WO2011061806A1 - Method of manufacturing rotor of electric motor - Google Patents

Method of manufacturing rotor of electric motor Download PDF

Info

Publication number
WO2011061806A1
WO2011061806A1 PCT/JP2009/006279 JP2009006279W WO2011061806A1 WO 2011061806 A1 WO2011061806 A1 WO 2011061806A1 JP 2009006279 W JP2009006279 W JP 2009006279W WO 2011061806 A1 WO2011061806 A1 WO 2011061806A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
rotor core
rotor
magnetization
electric motor
Prior art date
Application number
PCT/JP2009/006279
Other languages
French (fr)
Japanese (ja)
Inventor
竹綱靖治
西隈靖
建部勝彦
雪吹晋吾
竹永智裕
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to JP2011541742A priority Critical patent/JP5360224B2/en
Priority to PCT/JP2009/006279 priority patent/WO2011061806A1/en
Publication of WO2011061806A1 publication Critical patent/WO2011061806A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/03Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies having permanent magnets

Definitions

  • the present invention relates to a method for manufacturing a rotor of an electric motor, and more particularly to a technique for attaching a permanent magnet to a rotor.
  • a magnetic material such as ferrite is accommodated in a hole formed in the rotor core, and the magnetic material is made into a permanent magnet by magnetizing the rotor of the motor. Manufacturing methods are known.
  • Patent Document 1 discloses a technique for reducing eddy currents generated in a permanent magnet by housing the permanent magnet in a plurality of divided states.
  • Patent Document 2 discloses a technique in which a groove is provided on the surface in the state of a magnetic material before magnetization and the groove is bent along the groove. ing.
  • An object of the present invention is to provide a method of manufacturing a rotor of an electric motor that prevents a drop of fragments generated when a magnetic material is divided and obtains a good yield.
  • the method for manufacturing a rotor of an electric motor according to the present invention is a method for manufacturing a rotor of an electric motor comprising: a rotor core formed by laminating a plurality of steel plates; and a plurality of permanent magnets housed in the rotor core.
  • the present invention it is possible to prevent the fragments from dropping when the magnetic material is divided, and to improve the yield when manufacturing the rotor of the electric motor.
  • the rotor 1 is a permanent magnet type rotor that constitutes an electric motor (motor) together with an appropriate stator (stator).
  • the rotor 1 includes a shaft 10, a rotor core 20, and a plurality of permanent magnets 30.
  • the shaft 10 is a rotating shaft that transmits the rotation of the rotor 1 to the outside.
  • the rotor core 20 is a substantially cylindrical member formed by laminating a plurality of disc-shaped steel plates.
  • the rotor core 20 is fixed concentrically with the shaft 10 in a state where the shaft 10 penetrates, and can rotate integrally with the shaft 10.
  • the rotor core 20 is provided with a plurality of accommodation hole pairs 21.
  • the accommodation hole pair 21 is composed of a pair of accommodation holes 21 a and 21 a adjacent to each other.
  • a plurality of accommodation hole pairs 21 are provided with the same phase difference in the circumferential direction of the rotor core 20, and are disposed in the vicinity of the outer peripheral surface of the rotor core 20.
  • the accommodation hole 21 a is a hole for accommodating the permanent magnet 30 in the rotor core 20.
  • a plurality of accommodation holes 21 a are provided along the outer periphery of the rotor core 20, and the accommodation hole pair 21 is configured by arranging the two accommodation holes 21 a adjacent to each other along the circumferential direction of the rotor core 20.
  • the receiving hole 21a is formed in a hexagonal shape in which three sets of opposite sides are parallel and inscribed in an ellipse as viewed from the axial direction of the rotor core 20, in other words, a regular hexagonal shape extending in one direction.
  • the rotor core 20 is provided so as to penetrate the rotor core 20 from one end surface to the other end surface in the axial direction of the rotor core 20 in the held state.
  • the pair of accommodation holes 21a and 21a forming the accommodation hole pair 21 is a straight line connecting both ends in the extending direction of one accommodation hole 21a and the extending direction of the other accommodation hole 21a when viewed from the axial direction of the rotor core 20.
  • the permanent magnet 30 is obtained by magnetizing a magnetic material such as ferrite.
  • the permanent magnet 30 is formed in a rectangular parallelepiped shape, and is accommodated in the accommodation hole 21 a in a state of being divided into a plurality of pieces with a constant size along the axial direction of the rotor core 20.
  • both end faces of the permanent magnet 30 in the axial direction of the rotor core 20 and the both end faces of the rotor core 20 substantially coincide with each other, and between the permanent magnet 30 and the accommodation hole 21a.
  • the size is set such that the gap formed is minimized.
  • the permanent magnet 30 is permanent on the side surface of the housing hole 21 a that is continuous with the pair of long sides facing each other of the housing hole 21 a when viewed from the axial direction of the rotor core 20.
  • the magnet 30 is configured to come into contact with the side surfaces of the magnet 30 being substantially coincident with each other.
  • a gap formed between the permanent magnet 30 and the accommodation hole 21a is filled with, for example, a thermosetting epoxy adhesive, and the permanent magnet 30 is fixed to the accommodation hole 21a by curing. ing.
  • the manufacturing process S1 includes a temporary magnetizing process S10, a dividing process S20, an accommodating process S30, an adhering process S40, and a main magnetizing process S50.
  • the temporary magnetizing step S10 is a step of magnetizing a magnetic material such as a rectangular parallelepiped ferrite relatively weakly to produce a permanent magnet 30 having a relatively weak magnetic force.
  • the longitudinal direction of the permanent magnet 30 (the direction indicated by the arrow h in FIG. 4) is the “height direction”, and the direction along the long side of the surface having the minimum area of the permanent magnet 30 (the arrow in FIG. 4).
  • the direction (indicated by w) will be described as the “width direction”, and the direction along the short side of the surface having the minimum area of the permanent magnet 30 (the direction indicated by the arrow t in FIG. 4) will be described as the “thickness direction”.
  • the temporary magnetization step S10 by applying a relatively weak magnetic field in the height direction to a magnetization material lower than the saturation magnetization to a magnetic material such as a rectangular parallelepiped ferrite. The permanent magnet 30 is produced.
  • the division step S20 is a step of dividing the permanent magnet 30 produced in the temporary magnetization step S10 into a plurality of pieces. As shown in FIG. 5, in the dividing step S20, in order to reduce the eddy current generated in the permanent magnet 30, the permanent magnet 30 is divided into a plurality of pieces with a certain size in the height direction, and then they are once again separated. To one. At this time, since the attractive force is generated in the permanent magnet 30 due to the magnetization in the temporary magnetization step S10, the divided permanent magnets 30 can be easily combined without using an adhesive or the like. Further, since the attractive force is generated in the piece of the permanent magnet 30 generated when the permanent magnet 30 is divided, the permanent magnet 30 can be coupled without dropping the piece, and the yield is improved. be able to.
  • the dividing method of the permanent magnet 30 in this process is not limited, a slot is provided on the surface of the permanent magnet 30 and dividing is performed by bending along the groove. A method capable of obtaining a good yield and reducing the time and cost required for the dividing step S20 is preferable.
  • segmentation number of the permanent magnet 30 in this process is not limited. As the number of divisions of the permanent magnet 30 increases, the eddy current generated in the permanent magnet 30 can be further reduced. However, since the time required for the division also increases, the number of divisions of the permanent magnet 30 is obtained in advance through experiments or the like. The optimal number is set.
  • the magnetization in the temporary magnetization step S10 is such that the pieces of the permanent magnet 30 do not fall when the permanent magnet 30 is divided in this step, and the permanent magnet 30 is not separated when the divided permanent magnets 30 are joined together. What is necessary is just to carry out so that it may have attraction
  • the housing step S30 is a step of housing the permanent magnet 30 divided in the dividing step S20 in the housing hole 21a of the rotor core 20.
  • the permanent magnet 30 is accommodated in the accommodating hole of the rotor core 20 using the accommodating jig 40 in a state where the axial direction of the rotor core 20 and the height direction of the permanent magnet 30 are matched.
  • 21a The housing jig 40 is a plate-shaped jig for easily housing the permanent magnet 30 in the housing hole 21a.
  • An opening substantially matching the shape of the permanent magnet 30 when viewed from the height direction is provided on one end surface of the housing jig 40, and the opening gradually increases toward the other end surface of the housing jig 40.
  • the housing jig 40 is formed from one end surface to the other end surface so as to expand.
  • the opening at one end surface of the accommodation jig 40 and the accommodation hole 21a on the upper surface of the rotor core 20 are opposed to each other.
  • the accommodation jig 40 is installed on the upper surface of the rotor core 20 so that the opening of the jig 40 and the accommodation hole 21 a of the rotor core 20 communicate with each other, and the permanent magnet 30 is inserted from the opening on the other end surface of the accommodation jig 40. As shown in FIG.
  • both end surfaces in the thickness direction of the permanent magnet 30 are formed on the side surfaces of the accommodation holes 21 a that are continuous with the pair of opposing long sides of the accommodation holes 21 a.
  • the permanent magnet 30 is accommodated in the accommodation hole 21a so that both end surfaces in the axial direction of the rotor core 20 are substantially in contact with both end surfaces in the height direction of the permanent magnet 30.
  • the divided permanent magnets 30 are joined without using an adhesive or the like. It can be easily accommodated in the accommodation hole 21a. Therefore, the manufacturing cost of the rotor 1 can be reduced, and the manufacturing time of the rotor 1 can be shortened.
  • the adhesion step S40 is a step of adhering the permanent magnet 30 accommodated in the accommodation hole 21a of the rotor core 20 to the rotor core 20 in the accommodation step S30.
  • the permanent magnet 30 is filled with an adhesive in a gap formed between the permanent magnet 30 and the housing hole 21a and cured in a state where the permanent magnet 30 is housed in the housing hole 21a. Is fixed to the receiving hole 21a.
  • the adhesive used in this step is not limited, and the permanent magnet 30 is fixed to the receiving hole 21a when the rotor 1 is used, such as a thermosetting epoxy adhesive. Any material that does not cause a problem such as dropping off may be used.
  • the main magnetizing step S50 is a step of magnetizing the permanent magnet 30 bonded to the rotor core 20 in the bonding step S40. As shown in FIG. 8, in the main magnetization step S50, a magnetic field having a strength that causes saturation magnetization is applied to the permanent magnet 30 accommodated in the accommodation hole 21a of the rotor core 20 in the longitudinal direction (high (Thickness direction) is applied in the thickness direction which is a different direction. However, the magnetization in this step is the same on the inner side in the radial direction of the rotor core 20 (hereinafter, simply referred to as “inner side”), and the magnetic poles of the pair of receiving holes 21 a and 21 a forming one receiving hole pair 21 are the same.
  • outer side it is performed so as to be the same on the outer side in the radial direction of the rotor core 20 (hereinafter simply referred to as “outer side”). That is, in one accommodation hole pair 21, when the outer magnetic pole in one accommodation hole 21a is an N pole, the outer magnetic pole in the other accommodation hole 21a is also an N pole. Further, the magnetization in this step is performed so that the magnetic poles of the adjacent accommodation hole pairs 21 are different. That is, when the outer magnetic pole in any accommodation hole pair 21 is an N pole, the outer magnetic pole in the accommodation hole pair 21 adjacent to the accommodation hole pair 21 is an S pole.
  • the rotor 1 is manufactured through the manufacturing process S1 in which the temporary magnetization process S10, the dividing process S20, the housing process S30, the bonding process S40, and the main magnetization process S50 are sequentially performed.
  • the present invention can be used in a process for manufacturing a rotor of an electric motor, and in particular, can be used in a process for manufacturing a rotor having a divided permanent magnet.

Abstract

Provided is a method of manufacturing the rotor of an electric motor wherein good yield can be attained by preventing the fragments which are produced when a magnetic material is divided from falling. A method (S1) of manufacturing the rotor (1) of an electric motor comprising a rotor core (20) and a plurality of permanent magnets (30) housed in the rotor core (20) comprises a temporary magnetization step (S10) for fabricating a permanent magnet (30) by applying a magnetic field with such a strength that causes magnetization lower than the saturation magnetization to a magnetic material in the shape of a rectangular prism in the longitudinal direction thereof, a division step (S20) for dividing the permanent magnet (30) fabricated in the temporary magnetization step (S10) in the longitudinal direction thereof, a housing step (S30) for housing the permanent magnets (30) divided in the division step (S20) in the rotor core (20) in a state where the permanent magnets (30) are coupled integrally by the attraction thereof, and a main magnetization step (S50) for applying a magnetic field, in the direction different from the longitudinal direction, with such a strength that causes saturation magnetization to the permanent magnets (30) which are housed in rotor core (20) in the housing step (S30).

Description

電動機の回転子の製造方法Method for manufacturing electric motor rotor
 本発明は、電動機の回転子の製造方法に関し、特に永久磁石を回転子に取り付ける技術に関する。 The present invention relates to a method for manufacturing a rotor of an electric motor, and more particularly to a technique for attaching a permanent magnet to a rotor.
 従来、複数の鋼板を積層してロータコアを成形した後、当該ロータコアに形成された孔にフェライト等の磁性材料を収容し、当該磁性材料を着磁によって永久磁石とすることにより電動機の回転子を製造する方法が知られている。 Conventionally, after forming a rotor core by laminating a plurality of steel plates, a magnetic material such as ferrite is accommodated in a hole formed in the rotor core, and the magnetic material is made into a permanent magnet by magnetizing the rotor of the motor. Manufacturing methods are known.
 上記のような電動機の回転子においては、永久磁石を複数個に分割した状態で回転子に収容することで、永久磁石に発生する渦電流を低減する技術が特許文献1に開示されている。
 上記のように永久磁石を複数個に分割する技術としては、着磁前の磁性材料の状態で、表面に溝を設け、当該溝に沿って折り曲げることにより分割する技術が特許文献2に開示されている。
In the rotor of an electric motor as described above, Patent Document 1 discloses a technique for reducing eddy currents generated in a permanent magnet by housing the permanent magnet in a plurality of divided states.
As a technique for dividing a permanent magnet into a plurality of pieces as described above, Patent Document 2 discloses a technique in which a groove is provided on the surface in the state of a magnetic material before magnetization and the groove is bent along the groove. ing.
 しかしながら、磁性材料を折り曲げて分割する際には、分割箇所から磁性材料の欠片が落下する。そのため、歩留まりが悪化するばかりか、落下した欠片が回転子に入り込んで悪影響を及ぼすおそれがある。
 また、磁性材料を切断刃等を用いて分割する場合には、その取り代の分だけ歩留まりが悪化するという点で不利である。
特開2007-300754号公報 特開平7-40296号公報
However, when the magnetic material is bent and divided, a piece of the magnetic material falls from the divided portion. Therefore, not only the yield is deteriorated, but the fallen pieces may enter the rotor and have an adverse effect.
Further, when the magnetic material is divided using a cutting blade or the like, it is disadvantageous in that the yield deteriorates by the amount of the machining allowance.
JP 2007-300754 A JP 7-40296 A
 本発明は、磁性材料を分割した際に生じる欠片の落下を防止し、良好な歩留まりを得る電動機の回転子の製造方法を提供することを課題とする。 An object of the present invention is to provide a method of manufacturing a rotor of an electric motor that prevents a drop of fragments generated when a magnetic material is divided and obtains a good yield.
 本発明の電動機の回転子の製造方法は、複数の鋼板を積層してなるロータコアと、前記ロータコアの内部に収容される複数の永久磁石と、を備える電動機の回転子の製造方法であって、直方体形状の磁性材料に対して、飽和磁化よりも低い磁化となる強さの磁場を長手方向に印加して前記永久磁石を作製する仮着磁工程と、前記仮着磁工程で作製した永久磁石を長手方向に分割する分割工程と、前記分割工程で分割した永久磁石をその吸引力により一体的に結合した状態で前記ロータコアの内部に収容する収容工程と、前記収容工程で前記ロータコアの内部に収容した永久磁石に対して、飽和磁化となる強さの磁場を長手方向とは異なる方向に印加する本着磁工程と、を具備する。 The method for manufacturing a rotor of an electric motor according to the present invention is a method for manufacturing a rotor of an electric motor comprising: a rotor core formed by laminating a plurality of steel plates; and a plurality of permanent magnets housed in the rotor core. A temporary magnetizing process for manufacturing the permanent magnet by applying a magnetic field having a strength lower than the saturation magnetization in the longitudinal direction to a rectangular parallelepiped magnetic material, and a permanent magnet manufactured by the temporary magnetizing process Dividing in the longitudinal direction, an accommodating step of accommodating the permanent magnets divided in the dividing step in an integrally coupled state by the attractive force, and the inside of the rotor core in the accommodating step And a main magnetization step of applying a magnetic field having a saturation magnetization strength in a direction different from the longitudinal direction to the housed permanent magnet.
 本発明によれば、磁性材料を分割する際に生じる欠片の落下を防止できると共に、電動機の回転子を製造する際の歩留まりを向上することができる。 According to the present invention, it is possible to prevent the fragments from dropping when the magnetic material is divided, and to improve the yield when manufacturing the rotor of the electric motor.
本発明に係る回転子を示す斜視図。The perspective view which shows the rotor which concerns on this invention. 本発明に係る回転子の軸方向断面図。The axial direction sectional view of the rotor concerning the present invention. 本発明に係る回転子の製造方法を示すフローチャート。The flowchart which shows the manufacturing method of the rotor which concerns on this invention. 永久磁石の着磁を示す図。The figure which shows the magnetization of a permanent magnet. 永久磁石の分割、及び結合を示す図。The figure which shows the division | segmentation and coupling | bonding of a permanent magnet. 永久磁石のロータコアへの収容を示す図。The figure which shows accommodation to the rotor core of a permanent magnet. ロータコアに収容された永久磁石を示す図。The figure which shows the permanent magnet accommodated in the rotor core. ロータコアに収容された永久磁石の磁極を示す図。The figure which shows the magnetic pole of the permanent magnet accommodated in the rotor core.
 1   ロータ
 10  シャフト
 20  ロータコア
 21  収容孔対
 21a 収容孔
 30  永久磁石
1 rotor 10 shaft 20 rotor core 21 accommodation hole pair 21a accommodation hole 30 permanent magnet
 以下では、図1~図2を参照して、ロータ1について説明する。
 ロータ1は、適宜の固定子(ステータ)と共に電動機(モータ)を構成する永久磁石型の回転子である。
Hereinafter, the rotor 1 will be described with reference to FIGS.
The rotor 1 is a permanent magnet type rotor that constitutes an electric motor (motor) together with an appropriate stator (stator).
 図1に示すように、ロータ1は、シャフト10と、ロータコア20と、複数の永久磁石30・30・・・とを具備する。 As shown in FIG. 1, the rotor 1 includes a shaft 10, a rotor core 20, and a plurality of permanent magnets 30.
 シャフト10は、ロータ1の回転を外部に伝える回転軸である。 The shaft 10 is a rotating shaft that transmits the rotation of the rotor 1 to the outside.
 ロータコア20は、複数の円盤状の鋼板が積層されて成形された略円柱状の部材である。ロータコア20は、シャフト10が貫通した状態でシャフト10と同心的に固定され、シャフト10と一体的に回転可能となっている。 The rotor core 20 is a substantially cylindrical member formed by laminating a plurality of disc-shaped steel plates. The rotor core 20 is fixed concentrically with the shaft 10 in a state where the shaft 10 penetrates, and can rotate integrally with the shaft 10.
 また、図2に示すように、ロータコア20には、複数の収容孔対21・21・・・が設けられている。
 収容孔対21は、互いに隣接する一対の収容孔21a・21aからなり、ロータコア20の周方向において互いに同一の位相差をもって複数設けられ、ロータコア20の外周面近傍に配置されている。
Further, as shown in FIG. 2, the rotor core 20 is provided with a plurality of accommodation hole pairs 21.
The accommodation hole pair 21 is composed of a pair of accommodation holes 21 a and 21 a adjacent to each other. A plurality of accommodation hole pairs 21 are provided with the same phase difference in the circumferential direction of the rotor core 20, and are disposed in the vicinity of the outer peripheral surface of the rotor core 20.
 収容孔21aは、ロータコア20に永久磁石30を収容するための孔である。収容孔21aは、ロータコア20の外周に沿って複数設けられており、二つの収容孔21aがロータコア20の周方向に沿って互いに隣接して配置されることで収容孔対21が構成されている。収容孔21aは、ロータコア20の軸方向から見て、三組の対辺が平行、かつ楕円に内接する六角形状、換言すれば、正六角形を一方向に延出した形状に形成され、当該形状を保持した状態でロータコア20の軸方向における一端面から他端面にかけてロータコア20を貫通するように設けられている。
 収容孔対21をなす一対の収容孔21a・21aは、ロータコア20の軸方向から見て、一方の収容孔21aの延出方向における両端部を結ぶ直線と、他方の収容孔21aの延出方向における両端部を結ぶ直線とがなす角度がロータコア20の径方向外側に向けて鈍角を形成するように配置されている。つまり、一方の収容孔21aの延出方向における他方の収容孔21aに近い側の端部、及び他方の収容孔21aの延出方向における一方の収容孔21aに近い側の端部が一方の収容孔21aの延出方向における他方の収容孔21aから遠い側の端部、及び他方の収容孔21aの延出方向における一方の収容孔21aから遠い側の端部よりもロータコア20の径方向における内側に位置するように、ロータコア20の周方向に対して傾斜するように配置されている。
The accommodation hole 21 a is a hole for accommodating the permanent magnet 30 in the rotor core 20. A plurality of accommodation holes 21 a are provided along the outer periphery of the rotor core 20, and the accommodation hole pair 21 is configured by arranging the two accommodation holes 21 a adjacent to each other along the circumferential direction of the rotor core 20. . The receiving hole 21a is formed in a hexagonal shape in which three sets of opposite sides are parallel and inscribed in an ellipse as viewed from the axial direction of the rotor core 20, in other words, a regular hexagonal shape extending in one direction. The rotor core 20 is provided so as to penetrate the rotor core 20 from one end surface to the other end surface in the axial direction of the rotor core 20 in the held state.
The pair of accommodation holes 21a and 21a forming the accommodation hole pair 21 is a straight line connecting both ends in the extending direction of one accommodation hole 21a and the extending direction of the other accommodation hole 21a when viewed from the axial direction of the rotor core 20. Are arranged so that an angle formed by a straight line connecting both end portions of each of the rotors forms an obtuse angle toward the radially outer side of the rotor core 20. That is, the end near the other accommodation hole 21a in the extending direction of the one accommodation hole 21a and the end near the one accommodation hole 21a in the extension direction of the other accommodation hole 21a are accommodated in one accommodation. Inner side in the radial direction of the rotor core 20 than the end on the side farther from the other housing hole 21a in the extending direction of the hole 21a and the end on the side farther from one housing hole 21a in the extending direction of the other housing hole 21a It arrange | positions so that it may incline with respect to the circumferential direction of the rotor core 20 so that it may be located in.
 永久磁石30は、フェライト等の磁性材料が磁化されたものである。永久磁石30は、直方体形状に形成され、ロータコア20の軸方向に沿って一定の大きさで複数に分割された状態で収容孔21aに収容されている。永久磁石30は、収容孔21aに収容した際に、ロータコア20の軸方向における永久磁石30の両端面とロータコア20の両端面とが略一致し、更に永久磁石30と収容孔21aとの間に形成される隙間が最小となるような大きさに設定されている。詳細には、永久磁石30は、ロータコア20の軸方向から見て、収容孔21aの互いに対向する一組の長辺に連続する収容孔21aの側面に、永久磁石30の長辺に連続する永久磁石30の側面が略一致した状態で当接するように構成されている。
 また、永久磁石30と収容孔21aとの間に形成された隙間には、例えば、熱硬化型のエポキシ系の接着剤が充填され、硬化することにより、永久磁石30が収容孔21aに固定されている。
The permanent magnet 30 is obtained by magnetizing a magnetic material such as ferrite. The permanent magnet 30 is formed in a rectangular parallelepiped shape, and is accommodated in the accommodation hole 21 a in a state of being divided into a plurality of pieces with a constant size along the axial direction of the rotor core 20. When the permanent magnet 30 is accommodated in the accommodation hole 21a, both end faces of the permanent magnet 30 in the axial direction of the rotor core 20 and the both end faces of the rotor core 20 substantially coincide with each other, and between the permanent magnet 30 and the accommodation hole 21a. The size is set such that the gap formed is minimized. In detail, the permanent magnet 30 is permanent on the side surface of the housing hole 21 a that is continuous with the pair of long sides facing each other of the housing hole 21 a when viewed from the axial direction of the rotor core 20. The magnet 30 is configured to come into contact with the side surfaces of the magnet 30 being substantially coincident with each other.
In addition, a gap formed between the permanent magnet 30 and the accommodation hole 21a is filled with, for example, a thermosetting epoxy adhesive, and the permanent magnet 30 is fixed to the accommodation hole 21a by curing. ing.
 以下では、図3~図8を参照して、ロータ1を製造する製造工程S1について説明する。 Hereinafter, the manufacturing process S1 for manufacturing the rotor 1 will be described with reference to FIGS.
 図3に示すように、製造工程S1は、仮着磁工程S10、分割工程S20、収容工程S30、接着工程S40、及び本着磁工程S50を具備する。 As shown in FIG. 3, the manufacturing process S1 includes a temporary magnetizing process S10, a dividing process S20, an accommodating process S30, an adhering process S40, and a main magnetizing process S50.
 仮着磁工程S10は、直方体形状のフェライト等の磁性材料に対して比較的弱く着磁を行い、比較的弱い磁力を有する永久磁石30を作製する工程である。
 なお、以下においては、永久磁石30の長手方向(図4における矢印hで示す方向)を「高さ方向」、永久磁石30の最小面積を有する面における長辺に沿った方向(図4における矢印wで示す方向)を「幅方向」、永久磁石30の最小面積を有する面における短辺に沿った方向(図4における矢印tで示す方向)を「厚み方向」として説明する。
 図4に示すように、仮着磁工程S10においては、直方体形状のフェライト等の磁性材料に対して、飽和磁化よりも低い磁化となるような比較的弱い磁場を高さ方向に印加することで永久磁石30を作製する。
The temporary magnetizing step S10 is a step of magnetizing a magnetic material such as a rectangular parallelepiped ferrite relatively weakly to produce a permanent magnet 30 having a relatively weak magnetic force.
In the following, the longitudinal direction of the permanent magnet 30 (the direction indicated by the arrow h in FIG. 4) is the “height direction”, and the direction along the long side of the surface having the minimum area of the permanent magnet 30 (the arrow in FIG. 4). The direction (indicated by w) will be described as the “width direction”, and the direction along the short side of the surface having the minimum area of the permanent magnet 30 (the direction indicated by the arrow t in FIG. 4) will be described as the “thickness direction”.
As shown in FIG. 4, in the temporary magnetization step S10, by applying a relatively weak magnetic field in the height direction to a magnetization material lower than the saturation magnetization to a magnetic material such as a rectangular parallelepiped ferrite. The permanent magnet 30 is produced.
 分割工程S20は、仮着磁工程S10で作製した永久磁石30を複数に分割する工程である。
 図5に示すように、分割工程S20においては、永久磁石30に発生する渦電流を低減するために、永久磁石30を高さ方向に一定の大きさで複数に分割した後、それらを再び一つに結合する。
 この時、仮着磁工程S10における着磁により、永久磁石30には吸引力が発生しているため、接着剤等を使用することなく、分割した永久磁石30を容易に結合することができる。更に、永久磁石30の分割時に生じた永久磁石30の欠片にも同様に吸引力が発生しているため、当該欠片が落下することなく永久磁石30を結合することができると共に、歩留まりを向上することができる。
 なお、本工程における永久磁石30の分割方法は、限定するものではないが、永久磁石30の表面に溝を設け、当該溝に沿って折り曲げることにより分割する等、分割時の取り代が少なく、良好な歩留まりを得ることができると共に、分割工程S20に要する時間及びコストを低減できる方法が好ましい。
 また、本工程における永久磁石30の分割数は、限定するものではない。永久磁石30の分割数が増加するに従って、永久磁石30に発生する渦電流をより低減することができるが、分割に要する時間も増加するため、永久磁石30の分割数は、予め実験等により求められた最適な数が設定される。
 また、仮着磁工程S10における着磁は、本工程における永久磁石30の分割時に永久磁石30の欠片が落下せず、分割した永久磁石30を一つに結合した時に永久磁石30が分離しない程度の吸引力を有するように行われればよい。
The division step S20 is a step of dividing the permanent magnet 30 produced in the temporary magnetization step S10 into a plurality of pieces.
As shown in FIG. 5, in the dividing step S20, in order to reduce the eddy current generated in the permanent magnet 30, the permanent magnet 30 is divided into a plurality of pieces with a certain size in the height direction, and then they are once again separated. To one.
At this time, since the attractive force is generated in the permanent magnet 30 due to the magnetization in the temporary magnetization step S10, the divided permanent magnets 30 can be easily combined without using an adhesive or the like. Further, since the attractive force is generated in the piece of the permanent magnet 30 generated when the permanent magnet 30 is divided, the permanent magnet 30 can be coupled without dropping the piece, and the yield is improved. be able to.
In addition, although the dividing method of the permanent magnet 30 in this process is not limited, a slot is provided on the surface of the permanent magnet 30 and dividing is performed by bending along the groove. A method capable of obtaining a good yield and reducing the time and cost required for the dividing step S20 is preferable.
Moreover, the division | segmentation number of the permanent magnet 30 in this process is not limited. As the number of divisions of the permanent magnet 30 increases, the eddy current generated in the permanent magnet 30 can be further reduced. However, since the time required for the division also increases, the number of divisions of the permanent magnet 30 is obtained in advance through experiments or the like. The optimal number is set.
Further, the magnetization in the temporary magnetization step S10 is such that the pieces of the permanent magnet 30 do not fall when the permanent magnet 30 is divided in this step, and the permanent magnet 30 is not separated when the divided permanent magnets 30 are joined together. What is necessary is just to carry out so that it may have attraction | suction power.
 収容工程S30は、分割工程S20で分割した永久磁石30をロータコア20の収容孔21aに収容する工程である。
 図6に示すように、収容工程S30においては、ロータコア20の軸方向と永久磁石30の高さ方向とを一致させた状態で、収容治具40を用いて永久磁石30をロータコア20の収容孔21aに収容する。
 収容治具40は、永久磁石30を容易に収容孔21aに収容するための板状の治具である。収容治具40の一端面には、永久磁石30を高さ方向から見た時の形状に略一致する開口が設けられており、当該開口は、収容治具40の他端面に向けて徐々に拡張するように、収容治具40の一端面から他端面にかけて形成されている。
The housing step S30 is a step of housing the permanent magnet 30 divided in the dividing step S20 in the housing hole 21a of the rotor core 20.
As shown in FIG. 6, in the accommodating step S <b> 30, the permanent magnet 30 is accommodated in the accommodating hole of the rotor core 20 using the accommodating jig 40 in a state where the axial direction of the rotor core 20 and the height direction of the permanent magnet 30 are matched. 21a.
The housing jig 40 is a plate-shaped jig for easily housing the permanent magnet 30 in the housing hole 21a. An opening substantially matching the shape of the permanent magnet 30 when viewed from the height direction is provided on one end surface of the housing jig 40, and the opening gradually increases toward the other end surface of the housing jig 40. The housing jig 40 is formed from one end surface to the other end surface so as to expand.
 永久磁石30を収容孔21aに収容する際には、収容治具40の一端面における開口と、ロータコア20の上面(図6におけるロータコア20の上端面)における収容孔21aとを対向させて、収容治具40の開口とロータコア20の収容孔21aとが連通するように、収容治具40をロータコア20の上面に設置し、収容治具40の他端面における開口から永久磁石30を挿入する。
 そして、図7に示すように、ロータコア20の軸方向から見て、収容孔21aの互いに対向する一組の長辺に連続する収容孔21aの側面に、永久磁石30の厚み方向における両端面が当接し、ロータコア20の軸方向における両端面と、永久磁石30の高さ方向における両端面とが略一致するように永久磁石30を収容孔21aに収容する。
 この時、前述のように、仮着磁工程S10における着磁により、永久磁石30には吸引力が発生しているため、接着剤等を使用することなく、分割した永久磁石30を結合した状態で容易に収容孔21aに収容することができる。したがって、ロータ1の製造コストを低減することができると共に、ロータ1の製造時間を短縮することができる。
When the permanent magnet 30 is accommodated in the accommodation hole 21a, the opening at one end surface of the accommodation jig 40 and the accommodation hole 21a on the upper surface of the rotor core 20 (the upper end surface of the rotor core 20 in FIG. 6) are opposed to each other. The accommodation jig 40 is installed on the upper surface of the rotor core 20 so that the opening of the jig 40 and the accommodation hole 21 a of the rotor core 20 communicate with each other, and the permanent magnet 30 is inserted from the opening on the other end surface of the accommodation jig 40.
As shown in FIG. 7, when viewed from the axial direction of the rotor core 20, both end surfaces in the thickness direction of the permanent magnet 30 are formed on the side surfaces of the accommodation holes 21 a that are continuous with the pair of opposing long sides of the accommodation holes 21 a. The permanent magnet 30 is accommodated in the accommodation hole 21a so that both end surfaces in the axial direction of the rotor core 20 are substantially in contact with both end surfaces in the height direction of the permanent magnet 30.
At this time, as described above, since the attractive force is generated in the permanent magnet 30 due to the magnetization in the temporary magnetization step S10, the divided permanent magnets 30 are joined without using an adhesive or the like. It can be easily accommodated in the accommodation hole 21a. Therefore, the manufacturing cost of the rotor 1 can be reduced, and the manufacturing time of the rotor 1 can be shortened.
 接着工程S40は、収容工程S30でロータコア20の収容孔21aに収容した永久磁石30をロータコア20と接着する工程である。
 接着工程S40においては、永久磁石30が収容孔21aに収容された状態で、永久磁石30と収容孔21aとの間に形成された隙間に接着剤を充填し、硬化させることにより、永久磁石30を収容孔21aに固定する。
 なお、本工程において使用する接着剤は、限定するものではなく、熱硬化型のエポキシ系の接着剤等、ロータ1を使用する際に永久磁石30が収容孔21aに固定され、収容孔21aから脱落する等の問題が生じないものであればよい。
The adhesion step S40 is a step of adhering the permanent magnet 30 accommodated in the accommodation hole 21a of the rotor core 20 to the rotor core 20 in the accommodation step S30.
In the bonding step S40, the permanent magnet 30 is filled with an adhesive in a gap formed between the permanent magnet 30 and the housing hole 21a and cured in a state where the permanent magnet 30 is housed in the housing hole 21a. Is fixed to the receiving hole 21a.
The adhesive used in this step is not limited, and the permanent magnet 30 is fixed to the receiving hole 21a when the rotor 1 is used, such as a thermosetting epoxy adhesive. Any material that does not cause a problem such as dropping off may be used.
 本着磁工程S50は、接着工程S40でロータコア20と接着した永久磁石30に対して着磁を行う工程である。
 図8に示すように、本着磁工程S50においては、ロータコア20の収容孔21aに収容された永久磁石30に対して、飽和磁化となる強さの磁場を、永久磁石30の長手方向(高さ方向)とは異なる方向である厚み方向に印加する。
 ただし、本工程における着磁は、一つの収容孔対21をなす一対の収容孔21a・21aの磁極がそれぞれロータコア20の径方向における内側(以下、単に「内側」と記す。)で同一、かつロータコア20の径方向における外側(以下、単に「外側」と記す。)で同一となるように行われる。つまり、一つの収容孔対21において、一方の収容孔21aにおける外側の磁極がN極の場合、他方の収容孔21aにおける外側の磁極もN極となる。
 更に、隣接する収容孔対21同士の磁極が異なるように本工程における着磁が行われる。つまり、任意の収容孔対21における外側の磁極がN極の場合、当該収容孔対21に隣接する収容孔対21における外側の磁極はS極となる。
The main magnetizing step S50 is a step of magnetizing the permanent magnet 30 bonded to the rotor core 20 in the bonding step S40.
As shown in FIG. 8, in the main magnetization step S50, a magnetic field having a strength that causes saturation magnetization is applied to the permanent magnet 30 accommodated in the accommodation hole 21a of the rotor core 20 in the longitudinal direction (high (Thickness direction) is applied in the thickness direction which is a different direction.
However, the magnetization in this step is the same on the inner side in the radial direction of the rotor core 20 (hereinafter, simply referred to as “inner side”), and the magnetic poles of the pair of receiving holes 21 a and 21 a forming one receiving hole pair 21 are the same. It is performed so as to be the same on the outer side in the radial direction of the rotor core 20 (hereinafter simply referred to as “outer side”). That is, in one accommodation hole pair 21, when the outer magnetic pole in one accommodation hole 21a is an N pole, the outer magnetic pole in the other accommodation hole 21a is also an N pole.
Further, the magnetization in this step is performed so that the magnetic poles of the adjacent accommodation hole pairs 21 are different. That is, when the outer magnetic pole in any accommodation hole pair 21 is an N pole, the outer magnetic pole in the accommodation hole pair 21 adjacent to the accommodation hole pair 21 is an S pole.
 以上のように、仮着磁工程S10、分割工程S20、収容工程S30、接着工程S40、及び本着磁工程S50を順番に行う製造工程S1を経て、ロータ1が製造される。 As described above, the rotor 1 is manufactured through the manufacturing process S1 in which the temporary magnetization process S10, the dividing process S20, the housing process S30, the bonding process S40, and the main magnetization process S50 are sequentially performed.
 本発明は、電動機の回転子を製造する工程に利用でき、特に分割された永久磁石を具備する回転子の製造工程に利用できる。 The present invention can be used in a process for manufacturing a rotor of an electric motor, and in particular, can be used in a process for manufacturing a rotor having a divided permanent magnet.

Claims (1)

  1.  複数の鋼板を積層してなるロータコアと、
     前記ロータコアの内部に収容される複数の永久磁石と、
     を備える電動機の回転子の製造方法であって、
     直方体形状の磁性材料に対して、飽和磁化よりも低い磁化となる強さの磁場を長手方向に印加して前記永久磁石を作製する仮着磁工程と、
     前記仮着磁工程で作製した永久磁石を長手方向に分割する分割工程と、
     前記分割工程で分割した永久磁石をその吸引力により一体的に結合した状態で前記ロータコアの内部に収容する収容工程と、
     前記収容工程で前記ロータコアの内部に収容した永久磁石に対して、飽和磁化となる強さの磁場を長手方向とは異なる方向に印加する本着磁工程と、
     を具備する電動機の回転子の製造方法。
    A rotor core formed by laminating a plurality of steel plates;
    A plurality of permanent magnets housed inside the rotor core;
    A method for manufacturing a rotor of an electric motor comprising:
    A temporary magnetizing step for producing the permanent magnet by applying a magnetic field having a strength lower than saturation magnetization to the rectangular parallelepiped magnetic material in the longitudinal direction;
    A dividing step of dividing the permanent magnet produced in the temporary magnetization step in the longitudinal direction;
    An accommodating step of accommodating the permanent magnets divided in the dividing step in the rotor core in an integrally coupled state by the attractive force;
    A main magnetizing step of applying a magnetic field having a saturation magnetization strength in a direction different from the longitudinal direction to the permanent magnet housed in the rotor core in the housing step;
    The manufacturing method of the rotor of the electric motor which comprises this.
PCT/JP2009/006279 2009-11-20 2009-11-20 Method of manufacturing rotor of electric motor WO2011061806A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011541742A JP5360224B2 (en) 2009-11-20 2009-11-20 Method for manufacturing electric motor rotor
PCT/JP2009/006279 WO2011061806A1 (en) 2009-11-20 2009-11-20 Method of manufacturing rotor of electric motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/006279 WO2011061806A1 (en) 2009-11-20 2009-11-20 Method of manufacturing rotor of electric motor

Publications (1)

Publication Number Publication Date
WO2011061806A1 true WO2011061806A1 (en) 2011-05-26

Family

ID=44059308

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/006279 WO2011061806A1 (en) 2009-11-20 2009-11-20 Method of manufacturing rotor of electric motor

Country Status (2)

Country Link
JP (1) JP5360224B2 (en)
WO (1) WO2011061806A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103607079A (en) * 2013-12-05 2014-02-26 山东理工大学 Brushless electromagnetic and biradial permanent magnet compound excitation generator rotor production method
CN103607080A (en) * 2013-12-05 2014-02-26 山东理工大学 Rotor production method of tangential and biradial permanent magnet hybrid excitation generator
CN103683711A (en) * 2013-12-05 2014-03-26 张学义 Method for producing tangential permanent magnet and salient-pole electromagnetism mixed excitation generator rotor
EP2985890A4 (en) * 2013-04-10 2016-05-11 Nissan Motor Device and method for inserting magnet into rotor core magnet insertion hole

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007300754A (en) * 2006-05-01 2007-11-15 Nissan Motor Co Ltd Rotor of motor and manufacturing method therefor
JP2008253046A (en) * 2007-03-30 2008-10-16 Hitachi Metals Ltd Method for manufacturing integrated magnet body
JP2008295165A (en) * 2007-05-23 2008-12-04 Toyota Motor Corp Permanent magnet type rotary electric machine and rotor manufacturing method therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007300754A (en) * 2006-05-01 2007-11-15 Nissan Motor Co Ltd Rotor of motor and manufacturing method therefor
JP2008253046A (en) * 2007-03-30 2008-10-16 Hitachi Metals Ltd Method for manufacturing integrated magnet body
JP2008295165A (en) * 2007-05-23 2008-12-04 Toyota Motor Corp Permanent magnet type rotary electric machine and rotor manufacturing method therefor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2985890A4 (en) * 2013-04-10 2016-05-11 Nissan Motor Device and method for inserting magnet into rotor core magnet insertion hole
US9712025B2 (en) 2013-04-10 2017-07-18 Nissan Motor Co., Ltd. Magnet inserting apparatus for magnet insertion into magnet insertion slots of rotor core and method thereof
CN103607079A (en) * 2013-12-05 2014-02-26 山东理工大学 Brushless electromagnetic and biradial permanent magnet compound excitation generator rotor production method
CN103607080A (en) * 2013-12-05 2014-02-26 山东理工大学 Rotor production method of tangential and biradial permanent magnet hybrid excitation generator
CN103683711A (en) * 2013-12-05 2014-03-26 张学义 Method for producing tangential permanent magnet and salient-pole electromagnetism mixed excitation generator rotor

Also Published As

Publication number Publication date
JP5360224B2 (en) 2013-12-04
JPWO2011061806A1 (en) 2013-04-04

Similar Documents

Publication Publication Date Title
US9130425B2 (en) Integrated rotor pole pieces
US9608485B2 (en) Rotor for rotating electrical machine, rotating electric machine, and method for producing rotor for rotating electrical machine with magnet having surfaces tilted with respect to magnet insertion hole
US10381890B2 (en) Axial-gap rotating electric machine
US9923436B2 (en) Rotor for a rotary electric machine
US7973442B2 (en) Permanent magnet-type rotary electric machine and production method for rotor for permanent magnet-type rotary electric machine
WO2018043026A1 (en) Surface magnet type motor
US10291092B2 (en) Rotor and motor including the same
US9935508B2 (en) Individual-segment rotor having individual segments retained by flexural supports and production method
US20120200185A1 (en) Rotor for rotary electric machine and manufacturing method thereof
CN108292866B (en) Motor and method for manufacturing motor
KR101407854B1 (en) Motor with Variable Magnet Flux
JP2014045634A (en) Rotor and rotary electric machine including the same
JP5360224B2 (en) Method for manufacturing electric motor rotor
JP2015159639A (en) Rotor of motor including magnet stuck to outer peripheral surface of rotor core, motor, and method of manufacturing rotor of motor
EP3145054B1 (en) Electrical rotating machine
KR102490607B1 (en) magnet insert type motor rotor
WO2018042634A1 (en) Rotor, dynamo-electric machine, and method for manufacturing rotor
JP6022962B2 (en) Rotor and motor
JP6685166B2 (en) Axial gap type rotating electric machine
JP2022157628A (en) Rotor for high-speed motor and manufacturing method thereof
CN102761219A (en) Rotating motor and rotor
JP2010252477A (en) Method for mounting permanent magnet on rotor of motor
JP2010088269A (en) Axial gap motor, rotor, and manufacturing method therefor
JP2007014053A (en) Rotor of motor and its manufacturing process
JP2010035307A (en) Axial gap type motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09851428

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011541742

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09851428

Country of ref document: EP

Kind code of ref document: A1