WO2011061922A1 - Manufacturing method and device for transparent conductive film, sputtering target and transparent conductive film - Google Patents

Manufacturing method and device for transparent conductive film, sputtering target and transparent conductive film Download PDF

Info

Publication number
WO2011061922A1
WO2011061922A1 PCT/JP2010/006713 JP2010006713W WO2011061922A1 WO 2011061922 A1 WO2011061922 A1 WO 2011061922A1 JP 2010006713 W JP2010006713 W JP 2010006713W WO 2011061922 A1 WO2011061922 A1 WO 2011061922A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent conductive
conductive film
component
film
sputtering
Prior art date
Application number
PCT/JP2010/006713
Other languages
French (fr)
Japanese (ja)
Inventor
富之 湯川
応樹 武井
大士 小林
泰彦 赤松
淳也 清田
健二 増澤
暁 石橋
Original Assignee
株式会社アルバック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アルバック filed Critical 株式会社アルバック
Priority to CN201080051495.0A priority Critical patent/CN102666909B/en
Priority to JP2011541809A priority patent/JP5726752B2/en
Priority to KR1020187015886A priority patent/KR20180063386A/en
Priority to KR1020167036789A priority patent/KR20170005149A/en
Priority to KR1020147013540A priority patent/KR20140071502A/en
Publication of WO2011061922A1 publication Critical patent/WO2011061922A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K13/00Etching, surface-brightening or pickling compositions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5873Removal of material

Definitions

  • the present invention relates to a method for producing a transparent conductive film excellent in etching characteristics, conductive characteristics, etc., a transparent conductive film production apparatus, a sputtering target, and a transparent conductive film.
  • ITO Indium Tin Oxide
  • ITO films mainly composed of indium oxide and tin oxide are widely used as transparent conductive films.
  • the ITO film is formed by a vacuum deposition method, a sputtering method, or the like, and a sputtering target made of ITO is often used in the sputtering method.
  • the ITO film formed at room temperature is in a state where both crystalline and amorphous are mixed, it is difficult to obtain desired conductive characteristics.
  • an ITO film formed at a temperature of 200 ° C. or higher has a high conductive property because it is in a crystalline state.
  • the crystallized ITO film has low solubility in a weak acid such as oxalic acid, and it is necessary to use a strong acid such as hydrochloric acid or sulfuric acid as an etching solution. For this reason, it is difficult to ensure a high etching selectivity between the ITO film and its underlying film or other wiring layers.
  • an object of the present invention is to provide a method for producing a transparent conductive film, which can form a transparent conductive film having good etching characteristics and conductive characteristics without using water vapor. is there.
  • an object of the present invention is to provide a transparent conductive film manufacturing apparatus and a sputtering target capable of forming a transparent conductive film having good etching characteristics and conductive characteristics without using water vapor.
  • a method for producing a transparent conductive film includes a first component made of indium oxide, a second component made of tin oxide, lanthanum, neodymium, dysprosium, europium, Placing the substrate in a chamber having a target material comprising a third component comprising at least one element selected from gadolinium, terbium, zirconium, aluminum, silicon, titanium, and boron or an oxide thereof. . By sputtering the target material, an indium tin oxide thin film is formed on the substrate.
  • a transparent conductive film manufacturing apparatus includes a chamber, a support portion, and a film formation portion.
  • the chamber is configured to be able to maintain a vacuum state.
  • the support is for supporting a substrate in the chamber.
  • the film forming unit includes a first component made of indium oxide, a second component made of tin oxide, and lanthanum, neodymium, dysprosium, europium, gadolinium, terbium, zirconium, aluminum, silicon, titanium, and boron.
  • a target material including at least one selected element or a third component made of an oxide thereof.
  • the film forming unit forms the indium tin oxide thin film on the substrate supported by the support unit by sputtering the target material in the chamber.
  • a sputtering target is a sputtering target for forming a transparent conductive film on a substrate by a sputtering method, and includes a first component, a second component, And a third component.
  • the first component is made of indium oxide.
  • the second component is made of tin oxide.
  • the third component is composed of at least one element selected from lanthanum, neodymium, dysprosium, europium, gadolinium, terbium, zirconium, aluminum, silicon, titanium, and boron, or an oxide thereof.
  • a transparent conductive film is a transparent conductive film formed over a substrate by a sputtering method, and includes a first component, a second component, and a first component. 3 ingredients.
  • the first component is made of indium oxide.
  • the second component is made of tin oxide.
  • the third component is composed of at least one element selected from lanthanum, neodymium, dysprosium, europium, gadolinium, terbium, zirconium, aluminum, silicon, titanium, and boron, or an oxide thereof.
  • a method for producing a transparent conductive film according to an embodiment of the present invention includes a first component made of indium oxide, a second component made of tin oxide, lanthanum, neodymium, dysprosium, europium, gadolinium, terbium, zirconium, and aluminum. And disposing a substrate in a chamber having a target material including at least one element selected from silicon, titanium, and boron or a third component made of an oxide thereof. By sputtering the target material, an indium tin oxide thin film is formed on the substrate.
  • an amorphous indium tin oxide thin film (hereinafter also referred to as “ITO film”) can be formed as it is. Therefore, when the ITO film is patterned by etching, a weakly acidic etching solution such as oxalic acid can be used. In addition, it becomes easy to ensure a high etching selectivity between the base film and other wiring layers, so that good etching characteristics can be obtained. Furthermore, by crystallization of the ITO film by heat treatment (annealing), good conductive properties can be imparted. Since the heat-treated ITO film has good transmittance characteristics in the visible light region, it can be suitably used as a transparent conductive film for flat panel displays, solar power generation modules and the like.
  • the substrate on which the ITO film is formed is typically a glass substrate, but may also be a silicon substrate or a ceramic substrate. Further, an organic substrate can be used as long as it has heat resistance with respect to the heat treatment temperature.
  • the third component is an element group capable of forming an ITO film soluble in a weak acid.
  • Dy dysprosium
  • an oxide thereof as the third component, an ITO film having a specific resistance of 300 ⁇ ⁇ cm or less and excellent conductive properties can be obtained.
  • the gas for sputtering the target material can be a mixed gas of argon and oxygen.
  • Argon primarily generates ions that sputter the target material.
  • Oxygen functions as a reactive gas and adjusts the oxygen concentration of the deposited ITO film. By appropriately adjusting the oxygen partial pressure, an ITO film having desired conductive characteristics and etching characteristics can be formed.
  • the heat treatment temperature (annealing temperature) for crystallizing the ITO film can be 200 ° C. or higher. When the heat treatment temperature is lower than 200 ° C., amorphous and crystal may be mixed in the ITO film.
  • the upper limit of the heat treatment temperature is not particularly limited, and is appropriately set according to the heat resistance of the substrate on which the ITO film is formed.
  • a transparent conductive film manufacturing apparatus includes a chamber, a support part, and a film forming part.
  • the chamber is configured to be able to maintain a vacuum state.
  • the support is for supporting a substrate in the chamber.
  • the film forming unit includes a first component made of indium oxide, a second component made of tin oxide, and La, Nd, Dy, Eu, Gd, Tb, Zr, Al, Si, Ti, and B.
  • a target material including at least one selected element or a third component made of an oxide thereof.
  • the film forming unit forms the indium tin oxide thin film on the substrate supported by the support unit by sputtering the target material in the chamber.
  • a sputtering target is a sputtering target for forming a transparent conductive film on a substrate by a sputtering method, and includes a first component, a second component, and a third component. And ingredients.
  • the first component is made of indium oxide.
  • the second component is made of tin oxide.
  • the third component is composed of at least one element selected from La, Nd, Dy, Eu, Gd, Tb, Zr, Al, Si, Ti, and B or an oxide thereof.
  • an amorphous ITO film can be formed on a substrate by sputtering the target material (sputtering target) having the above structure. Therefore, when the ITO film is patterned by etching, a weakly acidic etching solution such as oxalic acid can be used. In addition, it becomes easy to ensure a high etching selectivity between the base film and other wiring layers, so that good etching characteristics can be obtained.
  • FIG. 1 is a schematic view showing a transparent conductive film manufacturing apparatus according to an embodiment of the present invention.
  • the illustrated apparatus is configured as a sputtering apparatus 100 for forming a transparent conductive film.
  • the sputtering apparatus 100 connects a film forming chamber 101 for forming a transparent conductive film (ITO film) F on the surface of the substrate S, a load / unload chamber 102, and the film forming chamber 101 and the load / unload chamber 102. And a gate valve 103.
  • ITO film transparent conductive film
  • the film forming chamber 101 includes a first chamber 11 having a sealed structure and an evacuation system 30 that can evacuate the inside of the first chamber 11.
  • the film forming chamber 101 can be evacuated to a predetermined film forming pressure and can maintain the degree of vacuum.
  • the vacuum exhaust system 30 includes a main pump (turbo molecular pump) 31 and an auxiliary pump (rotary pump) 32 that exhausts the back pressure side.
  • the film formation chamber 101 has a sputtering cathode 20.
  • the sputtering cathode 20 includes a sputtering target (hereinafter simply referred to as “target”) 21, a magnet unit 22 for forming a magnetic field on the surface of the target 21, and the target 21 and the substrate S (and the first chamber 11). And a DC power source (not shown) for applying a DC voltage therebetween.
  • the target 21 is made of an indium tin oxide-based material.
  • the sputtering cathode 20 is installed on the bottom wall portion of the first chamber 11 as a DC magnetron type sputtering cathode.
  • the film forming chamber 101 includes a gas introduction unit 40 for introducing a process gas (sputtering gas) for sputtering into the first chamber 11.
  • the gas introduction unit 40 constitutes a gas introduction system together with a gas supply source, a flow rate adjustment valve, and the like (not shown).
  • the gas introduction unit 40 introduces a mixed gas of argon (Ar) and oxygen (O 2 ) into the first chamber 11.
  • the partial pressure of oxygen in the mixed gas atmosphere is, for example, 2.0E-3 (2.0 ⁇ 10 ⁇ 3 ) Pa or more and 1.0E-2 (1.0 ⁇ 10 ⁇ 2 ) Pa or less.
  • the film formation chamber 101 may have a deposition plate for preventing the film formation material from adhering to the inner wall of the first chamber 11 and other structures.
  • a deposition plate for preventing the film formation material from adhering to the inner wall of the first chamber 11 and other structures.
  • the load / unload chamber 102 includes a second chamber 12 having a sealed structure, and a vacuum pump 33 capable of evacuating the inside of the second chamber 12.
  • the load / unload chamber 102 can be evacuated to a degree of vacuum comparable to the pressure in the film forming chamber 101, and can be maintained at that degree of vacuum.
  • the load / unload chamber 102 has a door valve (not shown), and the substrate S can be transferred between the inside and the outside of the second chamber 12 via the door valve. When the substrate S is delivered, the load / unload chamber 102 is at atmospheric pressure.
  • the sputtering apparatus 100 of this embodiment further includes a carrier 50 that transports the substrate S between the film forming chamber 101 and the load / unload chamber 102 via the gate valve 103.
  • the carrier 50 is linearly moved against a guide rail (not shown) spanned between the film forming chamber 101 and the load / unload chamber 102 by a driving source (not shown).
  • the carrier 50 transported from the load / unload chamber 102 to the film formation chamber 101 is returned to the load / unload chamber 102 after reciprocating in the film formation chamber 101.
  • the substrate S is held on the lower surface of the carrier 50 and is formed in the film forming chamber 101 in the process of passing immediately above the sputtering cathode 20.
  • a glass substrate is used as the substrate S.
  • the film formation surface of the substrate may be a glass surface that is a base material, or may be the surface of an insulating film already formed on the base material. Further, a metal wiring film such as copper may be present on the surface of the insulating film.
  • the carrier 50 constitutes a “support portion” that supports the substrate S in the first chamber 11.
  • the sputtering cathode 20 and the gas introduction unit 40 constitute a “film formation unit”.
  • the film forming unit forms the indium tin oxide thin film on the substrate S supported by the carrier 50 by sputtering the target 21 in the first chamber 11.
  • the magnet unit 22, the DC power source and the like constituting the sputtering cathode 20 constitute a “plasma generating mechanism”.
  • the plasma generation mechanism generates ions for sputtering the target 21 by generating plasma of a sputtering gas (mixed gas of Ar and O 2 ) introduced into the first chamber 11 from the gas introduction unit 40. .
  • the target 21 is configured as a target material or a sputtering target for forming the transparent conductive film F on the substrate S by sputtering.
  • the target 21 is a disc-like or rectangular plate-like sintered body made of an indium tin oxide (hereinafter also referred to as “ITO”) material, and the sintering density thereof is, for example, 98% or more.
  • ITO indium tin oxide
  • the target 21 includes a first component made of indium oxide (In 2 O 3 ), a second component made of tin oxide (SnO), and a third component as an additive.
  • the third component is lanthanum (La), neodymium (Nd), dysprosium (Dy), europium (Eu), gadolinium (Gd), terbium (Tb), zirconium (Zr), aluminum (Al), silicon (Si) , At least one element selected from titanium (Ti) and boron (B) or an oxide thereof.
  • the third component is soluble in acid, and enables amorphous ITO to be formed immediately after film formation.
  • the target 21 having the above structure is sputtered in the film forming chamber 101 to form the ITO film F containing the first, second, and third components on the substrate S. Therefore, the composition of the target 21 is appropriately adjusted according to the composition of the ITO film F to be formed.
  • the oxygen concentration of the ITO film F may be adjusted by the oxygen partial pressure in the film formation chamber 101 during film formation.
  • a typical weight ratio of indium oxide (first component) to tin oxide (second component) is 9: 1, but is adjusted in the range of 97.5: 2.5 to 85:15, for example. .
  • the addition amount of the additive (third component) is represented by the following formula (1), where ⁇ is the additive element. 0.1 ⁇ ⁇ / (In + Sn + ⁇ ) ⁇ ⁇ 10 [atomic%] (1)
  • the additive element is an oxide
  • the oxide is ⁇ Ox
  • the addition amount is expressed by the following equation (2). 0.06 ⁇ ⁇ Ox / (In 2 O 3 + SnO) + ⁇ Ox ⁇ ⁇ 6 [atomic%] (2)
  • the amount of the third component added is less than 0.1 atomic%, it is difficult to stably form an amorphous ITO film. In other words, an ITO film in which crystalline and amorphous are mixed may be formed.
  • the added amount of the third component exceeds 10 atomic%, it becomes difficult to obtain desired characteristics with respect to the conductive characteristics and light transmittance of the obtained ITO film.
  • the addition amount of the third component varies depending on the type of element used, but is selected within the above range.
  • an amorphous indium tin oxide thin film (ITO film) F can be formed on the substrate S. Since the ITO film F immediately after film formation is in an amorphous state, a weak acidic etching solution such as oxalic acid or acetic acid can be used when patterning the ITO film F. In addition, after patterning, the ITO film F is crystallized by annealing (heat treatment), whereby an ITO film F having a low specific resistance and excellent conductive characteristics can be obtained.
  • annealing heat treatment
  • FIG. 2 shows the process flow.
  • the method for producing a transparent conductive film of the present embodiment includes an ITO film F film forming process (step ST1), an ITO film F patterning process (step ST2), and an ITO film F annealing process (step ST3). .
  • step ST1 of the ITO film F the sputtering apparatus 100 shown in FIG. 1 is used.
  • the substrate S carried into the load / unload chamber 102 is held on the lower surface of the carrier 50.
  • the vacuum pump 33 is driven to evacuate the load / unload chamber 102.
  • the gate valve 103 is opened and the carrier 50 is transferred into the film formation chamber 101.
  • the gate valve 103 is closed.
  • the carrier 50 transported to the film forming chamber 101 is moved linearly in the film forming chamber 101.
  • the substrate S is formed by the sputtering cathode 20 while being moved together with the carrier 50.
  • a sputtering gas Ar + O 2
  • the introduced sputtering gas is excited by a DC electric field applied between the target 21 and the carrier 50 and a fixed magnetic field formed on the surface of the target 21 by the magnet unit 22, thereby generating a sputtering gas plasma.
  • Ions (particularly Ar ions) in the plasma are attracted to the sputtering cathode 20 under the action of an electric field, and the surface of the target 21 is sputtered.
  • oxygen contained in the sputtering gas generates highly active oxygen radicals, and the generated oxygen radicals react with ITO particles knocked out from the surface of the target 21. Therefore, the oxygen concentration of the ITO film F formed on the substrate S is controlled by the amount of oxygen in the sputtering gas.
  • a so-called passing film formation method is employed in which film formation is performed while passing the substrate S above the target 21.
  • the substrate S is formed on the forward path of the carrier 50 that reciprocates in the film forming chamber 101, but is not limited thereto, and may be formed on the return path of the carrier 50, or the forward path and the return path. Both may be formed into a film.
  • the substrate S is transported through the film formation chamber 101 without heating (room temperature).
  • a heating source may be incorporated in the sputtering apparatus 100 to heat the substrate to a predetermined temperature during film formation.
  • the substrate S on which the ITO film F is formed is transferred to the load / unload chamber 102 through the gate valve 103 together with the carrier 50. Thereafter, the gate valve 103 is closed, the load / unload chamber 102 is opened to the atmosphere, and the film-formed substrate S is taken out through a door valve (not shown). As described above, the amorphous ITO film F is formed on the surface of the substrate S.
  • the ITO film F is patterned into a predetermined shape by a wet etching method. Prior to this, a resist mask is formed on the ITO film F. In the etching step, the ITO film F exposed from the opening of the resist mask is dissolved by applying an etching solution on the surface of the substrate S from above the resist mask. Then, the patterning process of the ITO film
  • an etching solution containing weakly acidic oxalic acid for example, oxalic acid or The ITO film F can be etched using a chemical solution (ITO-05N, ITO-06N, ITO-07N) (trade name) manufactured by Kanto Chemical.
  • a chemical solution ITO-05N, ITO-06N, ITO-07N
  • Kanto Chemical a chemical solution manufactured by Kanto Chemical.
  • the patterning shape of the ITO film F differs depending on the type of device to be manufactured. For example, when an ITO film is used as a pixel electrode for a liquid crystal display, the ITO film F is patterned on a pixel basis. When the ITO film is used for a solar power generation module, the ITO film F is patterned in units of individual power generation cells.
  • the ITO film F is crystallized by annealing (heat treatment) the patterned ITO film F.
  • the purpose of crystallization of the ITO film F is to reduce the specific resistance of the ITO film F and improve the conductive characteristics.
  • a heat treatment furnace is typically used.
  • the annealing conditions can be set as appropriate, and can be set to 200 ° C. or higher in the atmosphere, for example.
  • the annealing temperature is less than 200 ° C.
  • the ITO film F may be mixed with crystals and amorphous.
  • the upper limit of the annealing temperature is not particularly limited, and is appropriately determined depending on the heat resistance of the substrate S, ITO film F, or other functional thin film (insulating film, metal film) other than the ITO film F formed on the substrate S. Is set.
  • the annealing atmosphere is not limited to air, and may be a nitrogen atmosphere, for example.
  • the annealing time is set according to the annealing temperature. Typically, the annealing time is set shorter as the annealing temperature becomes higher.
  • the transparent conductive film (ITO film F) As described above, the transparent conductive film (ITO film F) according to this embodiment is manufactured.
  • the transparent conductive film of this embodiment includes a first component made of indium oxide, a second component made of tin oxide, La, Nd, Dy, Eu, Gd, Tb, Zr, Al, Si, Ti, and B. And a third component comprising at least one element selected from the group consisting of oxides thereof.
  • the amorphous ITO film F can be formed as it is.
  • an amorphous ITO film can be manufactured without adding water vapor to the sputtering gas. Therefore, adverse effects associated with the addition of water vapor to the sputtering gas, for example, generation of particles due to easy peeling of the ITO film attached to the deposition preventing plate, and the stable exhausting action of the film forming chamber 101 are hindered. It is possible to prevent variations in sputtering pressure due to the above.
  • the ITO film F is crystallized by heat treatment (annealing), the ITO film F having good conductive characteristics can be manufactured. Since the ITO film F manufactured in this way has good transmittance characteristics in the visible light region, it can be suitably used as a transparent conductive film for flat panel displays, solar power generation modules and the like.
  • Example 1 A sputtering target (hereinafter also referred to as “Dy-added ITO target”) in which 1.5 atomic% of dysprosium oxide was added to indium tin oxide was produced.
  • Dy-added ITO target an ITO film having a thickness of 1000 mm (hereinafter also referred to as “Dy-added ITO film”) was formed on the substrate by the sputtering apparatus shown in FIG.
  • the film forming conditions are as follows: DC power 600 W (1.16 W / cm 2 ), distance between target and substrate (T / S distance) 100 mm, magnetic unit magnetic field size 300 G, film forming rate (dynamic rate) 70 mm. ⁇ M / min.
  • a mixed gas of argon and oxygen was used, and a plurality of ITO film samples were formed with different oxygen partial pressures.
  • the partial pressure of argon is 0.67 Pa (200 sccm)
  • the partial pressure of oxygen is 0 Pa, 1.33 ⁇ 10 ⁇ 3 Pa, 2.66 ⁇ 10 ⁇ 3 Pa, 5.32 ⁇ 10 ⁇ 3 Pa, 7.98. ⁇ 10 ⁇ 3 Pa and 1.06 ⁇ 10 ⁇ 2 Pa were set.
  • the X-ray diffraction intensity of the ITO film sample produced at an oxygen partial pressure of 5.32 ⁇ 10 ⁇ 3 Pa was measured.
  • “Rinto (trade name)” manufactured by Rigaku Corporation was used.
  • the etching rate of each produced ITO film sample was measured.
  • As the etching solution a chemical solution containing oxalic acid (“ITO-06N” (trade name) manufactured by Kanto Chemical Co., Inc.) was used. Subsequently, each ITO film sample was annealed in the atmosphere at 230 ° C. for 1 hour.
  • the X-ray diffraction intensity, specific resistance, and visible light (wavelength: 400 nm to 800 nm) transmittance of each ITO film sample after annealing were measured.
  • specific resistance “Loresta MCP-T350 (trade name)” manufactured by Mitsubishi Chemical Corporation was used.
  • visible light transmittance ITO film samples prepared at an oxygen partial pressure of 5.32 ⁇ 10 ⁇ 3 Pa were used.
  • visible light transmittance “U-4100” manufactured by Hitachi, Ltd. was used.
  • Example 2 A sputtering target obtained by adding 1 atomic% of boron oxide to indium tin oxide (hereinafter also referred to as “B-added ITO target”) was produced. Using this B-added ITO target, an ITO film (hereinafter also referred to as “B-added ITO film”) was formed under the same conditions as in Example 1. With respect to the formed B-added ITO film, the etching rate, specific resistance, light transmittance, and X-ray diffraction intensity before and after annealing were measured under the same conditions as in Example 1.
  • Example 1 A sputtering target in which 5 atomic% of cerium oxide was added to indium tin oxide (hereinafter referred to as “Ce-added ITO target”) was produced.
  • An ITO film (hereinafter also referred to as “Ce-added ITO film”) was formed under the same conditions as in Example 1 using this Ce-added ITO target.
  • the etching rate, specific resistance, light transmittance, and X-ray diffraction intensity before and after annealing were measured under the same conditions as in Example 1.
  • Example 2 An ITO target containing indium oxide and tin oxide is sputtered in a sputtering gas containing argon, oxygen and water vapor to form an ITO film (hereinafter also referred to as “H 2 O-added ITO film”) on the substrate. A film was formed.
  • the film formation conditions were the same as in Example 1, and the sputtering pressure was formed by changing the oxygen partial pressure to form a plurality of ITO films.
  • the argon partial pressure is 0.67 Pa
  • the water vapor partial pressure is 2.66 ⁇ 10 ⁇ 3 Pa
  • the oxygen partial pressure is 0 Pa, 1.33 ⁇ 10 ⁇ 3 Pa, 2.66 ⁇ 10 ⁇ 3 Pa, 5 .32 ⁇ 10 ⁇ 3 Pa.
  • the etching rate, specific resistance, light transmittance, and X-ray diffraction intensity before and after annealing were measured under the same conditions as in Example 1.
  • an ITO film sample produced at an oxygen partial pressure of 1.33 ⁇ 10 ⁇ 3 Pa was used.
  • the X-ray diffraction intensities before annealing of the Dy-added ITO film, B-added ITO film, Ce-added ITO film and H 2 O-added ITO film are shown in FIG. 3A, and the X-ray diffraction intensities after annealing are shown in FIG. B) respectively.
  • FIG. 3A a halo pattern indicating an amorphous state was recognized in the X-ray diffraction pattern of the ITO film before annealing, that is, the ITO film immediately after the film formation.
  • an intensity peak was observed at the diffraction angle inherent to the ITO crystal, and this confirmed that the annealed ITO film was in a crystalline state.
  • FIGS. 4A and 4B are experimental results showing the specific resistance of each ITO film sample before and after annealing.
  • FIG. 4A shows the state before annealing
  • FIG. Each after annealing is shown.
  • “ ⁇ ” indicates an H 2 O-added ITO film
  • “ ⁇ ” indicates a Ce-added ITO film
  • “ ⁇ ” indicates a Dy-added ITO film
  • “ ⁇ ” indicates a B-added ITO film. (The same applies to FIG. 5).
  • the specific resistance after annealing can be lower than that before annealing. This is because the specific resistance is lower in the crystalline state than in the amorphous state.
  • the specific resistance after annealing is the minimum for any ITO film sample when the oxygen partial pressure is 5.32 ⁇ 10 ⁇ 3 Pa.
  • About Dy-added ITO film and Ce-added ITO film are about 300 ⁇ cm, and B is added. The ITO film was about 400 ⁇ cm.
  • the H 2 O-added ITO film it was confirmed that the minimum value of specific resistance (about 300 ⁇ cm) can be obtained by the annealing process when the oxygen partial pressure is 1.33 ⁇ 10 ⁇ 3 Pa. That is, it was confirmed that the specific resistances of the Dy-added ITO film and the Ce-added ITO film have values comparable to the specific resistance of the H 2 O-added ITO film.
  • FIG. 5 is an experimental result showing the etching rate of each amorphous ITO film sample. It was confirmed that the Dy-added ITO film has an etching rate equivalent to that of the H 2 O-added ITO film. It was confirmed that the etching rate of the B-added ITO film was higher than the etching rate of the H 2 O-added ITO film. On the other hand, the Ce-added ITO film was confirmed to have a lower etching rate than the H 2 O-added ITO film. This is presumably because Ce oxide is less soluble in weak acids than Dy oxide and B oxide.
  • FIG. 6 is an experimental result which shows the visible light transmittance
  • an etching rate, specific resistance, and visible light transmittance equivalent to those of the H 2 O-added ITO film can be obtained. Further, by using the Dy-added sputtering target or the B-added sputtering target, an ITO film having excellent patterning characteristics, conductive characteristics, and light transmission characteristics can be stably formed.
  • the addition amount of Dy in the Dy-added sputtering target is 1.5 atomic% and the addition amount of B in the B-added sputtering target is 1 atomic%, but is not limited thereto. Since the etching rate, specific resistance, visible light transmittance, etc. of the obtained ITO film change depending on the amount of addition of these third components, the amount of addition can be appropriately adjusted according to the required characteristics. is there.

Abstract

Disclosed is a transparent conductive film manufacturing method which enables the formation of a transparent conductive film having excellent etching properties and conductivity, without using water vapour. The disclosed manufacturing method for a transparent conductive film comprises a step wherein an indium tin oxide thin film is formed on a substrate by sputtering a target material containing a first component which is formed from indium oxide, a second component which is formed from tin oxide, and a third component which is formed from at least one element, or the oxide thereof, selected from among La, Nd, Dy, Eu, Gd, Tb, Zr, Al, Si, Ti, and B. The method further comprises a step wherein the indium tin oxide thin film is patterned using an etching solution, and a step wherein the indium tin oxide thin film is crystalised by means of heat treatment. Due to the above method the ITO film can be etched by a weak acid immediately after film formation and a desired conductivity can be imparted to the ITO film.

Description

透明導電膜の製造方法、透明導電膜の製造装置、スパッタリングターゲット及び透明導電膜Transparent conductive film manufacturing method, transparent conductive film manufacturing apparatus, sputtering target, and transparent conductive film
 本発明は、エッチング特性、導電特性等に優れた透明導電膜の製造方法、透明導電膜の製造装置、スパッタリングターゲット及び透明導電膜に関する。 The present invention relates to a method for producing a transparent conductive film excellent in etching characteristics, conductive characteristics, etc., a transparent conductive film production apparatus, a sputtering target, and a transparent conductive film.
 フラットパネルディスプレイや太陽発電モジュールの製造分野においては、透明導電膜として酸化インジウム及び酸化スズを主成分とするITO(Indium Tin Oxide)膜が広く用いられている。ITO膜は、真空蒸着法、スパッタリング法等によって成膜され、スパッタリング法では、ITOで構成されたスパッタリングターゲットが使用される場合が多い。 In the field of manufacturing flat panel displays and solar power generation modules, ITO (Indium Tin Oxide) films mainly composed of indium oxide and tin oxide are widely used as transparent conductive films. The ITO film is formed by a vacuum deposition method, a sputtering method, or the like, and a sputtering target made of ITO is often used in the sputtering method.
 室温で成膜されたITO膜は、結晶質と非晶質とが混在した状態であるため、所望の導電特性が得られにくい。一方、200℃以上の温度で成膜されたITO膜は結晶状態であるため、高い導電特性を有する。しかし、結晶化したITO膜は、シュウ酸などの弱酸に対して溶解性が低く、塩酸や硫酸等の強酸をエッチング液として用いる必要がある。このため、ITO膜とその下地膜あるいは他の配線層等との間に高いエッチング選択比を確保することが困難である。 Since the ITO film formed at room temperature is in a state where both crystalline and amorphous are mixed, it is difficult to obtain desired conductive characteristics. On the other hand, an ITO film formed at a temperature of 200 ° C. or higher has a high conductive property because it is in a crystalline state. However, the crystallized ITO film has low solubility in a weak acid such as oxalic acid, and it is necessary to use a strong acid such as hydrochloric acid or sulfuric acid as an etching solution. For this reason, it is difficult to ensure a high etching selectivity between the ITO film and its underlying film or other wiring layers.
 そこで、アルゴン等のスパッタガスに水蒸気を混合することで、アモルファスのITO膜を成膜した後、ITO膜をアニールすることで結晶化させて、低抵抗のITO膜を作製する方法が知られている(特許文献1参照)。この方法によれば、成膜したままの状態(アズデポ(as deposition)状態)において弱酸によるエッチングが可能となるため、良好なエッチング特性が得られることになる。 Therefore, there is known a method for producing a low-resistance ITO film by forming an amorphous ITO film by mixing water vapor into a sputtering gas such as argon and then crystallizing the ITO film by annealing. (See Patent Document 1). According to this method, since etching with a weak acid is possible in a state where the film is formed (as-deposition state), good etching characteristics can be obtained.
特開2008-179850号公報(段落[0023]~[0026])JP 2008-179850 A (paragraphs [0023] to [0026])
 しかしながら、特許文献1に記載のITO膜の成膜方法では、導入される水蒸気の影響によって、防着板やターゲットの非エロージョン領域に付着した膜が剥離し易くなり、パーティクルの発生の原因になるという問題がある。また、水蒸気の導入により、成膜室の安定した排気作用が阻害されるおそれがある。 However, in the method for forming an ITO film described in Patent Document 1, the film adhering to the non-erosion region of the deposition prevention plate or the target is easily peeled off due to the influence of the introduced water vapor, which causes generation of particles. There is a problem. In addition, the introduction of water vapor may hinder the stable exhaust action of the film formation chamber.
 以上のような事情に鑑み、本発明の目的は、水蒸気を用いることなく、良好なエッチング特性及び導電特性を有する透明導電膜を形成することができる、透明導電膜の製造方法を提供することにある。 In view of the circumstances as described above, an object of the present invention is to provide a method for producing a transparent conductive film, which can form a transparent conductive film having good etching characteristics and conductive characteristics without using water vapor. is there.
 また、本発明の目的は、水蒸気を用いることなく、良好なエッチング特性及び導電特性を有する透明導電膜を形成することができる、透明導電膜の製造装置及びスパッタリングターゲットを提供することにある。 Also, an object of the present invention is to provide a transparent conductive film manufacturing apparatus and a sputtering target capable of forming a transparent conductive film having good etching characteristics and conductive characteristics without using water vapor.
 上記目的を達成するため、本発明の一形態に係る透明導電膜の製造方法は、酸化インジウムからなる第1の成分と、酸化スズからなる第2の成分と、ランタン、ネオジウム、ジスプロシウム、ユーロピウム、ガドリニウム、テルビウム、ジルコニウム、アルミニウム、シリコン、チタニウム及びホウ素の中から選ばれる少なくとも1種の元素又はその酸化物からなる第3の成分とを含むターゲット材料を有するチャンバ内に基板を配置する工程を含む。上記ターゲット材料をスパッタすることで、基板上にインジウムスズ酸化物薄膜が形成される。 In order to achieve the above object, a method for producing a transparent conductive film according to an embodiment of the present invention includes a first component made of indium oxide, a second component made of tin oxide, lanthanum, neodymium, dysprosium, europium, Placing the substrate in a chamber having a target material comprising a third component comprising at least one element selected from gadolinium, terbium, zirconium, aluminum, silicon, titanium, and boron or an oxide thereof. . By sputtering the target material, an indium tin oxide thin film is formed on the substrate.
 上記目的を達成するため、本発明の一形態に係る透明導電膜の製造装置は、チャンバと、支持部と、成膜部とを具備する。
 上記チャンバは、真空状態を維持可能に構成される。
 上記支持部は、上記チャンバ内で基板を支持するためのものである。
 上記成膜部は、酸化インジウムからなる第1の成分と、酸化スズからなる第2の成分と、ランタン、ネオジウム、ジスプロシウム、ユーロピウム、ガドリニウム、テルビウム、ジルコニウム、アルミニウム、シリコン、チタニウム及びホウ素の中から選ばれる少なくとも1種の元素又はその酸化物からなる第3の成分とを含むターゲット材料を有する。上記成膜部は、上記チャンバ内で上記ターゲット材料をスパッタすることで、上記支持部によって支持された基板上にインジウムスズ酸化物薄膜を形成する。
In order to achieve the above object, a transparent conductive film manufacturing apparatus according to an embodiment of the present invention includes a chamber, a support portion, and a film formation portion.
The chamber is configured to be able to maintain a vacuum state.
The support is for supporting a substrate in the chamber.
The film forming unit includes a first component made of indium oxide, a second component made of tin oxide, and lanthanum, neodymium, dysprosium, europium, gadolinium, terbium, zirconium, aluminum, silicon, titanium, and boron. A target material including at least one selected element or a third component made of an oxide thereof. The film forming unit forms the indium tin oxide thin film on the substrate supported by the support unit by sputtering the target material in the chamber.
 上記目的を達成するため、本発明の一形態に係るスパッタリングターゲットは、基板上に、スパッタリング法によって透明導電膜を形成するためのスパッタリングターゲットであって、第1の成分と、第2の成分と、第3の成分とを含む。
 上記第1の成分は、酸化インジウムからなる。
 上記第2の成分は、酸化スズからなる。
 上記第3の成分は、ランタン、ネオジウム、ジスプロシウム、ユーロピウム、ガドリニウム、テルビウム、ジルコニウム、アルミニウム、シリコン、チタニウム及びホウ素の中から選ばれる少なくとも1種の元素又はその酸化物からなる。
To achieve the above object, a sputtering target according to an embodiment of the present invention is a sputtering target for forming a transparent conductive film on a substrate by a sputtering method, and includes a first component, a second component, And a third component.
The first component is made of indium oxide.
The second component is made of tin oxide.
The third component is composed of at least one element selected from lanthanum, neodymium, dysprosium, europium, gadolinium, terbium, zirconium, aluminum, silicon, titanium, and boron, or an oxide thereof.
 上記目的を達成するため、本発明の一形態に係る透明導電膜は、基板上に、スパッタリング法によって成膜される透明導電膜であって、第1の成分と、第2の成分と、第3の成分とを含む。
 上記第1の成分は、酸化インジウムからなる。
 上記第2の成分は、酸化スズからなる。
 上記第3の成分は、ランタン、ネオジウム、ジスプロシウム、ユーロピウム、ガドリニウム、テルビウム、ジルコニウム、アルミニウム、シリコン、チタニウム及びホウ素の中から選ばれる少なくとも1種の元素又はその酸化物からなる。
In order to achieve the above object, a transparent conductive film according to one embodiment of the present invention is a transparent conductive film formed over a substrate by a sputtering method, and includes a first component, a second component, and a first component. 3 ingredients.
The first component is made of indium oxide.
The second component is made of tin oxide.
The third component is composed of at least one element selected from lanthanum, neodymium, dysprosium, europium, gadolinium, terbium, zirconium, aluminum, silicon, titanium, and boron, or an oxide thereof.
本発明の一実施形態に係る透明導電膜の製造装置を示す概略図である。It is the schematic which shows the manufacturing apparatus of the transparent conductive film which concerns on one Embodiment of this invention. 本発明の一実施形態に係る透明導電膜の製造方法を説明する工程フローである。It is a process flow explaining the manufacturing method of the transparent conductive film which concerns on one Embodiment of this invention. 本発明の実施例及び比較例に係るITO膜のX線回折強度分布を示しており、(A)は成膜直後のITO膜についての測定結果であり、(B)はアニール後のITO膜についての測定結果である。The X-ray diffraction intensity distribution of the ITO film which concerns on the Example and comparative example of this invention is shown, (A) is a measurement result about the ITO film immediately after film-forming, (B) is about the ITO film after annealing It is a measurement result. 本発明の実施例及び比較例に係るITO膜の比抵抗と酸素分圧との関係を示しており、(A)は成膜直後のITO膜についての測定結果であり、(B)はアニール後のITO膜についての測定結果である。The relationship between the specific resistance and oxygen partial pressure of the ITO film | membrane which concerns on the Example and comparative example of this invention is shown, (A) is a measurement result about the ITO film | membrane immediately after film-forming, (B) is after annealing It is a measurement result about this ITO film | membrane. 本発明の実施例及び比較例に係るITO膜のエッチングレートと酸素分圧との関係を示す実験結果である。It is an experimental result which shows the relationship between the etching rate of the ITO film | membrane and oxygen partial pressure which concern on the Example and comparative example of this invention. 本発明の実施例及び比較例に係るITO膜の可視光透過率を示す実験結果である。It is an experimental result which shows the visible light transmittance | permeability of the ITO film | membrane which concerns on the Example and comparative example of this invention.
 本発明の一形態に係る透明導電膜の製造方法は、酸化インジウムからなる第1の成分と、酸化スズからなる第2の成分と、ランタン、ネオジウム、ジスプロシウム、ユーロピウム、ガドリニウム、テルビウム、ジルコニウム、アルミニウム、シリコン、チタニウム及びホウ素の中から選ばれる少なくとも1種の元素又はその酸化物からなる第3の成分とを含むターゲット材料を有するチャンバ内に基板を配置する工程を含む。上記ターゲット材料をスパッタすることで、基板上にインジウムスズ酸化物薄膜が形成される。 A method for producing a transparent conductive film according to an embodiment of the present invention includes a first component made of indium oxide, a second component made of tin oxide, lanthanum, neodymium, dysprosium, europium, gadolinium, terbium, zirconium, and aluminum. And disposing a substrate in a chamber having a target material including at least one element selected from silicon, titanium, and boron or a third component made of an oxide thereof. By sputtering the target material, an indium tin oxide thin film is formed on the substrate.
 上記透明導電膜の製造方法によれば、成膜したままの状態においてアモルファスのインジウムスズ酸化物薄膜(以下「ITO膜」ともいう。)を形成することができる。したがって、当該ITO膜をエッチングによりパターニングするに際して、シュウ酸等の弱酸性エッチング液を用いることが可能となる。また、下地膜や他の配線層との間に高いエッチング選択比を確保することが容易となるため、良好なエッチング特性を得ることが可能となる。
 さらに、上記ITO膜を熱処理(アニール)によって結晶化させることで、良好な導電特性を付与することができる。熱処理後のITO膜は、可視光領域において良好な透過率特性を有しているため、フラットパネルディスプレイや太陽発電モジュール等の透明導電膜として好適に用いることができる。
According to the method for producing a transparent conductive film, an amorphous indium tin oxide thin film (hereinafter also referred to as “ITO film”) can be formed as it is. Therefore, when the ITO film is patterned by etching, a weakly acidic etching solution such as oxalic acid can be used. In addition, it becomes easy to ensure a high etching selectivity between the base film and other wiring layers, so that good etching characteristics can be obtained.
Furthermore, by crystallization of the ITO film by heat treatment (annealing), good conductive properties can be imparted. Since the heat-treated ITO film has good transmittance characteristics in the visible light region, it can be suitably used as a transparent conductive film for flat panel displays, solar power generation modules and the like.
 ITO膜が形成される基板は、典型的にはガラス基板であるが、これ以外にも、シリコン基板やセラミック基板であってもよい。また、熱処理温度に対して耐熱性を有するものであれば、有機基板を用いることも可能である。 The substrate on which the ITO film is formed is typically a glass substrate, but may also be a silicon substrate or a ceramic substrate. Further, an organic substrate can be used as long as it has heat resistance with respect to the heat treatment temperature.
 上記第3の成分は、弱酸に対して可溶なITO膜を形成することが可能な元素群である。特に、ジスプロシウム(Dy)又はその酸化物を上記第3の成分とすることにより、比抵抗が300μΩ・cm以下である、導電特性に優れたITO膜を得ることが可能となる。 The third component is an element group capable of forming an ITO film soluble in a weak acid. In particular, by using dysprosium (Dy) or an oxide thereof as the third component, an ITO film having a specific resistance of 300 μΩ · cm or less and excellent conductive properties can be obtained.
 上記ターゲット材料をスパッタするためのガスは、アルゴンと酸素との混合ガスとすることができる。アルゴンは、主として、ターゲット材料をスパッタするイオンを生成する。酸素は、反応性ガスとして機能し、成膜されるITO膜の酸素濃度を調整する。酸素分圧を適宜調整することによって、所望とする導電特性、エッチング特性を有するITO膜を形成することができる。 The gas for sputtering the target material can be a mixed gas of argon and oxygen. Argon primarily generates ions that sputter the target material. Oxygen functions as a reactive gas and adjusts the oxygen concentration of the deposited ITO film. By appropriately adjusting the oxygen partial pressure, an ITO film having desired conductive characteristics and etching characteristics can be formed.
 ITO膜を結晶化するための熱処理温度(アニール温度)は、200℃以上とすることができる。熱処理温度が200℃未満では、ITO膜にアモルファスと結晶が混在する場合がある。なお、熱処理温度の上限は特に限定されず、ITO膜が成膜される基板等の耐熱性に応じて適宜設定される。 The heat treatment temperature (annealing temperature) for crystallizing the ITO film can be 200 ° C. or higher. When the heat treatment temperature is lower than 200 ° C., amorphous and crystal may be mixed in the ITO film. The upper limit of the heat treatment temperature is not particularly limited, and is appropriately set according to the heat resistance of the substrate on which the ITO film is formed.
 一方、本発明の一実施形態に係る透明導電膜の製造装置は、チャンバと、支持部と、成膜部とを具備する。
 上記チャンバは、真空状態を維持可能に構成される。
 上記支持部は、上記チャンバ内で基板を支持するためのものである。
 上記成膜部は、酸化インジウムからなる第1の成分と、酸化スズからなる第2の成分と、La、Nd、Dy、Eu、Gd、Tb、Zr、Al、Si、Ti及びBの中から選ばれる少なくとも1種の元素又はその酸化物からなる第3の成分とを含むターゲット材料を有する。上記成膜部は、上記チャンバ内で上記ターゲット材料をスパッタすることで、上記支持部によって支持された基板上にインジウムスズ酸化物薄膜を形成する。
Meanwhile, a transparent conductive film manufacturing apparatus according to an embodiment of the present invention includes a chamber, a support part, and a film forming part.
The chamber is configured to be able to maintain a vacuum state.
The support is for supporting a substrate in the chamber.
The film forming unit includes a first component made of indium oxide, a second component made of tin oxide, and La, Nd, Dy, Eu, Gd, Tb, Zr, Al, Si, Ti, and B. A target material including at least one selected element or a third component made of an oxide thereof. The film forming unit forms the indium tin oxide thin film on the substrate supported by the support unit by sputtering the target material in the chamber.
 また、本発明の一実施形態に係るスパッタリングターゲットは、基板上に、スパッタリング法によって透明導電膜を形成するためのスパッタリングターゲットであって、第1の成分と、第2の成分と、第3の成分とを含む。
 上記第1の成分は、酸化インジウムからなる。
 上記第2の成分は、酸化スズからなる。
 上記第3の成分は、La、Nd、Dy、Eu、Gd、Tb、Zr、Al、Si、Ti及びBの中から選ばれる少なくとも1種の元素又はその酸化物からなる。
A sputtering target according to an embodiment of the present invention is a sputtering target for forming a transparent conductive film on a substrate by a sputtering method, and includes a first component, a second component, and a third component. And ingredients.
The first component is made of indium oxide.
The second component is made of tin oxide.
The third component is composed of at least one element selected from La, Nd, Dy, Eu, Gd, Tb, Zr, Al, Si, Ti, and B or an oxide thereof.
 上記透明導電膜の製造装置によれば、上記構成のターゲット材料(スパッタリングターゲット)をスパッタすることによって、基板上にアモルファスのITO膜を形成することができる。したがって、当該ITO膜をエッチングによりパターニングするに際して、シュウ酸等の弱酸性エッチング液を用いることが可能となる。また、下地膜や他の配線層との間に高いエッチング選択比を確保することが容易となるため、良好なエッチング特性を得ることが可能となる。 According to the transparent conductive film manufacturing apparatus, an amorphous ITO film can be formed on a substrate by sputtering the target material (sputtering target) having the above structure. Therefore, when the ITO film is patterned by etching, a weakly acidic etching solution such as oxalic acid can be used. In addition, it becomes easy to ensure a high etching selectivity between the base film and other wiring layers, so that good etching characteristics can be obtained.
 以下、図面を参照しながら、本発明の実施形態を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[スパッタリング装置]
 図1は、本発明の一実施形態に係る透明導電膜の製造装置を示す概略図である。図示する装置は、透明導電膜を成膜するためのスパッタリング装置100として構成されている。スパッタリング装置100は、基板Sの表面に透明導電膜(ITO膜)Fを成膜する成膜室101と、ロード/アンロード室102と、成膜室101とロード/アンロード室102とを接続するゲートバルブ103とを有する。
[Sputtering equipment]
FIG. 1 is a schematic view showing a transparent conductive film manufacturing apparatus according to an embodiment of the present invention. The illustrated apparatus is configured as a sputtering apparatus 100 for forming a transparent conductive film. The sputtering apparatus 100 connects a film forming chamber 101 for forming a transparent conductive film (ITO film) F on the surface of the substrate S, a load / unload chamber 102, and the film forming chamber 101 and the load / unload chamber 102. And a gate valve 103.
 成膜室101は、密閉構造を有する第1のチャンバ11と、第1のチャンバ11の内部を真空排気可能な真空排気系30とを有する。成膜室101は、所定の成膜圧力に真空排気されることが可能であるとともに、その真空度を維持可能に構成されている。真空排気系30は、主ポンプ(ターボ分子ポンプ)31と、その背圧側を排気する補助ポンプ(ロータリポンプ)32とを有する。 The film forming chamber 101 includes a first chamber 11 having a sealed structure and an evacuation system 30 that can evacuate the inside of the first chamber 11. The film forming chamber 101 can be evacuated to a predetermined film forming pressure and can maintain the degree of vacuum. The vacuum exhaust system 30 includes a main pump (turbo molecular pump) 31 and an auxiliary pump (rotary pump) 32 that exhausts the back pressure side.
 成膜室101は、スパッタリングカソード20を有する。スパッタリングカソード20は、スパッタリングターゲット(以下単に「ターゲット」という。)21と、ターゲット21の表面に磁場を形成するためのマグネットユニット22と、ターゲット21と基板S(及び第1のチャンバ11)との間にDC電圧を印加するDC電源(図示略)とを有する。ターゲット21は、後述するように、インジウムスズ酸化物系の材料で構成されている。スパッタリングカソード20は、DCマグネトロン型のスパッタリングカソードとして、第1のチャンバ11の底壁部に設置されている。 The film formation chamber 101 has a sputtering cathode 20. The sputtering cathode 20 includes a sputtering target (hereinafter simply referred to as “target”) 21, a magnet unit 22 for forming a magnetic field on the surface of the target 21, and the target 21 and the substrate S (and the first chamber 11). And a DC power source (not shown) for applying a DC voltage therebetween. As will be described later, the target 21 is made of an indium tin oxide-based material. The sputtering cathode 20 is installed on the bottom wall portion of the first chamber 11 as a DC magnetron type sputtering cathode.
 成膜室101は、第1のチャンバ11の内部にスパッタ用のプロセスガス(スパッタガス)を導入するためのガス導入部40を有する。ガス導入部40は、図示しないガス供給源、流量調整バルブ等とともにガス導入系を構成している。本実施形態では、ガス導入部40は、アルゴン(Ar)と酸素(O)の混合ガスを第1のチャンバ11の内部に導入する。上記混合ガス雰囲気中における酸素の分圧は、例えば、2.0E-3(2.0×10-3)Pa以上1.0E-2(1.0×10-2)Pa以下である。 The film forming chamber 101 includes a gas introduction unit 40 for introducing a process gas (sputtering gas) for sputtering into the first chamber 11. The gas introduction unit 40 constitutes a gas introduction system together with a gas supply source, a flow rate adjustment valve, and the like (not shown). In the present embodiment, the gas introduction unit 40 introduces a mixed gas of argon (Ar) and oxygen (O 2 ) into the first chamber 11. The partial pressure of oxygen in the mixed gas atmosphere is, for example, 2.0E-3 (2.0 × 10 −3 ) Pa or more and 1.0E-2 (1.0 × 10 −2 ) Pa or less.
 成膜室101は、第1のチャンバ11の内壁や他の構造物に成膜材料が付着することを防止するための防着板を有していてもよい。成膜室101に防着板を設置することにより、第1のチャンバ11の成膜材料による汚染を抑えることができ、成膜室101のメンテナンス作業性を高めることが可能となる。 The film formation chamber 101 may have a deposition plate for preventing the film formation material from adhering to the inner wall of the first chamber 11 and other structures. By installing a deposition plate in the deposition chamber 101, contamination by the deposition material in the first chamber 11 can be suppressed, and maintenance workability of the deposition chamber 101 can be improved.
 ロード/アンロード室102は、密閉構造を有する第2のチャンバ12と、第2のチャンバ12の内部を真空排気可能な真空ポンプ33とを有する。ロード/アンロード室102は、成膜室101内の圧力と同程度の真空度に真空排気されることが可能であるとともに、その真空度を維持可能に構成されている。ロード/アンロード室102は、図示せずともドアバルブを有しており、このドアバルブを介して第2のチャンバ12の内部と外部との間で基板Sの受け渡しが可能とされる。基板Sの受け渡し時においては、ロード/アンロード室102内は大気圧とされる。 The load / unload chamber 102 includes a second chamber 12 having a sealed structure, and a vacuum pump 33 capable of evacuating the inside of the second chamber 12. The load / unload chamber 102 can be evacuated to a degree of vacuum comparable to the pressure in the film forming chamber 101, and can be maintained at that degree of vacuum. The load / unload chamber 102 has a door valve (not shown), and the substrate S can be transferred between the inside and the outside of the second chamber 12 via the door valve. When the substrate S is delivered, the load / unload chamber 102 is at atmospheric pressure.
 本実施形態のスパッタリング装置100は、ゲートバルブ103を介して成膜室101とロード/アンロード室102との間にわたって基板Sを搬送するキャリア50をさらに有する。キャリア50は、図示しない駆動源によって、成膜室101とロード/アンロード室102とに架け渡されたガイドレール(図示略)に反って直線的に移動される。ロード/アンロード室102から成膜室101へ搬送されたキャリア50は、成膜室101を往復した後、ロード/アンロード室102へ戻される。基板Sは、キャリア50の下面に保持されており、成膜室101において、スパッタリングカソード20の直上を通過する過程で成膜される。 The sputtering apparatus 100 of this embodiment further includes a carrier 50 that transports the substrate S between the film forming chamber 101 and the load / unload chamber 102 via the gate valve 103. The carrier 50 is linearly moved against a guide rail (not shown) spanned between the film forming chamber 101 and the load / unload chamber 102 by a driving source (not shown). The carrier 50 transported from the load / unload chamber 102 to the film formation chamber 101 is returned to the load / unload chamber 102 after reciprocating in the film formation chamber 101. The substrate S is held on the lower surface of the carrier 50 and is formed in the film forming chamber 101 in the process of passing immediately above the sputtering cathode 20.
 ここでは、基板Sにはガラス基板が用いられる。基板の成膜面は、基材であるガラス表面でもよいし、基材上に既に形成された絶縁膜の表面でもよい。また、当該絶縁膜の表面に銅などの金属配線膜が存在していてもよい。 Here, a glass substrate is used as the substrate S. The film formation surface of the substrate may be a glass surface that is a base material, or may be the surface of an insulating film already formed on the base material. Further, a metal wiring film such as copper may be present on the surface of the insulating film.
 ここで、キャリア50は、第1のチャンバ11内で基板Sを支持する「支持部」を構成する。また、スパッタリングカソード20及びガス導入部40は、「成膜部」を構成する。上記成膜部は、第1のチャンバ11内でターゲット21をスパッタすることで、キャリア50に支持された基板S上にインジウムスズ酸化物薄膜を形成する。さらに、スパッタリングカソード20を構成するマグネットユニット22、DC電源等は、「プラズマ発生機構」を構成する。プラズマ発生機構は、ガス導入部40から第1のチャンバ11内に導入されたスパッタガス(ArとOの混合ガス)のプラズマを発生させることで、ターゲット21をスパッタリングするためのイオンを形成する。 Here, the carrier 50 constitutes a “support portion” that supports the substrate S in the first chamber 11. Further, the sputtering cathode 20 and the gas introduction unit 40 constitute a “film formation unit”. The film forming unit forms the indium tin oxide thin film on the substrate S supported by the carrier 50 by sputtering the target 21 in the first chamber 11. Further, the magnet unit 22, the DC power source and the like constituting the sputtering cathode 20 constitute a “plasma generating mechanism”. The plasma generation mechanism generates ions for sputtering the target 21 by generating plasma of a sputtering gas (mixed gas of Ar and O 2 ) introduced into the first chamber 11 from the gas introduction unit 40. .
[ターゲット]
 次に、ターゲット21の詳細について説明する。
[target]
Next, details of the target 21 will be described.
 ターゲット21は、基板S上にスパッタリング法によって透明導電膜Fを形成するためのターゲット材料あるいはスパッタリングターゲットとして構成されている。ターゲット21は、インジウムスズ酸化物(以下「ITO」ともいう。)系材料で構成された、円板状または矩形板状の焼結体であり、その焼結密度は、例えば98%以上とされる。 The target 21 is configured as a target material or a sputtering target for forming the transparent conductive film F on the substrate S by sputtering. The target 21 is a disc-like or rectangular plate-like sintered body made of an indium tin oxide (hereinafter also referred to as “ITO”) material, and the sintering density thereof is, for example, 98% or more. The
 本実施形態に係るターゲット21は、酸化インジウム(In)からなる第1の成分と、酸化スズ(SnO)からなる第2の成分と、添加物としての第3の成分とを含む。第3の成分は、ランタン(La)、ネオジウム(Nd)、ジスプロシウム(Dy)、ユーロピウム(Eu)、ガドリニウム(Gd)、テルビウム(Tb)、ジルコニウム(Zr)、アルミニウム(Al)、シリコン(Si)、チタニウム(Ti)及びホウ素(B)の中から選ばれる少なくとも1種の元素又はその酸化物である。第3の成分は、酸に対して可溶であり、成膜直後においてアモルファスITOの成膜を可能とする。 The target 21 according to the present embodiment includes a first component made of indium oxide (In 2 O 3 ), a second component made of tin oxide (SnO), and a third component as an additive. The third component is lanthanum (La), neodymium (Nd), dysprosium (Dy), europium (Eu), gadolinium (Gd), terbium (Tb), zirconium (Zr), aluminum (Al), silicon (Si) , At least one element selected from titanium (Ti) and boron (B) or an oxide thereof. The third component is soluble in acid, and enables amorphous ITO to be formed immediately after film formation.
 上記構成のターゲット21は、成膜室101においてスパッタされることで、基板S上に、上記第1、第2及び第3の成分を含むITO膜Fを成膜する。したがって、ターゲット21の組成は、成膜すべきITO膜Fの組成に応じて適宜調整される。ITO膜Fの酸素濃度は、成膜中における成膜室101内の酸素分圧で調整してもよい。 The target 21 having the above structure is sputtered in the film forming chamber 101 to form the ITO film F containing the first, second, and third components on the substrate S. Therefore, the composition of the target 21 is appropriately adjusted according to the composition of the ITO film F to be formed. The oxygen concentration of the ITO film F may be adjusted by the oxygen partial pressure in the film formation chamber 101 during film formation.
 酸化インジウム(第1の成分)と酸化スズ(第2の成分)との典型的な重量比は9:1であるが、これ以外に例えば、97.5:2.5~85:15の範囲で調整される。また、添加物(第3の成分)の添加量は、添加元素をαとしたとき、以下の(1)式で表される。
 0.1≦{α/(In+Sn+α)}≦10[原子%] …(1)
 なお、添加元素が酸化物の場合、当該酸化物をαOxとしたとき、添加量は以下の(2)式で表される。
 0.06≦{αOx/(In+SnO)+αOx}≦6[原子%] …(2)
A typical weight ratio of indium oxide (first component) to tin oxide (second component) is 9: 1, but is adjusted in the range of 97.5: 2.5 to 85:15, for example. . Moreover, the addition amount of the additive (third component) is represented by the following formula (1), where α is the additive element.
0.1 ≦ {α / (In + Sn + α)} ≦ 10 [atomic%] (1)
When the additive element is an oxide, when the oxide is αOx, the addition amount is expressed by the following equation (2).
0.06 ≦ {αOx / (In 2 O 3 + SnO) + αOx} ≦ 6 [atomic%] (2)
 第3の成分の添加量が0.1原子%未満の場合、アモルファスのITO膜を安定に成膜することが困難となる。すなわち、結晶質と非晶質とが混在したITO膜が成膜されるおそれがある。一方、第3の成分の添加量が10原子%を超えると、得られるITO膜の導電特性や光の透過率等に関して所望の特性を得ることが困難になる。第3の成分の添加量は、用いられる元素の種類によって異なるが、上記範囲で選定される。 When the amount of the third component added is less than 0.1 atomic%, it is difficult to stably form an amorphous ITO film. In other words, an ITO film in which crystalline and amorphous are mixed may be formed. On the other hand, when the added amount of the third component exceeds 10 atomic%, it becomes difficult to obtain desired characteristics with respect to the conductive characteristics and light transmittance of the obtained ITO film. The addition amount of the third component varies depending on the type of element used, but is selected within the above range.
 上記構成のターゲット21を用いることで、基板S上に、アモルファスのインジウムスズ酸化物薄膜(ITO膜)Fを成膜することができる。成膜直後のITO膜Fはアモルファス状態であるため、ITO膜Fをパターニングするに際して、シュウ酸や酢酸等の弱酸性エッチング液を用いることが可能となる。また、パターニング後、アニール(熱処理)によりITO膜Fを結晶化させることで、比抵抗の低い、導電特性に優れたITO膜Fを得ることができる。 By using the target 21 configured as described above, an amorphous indium tin oxide thin film (ITO film) F can be formed on the substrate S. Since the ITO film F immediately after film formation is in an amorphous state, a weak acidic etching solution such as oxalic acid or acetic acid can be used when patterning the ITO film F. In addition, after patterning, the ITO film F is crystallized by annealing (heat treatment), whereby an ITO film F having a low specific resistance and excellent conductive characteristics can be obtained.
[透明導電膜の製造方法]
 次に、本実施形態に係る透明導電膜の製造方法について説明する。図2は、その工程フローを示す。本実施形態の透明導電膜の製造方法は、ITO膜Fの成膜工程(ステップST1)と、ITO膜Fのパターニング工程(ステップST2)と、ITO膜Fのアニール工程(ステップST3)とを有する。
[Method for producing transparent conductive film]
Next, the manufacturing method of the transparent conductive film which concerns on this embodiment is demonstrated. FIG. 2 shows the process flow. The method for producing a transparent conductive film of the present embodiment includes an ITO film F film forming process (step ST1), an ITO film F patterning process (step ST2), and an ITO film F annealing process (step ST3). .
(成膜工程)
 ITO膜Fの成膜工程(ステップST1)では、図1に示したスパッタリング装置100が用いられる。図1を参照して、ロード/アンロード室102に搬入された基板Sは、キャリア50の下面に保持される。その後、真空ポンプ33が駆動され、ロード/アンロード室102内が排気される。ロード/アンロード室102の圧力が、成膜室101の圧力(例えば0.67Pa)と同程度になると、ゲートバルブ103が開放され、キャリア50が成膜室101内へ搬送される。ロード/アンロード室102から成膜室101へキャリア50が搬送された後、ゲートバルブ103は閉塞する。成膜室101に搬送されたキャリア50は、成膜室101を直線的に移動される。基板Sは、キャリア50と共に移動されながら、スパッタリングカソード20によって成膜される。
(Film formation process)
In the film forming process (step ST1) of the ITO film F, the sputtering apparatus 100 shown in FIG. 1 is used. With reference to FIG. 1, the substrate S carried into the load / unload chamber 102 is held on the lower surface of the carrier 50. Thereafter, the vacuum pump 33 is driven to evacuate the load / unload chamber 102. When the pressure in the load / unload chamber 102 becomes approximately the same as the pressure in the film formation chamber 101 (for example, 0.67 Pa), the gate valve 103 is opened and the carrier 50 is transferred into the film formation chamber 101. After the carrier 50 is transferred from the load / unload chamber 102 to the film formation chamber 101, the gate valve 103 is closed. The carrier 50 transported to the film forming chamber 101 is moved linearly in the film forming chamber 101. The substrate S is formed by the sputtering cathode 20 while being moved together with the carrier 50.
 成膜室101には、ガス導入部40からスパッタガス(Ar+O)が所定の流量で導入される。導入されたスパッタガスは、ターゲット21とキャリア50との間に印加された直流電場と、マグネットユニット22によってターゲット21の表面に形成された固定磁場とにより励起され、これによりスパッタガスのプラズマが発生する。プラズマ中のイオン(特にArイオン)は、電界の作用を受けてスパッタリングカソード20に引き付けられ、ターゲット21の表面をスパッタする。イオンによるスパッタ作用を受けてターゲット21の表面から叩き出されたITO粒子は、ターゲット21に対向する基板Sの表面に付着、堆積することで、基板Sの表面にITO膜Fが形成される。また、スパッタガスに含まれる酸素は、活性の高い酸素ラジカルを生成し、生成された酸素ラジカルは、ターゲット21の表面から叩き出されたITO粒子と反応する。したがって、基板S上に形成されるITO膜Fの酸素濃度は、スパッタガス中の酸素量によって制御される。 A sputtering gas (Ar + O 2 ) is introduced into the film formation chamber 101 from the gas introduction unit 40 at a predetermined flow rate. The introduced sputtering gas is excited by a DC electric field applied between the target 21 and the carrier 50 and a fixed magnetic field formed on the surface of the target 21 by the magnet unit 22, thereby generating a sputtering gas plasma. To do. Ions (particularly Ar ions) in the plasma are attracted to the sputtering cathode 20 under the action of an electric field, and the surface of the target 21 is sputtered. The ITO particles that have been sputtered from the surface of the target 21 due to the sputtering effect of ions adhere to and deposit on the surface of the substrate S facing the target 21, thereby forming an ITO film F on the surface of the substrate S. Moreover, oxygen contained in the sputtering gas generates highly active oxygen radicals, and the generated oxygen radicals react with ITO particles knocked out from the surface of the target 21. Therefore, the oxygen concentration of the ITO film F formed on the substrate S is controlled by the amount of oxygen in the sputtering gas.
 本実施形態では、ターゲット21の上方で基板Sを通過させながら成膜する、いわゆる通過成膜方式が採用されている。本実施形態において、基板Sは、成膜室101を往復するキャリア50の往路上で成膜されるが、これに限られず、キャリア50の復路上で成膜されてもよいし、往路及び復路の両方で成膜されてもよい。また、基板Sは無加熱(室温)で成膜室101を搬送されるが、必要に応じて、スパッタリング装置100に加熱源を内蔵させ、成膜時に基板を所定温度に加熱してもよい。 In the present embodiment, a so-called passing film formation method is employed in which film formation is performed while passing the substrate S above the target 21. In the present embodiment, the substrate S is formed on the forward path of the carrier 50 that reciprocates in the film forming chamber 101, but is not limited thereto, and may be formed on the return path of the carrier 50, or the forward path and the return path. Both may be formed into a film. In addition, the substrate S is transported through the film formation chamber 101 without heating (room temperature). However, if necessary, a heating source may be incorporated in the sputtering apparatus 100 to heat the substrate to a predetermined temperature during film formation.
 ITO膜Fの成膜が完了した基板Sは、キャリア50とともにゲートバルブ103を介してロード/アンロード室102へ搬送される。その後、ゲートバルブ103が閉塞され、ロード/アンロード室102が大気に開放されて、図示しないドアバルブを介して成膜済みの基板Sが外部へ取り出される。以上のようにして、基板Sの表面にアモルファスのITO膜Fが成膜される。 The substrate S on which the ITO film F is formed is transferred to the load / unload chamber 102 through the gate valve 103 together with the carrier 50. Thereafter, the gate valve 103 is closed, the load / unload chamber 102 is opened to the atmosphere, and the film-formed substrate S is taken out through a door valve (not shown). As described above, the amorphous ITO film F is formed on the surface of the substrate S.
(パターニング工程)
 パターニング工程(ステップST2)は、ウェットエッチング法により、ITO膜Fを所定形状にパターニングする。これに先立ち、ITO膜F上にレジストマスクが形成される。エッチング工程では、レジストマスクの上から基板Sの表面にエッチング液を塗布することで、レジストマスクの開口部から露出するITO膜Fが溶解される。その後、基板Sの洗浄、乾燥工程を経て、ITO膜Fのパターニング工程が完了する。
(Patterning process)
In the patterning step (step ST2), the ITO film F is patterned into a predetermined shape by a wet etching method. Prior to this, a resist mask is formed on the ITO film F. In the etching step, the ITO film F exposed from the opening of the resist mask is dissolved by applying an etching solution on the surface of the substrate S from above the resist mask. Then, the patterning process of the ITO film | membrane F is completed through the washing | cleaning and drying process of the board | substrate S. FIG.
 本実施形態によれば、スパッタリング装置100で製造されたITO膜Fはアモルファス状態であるため、当該ITO膜Fのパターニング工程においては、弱酸性のシュウ酸を含むエッチング液(例えば、シュウ酸、あるいは関東化学社製の薬液(ITO-05N、ITO-06N、ITO-07N)(以上、商品名))を用いてITO膜Fをエッチングすることができる。これにより、ITO膜Fの下地層や、金属配線層等との間に高いエッチング選択比を確保することが容易となるため、良好なエッチング特性を得ることが可能となる。また、ITO膜Fのパターニングの際のエッチング残渣の発生を抑制できることが確認されている。 According to this embodiment, since the ITO film F manufactured by the sputtering apparatus 100 is in an amorphous state, in the patterning process of the ITO film F, an etching solution containing weakly acidic oxalic acid (for example, oxalic acid or The ITO film F can be etched using a chemical solution (ITO-05N, ITO-06N, ITO-07N) (trade name) manufactured by Kanto Chemical. As a result, it becomes easy to ensure a high etching selection ratio between the underlayer of the ITO film F, the metal wiring layer, and the like, so that good etching characteristics can be obtained. Further, it has been confirmed that the generation of etching residues during patterning of the ITO film F can be suppressed.
 ITO膜Fのパターニング形状は、製造されるデバイスの種類に応じて異なる。例えば、ITO膜が液晶ディスプレイ用の画素電極に用いられる場合、ITO膜Fは画素単位でパターニングされる。また、ITO膜が太陽発電モジュールに用いられる場合、ITO膜Fは個々の発電セル単位でパターニングされる。 The patterning shape of the ITO film F differs depending on the type of device to be manufactured. For example, when an ITO film is used as a pixel electrode for a liquid crystal display, the ITO film F is patterned on a pixel basis. When the ITO film is used for a solar power generation module, the ITO film F is patterned in units of individual power generation cells.
(アニール工程)
 アニール工程(ステップST3)は、パターニングしたITO膜Fをアニール(熱処理)することで、ITO膜Fを結晶化させる。ITO膜Fの結晶化の目的は、ITO膜Fの比抵抗を小さくして導電特性を高めることにある。
(Annealing process)
In the annealing process (step ST3), the ITO film F is crystallized by annealing (heat treatment) the patterned ITO film F. The purpose of crystallization of the ITO film F is to reduce the specific resistance of the ITO film F and improve the conductive characteristics.
 ITO膜Fのアニール工程では、典型的には、熱処理炉が用いられる。アニール条件は、適宜設定することが可能であり、例えば、大気中で200℃以上とすることができる。アニール温度が200℃未満の場合、ITO膜Fに結晶とアモルファスが混在する場合がある。またアニール温度の上限は特に限定されず、基板S、ITO膜F、あるいは基板S上に形成されたITO膜F以外の他の機能性薄膜(絶縁膜、金属膜)の耐熱性に応じて適宜設定される。アニール雰囲気は大気に限られず、例えば、窒素雰囲気でもよい。アニール時間は、アニール温度に応じて設定され、典型的には、アニール温度が高温になるほどアニール時間は短く設定される。 In the annealing process of the ITO film F, a heat treatment furnace is typically used. The annealing conditions can be set as appropriate, and can be set to 200 ° C. or higher in the atmosphere, for example. When the annealing temperature is less than 200 ° C., the ITO film F may be mixed with crystals and amorphous. The upper limit of the annealing temperature is not particularly limited, and is appropriately determined depending on the heat resistance of the substrate S, ITO film F, or other functional thin film (insulating film, metal film) other than the ITO film F formed on the substrate S. Is set. The annealing atmosphere is not limited to air, and may be a nitrogen atmosphere, for example. The annealing time is set according to the annealing temperature. Typically, the annealing time is set shorter as the annealing temperature becomes higher.
 以上のようにして本実施形態に係る透明導電膜(ITO膜F)が製造される。本実施形態の透明導電膜は、酸化インジウムからなる第1の成分と、酸化スズからなる第2の成分と、La、Nd、Dy、Eu、Gd、Tb、Zr、Al、Si、Ti及びBの中から選ばれる少なくとも1種の元素又はその酸化物からなる第3の成分とを含む。 As described above, the transparent conductive film (ITO film F) according to this embodiment is manufactured. The transparent conductive film of this embodiment includes a first component made of indium oxide, a second component made of tin oxide, La, Nd, Dy, Eu, Gd, Tb, Zr, Al, Si, Ti, and B. And a third component comprising at least one element selected from the group consisting of oxides thereof.
 本実施形態の透明導電膜の製造方法によれば、成膜したままの状態においてアモルファスのITO膜Fを形成することができる。特に本実施形態によれば、スパッタガスに水蒸気を添加することなく、アモルファスのITO膜を製造することができる。したがって、スパッタガスへの水蒸気の添加に伴う弊害、例えば、防着板に付着したITO膜が容易に剥離し易くなることによるパーティクルの発生、成膜室101の安定した排気作用が阻害されることによるスパッタ圧力のバラツキ等、を防止することができる。 According to the method for producing a transparent conductive film of the present embodiment, the amorphous ITO film F can be formed as it is. In particular, according to this embodiment, an amorphous ITO film can be manufactured without adding water vapor to the sputtering gas. Therefore, adverse effects associated with the addition of water vapor to the sputtering gas, for example, generation of particles due to easy peeling of the ITO film attached to the deposition preventing plate, and the stable exhausting action of the film forming chamber 101 are hindered. It is possible to prevent variations in sputtering pressure due to the above.
 また、本実施形態によれば、成膜されたITO膜Fをエッチングによりパターニングするに際して、シュウ酸等の弱酸性エッチング液を用いることが可能となる。これにより、下地膜や他の配線層との間に高いエッチング選択比を確保することが容易となるため、良好なエッチング特性を得ることが可能となる。 Further, according to the present embodiment, it is possible to use a weakly acidic etching solution such as oxalic acid when patterning the formed ITO film F by etching. As a result, it becomes easy to ensure a high etching selection ratio between the base film and other wiring layers, so that good etching characteristics can be obtained.
 さらに、本実施形態によれば、ITO膜Fを熱処理(アニール)によって結晶化させるため、良好な導電特性を有するITO膜Fを製造することができる。このようにして製造されたITO膜Fは、可視光領域において良好な透過率特性を有しているため、フラットパネルディスプレイや太陽発電モジュール等の透明導電膜として好適に用いることができる。 Furthermore, according to this embodiment, since the ITO film F is crystallized by heat treatment (annealing), the ITO film F having good conductive characteristics can be manufactured. Since the ITO film F manufactured in this way has good transmittance characteristics in the visible light region, it can be suitably used as a transparent conductive film for flat panel displays, solar power generation modules and the like.
(実施例1)
 インジウムスズ酸化物にジスプロシウム酸化物を1.5原子%添加したスパッタリングターゲット(以下「Dy添加ITOターゲット」ともいう。)を作製した。このDy添加ITOターゲットを用いて図1に示したスパッタリング装置によって基材上に、膜厚1000ÅのITO膜(以下「Dy添加ITO膜」ともいう。)を成膜した。成膜条件は、DCパワー600W(1.16W/cm)、ターゲットと基板の間の距離(T/S距離)を100mm、マグネットユニットの磁場の大きさ300G、成膜レート(ダイナミックレート)70Å・m/minとした。スパッタガスは、アルゴンと酸素との混合ガスを用い、酸素分圧を異ならせて複数のITO膜サンプルを成膜した。ここで、アルゴン分圧は0.67Pa(200sccm)、酸素分圧は0Pa、1.33×10-3Pa、2.66×10-3Pa、5.32×10-3Pa、7.98×10-3Pa、1.06×10-2Paとした。
Example 1
A sputtering target (hereinafter also referred to as “Dy-added ITO target”) in which 1.5 atomic% of dysprosium oxide was added to indium tin oxide was produced. Using this Dy-added ITO target, an ITO film having a thickness of 1000 mm (hereinafter also referred to as “Dy-added ITO film”) was formed on the substrate by the sputtering apparatus shown in FIG. The film forming conditions are as follows: DC power 600 W (1.16 W / cm 2 ), distance between target and substrate (T / S distance) 100 mm, magnetic unit magnetic field size 300 G, film forming rate (dynamic rate) 70 mm. · M / min. As a sputtering gas, a mixed gas of argon and oxygen was used, and a plurality of ITO film samples were formed with different oxygen partial pressures. Here, the partial pressure of argon is 0.67 Pa (200 sccm), the partial pressure of oxygen is 0 Pa, 1.33 × 10 −3 Pa, 2.66 × 10 −3 Pa, 5.32 × 10 −3 Pa, 7.98. × 10 −3 Pa and 1.06 × 10 −2 Pa were set.
 酸素分圧5.32×10-3Paで作製したITO膜サンプルのX線回折強度を測定した。測定装置には、理学社製「Rinto(商品名)」を用いた。次に、作製した各ITO膜サンプルのエッチングレートを測定した。エッチング液にはシュウ酸を含む薬液(関東化学社製「ITO-06N」(商品名))を用いた。続いて、各ITO膜サンプルを大気中で230℃、1時間の条件で、アニール処理した。アニール後の各ITO膜サンプルのX線回折強度、比抵抗及び可視光(波長400nm~800nm)透過率を測定した。比抵抗の測定には、三菱化学社製「Loresta MCP-T350(商品名)」を用いた。X線回折強度及び可視光透過率の測定には、それぞれ、酸素分圧5.32×10-3Paで作製したITO膜サンプルを用いた。可視光透過率の測定には、日立社製「U-4100」を用いた。 The X-ray diffraction intensity of the ITO film sample produced at an oxygen partial pressure of 5.32 × 10 −3 Pa was measured. As a measuring device, “Rinto (trade name)” manufactured by Rigaku Corporation was used. Next, the etching rate of each produced ITO film sample was measured. As the etching solution, a chemical solution containing oxalic acid (“ITO-06N” (trade name) manufactured by Kanto Chemical Co., Inc.) was used. Subsequently, each ITO film sample was annealed in the atmosphere at 230 ° C. for 1 hour. The X-ray diffraction intensity, specific resistance, and visible light (wavelength: 400 nm to 800 nm) transmittance of each ITO film sample after annealing were measured. For the measurement of specific resistance, “Loresta MCP-T350 (trade name)” manufactured by Mitsubishi Chemical Corporation was used. For the measurement of the X-ray diffraction intensity and the visible light transmittance, ITO film samples prepared at an oxygen partial pressure of 5.32 × 10 −3 Pa were used. For measurement of visible light transmittance, “U-4100” manufactured by Hitachi, Ltd. was used.
(実施例2)
 インジウムスズ酸化物にホウ素酸化物を1原子%添加したスパッタリングターゲット(以下「B添加ITOターゲット」ともいう。)を作製した。このB添加ITOターゲットを用いて実施例1と同様な条件でITO膜(以下「B添加ITO膜」ともいう。)を成膜した。成膜されたB添加ITO膜について、実施例1と同様な条件でエッチングレート、比抵抗、光透過率及び、アニール前後のX線回折強度をそれぞれ測定した。
(Example 2)
A sputtering target obtained by adding 1 atomic% of boron oxide to indium tin oxide (hereinafter also referred to as “B-added ITO target”) was produced. Using this B-added ITO target, an ITO film (hereinafter also referred to as “B-added ITO film”) was formed under the same conditions as in Example 1. With respect to the formed B-added ITO film, the etching rate, specific resistance, light transmittance, and X-ray diffraction intensity before and after annealing were measured under the same conditions as in Example 1.
(比較例1)
 インジウムスズ酸化物にセリウム酸化物を5原子%添加したスパッタリングターゲット(以下「Ce添加ITOターゲット」という。)を作製した。このCe添加ITOターゲットを用いて実施例1と同様な条件でITO膜(以下「Ce添加ITO膜」ともいう。)を成膜した。成膜されたCe添加ITO膜について、実施例1と同様な条件でエッチングレート、比抵抗、光透過率及び、アニール前後のX線回折強度をそれぞれ測定した。
(Comparative Example 1)
A sputtering target in which 5 atomic% of cerium oxide was added to indium tin oxide (hereinafter referred to as “Ce-added ITO target”) was produced. An ITO film (hereinafter also referred to as “Ce-added ITO film”) was formed under the same conditions as in Example 1 using this Ce-added ITO target. With respect to the formed Ce-added ITO film, the etching rate, specific resistance, light transmittance, and X-ray diffraction intensity before and after annealing were measured under the same conditions as in Example 1.
(比較例2)
 インジウム酸化物とスズ酸化物とを含有するITOターゲットを、アルゴンと酸素と水蒸気とを含むスパッタガス中でスパッタリングして基板上にITO膜(以下「HO添加ITO膜」ともいう。)を成膜した。成膜条件は実施例1と同様であり、スパッタ圧力は、酸素分圧を異ならせて複数のITO膜を成膜した。ここでは、アルゴン分圧は0.67Pa、水蒸気分圧は2.66×10-3Paとし、酸素分圧は0Pa、1.33×10-3Pa、2.66×10-3Pa、5.32×10-3Paとした。成膜されたHO添加ITO膜について、実施例1と同様な条件で、エッチングレート、比抵抗、光透過率及び、アニール前後のX線回折強度をそれぞれ測定した。可視光透過率の測定には、酸素分圧1.33×10-3Paで作製したITO膜サンプルを用いた。
(Comparative Example 2)
An ITO target containing indium oxide and tin oxide is sputtered in a sputtering gas containing argon, oxygen and water vapor to form an ITO film (hereinafter also referred to as “H 2 O-added ITO film”) on the substrate. A film was formed. The film formation conditions were the same as in Example 1, and the sputtering pressure was formed by changing the oxygen partial pressure to form a plurality of ITO films. Here, the argon partial pressure is 0.67 Pa, the water vapor partial pressure is 2.66 × 10 −3 Pa, the oxygen partial pressure is 0 Pa, 1.33 × 10 −3 Pa, 2.66 × 10 −3 Pa, 5 .32 × 10 −3 Pa. With respect to the formed H 2 O-added ITO film, the etching rate, specific resistance, light transmittance, and X-ray diffraction intensity before and after annealing were measured under the same conditions as in Example 1. For the measurement of the visible light transmittance, an ITO film sample produced at an oxygen partial pressure of 1.33 × 10 −3 Pa was used.
 Dy添加ITO膜、B添加ITO膜、Ce添加ITO膜及びHO添加ITO膜のアニール前のX線回折強度を図3(A)に、それらのアニール後のX線回折強度を図3(B)にそれぞれ示す。図3(A)に示すように、アニール前のITO膜、すなわち成膜直後のITO膜のX線回折パターンは、アモルファス状態を示すハローパターンが認められた。また、図3(B)に示すように、ITO結晶に固有の回折角度において強度ピークが認められ、このことからアニール後のITO膜は結晶状態であることが確認された。 The X-ray diffraction intensities before annealing of the Dy-added ITO film, B-added ITO film, Ce-added ITO film and H 2 O-added ITO film are shown in FIG. 3A, and the X-ray diffraction intensities after annealing are shown in FIG. B) respectively. As shown in FIG. 3A, a halo pattern indicating an amorphous state was recognized in the X-ray diffraction pattern of the ITO film before annealing, that is, the ITO film immediately after the film formation. In addition, as shown in FIG. 3B, an intensity peak was observed at the diffraction angle inherent to the ITO crystal, and this confirmed that the annealed ITO film was in a crystalline state.
 次に、図4(A)、(B)は、アニール前とアニール後における各ITO膜サンプルの比抵抗を示す実験結果であり、図4(A)はアニール前を、図4(B)はアニール後をそれぞれ示す。図中の各プロットに関し、「◆」はHO添加ITO膜、「■」はCe添加ITO膜、「▲」はDy添加ITO膜、そして、「●」はB添加ITO膜をそれぞれ示している(図5においても同様)。 Next, FIGS. 4A and 4B are experimental results showing the specific resistance of each ITO film sample before and after annealing. FIG. 4A shows the state before annealing, and FIG. Each after annealing is shown. Regarding each plot in the figure, “♦” indicates an H 2 O-added ITO film, “■” indicates a Ce-added ITO film, “▲” indicates a Dy-added ITO film, and “●” indicates a B-added ITO film. (The same applies to FIG. 5).
 Dy添加ITO膜、B添加ITO膜及びCe添加ITO膜のいずれについても、アニール後の方がアニール前に比べて低い比抵抗を得られることが確認された。これは、アモルファス状態よりも結晶状態の方が比抵抗が低いことによる。アニール後の比抵抗は、いずれのITO膜サンプルについても、酸素分圧が5.32×10-3Paのときに最小であり、Dy添加ITO膜及びCe添加ITO膜については約300μΩcm、B添加ITO膜については約400μΩcmであった。 For any of the Dy-added ITO film, the B-added ITO film, and the Ce-added ITO film, it was confirmed that the specific resistance after annealing can be lower than that before annealing. This is because the specific resistance is lower in the crystalline state than in the amorphous state. The specific resistance after annealing is the minimum for any ITO film sample when the oxygen partial pressure is 5.32 × 10 −3 Pa. About Dy-added ITO film and Ce-added ITO film are about 300 μΩcm, and B is added. The ITO film was about 400 μΩcm.
 一方、HO添加ITO膜に関しては、アニール処理によって、酸素分圧が1.33×10-3Paのときに比抵抗の最小値(約300μΩcm)を得られることが確認された。すなわち、Dy添加ITO膜及びCe添加ITO膜の比抵抗は、HO添加ITO膜の比抵抗に匹敵する値を有することが確認された。 On the other hand, regarding the H 2 O-added ITO film, it was confirmed that the minimum value of specific resistance (about 300 μΩcm) can be obtained by the annealing process when the oxygen partial pressure is 1.33 × 10 −3 Pa. That is, it was confirmed that the specific resistances of the Dy-added ITO film and the Ce-added ITO film have values comparable to the specific resistance of the H 2 O-added ITO film.
 続いて図5は、アモルファスの各ITO膜サンプルのエッチングレートを示す実験結果である。Dy添加ITO膜は、HO添加ITO膜と同等のエッチングレートを有することが確認された。B添加ITO膜のエッチングレートは、HO添加ITO膜のエッチングレートよりも高いことが確認された。一方、Ce添加ITO膜に関しては、HO添加ITO膜よりもエッチングレートが低いことが確認された。これは、Dy酸化物やB酸化物に比べてCe酸化物が弱酸に溶けにくいからであると考えられる。 Next, FIG. 5 is an experimental result showing the etching rate of each amorphous ITO film sample. It was confirmed that the Dy-added ITO film has an etching rate equivalent to that of the H 2 O-added ITO film. It was confirmed that the etching rate of the B-added ITO film was higher than the etching rate of the H 2 O-added ITO film. On the other hand, the Ce-added ITO film was confirmed to have a lower etching rate than the H 2 O-added ITO film. This is presumably because Ce oxide is less soluble in weak acids than Dy oxide and B oxide.
 そして図6は、アニール後の各ITO膜の可視光透過率を示す実験結果である。Dy添加ITO膜及びB添加ITO膜に関しては、HO添加ITO膜と同等の可視光透過率(90%以上)を有することが確認された。他方、Ce添加ITO膜に関しては、500nm~600nmの範囲での透過率の低下が他のITO膜と比較して顕著であることが確認された。 And FIG. 6 is an experimental result which shows the visible light transmittance | permeability of each ITO film | membrane after annealing. It was confirmed that the Dy-added ITO film and the B-added ITO film had a visible light transmittance (90% or more) equivalent to that of the H 2 O-added ITO film. On the other hand, regarding the Ce-added ITO film, it was confirmed that the decrease in the transmittance in the range of 500 nm to 600 nm was remarkable as compared with other ITO films.
 以上のように、本実施例に係るDy添加ITO膜及びB添加ITO膜によれば、HO添加ITO膜と同等のエッチングレート、比抵抗、可視光透過率を得ることができる。また、Dy添加スパッタリングターゲット又はB添加スパッタリングターゲットを用いることで、パターニング特性、導電特性及び光透過特性に優れたITO膜を、安定に成膜することができる。 As described above, according to the Dy-added ITO film and the B-added ITO film according to this example, an etching rate, specific resistance, and visible light transmittance equivalent to those of the H 2 O-added ITO film can be obtained. Further, by using the Dy-added sputtering target or the B-added sputtering target, an ITO film having excellent patterning characteristics, conductive characteristics, and light transmission characteristics can be stably formed.
 以上、本発明の実施形態について説明したが、勿論、本発明はこれに限定されることはなく、本発明の技術的思想に基づいて種々の変形が可能である。 As mentioned above, although embodiment of this invention was described, of course, this invention is not limited to this, A various deformation | transformation is possible based on the technical idea of this invention.
 例えば以上の実施形態では、Dy添加スパッタリングターゲットにおけるDyの添加量を1.5原子%、B添加スパッタリングターゲットにおけるBの添加量を1原子%としたが、これに限られない。これら第3の成分の添加量に応じて、得られるITO膜のエッチングレート、比抵抗、可視光透過率等が変化するため、要求される特性に応じて添加量を適宜調整することが可能である。 For example, in the above-described embodiment, the addition amount of Dy in the Dy-added sputtering target is 1.5 atomic% and the addition amount of B in the B-added sputtering target is 1 atomic%, but is not limited thereto. Since the etching rate, specific resistance, visible light transmittance, etc. of the obtained ITO film change depending on the amount of addition of these third components, the amount of addition can be appropriately adjusted according to the required characteristics. is there.
 11…第1のチャンバ
 12…第2のチャンバ
 20…スパッタリングカソード
 21…スパッタリングターゲット
 22…マグネットユニット
 30…真空排気系
 40…ガス導入部
 50…キャリア
 100…スパッタリング装置
 101…成膜室
 102…ロード/アンロード室
 103…ゲートバルブ
DESCRIPTION OF SYMBOLS 11 ... 1st chamber 12 ... 2nd chamber 20 ... Sputtering cathode 21 ... Sputtering target 22 ... Magnet unit 30 ... Vacuum exhaust system 40 ... Gas introduction part 50 ... Carrier 100 ... Sputtering apparatus 101 ... Film-forming chamber 102 ... Load / Unload chamber 103 ... Gate valve

Claims (14)

  1.  酸化インジウムからなる第1の成分と、酸化スズからなる第2の成分と、ランタン、ネオジウム、ジスプロシウム、ユーロピウム、ガドリニウム、テルビウム、ジルコニウム、アルミニウム、シリコン、チタニウム及びホウ素の中から選ばれる少なくとも1種の元素又はその酸化物からなる第3の成分とを含むターゲット材料を有するチャンバ内に基板を配置し、
     前記ターゲット材料をスパッタすることで、基板上にインジウムスズ酸化物薄膜を形成する
     透明導電膜の製造方法。
    A first component made of indium oxide, a second component made of tin oxide, and at least one selected from lanthanum, neodymium, dysprosium, europium, gadolinium, terbium, zirconium, aluminum, silicon, titanium, and boron Placing a substrate in a chamber having a target material comprising a third component comprising an element or oxide thereof;
    A method for producing a transparent conductive film, comprising forming an indium tin oxide thin film on a substrate by sputtering the target material.
  2.  請求項1に記載の透明導電膜の製造方法であって、さらに、
     前記インジウムスズ酸化物薄膜をエッチング液でパターニングし、
     前記インジウムスズ酸化物薄膜を熱処理によって結晶化させる
     透明導電膜の製造方法。
    It is a manufacturing method of the transparent conductive film according to claim 1, and further,
    Patterning the indium tin oxide thin film with an etchant;
    A method for producing a transparent conductive film, wherein the indium tin oxide thin film is crystallized by heat treatment.
  3.  請求項2に記載の透明導電膜の製造方法であって、
     前記第3の成分は、ジスプロシウム又はその酸化物である
     透明導電膜の製造方法。
    It is a manufacturing method of the transparent conductive film according to claim 2,
    The third component is dysprosium or an oxide thereof.
  4.  請求項2に記載の透明導電膜の製造方法であって、
     前記第3の成分は、ホウ素又はその酸化物である
     透明導電膜の製造方法。
    It is a manufacturing method of the transparent conductive film according to claim 2,
    The method for producing a transparent conductive film, wherein the third component is boron or an oxide thereof.
  5.  請求項3又は請求項4に記載の透明導電膜の製造方法であって、
     前記ターゲット材料は、アルゴンと酸素との混合ガス雰囲気中でスパッタされる
     透明導電膜の製造方法。
    It is a manufacturing method of the transparent conductive film according to claim 3 or 4,
    The target material is sputtered in a mixed gas atmosphere of argon and oxygen.
  6.  請求項5に記載の透明導電膜の製造方法であって、
     前記混合ガス雰囲気中における酸素の分圧は、2.0E-3Pa以上1.0E-2Pa以下である
     透明導電膜の製造方法。
    It is a manufacturing method of the transparent conductive film according to claim 5,
    The method for producing a transparent conductive film, wherein the partial pressure of oxygen in the mixed gas atmosphere is 2.0E-3 Pa or more and 1.0E-2 Pa or less.
  7.  請求項3又は請求項4に記載の透明導電膜の製造方法であって、
     前記インジウムスズ酸化物薄膜の熱処理温度は、200℃以上である
     透明導電膜の製造方法。
    It is a manufacturing method of the transparent conductive film according to claim 3 or 4,
    The method for producing a transparent conductive film, wherein the heat treatment temperature of the indium tin oxide thin film is 200 ° C. or higher.
  8.  請求項2に記載の透明導電膜の製造方法であって、
     前記エッチング液は、シュウ酸を含む水溶液である
     透明導電膜の製造方法。
    It is a manufacturing method of the transparent conductive film according to claim 2,
    The said etching liquid is the aqueous solution containing oxalic acid. The manufacturing method of a transparent conductive film.
  9.  真空状態を維持可能なチャンバと、
     前記チャンバ内で基板を支持するための支持部と、
     酸化インジウムからなる第1の成分と、酸化スズからなる第2の成分と、ランタン、ネオジウム、ジスプロシウム、ユーロピウム、ガドリニウム、テルビウム、ジルコニウム、アルミニウム、シリコン、チタニウム及びホウ素の中から選ばれる少なくとも1種の元素又はその酸化物からなる第3の成分とを含むターゲット材料を有し、前記チャンバ内で前記ターゲット材料をスパッタすることで、前記支持部によって支持された基板上にインジウムスズ酸化物薄膜を形成する成膜部と
     を具備する透明導電膜の製造装置。
    A chamber capable of maintaining a vacuum state;
    A support for supporting the substrate in the chamber;
    A first component made of indium oxide, a second component made of tin oxide, and at least one selected from lanthanum, neodymium, dysprosium, europium, gadolinium, terbium, zirconium, aluminum, silicon, titanium, and boron An indium tin oxide thin film is formed on the substrate supported by the support portion by sputtering the target material in the chamber, the target material including a third component made of an element or an oxide thereof. An apparatus for producing a transparent conductive film, comprising: a film forming unit.
  10.  請求項9に記載の透明導電膜の製造装置であって、
     前記成膜部は、
     前記チャンバ内へ酸化性ガスを含むプロセスガスを導入するガス導入系と、
     前記プロセスガスのプラズマを発生させることで前記ターゲット材料をスパッタリングするためのイオンを形成するプラズマ発生機構とをさらに有する
     透明導電膜の製造装置。
    It is a manufacturing apparatus of the transparent conductive film according to claim 9,
    The film forming unit includes:
    A gas introduction system for introducing a process gas containing an oxidizing gas into the chamber;
    An apparatus for producing a transparent conductive film, further comprising: a plasma generation mechanism for generating ions for sputtering the target material by generating plasma of the process gas.
  11.  基板上に、スパッタリング法によって透明導電膜を形成するためのスパッタリングターゲットであって、
     酸化インジウムからなる第1の成分と、
     酸化スズからなる第2の成分と、
     ランタン、ネオジウム、ジスプロシウム、ユーロピウム、ガドリニウム、テルビウム、ジルコニウム、アルミニウム、シリコン、チタニウム及びホウ素の中から選ばれる少なくとも1種の元素又はその酸化物からなる第3の成分とを含む
     スパッタリングターゲット。
    A sputtering target for forming a transparent conductive film on a substrate by a sputtering method,
    A first component comprising indium oxide;
    A second component comprising tin oxide;
    A sputtering target comprising a third component comprising at least one element selected from lanthanum, neodymium, dysprosium, europium, gadolinium, terbium, zirconium, aluminum, silicon, titanium, and boron, or an oxide thereof.
  12.  請求項11に記載のスパッタリングターゲットであって、
     前記第3の成分は、ランタン、ネオジウム、ジスプロシウム、ユーロピウム、ガドリニウム、テルビウム、ジルコニウム、アルミニウム、シリコン、チタニウム及びホウ素の中から選ばれる少なくとも1種の元素であり、前記第3の成分の添加量(α)は、
     0.1≦{α/(In+Sn+α)}≦10[原子%]
    で表される
     スパッタリングターゲット。
    The sputtering target according to claim 11,
    The third component is at least one element selected from lanthanum, neodymium, dysprosium, europium, gadolinium, terbium, zirconium, aluminum, silicon, titanium, and boron, and the added amount of the third component ( α) is
    0.1 ≦ {α / (In + Sn + α)} ≦ 10 [atomic%]
    Sputtering target represented by
  13.  請求項11に記載のスパッタリングターゲットであって、
     前記第3の成分は、ランタン、ネオジウム、ジスプロシウム、ユーロピウム、ガドリニウム、テルビウム、ジルコニウム、アルミニウム、シリコン、チタニウム及びホウ素の中から選ばれる少なくとも1種の酸化物であり、前記第3の成分の添加量(αOx)は、
     0.06≦{αOx/(In+SnO)+αOx}≦6[原子%]
    で表される
     スパッタリングターゲット。
    The sputtering target according to claim 11,
    The third component is at least one oxide selected from lanthanum, neodymium, dysprosium, europium, gadolinium, terbium, zirconium, aluminum, silicon, titanium, and boron, and the added amount of the third component (ΑOx) is
    0.06 ≦ {αOx / (In 2 O 3 + SnO) + αOx} ≦ 6 [atomic%]
    Sputtering target represented by
  14.  基板上に、スパッタリング法によって成膜される透明導電膜であって、
     酸化インジウムからなる第1の成分と、
     酸化スズからなる第2の成分と、
     ランタン、ネオジウム、ジスプロシウム、ユーロピウム、ガドリニウム、テルビウム、ジルコニウム、アルミニウム、シリコン、チタニウム及びホウ素の中から選ばれる少なくとも1種の元素又はその酸化物からなる第3の成分とを含む
     透明導電膜。
    A transparent conductive film formed on a substrate by a sputtering method,
    A first component comprising indium oxide;
    A second component comprising tin oxide;
    A transparent conductive film comprising a third component comprising at least one element selected from lanthanum, neodymium, dysprosium, europium, gadolinium, terbium, zirconium, aluminum, silicon, titanium, and boron, or an oxide thereof.
PCT/JP2010/006713 2009-11-19 2010-11-16 Manufacturing method and device for transparent conductive film, sputtering target and transparent conductive film WO2011061922A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201080051495.0A CN102666909B (en) 2009-11-19 2010-11-16 The manufacture method of nesa coating, the manufacture device of nesa coating, sputtering target and nesa coating
JP2011541809A JP5726752B2 (en) 2009-11-19 2010-11-16 Transparent conductive film manufacturing method, transparent conductive film manufacturing apparatus, sputtering target, and transparent conductive film
KR1020187015886A KR20180063386A (en) 2009-11-19 2010-11-16 Manufacturing method for transparent conductive film, sputtering device and sputtering target
KR1020167036789A KR20170005149A (en) 2009-11-19 2010-11-16 Manufacturing method for transparent conductive film, sputtering device and sputtering target
KR1020147013540A KR20140071502A (en) 2009-11-19 2010-11-16 Manufacturing method and device for transparent conductive film, sputtering target and transparent conductive film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009263966 2009-11-19
JP2009-263966 2009-11-19

Publications (1)

Publication Number Publication Date
WO2011061922A1 true WO2011061922A1 (en) 2011-05-26

Family

ID=44059409

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/006713 WO2011061922A1 (en) 2009-11-19 2010-11-16 Manufacturing method and device for transparent conductive film, sputtering target and transparent conductive film

Country Status (5)

Country Link
JP (2) JP5726752B2 (en)
KR (4) KR20140071502A (en)
CN (2) CN102666909B (en)
TW (2) TWI500786B (en)
WO (1) WO2011061922A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102651251A (en) * 2012-05-29 2012-08-29 番禺南沙殷田化工有限公司 Low-temperature crystallization indium tin oxide (ITO) transparent conducting film and preparation method of low-temperature crystallization ITO transparent conducting film
JP2013012409A (en) * 2011-06-29 2013-01-17 Toshiro Kuji Generation method of transparent conductive film and transparent conductive film generation device
JP2014241128A (en) * 2013-05-15 2014-12-25 日本写真印刷株式会社 Touch sensor and touch sensor module
US9048452B2 (en) 2013-02-05 2015-06-02 Samsung Display Co., Ltd. Method for manufacturing transparent electrode of organic light emitting display device and organic light emitting display device using the transparent electrode
JP2016225019A (en) * 2015-05-27 2016-12-28 日東電工株式会社 Transparent conductive film
JP2017518441A (en) * 2014-05-30 2017-07-06 ピーピージー インダストリーズ オハイオ,インコーポレイティド Transparent conductive indium-doped tin oxide

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102945694B (en) * 2012-11-08 2015-05-20 深圳南玻显示器件科技有限公司 ITO (indium tin oxide) base plate and preparation method of ITO base plate
CN104746003B (en) * 2014-12-24 2017-09-26 信利(惠州)智能显示有限公司 Tin indium oxide low temperature film plating process
JP6418708B2 (en) * 2016-09-12 2018-11-07 株式会社アルバック Manufacturing method of substrate with transparent conductive film, manufacturing apparatus for substrate with transparent conductive film, and substrate with transparent conductive film
CN106893132B (en) * 2017-03-30 2019-11-15 维沃移动通信有限公司 A kind of organic cambered shell processing method and organic cambered shell
CN110546299B (en) * 2017-05-15 2022-09-30 三井金属矿业株式会社 Sputtering target for transparent conductive film
KR102375637B1 (en) * 2017-08-08 2022-03-17 미쓰이금속광업주식회사 Oxide sintered compact and sputtering target
CN108149210B (en) * 2017-12-26 2019-12-31 哈尔滨工业大学 Preparation method of long-wave infrared anti-reflection protective film
JP7112854B2 (en) * 2018-02-19 2022-08-04 住友化学株式会社 tin oxide powder
WO2021240962A1 (en) * 2020-05-25 2021-12-02 日東電工株式会社 Method for producing light-transmitting conductive sheet
CN117229051A (en) * 2023-09-21 2023-12-15 株洲火炬安泰新材料有限公司 LaTb co-doped ITO target material and preparation method and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008114588A1 (en) * 2007-03-20 2008-09-25 Idemitsu Kosan Co., Ltd. Sputtering target, oxide semiconductor film and semiconductor device
JP2008243928A (en) * 2007-03-26 2008-10-09 Idemitsu Kosan Co Ltd Amorphous oxide semiconductor thin-film, its forming method, manufacturing process of thin-film transistor, field effect transistor, light-emitting device, display and sputtering target
WO2008139860A1 (en) * 2007-05-07 2008-11-20 Idemitsu Kosan Co., Ltd. Semiconductor thin film, semiconductor thin film manufacturing method and semiconductor element

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2989886B2 (en) * 1990-11-30 1999-12-13 日東電工株式会社 Analog touch panel
US5433901A (en) * 1993-02-11 1995-07-18 Vesuvius Crucible Company Method of manufacturing an ITO sintered body
JP3501614B2 (en) * 1997-02-26 2004-03-02 株式会社オプトロン ITO sintered body, method of manufacturing the same, and method of forming ITO film using the ITO sintered body
JP2000054115A (en) * 1998-07-31 2000-02-22 Oputoron:Kk Production of ito sintered compact and formation of thin ito film
JP3957924B2 (en) * 1999-06-28 2007-08-15 株式会社東芝 CMP polishing method
CN1320155C (en) * 2001-06-26 2007-06-06 三井金属矿业株式会社 Sputtering target for high resistance transparent conductive membrane and mfg. method of high resistance transparent conductive membrane
EP2278041B1 (en) * 2001-08-02 2012-05-23 Idemitsu Kosan Co., Ltd. Sputtering target and transparent conductive film obtainable by the target
JP4285019B2 (en) * 2003-02-07 2009-06-24 住友金属鉱山株式会社 Transparent conductive thin film and method for producing the same, transparent conductive substrate for display panel using the same, and electroluminescence device
TWI278507B (en) * 2003-05-28 2007-04-11 Hitachi Chemical Co Ltd Polishing agent and polishing method
JP2007176706A (en) * 2005-12-26 2007-07-12 Mitsui Mining & Smelting Co Ltd Oxide sintered compact, its production method, sputtering target and transparent electrically conductive film
JP2007238365A (en) * 2006-03-07 2007-09-20 Mitsui Mining & Smelting Co Ltd Oxide sintered compact, its manufacturing method, sputtering target and transparent conductive film
JP5298408B2 (en) * 2006-05-16 2013-09-25 株式会社ブリヂストン Method for forming crystalline ITO thin film, crystalline ITO thin film and film, and resistive touch panel
JP5000230B2 (en) * 2006-08-10 2012-08-15 出光興産株式会社 Lanthanum oxide containing oxide target
JP2008179850A (en) 2007-01-24 2008-08-07 Toshiba Matsushita Display Technology Co Ltd Method and apparatus for depositing amorphous ito film
JP4807331B2 (en) * 2007-06-18 2011-11-02 住友金属鉱山株式会社 Method for producing indium oxide sputtering target
US8277694B2 (en) * 2007-07-13 2012-10-02 Jx Nippon Mining & Metals Corporation Sintered compact of composite oxide, amorphous film of composite oxide, process for producing said film, crystalline film of composite oxide and process for producing said film
TW200926209A (en) * 2007-10-03 2009-06-16 Mitsui Mining & Amp Smelting Co Ltd Indium oxide transparent conductive film and manufacturing method thereof
JP5362231B2 (en) * 2008-02-12 2013-12-11 株式会社カネカ Method for producing transparent conductive film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008114588A1 (en) * 2007-03-20 2008-09-25 Idemitsu Kosan Co., Ltd. Sputtering target, oxide semiconductor film and semiconductor device
JP2008243928A (en) * 2007-03-26 2008-10-09 Idemitsu Kosan Co Ltd Amorphous oxide semiconductor thin-film, its forming method, manufacturing process of thin-film transistor, field effect transistor, light-emitting device, display and sputtering target
WO2008139860A1 (en) * 2007-05-07 2008-11-20 Idemitsu Kosan Co., Ltd. Semiconductor thin film, semiconductor thin film manufacturing method and semiconductor element

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013012409A (en) * 2011-06-29 2013-01-17 Toshiro Kuji Generation method of transparent conductive film and transparent conductive film generation device
CN102651251A (en) * 2012-05-29 2012-08-29 番禺南沙殷田化工有限公司 Low-temperature crystallization indium tin oxide (ITO) transparent conducting film and preparation method of low-temperature crystallization ITO transparent conducting film
US9048452B2 (en) 2013-02-05 2015-06-02 Samsung Display Co., Ltd. Method for manufacturing transparent electrode of organic light emitting display device and organic light emitting display device using the transparent electrode
JP2014241128A (en) * 2013-05-15 2014-12-25 日本写真印刷株式会社 Touch sensor and touch sensor module
JP2017518441A (en) * 2014-05-30 2017-07-06 ピーピージー インダストリーズ オハイオ,インコーポレイティド Transparent conductive indium-doped tin oxide
JP2016225019A (en) * 2015-05-27 2016-12-28 日東電工株式会社 Transparent conductive film

Also Published As

Publication number Publication date
JP6060202B2 (en) 2017-01-11
CN102666909A (en) 2012-09-12
CN102666909B (en) 2016-06-22
CN104213085A (en) 2014-12-17
KR20180063386A (en) 2018-06-11
KR20120070597A (en) 2012-06-29
TW201538764A (en) 2015-10-16
JP2015158014A (en) 2015-09-03
KR20170005149A (en) 2017-01-11
JPWO2011061922A1 (en) 2013-04-04
TWI620827B (en) 2018-04-11
JP5726752B2 (en) 2015-06-03
TWI500786B (en) 2015-09-21
TW201124546A (en) 2011-07-16
KR20140071502A (en) 2014-06-11

Similar Documents

Publication Publication Date Title
JP6060202B2 (en) Transparent conductive film manufacturing method, sputtering apparatus, and sputtering target
TWI400806B (en) A semiconductor thin film, and a method for manufacturing the same, and a thin film transistor
KR101238926B1 (en) Method and apparatus for forming transparent conductive film
TWI585227B (en) A sputtering target, an oxide semiconductor thin film, and the like
US20130341181A1 (en) Zinc oxide-based sputtering target, method of manufacturing the same, and thin-film transistor having barrier layer deposited using the same
JP2010045263A (en) Oxide semiconductor, sputtering target, and thin-film transistor
TW201232787A (en) Laminate structure including oxide semiconductor thin film layer, and thin film transistor
TW200902740A (en) Sputtering target, oxide semiconductor film and semiconductor device
CN101514440A (en) Method for preparation of indium oxide transparent film with high electron mobility
JP2003520296A (en) Electron beam evaporation method of transparent indium tin oxide
JP2010222214A (en) Metal oxide thin film and method for producing the same
KR20140011945A (en) Sputtering target, method for using the same, and method for forming oxide film
US20120160663A1 (en) Sputter Deposition and Annealing of High Conductivity Transparent Oxides
CN105970171A (en) Method adopting magnetron sputtering to prepare flexible rare earth oxide film
KR100862593B1 (en) Transparent conductive thin film and method of fabricating thereof
CN103774098B (en) Tin monoxide textured film and preparation method thereof
WO2011102425A1 (en) Oxide sintered body, oxide mixture, manufacturing methods for same, and targets using same
TW201404909A (en) Zinc oxide-based sputtering target, method of manufacturing the same, thin-film transistor having barrier layer deposited using the same, and method of manufacturing the thin-film transistor
JP5232787B2 (en) Manufacturing method of color filter
TW201000658A (en) Method of manufacturing liquid crystal display device
JP2008053118A (en) Heat treatment method for zinc oxide-based transparent conductive film
JP5508889B2 (en) Thin film phosphor, display, cathode ray tube, and method of manufacturing thin film phosphor
CN115011939A (en) Metastable vanadium dioxide film with quartz glass as substrate and preparation method thereof
Mihara et al. P‐210: Ta‐Doped SnO2 Thin Films for PDP
TW201200616A (en) Oxide sintered body, oxide mixture, manufacturing methods for same, and targets using same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080051495.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10831321

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011541809

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127012052

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10831321

Country of ref document: EP

Kind code of ref document: A1