WO2011062235A1 - Method for producing surfactant-supporting granule cluster - Google Patents

Method for producing surfactant-supporting granule cluster Download PDF

Info

Publication number
WO2011062235A1
WO2011062235A1 PCT/JP2010/070594 JP2010070594W WO2011062235A1 WO 2011062235 A1 WO2011062235 A1 WO 2011062235A1 JP 2010070594 W JP2010070594 W JP 2010070594W WO 2011062235 A1 WO2011062235 A1 WO 2011062235A1
Authority
WO
WIPO (PCT)
Prior art keywords
surfactant
binder
supporting
weight
detergent
Prior art date
Application number
PCT/JP2010/070594
Other languages
French (fr)
Japanese (ja)
Inventor
将寛 山口
崇 亀井
義信 今泉
浩章 割田
賢一郎 川元
高志 中山
Original Assignee
花王株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 花王株式会社 filed Critical 花王株式会社
Priority to CN201080052390.7A priority Critical patent/CN102666827B/en
Priority to AU2010320063A priority patent/AU2010320063B2/en
Priority to BR112012011979A priority patent/BR112012011979A2/en
Publication of WO2011062235A1 publication Critical patent/WO2011062235A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/04Water-soluble compounds
    • C11D3/10Carbonates ; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D11/00Special methods for preparing compositions containing mixtures of detergents
    • C11D11/0082Special methods for preparing compositions containing mixtures of detergents one or more of the detergent ingredients being in a liquefied state, e.g. slurry, paste or melt, and the process resulting in solid detergent particles such as granules, powders or beads
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/06Powder; Flakes; Free-flowing mixtures; Sheets

Definitions

  • the present invention relates to a surfactant-supporting granule group and a method for producing the same. Furthermore, the present invention relates to a detergent particle group using such a surfactant-supporting granule group and a detergent composition comprising the detergent particle group.
  • a production method including a step of supporting a liquid surfactant on a group of granules for supporting a surfactant.
  • the surfactant-supporting granule group used in the production method is required to have a high supporting ability for the liquid surfactant.
  • the supporting ability required for the surfactant-supporting granule group is that it can support a large amount of liquid surfactant (supporting capacity) and can be strongly retained inside the granule without causing the liquid surfactant once absorbed. It consists of two factors (bearing force).
  • the loading capacity is necessary for blending the amount of surfactant necessary for exerting the cleaning performance, and the loading force is used for suppressing the smearing of the liquid surfactant, and the fluidity of the powder detergent is lowered. It is important in suppressing caking and preventing the liquid surfactant from transferring to the container and its surface.
  • the property of quickly absorbing the liquid surfactant is also required for the particles for supporting the surfactant.
  • Patent Literature 1 discloses a surfactant-supporting granule group obtained by spray-drying a preparation solution containing a water-soluble polymer and a water-soluble salt.
  • spray drying is essential for the production of this granule group, and a production method that does not use spray drying is required from the viewpoint of economy.
  • Patent Document 2 discloses a method of drying a composition comprising a hydrated inorganic salt and a polymer organic binder.
  • this method is essentially a technique for increasing the absorption capacity (corresponding to the loading capacity in the present application) by releasing hydration water by drying, and it is extremely difficult to adjust the loading force and loading speed.
  • a drying process is essential and equipment load increases.
  • the gist of the present invention is a step in which a powder raw material containing an inorganic alkali having an oil absorption capacity of 0.4 mL / g or more and a binder that is solid at room temperature or a precursor binder thereof are stirred with a container rotary granulator.
  • the present invention relates to a method for producing a surfactant-supporting granule group having a bulk density of 800 g / L or less, including a step of supplying the binder or a precursor binder thereof at a temperature equal to or higher than the melting point using a multi-fluid nozzle.
  • the present invention relates to a method for producing a surfactant-supporting granule group excellent in supporting capacity / supporting force / supporting speed of a liquid surfactant composition without performing a drying operation. Moreover, it is related with providing the detergent composition formed using the detergent particle group which uses this granule group for surfactant carrying
  • the present invention it is possible to produce a surfactant-supporting granule group excellent in supporting capacity / supporting force / supporting speed of a liquid surfactant composition without performing a drying operation. .
  • a surfactant-supporting granule group excellent in supporting capacity / supporting force / supporting speed of a liquid surfactant composition without performing a drying operation.
  • the particle size distribution of the obtained granule group is sharp, and there exists an effect that there are few coarse powder and fine powder.
  • by loading the liquid surfactant composition on the surfactant-carrying granules it is possible to efficiently obtain detergent particles having good cleaning performance and quality.
  • One of the features of the present invention is a step of stirring a powder raw material containing an inorganic alkali having an oil absorption capacity of 0.4 mL / g or more and a binder in a solid state at room temperature or a precursor binder thereof with a container rotary granulator. Then, it is to obtain a granule group for supporting a surfactant having a bulk density of 800 g / L or less, including a step of supplying the binder or its precursor binder at a temperature higher than its melting point using a multi-fluid nozzle.
  • the granulation method using such a granulator is a non-consolidated granulation method.
  • a binder that is solid at normal temperature or its precursor binder does not advance granulation unless it has strong adhesiveness when in contact with the powder. is there.
  • a multi-fluid nozzle such as a two-fluid nozzle is used to spray into a container-rotating granulator by spraying a solid binder or its precursor binder at room temperature that exhibits adhesiveness when it comes into contact with powder.
  • a binder that is solid at room temperature or its precursor binder is made into fine droplets in advance using a multi-fluid nozzle, so that the binder or precursor that is solid at room temperature even in a container rotary granulator. It is considered that high dispersion of the body binder can be achieved and a large liquid mass forming coarse particles is not generated.
  • a binder that is solid at room temperature that exhibits adhesiveness when it comes into contact with powder or a precursor binder thereof is added into a container rotary granulator using a multi-fluid nozzle.
  • the particle size distribution is sharp, coarse powder, fine powder, which cannot be expected from the case of using each independently.
  • a small amount of a surfactant-supporting granule group excellent in supporting capacity / supporting power / supporting speed of a liquid surfactant composition can be obtained in high yield without performing a drying operation.
  • the surfactant-supporting granule is a granule containing a powder raw material having an oil absorption capacity of 0.4 mL / g or more and a solid binder at room temperature.
  • it is a granule obtained by stirring and granulating a powder raw material containing an inorganic alkali having an oil absorption capacity of 0.4 mL / g or more and a solid binder at room temperature with a container rotary granulator.
  • Such granules are used to carry a liquid surfactant composition.
  • the aggregate of the granules is called a surfactant-supporting granule group.
  • a detergent particle is a particle containing a surfactant and a builder derived from the carrier granule, in which a liquid surfactant composition is supported on a granule for supporting a surfactant. Means an aggregate.
  • the detergent composition contains detergent particles and is optionally added separately from the detergent particles (for example, builder granules, fluorescent dyes, enzymes, fragrances, antifoams, bleaches, bleach activators) Etc.).
  • the liquid surfactant composition is a composition containing a surfactant that is liquid or pasty when supported on a surfactant-supporting granule group.
  • Powder raw material having an oil absorption capacity of 0.4 mL / g or more As an essential component in the present invention, a powder raw material containing an inorganic alkali having an oil absorption capacity of 0.4 mL / g or more can be mentioned. If it is a powder raw material having an oil absorption capacity of 0.4 mL / g or more, one kind of powder raw material may be used, or a mixed powder of two or more kinds of powders may be used.
  • the oil absorption capacity is a value determined by the method described in the quality evaluation method described later.
  • Examples of the powder raw material having an oil absorption capacity of 0.4 mL / g or more include an essentially porous substance having fine pores of 10 ⁇ m or less inside the powder, and a surfactant in the pores.
  • support is mentioned.
  • the upper limit of the oil absorption capacity is not particularly limited, but is desirably 1.0 mL / g or less, for example.
  • the content of the inorganic alkaline agent in the powder raw material is not particularly limited, but is preferably 10 to 100% by weight, more preferably 20 to 100% by weight, and still more preferably 30 to 100% by weight.
  • the average particle size of the powder raw material is preferably 50 to 250 ⁇ m, more preferably 50 to 200 ⁇ m, still more preferably 80 to 200 ⁇ m.
  • the powder raw material is preferably a water-soluble substance.
  • powder raw materials include light ash or soda ash produced by baking baking soda, mirabilite, and porous powder produced by drying trihydrate of sodium tripolyphosphate. Light ash is particularly preferable from the viewpoint of easy handling and availability.
  • water-soluble means that the solubility in water at 25 ° C. is 0.5 g / 100 g or more, and water-insoluble means that the solubility in water at 25 ° C. is less than 0.5 g / 100 g. Means.
  • the ability to support the surfactant can be further improved by adjusting the temperature during baking baking soda.
  • the firing temperature is preferably 120 to 250 ° C, more preferably 150 to 220 ° C, and even more preferably 150 to 200 ° C.
  • the content of the powder raw material is preferably 40 to 95% by weight, more preferably 45 to 90% by weight, still more preferably 50 to 85% by weight, in the surfactant-supporting granule group, from the viewpoint of supportability. 50 to 80% by weight is particularly preferred.
  • a powder raw material is granulated by stirring said powder raw material and a solid binder or its precursor binder at normal temperature with a container rotary granulator.
  • the solid state at normal temperature means a solid at normal temperature or a viscosity of 2000 mPa ⁇ s or higher at normal temperature.
  • a precursor binder means the binder which becomes a solid form at normal temperature by reacting with a powder raw material.
  • the normal temperature as used herein is 20 ° C.
  • the water content in the binder or its precursor binder is preferably 40% or less, more preferably 20% or less, still more preferably 15% or less, and even more preferably 10% or less, from the viewpoint of productivity and supportability. 5% or less is particularly preferable.
  • the binder is not particularly limited as long as it has the ability to bind components constituting the particles in the powder raw material containing inorganic alkali and has a property of rapidly dissolving and / or dispersing in water.
  • the binder include polyalkylene glycols having a melting point of 30 ° C. or higher, polyoxyethylene alkyl ethers having a melting point of 30 ° C. or higher, and derivatives thereof.
  • the precursor binder include higher fatty acids, alkylbenzene sulfonic acids, and alkyl sulfates. And polyoxyethylene alkyl ether sulfate.
  • the content of the binder or its precursor binder in the surfactant-carrying granule group is preferably 5 to 40% by weight in the surfactant-carrying granule group from the viewpoint of caking property and carrying ability. % By weight is more preferred, 8-30% by weight is still more preferred, and 10-30% by weight is particularly preferred. Further, the viscosity of the binder at room temperature is preferably 2000 mPa ⁇ s or more, more preferably 5000 mPa ⁇ s or more, further preferably 10,000 mPa ⁇ s or more, and particularly preferably 15000 mPa ⁇ s.
  • the surfactant-supporting granule group in the present invention may contain an appropriate amount of water used in the production process.
  • the moisture content obtained by measuring the surfactant-supporting granule group with an infrared moisture meter is preferably smaller from the viewpoint of increasing the carrying capacity of the liquid surfactant composition of the granule group, and preferably 15% by weight or less. More preferably, it is 10 weight% or less, More preferably, it is 5 weight% or less, More preferably, it is 3 weight% or less.
  • the surfactant-carrying granule group in the present invention even substances other than those listed in the above 1 to 3 can be appropriately blended as necessary.
  • the blending amount of these substances is preferably 20% by weight or less, more preferably 10% by weight or less, and particularly preferably 5% by weight or less from the viewpoint of supporting ability. Examples of substances that can be blended are shown below.
  • the water-soluble chelating agent is not particularly limited as long as it is a substance that retains sequestering ability, but crystalline silicate, tripolyphosphate, orthophosphate, pyrophosphate and the like can be used. Among these, crystalline silicate and tripolyphosphate are preferable.
  • the water-insoluble chelating agent preferably has an average particle diameter of 0.1 to 20 ⁇ m from the viewpoint of dispersibility in water. Suitable water-insoluble chelating agents include crystalline aluminosilicates such as A-type zeolite, P-type zeolite, and X-type zeolite. A-type zeolite is preferred from the viewpoint of sequestering ability and economy. .
  • the content of the crystalline aluminosilicate in the detergent particle group is from the viewpoint of improving fluidity, suppressing smudge and caking, and improving detergency.
  • 0.1% by weight or more is preferable, 0.5% by weight or more is more preferable, 1% by weight or more is more preferable, 20% by weight or less is preferable from the viewpoint of rinsing properties and solubility, and 15% by weight or less is more preferable. 10 weight% or less is further more preferable, and 5 weight% or less is further more preferable.
  • a water-soluble inorganic salt it is preferable to add a water-soluble inorganic salt in order to increase the ionic strength of the washing liquid and improve the effect of washing sebum dirt.
  • the water-soluble inorganic salt is not particularly defined as long as it has a good solubility and does not adversely affect the detergency.
  • an alkali metal salt having a sulfate group and a sulfite group, an ammonium salt, and the like can be given.
  • sodium sulfate, sodium sulfite, or potassium sulfate having a high degree of ion dissociation From the viewpoint of improving the dissolution rate, the combined use with magnesium sulfate is also preferable.
  • -Water-soluble polymer It is also preferable to mix
  • carboxylic acid polymer, carboxymethyl cellulose, soluble starch, saccharides and the like can be mentioned.
  • carboxylic acid polymers having a mass average molecular weight of several thousand to 100,000 are preferable from the viewpoint of sequestering ability, dispersibility of solid dirt, particle dirt, etc. and re-fouling prevention ability.
  • a salt of acrylic acid-maleic acid copolymer and Polyacrylate is preferred.
  • Clay minerals have a layered structure, and it is possible to carry a liquid surfactant between the layers. Therefore, by adding clay minerals, it is possible to increase the loading capacity of the liquid surfactant and at the same time improve the loading capacity.
  • clay minerals examples include talc, pyrophyllite, smectite (saponite, hectorite, saconite, stevensite, montmorillonite, beidellite, nontronite, etc.), vermiculite, mica (phlogopite, biotite, chinwald mica, etc.) , Muscovite, paragonite, ceradonite, sea chlorite, etc.), swellable mica, chlorite (clinochlore, chamosite, nimite, penantite, sudite, dombasite, etc.), brittle mica (clinintite, margarite, etc.), sulite, Serpentine minerals (antigolite, lizardite, chrysotile, amesite, cronstedite, burcherin, greenerite, garnierite, etc.), kaolin minerals (kaolinite, dickite, nacrite, halloysite, etc.) It is.
  • talc talc
  • smectite swellable mica
  • vermiculite chrysotile
  • kaolin mineral kaolin mineral
  • montmorillonite is further preferable in terms of flexibility. These may be used alone or in appropriate combination of two or more.
  • Examples of the clay mineral represented by the general formula (I) include “Round rosyl DGA212”, “Round rosyl PR414”, “Round rosyl DG214”, “Round rosyl DGA powder”, “EXM0242”, “Hulasoft” manufactured by Sud Kemi. 1 powder ”,“ Detasoft GIS ”,“ Detasoft GIB ”,“ Detasoft GISW ”manufactured by Raviossa, Pure Bentonite, Standard Bentonite, Premium Bentonite manufactured by CSM, and the like.
  • there are granulated granule types added with a binder component which may be added as long as the effects of the present invention are not impaired. .
  • the clay minerals listed above are used in the present invention, those in the form of powder are preferable from the viewpoint of granulation, and in the case of a granulated product, it is preferable to crush in advance until a suitable particle size is obtained.
  • the crusher that can be used for crushing include impact crushers such as hammer crushers, impact crushers such as atomizers and pin mills, and shear crushers such as flash mills. These may be a single-stage operation or a multi-stage operation of the same or different pulverizers.
  • the average particle size of the clay mineral powder is preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less, and even more preferably 30 ⁇ m or less.
  • the total of alkali metal ions (Na ions, K ions, Li ions) and alkaline earth metal ions (Ca ions) is preferably 1.0 or more, more preferably 1.5 or more, and further preferably 2.0 or more.
  • a clay mineral having a high ratio of alkali metal ions it is only necessary to select a production area if it is a natural product, and it can also be prepared by adding an alkali metal salt when producing a clay granulated product. . Moreover, if it is a synthetic product, it can be arbitrarily prepared by a known method.
  • Water-insoluble excipient No particular limitation is imposed on the substance as long as it has good dispersibility in water and does not adversely affect detergency. Examples thereof include crystalline or amorphous aluminosilicates, silicon dioxide, hydrated silicate compounds, and the like. From the viewpoint of dispersibility in water, the primary particles preferably have an average particle size of 0.1 to 20 ⁇ m.
  • Fluorescent dyes, pigments, dyes, etc. are listed.
  • the measurement of the average particle diameter of the said component can be measured by the method as described in the measuring method of the physical property mentioned later.
  • the method for producing a surfactant-supporting granule group of the present invention comprises a container rotary granulator comprising a powder raw material containing an inorganic alkali having an oil absorption capacity of 0.4 mL / g or more and a binder that is solid at room temperature or its precursor binder. And a step of supplying the binder or its precursor binder using a multi-fluid nozzle at a temperature equal to or higher than its melting point.
  • a surfactant-supporting granule group having a bulk density of 800 g / L or less can be obtained.
  • One of the features of the present invention is that since the granule group obtained by such a production method has a small amount of water, it can be used as it is as a raw material for the detergent particle group without performing a drying operation such as spray drying.
  • the binder refers to both a binder that is solid at room temperature and its precursor binder, unless otherwise specified.
  • Agglomerates containing each component are formed by stirring each component with a container rotary granulator.
  • the container rotary granulator used here is preferably a bread granulator or a drum granulator in which granulation proceeds by rotation of the main body barrel from the viewpoint of ease of granulation and improvement of carrying ability. .
  • These apparatuses can be used in both batch and continuous processes. From the viewpoint of powder mixing property and solid-liquid mixing property, it is preferable to provide a baffle plate for assisting mixing in the pan or drum.
  • the fluid number of the granulator defined by the following formula is preferably set to 1.0 or less, more preferably 0.8 or less, and 0.6 The following is more preferable, and 0.4 or less is particularly preferable.
  • Fr V 2 / (R ⁇ g)
  • V Circumferential speed [m / s]
  • R Radius from the center of rotation to the circumference of the rotating object [m]
  • g Gravity acceleration [m / s 2 ]
  • the fluid number of the granulator is preferably set to 0.005 or more, and more preferably set to 0.01 or more.
  • V and R are values of the body barrel.
  • the resulting granule structure tends to be a gently aggregated structure. Since the granule having such a structure has a high oil absorption capacity, it is a preferable property as a granule for supporting a surfactant.
  • a container rotating granulator when used, there is a problem that a liquid binder is difficult to be uniformly dispersed in the granulator. Therefore, for example, a method of uniformly dispersing the binder can be considered by examining the method of supplying the binder.
  • a method for uniformly dispersing the binder a method of miniaturizing the binder using a multi-fluid nozzle such as a two-fluid nozzle can be considered.
  • a multi-fluid nozzle such as a two-fluid nozzle
  • the idea of using a multi-fluid nozzle for refining a highly viscous binder is unlikely to occur even by those skilled in the art.
  • the multi-fluid nozzle is a nozzle that mixes and atomizes a binder and atomizing gas (air, nitrogen, etc.) through an independent channel to the vicinity of the nozzle tip.
  • a fluid nozzle or the like can be used.
  • the mixing part of the binder and atomizing gas may be either an internal mixing type that mixes in the nozzle tip or an external mixing type that mixes outside the nozzle tip. For example, a high-viscosity binder is sprayed. In this case, an external mixing type is preferable from the viewpoint of preventing nozzle clogging.
  • a multi-fluid nozzle such as a two-fluid nozzle.
  • a multi-fluid nozzle for example, an internal mixed type two-fluid nozzle such as manufactured by Spraying Systems Japan Co., Ltd., manufactured by Kyoritsu Alloy Manufacturing Co., Ltd., or manufactured by Ikeuchi Co., Ltd., Spraying Systems Japan Co., Ltd. , Manufactured by Kyoritsu Alloy Manufacturing Co., Ltd., manufactured by Atmax Co., Ltd., and the like, and external mixed type two fluid nozzles manufactured by Fujisaki Electric Co., Ltd. and the like.
  • the average particle size of the binder droplets supplied using a multi-fluid nozzle is preferably 1 to 200 ⁇ m from the viewpoint of improving the yield of the obtained granules and reducing the amount of coarse particles. More preferably, it is 150 ⁇ m, more preferably 10 to 60 ⁇ m.
  • the average particle diameter of the droplet diameter of the binder is calculated on a volume basis, and is a value measured using, for example, a laser diffraction particle size distribution measuring apparatus: Spray Tech (manufactured by Malvern).
  • the Air atomizing pressure for atomization is preferably 0.1 MPa or more, and preferably 1.0 MPa or less from the viewpoint of equipment load.
  • the binder spray pressure is not particularly limited, but is preferably 1.0 MPa or less, for example, from the viewpoint of equipment load.
  • the nozzle hole diameter can be appropriately selected according to the desired binder flow rate, but is preferably 0.5 mm or more from the viewpoint of preventing clogging.
  • the supplied binder or its precursor binder is heated to a temperature equal to or higher than its melting point.
  • the temperature of the binder or its precursor binder when supplied from the multi-fluid nozzle is preferably 30 to 100 ° C., more preferably 40 to 90 ° C., and still more preferably 50 to 80 ° C.
  • the viscosity of the binder or its precursor binder when supplied from a multi-fluid nozzle is not particularly limited, but is preferably 2000 mPa ⁇ s or less, more preferably 1500 mPa ⁇ s or less, and still more preferably 1000 mPa ⁇ s or less.
  • the amount of the binder to be supplied or its precursor binder can be appropriately set within a range in which a surfactant-supporting granule group having predetermined characteristics can be produced.
  • a surfactant-supporting granule group having predetermined characteristics can be produced.
  • the present invention may further include a step of drying the granule group as necessary. Since the moisture content is small, the equipment load is small even when a drying process is introduced. By removing moisture, voids in the particles are increased, and the carrying capacity can be further improved. Conventionally known methods and conditions can be appropriately employed as the drying method and drying conditions.
  • the surfactant-supporting granule group in the present invention is presumed to have a structure in which powder raw materials having an oil absorption capacity of 0.4 mL / g or more are gradually aggregated by a solid binder or a precursor thereof at room temperature. Therefore, it has two supporting sites: (1) a large gap between powder raw materials, and (2) a small gap in the powder raw material (for example, a gap of 10 ⁇ m or less). Of these, both (1) and (2) have a significant effect on the loading capacity and loading force, and (1) has a significant effect on the loading speed. Surfactants with the desired loading capacity can be adjusted by adjusting these two loading sites. A group of supporting granules can be obtained.
  • the bulk density of the particles for supporting a surfactant of the present invention is 800 g from the viewpoint of securing the loading capacity of the liquid surfactant composition and from the viewpoint of securing a high bulk density after supporting the liquid surfactant composition.
  • / L or less preferably 650 g / L or less, more preferably 400 to 650 g / L, still more preferably 400 to 600 g / L. It is considered that the relatively low bulk density of the supporting granule group of the present invention is achieved by granulating with the container rotating granulator described above.
  • the average particle size of the supporting granule group from the viewpoint of powderiness and solubility when the detergent composition containing the detergent particle group in which the liquid surfactant composition is supported on the surfactant supporting granule group is used.
  • the diameter is preferably 140 to 600 ⁇ m, more preferably 160 to 500 ⁇ m, and still more preferably 180 to 400 ⁇ m.
  • the oil absorption capacity of the liquid surfactant composition of the surfactant-supporting granule group is preferably 0.35 mL / g or more, more preferably from the viewpoint of increasing the allowable range of the liquid surfactant composition content. 4 mL / g or more, more preferably 0.45 mL / g or more, and even more preferably 0.5 mL / g or more. It is considered that the relatively high oil absorption capacity of the supporting granule group of the present invention is achieved by granulating with the above-described container rotary granulator.
  • the moisture content obtained by measuring the surfactant-supporting granule group with an infrared moisture meter is preferably smaller from the viewpoint of increasing the carrying capacity of the liquid surfactant composition of the granule group, and preferably 15% by weight or less. More preferably, it is 10 weight% or less, More preferably, it is 5 weight% or less, More preferably, it is 3 weight% or less.
  • An example of a specific composition of the surfactant-supporting granule group produced in the present invention is, for example, a powder raw material having a bulk density of 800 g / L or less and an oil absorption capacity of 0.4 mL / g or more. Examples include 95% by weight, 5 to 40% by weight of binder, and 0 to 15% by weight of water.
  • the bulk density, average particle size, oil absorption capacity and water content of the liquid surfactant composition can be measured by the methods described in the physical property measurement method described later.
  • the detergent particle group in the present invention refers to a surfactant-carrying granule group using a surfactant as a binder, or a surfactant-carrying granule group according to the present invention, which further carries a surfactant composition or a water-soluble polymer. This is a detergent particle group.
  • an anionic surfactant for example, one or more selected from the group consisting of an anionic surfactant, a nonionic surfactant, a cationic surfactant and an amphoteric surfactant can be used.
  • Anionic surfactants include alkylbenzene sulfonates, alkyl sulfates, alkyl or alkenyl ether sulfates, ⁇ -olefin sulfonates, ⁇ -sulfo fatty acid salts or esters thereof, alkyl or alkenyl ether carboxylates, amino acids Type surfactants, N-acylamino acid type surfactants and the like.
  • straight chain alkylbenzene sulfonates, alkyl sulfates or alkyl ether sulfates are preferred, and the counter ion is preferably an alkali metal such as sodium or potassium, or an amine such as monoethanolamine or diethanolamine.
  • a fatty acid salt can be used in combination.
  • a powder raw material other than the powder raw material may be added if desired, and the addition amount is based on 100 parts by weight of the granule group. 0 to 150 parts by weight is preferable.
  • the powder raw material include crystalline silicates such as aluminosilicate and prefeed (manufactured by Tokuyama Siltech Co., Ltd.).
  • the bulk density is preferably 500 to 1000 g / L, more preferably 600 to 1000 g / L, and still more preferably 650 to 900 g / L.
  • the average particle diameter is preferably 150 to 500 ⁇ m, more preferably 180 to 400 ⁇ m.
  • the said bulk density and an average particle diameter can be measured by the method as described in the measuring method of the below-mentioned physical property.
  • a suitable production method for obtaining the detergent particle group includes the following step (I), and may further include step (II) as necessary.
  • the detergent composition in the present invention is a composition comprising the above-described detergent particle group, and further contains detergent components (for example, builder granules, fluorescent dyes, enzymes, perfumes, odorants, etc.) separately added to the detergent particle group.
  • detergent components for example, builder granules, fluorescent dyes, enzymes, perfumes, odorants, etc.
  • the content of the detergent particles in the detergent composition is preferably 50% by weight or more, more preferably 60% by weight or more, further preferably 70% by weight or more, 80% by weight or more, 100% by weight or less from the viewpoint of detergency. Is more preferable.
  • the content of detergent components other than the detergent particles in the detergent composition is preferably 50% by weight or less, more preferably 40% by weight or less, further preferably 30% by weight or less, and more preferably 20% by weight or less.
  • the method for producing the detergent composition is not particularly limited, and examples thereof include a method of mixing the detergent particle group and a separately added detergent component. Since the detergent composition thus obtained contains detergent particles with a large carrying capacity of a surfactant, a sufficient cleaning effect can be exhibited even with a small amount.
  • the use of such a detergent composition is not particularly limited as long as it is a use using a powder detergent, and examples thereof include a powder detergent for clothing and a detergent for automatic tableware.
  • Average particle diameter The average particle diameter is measured by the following two methods. (1) For media with an average particle size of 80 ⁇ m or more, use a JIS Z 8801 standard sieve (mesh 2000 to 125 ⁇ m) for 5 minutes, and then calculate the median diameter from the weight fraction of the sieve mesh size. To do. More specifically, using a 9-stage sieve and a tray having a mesh opening of 125 ⁇ m, 180 ⁇ m, 250 ⁇ m, 355 ⁇ m, 500 ⁇ m, 710 ⁇ m, 1000 ⁇ m, 1410 ⁇ m, and 2000 ⁇ m, the top of the top is stacked in order from the small sieve.
  • the moisture content of the granules is measured by the infrared moisture meter method. That is, 3 g of a sample was placed on a sample pan having a known weight, heated at 200 ° C. using an infrared moisture meter (FD-240 manufactured by Kett Science Laboratory Co., Ltd.), and when the weight change disappeared for 30 seconds, drying was completed. And Then, the water content is calculated from the weight after drying and the weight before drying.
  • FD-240 infrared moisture meter manufactured by Kett Science Laboratory Co., Ltd.
  • the flow time is defined as the time required for 100 mL of powder to flow out from the bulk density measurement hopper defined by JIS K 3362.
  • the flow time is preferably 10 seconds or less, more preferably 8 seconds or less, and even more preferably 7 seconds or less.
  • Oil absorption capacity 30-35 g of powder was put into an absorption measuring device (manufactured by Asahi Research Institute, Ltd., S410), and the driving blade 200r. p. m. Rotate with A liquid nonion (“Emulgen 108” manufactured by Kao Corporation) is dropped at a liquid supply rate of 4 mL / min to determine the point at which the maximum torque is obtained. The liquid addition amount at the point where the torque becomes 70% of the point where the maximum torque is reached is divided by the powder input amount to obtain the oil absorption capacity.
  • Particle size distribution As an index of particle size distribution, a detergent particle group that has been passed through a 1410 ⁇ m sieve is fitted, and a Rosin-Rammler number (RR number) is calculated and used. The following formula is used to calculate the number of Rosin-Rammlers.
  • the weight of the particles remaining on each sieve and the saucer is measured by the same method as the measurement of the average particle diameter, and the weight of the particles on each sieve (opening Dp [ ⁇ m]).
  • the ratio (cumulative rate R (Dp) [ ⁇ m]) is calculated.
  • the slope n of the least square approximation line when log (log (100 / R (Dp))) is plotted against each logDp is defined as the Rosin-Rammler number.
  • n is preferably 1.5 or more and more preferably 2.0 or more from the viewpoint of the aesthetics of the granule group.
  • Granule yield The granule yield in this invention shows the ratio of the granule below 1180 micrometers Pass among all the granules.
  • the detergent yield in the present invention refers to the proportion of particles of 1180 ⁇ m or less in the detergent composition obtained by mixing the detergent particle group and a separately added detergent component.
  • Example 1 100 parts by weight (5.4 kg) of light ash was stirred in a 75 L drum granulator ( ⁇ 40 cm ⁇ L60 cm / rotation speed 30 rpm) / fluid number 0.2 having a baffle plate. After stirring for 30 seconds, 28.4 parts by weight (200 mPa ⁇ s) of a linear alkylbenzene sulfonic acid at 60 ° C. was added to a two-fluid nozzle (BN90 type manufactured by Atmax Co., Ltd .: binder spray pressure 0.02 MPa / air spray for atomization). For 7 minutes using a pressure of 0.3 MPa). After the addition, the mixture was granulated for 2 minutes and then discharged from the drum granulator.
  • BN90 type manufactured by Atmax Co., Ltd . binder spray pressure 0.02 MPa / air spray for atomization
  • the obtained granule group 1 was a granule group having an average particle size of 261 ⁇ m and a bulk density of 498 g / L, and had an oil absorption capacity of 0.48 mL / g.
  • the granule yield was 99.5% and the Rosin-Rammler number was 2.1. In addition, it was 35 micrometers when the spraying droplet diameter (average particle diameter) of the linear alkylbenzenesulfonic acid in this spraying condition was measured.
  • Example 2 100 parts by weight (5.1 kg) of light ash was stirred in a 75 L drum granulator ( ⁇ 40 cm ⁇ L60 cm / rotation speed 30 rpm / fluid number 0.2) having a baffle plate. After stirring for 30 seconds, 35.4 parts by weight (200 mPa ⁇ s) of a linear alkylbenzene sulfonic acid at 60 ° C. was added to a two-fluid nozzle (BN90 type manufactured by Atmax Co., Ltd .: binder spray pressure 0.02 MPa / air spray for atomization). For 7 minutes using a pressure of 0.3 MPa). After the addition, the mixture was granulated for 2 minutes and then discharged from the drum granulator.
  • BN90 type manufactured by Atmax Co., Ltd . binder spray pressure 0.02 MPa / air spray for atomization
  • the obtained granule group 2 was a granule group having an average particle size of 300 ⁇ m and a bulk density of 542 g / L, and had an oil absorption capacity of 0.43 mL / g.
  • the granule yield was 99.9% and the Rosin-Rammler number was 2.3. In addition, it was 35 micrometers when the spraying droplet diameter (average particle diameter) of the linear alkylbenzenesulfonic acid in this spraying condition was measured.
  • Example 3 100 parts by weight (5.5 kg) of light ash was stirred in a 75 L drum granulator ( ⁇ 40 cm ⁇ L60 cm / rotation speed 30 rpm / fluid number 0.2) having a baffle plate. After stirring for 30 seconds, 28.2 parts by weight (10 mPa ⁇ s) of a fatty acid at 70 ° C. was added to a two-fluid nozzle (BN90 type manufactured by Atmax Co., Ltd .: binder spray pressure 0.01 MPa / air spray pressure for atomization 0.3 MPa. ) For 8.5 minutes. After the addition, the mixture was granulated for 2 minutes and then discharged from the drum granulator.
  • BN90 type manufactured by Atmax Co., Ltd . binder spray pressure 0.01 MPa / air spray pressure for atomization 0.3 MPa.
  • the resulting granule group 3 was a granule group having an average particle size of 190 ⁇ m and a bulk density of 556 g / L, and had an oil absorption capacity of 0.4 mL / g.
  • the granule yield was 96.4% and the Rosin-Rammler number was 1.5.
  • Example 4 100 parts by weight (5.5 kg) of light ash was stirred in a 75 L drum granulator ( ⁇ 40 cm ⁇ L60 cm / rotation speed 30 rpm / fluid number 0.2) having a baffle plate. After stirring for 30 seconds, 35.1 parts by weight (40 mPa ⁇ s) of a high melting point polyoxyethylene alkyl ether at 70 ° C. was added to a two-fluid nozzle (BN90 type manufactured by Atmax Co., Ltd .: binder spray pressure 0.02 MPa / for atomization) (Air spray pressure 0.3 MPa) was added in 9 minutes. After the addition, the mixture was granulated for 2 minutes and then discharged from the drum granulator.
  • BN90 type manufactured by Atmax Co., Ltd .: binder spray pressure 0.02 MPa / for atomization Air spray pressure 0.3 MPa
  • the resulting granule group 4 was a granule group having an average particle size of 186 ⁇ m and a bulk density of 613 g / L, and had an oil absorption capacity of 0.36 mL / g.
  • the granule yield was 99.9% and the Rosin-Rammler number was 2.2.
  • Example 5 100 parts by weight (4.9 kg) of light ash was stirred in a 75 L drum granulator ( ⁇ 40 cm ⁇ L60 cm / rotation speed 30 rpm / fluid number 0.2) having a baffle plate. After stirring for 30 seconds, 42.9 parts by weight of polyethylene glycol at 60 ° C. was used using a two-fluid nozzle (BN90 type manufactured by Atmax Co., Ltd .: binder spray pressure 0.02 MPa / air spray pressure for atomization 0.3 MPa). Added in 10 minutes. After the addition, the mixture was granulated for 2 minutes and then discharged from the drum granulator.
  • BN90 type manufactured by Atmax Co., Ltd . binder spray pressure 0.02 MPa / air spray pressure for atomization 0.3 MPa
  • the obtained granule group 5 was a granule group having an average particle size of 213 ⁇ m and a bulk density of 683 g / L, and had an oil absorption capacity of 0.5 mL / g.
  • the granule yield was 98.4% and the Rosin-Rammler number was 1.8.
  • Example 6 Into a 300 mL beaker, 100 parts by weight (100 g) of the obtained surfactant-supporting granule group 1 was added, and a surfactant composition (polyoxyethylene alkyl ether “Emulgen 106” manufactured by Kao Corporation, 30 C.) 15 parts by weight were charged in 2 minutes, and then stirred for 3 minutes. Furthermore, 20 parts by weight of amorphous aluminosilicate was added, stirred for 1 minute, and the detergent particle group 1 was discharged.
  • a surfactant composition polyoxyethylene alkyl ether “Emulgen 106” manufactured by Kao Corporation, 30 C.
  • the obtained detergent particle group 1 had an average particle diameter of 483 ⁇ m, a detergent yield of 74.2%, a bulk density of 624 g / L, and a fluidity of 6.4 s.
  • Example 7 A detergent particle group 2 was obtained in the same manner as in Example 6 except that the surfactant-supporting granule group 3 was used.
  • the resulting detergent particle group 2 had an average particle size of 140 ⁇ m, a detergent yield of 89.1%, a bulk density of 629 g / L, and a fluidity of 8.7 s.
  • Example 8 Detergent particle group 3 was obtained in the same manner as in Example 6 except that the surfactant-supporting granule group 4 was used and 35 parts by weight of amorphous aluminosilicate was added.
  • the resulting detergent particle group 3 had an average particle size of 363 ⁇ m, a detergent yield of 90.5%, a bulk density of 796 g / L, and a fluidity of 5.7 s.
  • Example 9 Detergent particle group 4 was obtained in the same manner as in Example 6 except that 35 parts by weight of amorphous aluminosilicate was added using surfactant-carrying granule group 5.
  • the resulting detergent particle group 4 had an average particle size of 224 ⁇ m, a detergent yield of 97.5%, a bulk density of 783 g / L, and a fluidity of 6.5 s.
  • Comparative Example 1 100 parts by weight (5.1 kg) of light ash was stirred in a 75 L drum granulator ( ⁇ 40 cm ⁇ L60 cm / rotation speed 30 rpm / fluid number 0.2) having a baffle plate. After stirring for 30 seconds, 35.4 parts by weight (200 mPa ⁇ s) of linear alkylbenzene sulfonic acid at 60 ° C. was added in 3 minutes using a one-fluid nozzle (manufactured by Spraying Systems Japan Co., Ltd .: UNIJET 8003). did. After the addition, the mixture was granulated for 2 minutes and then discharged from the drum granulator.
  • the resulting granule group 6 was a granule group having an average particle size of 788 ⁇ m and a bulk density of 647 g / L, and had an oil absorption capacity of 0.43 mL / g.
  • the granule yield was 56% and the Rosin-Rammler number was 1.0. In addition, it was 860 micrometers when the spraying droplet diameter (average particle diameter) of the linear alkylbenzenesulfonic acid in this spraying condition was measured.
  • Comparative Example 2 100 parts by weight (5.9 kg) of dense ash was stirred in a 75 L drum granulator ( ⁇ 40 cm ⁇ L60 cm / rotation speed 30 rpm ⁇ fluid number 0.2) having a baffle plate. After stirring for 30 seconds, 17.7 parts by weight (200 mPa ⁇ s) of a linear alkylbenzene sulfonic acid at 60 ° C. was added to a two-fluid nozzle (BN90 type manufactured by Atmax Co., Ltd .: binder spray pressure 0.02 MPa / air spray for atomization). For 7 minutes using a pressure of 0.3 MPa). After the addition, the mixture was granulated for 2 minutes and then discharged from the drum granulator.
  • BN90 type manufactured by Atmax Co., Ltd . binder spray pressure 0.02 MPa / air spray for atomization
  • the obtained granule group 7 was a granule group having an average particle size of 596 ⁇ m and a bulk density of 810 g / L, and had an oil absorption capacity of 0.13 mL / g.
  • the granule yield was 73% and the Rosin-Rammler number was 4.3. In addition, it was 35 micrometers when the spraying droplet diameter (average particle diameter) of the linear alkylbenzenesulfonic acid in this spraying condition was measured.
  • Comparative Example 3 100 parts by weight (5.4 kg) of light ash was stirred in a Redige mixer (manufactured by Matsuzaka Giken Co., Ltd., capacity 130 L, with jacket). After stirring for 30 seconds, 28.4 parts by weight (200 mPa ⁇ s) of a linear alkylbenzene sulfonic acid at 60 ° C. was added to a two-fluid nozzle (BN90 type manufactured by Atmax Co., Ltd .: binder spray pressure 0.02 MPa / air spray for atomization). For 7 minutes using a pressure of 0.3 MPa). After the addition, the mixture was granulated for 2 minutes and then discharged from the Redige mixer. In addition, it was 35 micrometers when the spraying droplet diameter (average particle diameter) of the linear alkylbenzenesulfonic acid in this spraying condition was measured.
  • the resulting granule group 8 was a granule group having an average particle diameter of 177 ⁇ m and a bulk density of 671 g / L, and had an oil absorption capacity of 0.29 mL / g.
  • the granule yield was 98% and the Rosin-Rammler number was 1.1.
  • Comparative Example 4 100 parts by weight (5.4 kg) of light ash was stirred in a Redige mixer (manufactured by Matsuzaka Giken Co., Ltd., capacity 130 L, with jacket). After stirring for 30 seconds, 28.4 parts by weight (200 mPa ⁇ s) of a linear alkylbenzene sulfonic acid at 60 ° C. was added over 3 minutes using a one-fluid nozzle (UNIJET 8010 type manufactured by Spraying Systems Japan Co., Ltd.). . After the addition, the mixture was granulated for 2 minutes and then discharged from the Redige mixer.
  • the obtained granule group 9 was a granule group having an average particle diameter of 172 ⁇ m and a bulk density of 759 g / L, and had an oil absorption capacity of 0.32 mL / g.
  • the granule yield was 99% and the Rosin-Rammler number was 0.9. In addition, it was 510 micrometers when the spraying droplet diameter (average particle diameter) of the linear alkylbenzenesulfonic acid in this spraying condition was measured.
  • Comparative Example 5 100 parts by weight (5.5 kg) of light ash was stirred in a 75 L drum granulator ( ⁇ 40 cm ⁇ L60 cm / rotation speed 30 rpm / fluid number 0.2) having a baffle plate. After stirring for 30 seconds, 28.2 parts by weight of a low melting point polyoxyethylene alkyl ether (40 mPa ⁇ s) at 60 ° C. was added to a two-fluid nozzle (BN90 type manufactured by Atmax Co., Ltd .: binder spray pressure 0.01 MPa / for atomization) (Air spray pressure 0.3 MPa) was added in 7 minutes. After the addition, the mixture was granulated for 2 minutes and then discharged from the drum granulator.
  • a low melting point polyoxyethylene alkyl ether 40 mPa ⁇ s
  • binder spray pressure 0.01 MPa / for atomization Air spray pressure 0.3 MPa
  • the resulting granule group 10 was in the form of a wet powder and was unhandled.
  • Comparative Example 6 100 parts by weight (4.93 kg) of light ash was stirred in a 75 L drum granulator ( ⁇ 40 cm ⁇ L60 cm / rotation speed 30 rpm / fluid number 0.2) having a baffle plate. After stirring for 30 seconds, 35.0 parts by weight of low-melting polyoxyethylene alkyl ether (40 mPa ⁇ s) at 60 ° C. was added to a two-fluid nozzle (BN90 type manufactured by Atmax Co., Ltd .: binder spray pressure 0.01 MPa / for atomization) (Air spray pressure 0.3 MPa) was added in 9.43 minutes. After the addition, granulation was continued by further mixing for 1 minute. Thereafter, 41 parts by weight of zeolite was added to 100 parts by weight of light ash, and further mixed for 1 minute, and discharged from the drum granulator.
  • BN90 type manufactured by Atmax Co., Ltd .: binder spray pressure 0.01 MPa / for atomization Air spray pressure 0.3
  • the resulting granule group 11 was a granule group having an average particle diameter of 138 ⁇ m and a bulk density of 698 g / L, and had an oil absorption capacity of 0.20 mL / g.
  • the granule yield was 99.3 and the Rosin-Rammler number was 1.0.
  • Comparative Example 7 Detergent particle group 5 was obtained in the same manner as in Example 6 except that granule group 7 was used and 45 parts by weight of amorphous aluminosilicate was added.
  • the resulting detergent particle group 5 had an average particle size of 4638 ⁇ m and a detergent yield of 0.1%.
  • LAS linear alkylbenzene sulfonic acid
  • FA fatty acid
  • E121 high melting point polyoxyethylene alkyl ether
  • E106 low melting point polyoxyethylene alkyl ether
  • PEG polyethylene glycol zeolite: amorphous aluminosilicate
  • Coarse grain ratio The ratio (% by weight) of granules remaining on a 1000 ⁇ m sieve among all the granules to be evaluated.
  • Bulk density This indicates the bulk density of particles that have passed through a 1180 ⁇ m sieve among the particles to be evaluated.
  • Fluidity The fluidity of particles that have passed through a 1180 ⁇ m sieve among the particles to be evaluated.
  • Oil-absorbing ability The oil-absorbing ability of particles that have passed through a 2000 ⁇ m sieve among the powders to be evaluated is shown.
  • Example 6 From the comparison between Example 6 and Comparative Example 7, it was found that the detergent particle group obtained by absorbing the surfactant composition using the granule group of the present invention can also be produced without coarsening. Also, from Examples 3 to 5 and Comparative Example 5, it is clear that when a liquid that is not solid at room temperature is used as a binder, it is difficult to granulate, and the particle size distribution is broad even when zeolite is added (Comparative Example 6). It was found that the oil absorption capacity was low.
  • Examples 6 to 9 show that detergent particles can be obtained in a high yield by using the surfactant-supporting granule group of the present invention. Moreover, the detergent particles can be produced without further drying operation such as spray drying.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Detergent Compositions (AREA)
  • Glanulating (AREA)

Abstract

Provided is a method for producing a surfactant-supporting granule cluster exhibiting excellent capacity, strength, and speed for supporting a liquid surfactant composition without involving a drying step. The effect of said method is being able to produce a surfactant-supporting granule cluster exhibiting excellent capacity, strength, and speed for supporting a liquid surfactant composition without involving a drying step. As a result, a production method which is more economically advantageous, and which reduces equipment load can be provided. Moreover, the granule cluster obtained from said method has a sharp particle size distribution, and little coarse granules and fine granules. Further, detergent granules exerting excellent cleaning performance and quality can be efficiently obtained by supporting a liquid surfactant composition on the surfactant-supporting granule cluster.

Description

界面活性剤担持用顆粒群の製造方法Method for producing surfactant-supporting granules
 本発明は界面活性剤担持用顆粒群及びその製造法に関する。さらに本発明は、かかる界面活性剤担持用顆粒群を用いた洗剤粒子群及び該洗剤粒子群を含有してなる洗剤組成物に関する。 The present invention relates to a surfactant-supporting granule group and a method for producing the same. Furthermore, the present invention relates to a detergent particle group using such a surfactant-supporting granule group and a detergent composition comprising the detergent particle group.
 粉末洗剤を得る方法の一つとして、液状の界面活性剤を界面活性剤担持用顆粒群に担持させる工程を含む製法がある。該製法において用いられる界面活性剤担持用顆粒群には、液状界面活性剤に対する高い担持能が求められる。即ち、界面活性剤担持用顆粒群に求められる担持能は、多量の液状界面活性剤を担持できること(担持容量)と、一旦吸収した液状界面活性剤をしみ出させることなく顆粒内部に強く保持できること(担持力)の2つの因子からなる。それぞれ、担持容量は洗浄性能を発揮させる為に必要な量の界面活性剤を配合する上で、又、担持力は液状界面活性剤のシミだしを抑制する上、並びに粉末洗剤の流動性の低下、ケーキングの抑制、及び容器やその表面へ液状界面活性剤が移行することを防ぐ上で重要である。 As one method for obtaining a powder detergent, there is a production method including a step of supporting a liquid surfactant on a group of granules for supporting a surfactant. The surfactant-supporting granule group used in the production method is required to have a high supporting ability for the liquid surfactant. In other words, the supporting ability required for the surfactant-supporting granule group is that it can support a large amount of liquid surfactant (supporting capacity) and can be strongly retained inside the granule without causing the liquid surfactant once absorbed. It consists of two factors (bearing force). In each case, the loading capacity is necessary for blending the amount of surfactant necessary for exerting the cleaning performance, and the loading force is used for suppressing the smearing of the liquid surfactant, and the fluidity of the powder detergent is lowered. It is important in suppressing caking and preventing the liquid surfactant from transferring to the container and its surface.
 更には生産性の観点から、液状界面活性剤を速く吸収する特性(担持速度)も界面活性剤担持用顆粒群に求められている。 Furthermore, from the viewpoint of productivity, the property of quickly absorbing the liquid surfactant (loading speed) is also required for the particles for supporting the surfactant.
 このような界面活性剤担持用顆粒群については、これまでにも種々検討が行われている。例えば、特許文献1には、水溶性ポリマー及び水溶性塩類を含有する調製液を噴霧乾燥して得られる界面活性剤担持用顆粒群が開示されている。しかしながら、この顆粒群の製造には噴霧乾燥が必須であり、経済性の観点からは噴霧乾燥を用いない製造方法が求められている。 Such a surfactant-supporting granule group has been studied in various ways. For example, Patent Literature 1 discloses a surfactant-supporting granule group obtained by spray-drying a preparation solution containing a water-soluble polymer and a water-soluble salt. However, spray drying is essential for the production of this granule group, and a production method that does not use spray drying is required from the viewpoint of economy.
 一方、例えば、特許文献2には、水和した無機塩と重合体有機結合剤からなる組成物を乾燥させる方法が開示されている。しかしながら、この方法は、本質的には乾燥によって水和水を放出して吸収能(本願における担持容量に相当)を増す技術であり、担持力や担持速度に関して調整することは極めて困難である。また、乾燥工程が必須となり、設備負荷が大きくなるといった課題があった。 On the other hand, for example, Patent Document 2 discloses a method of drying a composition comprising a hydrated inorganic salt and a polymer organic binder. However, this method is essentially a technique for increasing the absorption capacity (corresponding to the loading capacity in the present application) by releasing hydration water by drying, and it is extremely difficult to adjust the loading force and loading speed. In addition, there is a problem that a drying process is essential and equipment load increases.
 その為、担持容量/担持力/担持速度の全てに優れた界面活性剤担持用顆粒群を製造するための、乾燥工程が不要の製造方法が求められている。 Therefore, there is a demand for a production method that does not require a drying step in order to produce a surfactant-bearing granule group that is excellent in all of the carrying capacity / loading force / loading speed.
特開2004-244644号公報JP 2004-244644 A 特表2002-541267号公報Japanese translation of PCT publication No. 2002-541267
 即ち、本発明の要旨は、吸油能0.4mL/g以上の無機アルカリを含む粉末原料と、常温で固体状のバインダー又はその前駆体バインダーとを容器回転式造粒機で撹拌する工程であって、多流体ノズルを用いて当該バインダー又はその前駆体バインダーをその融点以上の温度で供給する工程を含む、嵩密度800g/L以下の界面活性剤担持用顆粒群の製造方法に関するものである。 That is, the gist of the present invention is a step in which a powder raw material containing an inorganic alkali having an oil absorption capacity of 0.4 mL / g or more and a binder that is solid at room temperature or a precursor binder thereof are stirred with a container rotary granulator. In addition, the present invention relates to a method for producing a surfactant-supporting granule group having a bulk density of 800 g / L or less, including a step of supplying the binder or a precursor binder thereof at a temperature equal to or higher than the melting point using a multi-fluid nozzle.
 本発明は、液状界面活性剤組成物の担持容量/担持力/担持速度に優れた界面活性剤担持用顆粒群を、乾燥操作を行わずに製造する方法に関する。また、該界面活性剤担持用顆粒群を用いてなる洗剤粒子群、該洗剤粒子群を含有してなる洗剤組成物を提供することに関する。 The present invention relates to a method for producing a surfactant-supporting granule group excellent in supporting capacity / supporting force / supporting speed of a liquid surfactant composition without performing a drying operation. Moreover, it is related with providing the detergent composition formed using the detergent particle group which uses this granule group for surfactant carrying | support, and this detergent particle group.
 本発明によれば、液状界面活性剤組成物の担持容量/担持力/担持速度に優れた界面活性剤担持用顆粒群を、乾燥操作を行わずに製造することができるという効果が奏される。その結果、経済性及び設備負荷に関してより優れた製造方法を提供できるという効果が奏される。しかも、得られる顆粒群の粒度分布はシャープで、粗粉、微粉が少ないという効果も奏される。更には該界面活性剤担持用顆粒群に液状界面活性剤組成物を担持することにより、良好な洗浄性能、品質等を有する洗剤粒子群を効率的に得ることができるという効果が奏される。 According to the present invention, it is possible to produce a surfactant-supporting granule group excellent in supporting capacity / supporting force / supporting speed of a liquid surfactant composition without performing a drying operation. . As a result, there is an effect that a more excellent manufacturing method can be provided with respect to economy and equipment load. And the particle size distribution of the obtained granule group is sharp, and there exists an effect that there are few coarse powder and fine powder. Further, by loading the liquid surfactant composition on the surfactant-carrying granules, it is possible to efficiently obtain detergent particles having good cleaning performance and quality.
 本発明の特徴の一つは、吸油能0.4mL/g以上の無機アルカリを含む粉末原料と、常温で固体状のバインダー又はその前駆体バインダーとを容器回転式造粒機で撹拌する工程であって、多流体ノズルを用いて該バインダー又はその前駆体バインダーをその融点以上の温度で供給する工程を含む、嵩密度800g/L以下の界面活性剤担持用顆粒群を得ることである。 One of the features of the present invention is a step of stirring a powder raw material containing an inorganic alkali having an oil absorption capacity of 0.4 mL / g or more and a binder in a solid state at room temperature or a precursor binder thereof with a container rotary granulator. Then, it is to obtain a granule group for supporting a surfactant having a bulk density of 800 g / L or less, including a step of supplying the binder or its precursor binder at a temperature higher than its melting point using a multi-fluid nozzle.
 一般に、容器回転式造粒機を用いた造粒においては、粉体を均一に流動せしめることが可能であり、更に、回転による粒子の持ち上げ及び自重による滑り・落下を伴う混合機構の為、粉体に加えられるせん断力が抑制される。そのため、かかる造粒機を用いた造粒方法は非圧密な造粒方法と言うことができる。また、常温で固体状のバインダー又はその前駆体バインダーは、粉体と接触した際の粘着性が強くないと造粒が進行しないために、粉体と接触した際に粘着性が発現する必要がある。このような常温で固体状のバインダー又はその前駆体バインダーを容器回転式造粒機に一般的な供給方法である一流体ノズルや配管にて供給すると、供給される液体成分を造粒機内で均一に分散させにくく、局在的に発生する大きな液塊により粗大粒子が形成されやすいことが分かった。 In general, in granulation using a container rotating granulator, it is possible to make the powder flow uniformly, and further, because of the mixing mechanism involving lifting of the particles by rotation and sliding / falling by their own weight, The shear force applied to the body is suppressed. Therefore, it can be said that the granulation method using such a granulator is a non-consolidated granulation method. In addition, a binder that is solid at normal temperature or its precursor binder does not advance granulation unless it has strong adhesiveness when in contact with the powder. is there. When such a solid binder or its precursor binder is supplied to a container-rotating granulator with a one-fluid nozzle or pipe, which is a common supply method, the supplied liquid components are uniformly distributed in the granulator. It was found that coarse particles are likely to be formed by a large liquid mass that is difficult to disperse in the region and is generated locally.
 そこで、2流体ノズル等の多流体ノズルを用いて、粉体と接触した際に粘着性を発現する常温で固体状のバインダー又はその前駆体バインダーを噴霧することによって容器回転式造粒機内に供給したところ、意外にも、粗大粒子の形成を抑制しつつ均一に造粒できることが分かった。これは、常温で固体状のバインダー又はその前駆体バインダーを多流体ノズルを用いてあらかじめ微細な液滴とすることにより、容器回転式造粒機内であっても常温で固体状のバインダー又はその前駆体バインダーの高分散が達成でき、粗大粒子を形成する大きな液塊が発生しないためと考えられる。従って、粉体と接触した際に粘着性を発現する常温で固体状のバインダー又はその前駆体バインダーを多流体ノズルを用いて容器回転式造粒機内に添加することも、本発明の特徴の一つである。 Therefore, a multi-fluid nozzle such as a two-fluid nozzle is used to spray into a container-rotating granulator by spraying a solid binder or its precursor binder at room temperature that exhibits adhesiveness when it comes into contact with powder. As a result, it was surprisingly found that uniform granulation can be achieved while suppressing the formation of coarse particles. This is because a binder that is solid at room temperature or its precursor binder is made into fine droplets in advance using a multi-fluid nozzle, so that the binder or precursor that is solid at room temperature even in a container rotary granulator. It is considered that high dispersion of the body binder can be achieved and a large liquid mass forming coarse particles is not generated. Accordingly, it is also one of the features of the present invention that a binder that is solid at room temperature that exhibits adhesiveness when it comes into contact with powder or a precursor binder thereof is added into a container rotary granulator using a multi-fluid nozzle. One.
 このように、本発明においては、容器回転式造粒機と多流体ノズルとを組み合わせて採用することで、それぞれ単独で使用する場合からは予期できない、粒度分布がシャープで、粗粉、微粉が少ない、液状界面活性剤組成物の担持容量/担持力/担持速度に優れた界面活性剤担持用顆粒群を乾燥操作を行わずに収率よく得られるという効果が奏される。 In this way, in the present invention, by adopting a combination of a container rotary granulator and a multi-fluid nozzle, the particle size distribution is sharp, coarse powder, fine powder, which cannot be expected from the case of using each independently. There is an effect that a small amount of a surfactant-supporting granule group excellent in supporting capacity / supporting power / supporting speed of a liquid surfactant composition can be obtained in high yield without performing a drying operation.
 以下、本発明の製造方法の一例としての態様について、より詳細に説明する。 Hereinafter, the aspect as an example of the production method of the present invention will be described in more detail.
 本発明において、界面活性剤担持用顆粒とは、吸油能0.4mL/g以上の粉末原料、及び常温で固体状のバインダーを含む顆粒である。好ましくは、吸油能0.4mL/g以上の無機アルカリを含む粉末原料と、常温で固体状のバインダーとを容器回転式造粒機によって撹拌し、顆粒化することで得られる顆粒である。かかる顆粒は、液状界面活性剤組成物を担持させるために使用される。その顆粒の集合体を界面活性剤担持用顆粒群という。洗剤粒子とは、界面活性剤担持用顆粒に液状界面活性剤組成物を担持させてなる、界面活性剤及び当該担持用顆粒に由来するビルダー等を含有する粒子であり、洗剤粒子群とはその集合体を意味する。洗剤組成物とは、洗剤粒子群を含有し、所望により洗剤粒子群以外に別途添加された洗剤成分(例えば、ビルダー顆粒、蛍光染料、酵素、香料、消泡剤、漂白剤、漂白活性化剤等)を含有する組成物を意味する。 In the present invention, the surfactant-supporting granule is a granule containing a powder raw material having an oil absorption capacity of 0.4 mL / g or more and a solid binder at room temperature. Preferably, it is a granule obtained by stirring and granulating a powder raw material containing an inorganic alkali having an oil absorption capacity of 0.4 mL / g or more and a solid binder at room temperature with a container rotary granulator. Such granules are used to carry a liquid surfactant composition. The aggregate of the granules is called a surfactant-supporting granule group. A detergent particle is a particle containing a surfactant and a builder derived from the carrier granule, in which a liquid surfactant composition is supported on a granule for supporting a surfactant. Means an aggregate. The detergent composition contains detergent particles and is optionally added separately from the detergent particles (for example, builder granules, fluorescent dyes, enzymes, fragrances, antifoams, bleaches, bleach activators) Etc.).
 液状界面活性剤組成物とは、界面活性剤担持用顆粒群に担持させる際に液状又はペースト状である界面活性剤を含む組成物である。 The liquid surfactant composition is a composition containing a surfactant that is liquid or pasty when supported on a surfactant-supporting granule group.
<界面活性剤担持用顆粒群の組成>
1.吸油能0.4mL/g以上の粉末原料
 本発明における必須の成分として、吸油能0.4mL/g以上の無機アルカリを含む粉末原料が挙げられる。吸油能が0.4mL/g以上の粉末原料であれば、一種類の粉末原料でもよいし、二種類以上の粉末の混合粉末でもよい。吸油能とは、後述の品質評価方法に記載の方法で決定される値である。吸油能0.4mL/g以上の吸油能を持つ粉末原料としては、例えば、粉末内部に10μm以下の微細な細孔を有する本質的に多孔質な物質であって、その細孔に界面活性剤を担持させることのできる物質が挙げられる。吸油能の上限は、特に限定されるものでないが、例えば1.0mL/g以下であることが望ましい。粉末原料中の無機アルカリ剤の含有量は、特に限定されるものではないが、10~100重量%が好ましく、20~100重量%がより好ましく、30~100重量%が更に好ましい。
<Composition of granule group for supporting surfactant>
1. Powder raw material having an oil absorption capacity of 0.4 mL / g or more As an essential component in the present invention, a powder raw material containing an inorganic alkali having an oil absorption capacity of 0.4 mL / g or more can be mentioned. If it is a powder raw material having an oil absorption capacity of 0.4 mL / g or more, one kind of powder raw material may be used, or a mixed powder of two or more kinds of powders may be used. The oil absorption capacity is a value determined by the method described in the quality evaluation method described later. Examples of the powder raw material having an oil absorption capacity of 0.4 mL / g or more include an essentially porous substance having fine pores of 10 μm or less inside the powder, and a surfactant in the pores. The substance which can carry | support is mentioned. The upper limit of the oil absorption capacity is not particularly limited, but is desirably 1.0 mL / g or less, for example. The content of the inorganic alkaline agent in the powder raw material is not particularly limited, but is preferably 10 to 100% by weight, more preferably 20 to 100% by weight, and still more preferably 30 to 100% by weight.
 顆粒化の観点から、該粉末原料の平均粒径としては50~250μmが好ましく、50~200μmがより好ましく、80~200μmが更に好ましい。 From the viewpoint of granulation, the average particle size of the powder raw material is preferably 50 to 250 μm, more preferably 50 to 200 μm, still more preferably 80 to 200 μm.
 また、溶解性の観点からは、粉末原料は水溶性の物質であることが好ましい。かかる粉末原料の例としては、重曹を焼成して作製したライト灰又はソーダ灰、芒硝、トリポリリン酸Naの水和物を乾燥して作製した多孔質粉末等が挙げられる。ハンドリングの容易さ及び入手のし易さの観点から、特にライト灰が好ましい。 Also, from the viewpoint of solubility, the powder raw material is preferably a water-soluble substance. Examples of such powder raw materials include light ash or soda ash produced by baking baking soda, mirabilite, and porous powder produced by drying trihydrate of sodium tripolyphosphate. Light ash is particularly preferable from the viewpoint of easy handling and availability.
 本明細書において水溶性とは、25℃の水に対する溶解度が0.5g/100g以上であることを意味し、水不溶性とは、25℃の水に対する溶解度が0.5g/100g未満であることを意味する。 In the present specification, water-soluble means that the solubility in water at 25 ° C. is 0.5 g / 100 g or more, and water-insoluble means that the solubility in water at 25 ° C. is less than 0.5 g / 100 g. Means.
 粉末原料としてライト灰を用いる場合、重曹焼成時の温度を調整することにより、更に界面活性剤担持能を向上させることができる。担持能の観点から、焼成温度は120~250℃が好ましく、150~220℃が好ましく、150~200℃が更に好ましい。 When light ash is used as the powder raw material, the ability to support the surfactant can be further improved by adjusting the temperature during baking baking soda. From the viewpoint of supporting ability, the firing temperature is preferably 120 to 250 ° C, more preferably 150 to 220 ° C, and even more preferably 150 to 200 ° C.
 該粉末原料の含有量としては、担持能の観点から、界面活性剤担持用顆粒群中、40~95重量%が好ましく、45~90重量%がより好ましく、50~85重量%が更に好ましく、50~80重量%が特に好ましい。 The content of the powder raw material is preferably 40 to 95% by weight, more preferably 45 to 90% by weight, still more preferably 50 to 85% by weight, in the surfactant-supporting granule group, from the viewpoint of supportability. 50 to 80% by weight is particularly preferred.
2.バインダー
 本発明においては、上記の粉末原料と常温で固体状のバインダー若しくはその前駆体バインダーとを容器回転式造粒機で撹拌することによって、粉末原料が顆粒化される。常温で固体状とは、常温で固体又は常温で粘度が2000mPa・s以上のものを言う。また、前駆体バインダーとは、粉体原料と反応することにより、常温で固体状となるバインダーを言う。本明細書でいう常温とは、20℃である。
2. Binder In this invention, a powder raw material is granulated by stirring said powder raw material and a solid binder or its precursor binder at normal temperature with a container rotary granulator. The solid state at normal temperature means a solid at normal temperature or a viscosity of 2000 mPa · s or higher at normal temperature. Moreover, a precursor binder means the binder which becomes a solid form at normal temperature by reacting with a powder raw material. The normal temperature as used herein is 20 ° C.
 バインダー若しくはその前駆体バインダー中の水分含有量としては、生産性及び担持能の観点から、40%以下が好ましく、20%以下がより好ましく、15%以下が更に好ましく、10%以下が更により好ましく、5%以下が特に好ましい。バインダー持込水分が少なくなればなるほど、乾燥工程を経ずとも担持能が高い界面活性剤担持用顆粒群を得られるため、好ましい。 The water content in the binder or its precursor binder is preferably 40% or less, more preferably 20% or less, still more preferably 15% or less, and even more preferably 10% or less, from the viewpoint of productivity and supportability. 5% or less is particularly preferable. The smaller the moisture content in the binder, the more preferable it is to obtain a surfactant-supporting granule group having a high supporting ability without going through a drying step.
 バインダーとしては、無機アルカリを含む粉末原料中の粒子を構成する成分同士を結合させる能力を持ち、水中で速やかに溶解及び/又は分散する性質を有するものであれば特に限定されない。例えば、バインダーとしては融点30℃以上のポリアルキレングリコール、融点30℃以上のポリオキシエチレンアルキルエーテル及びそれらの誘導体などが挙げられ、前駆体バインダーとしては、例えば高級脂肪酸、アルキルベンゼンスルホン酸、アルキル硫酸エステル、ポリオキシエチレンアルキルエーテル硫酸エステルなどが挙げられる。 The binder is not particularly limited as long as it has the ability to bind components constituting the particles in the powder raw material containing inorganic alkali and has a property of rapidly dissolving and / or dispersing in water. Examples of the binder include polyalkylene glycols having a melting point of 30 ° C. or higher, polyoxyethylene alkyl ethers having a melting point of 30 ° C. or higher, and derivatives thereof. Examples of the precursor binder include higher fatty acids, alkylbenzene sulfonic acids, and alkyl sulfates. And polyoxyethylene alkyl ether sulfate.
 界面活性剤担持用顆粒群中のバインダー若しくはその前駆体バインダーの含有量は、粘結性及び担持能の観点から、界面活性剤担持用顆粒群中、5~40重量%が好ましく、5~35重量%がより好ましく、8~30重量%が更に好ましく、10~30重量%が特に好ましい。
 また、常温におけるバインダーの粘度としては2000mPa・s以上が好ましく、5000mPa・s以上がより好ましく、10000mPa・s以上が更に好ましく、15000mPa・sが特に好ましい。
The content of the binder or its precursor binder in the surfactant-carrying granule group is preferably 5 to 40% by weight in the surfactant-carrying granule group from the viewpoint of caking property and carrying ability. % By weight is more preferred, 8-30% by weight is still more preferred, and 10-30% by weight is particularly preferred.
Further, the viscosity of the binder at room temperature is preferably 2000 mPa · s or more, more preferably 5000 mPa · s or more, further preferably 10,000 mPa · s or more, and particularly preferably 15000 mPa · s.
3.水分
 本発明における界面活性剤担持用顆粒群は、製造工程で使用される適当量の水分を含有してもよい。界面活性剤担持用顆粒群を赤外線水分計で測定して得られる水分量は、該顆粒群の液状界面活性剤組成物の担持容量を多くする観点から少ない方が好ましく、好ましくは15重量%以下、より好ましくは10重量%以下、更に好ましくは5重量%以下、更により好ましくは3重量%以下である。
3. Moisture The surfactant-supporting granule group in the present invention may contain an appropriate amount of water used in the production process. The moisture content obtained by measuring the surfactant-supporting granule group with an infrared moisture meter is preferably smaller from the viewpoint of increasing the carrying capacity of the liquid surfactant composition of the granule group, and preferably 15% by weight or less. More preferably, it is 10 weight% or less, More preferably, it is 5 weight% or less, More preferably, it is 3 weight% or less.
4.その他成分
 尚、本発明における界面活性剤担持用顆粒群には、上記1~3に挙げた以外の物質であっても、必要に応じて適宜配合することができる。しかし、これらの物質の配合量は担持能の観点から20重量%以下が好ましく、10重量%以下が更に好ましく、5重量%以下が特に好ましい。配合できる物質の例を以下に示す。
4). Other Components In the surfactant-carrying granule group in the present invention, even substances other than those listed in the above 1 to 3 can be appropriately blended as necessary. However, the blending amount of these substances is preferably 20% by weight or less, more preferably 10% by weight or less, and particularly preferably 5% by weight or less from the viewpoint of supporting ability. Examples of substances that can be blended are shown below.
・キレート剤
 金属イオンによる洗浄作用阻害を抑制する為、配合することができる。水溶性キレート剤としては、金属イオン封鎖能を保持する物質であれば特に規定はされないが、結晶性珪酸塩,トリポリリン酸塩,オルトリン酸塩,ピロリン酸塩等が使用可能である。中でも、結晶性珪酸塩及びトリポリリン酸塩が好ましい。水不溶性キレート剤については、水中での分散性の観点から、粒子の平均粒径が0.1~20μmのものが好ましい。好適な水不溶性キレート剤としては、結晶性アルミノ珪酸塩が挙げられ、例えばA型ゼオライト,P型ゼオライト,X型ゼオライト等があるが、金属イオン封鎖能及び経済性の点でA型ゼオライトが好ましい。
-Chelating agent It can mix | blend in order to suppress the washing | cleaning action inhibition by a metal ion. The water-soluble chelating agent is not particularly limited as long as it is a substance that retains sequestering ability, but crystalline silicate, tripolyphosphate, orthophosphate, pyrophosphate and the like can be used. Among these, crystalline silicate and tripolyphosphate are preferable. The water-insoluble chelating agent preferably has an average particle diameter of 0.1 to 20 μm from the viewpoint of dispersibility in water. Suitable water-insoluble chelating agents include crystalline aluminosilicates such as A-type zeolite, P-type zeolite, and X-type zeolite. A-type zeolite is preferred from the viewpoint of sequestering ability and economy. .
 上記の物質のうち、結晶性アルミノケイ酸塩を用いる場合、結晶性アルミノケイ酸塩の洗剤粒子群中の含有量は、流動性の向上、シミ出し性やケーキングの抑制、洗浄力の向上の観点から0.1重量%以上が好ましく、0.5重量%以上がより好ましく、1重量%以上がさらに好ましく、すすぎ性、溶解性の観点から20重量%以下が好ましく、15重量%以下がより好ましく、10重量%以下がさらに好ましく、5重量%以下がよりさらに好ましい。 Among the above substances, when crystalline aluminosilicate is used, the content of the crystalline aluminosilicate in the detergent particle group is from the viewpoint of improving fluidity, suppressing smudge and caking, and improving detergency. 0.1% by weight or more is preferable, 0.5% by weight or more is more preferable, 1% by weight or more is more preferable, 20% by weight or less is preferable from the viewpoint of rinsing properties and solubility, and 15% by weight or less is more preferable. 10 weight% or less is further more preferable, and 5 weight% or less is further more preferable.
・水溶性無機塩
 洗濯液のイオン強度を高め、皮脂汚れ洗浄等の効果を向上させる為、水溶性無機塩を添加することが好ましい。水溶性無機塩としては、溶解性が良好で、洗浄力に悪影響を与えない物質であれば特に規定はされない。例えば、硫酸根,亜硫酸根を持つアルカリ金属塩,アンモニウム塩等が挙げられる。中でも、イオン乖離度の高い硫酸ナトリウム,亜硫酸ナトリウム,硫酸カリウムを使用することが好ましい。又、溶解速度向上の観点からは硫酸マグネシウムとの併用も好ましい。
-Water-soluble inorganic salt It is preferable to add a water-soluble inorganic salt in order to increase the ionic strength of the washing liquid and improve the effect of washing sebum dirt. The water-soluble inorganic salt is not particularly defined as long as it has a good solubility and does not adversely affect the detergency. For example, an alkali metal salt having a sulfate group and a sulfite group, an ammonium salt, and the like can be given. Among them, it is preferable to use sodium sulfate, sodium sulfite, or potassium sulfate having a high degree of ion dissociation. From the viewpoint of improving the dissolution rate, the combined use with magnesium sulfate is also preferable.
・水溶性ポリマー
 金属イオン捕捉能、泥汚れ分散能等の効果を持つ水溶性ポリマーを配合することも好ましい。例えば、カルボン酸ポリマー、カルボキシメチルセルロース、可溶性澱粉、糖類等が挙げられる。中でも金属イオン封鎖能、固体汚れ、粒子汚れ等の分散能及び再汚染防止能の観点から、質量平均分子量が数千~10万のカルボン酸ポリマーが好ましく、特にアクリル酸-マレイン酸コポリマーの塩とポリアクリル酸塩が好ましい。
-Water-soluble polymer It is also preferable to mix | blend the water-soluble polymer with effects, such as metal ion capture | acquisition ability and mud dirt dispersibility. For example, carboxylic acid polymer, carboxymethyl cellulose, soluble starch, saccharides and the like can be mentioned. Among them, carboxylic acid polymers having a mass average molecular weight of several thousand to 100,000 are preferable from the viewpoint of sequestering ability, dispersibility of solid dirt, particle dirt, etc. and re-fouling prevention ability. Particularly, a salt of acrylic acid-maleic acid copolymer and Polyacrylate is preferred.
・粘土鉱物
 粘土鉱物は層状構造を有しており、その層間に液状界面活性剤を担持することが可能である。その為、粘土鉱物を配合することによって、液状界面活性剤の担持容量を増加させると同時に担持力を向上させることができる。
-Clay minerals Clay minerals have a layered structure, and it is possible to carry a liquid surfactant between the layers. Therefore, by adding clay minerals, it is possible to increase the loading capacity of the liquid surfactant and at the same time improve the loading capacity.
 このような粘土鉱物としては、例えば、タルク、パイロフィライト、スメクタイト(サポナイト、ヘクトライト、ソーコナイト、スティーブンサイト、モンモリロナイト、バイデライト、ノントロナイト等)、バーミキュライト、雲母(金雲母、黒雲母、チンワルド雲母、白雲母、パラゴナイト、セラドナイト、海緑石等)、膨潤性雲母、緑泥石(クリノクロア、シャモサイト、ニマイト、ペナンタイト、スドーアイト、ドンバサイト等)、脆雲母(クリントナイト、マーガライト等)、スーライト、蛇紋石鉱物(アンチゴライト、リザーダイト、クリソタイル、アメサイト、クロンステダイト、バーチェリン、グリーナライト、ガーニエライト等)、カオリン鉱物(カオリナイト、ディッカイト、ナクライト、ハロイサイト等)等が挙げられる。中でも、柔軟性能の点で、タルク、スメクタイト、膨潤性雲母、バーミキュライト、クリソタイル、カオリン鉱物等が好ましく、スメクタイトがより好ましく、モンモリロナイトがさらに好ましい。これらは単独又は2種以上を適宜組み合わせて用いることができる。 Examples of such clay minerals include talc, pyrophyllite, smectite (saponite, hectorite, saconite, stevensite, montmorillonite, beidellite, nontronite, etc.), vermiculite, mica (phlogopite, biotite, chinwald mica, etc.) , Muscovite, paragonite, ceradonite, sea chlorite, etc.), swellable mica, chlorite (clinochlore, chamosite, nimite, penantite, sudite, dombasite, etc.), brittle mica (clinintite, margarite, etc.), sulite, Serpentine minerals (antigolite, lizardite, chrysotile, amesite, cronstedite, burcherin, greenerite, garnierite, etc.), kaolin minerals (kaolinite, dickite, nacrite, halloysite, etc.) It is. Of these, talc, smectite, swellable mica, vermiculite, chrysotile, kaolin mineral, and the like are preferable, smectite is more preferable, and montmorillonite is further preferable in terms of flexibility. These may be used alone or in appropriate combination of two or more.
 また、界面活性剤担持能の観点から、以下の一般式(I):
   [Si8(MgaAlb)O20(OH)4X-・MeX+  (I)
で表される粘土鉱物を、粘土鉱物の主成分とすることが好ましい。ここで、a、b及びxは、0<a≦6、0<b≦4、x=12-2a-3bであり、MeはNa、K、Li、Ca1/2、Mg1/2及びNH4から選ばれる少なくとも1種のイオンである。
Further, from the viewpoint of the ability to support a surfactant, the following general formula (I):
[Si 8 (Mg a Al b ) O 20 (OH) 4] X- · Me X + (I)
It is preferable to use the clay mineral represented by Here, a, b and x are 0 <a ≦ 6, 0 <b ≦ 4, x = 12-2a-3b, and Me is Na, K, Li, Ca1 / 2, Mg1 / 2 and NH 4. Is at least one ion selected from
 前記一般式(I)で表される粘土鉱物としては、ズード・ケミ社製の「ラウンドロジルDGA212」、「ラウンドロジルPR414」、「ラウンドロジルDG214」、「ラウンドロジルDGAパウダー」、「EXM0242」、「フラソフト-1パウダー」、ラヴィオッサ社製の「デタソフトGIS」、「デタソフトGIB」、「デタソフトGISW」、CSM社製のピュアベントナイト、スタンダードベントナイト、プレミアムベントナイト等が挙げられる。上記の粘土鉱物の例として挙げた中には、バインダー成分を添加し、造粒された顆粒タイプのものも存在するが、該バインダー成分は本発明の効果を損なわない限り添加されていてもよい。 Examples of the clay mineral represented by the general formula (I) include “Round rosyl DGA212”, “Round rosyl PR414”, “Round rosyl DG214”, “Round rosyl DGA powder”, “EXM0242”, “Hulasoft” manufactured by Sud Kemi. 1 powder ”,“ Detasoft GIS ”,“ Detasoft GIB ”,“ Detasoft GISW ”manufactured by Raviossa, Pure Bentonite, Standard Bentonite, Premium Bentonite manufactured by CSM, and the like. Among the above-mentioned examples of clay minerals, there are granulated granule types added with a binder component, which may be added as long as the effects of the present invention are not impaired. .
 上記に挙げる粘土鉱物を本発明にて使用する場合、顆粒化の観点からその形態が粉末状のものが好ましく、造粒物であれば好適な粒度になるまで事前に解砕することが好ましい。解砕に利用できる粉砕機としては、ハンマクラッシャー等の衝撃破砕機、アトマイザー、ピンミル等の衝撃粉砕機、フラッシュミル等の剪断粗砕機等が挙げられる。これらは、1段操作でも良く同種又は異種粉砕機の多段操作でも良い。 When the clay minerals listed above are used in the present invention, those in the form of powder are preferable from the viewpoint of granulation, and in the case of a granulated product, it is preferable to crush in advance until a suitable particle size is obtained. Examples of the crusher that can be used for crushing include impact crushers such as hammer crushers, impact crushers such as atomizers and pin mills, and shear crushers such as flash mills. These may be a single-stage operation or a multi-stage operation of the same or different pulverizers.
 粘土鉱物粉末の平均粒径としては100μm以下が好ましく、50μm以下がより好ましく、30μm以下が更に好ましい。 The average particle size of the clay mineral powder is preferably 100 μm or less, more preferably 50 μm or less, and even more preferably 30 μm or less.
 また、担持力及び溶解性の観点から、一般式(I)で表される粘土鉱物においては、アルカリ金属イオン(Naイオン、Kイオン、Liイオン)の合計とアルカリ土類金属イオン(Caイオン、Mgイオン)の合計のモル比[(Na+K+Li)/(Ca+Mg)]は、1.0以上が好ましく、1.5以上がより好ましく、2.0以上がさらに好ましい。 In addition, from the viewpoint of supporting force and solubility, in the clay mineral represented by the general formula (I), the total of alkali metal ions (Na ions, K ions, Li ions) and alkaline earth metal ions (Ca ions, The total molar ratio [(Na + K + Li) / (Ca + Mg)] of Mg ions is preferably 1.0 or more, more preferably 1.5 or more, and further preferably 2.0 or more.
 アルカリ金属イオンの比率が高い粘土鉱物を得るには、天然品であれば、産地を選択すればよいし、粘土造粒物を製造する際に、アルカリ金属塩を添加して調製することもできる。また、合成品であれば公知の方法にて任意に調製が可能である。 In order to obtain a clay mineral having a high ratio of alkali metal ions, it is only necessary to select a production area if it is a natural product, and it can also be prepared by adding an alkali metal salt when producing a clay granulated product. . Moreover, if it is a synthetic product, it can be arbitrarily prepared by a known method.
・水不溶性賦形剤
 水中での分散性良好で、洗浄力に悪影響を与えない物質であれば特に規定はされない。例えば結晶性もしくは非晶質のアルミノ珪酸塩や、二酸化珪素、水和珪酸化合物等が挙げられる。水中での分散性の観点から、一次粒子の平均粒径が0.1~20μmのものが好ましい。
・ Water-insoluble excipient No particular limitation is imposed on the substance as long as it has good dispersibility in water and does not adversely affect detergency. Examples thereof include crystalline or amorphous aluminosilicates, silicon dioxide, hydrated silicate compounds, and the like. From the viewpoint of dispersibility in water, the primary particles preferably have an average particle size of 0.1 to 20 μm.
・その他補助成分
 蛍光染料、顔料、染料等が挙げられる。
-Other auxiliary components Fluorescent dyes, pigments, dyes, etc. are listed.
 尚、前記成分の平均粒径の測定は、後述の物性の測定方法に記載の方法で測定することができる。 In addition, the measurement of the average particle diameter of the said component can be measured by the method as described in the measuring method of the physical property mentioned later.
<界面活性剤担持用顆粒群の製法>
 本発明の界面活性剤担持用顆粒群の製造方法は、吸油能0.4mL/g以上の無機アルカリを含む粉末原料と常温で固体状のバインダー又はその前駆体バインダーとを容器回転式造粒機で撹拌する工程であって、その融点以上の温度で当該バインダー又はその前駆体バインダーを多流体ノズルを用いて供給する工程を含む。かかる製造方法によって、嵩密度が800g/L以下の界面活性剤担持用顆粒群を得ることができる。かかる製法によって得られる顆粒群中の水分は少ないので、噴霧乾燥等の乾燥操作を行うこと無く、そのまま洗剤粒子群の原料として用いることができることも、本発明の特徴の一つである。
<Method for producing surfactant-supporting granules>
The method for producing a surfactant-supporting granule group of the present invention comprises a container rotary granulator comprising a powder raw material containing an inorganic alkali having an oil absorption capacity of 0.4 mL / g or more and a binder that is solid at room temperature or its precursor binder. And a step of supplying the binder or its precursor binder using a multi-fluid nozzle at a temperature equal to or higher than its melting point. By this production method, a surfactant-supporting granule group having a bulk density of 800 g / L or less can be obtained. One of the features of the present invention is that since the granule group obtained by such a production method has a small amount of water, it can be used as it is as a raw material for the detergent particle group without performing a drying operation such as spray drying.
 複数の種類の吸油能0.4mL/g以上の粉末原料を用いる場合、容器回転式造粒機で撹拌する前に、それらを実質的に均一に混合することが好ましい。この時の混合方法としては、例えば、撹拌に使用する容器回転式造粒機を使用して混合しても良いし、予め別の混合機を用いて混合した後、容器回転式造粒機へと移送しても良い。粉末原料の混合に使用される該別の混合機としては、例えば、ドラム型ミキサー、パン型ミキサー、リボンミキサー、ナウターミキサー、シュギミキサー、レディゲミキサー、ハイスピードミキサー等が挙げられる。以下、バインダーとは、明示がない限り、常温で固体状のバインダーと、その前駆体バインダーとの両者を指す。 When using a plurality of types of powder raw materials having an oil absorption capacity of 0.4 mL / g or more, it is preferable to mix them substantially uniformly before stirring with a container rotary granulator. As a mixing method at this time, for example, mixing may be performed using a container rotary granulator used for stirring, or after mixing in advance using another mixer, the container rotating granulator may be used. May be transferred. Examples of the other mixer used for mixing the powder raw material include a drum mixer, a bread mixer, a ribbon mixer, a Nauter mixer, a Shugi mixer, a Redige mixer, and a high speed mixer. Hereinafter, the binder refers to both a binder that is solid at room temperature and its precursor binder, unless otherwise specified.
 容器回転式造粒機によって各成分を撹拌することにより、各成分を含む顆粒群が形成される。 Agglomerates containing each component are formed by stirring each component with a container rotary granulator.
 ここで用いられる容器回転式造粒機としては、顆粒化の容易さ及び担持能向上の観点から、本体胴部の回転によって顆粒化が進行するパン型造粒機或いはドラム型造粒機が好ましい。これらの装置はバッチ式、連続式いずれの方法においても用いることができる。尚、粉末混合性及び固液混合性の観点からは、パン或いはドラムに混合を補助する邪魔板を設けることが好ましい。 The container rotary granulator used here is preferably a bread granulator or a drum granulator in which granulation proceeds by rotation of the main body barrel from the viewpoint of ease of granulation and improvement of carrying ability. . These apparatuses can be used in both batch and continuous processes. From the viewpoint of powder mixing property and solid-liquid mixing property, it is preferable to provide a baffle plate for assisting mixing in the pan or drum.
 容器回転式造粒機の運転条件としては、例えば、以下の式で定義される造粒機のフルード数を1.0以下に設定するのが好ましく、0.8以下がより好ましく、0.6以下が更に好ましく、0.4以下が特に好ましい。 As operating conditions of the container rotary granulator, for example, the fluid number of the granulator defined by the following formula is preferably set to 1.0 or less, more preferably 0.8 or less, and 0.6 The following is more preferable, and 0.4 or less is particularly preferable.
  フルード数:Fr=V2/(R×g)
  V:周速[m/s]
  R:回転中心から回転物の円周までの半径[m]
  g:重力加速度[m/s2]
Fluid number: Fr = V 2 / (R × g)
V: Circumferential speed [m / s]
R: Radius from the center of rotation to the circumference of the rotating object [m]
g: Gravity acceleration [m / s 2 ]
 又、混合粉末に水又はバインダー水溶液を均一に添加する観点から、造粒機のフルード数を0.005以上に設定するのが好ましく、0.01以上に設定するのがより好ましい。 Further, from the viewpoint of uniformly adding water or an aqueous binder solution to the mixed powder, the fluid number of the granulator is preferably set to 0.005 or more, and more preferably set to 0.01 or more.
 尚、パン型造粒機或いはドラム型造粒機において、V及びRは本体胴部の値を用いることとする。 In the bread granulator or the drum granulator, V and R are values of the body barrel.
 容器回転式造粒機を用いて撹拌を行う場合、比較的低剪断下で顆粒化が行われるため、得られる顆粒の構造は、緩やかに凝集した構造となる傾向がある。かかる構造の顆粒は吸油能が高いため、界面活性剤担持用の顆粒として好ましい性質である。しかしながら、容器回転式造粒機を用いる場合、液体であるバインダーが造粒機内で均一に分散されにくいといった課題がある。その為、例えば、バインダーの供給方法を検討して、バインダーを均一分散させるという手段が考えられる。例えば、バインダーを均一に分散させる方法としては、2流体ノズル等の多流体ノズルを用いてバインダーの微細化を図る方法が考えられる。しかしながら、多流体ノズルを粘度の高いバインダーを微細化するために用いるという発想は、当業者であっても生じにくい。 When stirring using a container rotating granulator, since granulation is performed under relatively low shear, the resulting granule structure tends to be a gently aggregated structure. Since the granule having such a structure has a high oil absorption capacity, it is a preferable property as a granule for supporting a surfactant. However, when a container rotating granulator is used, there is a problem that a liquid binder is difficult to be uniformly dispersed in the granulator. Therefore, for example, a method of uniformly dispersing the binder can be considered by examining the method of supplying the binder. For example, as a method for uniformly dispersing the binder, a method of miniaturizing the binder using a multi-fluid nozzle such as a two-fluid nozzle can be considered. However, the idea of using a multi-fluid nozzle for refining a highly viscous binder is unlikely to occur even by those skilled in the art.
 多流体ノズルとは、バインダーと微粒化用気体(エアー,窒素等)を独立の流路を通してノズル先端部近傍まで流通させ、混合・微粒化するノズルであり、2流体ノズルや3流体ノズル,4流体ノズル等を用いることができる。また、バインダーと微粒化用気体の混合部は、ノズル先端部内で混合する内部混合型、或いはノズル先端部外で混合する外部混合型のいずれであっても良いが、例えば高粘度のバインダーを噴霧する場合は、ノズル閉塞防止の観点から、外部混合型が好ましい。 The multi-fluid nozzle is a nozzle that mixes and atomizes a binder and atomizing gas (air, nitrogen, etc.) through an independent channel to the vicinity of the nozzle tip. A fluid nozzle or the like can be used. The mixing part of the binder and atomizing gas may be either an internal mixing type that mixes in the nozzle tip or an external mixing type that mixes outside the nozzle tip. For example, a high-viscosity binder is sprayed. In this case, an external mixing type is preferable from the viewpoint of preventing nozzle clogging.
 特に2流体ノズル等の多流体ノズルを用いて微細液滴化して添加することが好ましい。このような多流体ノズルとしては、例えば、スプレーイングシステムスジャパン(株)製、(株)共立合金製作所製、いけうち(株)製等の内部混合型2流体ノズル、スプレーイングシステムスジャパン(株)製、(株)共立合金製作所製、(株)アトマックス製等の外部混合型2流体ノズル、藤崎電機(株)製の外部混合型4流体ノズル等が挙げられる。 In particular, it is preferable to add fine droplets using a multi-fluid nozzle such as a two-fluid nozzle. As such a multi-fluid nozzle, for example, an internal mixed type two-fluid nozzle such as manufactured by Spraying Systems Japan Co., Ltd., manufactured by Kyoritsu Alloy Manufacturing Co., Ltd., or manufactured by Ikeuchi Co., Ltd., Spraying Systems Japan Co., Ltd. , Manufactured by Kyoritsu Alloy Manufacturing Co., Ltd., manufactured by Atmax Co., Ltd., and the like, and external mixed type two fluid nozzles manufactured by Fujisaki Electric Co., Ltd. and the like.
 多流体ノズルを用いて供給されるバインダーの液滴の平均粒径は、得られる顆粒群の収率の向上や、粗粒量の低減の観点から、1~200μmにすることが好ましく、3~150μmにすることがより好ましく、10~60μmにすることがさらに好ましい。 The average particle size of the binder droplets supplied using a multi-fluid nozzle is preferably 1 to 200 μm from the viewpoint of improving the yield of the obtained granules and reducing the amount of coarse particles. More preferably, it is 150 μm, more preferably 10 to 60 μm.
 なお、当該バインダーの液滴径の平均粒径は体積基準で算出されるものであり、例えば、レーザー回折式粒度分布測定装置:スプレーテック(マルバーン社製)を用いて測定される値である。 In addition, the average particle diameter of the droplet diameter of the binder is calculated on a volume basis, and is a value measured using, for example, a laser diffraction particle size distribution measuring apparatus: Spray Tech (manufactured by Malvern).
 2流体ノズルを用いる場合、例えば、次の条件でバインダーを供給することが好ましい。液分散の観点から、微粒化用Air噴霧圧としては0.1MPa以上が好ましく、設備負荷の観点から1.0MPa以下が好ましい。また、バインダー噴霧圧としては特に制限は無いが、設備負荷の観点から、例えば1.0MPa以下が好ましい。また、ノズル孔径は所望のバインダー流量に応じて適宜選択できるが、閉塞防止の観点から、例えば0.5mm以上が好ましい。 When using a two-fluid nozzle, for example, it is preferable to supply the binder under the following conditions. From the viewpoint of liquid dispersion, the Air atomizing pressure for atomization is preferably 0.1 MPa or more, and preferably 1.0 MPa or less from the viewpoint of equipment load. The binder spray pressure is not particularly limited, but is preferably 1.0 MPa or less, for example, from the viewpoint of equipment load. In addition, the nozzle hole diameter can be appropriately selected according to the desired binder flow rate, but is preferably 0.5 mm or more from the viewpoint of preventing clogging.
 また、バインダーの供給速度を上げたい場合には、これらの多流体ノズルを複数個使用し、液滴の微細化を維持しつつ供給速度を上げることも効果的である。 Also, when it is desired to increase the supply rate of the binder, it is also effective to use a plurality of these multi-fluid nozzles and increase the supply rate while maintaining finer droplets.
 供給されるバインダー又はその前駆体バインダーは、その融点以上の温度にまで加熱される。多流体ノズルから供給される時のバインダー又はその前駆体バインダーの温度としては、例えば30~100℃が好ましく、40~90℃がより好ましく、50~80℃が更に好ましい。また、多流体ノズルから供給される時のバインダー又はその前駆体バインダーの粘度は特に限定されないが、例えば、2000mPa・s以下が好ましく、1500mPa・s以下がより好ましく、1000mPa・s以下が更に好ましい。 The supplied binder or its precursor binder is heated to a temperature equal to or higher than its melting point. The temperature of the binder or its precursor binder when supplied from the multi-fluid nozzle is preferably 30 to 100 ° C., more preferably 40 to 90 ° C., and still more preferably 50 to 80 ° C. Further, the viscosity of the binder or its precursor binder when supplied from a multi-fluid nozzle is not particularly limited, but is preferably 2000 mPa · s or less, more preferably 1500 mPa · s or less, and still more preferably 1000 mPa · s or less.
 供給されるバインダー又はその前駆体バインダーの量としては、所定の特性を有する界面活性剤担持用顆粒群が製造できる範囲内で、適宜設定することができる。例えば、吸油能0.4mL/g以上の粉末原料100重量部に対して、バインダー又はその前駆体バインダーを5.3~100重量部供給することが好ましく、5.6~77.8重量部供給することがより好ましく、9.4~60重量部供給することが更に好ましく、12.5~60重量部供給することが特に好ましい。 The amount of the binder to be supplied or its precursor binder can be appropriately set within a range in which a surfactant-supporting granule group having predetermined characteristics can be produced. For example, it is preferable to supply 5.3 to 100 parts by weight of a binder or its precursor binder to 100 parts by weight of a powder raw material having an oil absorption capacity of 0.4 mL / g or more, and supply of 5.6 to 77.8 parts by weight. It is more preferable to supply 9.4 to 60 parts by weight, still more preferable to supply 12.5 to 60 parts by weight.
 このような方法を用いることで、高粘度のバインダー又はその前駆体バインダーにおいても均一な分散が可能となり、収率が向上し粒度分布のシャープな界面活性剤担持用顆粒群が得られる。 By using such a method, uniform dispersion is possible even in a high-viscosity binder or its precursor binder, and the yield is improved and a particle group for supporting a surfactant having a sharp particle size distribution is obtained.
 本発明の製造方法によって得られる顆粒群の水分量は少ないが、本発明においては、必要に応じて更に顆粒群を乾燥する工程を含んでもよい。含有水分量が少ない為、乾燥工程を導入する場合であっても、設備負荷は少ない。水分を除去することにより、粒子内の空隙が増加し、更に担持容量をさらに向上させることができる。乾燥方式や乾燥条件としては、従来より公知の方式、条件を適宜採用することができる。 Although the moisture content of the granule group obtained by the production method of the present invention is small, the present invention may further include a step of drying the granule group as necessary. Since the moisture content is small, the equipment load is small even when a drying process is introduced. By removing moisture, voids in the particles are increased, and the carrying capacity can be further improved. Conventionally known methods and conditions can be appropriately employed as the drying method and drying conditions.
<界面活性剤担持用顆粒群の物性>
 本発明における界面活性剤担持用顆粒群は、吸油能0.4mL/g以上の粉末原料が、常温で固体状のバインダー若しくはその前駆体によって、緩やかに凝集した構造であると推定される。その為、(1)粉末原料間の大きな空隙、(2)粉末原料内の小さな空隙(例えば10μm以下の空隙)の2つの担持サイトを持っている。このうち、担持容量及び担持力には(1)、(2)の双方が、担持速度には(1)が大きく影響し、この2つの担持サイトの調整により所望の担持能を持つ界面活性剤担持用顆粒群を得ることができる。
<Physical properties of granule group for supporting surfactant>
The surfactant-supporting granule group in the present invention is presumed to have a structure in which powder raw materials having an oil absorption capacity of 0.4 mL / g or more are gradually aggregated by a solid binder or a precursor thereof at room temperature. Therefore, it has two supporting sites: (1) a large gap between powder raw materials, and (2) a small gap in the powder raw material (for example, a gap of 10 μm or less). Of these, both (1) and (2) have a significant effect on the loading capacity and loading force, and (1) has a significant effect on the loading speed. Surfactants with the desired loading capacity can be adjusted by adjusting these two loading sites. A group of supporting granules can be obtained.
 本発明の界面活性剤担持用顆粒群の嵩密度は、液状界面活性剤組成物の担持容量を確保する観点及び液状界面活性剤組成物を担持した後の高い嵩密度を確保する観点から、800g/L以下であり、650g/L以下が好ましく、400~650g/Lがより好ましく、400~600g/Lが更に好ましい。本発明の担持用顆粒群の比較的低い嵩密度は、前記する容器回転式造粒機によって顆粒化することで達成されると考えられる。 The bulk density of the particles for supporting a surfactant of the present invention is 800 g from the viewpoint of securing the loading capacity of the liquid surfactant composition and from the viewpoint of securing a high bulk density after supporting the liquid surfactant composition. / L or less, preferably 650 g / L or less, more preferably 400 to 650 g / L, still more preferably 400 to 600 g / L. It is considered that the relatively low bulk density of the supporting granule group of the present invention is achieved by granulating with the container rotating granulator described above.
 又、界面活性剤担持用顆粒群に液状界面活性剤組成物を担持してなる洗剤粒子群を含む洗剤組成物を使用した際の粉立ち性及び溶解性の観点から担持用顆粒群の平均粒径としては、140~600μmが好ましく、160~500μmがより好ましく、180~400μmが更に好ましい。 In addition, the average particle size of the supporting granule group from the viewpoint of powderiness and solubility when the detergent composition containing the detergent particle group in which the liquid surfactant composition is supported on the surfactant supporting granule group is used. The diameter is preferably 140 to 600 μm, more preferably 160 to 500 μm, and still more preferably 180 to 400 μm.
 界面活性剤担持用顆粒群の液状界面活性剤組成物の吸油能は、液状界面活性剤組成物配合量の許容範囲を大きくする観点から、好ましくは0.35mL/g以上、より好ましくは0.4mL/g以上、更に好ましくは0.45mL/g以上、更により好ましくは0.5mL/g以上である。本発明の担持用顆粒群の比較的高い吸油能は、前記する容器回転式造粒機によって顆粒化することで達成されると考えられる。 The oil absorption capacity of the liquid surfactant composition of the surfactant-supporting granule group is preferably 0.35 mL / g or more, more preferably from the viewpoint of increasing the allowable range of the liquid surfactant composition content. 4 mL / g or more, more preferably 0.45 mL / g or more, and even more preferably 0.5 mL / g or more. It is considered that the relatively high oil absorption capacity of the supporting granule group of the present invention is achieved by granulating with the above-described container rotary granulator.
 界面活性剤担持用顆粒群を赤外線水分計で測定して得られる水分量は、該顆粒群の液状界面活性剤組成物の担持容量を多くする観点から少ない方が好ましく、好ましくは15重量%以下、より好ましくは10重量%以下、更に好ましくは5重量%以下、更により好ましくは3重量%以下である。 The moisture content obtained by measuring the surfactant-supporting granule group with an infrared moisture meter is preferably smaller from the viewpoint of increasing the carrying capacity of the liquid surfactant composition of the granule group, and preferably 15% by weight or less. More preferably, it is 10 weight% or less, More preferably, it is 5 weight% or less, More preferably, it is 3 weight% or less.
 本発明において製造される界面活性剤担持用顆粒群の具体的な組成の一例としては、例えば、嵩密度が800g/L以下であって、吸油能0.4mL/g以上の粉末原料が40~95重量%、バインダーが5~40重量%、及び水が0~15重量%という組成が挙げられる。 An example of a specific composition of the surfactant-supporting granule group produced in the present invention is, for example, a powder raw material having a bulk density of 800 g / L or less and an oil absorption capacity of 0.4 mL / g or more. Examples include 95% by weight, 5 to 40% by weight of binder, and 0 to 15% by weight of water.
 尚、前記嵩密度、平均粒径、液状界面活性剤組成物の吸油能、水分量は、後述の物性の測定方法に記載の方法で測定することができる。 The bulk density, average particle size, oil absorption capacity and water content of the liquid surfactant composition can be measured by the methods described in the physical property measurement method described later.
<洗剤粒子群の組成及び物性>
 本発明における洗剤粒子群とは、界面活性剤をバインダーとした界面活性剤担持用顆粒群、若しくは本発明による界面活性剤担持用顆粒群に更に界面活性剤組成物や水溶性ポリマー等を担持させてなる洗剤粒子群である。
<Composition and physical properties of detergent particles>
The detergent particle group in the present invention refers to a surfactant-carrying granule group using a surfactant as a binder, or a surfactant-carrying granule group according to the present invention, which further carries a surfactant composition or a water-soluble polymer. This is a detergent particle group.
 界面活性剤組成物としては、例えば、陰イオン性界面活性剤、非イオン性界面活性剤、陽イオン性界面活性剤及び両性界面活性剤よりなる群から選ばれた1種以上を用いることができる。陰イオン性界面活性剤としては、アルキルベンゼンスルホン酸塩、アルキル硫酸塩、アルキル又はアルケニルエーテル硫酸塩、α-オレフィンスルホン酸塩、α-スルホ脂肪酸塩又はこのエステル、アルキル又はアルケニルエーテルカルボン酸塩、アミノ酸型界面活性剤、N-アシルアミノ酸型界面活性剤等が例示される。直鎖アルキルベンゼンスルホン酸塩、アルキル硫酸塩又はアルキルエーテル硫酸塩が好ましく、対イオンとしてはナトリウム、カリウム等のアルカリ金属、モノエタノールアミン、ジエタノールアミン等のアミンが好ましい。 As the surfactant composition, for example, one or more selected from the group consisting of an anionic surfactant, a nonionic surfactant, a cationic surfactant and an amphoteric surfactant can be used. . Anionic surfactants include alkylbenzene sulfonates, alkyl sulfates, alkyl or alkenyl ether sulfates, α-olefin sulfonates, α-sulfo fatty acid salts or esters thereof, alkyl or alkenyl ether carboxylates, amino acids Type surfactants, N-acylamino acid type surfactants and the like. Straight chain alkylbenzene sulfonates, alkyl sulfates or alkyl ether sulfates are preferred, and the counter ion is preferably an alkali metal such as sodium or potassium, or an amine such as monoethanolamine or diethanolamine.
 更に、消泡効果を得るために脂肪酸塩を併用することができる。 Furthermore, in order to obtain an antifoaming effect, a fatty acid salt can be used in combination.
 界面活性剤組成物と界面活性剤担持用顆粒群とを混合する際に、所望により前記粉末原料以外の粉体原料を添加してもよく、添加量としては該顆粒群100重量部に対して、0~150重量部が好ましい。該粉体原料としては、例えば、アルミノ珪酸塩、プリフィード(トクヤマシルテック社製)等の結晶性珪酸塩等が挙げられる。 When mixing the surfactant composition and the surfactant-supporting granule group, a powder raw material other than the powder raw material may be added if desired, and the addition amount is based on 100 parts by weight of the granule group. 0 to 150 parts by weight is preferable. Examples of the powder raw material include crystalline silicates such as aluminosilicate and prefeed (manufactured by Tokuyama Siltech Co., Ltd.).
 本発明による洗剤粒子群の好ましい物性は、以下の通りである。
 嵩密度は、好ましくは500~1000g/L、より好ましくは600~1000g/L、さらに好ましくは650~900g/Lである。平均粒径は、好ましくは150~500μm、より好ましくは180~400μmである。
Preferred physical properties of the detergent particles according to the present invention are as follows.
The bulk density is preferably 500 to 1000 g / L, more preferably 600 to 1000 g / L, and still more preferably 650 to 900 g / L. The average particle diameter is preferably 150 to 500 μm, more preferably 180 to 400 μm.
 尚、前記嵩密度、平均粒径は、後述の物性の測定方法に記載の方法で測定することができる。 In addition, the said bulk density and an average particle diameter can be measured by the method as described in the measuring method of the below-mentioned physical property.
<洗剤粒子群の製法>
 洗剤粒子群を得る好適な製法は、以下の工程(I)を含んでなり、更に必要に応じて工程(II)を含んでもよい。
工程(I):界面活性剤組成物が液状又はペースト状の条件下にて、該界面活性剤組成物を界面活性剤担持用顆粒群を含む顆粒群と混合する工程。
工程(II):工程(I)で得られた洗剤粒子群と表面被覆剤とを混合し、剤粒子群の表面を該表面被覆剤で被覆する工程。但し、工程(II)は解砕が同時に進行していてもよい。
<Production method of detergent particles>
A suitable production method for obtaining the detergent particle group includes the following step (I), and may further include step (II) as necessary.
Step (I): A step of mixing the surfactant composition with a granule group including the surfactant-carrying granule group under a condition where the surfactant composition is liquid or pasty.
Step (II): A step of mixing the detergent particles obtained in step (I) with a surface coating agent and coating the surface of the agent particles with the surface coating agent. However, in step (II), crushing may proceed simultaneously.
<洗剤組成物>
 本発明における洗剤組成物は、上述の洗剤粒子群を含有してなる組成物であり、さらに該洗剤粒子群以外に別途添加された洗剤成分(例えば、ビルダー顆粒、蛍光染料、酵素、香料、消泡剤、漂白剤、漂白活性化剤等)を含有してなる組成物である。
<Detergent composition>
The detergent composition in the present invention is a composition comprising the above-described detergent particle group, and further contains detergent components (for example, builder granules, fluorescent dyes, enzymes, perfumes, odorants, etc.) separately added to the detergent particle group. A foaming agent, a bleaching agent, a bleaching activator, etc.).
 洗剤組成物中の洗剤粒子群の含有量は、洗浄力の点から50重量%以上が好ましく、60重量%以上がより好ましく、70重量%以上がさらに好ましく、80重量%以上、100重量%以下がさらに好ましい。 The content of the detergent particles in the detergent composition is preferably 50% by weight or more, more preferably 60% by weight or more, further preferably 70% by weight or more, 80% by weight or more, 100% by weight or less from the viewpoint of detergency. Is more preferable.
 洗剤粒子群以外の洗剤成分の洗剤組成物中における含有量は、50重量%以下が好ましく、40重量%以下がより好ましく、30重量%以下がさらに好ましく、20重量%以下がより好ましい。 The content of detergent components other than the detergent particles in the detergent composition is preferably 50% by weight or less, more preferably 40% by weight or less, further preferably 30% by weight or less, and more preferably 20% by weight or less.
<洗剤組成物の製法>
 洗剤組成物の製法は、特に限定はなく、例えば、前記洗剤粒子群及び別途添加された洗剤成分を混合する方法が挙げられる。このようにして得られた洗剤組成物は、界面活性剤の担持容量の多い洗剤粒子を含有しているため、少量でも十分な洗浄効果を発現しうるものである。かかる洗剤組成物の用途としては粉末洗剤を用いる用途であれば特に限定はないが、例えば、衣料用粉末洗剤、自動食器用洗剤等が挙げられる。
<Production method of detergent composition>
The method for producing the detergent composition is not particularly limited, and examples thereof include a method of mixing the detergent particle group and a separately added detergent component. Since the detergent composition thus obtained contains detergent particles with a large carrying capacity of a surfactant, a sufficient cleaning effect can be exhibited even with a small amount. The use of such a detergent composition is not particularly limited as long as it is a use using a powder detergent, and examples thereof include a powder detergent for clothing and a detergent for automatic tableware.
<物性の測定方法>
1.嵩密度
 嵩密度は、JIS K 3362により規定された方法で測定する。
<Method of measuring physical properties>
1. Bulk density The bulk density is measured by a method defined by JIS K 3362.
2.平均粒径
 平均粒径については、以下の2つの方法により測定する。
 (1)平均粒径が80μm以上のものについては、JIS Z 8801の標準篩(目開き2000~125μm)を用いて5分間振動させた後、篩目のサイズによる重量分率からメジアン径を算出する。より詳細には、目開き125μm、180μm、250μm、355μm、500μm、710μm、1000μm、1410μm、2000μmの9段の篩と受け皿を用いて、受け皿上に目開きの小さな篩から順に積み重ね、最上部の2000μmの篩の上から100gの粒子を添加し、蓋をしてロータップ型ふるい振とう機(HEIKO製作所製、タッピング156回/分、ローリング:290回/分)に取り付け、5分間振動させたあと、それぞれの篩及び受け皿上に残留した該粒子の重量を測定し、各篩上の該粒子の重量割合(%)を算出する。受け皿から順に目開きの小さな篩上の該粒子の重量割合を積算していき合計が50%となる粒径を平均粒径とする。
2. Average particle diameter The average particle diameter is measured by the following two methods.
(1) For media with an average particle size of 80 μm or more, use a JIS Z 8801 standard sieve (mesh 2000 to 125 μm) for 5 minutes, and then calculate the median diameter from the weight fraction of the sieve mesh size. To do. More specifically, using a 9-stage sieve and a tray having a mesh opening of 125 μm, 180 μm, 250 μm, 355 μm, 500 μm, 710 μm, 1000 μm, 1410 μm, and 2000 μm, the top of the top is stacked in order from the small sieve. Add 100 g of particles from the top of a 2000 μm sieve, cover and attach to a low-tap type sieve shaker (manufactured by HEIKO, tapping 156 times / minute, rolling: 290 times / minute), and shake for 5 minutes. The weight of the particles remaining on each sieve and the tray is measured, and the weight ratio (%) of the particles on each sieve is calculated. The average particle size is obtained by accumulating the weight ratio of the particles on the sieve having a small mesh size in order from the saucer, and the total particle size becomes 50%.
 尚、平均粒径が125μm以下の物については、目開き45μm、63μm、90μm、125μm、180μm、250μm、355μm、500μm、710μm、1000μm、1410μm、2000μmの12段の篩と受け皿を用いて、平均粒径が2000μm以上の物については目開き125μm、180μm、250μm、355μm、500μm、710μm、1000μm、1410μm、2000μm、2800μm、4000μm、5600μmの12段の篩と受け皿を用いて同様の測定を行い、平均粒径の算出を行う。 In addition, about the thing with an average particle diameter of 125 micrometers or less, using the sieve of 12 steps | paragraphs and a saucer with an opening of 45 micrometers, 63 micrometers, 90 micrometers, 125 micrometers, 180 micrometers, 250 micrometers, 355 micrometers, 500 micrometers, 710 micrometers, 1000 micrometers, 1410 micrometers, and 2000 micrometers, the average For those having a particle size of 2000 μm or more, the same measurement is performed using a 12-stage sieve having a mesh size of 125 μm, 180 μm, 250 μm, 355 μm, 500 μm, 710 μm, 1000 μm, 1410 μm, 2000 μm, 2800 μm, 4000 μm, 5600 μm, The average particle size is calculated.
 (2)平均粒径が80μm未満のものについては、レーザー回折/散乱式粒度分布測定装置LA-920(堀場製作所(株)製)を用い、該粒子を溶解させない溶媒に分散させて測定したメジアン径を平均粒径とした。 (2) For media having an average particle size of less than 80 μm, the median measured by using a laser diffraction / scattering particle size distribution analyzer LA-920 (manufactured by Horiba, Ltd.) and dispersing the particles in a solvent that does not dissolve them. The diameter was defined as the average particle diameter.
3.水分
 顆粒群の水分測定は赤外線水分計法により行う。即ち、試料3gを重量既知の試料皿にはかり採り、赤外線水分計(ケット科学研究所(株)製FD-240)を用いて200℃で加熱し、30秒間重量変化がなくなった時点を乾燥終了とする。そして、乾燥後の重量と乾燥前重量から水分量を算出する。
3. Water content The moisture content of the granules is measured by the infrared moisture meter method. That is, 3 g of a sample was placed on a sample pan having a known weight, heated at 200 ° C. using an infrared moisture meter (FD-240 manufactured by Kett Science Laboratory Co., Ltd.), and when the weight change disappeared for 30 seconds, drying was completed. And Then, the water content is calculated from the weight after drying and the weight before drying.
4.流動性
 流動時間は、JIS K 3362により規定された嵩密度測定用のホッパーから、100mLの粉末が流出するのに要する時間とする。流動時間として10秒以下が好ましく、8秒以下がより好ましく、7秒以下が更に好ましい。
4). Flowability The flow time is defined as the time required for 100 mL of powder to flow out from the bulk density measurement hopper defined by JIS K 3362. The flow time is preferably 10 seconds or less, more preferably 8 seconds or less, and even more preferably 7 seconds or less.
<品質評価方法>
1.吸油能
 吸収量測定器((株)あさひ総研製,S410)に、粉末を30~35g投入し、駆動羽根200r.p.m.で回転させる。ここに液状のノニオン(花王(株)製「エマルゲン108」)を液供給速度4mL/minで滴下し、最大トルクとなる点を見極める。この最大トルクとなる点の70%のトルクとなる点での液添加量を粉末投入量で除算し、吸油能とする。
<Quality evaluation method>
1. Oil absorption capacity 30-35 g of powder was put into an absorption measuring device (manufactured by Asahi Research Institute, Ltd., S410), and the driving blade 200r. p. m. Rotate with A liquid nonion (“Emulgen 108” manufactured by Kao Corporation) is dropped at a liquid supply rate of 4 mL / min to determine the point at which the maximum torque is obtained. The liquid addition amount at the point where the torque becomes 70% of the point where the maximum torque is reached is divided by the powder input amount to obtain the oil absorption capacity.
2.粒度分布
 粒度分布の指標としては、1410μmの篩を通過させた洗剤粒子群をフィッティングし、Rosin-Rammler数(R-R数)を算出して用いる。Rosin-Rammler数の算出には以下の式を用いる。
2. Particle size distribution As an index of particle size distribution, a detergent particle group that has been passed through a 1410 μm sieve is fitted, and a Rosin-Rammler number (RR number) is calculated and used. The following formula is used to calculate the number of Rosin-Rammlers.
log(log(100/R(Dp)))=nlog(Dp)+log(β)
   R(Dp):粒径Dp以上の粉体の累積率〔%〕
   Dp:粒径〔μm〕
   n:Rosin-Rammler数
   β:粒度特性係数
log (log (100 / R (Dp))) = nlog (Dp) + log (β)
R (Dp): Cumulative rate [%] of powder having particle size Dp or more
Dp: particle size [μm]
n: Rosin-Rammler number β: Particle size characteristic coefficient
 より詳細には、上記平均粒径の測定と同様の方法により、それぞれの篩及び受け皿上に残留した該粒子の重量を測定し、各篩(目開きDp[μm])上の該粒子の重量割合(累積率R(Dp)[μm])を算出する。そして、各logDpに対するlog(log(100/R(Dp)))をプロットした時の最小2乗近似直線の傾きnを、Rosin-Rammler数とする。 More specifically, the weight of the particles remaining on each sieve and the saucer is measured by the same method as the measurement of the average particle diameter, and the weight of the particles on each sieve (opening Dp [μm]). The ratio (cumulative rate R (Dp) [μm]) is calculated. Then, the slope n of the least square approximation line when log (log (100 / R (Dp))) is plotted against each logDp is defined as the Rosin-Rammler number.
 Rosin-Rammler数nが高い程、粒度分布がシャープであることを示す。nとしては顆粒群の審美性の観点から1.5以上が好ましく、2.0以上がより好ましい。 The higher the Rosin-Rammler number n, the sharper the particle size distribution. n is preferably 1.5 or more and more preferably 2.0 or more from the viewpoint of the aesthetics of the granule group.
3.顆粒収率
 本発明における顆粒収率とは、全顆粒のうち、1180μmPass以下の顆粒の割合を示す。
3. Granule yield The granule yield in this invention shows the ratio of the granule below 1180 micrometers Pass among all the granules.
4.洗剤収率
 本発明における洗剤収率とは、前記洗剤粒子群及び別途添加された洗剤成分を混合して得られた洗剤組成物中、1180μm以下の粒子の割合を示す。
4). Detergent yield The detergent yield in the present invention refers to the proportion of particles of 1180 μm or less in the detergent composition obtained by mixing the detergent particle group and a separately added detergent component.
 以下、本発明の態様を実施例によりさらに記載し、開示する。この実施例は単なる本発明の例示であり、何ら限定を意味するものではない。本実施例においては、特に記載のない限り下記の原料を用いた。
 ライト灰:平均粒径100μm
  (セントラル硝子(株)製;吸油能0.45mL/g)
 デンス灰:平均粒径300μm
  (セントラル硝子(株)製;吸油能0.13mL/g)
 直鎖アルキルベンゼンスルホン酸:水分含有量0.5%
  (花王(株)製「ネオペレックスGS」)
 脂肪酸:水分含有量0%、融点40℃
  (花王(株)製 パルミチン酸)
 高融点ポリオキシエチレンアルキルエーテル:水分含有量3%、融点36℃
  (花王(株)製「エマルゲン121」)
 低融点ポリオキシエチレンアルキルエーテル:水分含有量0%、融点6℃
  (花王(株)製「エマルゲン106」)
 ポリエチレングリコール:水分含有量40%、分子量13000、粘度(20℃):4600mPa・s
In the following, aspects of the invention will be further described and disclosed by means of examples. This example is merely illustrative of the invention and is not meant to be limiting in any way. In this example, the following raw materials were used unless otherwise specified.
Light ash: average particle size 100μm
(Central Glass Co., Ltd .; oil absorption capacity 0.45 mL / g)
Dense ash: average particle size 300μm
(Central Glass Co., Ltd .; oil absorption capacity 0.13 mL / g)
Linear alkylbenzene sulfonic acid: 0.5% moisture content
("Neopelex GS" manufactured by Kao Corporation)
Fatty acid: 0% moisture content, melting point 40 ° C
(Palmitic acid manufactured by Kao Corporation)
High melting point polyoxyethylene alkyl ether: 3% moisture content, melting point 36 ° C
("Emulgen 121" manufactured by Kao Corporation)
Low melting point polyoxyethylene alkyl ether: moisture content 0%, melting point 6 ° C
("Emulgen 106" manufactured by Kao Corporation)
Polyethylene glycol: water content 40%, molecular weight 13000, viscosity (20 ° C.): 4600 mPa · s
実施例1
 ライト灰100重量部(5.4kg)を邪魔板を有した75Lドラム型造粒機(φ40cm×L60cm/回転数30r.p.m./フルード数0.2)中で撹拌した。30秒撹拌した後、60℃の直鎖アルキルベンゼンスルホン酸28.4重量部(200mPa・s)を2流体ノズル((株)アトマックス製BN90型:バインダー噴霧圧0.02MPa/微粒化用Air噴霧圧0.3MPa)を用いて、7分間で添加した。添加後、2分間顆粒化を行った後、ドラム型造粒機から排出した。
Example 1
100 parts by weight (5.4 kg) of light ash was stirred in a 75 L drum granulator (φ40 cm × L60 cm / rotation speed 30 rpm) / fluid number 0.2 having a baffle plate. After stirring for 30 seconds, 28.4 parts by weight (200 mPa · s) of a linear alkylbenzene sulfonic acid at 60 ° C. was added to a two-fluid nozzle (BN90 type manufactured by Atmax Co., Ltd .: binder spray pressure 0.02 MPa / air spray for atomization). For 7 minutes using a pressure of 0.3 MPa). After the addition, the mixture was granulated for 2 minutes and then discharged from the drum granulator.
 得られた顆粒群1は平均粒径261μm、嵩密度498g/Lの顆粒群であり、吸油能0.48mL/gであった。また、顆粒収率は99.5%であり、Rosin-Rammler数は2.1であった。なお、この噴霧条件における直鎖アルキルベンゼンスルホン酸の噴霧液滴径(平均粒径)を測定したところ、35μmであった。 The obtained granule group 1 was a granule group having an average particle size of 261 μm and a bulk density of 498 g / L, and had an oil absorption capacity of 0.48 mL / g. The granule yield was 99.5% and the Rosin-Rammler number was 2.1. In addition, it was 35 micrometers when the spraying droplet diameter (average particle diameter) of the linear alkylbenzenesulfonic acid in this spraying condition was measured.
実施例2
 ライト灰100重量部(5.1kg)を邪魔板を有した75Lドラム型造粒機(φ40cm×L60cm/回転数30r.p.m./フルード数0.2)中で撹拌した。30秒撹拌した後、60℃の直鎖アルキルベンゼンスルホン酸35.4重量部(200mPa・s)を2流体ノズル((株)アトマックス製BN90型:バインダー噴霧圧0.02MPa/微粒化用Air噴霧圧0.3MPa)を用いて、7分間で添加した。添加後、2分間顆粒化を行った後、ドラム型造粒機から排出した。
Example 2
100 parts by weight (5.1 kg) of light ash was stirred in a 75 L drum granulator (φ40 cm × L60 cm / rotation speed 30 rpm / fluid number 0.2) having a baffle plate. After stirring for 30 seconds, 35.4 parts by weight (200 mPa · s) of a linear alkylbenzene sulfonic acid at 60 ° C. was added to a two-fluid nozzle (BN90 type manufactured by Atmax Co., Ltd .: binder spray pressure 0.02 MPa / air spray for atomization). For 7 minutes using a pressure of 0.3 MPa). After the addition, the mixture was granulated for 2 minutes and then discharged from the drum granulator.
 得られた顆粒群2は平均粒径300μm、嵩密度542g/Lの顆粒群であり、吸油能0.43mL/gであった。また、顆粒収率は99.9%であり、Rosin-Rammler数は2.3であった。なお、この噴霧条件における直鎖アルキルベンゼンスルホン酸の噴霧液滴径(平均粒径)を測定したところ、35μmであった。 The obtained granule group 2 was a granule group having an average particle size of 300 μm and a bulk density of 542 g / L, and had an oil absorption capacity of 0.43 mL / g. The granule yield was 99.9% and the Rosin-Rammler number was 2.3. In addition, it was 35 micrometers when the spraying droplet diameter (average particle diameter) of the linear alkylbenzenesulfonic acid in this spraying condition was measured.
実施例3
 ライト灰100重量部(5.5kg)を邪魔板を有した75Lドラム型造粒機(φ40cm×L60cm/回転数30r.p.m./フルード数0.2)中で撹拌した。30秒撹拌した後、70℃の脂肪酸28.2重量部(10mPa・s)を2流体ノズル((株)アトマックス製BN90型:バインダー噴霧圧0.01MPa/微粒化用Air噴霧圧0.3MPa)を用いて、8.5分間で添加した。添加後、2分間顆粒化を行った後、ドラム型造粒機から排出した。
Example 3
100 parts by weight (5.5 kg) of light ash was stirred in a 75 L drum granulator (φ40 cm × L60 cm / rotation speed 30 rpm / fluid number 0.2) having a baffle plate. After stirring for 30 seconds, 28.2 parts by weight (10 mPa · s) of a fatty acid at 70 ° C. was added to a two-fluid nozzle (BN90 type manufactured by Atmax Co., Ltd .: binder spray pressure 0.01 MPa / air spray pressure for atomization 0.3 MPa. ) For 8.5 minutes. After the addition, the mixture was granulated for 2 minutes and then discharged from the drum granulator.
 得られた顆粒群3は平均粒径190μm、嵩密度556g/Lの顆粒群であり、吸油能0.4mL/gであった。また、顆粒収率は96.4%であり、Rosin-Rammler数は1.5であった。 The resulting granule group 3 was a granule group having an average particle size of 190 μm and a bulk density of 556 g / L, and had an oil absorption capacity of 0.4 mL / g. The granule yield was 96.4% and the Rosin-Rammler number was 1.5.
実施例4
 ライト灰100重量部(5.5kg)を邪魔板を有した75Lドラム型造粒機(φ40cm×L60cm/回転数30r.p.m./フルード数0.2)中で撹拌した。30秒撹拌した後、70℃の高融点ポリオキシエチレンアルキルエーテル35.1重量部(40mPa・s)を2流体ノズル((株)アトマックス製BN90型:バインダー噴霧圧0.02MPa/微粒化用Air噴霧圧0.3MPa)を用いて、9分間で添加した。添加後、2分間顆粒化を行った後、ドラム型造粒機から排出した。
Example 4
100 parts by weight (5.5 kg) of light ash was stirred in a 75 L drum granulator (φ40 cm × L60 cm / rotation speed 30 rpm / fluid number 0.2) having a baffle plate. After stirring for 30 seconds, 35.1 parts by weight (40 mPa · s) of a high melting point polyoxyethylene alkyl ether at 70 ° C. was added to a two-fluid nozzle (BN90 type manufactured by Atmax Co., Ltd .: binder spray pressure 0.02 MPa / for atomization) (Air spray pressure 0.3 MPa) was added in 9 minutes. After the addition, the mixture was granulated for 2 minutes and then discharged from the drum granulator.
 得られた顆粒群4は平均粒径186μm、嵩密度613g/Lの顆粒群であり、吸油能0.36mL/gであった。また、顆粒収率は99.9%であり、Rosin-Rammler数は2.2であった。 The resulting granule group 4 was a granule group having an average particle size of 186 μm and a bulk density of 613 g / L, and had an oil absorption capacity of 0.36 mL / g. The granule yield was 99.9% and the Rosin-Rammler number was 2.2.
実施例5
 ライト灰100重量部(4.9kg)を邪魔板を有した75Lドラム型造粒機(φ40cm×L60cm/回転数30r.p.m./フルード数0.2)中で撹拌した。30秒撹拌した後、60℃のポリエチレングリコール42.9重量部を2流体ノズル((株)アトマックス製BN90型:バインダー噴霧圧0.02MPa/微粒化用Air噴霧圧0.3MPa)を用いて、10分間で添加した。添加後、2分間顆粒化を行った後、ドラム型造粒機から排出した。
Example 5
100 parts by weight (4.9 kg) of light ash was stirred in a 75 L drum granulator (φ40 cm × L60 cm / rotation speed 30 rpm / fluid number 0.2) having a baffle plate. After stirring for 30 seconds, 42.9 parts by weight of polyethylene glycol at 60 ° C. was used using a two-fluid nozzle (BN90 type manufactured by Atmax Co., Ltd .: binder spray pressure 0.02 MPa / air spray pressure for atomization 0.3 MPa). Added in 10 minutes. After the addition, the mixture was granulated for 2 minutes and then discharged from the drum granulator.
 得られた顆粒群5は平均粒径213μm、嵩密度683g/Lの顆粒群であり、吸油能0.5mL/gであった。また、顆粒収率は98.4%であり、Rosin-Rammler数は1.8であった。 The obtained granule group 5 was a granule group having an average particle size of 213 μm and a bulk density of 683 g / L, and had an oil absorption capacity of 0.5 mL / g. The granule yield was 98.4% and the Rosin-Rammler number was 1.8.
実施例6
 300mLビーカー中に、得られた界面活性剤担持用顆粒群1を100重量部(100g)投入し、そこに界面活性剤組成物(ポリオキシエチレンアルキルエーテル「エマルゲン106」(株)花王製、30℃)15重量部を2分間で投入し、その後3分間攪拌を行った。更に、20重量部の無定形アルミノ珪酸塩を投入し、攪拌を1分間行い、洗剤粒子群1を排出した。
Example 6
Into a 300 mL beaker, 100 parts by weight (100 g) of the obtained surfactant-supporting granule group 1 was added, and a surfactant composition (polyoxyethylene alkyl ether “Emulgen 106” manufactured by Kao Corporation, 30 C.) 15 parts by weight were charged in 2 minutes, and then stirred for 3 minutes. Furthermore, 20 parts by weight of amorphous aluminosilicate was added, stirred for 1 minute, and the detergent particle group 1 was discharged.
 得られた洗剤粒子群1は、平均粒径483μm、洗剤収率74.2%、嵩密度624g/L、流動性6.4sであった。 The obtained detergent particle group 1 had an average particle diameter of 483 μm, a detergent yield of 74.2%, a bulk density of 624 g / L, and a fluidity of 6.4 s.
 実施例7
 界面活性剤担持用顆粒群3を用いた以外は実施例6と同様にして洗剤粒子群2を得た。
Example 7
A detergent particle group 2 was obtained in the same manner as in Example 6 except that the surfactant-supporting granule group 3 was used.
 得られた洗剤粒子群2は、平均粒径140μm、洗剤収率89.1%、嵩密度629g/L、流動性8.7sであった。 The resulting detergent particle group 2 had an average particle size of 140 μm, a detergent yield of 89.1%, a bulk density of 629 g / L, and a fluidity of 8.7 s.
実施例8
 界面活性剤担持用顆粒群4を用い、35重量部の無定形アルミノ珪酸塩を添加した以外は実施例6と同様にして洗剤粒子群3を得た。
Example 8
Detergent particle group 3 was obtained in the same manner as in Example 6 except that the surfactant-supporting granule group 4 was used and 35 parts by weight of amorphous aluminosilicate was added.
 得られた洗剤粒子群3は、平均粒径363μm、洗剤収率90.5%、嵩密度796g/L、流動性5.7sであった。 The resulting detergent particle group 3 had an average particle size of 363 μm, a detergent yield of 90.5%, a bulk density of 796 g / L, and a fluidity of 5.7 s.
実施例9
 界面活性剤担持用顆粒群5を用い、35重量部の無定形アルミノ珪酸塩を添加したこと以外は実施例6と同様にして洗剤粒子群4を得た。
Example 9
Detergent particle group 4 was obtained in the same manner as in Example 6 except that 35 parts by weight of amorphous aluminosilicate was added using surfactant-carrying granule group 5.
 得られた洗剤粒子群4は、平均粒径224μm、洗剤収率97.5%、嵩密度783g/L、流動性6.5sであった。 The resulting detergent particle group 4 had an average particle size of 224 μm, a detergent yield of 97.5%, a bulk density of 783 g / L, and a fluidity of 6.5 s.
比較例1
 ライト灰100重量部(5.1kg)を邪魔板を有した75Lドラム型造粒機(φ40cm×L60cm/回転数30r.p.m./フルード数0.2)中で撹拌した。30秒撹拌した後、60℃の直鎖アルキルベンゼンスルホン酸35.4重量部(200mPa・s)を1流体ノズル(スプレーイングシステムスジャパン(株)製:UNIJET8003型)を用いて、3分間で添加した。添加後、2分間顆粒化を行った後、ドラム型造粒機から排出した。
Comparative Example 1
100 parts by weight (5.1 kg) of light ash was stirred in a 75 L drum granulator (φ40 cm × L60 cm / rotation speed 30 rpm / fluid number 0.2) having a baffle plate. After stirring for 30 seconds, 35.4 parts by weight (200 mPa · s) of linear alkylbenzene sulfonic acid at 60 ° C. was added in 3 minutes using a one-fluid nozzle (manufactured by Spraying Systems Japan Co., Ltd .: UNIJET 8003). did. After the addition, the mixture was granulated for 2 minutes and then discharged from the drum granulator.
 得られた顆粒群6は平均粒径788μm、嵩密度647g/Lの顆粒群であり、吸油能0.43mL/gであった。また、顆粒収率は56%であり、Rosin-Rammler数は1.0であった。なお、この噴霧条件における直鎖アルキルベンゼンスルホン酸の噴霧液滴径(平均粒径)を測定したところ、860μmであった。 The resulting granule group 6 was a granule group having an average particle size of 788 μm and a bulk density of 647 g / L, and had an oil absorption capacity of 0.43 mL / g. The granule yield was 56% and the Rosin-Rammler number was 1.0. In addition, it was 860 micrometers when the spraying droplet diameter (average particle diameter) of the linear alkylbenzenesulfonic acid in this spraying condition was measured.
比較例2
 デンス灰100重量部(5.9kg)を邪魔板を有した75Lドラム型造粒機(φ40cm×L60cm/回転数30r.p.m./フルード数0.2)中で撹拌した。30秒撹拌した後、60℃の直鎖アルキルベンゼンスルホン酸17.7重量部(200mPa・s)を2流体ノズル((株)アトマックス製BN90型:バインダー噴霧圧0.02MPa/微粒化用Air噴霧圧0.3MPa)を用いて、7分間で添加した。添加後、2分間顆粒化を行った後、ドラム型造粒機から排出した。
Comparative Example 2
100 parts by weight (5.9 kg) of dense ash was stirred in a 75 L drum granulator (φ40 cm × L60 cm / rotation speed 30 rpm · fluid number 0.2) having a baffle plate. After stirring for 30 seconds, 17.7 parts by weight (200 mPa · s) of a linear alkylbenzene sulfonic acid at 60 ° C. was added to a two-fluid nozzle (BN90 type manufactured by Atmax Co., Ltd .: binder spray pressure 0.02 MPa / air spray for atomization). For 7 minutes using a pressure of 0.3 MPa). After the addition, the mixture was granulated for 2 minutes and then discharged from the drum granulator.
 得られた顆粒群7は平均粒径596μm、嵩密度810g/Lの顆粒群であり、吸油能0.13mL/gであった。また、顆粒収率は73%であり、Rosin-Rammler数は4.3であった。なお、この噴霧条件における直鎖アルキルベンゼンスルホン酸の噴霧液滴径(平均粒径)を測定したところ、35μmであった。 The obtained granule group 7 was a granule group having an average particle size of 596 μm and a bulk density of 810 g / L, and had an oil absorption capacity of 0.13 mL / g. The granule yield was 73% and the Rosin-Rammler number was 4.3. In addition, it was 35 micrometers when the spraying droplet diameter (average particle diameter) of the linear alkylbenzenesulfonic acid in this spraying condition was measured.
比較例3
 ライト灰100重量部(5.4kg)をレディゲミキサー(松坂技研(株)製、容量130L、ジャケット付)中で撹拌した。30秒撹拌した後、60℃の直鎖アルキルベンゼンスルホン酸28.4重量部(200mPa・s)を2流体ノズル((株)アトマックス製BN90型:バインダー噴霧圧0.02MPa/微粒化用Air噴霧圧0.3MPa)を用いて、7分間で添加した。添加後、2分間顆粒化を行った後、レディゲミキサーから排出した。なお、この噴霧条件における直鎖アルキルベンゼンスルホン酸の噴霧液滴径(平均粒径)を測定したところ、35μmであった。
Comparative Example 3
100 parts by weight (5.4 kg) of light ash was stirred in a Redige mixer (manufactured by Matsuzaka Giken Co., Ltd., capacity 130 L, with jacket). After stirring for 30 seconds, 28.4 parts by weight (200 mPa · s) of a linear alkylbenzene sulfonic acid at 60 ° C. was added to a two-fluid nozzle (BN90 type manufactured by Atmax Co., Ltd .: binder spray pressure 0.02 MPa / air spray for atomization). For 7 minutes using a pressure of 0.3 MPa). After the addition, the mixture was granulated for 2 minutes and then discharged from the Redige mixer. In addition, it was 35 micrometers when the spraying droplet diameter (average particle diameter) of the linear alkylbenzenesulfonic acid in this spraying condition was measured.
 得られた顆粒群8は、平均粒径177μm、嵩密度671g/Lの顆粒群であり、吸油能0.29mL/gであった。また、顆粒収率は98%であり、Rosin-Rammler数は1.1であった。 The resulting granule group 8 was a granule group having an average particle diameter of 177 μm and a bulk density of 671 g / L, and had an oil absorption capacity of 0.29 mL / g. The granule yield was 98% and the Rosin-Rammler number was 1.1.
比較例4
 ライト灰100重量部(5.4kg)をレディゲミキサー(松坂技研(株)製、容量130L、ジャケット付)中で撹拌した。30秒撹拌した後、60℃の直鎖アルキルベンゼンスルホン酸28.4重量部(200mPa・s)を1流体ノズル(スプレーイングシステムスジャパン(株)製UNIJET8010型)を用いて、3分間で添加した。添加後、2分間顆粒化を行った後、レディゲミキサーから排出した。
Comparative Example 4
100 parts by weight (5.4 kg) of light ash was stirred in a Redige mixer (manufactured by Matsuzaka Giken Co., Ltd., capacity 130 L, with jacket). After stirring for 30 seconds, 28.4 parts by weight (200 mPa · s) of a linear alkylbenzene sulfonic acid at 60 ° C. was added over 3 minutes using a one-fluid nozzle (UNIJET 8010 type manufactured by Spraying Systems Japan Co., Ltd.). . After the addition, the mixture was granulated for 2 minutes and then discharged from the Redige mixer.
 得られた顆粒群9は、平均粒径172μm、嵩密度759g/Lの顆粒群であり、吸油能0.32mL/gであった。また、顆粒収率は99%であり、Rosin-Rammler数は0.9であった。なお、この噴霧条件における直鎖アルキルベンゼンスルホン酸の噴霧液滴径(平均粒径)を測定したところ、510μmであった。 The obtained granule group 9 was a granule group having an average particle diameter of 172 μm and a bulk density of 759 g / L, and had an oil absorption capacity of 0.32 mL / g. The granule yield was 99% and the Rosin-Rammler number was 0.9. In addition, it was 510 micrometers when the spraying droplet diameter (average particle diameter) of the linear alkylbenzenesulfonic acid in this spraying condition was measured.
比較例5
 ライト灰100重量部(5.5kg)を邪魔板を有した75Lドラム型造粒機(φ40cm×L60cm/回転数30r.p.m./フルード数0.2)中で撹拌した。30秒撹拌した後、60℃の低融点ポリオキシエチレンアルキルエーテル(40mPa・s)28.2重量部を2流体ノズル((株)アトマックス製BN90型:バインダー噴霧圧0.01MPa/微粒化用Air噴霧圧0.3MPa)を用いて、7分間で添加した。添加後、2分間顆粒化を行った後、ドラム型造粒機から排出した。
Comparative Example 5
100 parts by weight (5.5 kg) of light ash was stirred in a 75 L drum granulator (φ40 cm × L60 cm / rotation speed 30 rpm / fluid number 0.2) having a baffle plate. After stirring for 30 seconds, 28.2 parts by weight of a low melting point polyoxyethylene alkyl ether (40 mPa · s) at 60 ° C. was added to a two-fluid nozzle (BN90 type manufactured by Atmax Co., Ltd .: binder spray pressure 0.01 MPa / for atomization) (Air spray pressure 0.3 MPa) was added in 7 minutes. After the addition, the mixture was granulated for 2 minutes and then discharged from the drum granulator.
 得られた顆粒群10は湿粉状であり、ハンドリング不可能な性状であった。 The resulting granule group 10 was in the form of a wet powder and was unhandled.
比較例6
 ライト灰100重量部(4.93kg)を邪魔板を有した75Lドラム型造粒機(φ40cm×L60cm/回転数30r.p.m./フルード数0.2)中で撹拌した。30秒撹拌した後、60℃の低融点ポリオキシエチレンアルキルエーテル(40mPa・s)35.0重量部を2流体ノズル((株)アトマックス製BN90型:バインダー噴霧圧0.01MPa/微粒化用Air噴霧圧0.3MPa)を用いて、9.43分間で添加した。添加後、さらに混合を1分間続けて顆粒化を行った。その後、ライト灰100重量部に対し、ゼオライト41重量部を添加し、さらに混合を1分間行い、ドラム型造粒機から排出した。
Comparative Example 6
100 parts by weight (4.93 kg) of light ash was stirred in a 75 L drum granulator (φ40 cm × L60 cm / rotation speed 30 rpm / fluid number 0.2) having a baffle plate. After stirring for 30 seconds, 35.0 parts by weight of low-melting polyoxyethylene alkyl ether (40 mPa · s) at 60 ° C. was added to a two-fluid nozzle (BN90 type manufactured by Atmax Co., Ltd .: binder spray pressure 0.01 MPa / for atomization) (Air spray pressure 0.3 MPa) was added in 9.43 minutes. After the addition, granulation was continued by further mixing for 1 minute. Thereafter, 41 parts by weight of zeolite was added to 100 parts by weight of light ash, and further mixed for 1 minute, and discharged from the drum granulator.
 得られた顆粒群11は、平均粒径138μm、嵩密度698g/Lの顆粒群であり、吸油能0.20mL/gであった。また、顆粒収率は99.3であり、Rosin-Rammler数は1.0であった。 The resulting granule group 11 was a granule group having an average particle diameter of 138 μm and a bulk density of 698 g / L, and had an oil absorption capacity of 0.20 mL / g. The granule yield was 99.3 and the Rosin-Rammler number was 1.0.
比較例7
 顆粒群7を用い、45重量部の無定形アルミノ珪酸塩を添加した以外は実施例6と同様にして洗剤粒子群5を得た。
Comparative Example 7
Detergent particle group 5 was obtained in the same manner as in Example 6 except that granule group 7 was used and 45 parts by weight of amorphous aluminosilicate was added.
 得られた洗剤粒子群5は、平均粒径4638μm、洗剤収率0.1%であった。 The resulting detergent particle group 5 had an average particle size of 4638 μm and a detergent yield of 0.1%.
 上記の実施例等の条件、結果を以下の表に示す。 The conditions and results of the above examples are shown in the following table.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
 表中の項目、略号について以下に説明する。
LAS:直鎖アルキルベンゼンスルホン酸
FA:脂肪酸
E121:高融点ポリオキシエチレンアルキルエーテル
E106:低融点ポリオキシエチレンアルキルエーテル
PEG:ポリエチレングリコール
ゼオライト:無定形アルミノ珪酸塩
The items and abbreviations in the table are described below.
LAS: linear alkylbenzene sulfonic acid FA: fatty acid E121: high melting point polyoxyethylene alkyl ether E106: low melting point polyoxyethylene alkyl ether PEG: polyethylene glycol zeolite: amorphous aluminosilicate
粗粒率:評価対象の全顆粒のうち、1000μmの篩上に残存した顆粒の割合(重量%)を示す。
嵩密度:評価対象の粒子のうち、1180μmの篩を通過した粒子についての嵩密度を示す。
流動性:評価対象の粒子のうち、1180μmの篩を通過した粒子についての流動性を示す。
吸油能:評価対象の粉末のうち、2000μmの篩を通過した粒子についての吸油能を示す。
Coarse grain ratio: The ratio (% by weight) of granules remaining on a 1000 μm sieve among all the granules to be evaluated.
Bulk density: This indicates the bulk density of particles that have passed through a 1180 μm sieve among the particles to be evaluated.
Fluidity: The fluidity of particles that have passed through a 1180 μm sieve among the particles to be evaluated.
Oil-absorbing ability: The oil-absorbing ability of particles that have passed through a 2000 μm sieve among the powders to be evaluated is shown.
 実施例1~2と比較例3~4との比較より、容器回転式造粒機を用いることで所望の吸油能の顆粒群が得られることが明らかになった。更に実施例1~2と比較例1との比較より、2流体ノズルを用いてバインダーを添加することで粒度分布がシャープな顆粒を収率良く得られることが分かった。 From comparison between Examples 1 and 2 and Comparative Examples 3 and 4, it was revealed that granules having a desired oil absorption capacity can be obtained by using a container rotating granulator. Further, from a comparison between Examples 1 and 2 and Comparative Example 1, it was found that granules having a sharp particle size distribution can be obtained in a high yield by adding a binder using a two-fluid nozzle.
 実施例6と比較例7との比較より、本発明の顆粒群を用いて界面活性剤組成物を吸油させることで得られる洗剤粒子群も粗大化せずに作製可能であることが分かった。又、実施例3~5と比較例5から、常温で固体状でない液をバインダーとして用いた場合は顆粒化し難いことが明らかとなり、ゼオライトを添加した場合(比較例6)でも粒度分布がブロードで、吸油能も低いことが分かった。 From the comparison between Example 6 and Comparative Example 7, it was found that the detergent particle group obtained by absorbing the surfactant composition using the granule group of the present invention can also be produced without coarsening. Also, from Examples 3 to 5 and Comparative Example 5, it is clear that when a liquid that is not solid at room temperature is used as a binder, it is difficult to granulate, and the particle size distribution is broad even when zeolite is added (Comparative Example 6). It was found that the oil absorption capacity was low.
 実施例6~9より、本発明の界面活性剤担持用顆粒群を用いることで、洗剤粒子が高収率で得られることが示された。しかも、噴霧乾燥等のさらなる乾燥操作を行うことなく、洗剤粒子群を製造することができた。 Examples 6 to 9 show that detergent particles can be obtained in a high yield by using the surfactant-supporting granule group of the present invention. Moreover, the detergent particles can be produced without further drying operation such as spray drying.
 本発明によれば、液状界面活性剤組成物の担持容量/担持力/担持速度に優れた界面活性剤担持用顆粒群を噴霧乾燥を用いない方法で得ることができる。 According to the present invention, it is possible to obtain a surfactant-supporting granule group excellent in supporting capacity / supporting force / supporting speed of a liquid surfactant composition by a method without using spray drying.

Claims (8)

  1.  吸油能0.4mL/g以上の無機アルカリを含む粉末原料と、常温で固体状のバインダー又はその前駆体バインダーとを容器回転式造粒機で撹拌する工程であって、多流体ノズルを用いて該バインダー又はその前駆体バインダーをその融点以上の温度で供給する工程を含む、嵩密度800g/L以下の界面活性剤担持用顆粒群の製造方法。 A step of stirring a powder raw material containing an inorganic alkali having an oil absorption capacity of 0.4 mL / g or more and a solid binder or a precursor binder thereof at room temperature with a container rotary granulator, using a multi-fluid nozzle A method for producing a granule group for supporting a surfactant having a bulk density of 800 g / L or less, comprising a step of supplying the binder or its precursor binder at a temperature equal to or higher than its melting point.
  2.  無機アルカリを含む粉末原料がライト灰を含む粉末原料である、請求項1に記載の製造方法。 The manufacturing method of Claim 1 whose powder raw material containing an inorganic alkali is a powder raw material containing light ash.
  3.  多流体ノズルが2流体ノズルである、請求項1又は2に記載の製造方法。 The manufacturing method according to claim 1 or 2, wherein the multi-fluid nozzle is a two-fluid nozzle.
  4.  無機アルカリを含む粉末原料の平均粒径が50~250μmである、請求項1~3のいずれか1項に記載の製造方法。 The production method according to any one of claims 1 to 3, wherein the powder raw material containing an inorganic alkali has an average particle diameter of 50 to 250 µm.
  5.  界面活性剤担持用顆粒群中、無機アルカリを含む粉末原料の含有量が40~95重量%である、請求項1~4のいずれか1項に記載の製造方法。 The production method according to any one of claims 1 to 4, wherein the content of the powder raw material containing inorganic alkali is 40 to 95 wt% in the surfactant-supporting granule group.
  6.  界面活性剤担持用顆粒群中、常温で固体状のバインダー又はその前駆体バインダーの含有量が5~40重量%である、請求項1~5のいずれか1項に記載の製造方法。 The production method according to any one of claims 1 to 5, wherein a content of the binder or precursor binder that is solid at normal temperature is 5 to 40 wt% in the surfactant-supporting granule group.
  7.  請求項1~6のいずれか1項に記載の製造方法により製造される界面活性剤担持用顆粒群に界面活性剤組成物を担持させてなる洗剤粒子群。 A detergent particle group in which a surfactant composition is supported on a surfactant-supporting granule group produced by the production method according to any one of claims 1 to 6.
  8.  請求項7に記載の洗剤粒子群を含有してなる洗剤組成物。 A detergent composition comprising the detergent particle group according to claim 7.
PCT/JP2010/070594 2009-11-18 2010-11-18 Method for producing surfactant-supporting granule cluster WO2011062235A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201080052390.7A CN102666827B (en) 2009-11-18 2010-11-18 Method for producing surfactant-supporting granule cluster
AU2010320063A AU2010320063B2 (en) 2009-11-18 2010-11-18 Method for producing surfactant-supporting granule cluster
BR112012011979A BR112012011979A2 (en) 2009-11-18 2010-11-18 method for producing a granular agglomerate for surfactant support

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009263326 2009-11-18
JP2009-263326 2009-11-18

Publications (1)

Publication Number Publication Date
WO2011062235A1 true WO2011062235A1 (en) 2011-05-26

Family

ID=44059708

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/070594 WO2011062235A1 (en) 2009-11-18 2010-11-18 Method for producing surfactant-supporting granule cluster

Country Status (5)

Country Link
JP (1) JP5713644B2 (en)
CN (1) CN102666827B (en)
AU (1) AU2010320063B2 (en)
BR (1) BR112012011979A2 (en)
WO (1) WO2011062235A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017095585A (en) * 2015-11-24 2017-06-01 靖志 鎌田 Powder detergent

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5971753B2 (en) * 2012-07-09 2016-08-17 花王株式会社 Method for producing detergent particles

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01301798A (en) * 1988-05-30 1989-12-05 Lion Corp Solid-like bleaching agent
JP2000109899A (en) * 1998-10-01 2000-04-18 Lion Corp Atomization of nonionic surface active agent composition and preparation of granular detergent composition using the same
JP2001181691A (en) * 1999-12-22 2001-07-03 Lion Corp Vessel rotary type mixing machine and method for producing granular detergent composition
JP2005239786A (en) * 2004-02-24 2005-09-08 Lion Corp Nonionic surfactant-containing particle and its production method and detergent composition
WO2009142135A1 (en) * 2008-05-19 2009-11-26 花王株式会社 Surfactant-supporting granule cluster
WO2011001966A1 (en) * 2009-06-30 2011-01-06 花王株式会社 Method for producing high bulk density detergent granules

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW397862B (en) * 1996-09-06 2000-07-11 Kao Corp Detergent granules and method for producing the same, and high-bulk density detergent composition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01301798A (en) * 1988-05-30 1989-12-05 Lion Corp Solid-like bleaching agent
JP2000109899A (en) * 1998-10-01 2000-04-18 Lion Corp Atomization of nonionic surface active agent composition and preparation of granular detergent composition using the same
JP2001181691A (en) * 1999-12-22 2001-07-03 Lion Corp Vessel rotary type mixing machine and method for producing granular detergent composition
JP2005239786A (en) * 2004-02-24 2005-09-08 Lion Corp Nonionic surfactant-containing particle and its production method and detergent composition
WO2009142135A1 (en) * 2008-05-19 2009-11-26 花王株式会社 Surfactant-supporting granule cluster
WO2011001966A1 (en) * 2009-06-30 2011-01-06 花王株式会社 Method for producing high bulk density detergent granules

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017095585A (en) * 2015-11-24 2017-06-01 靖志 鎌田 Powder detergent

Also Published As

Publication number Publication date
AU2010320063B2 (en) 2014-11-13
CN102666827B (en) 2014-06-18
CN102666827A (en) 2012-09-12
BR112012011979A2 (en) 2016-05-10
JP2011127105A (en) 2011-06-30
AU2010320063A1 (en) 2012-05-31
JP5713644B2 (en) 2015-05-07

Similar Documents

Publication Publication Date Title
JP5525755B2 (en) Surfactant-supporting granules
JP5624811B2 (en) Method for producing high bulk density detergent particles
JP5713644B2 (en) Method for producing surfactant-supporting granules
JP5466359B2 (en) Detergent particles
AU2010320064B2 (en) Method for producing detergent granules
WO2012067226A1 (en) Method for producing detergent particle aggregates
WO2012067227A1 (en) Method for producing detergent particle group
JP5226953B2 (en) Detergent particles
JP5192156B2 (en) Method for producing detergent composition
WO2011062234A1 (en) Method for producing detergent granules
WO2012157681A1 (en) Process for manufacturing group of detergent granules
JP5525126B2 (en) Detergent particles
JP5512980B2 (en) Detergent particles
JP2001003082A (en) Surface modifier and group of detergent particle
WO2012043699A1 (en) Powder detergent composition and method for producing same
JP5971753B2 (en) Method for producing detergent particles
JP2010144045A (en) Method for producing mononuclear detergent particle cluster

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080052390.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10831628

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010320063

Country of ref document: AU

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1201002273

Country of ref document: TH

WWE Wipo information: entry into national phase

Ref document number: 4421/DELNP/2012

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2010320063

Country of ref document: AU

Date of ref document: 20101118

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012011979

Country of ref document: BR

122 Ep: pct application non-entry in european phase

Ref document number: 10831628

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112012011979

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120518