 根据权利要求 25所述的系统, 其特征在于, 所述相应的参数包括如下组 中的至少一个: 信号发送频道、 信号发送间隔时间、 发送功率、 信号发 送次数、 被所述有源电子标签读取参数的部件的编号以及接收所述有源 电子标签发送的信号的读写器的编号。
PCT/CN2009/075227 2009-11-30 2009-11-30 有源电子标签及其应用系统和方法 WO2011063572A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2009/075227 WO2011063572A1 (zh) 2009-11-30 2009-11-30 有源电子标签及其应用系统和方法
EP09851585.1A EP2509032B1 (en) 2009-11-30 2009-11-30 Application system and method thereof
US13/482,734 US9070061B2 (en) 2009-11-30 2012-05-29 Method and system for applying an active radio frequency identification (RFID) tag having a first filter to exclude invalid signals and a second filter to perform a validity judgment
US14/702,427 US9405942B2 (en) 2009-11-30 2015-05-01 Application system having an active RFID tag, a coordinator, and a reader/writer transmitting an action instruction index to the active RFID tag, and method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2009/075227 WO2011063572A1 (zh) 2009-11-30 2009-11-30 有源电子标签及其应用系统和方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/482,734 Continuation US9070061B2 (en) 2009-11-30 2012-05-29 Method and system for applying an active radio frequency identification (RFID) tag having a first filter to exclude invalid signals and a second filter to perform a validity judgment

Publications (1)

Publication Number Publication Date
WO2011063572A1 true WO2011063572A1 (zh) 2011-06-03

Family

ID=44065826

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/075227 WO2011063572A1 (zh) 2009-11-30 2009-11-30 有源电子标签及其应用系统和方法

Country Status (3)

Country Link
US (2) US9070061B2 (zh)
EP (1) EP2509032B1 (zh)
WO (1) WO2011063572A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114444631A (zh) * 2022-01-25 2022-05-06 广州龙建达电子股份有限公司 一种基于rfid及物联网技术的库房档案资产管理方法及系统

Families Citing this family (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8570156B2 (en) * 2010-09-01 2013-10-29 Quake Global, Inc. Pluggable small form-factor UHF RFID reader
TW201001958A (en) 2008-04-29 2010-01-01 Odin Technologies Inc Method and apparatus for a deployable radio-frequency identification portal system
US11943089B2 (en) 2010-05-28 2024-03-26 Cohere Technologies, Inc. Modulation and equalization in an orthonormal time-shifting communications system
US10681568B1 (en) 2010-05-28 2020-06-09 Cohere Technologies, Inc. Methods of data channel characterization and uses thereof
US10667148B1 (en) 2010-05-28 2020-05-26 Cohere Technologies, Inc. Methods of operating and implementing wireless communications systems
US9444514B2 (en) 2010-05-28 2016-09-13 Cohere Technologies, Inc. OTFS methods of data channel characterization and uses thereof
US8976851B2 (en) 2011-05-26 2015-03-10 Cohere Technologies, Inc. Modulation and equalization in an orthonormal time-frequency shifting communications system
US9071285B2 (en) 2011-05-26 2015-06-30 Cohere Technologies, Inc. Modulation and equalization in an orthonormal time-frequency shifting communications system
US9071286B2 (en) 2011-05-26 2015-06-30 Cohere Technologies, Inc. Modulation and equalization in an orthonormal time-frequency shifting communications system
US9130638B2 (en) 2011-05-26 2015-09-08 Cohere Technologies, Inc. Modulation and equalization in an orthonormal time-frequency shifting communications system
US9031141B2 (en) 2011-05-26 2015-05-12 Cohere Technologies, Inc. Modulation and equalization in an orthonormal time-frequency shifting communications system
CN103136891B (zh) * 2011-11-28 2015-07-29 鸿富锦精密工业(深圳)有限公司 防盗侦测电路及应用该防盗侦测电路的包装箱
US10003487B2 (en) 2013-03-15 2018-06-19 Cohere Technologies, Inc. Symplectic orthogonal time frequency space modulation system
US9912507B2 (en) 2012-06-25 2018-03-06 Cohere Technologies, Inc. Orthogonal time frequency space communication system compatible with OFDM
US9967758B2 (en) 2012-06-25 2018-05-08 Cohere Technologies, Inc. Multiple access in an orthogonal time frequency space communication system
US10469215B2 (en) * 2012-06-25 2019-11-05 Cohere Technologies, Inc. Orthogonal time frequency space modulation system for the Internet of Things
US10090972B2 (en) 2012-06-25 2018-10-02 Cohere Technologies, Inc. System and method for two-dimensional equalization in an orthogonal time frequency space communication system
US10411843B2 (en) 2012-06-25 2019-09-10 Cohere Technologies, Inc. Orthogonal time frequency space communication system compatible with OFDM
US9929783B2 (en) 2012-06-25 2018-03-27 Cohere Technologies, Inc. Orthogonal time frequency space modulation system
WO2014124318A1 (en) * 2013-02-08 2014-08-14 Interdigital Patent Holdings, Inc. METHOD AND APPARATUS FOR INCORPORATING AN INTERNET OF THINGS (IoT) SERVICE INTERFACE PROTOCOL LAYER IN A NODE
US9841492B2 (en) 2013-02-25 2017-12-12 Quake Global, Inc. Ceiling-mounted RFID-enabled tracking
EP2962254A1 (en) 2013-02-26 2016-01-06 Quake Global, Inc. Methods and apparatus for automatic identification wristband
US9901722B2 (en) 2014-06-01 2018-02-27 White Swell Medical Ltd System and method for treatment of pulmonary edema
EP3940975A1 (en) * 2015-04-30 2022-01-19 Cohere Technologies, Inc. Orthogonal time frequency space modulation system for the internet of things
US10090973B2 (en) 2015-05-11 2018-10-02 Cohere Technologies, Inc. Multiple access in an orthogonal time frequency space communication system
WO2016183230A1 (en) 2015-05-11 2016-11-17 Cohere Technologies Systems and methods for symplectic orthogonal time frequency shifting modulation and transmission of data
EP3294369B1 (en) 2015-05-11 2021-09-01 White Swell Medical Ltd Systems for reducing pressure at an outflow of a duct
US10574317B2 (en) 2015-06-18 2020-02-25 Cohere Technologies, Inc. System and method for providing wireless communication services using configurable broadband infrastructure shared among multiple network operators
US9866363B2 (en) 2015-06-18 2018-01-09 Cohere Technologies, Inc. System and method for coordinated management of network access points
US10404514B2 (en) 2015-06-27 2019-09-03 Cohere Technologies, Inc. Orthogonal time frequency space communication system compatible with OFDM
US10892547B2 (en) 2015-07-07 2021-01-12 Cohere Technologies, Inc. Inconspicuous multi-directional antenna system configured for multiple polarization modes
CN108370355B (zh) 2015-07-12 2021-02-12 凝聚技术公司 对多个窄带子载波的正交时间频率空间调制的方法和通信设备
KR20190008827A (ko) 2015-09-07 2019-01-25 코히어 테크널러지스, 아이엔씨. 직교 시간 주파수 공간 변조를 이용한 다중액세스
US10118296B1 (en) * 2015-09-10 2018-11-06 X Development Llc Tagged robot sensor data
EP3378187B1 (en) 2015-11-18 2022-03-30 Cohere Technologies, Inc. Orthogonal time frequency space modulation techniques
WO2017100666A1 (en) 2015-12-09 2017-06-15 Cohere Technologies Pilot packing using complex orthogonal functions
CN115694764A (zh) 2016-02-25 2023-02-03 凝聚技术公司 用于无线通信的参考信号封装
WO2017165697A1 (en) 2016-03-23 2017-09-28 Cohere Technologies Receiver-side processing of orthogonal time frequency space modulated signals
CN109845102B (zh) 2016-03-31 2023-07-28 凝聚技术公司 使用正交时间频率空间调制的导频信号的信道获取
US9667307B1 (en) 2016-03-31 2017-05-30 Cohere Technologies Wireless telecommunications system for high-mobility applications
WO2017173461A1 (en) 2016-04-01 2017-10-05 Cohere Technologies, Inc. Tomlinson-harashima precoding in an otfs communication system
CN109314682B (zh) 2016-04-01 2021-09-21 凝聚技术公司 正交时频空间调制信号的迭代二维均衡
WO2017201467A1 (en) 2016-05-20 2017-11-23 Cohere Technologies Iterative channel estimation and equalization with superimposed reference signals
WO2018031938A1 (en) 2016-08-12 2018-02-15 Cohere Technologies Multi-user multiplexing of orthogonal time frequency space signals
WO2018031952A1 (en) 2016-08-12 2018-02-15 Cohere Technologies Iterative multi-level equalization and decoding
EP3497907A4 (en) 2016-08-12 2020-03-04 Cohere Technologies, Inc. LOCALIZED EQUALIZATION FOR INTER-CARRIER INTERFERENCE CHANNELS
WO2018064587A1 (en) 2016-09-29 2018-04-05 Cohere Technologies Transport block segmentation for multi-level codes
WO2018064605A1 (en) 2016-09-30 2018-04-05 Cohere Technologies Uplink user resource allocation for orthogonal time frequency space modulation
US10960189B2 (en) 2016-11-01 2021-03-30 White Swell Medical Ltd Systems and methods for treatment of fluid overload
WO2018106731A1 (en) 2016-12-05 2018-06-14 Cohere Technologies Fixed wireless access using orthogonal time frequency space modulation
EP3566379A4 (en) 2017-01-09 2020-09-09 Cohere Technologies, Inc. PILOT ENCRYPTION FOR CHANNEL ESTIMATION
US10356632B2 (en) 2017-01-27 2019-07-16 Cohere Technologies, Inc. Variable beamwidth multiband antenna
CN108460947A (zh) * 2017-02-17 2018-08-28 成都西谷曙光数字技术有限公司 一种基于物联网技术的资产自动监管系统和方法
US10912873B2 (en) 2017-03-02 2021-02-09 White Swell Medical Ltd Systems and methods for reducing pressure at an outflow of a duct
WO2018172848A2 (en) 2017-03-19 2018-09-27 White Swell Medical Ltd Methods and devices for reducing pressure
US10568143B2 (en) 2017-03-28 2020-02-18 Cohere Technologies, Inc. Windowed sequence for random access method and apparatus
WO2018191309A1 (en) 2017-04-11 2018-10-18 Cohere Technologies Digital communication using dispersed orthogonal time frequency space modulated signals
EP4109983A1 (en) 2017-04-21 2022-12-28 Cohere Technologies, Inc. Communication techniques using quasi-static properties of wireless channels
US11063804B2 (en) 2017-04-24 2021-07-13 Cohere Technologies, Inc. Digital communication using lattice division multiplexing
WO2018200567A1 (en) 2017-04-24 2018-11-01 Cohere Technologies Multibeam antenna designs and operation
EP3652907A4 (en) 2017-07-12 2021-04-07 Cohere Technologies, Inc. DATA MODULATION SCHEMES BASED ON THE ZAK TRANSFORM
US11546068B2 (en) 2017-08-11 2023-01-03 Cohere Technologies, Inc. Ray tracing technique for wireless channel measurements
WO2019036492A1 (en) 2017-08-14 2019-02-21 Cohere Technologies ASSIGNMENT OF TRANSMISSION RESOURCES BY DIVISION OF BLOCKS OF PHYSICAL RESOURCES
CN111279337B (zh) 2017-09-06 2023-09-26 凝聚技术公司 一种由无线通信接收器装置实现的无线通信方法
US11283561B2 (en) 2017-09-11 2022-03-22 Cohere Technologies, Inc. Wireless local area networks using orthogonal time frequency space modulation
CN111095883B (zh) 2017-09-15 2023-04-07 凝聚技术公司 在正交时频空间信号接收器中实现同步
US11532891B2 (en) 2017-09-20 2022-12-20 Cohere Technologies, Inc. Low cost electromagnetic feed network
US11152957B2 (en) 2017-09-29 2021-10-19 Cohere Technologies, Inc. Forward error correction using non-binary low density parity check codes
EP4362344A2 (en) 2017-11-01 2024-05-01 Cohere Technologies, Inc. Precoding in wireless systems using orthogonal time frequency space multiplexing
US11184122B2 (en) 2017-12-04 2021-11-23 Cohere Technologies, Inc. Implementation of orthogonal time frequency space modulation for wireless communications
WO2019157230A1 (en) 2018-02-08 2019-08-15 Cohere Technologies, Inc. Aspects of channel estimation for orthogonal time frequency space modulation for wireless communications
US11195072B1 (en) 2018-02-28 2021-12-07 United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Internal radio-frequency instrumentation system and method
CN108541049B (zh) * 2018-03-02 2020-12-01 北京聚利科技有限公司 唤醒复合通行卡的方法及复合通行卡
EP3763050A4 (en) 2018-03-08 2021-11-24 Cohere Technologies, Inc. PLANNING MULTI-USER MIMO TRANSMISSIONS IN FIXED WIRELESS COMMUNICATION SYSTEMS
CN108710933A (zh) * 2018-05-03 2018-10-26 浙江朗因智能科技有限公司 一种用于物流运输中电子标签的设计方法
WO2019241589A1 (en) 2018-06-13 2019-12-19 Cohere Technologies, Inc. Reciprocal calibration for channel estimation based on second-order statistics
US11522600B1 (en) 2018-08-01 2022-12-06 Cohere Technologies, Inc. Airborne RF-head system
US11055502B2 (en) * 2018-08-10 2021-07-06 Nec Corporation Sequential detection based classifications of RFID tags in three-dimensional space
US10685326B1 (en) * 2019-02-06 2020-06-16 Christie Lites Enterprises USA, LLC Systems and methods for wirelessly monitoring inventory
US11931560B2 (en) 2019-02-26 2024-03-19 White Swell Medical Ltd Devices and methods for treating edema
US11793996B2 (en) 2019-02-26 2023-10-24 White Swell Medical Ltd Devices and methods for treating edema
US11724095B2 (en) 2019-02-26 2023-08-15 White Swell Medical Ltd Devices and methods for treating edema
US11660426B2 (en) 2019-02-26 2023-05-30 White Swell Medical Ltd Devices and methods for treating edema
US11717652B2 (en) 2019-02-26 2023-08-08 White Swell Medical Ltd Devices and methods for treating edema
CN113114393B (zh) * 2021-03-26 2022-04-22 华南理工大学 针对基于索引调制的环境反向散射通信在多接入信道下的低复杂度检测方法、读写器和系统
CN113253644B (zh) * 2021-05-12 2022-09-16 江南造船(集团)有限责任公司 设备工作模式的切换方法、微控制装置及船舶定位系统
CN114363832B (zh) * 2021-12-16 2023-05-23 江苏华锐频科技有限公司 一种信息发送的方法、射频标签、射频系统及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101059832A (zh) * 2007-03-23 2007-10-24 东莞市太平洋计算机科技有限公司 一种有源rfid数据读写系统
CN101236611A (zh) * 2007-02-02 2008-08-06 成都西谷曙光数字技术有限公司 智能电子标签系统
CN101533480A (zh) * 2008-03-10 2009-09-16 Ls产电株式会社 主动式rfid电子标签
CN101582122A (zh) * 2009-06-23 2009-11-18 上海邮政科学研究院 一种具有唤醒功能的有源rfid系统

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5790946A (en) * 1993-07-15 1998-08-04 Rotzoll; Robert R. Wake up device for a communications system
US7009496B2 (en) * 2002-04-01 2006-03-07 Symbol Technologies, Inc. Method and system for optimizing an interrogation of a tag population
US7019617B2 (en) * 2002-10-02 2006-03-28 Battelle Memorial Institute Radio frequency identification devices, backscatter communication device wake-up methods, communication device wake-up methods and a radio frequency identification device wake-up method
US7106173B2 (en) * 2003-01-03 2006-09-12 Battelle Memorial Institute Tags, wireless communication systems, tag communication methods, and wireless communications methods
US7023342B2 (en) * 2003-09-17 2006-04-04 The United States Of America As Represented By The Secretary Of The Navy Continuous wave (CW)—fixed multiple frequency triggered, radio frequency identification (RFID) tag and system and method employing same
US7602274B2 (en) * 2004-04-23 2009-10-13 Microchip Technology Incorporated Dynamic configuration of a radio frequency transponder
WO2007039328A1 (en) * 2005-09-28 2007-04-12 International Business Machines Corporation Adaptive rule based electronic reminder for personal objects
KR100733986B1 (ko) * 2005-12-08 2007-06-29 한국전자통신연구원 Ip주소 기반 rfid 서비스를 위한 rfid 태그 및그를 이용한 ip주소 기반 rfid 서비스 방법
US7471204B2 (en) * 2006-07-07 2008-12-30 Broadcom Corporation Receiver architecture for canceling blocking signals
US7982585B2 (en) * 2007-02-28 2011-07-19 Li-Cheng Richard Zai Method and apparatus for active RFID network
WO2009101471A2 (en) * 2007-11-15 2009-08-20 Loc8Tor Ltd Locating system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101236611A (zh) * 2007-02-02 2008-08-06 成都西谷曙光数字技术有限公司 智能电子标签系统
CN101059832A (zh) * 2007-03-23 2007-10-24 东莞市太平洋计算机科技有限公司 一种有源rfid数据读写系统
CN101533480A (zh) * 2008-03-10 2009-09-16 Ls产电株式会社 主动式rfid电子标签
CN101582122A (zh) * 2009-06-23 2009-11-18 上海邮政科学研究院 一种具有唤醒功能的有源rfid系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2509032A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114444631A (zh) * 2022-01-25 2022-05-06 广州龙建达电子股份有限公司 一种基于rfid及物联网技术的库房档案资产管理方法及系统

Also Published As

Publication number Publication date
US9070061B2 (en) 2015-06-30
US20120235795A1 (en) 2012-09-20
US20150235060A1 (en) 2015-08-20
US9405942B2 (en) 2016-08-02
EP2509032B1 (en) 2016-03-30
EP2509032A4 (en) 2014-02-26
EP2509032A1 (en) 2012-10-10

Similar Documents

Publication Publication Date Title
WO2011063572A1 (zh) 有源电子标签及其应用系统和方法
US5684472A (en) Method and apparatus for remotely accessing meter status information in a meter reading system
KR100932920B1 (ko) 센서노드의 웨이크업 장치 및 방법
KR101576142B1 (ko) 휴대용 단말기에서 무선랜 모듈의 전원 관리 방법 및 장치
CN103958295B (zh) 便携机
CN100527696C (zh) 电力管理方法与装置
EP3917219A1 (en) Data reporting method for logistics device and system therefor
CN102612122A (zh) 一种低功耗无线传感器网络系统及其控制唤醒方法
US20080084836A1 (en) Low power wireless communication method
US11051248B2 (en) Radio-frequency wakeup for vehicle systems
CN110089164A (zh) 改进的无线设备的节能模式
CN202970174U (zh) 一种低功耗远程唤醒的智能锁系统
CN106230645B (zh) 一种用于监测节点与汇聚网关之间的低功耗无线通信方法
CN102654003A (zh) 一种低功耗远程唤醒的智能锁系统
CN105337744A (zh) 一种自定义唤醒序列的极低功耗两级唤醒接收机系统
CN110958676B (zh) 一种低功耗休眠设备唤醒方法及系统
US20100240319A1 (en) Radio system, transmitter, and receiver
CN104063928A (zh) 一种基于高频天线特征判别的智能锁系统
CN102081743B (zh) 有源电子标签及其应用系统和方法
CN102081745B (zh) 有源电子标签及其应用系统和方法
CN102904784A (zh) 一种基于433无线收发模块的物联网智能家居系统
CN103634885A (zh) 一种识别卡及其运行方法
CN111092631B (zh) 一种实现低功耗的433m通信系统
KR100649708B1 (ko) Rfid를 이용한 지그비 시스템의 브로드캐스트 통신방법
CN209009884U (zh) 一种新型智能电梯控制管理系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09851585

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009851585

Country of ref document: EP