WO2011063511A1 - Automated in-bore mr guided robotic diagnostic and therapeutic system - Google Patents
Automated in-bore mr guided robotic diagnostic and therapeutic system Download PDFInfo
- Publication number
- WO2011063511A1 WO2011063511A1 PCT/CA2010/001865 CA2010001865W WO2011063511A1 WO 2011063511 A1 WO2011063511 A1 WO 2011063511A1 CA 2010001865 W CA2010001865 W CA 2010001865W WO 2011063511 A1 WO2011063511 A1 WO 2011063511A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- medical
- insertion device
- carriage
- mounting arm
- medical instrument
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/30—Surgical robots
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B10/00—Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
- A61B10/02—Instruments for taking cell samples or for biopsy
- A61B10/0233—Pointed or sharp biopsy instruments
- A61B10/0266—Pointed or sharp biopsy instruments means for severing sample
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/30—Surgical robots
- A61B34/32—Surgical robots operating autonomously
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/30—Surgical robots
- A61B34/37—Master-slave robots
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/70—Manipulators specially adapted for use in surgery
- A61B34/76—Manipulators having means for providing feel, e.g. force or tactile feedback
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/10—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges for stereotaxic surgery, e.g. frame-based stereotaxis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/10—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges for stereotaxic surgery, e.g. frame-based stereotaxis
- A61B90/14—Fixators for body parts, e.g. skull clamps; Constructional details of fixators, e.g. pins
- A61B90/17—Fixators for body parts, e.g. skull clamps; Constructional details of fixators, e.g. pins for soft tissue, e.g. breast-holding devices
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/34—Trocars; Puncturing needles
- A61B17/3468—Trocars; Puncturing needles for implanting or removing devices, e.g. prostheses, implants, seeds, wires
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/02—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B18/1477—Needle-like probes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/18—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
- A61B18/20—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
- A61B18/22—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor
- A61B18/24—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor with a catheter
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/00831—Material properties
- A61B2017/00902—Material properties transparent or translucent
- A61B2017/00911—Material properties transparent or translucent for fields applied by a magnetic resonance imaging system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B2018/1405—Electrodes having a specific shape
- A61B2018/1425—Needle
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/10—Computer-aided planning, simulation or modelling of surgical operations
- A61B2034/107—Visualisation of planned trajectories or target regions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/36—Image-producing devices or illumination devices not otherwise provided for
- A61B2090/363—Use of fiducial points
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/36—Image-producing devices or illumination devices not otherwise provided for
- A61B2090/364—Correlation of different images or relation of image positions in respect to the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/36—Image-producing devices or illumination devices not otherwise provided for
- A61B90/37—Surgical systems with images on a monitor during operation
- A61B2090/374—NMR or MRI
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/39—Markers, e.g. radio-opaque or breast lesions markers
- A61B2090/3954—Markers, e.g. radio-opaque or breast lesions markers magnetic, e.g. NMR or MRI
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/20—Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/10—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges for stereotaxic surgery, e.g. frame-based stereotaxis
- A61B90/11—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges for stereotaxic surgery, e.g. frame-based stereotaxis with guides for needles or instruments, e.g. arcuate slides or ball joints
Definitions
- Some example embodiments described herein relate to surgical robotics, and in particular to control of medical instruments which have an insertion action, such as a biopsy needle or ablation tool.
- Cancer diagnosis and treatment can require the medical practitioner to be able to pin point a suspicious lesion within the patient.
- the next step in a typical treatment process can include a biopsy procedure to identify the pathology, which can be performed in the operating room, with the patient under general anesthetic.
- biopsy procedures can include the implementation of core needle biopsy procedures using minimally invasive core needle extraction methods.
- Example embodiments relate to a medical insertion device which may be used with or installed within an imaging system, such as a magnetic resonance imaging (MRI) system to plan the best approach to the target tissue.
- the medical insertion device can generally be used to retain, position and effect insertion of a medical instrument, for example a biopsy device or an ablation treatment device.
- the device can generally provide linear, rotational and/or angular degrees of freedom for positioning of the medical instrument prior to an insertion of the medical instrument.
- Embodiments include performance in real-time imaging environment (i.e. "in-bore” imaging). Additional embodiments include data/software integration into the system, allowing a user to pull images taken and employ a 2D or 3D target planning algorithm to provide co-ordinates for device positioning.
- a robotic system including an insertion device having an interface for interfacing with a medical instrument, one or more mechanisms for effecting insertion of the medical instrument or a part of the medical instrument in an insertion direction, and for effecting pitch and yaw of the insertion device, and a controller in communication with the detector subsystem and configured to automatically control the one or more mechanisms based on the received spatial information .
- a medical insertion device which includes a mounting arm, an interface connected to the mounting arm for interfacing with a medical instrument, a mechanism for movement of the medical instrument or a part of the medical instrument in an insertion direction, a carriage connected to a distal end of the mounting arm, and a pivot connection between the carriage and the distal end of the mounting arm to permit pitch or yaw of the mounting arm .
- a method for facilitating insertion of a medical instrument which includes: interfacing the medical instrument with an interface, the interface being connected to a mounting arm, pivoting the mounting arm at a pivot connection connected between a carriage and a distal end of the mounting arm to effect pitch or yaw of the mounting arm, and moving the medical instrument or a part of the medical instrument in an insertion direction.
- a dispenser system for use with an imaging system, which includes a dispenser frame adjoined to the imaging system, the dispenser frame including or defining at least one instrument holder for holding and releasably providing of a medical instrument.
- Figure 1A shows an isometric view of a medical insertion device in accordance with an example embodiment
- Figure IB shows an exploded isometric view of the medical insertion device shown in Figure 1A;
- Figure 1C shows a left side view of the medical insertion device shown in Figure 1A;
- Figure ID shows a rear side view of the medical insertion device shown in Figure 1A;
- Figure IE shows a plan view of the medical insertion device shown in Figure 1A;
- Figure 2 shows an isometric view of the medical insertion device in a retraction configuration
- Figure 3A shows a detail isometric view of a rotary drive unit in accordance with an example embodiment
- Figure 3B shows an exploded isometric view of the rotary drive unit shown in Figure 3A;
- Figure 4A shows a left side view of the medical insertion device shown in Figure 1A in a pitch up configuration
- Figure 4B shows a rear side view of the medical insertion device shown in Figure 4A in the pitch up configuration
- Figure 5A shows a left side view of the medical insertion device shown in Figure 1A in a straight insertion configuration
- Figure 5B shows a plan view of the medical insertion device shown in Figure 5A in the straight insertion configuration
- Figure 6A shows a rear side view of the medical insertion device shown in Figure 1A in a translated configuration
- Figure 6B shows a rear side view of the medical insertion device shown in Figure 6A in the translated configuration
- Figure 7A shows a left side view of the medical insertion device shown in Figure 1A in a yaw configuration
- Figure 7B shows a rear side view of the medical insertion device shown in Figure 7A in the yaw configuration
- Figure 7C shows a plan view of the medical insertion device shown in Figure 7A in the yaw configuration
- Figure 8A shows an isometric front view of a dispenser system in accordance with an example embodiment
- Figure 8B shows an isometric exploded side view of the dispenser system shown in Figure 8A;
- Figure 8C shows an isometric view of a dispenser assembly in accordance with another example embodiment in a lateral mode of dispensing
- Figure 8D shows an isometric view of the dispenser assembly shown in Figure 8C in an upper mode of dispensing
- Figure 9A shows an isometric view of a robotic surgical system including a magnetic resonance imaging (MRI) system in accordance with an example embodiment
- Figure 9B shows an isometric view of the robotic surgical system shown in Figure 9A in another mode of operation.
- Figure 9C shows a detail isometric view of the robotic surgical system shown in Figure 9A in another mode of operation.
- Figure 10A shows an isometric view of a robotic surgical system including a mammography system in accordance with an example embodiment
- Figure 10B shows an isometric view of the robotic surgical system shown in Figure 10A in a dispensing mode of operation.
- Figure IOC shows an isometric view of the robotic surgical system shown in Figure 10A in an insertion mode of operation.
- Figure 11 shows a block diagram of a robotic surgical system in which example embodiments may be applied.
- Figure 12 shows an example interface in accordance with an example embodiment.
- Cancer diagnosis or procedures can include using a biopsy tool to retrieve a tissue sample for further analysis.
- a difficulty with some existing medical systems is that the health practitioner may not be able to work within a CT or MRI system during scanning for procedures such as biopsy or ablation therapy.
- Some example embodiments relate to an image guided, automated surgical robotic system having a manipulator, and associated workstations for the purpose of obtaining a biopsy sample and/or treating an identified lesion/pathology.
- the system can interface with existing clinical diagnostic imaging systems such as magnetic resonance imaging (MRI) to help chose a specific target and then automatically or semi-automatically drive a medical instrument such as a percutaneous coring needle biopsy device or ablation tool, under real-time or near- real-time image guidance.
- MRI magnetic resonance imaging
- a robotic system including an insertion device having an interface for interfacing with a medical instrument, one or more mechanisms for effecting insertion of the medical instrument or a part of the medical instrument in an insertion direction, and for effecting pitch and yaw of the insertion device, a detector subsystem for determining spatial information, and a controller in communication with the detector subsystem and configured to automatically control the one or more mechanisms based on the received spatial information.
- a medical insertion device which includes a mounting arm, an interface connected to the mounting arm for interfacing with a medical instrument, a mechanism for movement of the medical instrument or a part of the medical instrument in an insertion direction, a carriage connected to a distal end of the mounting arm, and a pivot connection between the carriage and the distal end of the mounting arm to permit pitch or yaw of the mounting arm .
- a method for facilitating insertion of a medical instrument which includes: interfacing the medical instrument with an interface, the interface being connected to a mounting arm, pivoting the mounting arm at a pivot connection connected between a carriage and a distal end of the mounting arm to effect pitch or yaw of the mounting arm, and moving the medical instrument or a part of the medical instrument in an insertion direction.
- a dispenser system for use with an imaging system, which includes a dispenser frame adjoined to the imaging system, the dispenser frame including or defining at least one instrument holder for holding and releasably providing of a medical instrument.
- FIGS 1A and IB show a medical insertion device 100 in accordance with an example embodiment.
- the medical insertion device 100 may be used with or installed within an imaging system (not shown here), such as a magnetic resonance imaging (MRI) system, during scanning.
- the medical insertion device 100 can generally be used to retain, position and effect insertion of a medical instrument 102, for example a biopsy device 103 as shown, or for example a treatment device.
- the device 100 can generally provide linear, angular and/or rotational degrees of freedom for positioning of the medical instrument 102 prior to insertion of the medical instrument 102.
- the medical insertion device 100 includes a frame 104 which acts to house the medical insertion device 100.
- the medical insertion device 100 further includes a linear slide assembly 106 mounted or connected to the frame 104.
- the medical insertion device further includes a rotary drive assembly 108 for generally driving the linear slide assembly 106, and a carriage assembly 110 for moving along the linear slide assembly 106.
- the carriage assembly 110 also generally supports the medical instrument 102 for positioning and insertion thereof.
- the frame 104 includes a baseplate 112 and a drive support plate 114 connected thereto to at least partially form a housing of the medical insertion device 100. Other sidewalls or plates (not shown) may also form part of the frame 104.
- the frame 104 also includes a drive plate strengthening bracket 116 for strengthening of the connection between the baseplate 112 and the drive support plate 114. Other strengthening brackets (not shown) may also be used.
- the baseplate 112 may also include alignment fiducials 113 or other alignment markers for correlating the physical world with an imaging system (not shown here).
- An additional alignment fiducial 113a or fiducials may be placed on the elongate mounting arm 120 (e.g. device holder 126), or on the medical instrument 102 itself (not shown), for correlating or registration purposes.
- the alignment fiducials can include MR molecular tagging.
- the frame 104 encloses almost an entirety of the medical insertion device 100, save for the frame 104 further including or defining an opening at the front for passage of the medical instrument 102 there through.
- the frame 104 is integrated into or forms part of a same frame (not shown here) of the particular imaging system (not shown here).
- the frame 104 can be panel shaped to fit within restricted environments having a limited height.
- the carriage assembly 110 includes an elongate mounting arm 120, wherein the mounting arm 120 includes an insertion track 122 which runs along a length of the mounting arm 120.
- An insertion carriage 124 includes a mechanism such as a pneumatic or piezoelectric motor which can move or step the carriage 124 along the insertion track 122. The insertion carriage 124 is therefore slideably mounted to the insertion track 122.
- a device holder 126 is connected to the carriage 124.
- the device holder 126 is generally tubular shaped and acts as an interface to receive or interface with the medical instrument 102. As shown in Figure IB, the device holder 126 includes a sheath to receive a corresponding tubular-shaped main body 128 of the medical instrument 102.
- the mounting arm 120 also defines the insertion direction 127.
- the mounting arm 120 and/or the device holder 126 includes a force sensor(s) to detect the tissue being penetrated, and for prevention of accidental excursion into the incorrect tissue (e.g. chest wall).
- the medical instrument 102 typically includes the main body 128 and an elongate member 130 such as a needle which extends from the main body 128.
- the elongate member 130 is formed from MR compatible materials such as carbon fibre, ceramic, or tritanium .
- a biopsy tool 103 such as a vacuum assisted biopsy (VAB) device available from ATEC (TM), as would be understood in the art.
- VAB vacuum assisted biopsy
- the elongate member 130 can also include an ablative tool such as Radio Frequency (RF) ablation, focused ultrasound, cryotherapy, laser and other ablative technologies that are administered within the cancerous region causing cell destruction with minimal damage to surrounding tissues.
- RF Radio Frequency
- the medical instrument 102 may also include a detector such as a probe, ultrasound probe, or fiber optic probe.
- the detector can also include an MRI coil to provide higher resolution in situ imaging.
- the medical instrument 102 may be integrated with the device holder 126 to result in a dedicated-purpose insertion device.
- the medical instrument 102 can include an end effector or end effectors.
- FIG 2 shows the medical instrument 102 in a retraction configuration or orientation.
- the insertion carriage 124 is located at a proximal end of the insertion track 122, which therefore has retracted the medical instrument 102 backwards along the insertion direction 127 (with respect to Figure 1A). From this position, the insertion carriage 124 can move along the insertion track 122 to the distal end of the insertion track 122, resulting in the medical instrument 102 moving in the insertion direction 127 to an insertion configuration or orientation as shown in Figure 1A.
- the carriage assembly 110 generally includes one or more carriages which including pivot connections and/or slideable connections for effecting positioning of the mounting arm 120, and therefore positioning of the medical instrument 102.
- the next step is typically an insertion step through the skin which includes movement of the insertion carriage 124 along the insertion track 122 in the insertion direction 127.
- the carriage assembly 110 includes a first carriage coupling 131 and a second carriage coupling 132.
- the first carriage coupling 131 includes a first carriage 134 and a second carriage 136.
- the second carriage coupling 132 includes a third carriage 138 and a fourth carriage 140.
- the first carriage 134 via first sway arm 135 is connected to a distal end of the mounting arm 120 using a ball-and-socket pivot connection, which is defined by a ball 142 of the mounting arm 120 and a corresponding socket 144 of the first sway arm 135.
- a pivot connection therefore permits pitch or yaw of the mounting arm 120 in operation.
- the first carriage 134 also itself includes a pivoting (e.g.
- the first sway arm 135 is also hingedly connected to a first coupling arm 146.
- the first coupling arm 146 is hingedly connected to the second carriage 136.
- the third carriage 138 is connected to a proximal end of the mounting arm 120 via a second sway arm 139, using a pivoting connection 150 such as a first hinge coupled with a second hinge, as shown.
- the second sway arm 139 is hingedly connected to a second coupling arm 152.
- the second coupling arm 152 is hingedly connected to the fourth carriage 140.
- the third carriage 138 also includes a pivoting (e.g. hinged) connection 154 to the second sway arm 139 at the linear slide assembly 106.
- the linear slide assembly 106 provides a support for the carriage assembly 110, and includes a first track system 160 and a second track system 162 having mechanisms for individually or collectively controlling of the positioning of the carriages 134, 136, 138, 140.
- the first track system 160 supports the first carriage coupling 131 and the second track system 162 supports the second carriage coupling 132.
- the first and second track systems 160, 162 include straightly moveable or slideable connections with the respective carriages 134, 136, 138, 140 for facilitating linear translation of the carriages 134, 136, 138, 140.
- first track system 160 this includes four rails 164a-d, which correspond respectively to channels 166a-d defined by the first carriage 134 and channels 168a-d defined by the second carriage 136, as shown in Figure IB.
- first and fourth rails 164a and 164d are smooth rails which act as guide rails for sliding of the first carriage 134 and the second carriage 136.
- channels 166a, 166d, 168a, and 168d may also have smooth inner surfaces.
- Second rail 164b includes a lengthwise screw thread definition which engages corresponding anti-backlash nut (not shown) within channel 166b of the first carriage 134.
- Channel 168b of second carriage 136 has a smooth inner surface.
- third rail 164c includes a lengthwise screw thread definition which engages corresponding anti-backlash nut (not shown) within channel 168c of the second carriage 136.
- Channel 166c of first carriage 134 has a smooth inner surface.
- second track system 162 which includes four rails 170a-d, which correspond respectively to channels 172a-d defined by the third carriage 138 and channels 174a-d defined by the fourth carriage 176, as shown in Figure IB.
- first and fourth rails 170a and 170d are smooth rails which act as guide rails for sliding of the third carriage 138 and the second carriage 140.
- channels 172a, 172d, 174a, and 174d may also have smooth inner surfaces.
- Second rail 170 includes a lengthwise screw thread definition which engages corresponding screw threads of channel 172b of the third carriage 138.
- Channel 174b of fourth carriage 140 has a smooth inner surface.
- third rail 170c includes a lengthwise screw thread definition which engages corresponding screw threads of channel 174c of the fourth carriage 140.
- Channel 172c of third carriage 138 has a smooth inner surface.
- the rotary drive assembly 108 acts to drive the various tracks of the linear slide assembly 106, for driving of the various carriages 134, 136, 138, 140 of the carriage assembly 110.
- the rotary drive assembly 108 includes four rotary drive units 180a-d (each or individually referred to as 180) each corresponding to a respective rotary drive belt 182a-d.
- rotary drive unit 180a is coupled to rail 164b
- rotary drive unit 180b is coupled to rail 164c
- rotary drive unit 180c is coupled to rail 170b
- rotary drive unit 180d is coupled to rail 170c.
- the drive unit 180 includes, in sequential adjoining order, a pulley 200 for engaging the drive belt 182a-d, a retaining ring 202, a ceramic bearing 204, a front motor plate 206, a ceramic ring 208, a drive shaft 210, a second ceramic ring 212, a second ceramic bearing 214, one or more spacer plates 216 (two shown), a back motor plate 218, and a controller such as a microcontroller or encoder 220.
- ultrasonic motors 222 can be used to drive the drive shaft 210, which are controllable by the encoder 220.
- An example suitable ultrasonic motor 222 is a HR2 motor by Nanomotion Ltd., as would be understood in the art.
- vacuum-actuated drivers or hydraulic drivers may be used.
- various modes of operation of the medical insertion device 100 can be effected to position the medical instrument 102 by slideably moving at least one of the carriages 134, 136, 138, 140.
- the individual carriages may be moved so that relative motion (left or right) between two carriages will raise one end of the mounting arm 120 up or down, either linearly or in a slightly curved trajectory.
- the slightly curved trajectory also results in axial rotation of the medical instrument 102.
- Translation of the two carriages couplings 131, 132 in unison results in a linear translation left and right.
- a differential motion left and right between the first carriage coupling 131 and the second carriage coupling 132 results in a horizontal angular motion (yaw), while a differential vertical motion between the first carriage coupling 131 and the second carriage coupling 132 results in a vertical angle (pitch). Raising or lowering the first carriage coupling 131 and the second carriage coupling 132 in unison results in a combined vertical motion.
- Figures 4A and 4B show the medical insertion device 100 in a pitch up configuration.
- the first carriage 134 and the second carriage 136 are slideably moved relatively towards each other.
- only one of the first carriage 134 and the second carriage 136 is moved towards the other, resulting in a slightly curved pitch up trajectory.
- This slightly curved trajectory also results in axial rotation of the medical instrument 102.
- a pitch down may be effected by having the first carriage 134 and the second carriage 136 slideably moved relatively away from each other.
- Figures 5A and 5B show the medical insertion device 100 in a straight insertion configuration.
- the carriages 134, 136, 138, 140 are slideably moved to cause the medical instrument 102 to be horizontally oriented, which would be rectilinear to the insertion target.
- FIGS. 6A and 6B show the medical insertion device 100 in a translated configuration. As shown, all of the carriages 134, 136, 138, 140 are slideably moved at the same displacement in a direction, for example left (as shown) or right.
- FIGS 7A, 7B and 7C show the medical insertion device 100 in a yaw configuration.
- the carriages 138, 140 of the second carriage coupling 132 can be collectively moved leftwardly relative to the first carriage coupling 131 to result in the medical instrument 102 being angled in a yaw right direction.
- the carriages 138, 140 of the second carriage coupling 132 can be collectively moved rightwardly relative to the first carriage coupling 131 to result in the medical instrument 102 being angled in a yaw left direction (not shown).
- the medical insertion device 100 can effect various insertion angles of the medical instrument 102 which vary from a straight insertion. It may be appreciated that the various insertion angles may provide flexibility in performing the particular procedure. Further, it may be appreciated that the medical insertion device 100 may provide a stable insertion angle for the subsequent insertion step. In addition, the medical instrument 102 may for example be able to reach additional target regions such as those near the edges of the frame 104 (e.g. at regions beyond the linear slide assembly 106 closer to the baseplate 112).
- the device holder 126 can be reversed, in that the body 128 of the medical instrument 102 can be inserted into the other opening 184 of the device holder 126.
- the configuration shown in Figure IB may be used for superior (from the head) insertion at the right breast in a "right side” configuration.
- the entire medical instrument 102 e.g. the frame 104
- the body 128 of the medical instrument 102 inserted into the other opening 184 of the device holder 126 for superior insertion at the left breast in a "left side” configuration.
- the references herein to proximal and distal would be reversed. It may be appreciated that such a reversible configuration could provide operation of the device 100 in a limited space environment such as within an MRI (not shown here).
- Suitable materials for the various described assemblies and subsystems of the device 100 include magnetic resonance (MR) compatible materials, ceramics, thermo-plastics and thermo-sets. Additional example materials may also include carbon fiber, ceramic, composites, nanoparticle composites, aluminium, titanium, and stainless steel.
- MR compatible motors include piezoelectric motors, pneumatic, vacuum-actuated drivers or hydraulic drivers.
- an insertion mechanism may be used to move the entire linear slide assembly 106 in the insertion direction 127 to provide the insertion step (rather than from the insertion track 122).
- some medical instruments 102 may include their own insertion or injection mechanism, which may be automated or manually controlled.
- only a part of the medical instrument 102 such as the elongate member 130 (e.g. a needle) is independently controllable by a mechanism for insertion.
- FIG. 8A and 8B shows a dispenser system 300 in accordance with an example embodiment.
- the dispenser system 300 can for example be used with an imaging system (not shown here) to dispense one or more medical instruments 302a-h (each or individually referred to as 302) to the medical insertion device 100 ( Figure 1A).
- the dispenser system 300 includes a dispenser frame 304 which can be adjoined or attached to the particular imaging system .
- the dispenser frame 304 includes or defines a plurality of instrument holders 306a-h (each or individually referred to as 306) for respectively holding the medical instruments 302a-h.
- the instrument holders 306a-h can also releasably secure the medical instruments 302a-h using a retaining mechanism (not shown).
- the dispenser system 300 can also include a receiver 308 which can receive the desired medical instrument 302 for dispensing, in this example medical instrument 302a.
- the receiver 308 can include a mechanism or a vacuum or air pump (not shown) for obtaining the medical instrument 302a from the particular instrument holder 306a.
- the receiver 308 can also include appropriate sterilization mechanisms (not shown) such as an alcohol spray, etc.
- each instrument holder 306 is arranged on the dispenser frame 304 around a centre of rotation 310 of the dispenser frame 304.
- the dispenser frame 304 can further include a rotating mechanism (not shown) for rotating of the dispenser frame 304 around the centre of rotation 310.
- rotation of the dispenser frame 304 can be effected until the desired medical instrument 302 is aligned with the receiver 308 for dispensing.
- each of the medical instruments 302a-h can have a universal body which can each interchangeably be used with the medical insertion device 100.
- the medical instruments 302a-h can each have a similar elongate cylindrical body for interfacing with a corresponding shape of the device holder 126 ( Figure 1A). It can be appreciated that the dispenser system 300 therefore generally acts as a holster for the medical instruments 302a-h.
- Figures 8C and 8D show a dispenser assembly 320 in accordance with another example embodiment.
- Figure 8C shows a lateral mode of dispensing while Figure 8D shows an upper mode of dispensing.
- the instrument holders 306 are directed laterally (sideways) for accessing of the medical instruments 302.
- the upper mode Figure 8D
- the instrument holders 306 are directed upwardly for accessing of the medical instruments 302.
- the dispenser system 300 is mounted onto a stand 322.
- the stand 322 includes a plurality of wheels 324 (e.g. five), which are lockable once wheeled to the desired position.
- the stand 322 also includes a swivel mechanism 324, which can swivel and lock the dispenser system 300 between the lateral mode (Figure 8C) and the upper mode ( Figure 8D).
- FIGS 9A to 9C show a robotic surgical system 400 including a magnetic resonance imaging (MRI) system 402 in accordance with an example embodiment.
- MRI magnetic resonance imaging
- a breast imaging assembly 404 can be used with a patient support table 406.
- the patient lies prone on top of the assembly 404 with the sternum resting on a central support beam (not shown).
- the patient's head is supported by head support 408.
- the patient's shoulders are supported by shoulder supports 410.
- the patient's breasts extend down into the breast imaging assembly 404.
- the patient may be put into the magnet bore hole of the MRI system 402 head first.
- the patient may be inserted feet first into the MRI system 402.
- the breasts are compressed by compression plates 412, wherein the compression plates 412 may compress the breast either in a head/feet direction or a lateral direction.
- the compression plates 412 act as a breast stabilization mechanism .
- the compression plates 412 can include a plastic plate with a grid of finely-spaced needle guide holes.
- the compression plates 412 are oriented along the head/feet direction.
- the compression plates 412 can further include a plastic plate with large rectangular access windows, which is advantageous when used for positioning of the medical instruments 302.
- a non-compressive stabilization device may be used.
- the medical insertion device 100 can be dimensioned to be positioned in the limited space located between the head support 408 and the patient support table 406, typically having a restricted height as shown .
- the compression plates 412 are oriented along the lateral direction and the medical insertion device 100 is positioned laterally for procedures to be performed outside of the magnet bore hole of the MRI system 402.
- the position of the alignment fiducials 113 ( Figure IB) relative to the tumor is measured or located on the MR images.
- the appropriate position and/or angle of the medical instrument 102 can then be determined, and the medical instrument 102 is moved to that position and/or angle using the medical insertion device 100.
- a proper needle entry hole can be determined by determining which hole in the compression plate 412 is closest to the desired entry point, as would be understood in the art.
- closed geometry RF coils may be used with a plurality of windings, which can interfere with a lateral or medial biopsy approach direction in some existing conventional systems.
- the tip of the biopsy device (or ablative device) may be seen in the image and can be accurately steered towards a suspected lesion location as imaging continues. This will allow adjustments to the trajectory of the biopsy device which are necessary if the lesion location moves for any reason.
- the robotic manipulation system allows the tool to be repositioned as necessary, in-situ, in order to achieve the goals of the intervention.
- alignment fiducials (not shown) may also be placed onto the medical instrument 102 to assist in registration.
- the dispenser system 300 can be mounted onto a front of the frame of the MRI system 402.
- the medical insertion device 100 can be swung out or otherwise controlled to access the dispenser system 300.
- the dispenser assembly 320 can be rolled and locked into position adjacent to the front of the MRI system 402.
- the dispenser system 300 can be integrated within or attached to the patient support table 406 for dispensing of the various medical instruments 302.
- the medical insertion device 100 may, for example, pitch down into the table 406 to obtain or replace the medical instrument 102.
- the dispenser system 300 can be mounted onto a rear side of the frame of the MRI system 402, for example in the upper mode of dispensing.
- the dispenser assembly 320 can be rolled and locked into position adjacent to the rear side of the MRI system 402.
- FIGS 10A to IOC show a robotic surgical system 500 including a mammography system 502 in accordance with an example embodiment.
- the mammography system 502 can, for example, include an X-Ray based system, an MBI system, or a positron emission mammography (PEM) based system .
- PEM/MBI prior to imaging, an agent is injected into the patient which assists in detection of the lesion.
- Compression plates 504a, 504b are used to provide stability and immobilization of the breasts.
- the compression plates 504a, 504b can also include PEM detectors mounted thereon.
- the medical insertion device 100 is dimensioned to fit in this transverse region between the compression plates 504a, 504b.
- a height of the drive support plate 114 of the frame 104 can be dimensioned to fit within the transverse space between the compression plates 504a, 504b.
- the medical insertion device 100 is mounted onto the lower compression plate 504b within this transverse region.
- a robotic arm 506 has one end mounted to the mammography system 502 and the other end has the medical insertion device 100 mounted thereon.
- the robotic arm 506 can, for example, place the medical insertion device 100 between the compression plates 504a, 504b at the appropriate time of the procedure.
- the robotic arm 506 can place the medical insertion device 100 for superior insertion (e.g., from the head) with the compression plates 504a, 504b mounted transversely (for transverse compression) or otherwise suitably modified.
- the dispenser system 300 can be mounted within the frame of the mammography system 502.
- the medical insertion device 100 can controlled or maneuvered to access the dispenser system 300 using the robotic arm 506.
- the dispenser system 300 does not rotate but rather the robotic arm 506 is used to retrieve the medical instrument 302 from the appropriate instrument holder 306.
- grid marks 510 may be shown in the virtual image to guide the medical insertion device 100 to the target site.
- the medical insertion device 100 provides an opportunity for other minimally invasive diagnostic procedures and treatments. Examples include : (1) gamma detectors; (2) energized tunneling tips to reduce tunneling forces; (3) inserts to aid in reconstruction of removed tissue (e.g., one or two sided shaver inserts); (4) spectroscopy imaging devices; (5) general tissue characterization sensors ⁇ e.g., (a) mammography; (b) ultrasound, sonography, contrast agents, power Doppler; (c) PET and FDG ([Flourine-18]-2- deoxy-2-fluoro-glucose); (d) MRI or NMR, breast coil; (e) mechanical impedance or elastic modulus; (f) electrical impedance; (g) optical spectroscopy, raman spectroscopy, phase, polarization, wavelength/frequency, reflectance; (h) laser- induced fluorescence or auto-fluorescence; (i) radiation emission/detection, radioactive seed implantation;
- FIG 11 shows a block diagram of a robotic surgical system 10 to which example embodiments may be applied.
- the system 10 includes a surgical robot 12 for use in a surgical environment.
- the surgical robot 12 is in communication with a control station 16 either over a communications network 18 (as shown), or via a direct connection.
- the surgical robot 12 includes one or more robotic instrument(s) 24 which can be operational in a limited size operating environment defined by an imaging system such as magnetic resonance imaging (MRI).
- MRI magnetic resonance imaging
- At least one of the robotic surgical instruments 24 may include the medical insertion device 100 as shown in Figure 1A.
- the surgical robot 12 includes a controller 20 for controlling operation of the surgical robot 12, a communications module or subsystem 22 for communicating with the control station 16 over the network 18, and robotic surgical instruments 24 which are controllable by the control station 16 over the network 18.
- the robotic surgical instruments may be haptically controllable which can include force-feedback or touch-feedback control.
- the controller 20 can include one or more microprocessors or processors that are coupled to a storage 21 (e.g. computer readable storage medium) that includes persistent and/or transient memory.
- the storage 21 stores information and software enabling the microprocessor(s) of controller 20 to control the subsystems and implement the functionality described herein.
- the surgical robot 12 includes a detector subsystem 28 for determining spatial information relating to a surgical environment of the surgical robot 12 (including a subject patient) and sending/relaying said information to the control station 16 over the network 18.
- the detector 28 may include a camera 30 (for capturing video and/or audio information), an x-ray system 32, an ultrasound system 34, an MRI 36, or others such as Positron Emission Tomography (PET), Positron Emission Mammography (PEM), CT laser mammography, or a GE (TM) molecular biological imager.
- the controller 20 is configured to operate or provide a local control loop between at least one of the subsystems and the robotic surgical instruments 24.
- the control station 16 includes a controller 40 for controlling operation of the control station 16 and a communications subsystem 42 for communicating with the surgical robot 12 over the network 18.
- the controller 40 is coupled to a storage 41.
- a control console 44 provides an interface for interaction with a user, for example a surgeon.
- the control console 44 includes a display 46 (or multiple displays), and a user input 48.
- the user input 48 may further include haptic controllers (not shown) for allowing the user to haptically control the robotic surgical instruments 24 of the surgical robot 12, for example with force-feedback or touch control.
- haptic controllers not shown
- FIG. 12 An example interface is shown in Figure 12, which in example embodiments includes a graphical user interface (GUI) for interfacing with the user.
- GUI graphical user interface
- the system 10 can be used to perform a procedure by breaking down a procedure into a series of interconnected sub-tasks. Some of the sub-tasks are performed automatically by the surgical robot 12 to control the robotic instruments 24 and the subsystems to perform the particular sub-task. Some of the other sub-tasks are "semi-automated", meaning having some control from the control station 16 as well as some local control from the controller 20.
- Each defined sub-task may for example be stored in a storage 21 accessible by the controller 20, the storage 21 including a library.
- the library includes a sequence of sub-tasks (both automated and "semi-automated") .
- some of the sub-tasks have instructions to automatically control the robotic instruments 24 and the subsystems to perform the sub-task.
- the controller 20 may automatically perform the surgical functions by providing the local control loop with the subsystems.
- Some of the other sub-tasks may be "semi-automated", meaning having some control from the control station 16 as well as some local automation (with the controller 20 providing local control loops as described herein) .
- control station 16 and the subsystems may be in a master-slave relationship.
- such semi-automated control may be configured in an external control loop as between the subsystems and the robotic instruments 24, which are facilitated by the control station 16.
- the sub-task may be selectively retrieved from the library and combined into a defined sequence or sequences to perform the surgical procedure.
- the flow from one sub-task to another is stored in the library.
- Each sub-task may use imagery and other parameters to verify sub-task completion .
- each of the sub-tasks in a particular entire procedure may be automatically performed by the surgical robot 12.
- a first sub-task may be the semi- automated positioning of the medical insertion tool 100 by the surgeon in front of the desired insertion region, while the second sub-task may be the automated insertion of the biopsy needle subcutaneously into the target site.
- the robotic surgical instruments 24 may include any number or combination of controllable mechanisms.
- the robotic surgical instruments 24 include end effectors such as grippers, cutters, manipulators, forceps, bi-polar cutters, ultrasonic grippers & probes, cauterizing tools, suturing devices, etc.
- the robotic surgical instruments 24 generally include small lightweight actuators and components.
- the robotic surgical instruments 24 include pneumatic and/or hydraulic actuators. Such actuators may further assist in providing motion stability, as further described below.
- various lightweight radiolucent materials for robotic arms as well as the range joint torques, forces, frequency response, ROM, weight and size of different actuators to achieve the maximum function in the surgical robot 12.
- the robotic surgical instrument 24 may be configured to include a therapeutic tool utilizing the administration of high intensity focused ultrasound (HIFU) to control haemorrhage and treat solid tumours.
- HIFU high intensity focused ultrasound
- Both the HIFU and the ultrasound 34 (for detecting the surgical environment) may be implemented within the same robotic surgical instrument 24.
- intra-operative image guidance provides an additional capability to refine the precision of a surgical procedure.
- Pre-operative diagnostic imagery may be utilized to plan surgical procedures with the assumption that these diagnostic images will represent tissue morphology at the time of surgery.
- intra-operative imagery may also be used to modify or refine a present surgical procedure or administer minimally invasive treatment such as HIFU ultrasound therapy used to control bleeding.
- One aspect of such image-guided surgery in accordance with example embodiments is registering multiple images to each other and to the patient, tracking instruments intra-operatively and subsequently translating this imagery for real time use in the robot space.
- the incorporation of medical imagery into surgical planning for the system 10 facilitates the identification of a defined work envelope for single or multiple robotic arms.
- Intra-operative tracking of the position of the robotic surgical instruments 24 within the defined work envelope can be utilized to develop local control loop systems between the detector 28 and the robotic surgical instruments 24 to define keep-out and work within zones for surgical tasks. This data is incorporated into known algorithms developed for collision avoidance of the multiple robotic arms and optimization of the position of instrumentation for completion of the surgical task.
- a physical marker such as M R, X-Ray, IR (Infrared) markers or RF (Radiofrequency) devices, or chemical markers, may be used for image registration of specific anatomical landmarks for both the intra-operative tracking of the surgical robot 12 in relation to the patient as well as tracking the surgical instrumentation .
- Image-based registration is less sensitive to calibration and tracking errors as it provides a direct transformation between the image space and the instrument space.
- the information from anatomical landmarks can be registered with the diagnostic imagery used to plan the surgical procedure and subsequently translated into the robotic space for completion of an image guided surgical procedure. This translation is performed using a registration procedure between the robot and the imaging device.
- the incorporation of realtime intra-operative tracking of anatomical landmarks provides a mechanism of incorporating compensatory motion of the robotic arm to accommodate patient movement thereby enhancing the precision of the robotic task.
- the detector subsystem 28 includes the incorporation of image guidance into the robotic surgery, including predetermined marker shapes and positions that provide optimal accuracy for fiducial marker monitoring and tracking of anatomical landmarks, instrument position and the position of the robotic arms under the constraints imposed by the imaging device and the limited volume available in the surgical work envelope.
- Imagery can also be incorporated as one of many parameters used to provide local control loop feedback in performing autonomous robotic tasks.
- the control station 16 and the surgical robot 12 operate in a master slave relationship.
- Such embodiments may incorporate semi- autonomous surgical robotics wherein the surgical robot 12 may autonomously perform some specified surgical tasks that are part of a sequence of a larger task comprising the surgical procedure, for example using a locally controlled loop implemented by the controller 20. This may for example enables the surgeon to selectively perform techniques best undertaken with a master slave relationship while using automated robotics to perform specific tasks that require the enhanced precision of a surgical robot.
- such tasks may include the precision placement of brachytherapy for cancer treatment or the precision drilling and intraoperative positioning of hardware in orthopaedic surgery.
- control station 16 displays diagnostic images, uploaded from a diagnostic workstation (such as CT, M RI, or the like), such that a clinician may select start (insertion point) and end (lesion) location points.
- diagnostic images uploaded from a diagnostic workstation (such as CT, M RI, or the like), such that a clinician may select start (insertion point) and end (lesion) location points.
- a 3D representation of the 2D image slice data with controllable view angle enables the clinician to plan an optimal path avoiding blood vessels and other tissue structures.
- the avoidance of hematoma can be important with regard to post biopsy image quality for target confirmation .
- the control station 16 calculates the linear and angular motions necessary to move the surgical robotic manipulator over the planned trajectory and send appropriate commands to plurality of motors to move the medical instrument.
- the communications network 18 may further include a direct wireless connection, a satellite connection, a wide area network such as the Internet, a wireless wide area packet data network, a voice and data network, a public switched telephone network, a wireless local area network (WLAN), or other networks or combinations of the forgoing.
- a direct wireless connection such as the Internet
- a satellite connection such as the Internet
- a wireless wide area packet data network such as the Internet
- a voice and data network such as a PSTN network
- public switched telephone network such as PSTN
- WLAN wireless local area network
- the surgical robot 12 can move the medical instrument 100 while diagnostic images are being acquired . This can reduce the targeting confirmation time can be critical in light of contrast enhancement degradation issues. In addition, targeting errors as a result of lesion motion due to the force of the advancing needle, for example, can also be adjusted with the patient remaining within the magnet bore hole.
- the automated steering uses targeting software as well as force sensors to prevent accidental excursion into the wrong tissue. The software allows the medical practitioner to plan the full trajectory of the needle or ablation instrument from the skin surface down to the lesion and to steer the medical instrument 100 using real time M R. Again, M R fiducials as well as of M R molecular tagging may also be used to improve targeting accuracy.
- a remote control station 16 can enable control of the robotic instruments 24 from a distance such that an expert in the breast biopsy and ablation procedures will direct the procedure from a distance.
- the remote control station 16 can connect to one or more local workstations such that one physician may perform procedures at a plurality of remote sites (the master controller is at the remote site) .
- the local workstation may control the procedure and a remote station will monitor the procedure for teaching purposes, for example. Examples of various systems which can use local and remote workstations collaboratively are described in the PCT Patent Application No. WO 2007/121,572, the contents of which are herein incorporated by reference.
- additional procedures can be performed using several imaging modalities such as M RI, CT, PET, PEM, BSGI, X-ray, or sonography, or other modalities where there is an advantage to accurately target a pathology for biopsy or ablation .
- imaging modalities such as M RI, CT, PET, PEM, BSGI, X-ray, or sonography, or other modalities where there is an advantage to accurately target a pathology for biopsy or ablation .
- other areas of the body can be targeted other than the breast.
- Such applications include liver, axilla (sentinel node biopsy), lung, kidney, prostate, uterus, and neurological .
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- Engineering & Computer Science (AREA)
- Medical Informatics (AREA)
- Veterinary Medicine (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Robotics (AREA)
- Pathology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Neurosurgery (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
Abstract
Description
Claims
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2010324494A AU2010324494B2 (en) | 2009-11-27 | 2010-11-26 | Automated in-bore MR guided robotic diagnostic and therapeutic system |
US13/512,198 US9259271B2 (en) | 2009-11-27 | 2010-11-26 | Automated in-bore MR guided robotic diagnostic and therapeutic system |
CA2781788A CA2781788C (en) | 2009-11-27 | 2010-11-26 | Automated in-bore mr guided robotic diagnostic and therapeutic system |
EP10832462.5A EP2503951A4 (en) | 2009-11-27 | 2010-11-26 | Automated in-bore mr guided robotic diagnostic and therapeutic system |
US13/859,336 US20130296883A1 (en) | 2009-11-27 | 2013-04-09 | Automated detection, diagnostic and therapeutic method and system |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US26476109P | 2009-11-27 | 2009-11-27 | |
US61/264,761 | 2009-11-27 | ||
US33485110P | 2010-05-14 | 2010-05-14 | |
US61/334,851 | 2010-05-14 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/859,336 Continuation US20130296883A1 (en) | 2009-11-27 | 2013-04-09 | Automated detection, diagnostic and therapeutic method and system |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2011063511A1 true WO2011063511A1 (en) | 2011-06-03 |
WO2011063511A8 WO2011063511A8 (en) | 2011-12-01 |
Family
ID=44065779
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CA2010/001865 WO2011063511A1 (en) | 2009-11-27 | 2010-11-26 | Automated in-bore mr guided robotic diagnostic and therapeutic system |
Country Status (5)
Country | Link |
---|---|
US (2) | US9259271B2 (en) |
EP (1) | EP2503951A4 (en) |
AU (1) | AU2010324494B2 (en) |
CA (2) | CA2781788C (en) |
WO (1) | WO2011063511A1 (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013074970A1 (en) * | 2011-11-16 | 2013-05-23 | Vanderbilt University | Motive device for use in magnetically-sensitive environments |
FR2982761A1 (en) * | 2011-11-21 | 2013-05-24 | Gen Electric | METHODS OF ASSISTING HANDLING OF AN INSTRUMENT, AND ASSOCIATED ASSISTANCE ASSEMBLY |
US20140296704A1 (en) * | 2011-06-07 | 2014-10-02 | Koninklijke Philips N.V. | Rotational position determination apparatus |
WO2015010189A1 (en) * | 2013-07-24 | 2015-01-29 | Centre For Surgical Invention & Innovation | Multi-function mounting interface for an image-guided robotic system and quick release interventional toolset |
WO2015044071A1 (en) * | 2013-09-24 | 2015-04-02 | Siemens Aktiengesellschaft | Biopsy device |
WO2016044939A1 (en) * | 2014-09-24 | 2016-03-31 | Polymer Robotics Inc. | Tool manipulator and system for positioning a tool for surgical and like uses |
US9333650B2 (en) | 2012-05-11 | 2016-05-10 | Vanderbilt University | Method and system for contact detection and contact localization along continuum robots |
US9539726B2 (en) | 2012-04-20 | 2017-01-10 | Vanderbilt University | Systems and methods for safe compliant insertion and hybrid force/motion telemanipulation of continuum robots |
US9549720B2 (en) | 2012-04-20 | 2017-01-24 | Vanderbilt University | Robotic device for establishing access channel |
US9687303B2 (en) | 2012-04-20 | 2017-06-27 | Vanderbilt University | Dexterous wrists for surgical intervention |
US9956042B2 (en) | 2012-01-13 | 2018-05-01 | Vanderbilt University | Systems and methods for robot-assisted transurethral exploration and intervention |
US10967504B2 (en) | 2017-09-13 | 2021-04-06 | Vanderbilt University | Continuum robots with multi-scale motion through equilibrium modulation |
US11793394B2 (en) | 2016-12-02 | 2023-10-24 | Vanderbilt University | Steerable endoscope with continuum manipulator |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130066332A1 (en) * | 2011-09-09 | 2013-03-14 | Garnette Sutherland | Surgical Tool for Use in MR Imaging |
US11284869B2 (en) * | 2011-09-16 | 2022-03-29 | Hologic, Inc. | Breast biopsy lateral arm system |
EP2755559B1 (en) | 2011-09-16 | 2020-03-25 | Hologic, Inc. | Breast biopsy lateral arm system |
US12042134B2 (en) | 2011-09-16 | 2024-07-23 | Hologic, Inc. | Breast biopsy lateral arm system |
US20130211422A1 (en) * | 2012-02-15 | 2013-08-15 | Intuitive Surgical Operations, Inc. | Compact rotary actuator with internal planetary |
CN104519817B (en) | 2012-04-24 | 2017-11-10 | 西比姆公司 | The catheter in blood vessel and method extractd for carotid body |
WO2013181660A1 (en) | 2012-06-01 | 2013-12-05 | Cibiem, Inc. | Methods and devices for cryogenic carotid body ablation |
US9955946B2 (en) * | 2014-03-12 | 2018-05-01 | Cibiem, Inc. | Carotid body ablation with a transvenous ultrasound imaging and ablation catheter |
CA2896381C (en) * | 2013-03-15 | 2017-01-10 | Synaptive Medical (Barbados) Inc. | Intelligent positioning system and methods therefore |
US9592095B2 (en) * | 2013-05-16 | 2017-03-14 | Intuitive Surgical Operations, Inc. | Systems and methods for robotic medical system integration with external imaging |
JP2015093141A (en) * | 2013-11-14 | 2015-05-18 | セイコーエプソン株式会社 | Robotic surgery device, and fluid injector for robotic surgery device |
WO2015085257A1 (en) * | 2013-12-06 | 2015-06-11 | Sonitrack Systems, Inc. | Mechanically driven ultrasound scanning system and method |
CN103876786B (en) * | 2014-04-13 | 2015-11-04 | 哈尔滨理工大学 | Robot is got involved with the mammary gland of nuclear magnetic resonance, NMR compatibility |
WO2016126914A1 (en) * | 2015-02-05 | 2016-08-11 | Intuitive Surgical Operations, Inc. | System and method for anatomical markers |
CN107645924B (en) * | 2015-04-15 | 2021-04-20 | 莫比乌斯成像公司 | Integrated medical imaging and surgical robotic system |
WO2017120661A1 (en) * | 2016-01-14 | 2017-07-20 | Modus Medical Devices Inc. | Piezoelectric motor assembly |
GB2563234B (en) | 2017-06-06 | 2021-12-08 | Cmr Surgical Ltd | Securing an interface element rail of a robotic surgical instrument interface |
CN115209829A (en) * | 2020-01-23 | 2022-10-18 | 普罗马克索公司 | Robotic system and method for MRI guidance of biopsies |
EP4167892A1 (en) | 2020-06-19 | 2023-04-26 | Remedy Robotics, Inc. | Systems and methods for guidance of intraluminal devices within the vasculature |
US11813033B2 (en) * | 2020-06-22 | 2023-11-14 | Michael Campagna | Medical imaging compatible radiolucent actuation of translation rotation articulation circumduction joint |
US11707332B2 (en) | 2021-07-01 | 2023-07-25 | Remedy Robotics, Inc. | Image space control for endovascular tools |
WO2023278789A1 (en) | 2021-07-01 | 2023-01-05 | Remedy Robotics, Inc. | Vision-based position and orientation determination for endovascular tools |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5749362A (en) * | 1992-05-27 | 1998-05-12 | International Business Machines Corporation | Method of creating an image of an anatomical feature where the feature is within a patient's body |
US6064904A (en) * | 1997-11-28 | 2000-05-16 | Picker International, Inc. | Frameless stereotactic CT scanner with virtual needle display for planning image guided interventional procedures |
US6351662B1 (en) * | 1998-08-12 | 2002-02-26 | Neutar L.L.C. | Movable arm locator for stereotactic surgery |
US20020082612A1 (en) * | 1998-11-20 | 2002-06-27 | Intuitive Surgical, Inc. | Arm cart for telerobotic surgical system |
US6451027B1 (en) * | 1998-12-16 | 2002-09-17 | Intuitive Surgical, Inc. | Devices and methods for moving an image capture device in telesurgical systems |
US20020143319A1 (en) * | 1998-02-24 | 2002-10-03 | Brock David L. | Interchangeable surgical instrument |
WO2007064937A1 (en) * | 2005-12-02 | 2007-06-07 | University Of Rochester | Image-guided therapy delivery and diagnostic needle system |
US20080004632A1 (en) * | 2002-08-13 | 2008-01-03 | Sutherland Garnette R | Microsurgical robot system |
Family Cites Families (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5460182A (en) | 1992-09-14 | 1995-10-24 | Sextant Medical Corporation | Tissue penetrating apparatus and methods |
US5647361A (en) * | 1992-09-28 | 1997-07-15 | Fonar Corporation | Magnetic resonance imaging method and apparatus for guiding invasive therapy |
US5571083A (en) * | 1994-02-18 | 1996-11-05 | Lemelson; Jerome H. | Method and system for cell transplantation |
DE59603026D1 (en) * | 1995-12-20 | 1999-10-14 | Wiegand Alexander Konrad | DEVICE FOR THE SPACIOUS CONTROLLED MOVEMENT OF A BODY IN THREE TO SIX DEGREES OF FREEDOM |
AU3813897A (en) * | 1996-07-25 | 1998-02-20 | Light Medicine, Inc. | Photodynamic therapy apparatus and methods |
US5828197A (en) * | 1996-10-25 | 1998-10-27 | Immersion Human Interface Corporation | Mechanical interface having multiple grounded actuators |
WO1998033451A1 (en) | 1997-02-04 | 1998-08-06 | National Aeronautics And Space Administration | Multimodality instrument for tissue characterization |
US7789875B2 (en) * | 1998-02-24 | 2010-09-07 | Hansen Medical, Inc. | Surgical instruments |
US6468265B1 (en) * | 1998-11-20 | 2002-10-22 | Intuitive Surgical, Inc. | Performing cardiac surgery without cardioplegia |
AU1825400A (en) * | 1998-11-23 | 2000-06-13 | Microdexterity Systems, Inc. | Surgical manipulator |
US6602185B1 (en) | 1999-02-18 | 2003-08-05 | Olympus Optical Co., Ltd. | Remote surgery support system |
US6889073B2 (en) * | 2000-05-08 | 2005-05-03 | David A. Lampman | Breast biopsy and therapy system for magnetic resonance imagers |
US6782287B2 (en) * | 2000-06-27 | 2004-08-24 | The Board Of Trustees Of The Leland Stanford Junior University | Method and apparatus for tracking a medical instrument based on image registration |
SE0003912D0 (en) * | 2000-10-24 | 2000-10-24 | Abb Ab | Industrial robot |
EP1234632A1 (en) * | 2001-02-23 | 2002-08-28 | Willemin Machines S.A. | Kinematic device for programmably supporting and positioning an end element in a machine or an instrument |
US20020193685A1 (en) * | 2001-06-08 | 2002-12-19 | Calypso Medical, Inc. | Guided Radiation Therapy System |
EP1308239A3 (en) * | 2001-10-31 | 2005-08-10 | GROB-Werke Burkhart Grob e.K. | Machine tool and method for adjusting the position of the spindle of the machine |
US7769426B2 (en) | 2002-04-23 | 2010-08-03 | Ethicon Endo-Surgery, Inc. | Method for using an MRI compatible biopsy device with detachable probe |
TW546595B (en) * | 2002-07-23 | 2003-08-11 | Internet Motion Navigator Corp | Six-axis translation-type dynamic simulation device |
DE10304221A1 (en) * | 2003-01-30 | 2004-08-12 | Carl Zeiss | Surgical assistance device for assisting a surgeon in the removal of tissue, e.g. for cancer treatment, whereby movement of an operating instrument is at least partially automated based on tissue measurements |
US10863945B2 (en) | 2004-05-28 | 2020-12-15 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Robotic surgical system with contact sensing feature |
DE102004030659B8 (en) * | 2004-06-24 | 2007-01-18 | Ruprecht Altenburger | mover |
US7850682B2 (en) * | 2005-01-10 | 2010-12-14 | Galil Medical Ltd. | Systems for MRI-guided cryosurgery |
KR101258912B1 (en) | 2005-06-06 | 2013-04-30 | 인튜어티브 서지컬 인코포레이티드 | Laparoscopic ultrasound robotic surgical system |
US20070129626A1 (en) | 2005-11-23 | 2007-06-07 | Prakash Mahesh | Methods and systems for facilitating surgical procedures |
EP1962684B1 (en) * | 2005-12-02 | 2017-03-01 | The Johns Hopkins University | Multi imager compatible robot for image-guided interventions, automated brachytherapy seed delivery apparatus and systems related thereto |
DE102006023108A1 (en) | 2006-05-16 | 2007-11-22 | Ottow, Manfred, Dr.-Ing. | Device for guiding and guiding an instrument in a body |
US20080221443A1 (en) | 2007-03-07 | 2008-09-11 | Ritchie Paul G | Integrated Imaging and Biopsy System with Ancillary Device Authentication |
JP5154961B2 (en) * | 2008-01-29 | 2013-02-27 | テルモ株式会社 | Surgery system |
US8808164B2 (en) * | 2008-03-28 | 2014-08-19 | Intuitive Surgical Operations, Inc. | Controlling a robotic surgical tool with a display monitor |
-
2010
- 2010-11-26 CA CA2781788A patent/CA2781788C/en active Active
- 2010-11-26 US US13/512,198 patent/US9259271B2/en active Active
- 2010-11-26 EP EP10832462.5A patent/EP2503951A4/en active Pending
- 2010-11-26 WO PCT/CA2010/001865 patent/WO2011063511A1/en active Application Filing
- 2010-11-26 AU AU2010324494A patent/AU2010324494B2/en active Active
- 2010-11-26 CA CA2901359A patent/CA2901359C/en active Active
-
2013
- 2013-04-09 US US13/859,336 patent/US20130296883A1/en not_active Abandoned
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5749362A (en) * | 1992-05-27 | 1998-05-12 | International Business Machines Corporation | Method of creating an image of an anatomical feature where the feature is within a patient's body |
US6064904A (en) * | 1997-11-28 | 2000-05-16 | Picker International, Inc. | Frameless stereotactic CT scanner with virtual needle display for planning image guided interventional procedures |
US20020143319A1 (en) * | 1998-02-24 | 2002-10-03 | Brock David L. | Interchangeable surgical instrument |
US6351662B1 (en) * | 1998-08-12 | 2002-02-26 | Neutar L.L.C. | Movable arm locator for stereotactic surgery |
US20020082612A1 (en) * | 1998-11-20 | 2002-06-27 | Intuitive Surgical, Inc. | Arm cart for telerobotic surgical system |
US6451027B1 (en) * | 1998-12-16 | 2002-09-17 | Intuitive Surgical, Inc. | Devices and methods for moving an image capture device in telesurgical systems |
US20080004632A1 (en) * | 2002-08-13 | 2008-01-03 | Sutherland Garnette R | Microsurgical robot system |
WO2007064937A1 (en) * | 2005-12-02 | 2007-06-07 | University Of Rochester | Image-guided therapy delivery and diagnostic needle system |
Non-Patent Citations (1)
Title |
---|
See also references of EP2503951A4 * |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140296704A1 (en) * | 2011-06-07 | 2014-10-02 | Koninklijke Philips N.V. | Rotational position determination apparatus |
US11399893B2 (en) | 2011-06-07 | 2022-08-02 | Koninklijke Philips N.V. | Rotational position determination apparatus |
US10736696B2 (en) * | 2011-06-07 | 2020-08-11 | Koninklijke Philips N.V. | Rotational position determination apparatus |
US9492234B2 (en) | 2011-11-16 | 2016-11-15 | Vanderbilt University | Motive device for use in magnetically-sensitive environments |
WO2013074970A1 (en) * | 2011-11-16 | 2013-05-23 | Vanderbilt University | Motive device for use in magnetically-sensitive environments |
FR2982761A1 (en) * | 2011-11-21 | 2013-05-24 | Gen Electric | METHODS OF ASSISTING HANDLING OF AN INSTRUMENT, AND ASSOCIATED ASSISTANCE ASSEMBLY |
WO2013078366A1 (en) * | 2011-11-21 | 2013-05-30 | General Electric Company | Methods for the assisted manipulation of an instrument, and associated assistive assembly |
US9956042B2 (en) | 2012-01-13 | 2018-05-01 | Vanderbilt University | Systems and methods for robot-assisted transurethral exploration and intervention |
US9549720B2 (en) | 2012-04-20 | 2017-01-24 | Vanderbilt University | Robotic device for establishing access channel |
US9539726B2 (en) | 2012-04-20 | 2017-01-10 | Vanderbilt University | Systems and methods for safe compliant insertion and hybrid force/motion telemanipulation of continuum robots |
US9687303B2 (en) | 2012-04-20 | 2017-06-27 | Vanderbilt University | Dexterous wrists for surgical intervention |
US10500002B2 (en) | 2012-04-20 | 2019-12-10 | Vanderbilt University | Dexterous wrists |
US9333650B2 (en) | 2012-05-11 | 2016-05-10 | Vanderbilt University | Method and system for contact detection and contact localization along continuum robots |
US10512511B2 (en) | 2013-07-24 | 2019-12-24 | Centre For Surgical Invention And Innovation | Multi-function mounting interface for an image-guided robotic system and quick release interventional toolset |
WO2015010189A1 (en) * | 2013-07-24 | 2015-01-29 | Centre For Surgical Invention & Innovation | Multi-function mounting interface for an image-guided robotic system and quick release interventional toolset |
WO2015044071A1 (en) * | 2013-09-24 | 2015-04-02 | Siemens Aktiengesellschaft | Biopsy device |
WO2016044939A1 (en) * | 2014-09-24 | 2016-03-31 | Polymer Robotics Inc. | Tool manipulator and system for positioning a tool for surgical and like uses |
US11793394B2 (en) | 2016-12-02 | 2023-10-24 | Vanderbilt University | Steerable endoscope with continuum manipulator |
US10967504B2 (en) | 2017-09-13 | 2021-04-06 | Vanderbilt University | Continuum robots with multi-scale motion through equilibrium modulation |
US11897129B2 (en) | 2017-09-13 | 2024-02-13 | Vanderbilt University | Continuum robots with multi-scale motion through equilibrium modulation |
Also Published As
Publication number | Publication date |
---|---|
AU2010324494A1 (en) | 2012-06-14 |
CA2781788A1 (en) | 2011-06-03 |
CA2901359A1 (en) | 2011-06-03 |
EP2503951A4 (en) | 2017-07-26 |
EP2503951A1 (en) | 2012-10-03 |
AU2010324494B2 (en) | 2014-11-06 |
WO2011063511A8 (en) | 2011-12-01 |
CA2781788C (en) | 2015-11-03 |
US20130158565A1 (en) | 2013-06-20 |
CA2901359C (en) | 2020-02-11 |
US20130296883A1 (en) | 2013-11-07 |
US9259271B2 (en) | 2016-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2781788C (en) | Automated in-bore mr guided robotic diagnostic and therapeutic system | |
CN113784682B (en) | Robotic arm and method for tissue ablation and imaging | |
Masamune et al. | System for robotically assisted percutaneous procedures with computed tomography guidance | |
Boctor et al. | Three‐dimensional ultrasound‐guided robotic needle placement: an experimental evaluation | |
EP1827243B1 (en) | Access system | |
Kettenbach et al. | Robotic systems for percutaneous needle-guided interventions | |
US10188470B2 (en) | Minimally invasive surgical instrument to provide needle-based therapy | |
JP4401676B2 (en) | Positioning mechanism for MRI compatible biopsy device | |
US7822466B2 (en) | Robot for computed tomography interventions | |
US20220378526A1 (en) | Robotic positioning of a device | |
WO2017050201A1 (en) | Minimally invasive medical robot system | |
JP2004033753A (en) | Method for using magnetic resonance imaging compatible biopsy device with detachable probe | |
JP2004033752A (en) | Magnetic resonance imaging compatible biopsy device having detachable probe | |
JP2004517659A (en) | Diagnostic imaging intervention device | |
Patriciu et al. | Robotic kidney and spine percutaneous procedures using a new laser-based CT registration method | |
Fischer et al. | Pneumatically operated MRI-compatible needle placement robot for prostate interventions | |
Boctor et al. | Robotically assisted ablative treatment guided by freehand 3D ultrasound | |
WO2017117382A1 (en) | Robotic assisted prostate surgery device | |
Arnolli | Development of a precision system for image-guided needle placement: from scratch to clinic | |
Masamune et al. | Procedures zyxwvutsrqp | |
Xu et al. | Registration and motion compensation of a needle placement robot for CT-guided spinal procedures | |
Patriciu et al. | Image-guided robotic assisted interventions | |
Baur | EasyGuide Neuro: A New Approach to Image-Guided Surgery | |
Frame et al. | Stereotactic Surgery with the |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10832462 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2781788 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010324494 Country of ref document: AU Ref document number: 2010832462 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2010324494 Country of ref document: AU Date of ref document: 20101126 Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13512198 Country of ref document: US |