WO2018043026A1 - Surface magnet type motor - Google Patents

Surface magnet type motor Download PDF

Info

Publication number
WO2018043026A1
WO2018043026A1 PCT/JP2017/028248 JP2017028248W WO2018043026A1 WO 2018043026 A1 WO2018043026 A1 WO 2018043026A1 JP 2017028248 W JP2017028248 W JP 2017028248W WO 2018043026 A1 WO2018043026 A1 WO 2018043026A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
magnet
rotor core
magnets
stator
Prior art date
Application number
PCT/JP2017/028248
Other languages
French (fr)
Japanese (ja)
Inventor
俊幸 玉村
裕一郎 田代
康一 斉藤
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2018537064A priority Critical patent/JP6667084B2/en
Priority to CN201780052832.XA priority patent/CN109661760B/en
Publication of WO2018043026A1 publication Critical patent/WO2018043026A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets

Definitions

  • Patent Document 2 there has been proposed a motor in which a plurality of magnets having a D-shaped cross section are arranged on the outer periphery of the rotor (see, for example, Patent Document 2).
  • a magnet insertion part having a restricting body at the opening is formed in the rotor yoke. And the magnet is inserted in the magnet insertion part so that a control body may be fitted in the to-be-engaged part of a magnet.
  • each of the plurality of magnets includes a first main surface that faces the outer peripheral surface of the rotor core, and a second main surface that faces the tip of the teeth.
  • the first main surface includes a flat surface portion that forms a flat surface
  • the tooth tip portion and the second main surface include curved surface portions that are concentric with the magnetic pole surface in a plane orthogonal to the shaft.
  • the rotor core and the plurality of magnets are integrally molded by the rotor resin portion so that the rotor resin portion covers the peripheral edge portion of the second main surface.
  • the magnet is usually formed by pressing a powdery raw material, followed by firing and molding into a desired shape. At this time, it is very difficult to mold a magnet having a curved surface along the outer peripheral surface of the rotor core as in Patent Document 4 with high accuracy. For example, if expansion or contraction occurs after press molding or after firing, the curvature of the curved surface changes and does not match the curved surface of the rotor core. Therefore, in the case of a configuration in which the curved surface of the magnet is arranged on the outer periphery of the rotor core as in Patent Document 4, the contact portion may be reduced due to a mismatch in curvature due to variations or the like, or in the worst case, contact may be made at a point. Maybe there is.
  • the plurality of teeth 31t are arranged at equal intervals in the circumferential direction while forming slots 31s, which are openings, between each other. Further, a tooth tip portion 31tp that extends in the circumferential direction is formed at the extended tip portion of each tooth 31t so as to be wider than the extending tooth intermediate portion 31tm.
  • the inner peripheral surface of the tooth tip portion 31tp is a magnetic pole surface 31t1 facing the magnet 10.
  • the magnetic pole surface 31t1 is formed to be a curved surface located on the circumference centered at the center point C in a plane orthogonal to the axial direction.
  • the rotor core 22 is configured by laminating thin iron plates having a substantially polygonal outer shape. More specifically, in the present embodiment, as shown in FIG. 1, the rotor core 22 includes an inner rotor core 22s and an outer rotor core 22m.
  • the inner rotor core 22 s is disposed on the inner peripheral side and is fixed to the shaft 21, and the outer rotor core 22 m is disposed on the outer peripheral side and holds the magnet 10.
  • a portion of the rotor resin portion 23 occupies a portion between the inner rotor core 22s and the outer rotor core 22m in the radial direction.
  • the configuration of the rotor main body 20b including the rotor core 22 in this embodiment will be described in detail below.
  • the plurality of magnets 10 are fixed to the outer peripheral surface of the rotor core 22 in parallel in the circumferential direction. That is, as shown in FIG. 2, the outer peripheral surface of the rotor core 22 has a polygonal columnar shape in which the magnet holding surfaces 220 for holding the magnets 10 are combined in a polygonal shape.
  • the magnet holding surface 220 is a square plane.
  • the magnets 10 correspond to each other on a one-to-one basis so that one magnet 10 is paired with one magnet holding surface 220.
  • the rotor core 22 since the number of magnetic poles of the rotor 20 is 10, the rotor core 22 has a 10-prism shape, and 10 magnets 10 are arranged on the outer peripheral surface thereof.
  • the magnet 10 is a substantially hexahedron having two main surfaces 11 and 12, a side surface 13, and an upper and lower surface 14 that are substantially rectangular.
  • one main surface (first main surface 11) of the magnet 10 includes a peripheral portion 111 provided on the four-side periphery so as to surround the flat portion 110 together with the flat portion 110 forming a flat surface.
  • the first main surface 11 faces the outer peripheral surface of the rotor core 22, that is, the magnet holding surface 220.
  • the magnet 10 having such a shape is magnetized in the thickness direction indicated by the normal direction Nv of the flat surface portion 110 in FIG. 4B so that the main surfaces become opposite magnetic poles. That is, in the first main surface 11 and the second main surface 12, if one surface is an S pole, the other surface is an N pole. Further, in the present embodiment, as shown in FIG. 2, the second main surface 12 is composed of two types of combinations of an S pole magnet 10 and a second main surface 12 of an N pole magnet 10. . And each magnet 10 is arrange
  • the flat portion 110 of the first main surface 11 is a plane parallel to the axial direction without bending in the circumferential direction and the axial direction.
  • Each of the magnets 10 is arranged on the outer peripheral surface of the rotor core 22 so that the flat portion 110 is in close contact with the magnet holding surface 220 of the rotor core 22.
  • the cross-section of the outer peripheral surface of the rotor core 22 is substantially polygonal, thereby achieving easy positioning of the magnet 10.
  • the magnet holding surface 220 and the magnet 10 on the outer peripheral surface of the rotor core 22 both have a flat portion.
  • the magnet 10 is press-molded or fired, it is a flat surface unlike a curved surface whose curvature is likely to change. Therefore, even if expansion or contraction occurs, the flat state can be easily maintained.
  • the magnet 10 can be brought into contact with the magnet holding surface 220 while maintaining a large area.
  • the magnet 10 having the flat portion 110 that can be manufactured easily and with high accuracy is realized as compared with a conventional magnet having a curved surface that comes into contact with the rotor core. Furthermore, since the contact portion of the magnet 10 with respect to the magnet holding surface 220 of the rotor core 22 can be increased, the magnet 10 can be more securely fixed to the magnet holding surface 220, and the play of the magnet 10 can be easily suppressed. As a result, noise during operation of the SPM motor 100 is reduced and efficiency is improved.
  • FIG. 5 is an enlarged view of FIG. 4B.
  • the curved surface portion 120 and the flat surface portion 110 are arranged at positions corresponding to each other as described above within the range indicated by the central angle ⁇ 4 in FIG.
  • the motor characteristics in the range indicated by the central angle ⁇ 4 in FIG. 5 will be described.
  • the thickness of the magnet in the normal direction Nv changes along the circumferential direction so as to decrease as the distance from the central portion of the magnet 10 increases.
  • it has a D-shaped cross section, and the thickness T in the radial direction of the central portion of the magnet 10 is the largest, and is thinner toward the end portion.
  • the thickness of the magnet affects the magnitude of the magnetic flux generated by the magnet. That is, the greater the magnet thickness, the greater the magnetic flux. Therefore, also in the magnet 10, the magnetic flux generated from the central portion is usually larger than the magnetic flux generated from the end portion. That is, in FIG. 6, the waveform of the sine wave having the largest central portion is shown by a solid line, but the magnetic flux density of the magnet 10 has a distribution close to such a sine wave waveform. Therefore, the rotation of the rotor 20 becomes smooth, and the cogging torque is reduced. Further, when the magnetic flux density has a distribution close to a sine wave, the waveform of the induced voltage is also close to a sine wave. Therefore, the torque ripple that is the fluctuation range of the torque is reduced.
  • the magnet 10 in the present embodiment includes a curved surface portion 120 and a flat surface portion 110 that face each other, thereby forming a D-shaped cross-sectional shape.
  • a shape of the magnet 10 and the SPM motor 100 using the magnet 10 are used to achieve high efficiency and low noise.
  • the magnetic flux density has a distribution close to a rectangular wave, as indicated by a broken line in FIG.
  • FIG. 6 is a graph showing an outline of the density distribution of the magnetic flux flowing from the magnet 10.
  • the peripheral portions 121 on both sides in the circumferential direction are chamfered on the second main surface 12 side of the magnet 10.
  • the side portion 121s has a different shape. That is, the 2nd main surface 12 is provided with two side parts 121s arrange
  • an acute angle ⁇ 2 formed between an arbitrary tangent L2 of the side portion 121s and the flat surface portion 110 is an acute angle ⁇ 1 formed between an arbitrary tangent L1 of the curved surface portion 120 and the flat surface portion 110.
  • the side portion 121s is formed so as to be larger. That is, in this embodiment, the thickness of the end portion of the magnet 10 is further reduced by arranging the side portion 121s as described above. In other words, the amount of change in thickness that decreases as the distance from the center of the magnet 10 increases so that the amount of change outside the center angle ⁇ 4 is larger than the amount of change in the range indicated by the center angle ⁇ 4 in FIG. In addition, the side portion 121s is used. Further, from another viewpoint, the radial distance Dc from the center point C to the curved surface portion 120 in the range indicated by the center angle ⁇ 4 in FIG. 5 is constant, whereas the side portion 121s from the center point C is constant. The distance Ds in the radial direction becomes smaller as the side surface 13 is approached.
  • the amount of change in the middle of the positive and negative peaks such as Sin 180 ° is larger than the amount of change around the peak such as Sin 90 °.
  • the end portion of the magnet 10 corresponding to the middle of the positive / negative peak of the sine wave is compared with the central portion of the magnet 10 corresponding to the periphery of the peak of the sine wave.
  • the amount of change in which the thickness is reduced is increased to approximate the sine wave characteristic. Therefore, the magnetic flux density of the magnet 10 is also closer to a sine wave.
  • the side portion 121s may be a flat surface, a curved surface, or may include a flat surface and a curved surface.
  • a flat surface it can be approximated to the vicinity of Sin 180 ° that changes linearly, and can be processed and manufactured more easily than a curved surface.
  • a small curved surface as a so-called fillet (chamfering) is further included from the side portion 121s at the more circumferential end portion as shown by the end portion 121f in FIG. 4B. Then, by rounding the end, scratches and damage due to sharp corners are prevented.
  • the width of the side portion 121s in the circumferential direction is set as follows in terms of manufacturing. That is, it is preferable to set the width of the side portion 121s so that the central angle ⁇ 4 of the curved surface portion 120 is 50 to 80% of the central angle ⁇ 3 of the second main surface 12. This is because the magnetic flux density of the magnet 10 becomes closer to a sine wave.
  • the central angle ⁇ 4 is more preferably 65 to 75% of the central angle ⁇ 3 of the second major surface 12.
  • the ratio of the length in the circumferential direction occupied by the curved surface portion 120 is in a range from half to three-quarters of the length of the second main surface 12, and the other side portions 121s are the other. What is necessary is just to comprise so that it may occupy.
  • the pair of side surfaces 13 are inclined planes so that the distance on the curved surface part 120 side is wider than the distance on the flat surface part 110 side. That is, the pair of side surfaces 13 have a shape that is inclined so as to be closer to the central direction of the magnet 10 as the plane portion 110 is approached in a plane orthogonal to the axial direction. Thereby, in addition to the side portion 121 s, the side surface 13 becomes thinner as it goes to the circumferential end portion of the magnet 10. In the present embodiment, such a side surface 13 is also used to realize a magnetic flux density that is closer to a sine wave.
  • the material of the magnet 10 is not particularly limited as long as it is a conventionally known material used for the SPM motor 100.
  • a ferrite magnet, a neodymium magnet, a samarium cobalt magnet, or the like is used as the magnet 10.
  • ferrite magnets using iron oxide as a main raw material are preferable in terms of cost. These magnets are relatively easy to break.
  • the magnet 10 and the magnet holding surface 220 of the rotor core 22 are brought into contact with each other as described above, and the magnet 10 is attached using the mold resin that becomes the rotor resin portion 23.
  • the fixed structure prevents damage to the magnet 10. That is, if the shape adopted in the present embodiment is used, what has conventionally been point contact can be made surface contact. Therefore, since the contact area of the magnet 10 increases, stable fixation can be realized.
  • FIG. 7A is a configuration diagram of the rotor 20 configured as described above.
  • FIG. 7B is a diagram showing a detailed cross-sectional structure of the rotor body 20 b including the rotor core 22 and the rotor resin portion 23.
  • FIG. 7C is a diagram showing a configuration of the outer rotor core 22m, the magnet 10, and a part of the rotor resin portion 23 in the rotor body 20b as viewed from the axial direction.
  • a shaft 21 is inserted in the center of the rotor body 20b.
  • the rotor resin portion 23 is formed by molding a predetermined portion with resin.
  • the rotor core 22 is formed with a through hole 22t.
  • the through hole 22t is a hole that penetrates the rotor core 22 in the axial direction, and has an annular shape in the radial direction. That is, the through hole 22t is disposed so as to extend the inside of the rotor core 22 as a cylindrical space from one end face to the other end face.
  • the resin of the rotor resin portion 23 is also filled in such a through hole 22t to form an internal resin portion 233 that forms a part of the rotor resin portion 23.
  • the inner resin portion 233 has a cylindrical shape, the rotor core 22 is separated into an inner rotor core 22s and an outer rotor core 22m, as can be seen from FIG. 1 and FIG. 7A.
  • the internal resin portion 233 is made of a resin material that is an electrical insulator. Therefore, in the rotor core 22, the inner rotor core 22 s and the outer rotor core 22 m are electrically insulated and separated by the inner resin portion 233. In the present embodiment, by including such a configuration, the electrical impedance of the rotor 20 is increased, and the occurrence of electrolytic corrosion in the bearing is suppressed.
  • the rotor main body 20b in which the inner rotor core 22s, the outer rotor core 22m, and the plurality of magnets 10 are fixed in a predetermined arrangement state is formed. That is, since the end plate resin portions 232 on both sides are connected to each other via the internal resin portion 233 and the inter-magnet resin portion 231, this structure allows the inner rotor core 22s, the outer rotor core 22m, and the respective magnets 10 to be located on both sides. It is fixed so as to be sandwiched between the end plate resin portions 232.
  • a protrusion 221 is formed on the outer peripheral surface of the outer rotor core 22m in order to determine the mounting position of the magnet 10.
  • the protruding portions 221 protrude further outward from the outer peripheral surface of the outer rotor core 22m, and are formed to be the same number as the magnets 10 at equal intervals in the circumferential direction.
  • the protrusions 221 are arranged so as to determine the attachment positions of the plurality of magnets 10, and the magnet holding surface 220 is formed between the adjacent protrusions 221. Thereby, the plurality of magnets 10 can be fixed to the outer peripheral surface of the rotor core 22 at equal intervals.
  • the deviation of the density distribution of the magnetic flux flowing from the individual magnets 10 toward the stator 30 is reduced, so that the efficiency of the SPM motor 100 is further improved and noise is reduced.
  • the protrusions 221 are installed between the adjacent magnet holding surfaces 220, and the magnet 10 is fixed between the adjacent protrusions 221.
  • the distance between the distal end portions of the adjacent protruding portions 221 with respect to the circumferential width Wb of the planar portion 110 of the magnet 10 is set.
  • the circumferential width Wp at is sufficiently wide.
  • the outer opening of the width Wp of the magnet holding surface 220 is set to be wide in the circumferential direction with respect to the bottom of the width Wb of the magnet 10. That is, since the outer opening is wide, the magnet 10 can be easily inserted into the magnet holding surface 220, and further, the magnet 10 can be disposed so as to be in close contact with the magnet holding surface 220 after the insertion.
  • the amount of bulge of the curved corner 922 as in the comparative example is suppressed. That is, in the punching process, punching is performed so that the grooves 222 are formed on both sides of the base of the protrusion 221. Thereby, with the formation of the groove 222, the bulge amount of the corner portion 922 in the comparative example is also reduced. As a result, even if the magnet 10 varies so as to become large, the magnet 10 does not come in contact with the vicinity of the base of the protruding portion 221, and the magnet 10 is placed on the magnet holding surface like the contact surface 229 shown in FIG. 9A. 220 can be securely attached to 220.
  • the inter-magnet resin portion of the rotor resin portion 23 on the second main surface 12 side so as to straddle the adjacent magnets 10. 231 is arranged.
  • the inter-magnet resin portion 231 is disposed so as to cover at least a part of the two side portions 121s facing each other of the adjacent magnets 10. Thereby, at least a part of the space 25 having a substantially triangular cross section formed by the two side parts 121s facing each other is filled with the resin part 231 between the magnets.
  • the number of poles is 10 (10 poles).
  • the inner diameter of the stator 30 may be distorted during the operation of the SPM motor 100, and the stator 30 may vibrate in an annular shape.
  • the ring vibration of the stator 30 can contribute to noise.
  • the cause of noise other than the ring vibration of the stator 30 is easily eliminated, and as a result, noise during operation of the SPM motor 100 is suppressed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

A stator core of a stator has a ring-shaped yoke and multiple teeth radially extending from the inner periphery of the yoke and having circumferentially broadened tooth-tip parts at the tip thereof, and windings are wound around the teeth. A rotor is provided with a rotor core, a shaft, magnets, and a rotor resin part. The multiple magnets held on the rotor core are circumferentially arranged along the outer peripheral surface of the rotor core with a predetermined gap from the tooth-tip parts, and the rotor resin part fixes the multiple magnets to the rotor core. Furthermore, each of the magnets is provided with a first main surface facing the outer peripheral surface of the rotor core and a second main surface facing the tooth-tip part. In this case, the first main surface includes a planar part, and the tooth-tip part and the second main surface include arc-shaped curved surfaces concentric with a magnetic pole surface. In addition, the rotor core and the multiple magnets are integrally formed such that the outer peripheries of the second main surfaces are covered by the rotor resin part.

Description

表面磁石型モータSurface magnet type motor
 本発明は、SPMモータと呼ばれる表面磁石型モータに関し、特に、D字状の形状の断面を有する磁石をロータの外周に配置した表面磁石型モータに関する。 The present invention relates to a surface magnet type motor called an SPM motor, and more particularly to a surface magnet type motor in which a magnet having a D-shaped cross section is arranged on the outer periphery of a rotor.
 従来、ロータ外周に配置した円筒型磁石の外周面とステータの内周面とのギャップを、周方向において常に等間隔とするとともに、円筒型磁石の内周面を多角柱形状としたモータが提案されている(例えば、特許文献1参照)。このような特許文献1のモータは、上記のようにギャップを常に等間隔とすることで、ロータの全周面にわたり最大の着磁状態とし、最大限に有効な磁力の活用を図っている。さらに、この特許文献1では、内周面の1辺が1磁極に対応するように着磁している。特許文献1では、このような構成とすることで、ロータ外周に配置される円筒型磁石によって、ロータとステータとの間に流れる磁束の密度分布を正弦波に近づけている。モータの回転が滑らかになって、コギングトルクが低減するためである。コギングトルクが低減すると、例えば、モータの効率が向上したり、動作時の騒音が抑制されたりする。このように、特許文献1では、多角柱形状の1辺に対応する磁石断面をD字状の形状とすることで、表面磁束波形を正弦波波形に近似させ、コギングトルクとともにモータ回転時の音や振動の低減を図っている。 Conventionally, a motor has been proposed in which the gap between the outer peripheral surface of the cylindrical magnet arranged on the outer periphery of the rotor and the inner peripheral surface of the stator is always equal in the circumferential direction, and the inner peripheral surface of the cylindrical magnet is a polygonal column shape. (For example, refer to Patent Document 1). In such a motor of Patent Document 1, the gap is always equally spaced as described above, so that the maximum magnetized state is achieved over the entire circumferential surface of the rotor, and the maximum effective magnetic force is utilized. Furthermore, in this patent document 1, it magnetizes so that one side of an internal peripheral surface may respond | correspond to one magnetic pole. In Patent Document 1, with such a configuration, the density distribution of the magnetic flux flowing between the rotor and the stator is brought close to a sine wave by the cylindrical magnet disposed on the outer periphery of the rotor. This is because the motor rotates smoothly and the cogging torque is reduced. When the cogging torque is reduced, for example, the efficiency of the motor is improved and noise during operation is suppressed. As described above, in Patent Document 1, the cross section of the magnet corresponding to one side of the polygonal column shape is formed in a D shape, thereby approximating the surface magnetic flux waveform to a sine wave waveform and the sound during motor rotation together with the cogging torque. And reduce vibration.
 また、断面がD字状の形状となる磁石をロータの外周に複数個配置したモータが提案されている(例えば、特許文献2参照)。このような特許文献2のモータでは、ロータヨークにおいて開口部に規制体を有する磁石挿入部が形成されている。そして、その磁石挿入部には、規制体が磁石の被係合部に嵌め込まれるようにして磁石が挿入されている。ここで、これら磁石は、ロータヨークの外周と等しい半径の外壁面と、この外壁面の反対側で平坦な裏壁面と、外壁面周方向の両端位置において規制体が嵌り込むように切り欠いて形成された上記被係合部とを備えている。特許文献2では、このような構成により、ロータでの磁石の確実な保持を図るとともに、磁石の一部をロータの外周側に露出させ、その磁石の外壁面をステータの内面に近接させ強力なモータとしている。 Further, there has been proposed a motor in which a plurality of magnets having a D-shaped cross section are arranged on the outer periphery of the rotor (see, for example, Patent Document 2). In such a motor of Patent Document 2, a magnet insertion part having a restricting body at the opening is formed in the rotor yoke. And the magnet is inserted in the magnet insertion part so that a control body may be fitted in the to-be-engaged part of a magnet. Here, these magnets are formed by cutting out an outer wall surface having the same radius as the outer periphery of the rotor yoke, a flat back wall surface on the opposite side of the outer wall surface, and a restricting body fitted at both ends in the circumferential direction of the outer wall surface. And the engaged portion. In Patent Document 2, with such a configuration, the magnet is reliably held in the rotor, a part of the magnet is exposed to the outer peripheral side of the rotor, and the outer wall surface of the magnet is brought close to the inner surface of the stator to be strong. It is a motor.
 また、ロータヨークの外周面に沿って、複数の円弧状の磁石を配列した表面磁石型モータであり、樹脂モールドにより、それら磁石をロータヨークの表面に固定して、ロータを構成したモータが提案されている(例えば、特許文献3参照)。このような特許文献3のモータでは、磁石の外周部をロータ中心に対して真円とせず、磁石の径方向厚みを、周方向中心付近で最大となり、周方向端部において小さくなるようにしている。そして、特許文献3では、少なくとも、磁石の周方向端部の外側と、軸方向両端部とに樹脂を流しこみ、磁石をロータヨークに固定し、ロータを形成している。 Further, there is a surface magnet type motor in which a plurality of arc-shaped magnets are arranged along the outer peripheral surface of the rotor yoke, and a motor that constitutes the rotor is proposed by fixing these magnets to the surface of the rotor yoke by a resin mold. (For example, see Patent Document 3). In such a motor of Patent Document 3, the outer peripheral part of the magnet is not made into a perfect circle with respect to the rotor center, and the radial thickness of the magnet is maximized near the center in the circumferential direction and becomes smaller at the end in the circumferential direction. Yes. And in patent document 3, resin is poured into at least the outer side of the circumferential direction edge part of a magnet, and an axial direction both ends, a magnet is fixed to a rotor yoke, and the rotor is formed.
 また、表面磁石型モータであり、磁石の角部に面取りを施したモータが提案されている(例えば、特許文献4参照)。このような特許文献4のモータでは、ロータコアが、円筒形であり、ロータコアの外周面に対向する磁石の面もその外周面に沿った曲面である。そして、特許文献4では、磁石の周方向両端側で径方向外側の角部に、面取りが施されている。特許文献4では、このような面取りを利用して、効率よく磁束を集向させ、減磁耐力を高めている。 Also, a motor that is a surface magnet type motor and has chamfered corners of the magnet has been proposed (for example, see Patent Document 4). In such a motor of Patent Document 4, the rotor core is cylindrical, and the surface of the magnet facing the outer peripheral surface of the rotor core is also a curved surface along the outer peripheral surface. And in patent document 4, chamfering is given to the corner | angular part of the radial direction outer side at the circumferential direction both ends. In Patent Document 4, such chamfering is used to efficiently concentrate magnetic flux and increase the demagnetization resistance.
 さらに、断面がD字状の形状となる磁石を表面に複数備え、ロータコアの外周表面に磁石を挟む突起を設けたロータが提案されている(例えば、特許文献5参照)。さらに、特許文献5のロータコアには接着剤用の溝が形成されている。 Furthermore, there has been proposed a rotor provided with a plurality of magnets having a D-shaped cross section on the surface and provided with protrusions sandwiching the magnets on the outer peripheral surface of the rotor core (see, for example, Patent Document 5). Furthermore, a groove for adhesive is formed on the rotor core of Patent Document 5.
特開2008-109838号公報JP 2008-109838 A 特開2015-50880号公報Japanese Patent Laying-Open No. 2015-50880 特開2001-298887号公報JP 2001-29887A 特開2015-231253号公報Japanese Patent Laid-Open No. 2015-231253 米国特許出願公開第2002/0067092号明細書US Patent Application Publication No. 2002/0067092
 本発明の表面磁石型モータは、ステータと、このステータの内周側に回転自在に配置されるロータとを具備し、ロータの表面に複数の磁石を保持する。ステータは、ステータコアと巻線とを備える。ステータコアは、リング状のヨークと、ヨークの内周から径方向に延出し、先端部には周方向に広がるティース先端部が形成された複数のティースとを有し、ティースには巻線が巻回されている。また、ロータは、ロータコアと、シャフトと、磁石とロータ樹脂部とを備える。ここで、ロータコアが、複数の磁石を保持し、シャフトが、ロータコアの中央を貫通して延伸し、複数の磁石が、ティース先端部と所定の間隔をあけ、ロータコアの外周面に沿って周方向に等間隔で配置される。そして、ロータ樹脂部が、複数の磁石をロータコアに固定する。 The surface magnet type motor of the present invention includes a stator and a rotor that is rotatably arranged on the inner peripheral side of the stator, and holds a plurality of magnets on the surface of the rotor. The stator includes a stator core and a winding. The stator core has a ring-shaped yoke and a plurality of teeth extending in the radial direction from the inner periphery of the yoke and having a tooth tip extending in the circumferential direction at the tip, and windings are wound around the teeth. It has been turned. The rotor includes a rotor core, a shaft, a magnet, and a rotor resin portion. Here, the rotor core holds a plurality of magnets, the shaft extends through the center of the rotor core, and the plurality of magnets are spaced apart from the teeth tip by a predetermined distance along the outer circumferential surface of the rotor core. Are arranged at equal intervals. And a rotor resin part fixes a some magnet to a rotor core.
 さらに、複数の磁石のそれぞれは、ロータコアの外周面に対向する第1主面と、ティース先端部に対向する第2主面とを備える。ここで、第1主面が、平面を成す平面部を含み、ティース先端部と第2主面とが、シャフトと直交する面において、互いに磁極面と同心の円弧状を成す曲面部を含む。そして、ロータ樹脂部が第2主面の周縁部を覆うように、ロータ樹脂部によって、ロータコアと複数の磁石とが一体成型されている。 Furthermore, each of the plurality of magnets includes a first main surface that faces the outer peripheral surface of the rotor core, and a second main surface that faces the tip of the teeth. Here, the first main surface includes a flat surface portion that forms a flat surface, and the tooth tip portion and the second main surface include curved surface portions that are concentric with the magnetic pole surface in a plane orthogonal to the shaft. The rotor core and the plurality of magnets are integrally molded by the rotor resin portion so that the rotor resin portion covers the peripheral edge portion of the second main surface.
 このような構成によれば、複数の磁石をロータコアに確実に密着させながら、ロータとステータとの間に、正弦波に近い密度分布を備える磁束を発生させることができる。そのため、本発明によれば、高トルクで、効率が高く、騒音が低減された表面磁石型モータを得ることができる。 According to such a configuration, a magnetic flux having a density distribution close to a sine wave can be generated between the rotor and the stator while securely attaching the plurality of magnets to the rotor core. Therefore, according to the present invention, a surface magnet motor with high torque, high efficiency, and reduced noise can be obtained.
図1は、本発明の実施の形態に係る表面磁石型モータの断面を示す構造図である。FIG. 1 is a structural diagram showing a cross section of a surface magnet type motor according to an embodiment of the present invention. 図2は、本実施の形態に係るSPMモータの構成の要部を模式的に示す分解斜視図である。FIG. 2 is an exploded perspective view schematically showing a main part of the configuration of the SPM motor according to the present embodiment. 図3は、図2のSPMモータのX-X線における断面図である。3 is a cross-sectional view taken along line XX of the SPM motor of FIG. 図4Aは、本実施の形態に係る磁石の斜視図である。FIG. 4A is a perspective view of a magnet according to the present embodiment. 図4Bは、図4AのY-Y線における断面図である。4B is a cross-sectional view taken along line YY in FIG. 4A. 図5は、図4Bの拡大図である。FIG. 5 is an enlarged view of FIG. 4B. 図6は、磁石から流れる磁束の密度分布の概要を示すグラフである。FIG. 6 is a graph showing an outline of the density distribution of the magnetic flux flowing from the magnet. 図7Aは、ロータの構成図である。FIG. 7A is a configuration diagram of the rotor. 図7Bは、ロータ本体の詳細な断面構造を示す図である。FIG. 7B is a diagram showing a detailed cross-sectional structure of the rotor body. 図7Cは、軸方向から見たロータ本体での外側ロータコアと、磁石と、ロータ樹脂部の一部との構成を示す図である。FIG. 7C is a diagram illustrating a configuration of an outer rotor core, a magnet, and a part of the rotor resin portion in the rotor body viewed from the axial direction. 図8は、ロータコアに配置された隣り合う磁石間の詳細な構造を示す図である。FIG. 8 is a diagram showing a detailed structure between adjacent magnets arranged in the rotor core. 図9Aは、本実施の形態に係るロータコアでの突起部の形状と磁石の形状に基づいて、磁石が磁石保持面に密着する密着度合を説明するための図である。FIG. 9A is a diagram for explaining the degree of adhesion with which the magnet is in close contact with the magnet holding surface based on the shape of the protrusion and the shape of the magnet in the rotor core according to the present embodiment. 図9Bは、比較例であるロータコアでの突起部の形状と磁石の形状に基づいて、磁石が磁石保持面に密着する密着度合を説明するための図である。FIG. 9B is a diagram for explaining the degree of adhesion in which the magnet is in close contact with the magnet holding surface based on the shape of the protrusion and the shape of the magnet in the rotor core which is a comparative example.
 本発明の実施の形態における表面磁石型モータは、後述する構成により、複数の磁石をロータコアに確実に密着させるとともに、ロータとステータとの間に正弦波に近い密度分布を備える磁束を発生させている。これによって、本実施の形態の表面磁石型モータは、高トルク化および高効率化とともに、低騒音化も図っている。 The surface magnet type motor according to the embodiment of the present invention generates a magnetic flux having a density distribution close to a sine wave between the rotor and the stator while securely bringing a plurality of magnets into close contact with the rotor core by the configuration described later. Yes. As a result, the surface magnet motor of the present embodiment achieves higher torque and higher efficiency as well as lower noise.
 つまり、上述のような技術を含む従来の手法は、次のような改善すべき点があった。すなわち、特許文献1のような手法では、正弦波に近い磁束波形が得られるものの、1つの円筒型磁石で実現しているため、極数と同じ個数の薄い箇所を含み、破損し易い。また、複合材料を用いた永久磁石とすることで強度については改善されるが、結合剤成分を含むため、磁気特性が低くなり、高トルクを目的とするモータには不向きである。 That is, the conventional method including the above-described technique has the following points to be improved. That is, in the technique as disclosed in Patent Document 1, although a magnetic flux waveform close to a sine wave is obtained, since it is realized by one cylindrical magnet, it includes thin portions as many as the number of poles and is easily damaged. In addition, although the strength is improved by using a permanent magnet using a composite material, since the binder component is included, the magnetic characteristics are low, and it is not suitable for a motor for high torque.
 また、特許文献2のような手法でも、磁石中心付近では正弦波に近い磁束波形が得られる。ところが、磁石の両端位置において、内側に凹状に窪む被係合部を形成する必要があるため、磁石中心から離れると、磁束波形は、正弦波波形から大きく乱れた波形となってしまう。このため、例えば動作時の騒音に関しては、十分に抑えきれないという課題がある。 Further, even with the technique as in Patent Document 2, a magnetic flux waveform close to a sine wave is obtained near the center of the magnet. However, since it is necessary to form engaged portions that are recessed inwardly at the both end positions of the magnet, the magnetic flux waveform is greatly disturbed from the sine wave waveform when it is away from the magnet center. For this reason, for example, there is a problem that noise during operation cannot be sufficiently suppressed.
 また、特許文献3のような手法では、磁石の外周部をロータ中心に対して真円としていないため、ステータのティース先端の磁極面と、ロータの磁石の外周面との間隔は一定ではない。このため、両者間の間隔が広い箇所では、着磁された磁束を十分生かし切れず、効率の劣化を招くことになる。さらに、ロータ回転中心から磁石外周までの距離は、磁石の周方向中心から離れるに従って小さくなる。このため、金型を用いた樹脂モールド成型を行うと、磁石外周の表面において、磁石の周方向中心付近には、紙状の薄い樹脂膜ができることになる。すなわち、成型後のロータでの磁石表面には、樹脂の薄い薄片であるいわゆるバリが張り付いたような状態となり、これが剥がれ落ちたりすることで樹脂の屑となって、回転不良などの不具合を引き起こし易くなる。 Further, in the technique as in Patent Document 3, since the outer peripheral portion of the magnet is not a perfect circle with respect to the rotor center, the interval between the magnetic pole surface at the stator tooth tip and the outer peripheral surface of the rotor magnet is not constant. For this reason, in the location where the space | interval between both is wide, the magnetized magnetic flux cannot fully be utilized, and it will cause a deterioration of efficiency. Furthermore, the distance from the rotor rotation center to the outer circumference of the magnet decreases as the distance from the center in the circumferential direction of the magnet increases. For this reason, when resin molding using a mold is performed, a paper-like thin resin film is formed in the vicinity of the center in the circumferential direction of the magnet on the outer surface of the magnet. That is, a so-called burr, which is a thin thin piece of resin, is stuck to the magnet surface of the rotor after molding, and it peels off and becomes resin waste, causing problems such as defective rotation. It becomes easy to cause.
 磁石は、通常、粉体状の原料をプレス成型した後、焼成されて、所望の形状に成型される。このとき、特許文献4のようなロータコアの外周面に沿った曲面を備える磁石を、高い精度で成型するのは非常に難しい。例えば、プレス成型後や焼成後などで膨張や収縮が生じると、曲面の曲率が変化してしまい、ロータコアの曲面と一致しなくなる。よって、特許文献4のように、ロータコア外周に磁石曲面を配置するような構成の場合、ばらつきによる曲率の不一致などによって、当接部分が小さくなったり、最悪の場合、点で接触したりするおそれが多分にある。そして、磁石の曲面と、これを配列するロータコアの外周面との当接部分が小さいと、磁石のガタつきが生じる場合がある。磁石のガタつきは、騒音の原因になるとともに、SPMモータの効率を低下させる。さらに、磁石の曲面とロータコアの外周面とが点で接触する場合、後のSPMモータの組立工程において、その点接触している部分には、応力が集中し易い。その結果、点接触している部分を起点にして、磁石に亀裂が生じたり破損したりする場合がある。 The magnet is usually formed by pressing a powdery raw material, followed by firing and molding into a desired shape. At this time, it is very difficult to mold a magnet having a curved surface along the outer peripheral surface of the rotor core as in Patent Document 4 with high accuracy. For example, if expansion or contraction occurs after press molding or after firing, the curvature of the curved surface changes and does not match the curved surface of the rotor core. Therefore, in the case of a configuration in which the curved surface of the magnet is arranged on the outer periphery of the rotor core as in Patent Document 4, the contact portion may be reduced due to a mismatch in curvature due to variations or the like, or in the worst case, contact may be made at a point. Maybe there is. And if the contact part of the curved surface of a magnet and the outer peripheral surface of the rotor core which arranges this is small, the backlash of a magnet may arise. The play of the magnet causes noise and reduces the efficiency of the SPM motor. Furthermore, when the curved surface of the magnet and the outer peripheral surface of the rotor core are in contact with each other at a point, in the subsequent SPM motor assembly process, stress tends to concentrate on the point-contacted portion. As a result, the magnet may be cracked or broken starting from the point contact portion.
 そこで、本実施の形態では、ロータの表面に保持される磁石において、内側の面を平面とし、外側の面をステータ側の磁極面と同心となる曲面とし、外側の面の周縁部を樹脂が覆うように、樹脂により一体成型している。これより、本実施の形態によれば、高トルク化および高効率化とともに、低騒音化も図った表面磁石型モータが実現できる。 Therefore, in the present embodiment, in the magnet held on the surface of the rotor, the inner surface is a flat surface, the outer surface is a curved surface that is concentric with the magnetic pole surface on the stator side, and the peripheral portion of the outer surface is made of resin. It is integrally molded with resin so as to cover it. Thus, according to the present embodiment, it is possible to realize a surface magnet type motor that achieves high torque and high efficiency as well as low noise.
 以下、本実施の形態の表面磁石型モータについて、図面を参照しながら説明する。 Hereinafter, the surface magnet type motor of the present embodiment will be described with reference to the drawings.
 (実施の形態)
 図1は、本発明の実施の形態に係る表面磁石型モータ100の断面を示す構造図である。表面磁石型モータ100は、SPM(Surface Permanent Magnet)モータと呼ばれるインナロータ型のブラシレスモータである。表面磁石型モータ(以下、適宜、SPMモータと呼ぶ)100は、図1に示すように、ステータ30と、ステータ30の内周側に、シャフト21を中心にして回転自在に配置されるロータ20とを具備する。そして、ロータ20は、その外周表面に複数の永久磁石(以下、適宜、単に磁石と呼ぶ)10を保持している。
(Embodiment)
FIG. 1 is a structural diagram showing a cross section of a surface magnet type motor 100 according to an embodiment of the present invention. The surface magnet type motor 100 is an inner rotor type brushless motor called an SPM (Surface Permanent Magnet) motor. As shown in FIG. 1, a surface magnet type motor (hereinafter, appropriately referred to as an SPM motor) 100 includes a stator 30 and a rotor 20 that is rotatably disposed around the shaft 21 on the inner peripheral side of the stator 30. It comprises. The rotor 20 holds a plurality of permanent magnets (hereinafter simply referred to as magnets) 10 on the outer peripheral surface thereof.
 また、図2は、本実施の形態に係るSPMモータ100の構成の要部を模式的に示す分解斜視図であり、図3は、図2のSPMモータ100のX-X線における断面図である。図2では、X-X線で切断される面を一点鎖線で示している。そして、図2および図3では、要部として、ステータ30におけるステータコア31と、ロータ20におけるロータコア22および複数の磁石10とを示している。 FIG. 2 is an exploded perspective view schematically showing a main part of the configuration of the SPM motor 100 according to the present embodiment. FIG. 3 is a sectional view of the SPM motor 100 in FIG. is there. In FIG. 2, the surface cut by the XX line is indicated by a one-dot chain line. 2 and 3 show the stator core 31 in the stator 30, the rotor core 22 in the rotor 20, and the plurality of magnets 10 as the main parts.
 以下、図1で示すように回転軸であるシャフト21が延伸するA1の方向を、軸方向とする。また、図3で示すように、軸方向A1と直交する面において、軸方向から見て、SPMモータ100の回転軸の中心を、中心点Cとする。そして、軸方向A1に直交する面において、図3のように、中心点Cを周回するD1の方向を周方向、中心Cから広がるD2の方向を径方向として説明する。 Hereinafter, as shown in FIG. 1, the direction of A <b> 1 in which the shaft 21 that is the rotation axis extends is referred to as an axial direction. As shown in FIG. 3, the center of the rotation axis of the SPM motor 100 is a center point C when viewed from the axial direction on a plane orthogonal to the axial direction A1. Then, in the plane orthogonal to the axial direction A1, as shown in FIG. 3, the direction of D1 that circulates around the center point C will be described as the circumferential direction, and the direction of D2 spreading from the center C will be described as the radial direction.
 まず、図1に示すように、ステータ30は、ステータコア31と、巻線33とを備えている。ステータコア31は、例えば薄い鉄板を積層して構成される。このようなステータコア31に、インシュレータ32を介して巻線33が巻回される。そして、巻線33を巻回したステータコア31が、他の固定部材とともに一体にモータケース40内に固定され、概略円筒状の外形を成すステータ30が構成される。 First, as shown in FIG. 1, the stator 30 includes a stator core 31 and a winding 33. The stator core 31 is configured by stacking thin iron plates, for example. A winding 33 is wound around the stator core 31 via an insulator 32. Then, the stator core 31 around which the winding 33 is wound is fixed integrally with the other fixing members in the motor case 40, and the stator 30 having a substantially cylindrical outer shape is configured.
 また、図2および図3に示すように、ステータコア31は、リング状のヨーク31yと、ヨーク31yの内周面からその径方向に向かって延出する複数のティース31tとを有する。 As shown in FIGS. 2 and 3, the stator core 31 has a ring-shaped yoke 31y and a plurality of teeth 31t extending in the radial direction from the inner peripheral surface of the yoke 31y.
 これら複数のティース31tは、開口部であるスロット31sを互いの間に形成しながら、それぞれが周方向に等間隔に配置される。また、各ティース31tの延出した先端箇所には、延出するティース中間部31tmよりも幅広となるように、周方向に広がるティース先端部31tpが形成されている。このティース先端部31tpの内周面が、磁石10に対向する磁極面31t1となる。この磁極面31t1は、軸方向と直交する面において、中心点Cを中心とする円周上に位置する曲面となるように形成されている。このような構成のステータコア31に対し、スロット31sの開口スペースに巻線33を通しながら、ティース31tにその巻線33を巻回することで、ティース31tごとにコイルが形成される。コイルの巻き方は特に限定されず、複数のティース31t間に渡って巻線33を巻回する分布巻きであってもよいし、ティース31t一つごとに巻線33を巻回する集中巻きであってもよい。なかでも、SPMモータ100の効率を高め易い点で、集中巻きが好ましい。 The plurality of teeth 31t are arranged at equal intervals in the circumferential direction while forming slots 31s, which are openings, between each other. Further, a tooth tip portion 31tp that extends in the circumferential direction is formed at the extended tip portion of each tooth 31t so as to be wider than the extending tooth intermediate portion 31tm. The inner peripheral surface of the tooth tip portion 31tp is a magnetic pole surface 31t1 facing the magnet 10. The magnetic pole surface 31t1 is formed to be a curved surface located on the circumference centered at the center point C in a plane orthogonal to the axial direction. A coil is formed for each tooth 31t by winding the winding 33 around the tooth 31t while passing the winding 33 through the opening space of the slot 31s with respect to the stator core 31 having such a configuration. The winding method of the coil is not particularly limited, and may be distributed winding in which the winding 33 is wound between a plurality of teeth 31t, or concentrated winding in which the winding 33 is wound for each tooth 31t. There may be. Among these, concentrated winding is preferable because it is easy to increase the efficiency of the SPM motor 100.
 また、スロット31sの個数であるスロット数は、特に限定されない。例えば、コイルが集中巻きであって、3相交流を用いてロータ20を回転させる場合、通常、スロット数は3の倍数である。上記の場合、スロット数は3以上であり、12以上であることが好ましい。なお、本実施の形態では、このスロット数が12であり、ロータ20の磁極数が10極であるブラシレスモータの例を挙げている。このような10極12スロットのブラシレスモータは、回転方向となる周方向に働く磁気吸引力が相殺されるため、コギングトルクが低減される点で好ましい。 Further, the number of slots, which is the number of slots 31s, is not particularly limited. For example, when the coil is concentrated winding and the rotor 20 is rotated using a three-phase alternating current, the number of slots is usually a multiple of three. In the above case, the number of slots is 3 or more, and preferably 12 or more. In the present embodiment, an example of a brushless motor in which the number of slots is 12 and the number of magnetic poles of the rotor 20 is 10 is given. Such a 10-pole, 12-slot brushless motor is preferable in that the cogging torque is reduced because the magnetic attractive force acting in the circumferential direction as the rotational direction is offset.
 次に、図1に示すように、このようなステータ30の内側には、ティース先端部31tpから径方向に所定の間隔をあけて、ロータ20が挿入されている。ロータ20は、シャフト21とロータ本体20bとを備えている。そして、シャフト21を中心として、そのロータ本体20bが、ロータコア22と、複数の磁石10と、ロータ樹脂部23とを備えている。 Next, as shown in FIG. 1, the rotor 20 is inserted inside the stator 30 at a predetermined interval in the radial direction from the tooth tip 31 tp. The rotor 20 includes a shaft 21 and a rotor body 20b. The rotor main body 20 b is provided with a rotor core 22, a plurality of magnets 10, and a rotor resin portion 23 around the shaft 21.
 ロータコア22は、外形が略多角形状の薄い鉄板を積層して構成されている。より具体的には、本実施の形態では、図1に示すように、内側ロータコア22sと外側ロータコア22mとを含むロータコア22の構成としている。ここで、内側ロータコア22sは、内周側に配置されてシャフト21に固着され、外側ロータコア22mは、外周側に配置されて磁石10を保持する。そして、内側ロータコア22sと外側ロータコア22mとの径方向の間の箇所を、ロータ樹脂部23の一部が占めている。なお、このような本実施の形態でのロータコア22を含むロータ本体20bの構成については、以下で詳細に説明する。 The rotor core 22 is configured by laminating thin iron plates having a substantially polygonal outer shape. More specifically, in the present embodiment, as shown in FIG. 1, the rotor core 22 includes an inner rotor core 22s and an outer rotor core 22m. Here, the inner rotor core 22 s is disposed on the inner peripheral side and is fixed to the shaft 21, and the outer rotor core 22 m is disposed on the outer peripheral side and holds the magnet 10. A portion of the rotor resin portion 23 occupies a portion between the inner rotor core 22s and the outer rotor core 22m in the radial direction. The configuration of the rotor main body 20b including the rotor core 22 in this embodiment will be described in detail below.
 このようなロータコア22の中央部において、シャフト21が、中心点Cを中心に、鉄板の積層方向、すなわち軸方向に貫通して延伸している。このようにして、シャフト21を中心とし、その周囲にロータコア22が固定されている。さらに、外形が多角形状の柱となるロータコア22の外周部においては、図2および図3に示すように、複数の磁石10が、外周面に沿って周方向にそれぞれ等間隔で配置される。特に、本実施の形態では、各ティース先端部31tpの磁極面31t1に対して、各磁石10による周方向の外周面が同心状となるような配置構成としている。また、ここで、各磁石10の外側曲面は、露出した状態で磁極面31t1に対面している。さらに、詳細については以下で説明するが、本実施の形態では、このような配置状態で、モールド樹脂を用いてロータ樹脂部23が形成されるように樹脂モールドしている。このようなモールド成型により、ロータコア22が複数の磁石10を保持するように、ロータコア22の外周面には、複数の磁石10が密着固定され、ロータ本体20bが形成される。 In such a central portion of the rotor core 22, the shaft 21 extends through the center point C in the stacking direction of the iron plates, that is, in the axial direction. In this way, the rotor core 22 is fixed around the shaft 21. Furthermore, in the outer peripheral part of the rotor core 22 whose outer shape is a polygonal column, a plurality of magnets 10 are arranged at equal intervals in the circumferential direction along the outer peripheral surface, as shown in FIGS. In particular, in the present embodiment, the arrangement configuration is such that the outer circumferential surface in the circumferential direction of each magnet 10 is concentric with the magnetic pole surface 31t1 of each tooth tip 31tp. Here, the outer curved surface of each magnet 10 faces the magnetic pole surface 31t1 in an exposed state. Further, although details will be described below, in the present embodiment, resin molding is performed so that the rotor resin portion 23 is formed using a mold resin in such an arrangement state. By such molding, the plurality of magnets 10 are tightly fixed to the outer peripheral surface of the rotor core 22 so that the rotor core 22 holds the plurality of magnets 10, and the rotor body 20b is formed.
 また、このようなロータ本体20bが締結されたシャフト21は、2つの軸受43によって回転自在に支承されている。軸受43は、複数の小径ボールを有したベアリングである。それぞれの軸受43は、その外輪が例えばステータ側をモールドするステータ樹脂45や金属製ブラケット46などに固定されている。 Further, the shaft 21 to which such a rotor body 20 b is fastened is rotatably supported by two bearings 43. The bearing 43 is a bearing having a plurality of small diameter balls. Each bearing 43 has an outer ring fixed to, for example, a stator resin 45 or a metal bracket 46 that molds the stator side.
 さらに、図1では、SPMモータ100が、プリント基板48をモータケース40内に内蔵するような一構成例を示している。プリント基板48には、駆動回路などの部品が実装されており、電源電圧や制御信号を印加する接続線なども接続されている。 Further, FIG. 1 shows a configuration example in which the SPM motor 100 has the printed circuit board 48 built in the motor case 40. Components such as a drive circuit are mounted on the printed circuit board 48, and connection lines for applying a power supply voltage and a control signal are also connected.
 以上のように構成されたSPMモータ100に対して、接続線を介して電源電圧や制御信号などを供給することにより、プリント基板48の駆動回路により巻線33が通電駆動される。巻線33が駆動されると、巻線33に駆動電流が流れ、ステータコア31から磁界が発生する。そして、ステータコア31からの磁界とロータ20の磁石10からの磁界とにより、それら磁界の極性に応じて吸引力および反発力が生じ、これらの力によってシャフト21を中心にロータ20が周方向に回転する。このように、ロータ20は、ステータ30で発生させた磁気力との相互作用により回転可能な部材であり、ロータ20の回転はシャフト21を介してモータの外部に伝達され、力学的エネルギーに変換される。 By supplying a power supply voltage, a control signal, and the like to the SPM motor 100 configured as described above via a connection line, the winding 33 is energized and driven by the drive circuit of the printed circuit board 48. When the winding 33 is driven, a driving current flows through the winding 33 and a magnetic field is generated from the stator core 31. The magnetic field from the stator core 31 and the magnetic field from the magnet 10 of the rotor 20 generate an attractive force and a repulsive force according to the polarities of the magnetic fields, and the rotor 20 rotates in the circumferential direction around the shaft 21 by these forces. To do. As described above, the rotor 20 is a member that can rotate by the interaction with the magnetic force generated by the stator 30, and the rotation of the rotor 20 is transmitted to the outside of the motor via the shaft 21 and converted into mechanical energy. Is done.
 次に、本実施の形態におけるロータコア22の外周面、およびその外周面に固定される磁石10の構成について説明する。 Next, the configuration of the outer peripheral surface of the rotor core 22 and the magnet 10 fixed to the outer peripheral surface in the present embodiment will be described.
 上述したように、ロータコア22の外周面には、複数の磁石10が周方向に平行に並んで固定される。すなわち、図2に示すように、ロータコア22の外周面は、磁石10を保持するための磁石保持面220を多角状に組合せた多角柱状の形状を成している。ここで、この磁石保持面220は四角い平面である。そして、1つの磁石保持面220に対して1つの磁石10がペアとなるように互いに一対一で対応する。例えば、本実施の形態では、ロータ20の磁極数を10極としているため、ロータコア22は10角柱の形状を成しており、その外周面には、10個の磁石10が配列される。 As described above, the plurality of magnets 10 are fixed to the outer peripheral surface of the rotor core 22 in parallel in the circumferential direction. That is, as shown in FIG. 2, the outer peripheral surface of the rotor core 22 has a polygonal columnar shape in which the magnet holding surfaces 220 for holding the magnets 10 are combined in a polygonal shape. Here, the magnet holding surface 220 is a square plane. The magnets 10 correspond to each other on a one-to-one basis so that one magnet 10 is paired with one magnet holding surface 220. For example, in the present embodiment, since the number of magnetic poles of the rotor 20 is 10, the rotor core 22 has a 10-prism shape, and 10 magnets 10 are arranged on the outer peripheral surface thereof.
 このように、複数の磁石10は、ロータコア22の外周面を覆うように、ロータコア22の周方向に沿って規則的に並んでいる。 Thus, the plurality of magnets 10 are regularly arranged along the circumferential direction of the rotor core 22 so as to cover the outer circumferential surface of the rotor core 22.
 図4Aは、本実施の形態に係る磁石10の斜視図、図4Bは、図4AのY-Y線における断面図である。 4A is a perspective view of the magnet 10 according to the present embodiment, and FIG. 4B is a cross-sectional view taken along line YY of FIG. 4A.
 例えば図2および図4Aに示すように、磁石10は、略矩形である2つの主面11、12と側面13と上下面14とを備える略六面体である。また、図4Bに示すように、磁石10の一方の主面(第1主面11)は、平面を成す平面部110とともに、平面部110を取り囲むように四方周縁に設けた周縁部111を備える。そして、この第1主面11が、ロータコア22の外周面、すなわち磁石保持面220に対向する。一方、他方の主面(第2主面12)は、周方向に沿って円弧状に曲がるとともに軸方向には曲がりのない曲面を成す曲面部120を備え、さらに、曲面部120を取り囲むように四方周縁に設けた周縁部121を備える。そして、この第2主面12が、ティース先端部31tpの磁極面31t1に対向する。また、磁石10の第1主面11側の周縁部111は、平面部110を囲むように面取りされていてもよい。言い換えれば、第1主面11は、平面部110以外の領域を備えていてもよい。 For example, as shown in FIGS. 2 and 4A, the magnet 10 is a substantially hexahedron having two main surfaces 11 and 12, a side surface 13, and an upper and lower surface 14 that are substantially rectangular. As shown in FIG. 4B, one main surface (first main surface 11) of the magnet 10 includes a peripheral portion 111 provided on the four-side periphery so as to surround the flat portion 110 together with the flat portion 110 forming a flat surface. . The first main surface 11 faces the outer peripheral surface of the rotor core 22, that is, the magnet holding surface 220. On the other hand, the other main surface (second main surface 12) includes a curved surface portion 120 that is curved in an arc shape along the circumferential direction and has a curved surface that does not bend in the axial direction, and further surrounds the curved surface portion 120. A peripheral portion 121 is provided at the four-side periphery. And this 2nd main surface 12 opposes the magnetic pole surface 31t1 of teeth front-end | tip part 31tp. Further, the peripheral edge portion 111 on the first main surface 11 side of the magnet 10 may be chamfered so as to surround the flat surface portion 110. In other words, the first main surface 11 may include a region other than the flat portion 110.
 さらに、本実施の形態では、第2主面12もまた、曲面部120以外の領域として、周縁部121を備えた磁石10の形状としている。本実施の形態では、この周縁部121、特に、周方向両側の周縁部121であるサイド部121sを設けることで、より正弦波波形に近似させた磁束密度を得るとともに、ロータ20での磁石10の保持強度も高めている。このサイド部121sの詳細については、以下でさらに説明する。 Further, in the present embodiment, the second main surface 12 is also in the shape of the magnet 10 having the peripheral edge 121 as a region other than the curved surface portion 120. In the present embodiment, by providing the peripheral portion 121, in particular, the side portions 121 s that are the peripheral portions 121 on both sides in the circumferential direction, a magnetic flux density that more closely approximates a sinusoidal waveform is obtained, and the magnet 10 in the rotor 20 is obtained. The holding strength is also increased. Details of the side portion 121s will be further described below.
 このような形状の磁石10は、主面どうしが互いに逆の磁極となるように、図4Bでの平面部110の法線方向Nvで示す厚み方向に、着磁されている。すなわち、第1主面11と第2主面12とにおいて、一方の面がS極なら他方の面がN極となる。さらに、本実施の形態では、図2に示すように、第2主面12がS極の磁石10と、第2主面12がN極の磁石10との2種類の組合せで構成している。そして、周方向に沿って、N極とS極とが交互になるように、磁石10それぞれをロータコア22に配置している。これにより、各磁石10によって発生する磁束は、ステータコア31とロータコア22との間の空間を、おおよそ径方向に沿うとともに、磁石10ごとに磁束方向が逆となるように流れる。なお、磁石10の数とティース31tの数とは、1対1に対応していない場合がある。よって、1つの磁石10の第2主面12の全体が、1つのティース31tの磁極面31t1に対向していない場合がある。 The magnet 10 having such a shape is magnetized in the thickness direction indicated by the normal direction Nv of the flat surface portion 110 in FIG. 4B so that the main surfaces become opposite magnetic poles. That is, in the first main surface 11 and the second main surface 12, if one surface is an S pole, the other surface is an N pole. Further, in the present embodiment, as shown in FIG. 2, the second main surface 12 is composed of two types of combinations of an S pole magnet 10 and a second main surface 12 of an N pole magnet 10. . And each magnet 10 is arrange | positioned at the rotor core 22 so that N pole and S pole may become alternate along the circumferential direction. Thereby, the magnetic flux generated by each magnet 10 flows in the space between the stator core 31 and the rotor core 22 so as to be approximately along the radial direction and the magnetic flux direction is reversed for each magnet 10. The number of magnets 10 and the number of teeth 31t may not correspond one-to-one. Therefore, the entire second main surface 12 of one magnet 10 may not face the magnetic pole surface 31t1 of one tooth 31t.
 また、第2主面12の曲面部120は、図3に示すように、軸方向と直交する面、すなわち径方向を含む面(周方向に沿った面)において、ティース先端部31tpの磁極面31t1と径方向に所定の間隔Gを隔てて、同心の円弧状を成すように曲がっている。また、以上をまとめると、本実施の形態でのSPMモータ100は、軸方向と直交する面において、ロータコア22(ひいてはSPMモータ100)の回転軸の中心点Cを中心として、内周側から外周側に向けて、シャフト21の外周面、磁石10の曲面部120、ステータコア31の磁極面31t1、ステータコア31の外周面の順に、それぞれが同心状となるような配置構成としている。 Further, as shown in FIG. 3, the curved surface portion 120 of the second main surface 12 is a magnetic pole surface of the tooth tip portion 31tp on a surface orthogonal to the axial direction, that is, a surface including the radial direction (a surface along the circumferential direction). It is bent so as to form a concentric arc shape with a predetermined gap G in the radial direction from 31t1. In summary, the SPM motor 100 according to the present embodiment has an outer periphery from the inner peripheral side centered on the center point C of the rotation axis of the rotor core 22 (and thus the SPM motor 100) in a plane orthogonal to the axial direction. The outer peripheral surface of the shaft 21, the curved surface portion 120 of the magnet 10, the magnetic pole surface 31 t 1 of the stator core 31, and the outer peripheral surface of the stator core 31 are arranged concentrically in this order.
 一方、第1主面11の平面部110は、周方向、軸方向とも曲がりのない、軸方向に平行な平面である。この平面部110がロータコア22の磁石保持面220に密着するように、磁石10それぞれがロータコア22の外周面に配列される。 On the other hand, the flat portion 110 of the first main surface 11 is a plane parallel to the axial direction without bending in the circumferential direction and the axial direction. Each of the magnets 10 is arranged on the outer peripheral surface of the rotor core 22 so that the flat portion 110 is in close contact with the magnet holding surface 220 of the rotor core 22.
 以上のように、本実施の形態では、ロータコア22の外周面の断面を、略多角形状とし、これにより、容易な磁石10の位置決めを図っている。さらに、ロータコア22の外周面における磁石保持面220と磁石10とが、共に平面部を備える。すなわち、磁石10のプレス成型後や焼成後などにおいて、曲率が変化し易い曲面とは異なり、平面であるため、膨張や収縮が生じたとしても、その平面状態を維持し易い。このように、平面部を備えることにより、磁石10を磁石保持面220に広い面積を維持した状態で当接させることができる。これにより、従来のようなロータコアに当接する曲面を備えた磁石に比べて、容易かつ高精度に製造できる平面部110を備えた磁石10を実現している。さらに、ロータコア22の磁石保持面220に対する磁石10の当接部分を大きくすることができるため、磁石保持面220への磁石10の固定がより確実となり、磁石10のガタつきが抑制され易くなる。その結果、SPMモータ100の動作時の騒音が低減されるとともに、効率が向上する。 As described above, in the present embodiment, the cross-section of the outer peripheral surface of the rotor core 22 is substantially polygonal, thereby achieving easy positioning of the magnet 10. Furthermore, the magnet holding surface 220 and the magnet 10 on the outer peripheral surface of the rotor core 22 both have a flat portion. In other words, after the magnet 10 is press-molded or fired, it is a flat surface unlike a curved surface whose curvature is likely to change. Therefore, even if expansion or contraction occurs, the flat state can be easily maintained. Thus, by providing the flat portion, the magnet 10 can be brought into contact with the magnet holding surface 220 while maintaining a large area. As a result, the magnet 10 having the flat portion 110 that can be manufactured easily and with high accuracy is realized as compared with a conventional magnet having a curved surface that comes into contact with the rotor core. Furthermore, since the contact portion of the magnet 10 with respect to the magnet holding surface 220 of the rotor core 22 can be increased, the magnet 10 can be more securely fixed to the magnet holding surface 220, and the play of the magnet 10 can be easily suppressed. As a result, noise during operation of the SPM motor 100 is reduced and efficiency is improved.
 図5は、図4Bの拡大図である。本実施の形態での磁石10は、図5での中心角θ4で示す範囲において、上述のように曲面部120と平面部110とが互いに対応する位置に配置されている。次に、このような構成に基づく磁石10を用いたSPMモータ100の基本的な特徴について、まず、図5での中心角θ4で示す範囲でのモータ特性について説明する。 FIG. 5 is an enlarged view of FIG. 4B. In the magnet 10 in the present embodiment, the curved surface portion 120 and the flat surface portion 110 are arranged at positions corresponding to each other as described above within the range indicated by the central angle θ4 in FIG. Next, regarding the basic characteristics of the SPM motor 100 using the magnet 10 based on such a configuration, first, the motor characteristics in the range indicated by the central angle θ4 in FIG. 5 will be described.
 図5に示すように、中心角θ4で示す範囲において、磁石10を平面部110の法線方向Nvからみたとき、曲面部120の全部または大部分は、平面部110と重なり合っている。そのため、法線方向Nvにおける磁石の厚みは、磁石10の中央部から遠ざかるに従って減少するように、周方向に沿って変化する。具体的には、図5に示すように、D字のような断面を成し、磁石10の中央部の径方向における厚みTが最も大きく、端部に行くに従って薄い。 As shown in FIG. 5, when the magnet 10 is viewed from the normal direction Nv of the flat surface portion 110 in the range indicated by the central angle θ <b> 4, all or most of the curved surface portion 120 overlaps with the flat surface portion 110. Therefore, the thickness of the magnet in the normal direction Nv changes along the circumferential direction so as to decrease as the distance from the central portion of the magnet 10 increases. Specifically, as shown in FIG. 5, it has a D-shaped cross section, and the thickness T in the radial direction of the central portion of the magnet 10 is the largest, and is thinner toward the end portion.
 ここで、磁石の厚みは、その磁石によって生じる磁束の大きさに影響を与える。つまり、磁石の厚みが大きいほど、磁束が大きくなる。よって、磁石10においても、上記中央部から生じる磁束は、通常、上記端部から生じる磁束よりも大きくなる。すなわち、図6において、中央部が最も大きい正弦波の波形を実線で示すが、磁石10の磁束密度も、このような正弦波波形に近い分布をもつ。よって、ロータ20の回転が滑らかになって、コギングトルクが低減する。また、磁束密度が正弦波に近い分布を有する場合、誘起電圧の波形も正弦波に近くなる。よって、トルクの変動幅であるトルクリップルが小さくなる。すなわち、本実施の形態での磁石10は、互いに対向する曲面部120と平面部110とを備え、これによりD字状の断面形状を成している。本実施の形態では、このような磁石10の形状とし、この磁石10を用いたSPMモータ100とすることによって、高効率化とともに低騒音化を図っている。一方、磁石の厚みが一定である場合、図6において破線で示されるように、磁束密度は矩形波に近い分布をもつ。図6は、磁石10から流れる磁束の密度分布の概要を示すグラフである。 Here, the thickness of the magnet affects the magnitude of the magnetic flux generated by the magnet. That is, the greater the magnet thickness, the greater the magnetic flux. Therefore, also in the magnet 10, the magnetic flux generated from the central portion is usually larger than the magnetic flux generated from the end portion. That is, in FIG. 6, the waveform of the sine wave having the largest central portion is shown by a solid line, but the magnetic flux density of the magnet 10 has a distribution close to such a sine wave waveform. Therefore, the rotation of the rotor 20 becomes smooth, and the cogging torque is reduced. Further, when the magnetic flux density has a distribution close to a sine wave, the waveform of the induced voltage is also close to a sine wave. Therefore, the torque ripple that is the fluctuation range of the torque is reduced. That is, the magnet 10 in the present embodiment includes a curved surface portion 120 and a flat surface portion 110 that face each other, thereby forming a D-shaped cross-sectional shape. In the present embodiment, such a shape of the magnet 10 and the SPM motor 100 using the magnet 10 are used to achieve high efficiency and low noise. On the other hand, when the thickness of the magnet is constant, the magnetic flux density has a distribution close to a rectangular wave, as indicated by a broken line in FIG. FIG. 6 is a graph showing an outline of the density distribution of the magnetic flux flowing from the magnet 10.
 さらに、図4Bに示すように、本実施の形態では、より正弦波に近い磁束密度を実現するため、磁石10の第2主面12側において、周方向両側の周縁部121については、面取りされた形状のサイド部121sとしている。すなわち、第2主面12は、面取りによって、少なくとも曲面部120を挟持するように配置された、2つのサイド部121sを備えている。この場合、図5に示すように、サイド部121sの任意の接線L2と平面部110との成す鋭角の角度θ2が、曲面部120の任意の接線L1と平面部110との成す鋭角の角度θ1よりも大きくなるように、サイド部121sを形成している。つまり、本実施の形態では、上記のようなサイド部121sを配置することによって、磁石10の上記端部の厚みを、さらに小さくしている。言い換えると、磁石10の中央部から遠ざかるに従って減少する厚みの変化量について、図5での中心角θ4で示す範囲での変化量に比べて、中心角θ4の外側での変化量が大きくなるように、サイド部121sを利用した構成としている。さらに、別の見方をすると、図5での中心角θ4で示す範囲における中心点Cから曲面部120までの径方向の距離Dcは、一定であるのに対して、中心点Cからサイド部121sまでの径方向の距離Dsは、側面13に近づくほど小さくなる。 Furthermore, as shown in FIG. 4B, in the present embodiment, in order to realize a magnetic flux density closer to a sine wave, the peripheral portions 121 on both sides in the circumferential direction are chamfered on the second main surface 12 side of the magnet 10. The side portion 121s has a different shape. That is, the 2nd main surface 12 is provided with two side parts 121s arrange | positioned so that at least the curved surface part 120 may be clamped by chamfering. In this case, as shown in FIG. 5, an acute angle θ2 formed between an arbitrary tangent L2 of the side portion 121s and the flat surface portion 110 is an acute angle θ1 formed between an arbitrary tangent L1 of the curved surface portion 120 and the flat surface portion 110. The side portion 121s is formed so as to be larger. That is, in this embodiment, the thickness of the end portion of the magnet 10 is further reduced by arranging the side portion 121s as described above. In other words, the amount of change in thickness that decreases as the distance from the center of the magnet 10 increases so that the amount of change outside the center angle θ4 is larger than the amount of change in the range indicated by the center angle θ4 in FIG. In addition, the side portion 121s is used. Further, from another viewpoint, the radial distance Dc from the center point C to the curved surface portion 120 in the range indicated by the center angle θ4 in FIG. 5 is constant, whereas the side portion 121s from the center point C is constant. The distance Ds in the radial direction becomes smaller as the side surface 13 is approached.
 つまり、波状に正負ピークを繰り返す正弦波の特徴として、例えば、Sin90°のようなピーク周辺の変化量に比べて、Sin180°のような正負ピーク中間での変化量のほうが大きい。本実施の形態では、サイド部121sの厚みを薄くすることで、正弦波のピーク周辺に対応する磁石10の中央部に比べて、正弦波の正負ピーク中間に対応する磁石10の端部での厚みが薄くなる変化量を大きくし、正弦波特性に近似させている。よって、磁石10の磁束密度も、より正弦波に近くなる。 That is, as a characteristic of a sine wave that repeats positive and negative peaks in a wavy shape, for example, the amount of change in the middle of the positive and negative peaks such as Sin 180 ° is larger than the amount of change around the peak such as Sin 90 °. In the present embodiment, by reducing the thickness of the side portion 121s, the end portion of the magnet 10 corresponding to the middle of the positive / negative peak of the sine wave is compared with the central portion of the magnet 10 corresponding to the periphery of the peak of the sine wave. The amount of change in which the thickness is reduced is increased to approximate the sine wave characteristic. Therefore, the magnetic flux density of the magnet 10 is also closer to a sine wave.
 なお、サイド部121sは、平面であってもよいし、曲面であってよいし、平面および曲面を含んでいてもよい。特に、サイド部121sを平面とすることで、直線的に変化するSin180°近辺に近似させることができ、さらに、曲面に比べてより容易に加工や製造ができる。また、本実施の形態では、サイド部121sから、より周方向端部において、図4Bの端部121fで示すように、いわゆるフィレット(面取り)としての小さい曲面をさらに含めている。そして、端部を丸めることで、鋭利な角による傷や損傷などを防止している。このように、周方向において、曲面部120と曲面部120よりも径が小さいフィレットを設けた端部121fとの間に、平面のサイド部121sを設けることが好適である。 The side portion 121s may be a flat surface, a curved surface, or may include a flat surface and a curved surface. In particular, by making the side portion 121s a flat surface, it can be approximated to the vicinity of Sin 180 ° that changes linearly, and can be processed and manufactured more easily than a curved surface. Further, in the present embodiment, a small curved surface as a so-called fillet (chamfering) is further included from the side portion 121s at the more circumferential end portion as shown by the end portion 121f in FIG. 4B. Then, by rounding the end, scratches and damage due to sharp corners are prevented. Thus, in the circumferential direction, it is preferable to provide the planar side portion 121s between the curved surface portion 120 and the end portion 121f provided with a fillet having a smaller diameter than the curved surface portion 120.
 また、本実施の形態では、磁石10の磁束密度を正弦波に近づけるため、サイド部121sの周方向における幅については、もの作り上、次のように設定している。すなわち、曲面部120の中心角θ4が、第2主面12の中心角θ3の50~80%になるように、サイド部121sの幅を設定することが好ましい。磁石10の磁束密度がより正弦波に近くなるためである。中心角θ4は、第2主面12の中心角θ3の65~75%であることがより好ましい。すなわち、第2主面12において、曲面部120が占める周方向の長さの割合を、第2主面12の長さの半分から4分の3までの範囲とし、それ以外を両サイド部121sが占めるように構成すればよい。 Further, in the present embodiment, in order to make the magnetic flux density of the magnet 10 close to a sine wave, the width of the side portion 121s in the circumferential direction is set as follows in terms of manufacturing. That is, it is preferable to set the width of the side portion 121s so that the central angle θ4 of the curved surface portion 120 is 50 to 80% of the central angle θ3 of the second main surface 12. This is because the magnetic flux density of the magnet 10 becomes closer to a sine wave. The central angle θ4 is more preferably 65 to 75% of the central angle θ3 of the second major surface 12. That is, in the second main surface 12, the ratio of the length in the circumferential direction occupied by the curved surface portion 120 is in a range from half to three-quarters of the length of the second main surface 12, and the other side portions 121s are the other. What is necessary is just to comprise so that it may occupy.
 なお、第2主面12の中心角θ3は、外周面に固定される磁石10の数(ロータの極数)に応じて設定される。例えば、ロータが10極を備える場合、中心角θ3はおおよそ36°(=360°/10)である。 The central angle θ3 of the second main surface 12 is set according to the number of magnets 10 (number of rotor poles) fixed to the outer peripheral surface. For example, when the rotor has 10 poles, the central angle θ3 is approximately 36 ° (= 360 ° / 10).
 さらに、本実施の形態では、一対の側面13について、図4Bに示すように、平面部110側の間隔よりも曲面部120側の間隔が広くなるように傾斜する平面としている。すなわち、一対の側面13は、軸方向と直交する面において、平面部110に近づくに従って、磁石10の中心方向に近くなるように傾いた形状としている。これにより、サイド部121sに加えて、この側面13によっても、磁石10での周方向端部に行くに従ってより薄くなる。本実施の形態では、このような側面13も利用して、さらに正弦波に近い磁束密度を実現している。 Further, in the present embodiment, as shown in FIG. 4B, the pair of side surfaces 13 are inclined planes so that the distance on the curved surface part 120 side is wider than the distance on the flat surface part 110 side. That is, the pair of side surfaces 13 have a shape that is inclined so as to be closer to the central direction of the magnet 10 as the plane portion 110 is approached in a plane orthogonal to the axial direction. Thereby, in addition to the side portion 121 s, the side surface 13 becomes thinner as it goes to the circumferential end portion of the magnet 10. In the present embodiment, such a side surface 13 is also used to realize a magnetic flux density that is closer to a sine wave.
 磁石10によって生じる磁束は、平面部110の法線方向Nvに沿って配向していることが好ましい。磁束が、磁石10の法線方向Nvの厚みに対応した大きさになり易いためである。つまり、磁石10の法線方向Nvの厚みを周方向に沿って変化させることにより、磁極面31t1に流入する磁束の大きさを、周方向に沿って変化させることができる。よって、磁石10の磁束密度の分布を、所望の形状(この場合、正弦波)に制御し易い。磁束の配向は、例えば、磁石の製造時に、磁性材料の配向をえた上で着磁することにより制御できる。 The magnetic flux generated by the magnet 10 is preferably oriented along the normal direction Nv of the flat portion 110. This is because the magnetic flux tends to have a magnitude corresponding to the thickness of the magnet 10 in the normal direction Nv. That is, by changing the thickness of the magnet 10 in the normal direction Nv along the circumferential direction, the magnitude of the magnetic flux flowing into the magnetic pole surface 31t1 can be changed along the circumferential direction. Therefore, it is easy to control the distribution of the magnetic flux density of the magnet 10 to a desired shape (in this case, a sine wave). The orientation of the magnetic flux can be controlled, for example, by magnetizing after obtaining the orientation of the magnetic material when the magnet is manufactured.
 磁石10の材質は特に限定されず、SPMモータ100に用いられる従来公知の材質であればよい。例えば、磁石10としては、フェライト磁石、ネオジム磁石、サマリウムコバルト磁石等が用いられる。なかでも、コストの点では、酸化鉄を主原料とするフェライト磁石が好ましい。なお、これらの磁石は比較的割れ易い。これに対し、本実施の形態では、磁石10とロータコア22の磁石保持面220とを上述のように平面同士で当接させ、さらに、ロータ樹脂部23となるモールド樹脂を利用して磁石10を固定する構成により、磁石10の破損防止を図っている。すなわち、本実施の形態で採用した形状を用いれば、従来、点接触となっていたものを面接触とすることができる。よって、磁石10の接触面積が増えるため、安定した固定が実現できる。 The material of the magnet 10 is not particularly limited as long as it is a conventionally known material used for the SPM motor 100. For example, as the magnet 10, a ferrite magnet, a neodymium magnet, a samarium cobalt magnet, or the like is used. Among these, ferrite magnets using iron oxide as a main raw material are preferable in terms of cost. These magnets are relatively easy to break. On the other hand, in the present embodiment, the magnet 10 and the magnet holding surface 220 of the rotor core 22 are brought into contact with each other as described above, and the magnet 10 is attached using the mold resin that becomes the rotor resin portion 23. The fixed structure prevents damage to the magnet 10. That is, if the shape adopted in the present embodiment is used, what has conventionally been point contact can be made surface contact. Therefore, since the contact area of the magnet 10 increases, stable fixation can be realized.
 次に、ロータ樹脂部23を含むロータ本体20bの詳細な構成について説明する。 Next, the detailed configuration of the rotor body 20b including the rotor resin portion 23 will be described.
 図7Aは、上述のようにして構成したロータ20の構成図である。また、図7Bは、ロータコア22およびロータ樹脂部23を含むロータ本体20bの詳細な断面構造を示す図である。また、図7Cは、軸方向から見たロータ本体20bでの外側ロータコア22mと、磁石10と、ロータ樹脂部23の一部との構成を示す図である。 FIG. 7A is a configuration diagram of the rotor 20 configured as described above. FIG. 7B is a diagram showing a detailed cross-sectional structure of the rotor body 20 b including the rotor core 22 and the rotor resin portion 23. FIG. 7C is a diagram showing a configuration of the outer rotor core 22m, the magnet 10, and a part of the rotor resin portion 23 in the rotor body 20b as viewed from the axial direction.
 まず、図7Aに示すように、ロータ本体20bの中心にはシャフト21が挿入されている。また、ロータ本体20bでは、所定の箇所を樹脂によってモールド成型することでロータ樹脂部23が形成されている。 First, as shown in FIG. 7A, a shaft 21 is inserted in the center of the rotor body 20b. In the rotor body 20b, the rotor resin portion 23 is formed by molding a predetermined portion with resin.
 ロータ樹脂部23は、ロータ20の外部側においては、図7Aに示すように、磁石10の曲面部120を露出させた状態で、磁石間樹脂部231および端板樹脂部232を含み構成される。ここで、端板樹脂部232は、ロータ本体20bの軸方向両端部において円盤状となるように設けられ、磁石10を軸方向に挟むように配置される。また、磁石間樹脂部231は、周方向でのそれぞれの磁石10の間に設けられ、端板樹脂部232を軸方向に樹脂で繋いでいる。 As shown in FIG. 7A, the rotor resin portion 23 includes an inter-magnet resin portion 231 and an end plate resin portion 232 with the curved surface portion 120 of the magnet 10 exposed, as shown in FIG. 7A. . Here, the end plate resin portion 232 is provided in a disc shape at both axial end portions of the rotor body 20b, and is disposed so as to sandwich the magnet 10 in the axial direction. The inter-magnet resin portion 231 is provided between the respective magnets 10 in the circumferential direction, and connects the end plate resin portions 232 with resin in the axial direction.
 さらに、本実施の形態では、図7Bに示すように、ロータコア22に、貫通孔22tが形成されている。貫通孔22tは、ロータコア22を軸方向に貫通する孔であり、径方向では、環状の形状を成している。すなわち、貫通孔22tは、ロータコア22の内部をその一方の端面から他方の端面まで円筒状の空間として延伸するように配置される。ロータ樹脂部23の樹脂は、このような貫通孔22tにも充填されており、ロータ樹脂部23の一部を成す内部樹脂部233を形成している。なお、内部樹脂部233を円筒状としているため、ロータコア22は、図1や図7Aからわかるように、内側ロータコア22sと外側ロータコア22mとに分離される。また、内部樹脂部233は、電気的に絶縁体である樹脂材料よりなる。このため、ロータコア22は、内部樹脂部233によって、内側ロータコア22sと外側ロータコア22mとが電気的に絶縁分離されている。本実施の形態では、このような構成を含めることで、ロータ20の電気的インピーダンスを高くして、軸受における電食の発生を抑制している。 Furthermore, in the present embodiment, as shown in FIG. 7B, the rotor core 22 is formed with a through hole 22t. The through hole 22t is a hole that penetrates the rotor core 22 in the axial direction, and has an annular shape in the radial direction. That is, the through hole 22t is disposed so as to extend the inside of the rotor core 22 as a cylindrical space from one end face to the other end face. The resin of the rotor resin portion 23 is also filled in such a through hole 22t to form an internal resin portion 233 that forms a part of the rotor resin portion 23. Since the inner resin portion 233 has a cylindrical shape, the rotor core 22 is separated into an inner rotor core 22s and an outer rotor core 22m, as can be seen from FIG. 1 and FIG. 7A. The internal resin portion 233 is made of a resin material that is an electrical insulator. Therefore, in the rotor core 22, the inner rotor core 22 s and the outer rotor core 22 m are electrically insulated and separated by the inner resin portion 233. In the present embodiment, by including such a configuration, the electrical impedance of the rotor 20 is increased, and the occurrence of electrolytic corrosion in the bearing is suppressed.
 以上のように、ロータ樹脂部23は、ロータコア22の両端面に配置される一対の端板樹脂部232と、ロータコア22の内部で円筒状に配置される内部樹脂部233と、ロータコア22の表面を周方向に等間隔で配置される複数本の磁石間樹脂部231とを一体に結合した構造を成している。このようなロータ樹脂部23は、例えば、次のように樹脂モールド成型することで形成されている。すなわち、ロータコア22と複数の磁石10とを、円筒状の金型内に配置する。そして、金型内に熱硬化性樹脂を充填した後、金型の熱エネルギーにより熱硬化性樹脂を硬化させる。このような工程に基づく樹脂モールド成型により、内側ロータコア22s、外側ロータコア22mおよび複数の磁石10が所定の配置状態に固定されたロータ本体20bが形成される。すなわち、両側の端板樹脂部232は、内部樹脂部233や磁石間樹脂部231を介して互いに繋がっているため、この構造によって、内側ロータコア22s、外側ロータコア22mおよびそれぞれの磁石10は、両側の端板樹脂部232に挟まれるように固定される。 As described above, the rotor resin portion 23 includes the pair of end plate resin portions 232 disposed on both end surfaces of the rotor core 22, the internal resin portion 233 disposed in a cylindrical shape inside the rotor core 22, and the surface of the rotor core 22. Is formed by integrally joining a plurality of inter-magnet resin portions 231 arranged at equal intervals in the circumferential direction. Such a rotor resin portion 23 is formed, for example, by resin molding as follows. That is, the rotor core 22 and the plurality of magnets 10 are arranged in a cylindrical mold. Then, after filling the mold with the thermosetting resin, the thermosetting resin is cured by the heat energy of the mold. By the resin molding based on such a process, the rotor main body 20b in which the inner rotor core 22s, the outer rotor core 22m, and the plurality of magnets 10 are fixed in a predetermined arrangement state is formed. That is, since the end plate resin portions 232 on both sides are connected to each other via the internal resin portion 233 and the inter-magnet resin portion 231, this structure allows the inner rotor core 22s, the outer rotor core 22m, and the respective magnets 10 to be located on both sides. It is fixed so as to be sandwiched between the end plate resin portions 232.
 本実施の形態では、このような工程で樹脂によりロータ本体20bの各部材を固定しており、ビスや接着材などを用いた固定手法に比べて、固着作業を不要とし、組立工数や組立時間の短縮化も図っている。また、本実施の形態では、金型内でロータ本体20bの各部材を樹脂で一体に結合するため、寸法精度等も容易に確保できる。さらに、本実施の形態では、内部樹脂部233および磁石間樹脂部231を介して、両側の端板樹脂部232が互いに繋がるような構造としており、これによって、軸方向の外力に対するロータコア22や磁石10の保持強度を高めている。 In the present embodiment, each member of the rotor body 20b is fixed by resin in such a process, so that the fixing work is not required and the number of assembling steps and the assembly time are not required as compared with the fixing method using screws or adhesives. Is also shortened. Moreover, in this Embodiment, since each member of the rotor main body 20b is integrally couple | bonded with resin within a metal mold | die, a dimensional accuracy etc. can be ensured easily. Further, in the present embodiment, the structure is such that the end plate resin parts 232 on both sides are connected to each other via the internal resin part 233 and the inter-magnet resin part 231, thereby enabling the rotor core 22 and the magnet to react to an axial external force. The holding strength of 10 is increased.
 特に、磁石10の固定に関して詳細には、磁石10の曲面部120の周囲に設けた周縁部121を、本実施の形態では利用している。この周縁部121は、図4Aや図4Bに示すように、曲面部120に比べて、より薄くした周辺端部である。本実施の形態では、磁石10に対して、磁石10の周縁部121を隠すように、ロータ樹脂部23の樹脂が周縁部121を覆う構成としている。より具体的には、端板樹脂部232が磁石10の軸方向端部の両周縁部121を覆う。そして、磁石間樹脂部231が、図7Cに示すように、磁石10の径方向端部の両周縁部121、すなわち、サイド部121sを覆う。このように磁石10の周縁部121を樹脂で覆うことで、磁石10を外側ロータコア22mの外周面に固定している。特に、回転時においては、磁石10に対して径方向の外側への遠心力が生じるが、サイド部121sも樹脂で覆うことにより、端板樹脂部232のみによる保持と比較して、この遠心力に対する強度を高めることができる。 In particular, in detail with respect to the fixing of the magnet 10, the peripheral portion 121 provided around the curved surface portion 120 of the magnet 10 is used in the present embodiment. As shown in FIGS. 4A and 4B, the peripheral edge 121 is a peripheral edge that is thinner than the curved surface 120. In the present embodiment, the resin of the rotor resin portion 23 covers the peripheral portion 121 so as to hide the peripheral portion 121 of the magnet 10 with respect to the magnet 10. More specifically, the end plate resin portion 232 covers both peripheral edge portions 121 at the axial end portion of the magnet 10. Then, as shown in FIG. 7C, the inter-magnet resin portion 231 covers both peripheral edge portions 121 of the radial end portion of the magnet 10, that is, the side portion 121s. Thus, the magnet 10 is being fixed to the outer peripheral surface of the outer rotor core 22m by covering the peripheral part 121 of the magnet 10 with resin. In particular, during rotation, a centrifugal force is generated outward in the radial direction with respect to the magnet 10, but this centrifugal force is also compared with the holding by the end plate resin portion 232 only by covering the side portion 121s with resin. The strength against can be increased.
 以上、本実施の形態では、ねじや接着剤は用いておらず、磁石10の周縁部121を樹脂止めすることでのみ、磁石10をロータコア22に固定している。例えば、外側ロータコア22mの磁石保持面220に対しても、何も介さずに磁石10の第1主面11を直接接触させている。また、このように直接接触させているため、接着剤を介在させるような手法に比べて、パーミアンスの低下を抑制でき、それに伴って効率の低下も抑制できる。 As described above, in the present embodiment, screws and adhesives are not used, and the magnet 10 is fixed to the rotor core 22 only by fixing the peripheral portion 121 of the magnet 10 with resin. For example, the first main surface 11 of the magnet 10 is in direct contact with the magnet holding surface 220 of the outer rotor core 22m without any intervention. Further, since direct contact is made in this way, a decrease in permeance can be suppressed as compared with a method in which an adhesive is interposed, and a decrease in efficiency can be suppressed accordingly.
 図8は、ロータコア22に配置された隣り合う磁石10間の詳細な構造を示す図である。 FIG. 8 is a diagram showing a detailed structure between adjacent magnets 10 arranged on the rotor core 22.
 図8に示すように、外側ロータコア22mの外周面には、磁石10の取付け位置を定めるために、突起部221が形成されている。突起部221は、外側ロータコア22mの外周面からさらに外側に突出し、周方向に等間隔で磁石10と同じ個数となるように形成されている。このように突起部221は、複数の磁石10のそれぞれの取付け位置を定めるように配置されて、隣り合う突起部221間が磁石保持面220となる。これにより、複数の磁石10を、ロータコア22の外周面に等間隔で固定することができる。そのため、個々の磁石10からステータ30に向かって流れる磁束の密度分布の偏りが小さくなって、SPMモータ100の効率がさらに向上するとともに、騒音が低減される。このように、突起部221は、隣接する磁石保持面220同士の間に設置され、磁石10は、隣接する突起部221同士の間に固定される。 As shown in FIG. 8, a protrusion 221 is formed on the outer peripheral surface of the outer rotor core 22m in order to determine the mounting position of the magnet 10. The protruding portions 221 protrude further outward from the outer peripheral surface of the outer rotor core 22m, and are formed to be the same number as the magnets 10 at equal intervals in the circumferential direction. As described above, the protrusions 221 are arranged so as to determine the attachment positions of the plurality of magnets 10, and the magnet holding surface 220 is formed between the adjacent protrusions 221. Thereby, the plurality of magnets 10 can be fixed to the outer peripheral surface of the rotor core 22 at equal intervals. Therefore, the deviation of the density distribution of the magnetic flux flowing from the individual magnets 10 toward the stator 30 is reduced, so that the efficiency of the SPM motor 100 is further improved and noise is reduced. Thus, the protrusions 221 are installed between the adjacent magnet holding surfaces 220, and the magnet 10 is fixed between the adjacent protrusions 221.
 特に、本実施の形態では、ロータコア22の突起部221の形状について、その幅が先細りとなるテーパ形状としている。すなわち、図8に示すように、突起部221の周方向幅において、根元となる内周側に比べて、外周側のほうが狭くなるような形状としている。さらに、磁石10の側面13の形状も突起部221の形状に合わせており、磁石10の周方向幅において、サイド部121sから径方向に平面部110へと近づくに従って狭くなるように、側面13を形成している。本実施の形態では、このような突起部221と磁石10の側面13との形状としているため、磁石10の平面部110での周方向幅Wbに対して、隣り合う突起部221の先端部間での周方向幅Wpは、十分に広くなる。簡単に言えば、磁石10での幅Wbの底部に対して、磁石保持面220での幅Wpの外側開口を、周方向において広くなるような組合せとしている。すなわち、外側開口が広いため磁石10を磁石保持面220に容易に挿入でき、さらに、挿入後には、磁石10を磁石保持面220に密着するように配置できる。 In particular, in the present embodiment, the protrusion 221 of the rotor core 22 has a tapered shape with a tapered width. That is, as shown in FIG. 8, the circumferential width of the protrusion 221 is such that the outer peripheral side is narrower than the inner peripheral side that is the root. Furthermore, the shape of the side surface 13 of the magnet 10 is also matched to the shape of the protrusion 221, and the side surface 13 is narrowed so that the circumferential width of the magnet 10 becomes narrower from the side portion 121 s toward the planar portion 110 in the radial direction. Forming. In the present embodiment, since the shape of the protruding portion 221 and the side surface 13 of the magnet 10 is used, the distance between the distal end portions of the adjacent protruding portions 221 with respect to the circumferential width Wb of the planar portion 110 of the magnet 10 is set. The circumferential width Wp at is sufficiently wide. Simply put, the outer opening of the width Wp of the magnet holding surface 220 is set to be wide in the circumferential direction with respect to the bottom of the width Wb of the magnet 10. That is, since the outer opening is wide, the magnet 10 can be easily inserted into the magnet holding surface 220, and further, the magnet 10 can be disposed so as to be in close contact with the magnet holding surface 220 after the insertion.
 さらに、この磁石10と磁石保持面220との密着性を高めるため、外側ロータコア22mにおいて、突起部221の根元の両側には、内側に切り欠いた溝222を設けている。次に、外側ロータコア22mに設けた溝222について説明する。図9Aは、ロータコア22での突起部の形状と磁石10の形状に基づいて、磁石10が磁石保持面220に密着する密着度合を説明するための図である。図9Bは、図9Aと比較する比較例を示している。具体的に、図9Aには、本実施の形態での溝222を設けた突起部221の周辺を示し、図9Bには、比較例として、溝を設けていない突起部921の周辺を示している。 Furthermore, in order to improve the adhesion between the magnet 10 and the magnet holding surface 220, grooves 222 cut out inward are provided on both sides of the base of the protrusion 221 in the outer rotor core 22m. Next, the groove 222 provided in the outer rotor core 22m will be described. FIG. 9A is a diagram for explaining the degree of adhesion with which the magnet 10 is in close contact with the magnet holding surface 220 based on the shape of the protrusion on the rotor core 22 and the shape of the magnet 10. FIG. 9B shows a comparative example compared with FIG. 9A. Specifically, FIG. 9A shows the periphery of the protrusion 221 provided with the groove 222 in this embodiment, and FIG. 9B shows the periphery of the protrusion 921 not provided with a groove as a comparative example. Yes.
 上述したように、ロータコア22は、所望の形状の薄い鉄板を積層して構成されている。また、これら鉄板は、打抜き加工により、素材の鉄板を打抜いて、所望の形状としている。このような打抜き加工では、角部分は、通常、方形状とはならず、厳密には曲線状となる。このため、図9Bの比較例で示す突起部921から磁石保持面920にかけての角部922でも、図示するような曲線状となる。一方、磁石10やロータコア22のサイズには、どうしてもばらつきが生じる。このため、例えば、磁石10が大きくなるようにばらつくと、図9Bの比較例で示すように、磁石10の周縁部111が角部922に接触してしまう。そして、その結果、磁石10の平面部110と磁石保持面920との間には、図9Bの比較例で示すような隙間929ができてしまい、磁石10が磁石保持面220に密着しなくなる。 As described above, the rotor core 22 is configured by laminating thin iron plates having a desired shape. Moreover, these iron plates are made into the desired shape by punching out the raw iron plate by punching. In such a punching process, the corner portion is not usually a square shape, but strictly a curved shape. For this reason, the corner portion 922 from the protrusion 921 to the magnet holding surface 920 shown in the comparative example of FIG. 9B also has a curved shape as illustrated. On the other hand, the size of the magnet 10 and the rotor core 22 inevitably varies. For this reason, for example, when the magnet 10 varies so as to be large, the peripheral edge 111 of the magnet 10 comes into contact with the corner 922 as shown in the comparative example of FIG. 9B. As a result, a gap 929 as shown in the comparative example of FIG. 9B is formed between the flat portion 110 of the magnet 10 and the magnet holding surface 920, and the magnet 10 does not adhere to the magnet holding surface 220.
 そこで、本実施の形態では溝222を設けることにより、比較例のような曲線状の角部922の膨らみ量を抑えている。すなわち、打抜き加工において、突起部221の根元の両側に溝222が形成されるように打抜く。これにより、溝222の形成に伴って、比較例での角部922の膨らみ量も減るように作用する。その結果、磁石10が大きくなるようにばらついたとしても、磁石10が突起部221の根元付近で接触するようなことはなく、図9Aに示す密着面229のように、磁石10を磁石保持面220に確実に密着させることができる。 Therefore, in this embodiment, by providing the groove 222, the amount of bulge of the curved corner 922 as in the comparative example is suppressed. That is, in the punching process, punching is performed so that the grooves 222 are formed on both sides of the base of the protrusion 221. Thereby, with the formation of the groove 222, the bulge amount of the corner portion 922 in the comparative example is also reduced. As a result, even if the magnet 10 varies so as to become large, the magnet 10 does not come in contact with the vicinity of the base of the protruding portion 221, and the magnet 10 is placed on the magnet holding surface like the contact surface 229 shown in FIG. 9A. 220 can be securely attached to 220.
 また、上述のとおり、磁石10の固定をより確実にするために、図8に示すように、隣接する磁石10に跨るように、第2主面12側にロータ樹脂部23の磁石間樹脂部231が配置される。磁石間樹脂部231は、隣接する磁石10の向かい合う2つのサイド部121sの少なくとも一部を覆うように配置される。これにより、向かい合う2つのサイド部121sによって形成された、略三角形の断面を有する空間25の少なくとも一部が、磁石間樹脂部231によって埋められる。つまり、ステータ30とロータ20との間隔のばらつきが小さくなるため、空間25による回転負荷が抑えられ、ロータ20の回転がより滑らかになって、SPMモータ100の効率がさらに向上する。同様の観点から、磁石間樹脂部231は、上記の略三角形の空間25からはみ出さない程度に配置している。 Further, as described above, in order to make the fixing of the magnet 10 more reliable, as shown in FIG. 8, the inter-magnet resin portion of the rotor resin portion 23 on the second main surface 12 side so as to straddle the adjacent magnets 10. 231 is arranged. The inter-magnet resin portion 231 is disposed so as to cover at least a part of the two side portions 121s facing each other of the adjacent magnets 10. Thereby, at least a part of the space 25 having a substantially triangular cross section formed by the two side parts 121s facing each other is filled with the resin part 231 between the magnets. That is, since the dispersion | variation in the space | interval of the stator 30 and the rotor 20 becomes small, the rotational load by the space 25 is suppressed, rotation of the rotor 20 becomes smoother, and the efficiency of the SPM motor 100 further improves. From the same viewpoint, the inter-magnet resin portion 231 is disposed so as not to protrude from the substantially triangular space 25.
 特に、本実施の形態では、サイド部121sでの磁石10の厚みが薄くなるため、サイド部121sを設けない場合に比べて、空間25が広くなり、磁石間樹脂部231の径方向の厚みを増やすことができる。よって、磁石間樹脂部231の径方向の厚みを十分に確保できるため、遠心力のような径方向外側に働く力に対しての強度も十分に確保できる。しかも、磁石間樹脂部231の樹脂が紙状に薄くなることも防止できる。すなわち、樹脂が紙状になると、破れたり剥がれたりし易くなり、細かい樹脂の屑となってロータ20の回転を止めるなど、不具合の原因となる。これに対し、本実施の形態では、樹脂が紙状にはならないため、このような不具合も防止できる。 In particular, in the present embodiment, since the thickness of the magnet 10 at the side portion 121s is reduced, the space 25 is widened compared to the case where the side portion 121s is not provided, and the radial thickness of the inter-magnet resin portion 231 is reduced. Can be increased. Therefore, since the thickness in the radial direction of the inter-magnet resin portion 231 can be sufficiently secured, the strength against the force acting on the radially outer side such as centrifugal force can be sufficiently secured. In addition, it is possible to prevent the resin of the inter-magnet resin portion 231 from being thinned like paper. That is, when the resin becomes paper-like, it becomes easy to be torn or peeled off, and it becomes a cause of trouble such as fine resin scraps that stop the rotation of the rotor 20. On the other hand, in this embodiment, since the resin does not become paper, such a problem can be prevented.
 このように、本実施の形態では、磁石10にサイド部121sを設けた構成としているため、正弦波に近い磁束密度を実現しながら、さらに、樹脂の屑の発生を抑制しつつ、磁石間樹脂部231による磁石10の保持強度も確保できる。 Thus, in this Embodiment, since it is set as the structure which provided the side part 121s in the magnet 10, while achieving the magnetic flux density close | similar to a sine wave, further suppressing generation | occurrence | production of the resin scrap, resin between magnets The holding strength of the magnet 10 by the part 231 can also be ensured.
 本実施の形態ではロータの極数(磁石10の個数)を10極として説明したが、この極数は特に限定されない。極数が増えると、ステータに入る磁束密度の偏りが低減される。そのため、極数は、電磁力を分散させる観点から多極化していることが好ましい。また、極数とスロット数とを、適切な組合せにすることにより、コギングトルクを抑制できる。なお、極数の上限は、モータの仕様、特にモータの定格等により定まる。具体的には、極数は、例えば4極以上である。なかでも、上記の観点から、極数は8極以上であることが好ましく、10極以上であることがより好ましい。なお、図示例では、極数が10(10極)である場合を示している。ロータ20が10極であって、3相交流を用いてロータ20を回転させる場合、SPMモータ100の動作中にステータ30の内径が歪んで、ステータ30が円環振動することがある。ステータ30の円環振動は、騒音の一因になり得る。しかし、本実施の形態によれば、ステータ30の円環振動以外の騒音の原因が排除され易くなるため、結果的に、SPMモータ100の動作中における騒音は抑制される。 In the present embodiment, the number of poles of the rotor (the number of magnets 10) has been described as 10. However, the number of poles is not particularly limited. As the number of poles increases, the deviation of the magnetic flux density entering the stator is reduced. Therefore, the number of poles is preferably multipolar from the viewpoint of dispersing electromagnetic force. Further, the cogging torque can be suppressed by appropriately combining the number of poles and the number of slots. The upper limit of the number of poles is determined by the motor specifications, particularly the motor rating. Specifically, the number of poles is, for example, four or more. Especially, from said viewpoint, it is preferable that the number of poles is 8 or more, and it is more preferable that it is 10 or more. In the illustrated example, the number of poles is 10 (10 poles). When the rotor 20 has 10 poles and the rotor 20 is rotated using a three-phase alternating current, the inner diameter of the stator 30 may be distorted during the operation of the SPM motor 100, and the stator 30 may vibrate in an annular shape. The ring vibration of the stator 30 can contribute to noise. However, according to the present embodiment, the cause of noise other than the ring vibration of the stator 30 is easily eliminated, and as a result, noise during operation of the SPM motor 100 is suppressed.
 上記のとおり、極数は、電磁力を分散させる観点から多極化することが好ましい。一方で、磁石10の数が多くなると、取付け位置はずれ易くなるため、精度良く、多数の磁石10を、ロータコア22の外周面に取付けることは困難である。よって、極数が多い場合ほど、突起部221を設けることは、より効果的である。また、本実施の形態においては、極数が多いほど、ロータコア22の外周面は滑らかな円弧に近くなる。外周面が、磁石10の平面部110に対応する平面の磁石保持面220を備えるためである。外周面が円弧に近くなると、ロータ20の回転が滑らかになって、騒音が低減される。このように、本実施の形態に係る磁石10は、極数の多いロータ20に用いるのに特に適している。 As described above, the number of poles is preferably multipolar from the viewpoint of dispersing electromagnetic force. On the other hand, as the number of magnets 10 increases, the mounting position easily shifts, and it is difficult to mount a large number of magnets 10 on the outer peripheral surface of the rotor core 22 with high accuracy. Therefore, it is more effective to provide the protrusions 221 as the number of poles is larger. In the present embodiment, the larger the number of poles, the closer the outer peripheral surface of the rotor core 22 is to a smooth arc. This is because the outer peripheral surface includes a flat magnet holding surface 220 corresponding to the flat portion 110 of the magnet 10. When the outer peripheral surface is close to an arc, the rotation of the rotor 20 becomes smooth and noise is reduced. Thus, the magnet 10 according to the present embodiment is particularly suitable for use in the rotor 20 having a large number of poles.
 本発明の表面磁石型モータによれば、ロータコアとステータコアとの間に、正弦波に近い密度分布を備える磁束を発生させることができる。そのため、特に、低騒音や高効率が要求される家電機器などに実装されるモータに有効である。 According to the surface magnet type motor of the present invention, a magnetic flux having a density distribution close to a sine wave can be generated between the rotor core and the stator core. Therefore, it is particularly effective for motors mounted on home appliances that require low noise and high efficiency.
 10  磁石
 11  第1主面
 12  第2主面
 13  側面
 14  上下面
 20  ロータ
 20b  ロータ本体
 21  シャフト
 22  ロータコア
 22m  外側ロータコア
 22s  内側ロータコア
 22t  貫通孔
 23  ロータ樹脂部
 25  空間
 30  ステータ
 31  ステータコア
 31s  スロット
 31t  ティース
 31y  ヨーク
 31t1  磁極面
 31tm  ティース中間部
 31tp  ティース先端部
 32  インシュレータ
 33  巻線
 40  モータケース
 43  軸受
 45  ステータ樹脂
 46  金属製ブラケット
 48  プリント基板
 100  表面磁石型(SPM)モータ
 110  平面部
 111,121  周縁部
 120  曲面部
 121s  サイド部
 220,920  磁石保持面
 221,921  突起部
 222  溝
 229  密着面
 231  磁石間樹脂部
 232  端板樹脂部
 233  内部樹脂部
 922  角部
 929  隙間
DESCRIPTION OF SYMBOLS 10 Magnet 11 1st main surface 12 2nd main surface 13 Side surface 14 Upper and lower surfaces 20 Rotor 20b Rotor main body 21 Shaft 22 Rotor core 22m Outer rotor core 22s Inner rotor core 22t Through-hole 23 Rotor resin part 25 Space 30 Stator 31 Stator core 31s Slot 31t Teeth 31y Yoke 31t1 Magnetic pole surface 31tm Teeth intermediate part 31tp Teeth tip part 32 Insulator 33 Winding 40 Motor case 43 Bearing 45 Stator resin 46 Metal bracket 48 Printed circuit board 100 Surface magnet type (SPM) motor 110 Flat part 111, 121 Peripheral part 120 Curved surface Portion 121 s Side portion 220, 920 Magnet holding surface 221, 921 Projection portion 222 Groove 229 Contact surface 231 Inter-magnet resin portion 232 Plate resin portion 233 inside the resin 922 corner 929 gap

Claims (9)

  1. ステータと、前記ステータの内周側に回転自在に配置されるロータとを具備し、前記ロータの表面に複数の磁石を保持する表面磁石型モータであって、
    前記ステータは、
    リング状のヨークと、前記ヨークの内周から径方向に延出し、先端部には周方向に広がるティース先端部が形成された複数のティースと、を有するステータコアと、
    前記ティースに巻回された巻線と、を備え、
    前記ロータは、
    前記複数の磁石を保持するロータコアと、
    前記ロータコアの中央を貫通して延伸するシャフトと、
    前記ティース先端部と所定の間隔をあけ、前記ロータコアの外周面に沿って周方向に等間隔で配置される前記複数の磁石と、
    前記複数の磁石を前記ロータコアに固定するためのロータ樹脂部と、を備え、
    前記複数の磁石のそれぞれは、前記ロータコアの外周面に対向する第1主面と、前記ティース先端部に対向する第2主面と、を備え、
    前記第1主面が、平面を成す平面部を含み、
    前記ティース先端部と前記第2主面とが、互いに同心の円弧状を成す曲面部を含み、
    前記ロータ樹脂部が前記第2主面の周縁部を覆うように、前記ロータ樹脂部によって、前記ロータコアと前記複数の磁石とが一体成型されている表面磁石型モータ。
    A surface magnet type motor comprising a stator and a rotor rotatably disposed on an inner peripheral side of the stator, and holding a plurality of magnets on a surface of the rotor;
    The stator is
    A stator core having a ring-shaped yoke and a plurality of teeth each having a tooth tip portion extending radially from the inner periphery of the yoke and extending in the circumferential direction at the tip portion;
    A winding wound around the teeth,
    The rotor is
    A rotor core holding the plurality of magnets;
    A shaft extending through the center of the rotor core;
    The plurality of magnets arranged at equal intervals in the circumferential direction along the outer peripheral surface of the rotor core, with a predetermined interval from the tooth tip.
    A rotor resin portion for fixing the plurality of magnets to the rotor core,
    Each of the plurality of magnets includes a first main surface that opposes the outer peripheral surface of the rotor core, and a second main surface that opposes the tooth tip.
    The first main surface includes a plane portion forming a plane,
    The teeth tip portion and the second main surface include a curved surface portion forming a concentric arc shape,
    A surface magnet type motor in which the rotor core and the plurality of magnets are integrally molded by the rotor resin portion so that the rotor resin portion covers a peripheral edge portion of the second main surface.
  2. 前記第2主面が、前記曲面部と、前記曲面部を挟持するように配置される2つのサイド部と、を有し、
    前記ロータの中心から前記サイド部までの径方向の距離は、前記磁石の周方向端部に近づくほど小さくなる請求項1に記載の表面磁石型モータ。
    The second main surface has the curved surface portion and two side portions arranged to sandwich the curved surface portion,
    2. The surface magnet type motor according to claim 1, wherein the radial distance from the center of the rotor to the side portion decreases as the distance from the circumferential end of the magnet decreases.
  3. 前記サイド部の任意の接線と前記平面部との成す鋭角の角度が、前記曲面部の任意の接線と前記平面部との成す鋭角の角度よりも大きい、請求項2に記載の表面磁石型モータ。 The surface magnet type motor according to claim 2, wherein an acute angle formed between an arbitrary tangent of the side portion and the flat portion is larger than an acute angle formed between an arbitrary tangent of the curved portion and the flat portion. .
  4. 前記ロータ樹脂部は、前記第2主面に対し、前記サイド部の少なくとも一部を覆うように配置されている請求項2または3に記載の表面磁石型モータ。 The surface magnet type motor according to claim 2, wherein the rotor resin portion is disposed so as to cover at least a part of the side portion with respect to the second main surface.
  5. 前記平面部の法線方向に沿って磁束が配向されている、請求項1に記載の表面磁石型モータ。 The surface magnet type motor according to claim 1, wherein a magnetic flux is oriented along a normal direction of the plane portion.
  6. 前記ロータコアの前記外周面は、前記平面部に一対一で対応する磁石保持面を有する、請求項1に記載の表面磁石型モータ。 2. The surface magnet type motor according to claim 1, wherein the outer peripheral surface of the rotor core has a magnet holding surface corresponding to the flat portion on a one-to-one basis.
  7. 前記ロータコアの前記外周面は、前記複数の磁石のそれぞれの取付け位置を定める突起部を有する、請求項1に記載の表面磁石型モータ。 2. The surface magnet type motor according to claim 1, wherein the outer peripheral surface of the rotor core has a protrusion that defines a mounting position of each of the plurality of magnets.
  8. 前記突起部の両側には、内側に切り欠いた溝を設けている、請求項7に記載の表面磁石型モータ。 The surface magnet type motor according to claim 7, wherein grooves formed on the inside are provided on both sides of the protrusion.
  9. 前記ロータの極数が10であり、
    前記ステータのスロット数が12である、請求項1に記載の表面磁石型モータ。
    The number of poles of the rotor is 10,
    The surface magnet type motor according to claim 1, wherein the stator has 12 slots.
PCT/JP2017/028248 2016-08-29 2017-08-03 Surface magnet type motor WO2018043026A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018537064A JP6667084B2 (en) 2016-08-29 2017-08-03 Surface magnet type motor
CN201780052832.XA CN109661760B (en) 2016-08-29 2017-08-03 Surface magnet type motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-167275 2016-08-29
JP2016167275 2016-08-29

Publications (1)

Publication Number Publication Date
WO2018043026A1 true WO2018043026A1 (en) 2018-03-08

Family

ID=61301543

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/028248 WO2018043026A1 (en) 2016-08-29 2017-08-03 Surface magnet type motor

Country Status (3)

Country Link
JP (1) JP6667084B2 (en)
CN (1) CN109661760B (en)
WO (1) WO2018043026A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109322851A (en) * 2018-11-27 2019-02-12 常州雷利电机科技有限公司 Impeller of rotor component, the pump motor including it and the method that manufactures it
KR20200021371A (en) * 2018-08-20 2020-02-28 엘지이노텍 주식회사 Motor
KR20200038053A (en) * 2018-10-02 2020-04-10 엘지이노텍 주식회사 Motor
WO2020100368A1 (en) * 2018-11-15 2020-05-22 株式会社ミツバ Rotor, motor and brushless motor
JP2020099121A (en) * 2018-12-17 2020-06-25 株式会社ミツバ Rotor, motor, and wiper motor
JP2020156164A (en) * 2019-03-19 2020-09-24 三菱電機株式会社 Rotor and manufacturing method of the same
JP6834064B1 (en) * 2020-01-21 2021-02-24 三菱電機株式会社 Stator and rotary machine using it
JP2022002438A (en) * 2020-06-22 2022-01-06 東芝ライフスタイル株式会社 Rotor, motor, and manufacturing method of rotor
WO2022107273A1 (en) * 2020-11-19 2022-05-27 三菱電機株式会社 Rotor, electric motor, fan, air-conditioning device, and rotor manufacturing method
WO2023162997A1 (en) * 2022-02-28 2023-08-31 ニデック株式会社 Rotor, rotor manufacturing device, and rotor manufacturing method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7266180B2 (en) * 2019-05-15 2023-04-28 パナソニックIpマネジメント株式会社 Rotor and motor with same
DE112020002688T5 (en) * 2019-05-27 2022-03-03 Denso Corporation ENGINE
CN110797999A (en) * 2019-11-04 2020-02-14 珠海凌达压缩机有限公司 Magnetic steel, synchronous motor rotor with same and synchronous motor
CN110838767B (en) * 2019-11-27 2021-10-19 珠海格力电器股份有限公司 Rotor core, rotor and motor with adjustable slot pole matching scheme
CN114748788B (en) * 2022-03-22 2023-04-21 苏州心擎医疗技术有限公司 Stator assembly for magnetic levitation motor, magnetic levitation motor and in-vitro centrifugal magnetic levitation blood pump

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1066285A (en) * 1996-08-26 1998-03-06 Matsushita Electric Ind Co Ltd Permanent magnet motor
JP2001298887A (en) * 2000-04-14 2001-10-26 Matsushita Electric Ind Co Ltd Motor
US20020067092A1 (en) * 2000-12-04 2002-06-06 Crapo Alan D. Magnetization of permanent magnet rotors with offset rotor sections
JP2009165349A (en) * 2009-04-03 2009-07-23 Shin Etsu Chem Co Ltd Permanent magnet rotating machine, and manufacturing method of permanent magnet segment for permanent magnet rotating machine
JP2012228014A (en) * 2011-04-18 2012-11-15 Mitsuba Corp Brushless motor
JP2015050880A (en) * 2013-09-03 2015-03-16 アイシン精機株式会社 Electric motor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004048970A (en) * 2002-07-16 2004-02-12 Meidensha Corp Permanent-magnet rotary-electric machine
JP5326323B2 (en) * 2008-03-28 2013-10-30 日産自動車株式会社 Electric motor and method for manufacturing rotor core of electric motor
JP2014155372A (en) * 2013-02-12 2014-08-25 Mitsubishi Electric Corp Surface magnet rotor and manufacturing method therefor and permanent magnet dynamo-electric machine with surface magnet rotor and electric power steering device using permanent magnet dynamo-electric machine
CN204835738U (en) * 2015-08-13 2015-12-02 温岭市东菱电机有限公司 Rotor for motors

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1066285A (en) * 1996-08-26 1998-03-06 Matsushita Electric Ind Co Ltd Permanent magnet motor
JP2001298887A (en) * 2000-04-14 2001-10-26 Matsushita Electric Ind Co Ltd Motor
US20020067092A1 (en) * 2000-12-04 2002-06-06 Crapo Alan D. Magnetization of permanent magnet rotors with offset rotor sections
JP2009165349A (en) * 2009-04-03 2009-07-23 Shin Etsu Chem Co Ltd Permanent magnet rotating machine, and manufacturing method of permanent magnet segment for permanent magnet rotating machine
JP2012228014A (en) * 2011-04-18 2012-11-15 Mitsuba Corp Brushless motor
JP2015050880A (en) * 2013-09-03 2015-03-16 アイシン精機株式会社 Electric motor

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102627306B1 (en) 2018-08-20 2024-01-22 엘지이노텍 주식회사 Motor
KR20200021371A (en) * 2018-08-20 2020-02-28 엘지이노텍 주식회사 Motor
KR20200038053A (en) * 2018-10-02 2020-04-10 엘지이노텍 주식회사 Motor
KR102626024B1 (en) 2018-10-02 2024-01-18 엘지이노텍 주식회사 Motor
JP7169170B2 (en) 2018-11-15 2022-11-10 株式会社ミツバ Rotors, motors and brushless motors
EP3883092A4 (en) * 2018-11-15 2022-08-24 Mitsuba Corporation Rotor, motor and brushless motor
WO2020100368A1 (en) * 2018-11-15 2020-05-22 株式会社ミツバ Rotor, motor and brushless motor
JP2020088914A (en) * 2018-11-15 2020-06-04 株式会社ミツバ Rotor, motor and brushless motor
CN112689940A (en) * 2018-11-15 2021-04-20 株式会社美姿把 Rotor, motor and brushless motor
US20210384783A1 (en) * 2018-11-15 2021-12-09 Mitsuba Corporation Rotor, motor and brushless motor
CN109322851A (en) * 2018-11-27 2019-02-12 常州雷利电机科技有限公司 Impeller of rotor component, the pump motor including it and the method that manufactures it
CN109322851B (en) * 2018-11-27 2024-02-27 常州雷利电机科技有限公司 Rotor impeller assembly, water pump motor comprising same and method for manufacturing same
JP2020099121A (en) * 2018-12-17 2020-06-25 株式会社ミツバ Rotor, motor, and wiper motor
JP7224218B2 (en) 2019-03-19 2023-02-17 三菱電機株式会社 Rotor and rotor manufacturing method
JP2020156164A (en) * 2019-03-19 2020-09-24 三菱電機株式会社 Rotor and manufacturing method of the same
WO2021149130A1 (en) * 2020-01-21 2021-07-29 三菱電機株式会社 Stator and rotating electric machine using same
US11996734B2 (en) 2020-01-21 2024-05-28 Mitsubishi Electric Corporation Stator and rotary electric machine using same
JP6834064B1 (en) * 2020-01-21 2021-02-24 三菱電機株式会社 Stator and rotary machine using it
JP2022002438A (en) * 2020-06-22 2022-01-06 東芝ライフスタイル株式会社 Rotor, motor, and manufacturing method of rotor
JP7477379B2 (en) 2020-06-22 2024-05-01 東芝ライフスタイル株式会社 Rotor, motor, and method of manufacturing rotor
WO2022107273A1 (en) * 2020-11-19 2022-05-27 三菱電機株式会社 Rotor, electric motor, fan, air-conditioning device, and rotor manufacturing method
JP7403685B2 (en) 2020-11-19 2023-12-22 三菱電機株式会社 Rotor, electric motor, blower, air conditioner, and rotor manufacturing method
JPWO2022107273A1 (en) * 2020-11-19 2022-05-27
WO2023162997A1 (en) * 2022-02-28 2023-08-31 ニデック株式会社 Rotor, rotor manufacturing device, and rotor manufacturing method

Also Published As

Publication number Publication date
JPWO2018043026A1 (en) 2019-06-24
CN109661760A (en) 2019-04-19
CN109661760B (en) 2022-01-25
JP6667084B2 (en) 2020-03-18

Similar Documents

Publication Publication Date Title
WO2018043026A1 (en) Surface magnet type motor
JP6640621B2 (en) Motor rotor and brushless motor
WO2011007694A1 (en) Permanent-magnet type synchronous motor
JP2012120326A (en) Interior magnet rotor, motor, and method for assembling motor
JP2008131682A (en) Axial air gap type motor
JP5656719B2 (en) Permanent magnet type rotating electrical machine and method for manufacturing permanent magnet type rotating electrical machine
JP2010246171A (en) Axial gap type dynamo-electric machine
JPWO2022019074A5 (en)
JP4640373B2 (en) Rotating electric machine
US12074489B2 (en) Axial gap motor
JP5595135B2 (en) Two-phase hybrid rotating electric machine
JP2004222356A (en) Rotating electric equipment
JP2011172359A (en) Split rotor and electric motor
JP2012125111A (en) Rotor of outer rotor type rotary machine
WO2011061806A1 (en) Method of manufacturing rotor of electric motor
JP2020010539A (en) Rotor and brushless motor
US20230163646A1 (en) Rotary electrical device
JP6537613B2 (en) Motor rotor, motor, blower and refrigeration air conditioner
WO2020054469A1 (en) Stator, and motor using same
JP2013207920A (en) Permanent magnet type rotary electrical machine
US11735967B2 (en) Rotary electric machine with rotor having permanent magnets with concave faces between two flat portions
JP2017103986A (en) Electric motor
JP6285019B2 (en) Axial gap type rotating electrical machine
JP6685166B2 (en) Axial gap type rotating electric machine
JP2001218436A (en) Permanent magnet motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17846035

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018537064

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17846035

Country of ref document: EP

Kind code of ref document: A1