WO2018042634A1 - Rotor, dynamo-electric machine, and method for manufacturing rotor - Google Patents

Rotor, dynamo-electric machine, and method for manufacturing rotor Download PDF

Info

Publication number
WO2018042634A1
WO2018042634A1 PCT/JP2016/075873 JP2016075873W WO2018042634A1 WO 2018042634 A1 WO2018042634 A1 WO 2018042634A1 JP 2016075873 W JP2016075873 W JP 2016075873W WO 2018042634 A1 WO2018042634 A1 WO 2018042634A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
magnet
magnetic steel
axial direction
hole
Prior art date
Application number
PCT/JP2016/075873
Other languages
French (fr)
Japanese (ja)
Inventor
陽介 山田
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Priority to JP2018536649A priority Critical patent/JPWO2018042634A1/en
Priority to PCT/JP2016/075873 priority patent/WO2018042634A1/en
Priority to CN201680088763.3A priority patent/CN109643920A/en
Publication of WO2018042634A1 publication Critical patent/WO2018042634A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets

Definitions

  • the present invention relates to a rotor, a rotating electrical machine, and a method for manufacturing the rotor.
  • an IPM (Interior Permanent Magnet) motor having a structure in which a permanent magnet for a field is embedded in a rotor is known.
  • a second laminated core in which a magnet insertion hole is formed is laminated on the first laminated core, and after inserting a magnet into the magnet insertion hole,
  • a rotor structure for an IPM motor having a rotor laminated core body in which a third laminated core is laminated as an end plate is disclosed. In the rotor structure, both ends of the magnet inserted into the magnet insertion hole are sandwiched between the first and third laminated cores.
  • JP-A-2015-204718 discloses an embedded magnet rotor having a cylindrical rotor core, a plurality of permanent magnets, and a plurality of wedge members.
  • the rotor core has a plurality of magnet insertion holes arranged in a ring shape and a plurality of wedge insertion holes arranged in a ring shape inside and outside the row of the respective magnet insertion holes.
  • the plurality of permanent magnets are inserted into the plurality of magnet insertion holes, respectively.
  • the plurality of wedge members are respectively inserted into the plurality of wedge insertion holes.
  • the permanent magnets are fixed inside the magnet insertion holes by narrowing the magnet insertion holes as the rotor core is deformed by inserting the wedge members into the wedge insertion holes.
  • a permanent magnet can be fixed in the insertion hole without using an adhesive.
  • the first laminated core and the third laminated core have different shapes from the second laminated core. That is, it is necessary to prepare a plurality of types of laminated cores having different shapes.
  • a wedge member for fixing the permanent magnet is required. That is, it is necessary to add a member to fix the permanent magnet, and the number of parts increases.
  • an object of the present invention is to provide a technique that makes it possible to manufacture a rotor in which a magnet is embedded inside at a low cost.
  • Another object of the present invention is to provide a rotating electrical machine that has such a rotor and can be manufactured easily and at low cost.
  • An exemplary rotor of the present invention is a rotor of a rotating electrical machine that rotates about a central axis, a rotor core having a plurality of magnetic steel plates laminated in the axial direction and having a through-hole penetrating in the axial direction, and the penetration And a magnet inserted into the hole.
  • the rotor core has, on at least one side in the axial direction, a fixing portion in which at least one magnetic steel plate including the outermost magnetic steel plate is plastically deformed. The magnet is fixed by the fixing portion.
  • the exemplary rotating electrical machine of the present invention has the exemplary rotor of the present invention described above.
  • An exemplary method for manufacturing a rotor of the present invention is a method for manufacturing a rotor of a rotating electrical machine that rotates about a central axis, the first step of laminating a plurality of magnetic steel plates having openings in the axial direction, and a plurality of methods
  • a third step of fixing the magnet by plastic deformation of the magnetic steel sheets is a method for manufacturing a rotor of a rotating electrical machine that rotates about a central axis, the first step of laminating a plurality of magnetic steel plates having openings in the axial direction, and a plurality of methods
  • the exemplary present invention it is possible to provide a technique that makes it possible to easily and inexpensively manufacture a rotor in which a magnet is embedded. Further, according to the exemplary present invention, it is possible to provide a rotating electrical machine that can be manufactured easily and at low cost.
  • FIG. 1 is a schematic cross-sectional view of a rotating electrical machine according to an embodiment of the present invention.
  • FIG. 2 is a schematic plan view of a magnetic steel plate included in the rotor according to the embodiment of the present invention.
  • FIG. 3 is a schematic plan view of a rotor core included in the rotor according to the embodiment of the present invention.
  • FIG. 4 is a schematic sectional view taken along the line XX in FIG.
  • FIG. 5 is a schematic diagram for explaining the relationship between the magnet and the fixed portion in the rotor according to the embodiment of the present invention.
  • FIG. 6 is a schematic diagram for explaining a first modification of the rotor according to the embodiment of the present invention.
  • FIG. 1 is a schematic cross-sectional view of a rotating electrical machine according to an embodiment of the present invention.
  • FIG. 2 is a schematic plan view of a magnetic steel plate included in the rotor according to the embodiment of the present invention.
  • FIG. 3 is a schematic plan view of a
  • FIG. 7 is a schematic diagram for explaining a second modification of the rotor according to the embodiment of the invention.
  • FIG. 8 is a schematic diagram for explaining a third modification of the rotor according to the embodiment of the present invention.
  • FIG. 9 is a schematic diagram for explaining a fourth modification of the rotor according to the embodiment of the invention.
  • the extending direction of the central axis A of the rotating electrical machine shown in FIG. 1 is simply referred to as “axial direction”, and the radial direction and the circumferential direction around the central axis A of the rotating electrical machine are simply “radial direction”. And called “circumferential direction”.
  • the directions that coincide with the axial direction, the radial direction, and the circumferential direction of the rotating electrical machine when incorporated in the rotating electrical machine are simply referred to as “axial direction”, “radial direction”, and “circumferential direction”. I will decide.
  • the axial direction when the rotating electrical machine is arranged in the direction shown in FIG. 1 is defined as the vertical direction.
  • the vertical direction is simply a name used for explanation, and does not limit the actual positional relationship or direction.
  • FIG. 1 is a schematic cross-sectional view of a rotating electrical machine 1 according to an embodiment of the present invention.
  • FIG. 1 is a cross-sectional view taken along a cut surface including the central axis A of the rotating electrical machine 1.
  • the rotating electrical machine 1 includes a rotor 10, a stator 20, and a casing 30.
  • the casing 30 includes a casing body 31 and a casing cover 32.
  • the casing body 31 is a bottomed cylindrical member having an opening 31a on the upper side in the axial direction.
  • the casing body 31 accommodates the rotor 10 and the stator 20.
  • the casing cover 32 is a lid that closes the opening 31 a of the casing body 31.
  • the rotor 10 rotates about the central axis A.
  • the rotor 10 has a shaft 11.
  • the shaft 11 is disposed at the rotation center of the rotor 10.
  • the shaft 11 is a columnar member extending in the axial direction.
  • the shaft 11 is rotatably supported by an upper bearing 33a and a lower bearing 33b that are arranged with an interval in the axial direction.
  • the upper bearing 33 a is held by the casing cover 32.
  • the lower bearing 33 b is held at the bottom of the casing body 31.
  • the two bearings 33a and 33b are ball bearings, but the type of bearing is not limited to a ball bearing, and may be a sleeve bearing or the like.
  • the upper end portion of the shaft 11 protrudes upward from the casing cover 32.
  • the protruding portion of the shaft 11 is used as an output shaft.
  • the rotor 10 has a rotor core 12 and a magnet 13.
  • the rotor core 12 has a cylindrical shape and is arranged on the outer side in the radial direction of the shaft 11.
  • the rotor core 12 has a configuration in which a plurality of magnetic steel plates 120 are laminated in the axial direction.
  • the magnetic steel plate 120 is made of, for example, a silicon steel plate.
  • the rotor core 12 has a shaft hole 12a extending in the axial direction at the center.
  • the shaft 11 is inserted into the shaft hole 12a.
  • the rotor core 12 has a through hole 12b penetrating in the axial direction.
  • the through hole 12 b is disposed in the vicinity of the outer edge of the rotor core 12.
  • a plurality of through holes 12b are arranged in the circumferential direction.
  • the magnet 13 is inserted into the through hole 12b.
  • the magnet 13 is fixed in the through hole 12b.
  • a method for fixing the magnet 13 will be described later.
  • the magnet 13 is a permanent magnet for a field, and may be, for example, a sintered magnet or a bonded magnet.
  • a plurality of through holes 12 b are arranged in the circumferential direction, and the rotor 10 has a plurality of magnets 13.
  • a field magnet 13 is embedded in the rotor 10.
  • the rotating electrical machine 1 of the present embodiment is an IPM type rotating electrical machine.
  • the stator 20 is an armature of the rotating electrical machine 1.
  • the stator 20 is provided in a substantially annular shape, and is disposed on the radially outer side of the rotor 10.
  • the stator 20 is fixed to the casing body 31.
  • the stator 20 includes a stator core 21, a coil 22, and an insulator 23.
  • the stator core 21 is a laminated steel plate in which magnetic steel plates such as silicon steel plates are laminated in the axial direction.
  • the stator core 21 includes an annular core back 211 and a plurality of teeth 212 protruding radially inward from the core back 211.
  • the coil 22 is wound around each tooth 212 via the insulator 23.
  • the insulator 23 is an insulating member that electrically insulates the stator core 21 and the coil 22 from each other.
  • FIG. 2 is a schematic plan view of the magnetic steel plate 120 included in the rotor 10 according to the embodiment of the present invention.
  • the magnetic steel plate 120 has a circular first opening 120a at the center and is annular.
  • the first opening 120a penetrates the magnetic steel plate 120 in the axial direction.
  • the magnetic steel plate 120 has a plurality of rectangular second openings 120b in the vicinity of the outer edge.
  • the second opening 120b penetrates the magnetic steel plate 120 in the axial direction.
  • the second opening 120b has a longitudinal direction in the circumferential direction.
  • the plurality of second openings 120b are arranged at equal intervals in the circumferential direction. In the present embodiment, the number of the plurality of second openings 120b is eight.
  • the magnetic steel plate 120 has a plurality of third openings 120c arranged at equal intervals in the circumferential direction between the first opening 120a and the second opening 120b.
  • the third opening 120c has a trapezoidal shape and penetrates the magnetic steel sheet 120 in the axial direction.
  • the third opening 120c is provided for the purpose of reducing the weight of the rotor core 12, for example, but may not be provided depending on circumstances.
  • the shaft hole 12a is formed by the plurality of first openings 120a overlapping with the lamination of the plurality of magnetic steel plates 120.
  • a plurality of second openings 120b overlap to form the through hole 12b.
  • the through hole 12b has a longitudinal direction in the circumferential direction.
  • the plurality of through holes 12b are arranged at equal intervals in the circumferential direction.
  • the number of the plurality of through holes 12b is eight. Since the magnets 13 are inserted into the respective through holes 12b, the number of the magnets 12 is also eight.
  • the number of the through-holes 12b and the magnets 12 of this embodiment is an illustration, and may be made into another number.
  • FIG. 3 is a schematic plan view of the rotor core 12 included in the rotor 10 according to the embodiment of the present invention.
  • FIG. 3 shows a state in which the magnet 13 is inserted into the through hole 12b and fixed.
  • FIG. 4 is a schematic sectional view taken along the line XX in FIG.
  • the rotor core 12 has, on at least one side in the axial direction, a fixing portion 14 in which at least one magnetic steel plate 120 including the outermost magnetic steel plate 120 is plastically deformed.
  • the magnet 13 is fixed by the fixing portion 14.
  • the fixing portion 14 a part of the inner wall of the through hole 12 b protrudes toward the magnet 13 due to plastic deformation of the magnetic steel plate 120. For this reason, the width
  • the fixed portion 14 is preferably in contact with the magnet 13. According to this configuration, it is possible to omit adding a part for fixing the magnet 13 or applying an adhesive to fix the magnet 13. For this reason, the rotor 10 of this embodiment can be manufactured simply and at low cost. Further, according to this configuration, the rotating electrical machine 1 in which the magnet 13 embedded in the rotor 10 hardly moves and the magnetic characteristics are stable can be manufactured easily and at low cost.
  • the rotor core 12 has fixed portions 14 on the upper and lower sides in the axial direction.
  • the fixing portion 14 may be provided on only one of the upper side and the lower side in the axial direction.
  • only one upper magnetic steel plate 120 is plastically deformed in the axially upper fixed portion 14, and only one lower magnetic steel plate 120 is in the axially lower fixed portion 14. It is plastically deformed.
  • the number of the magnetic steel plates 120 constituting the fixed portion 14 increases, the magnetic characteristics of the rotor core 12 may be deteriorated. For this reason, it is preferable that the number of the magnetic steel plates 120 constituting the fixing portion 14 is one at the outermost end or two at the outermost end and one adjacent thereto.
  • the magnet 13 is caulked and fixed by the fixing portion 14.
  • the fixing portion 14 is caulked in the radial direction. Specifically, the fixing portion 14 is crushed by applying a radially inward force to the radially outer end face of the magnetic steel plate 120.
  • the fixing portion 14 projects a part of the inner wall of the through hole 12b radially inward. In other words, the radial width of the through hole 12b is narrowed at the place where the fixing portion 14 is provided.
  • the fixing portion 14 fixes the magnet 13 by pressing it from the radial direction.
  • the magnet 13 is in close contact with the fixed portion 14, and the possibility that the magnet 13 moves in the axial direction can be reduced even when vibration or the like occurs.
  • the fixing portion 14 is provided in the central portion in the longitudinal direction of the through hole 12 b in plan view. According to this, it can avoid that the fixing
  • the configuration shown in FIG. 3 is merely an example, and the fixing portion 14 may be provided at a position shifted from the central portion in the longitudinal direction of the through hole 12b.
  • fixed part 14 is provided with respect to each magnet 13, this is an illustration.
  • a plurality of fixing portions 14 may be provided for each magnet 13.
  • the fixing portion 14 is a portion where the distance between the through hole 12b and the outer edge 12c of the rotor core 12 radially outside the through hole 12b is the longest.
  • the fixing portion 14 is formed by caulking a portion of the rotor core 12 where the thickness is thickest on the radially outer side from the through hole 12b.
  • the axial length of the magnet 13 is shorter than the axial length of the rotor core 12. For this reason, the magnet 13 inserted into the through hole 12 b can be retracted with respect to the upper end surface and the lower end surface in the axial direction of the rotor core 12. According to this configuration, the magnet 13 can be fixed by contacting only the axial end portion of the magnet 13 with the fixing portion 14. For this reason, the part with a strong magnetic force of the magnet 13 can be utilized appropriately, and the fall of the magnetic characteristic of the rotor 10 can be suppressed.
  • the axial length of the magnet 13 is preferably in a range where contact between the magnet 13 and the fixed portion 14 can be obtained.
  • FIG. 5 is a schematic diagram for explaining the relationship between the magnet 13 and the fixed portion 14 in the rotor 10 according to the embodiment of the present invention.
  • the magnet 13 has a chamfered portion 13a at an end portion in the axial direction.
  • the magnet 13 has chamfered portions 13a at the upper and lower end portions in the axial direction.
  • the chamfered portion 13a is a portion where processing for removing a sharp portion of the magnet 13 has been performed.
  • the chamfered portion 13a is rounded with a rounded corner.
  • the chamfered portion 13a may be a C chamfer that forms a surface that forms an angle of 45 ° with respect to the end surface in the axial direction, instead of the R chamfer.
  • fixed part 14 is contacting the chamfer 13a.
  • the chamfered portion 13a has a width in the axial direction.
  • the fixing portion 14 is designed to come into contact with the axial center position of the chamfered portion 13a.
  • the method for manufacturing the rotor 10 includes a first step of laminating a plurality of magnetic steel plates 120 having the second openings 120b in the axial direction.
  • the magnetic steel plate 120 having the second opening 120b is formed by punching, for example.
  • the magnetic steel sheet 120 has the first opening 120a and the third opening 120c in addition to the second opening 120b as described above.
  • the number of magnetic steel plates 120 to be stacked is not particularly limited, and is determined according to required magnetic characteristics and the like.
  • the shapes of the magnetic steel plates 120 stacked in the axial direction are all the same.
  • the direction of each magnetic steel plate 120 is aligned in the same direction, and a plurality of magnetic steel plates 120 are laminated.
  • the laminated magnetic steel plates 120 are integrated by, for example, caulking and fixing.
  • the method for manufacturing the rotor 10 includes a second step of inserting the magnet 13 into the through hole 12b formed by overlapping a plurality of second openings 120b with the lamination of the plurality of magnetic steel plates 120.
  • a plurality of through holes 12b are provided at equal intervals in the circumferential direction.
  • a magnet 13 is inserted into each of the plurality of through holes 12b.
  • the magnet 13 is not magnetized at this point.
  • the magnet 13 magnetized at this time may be inserted into the through hole 12b.
  • a jig for adjusting the height position is used so that the height position of the magnet 13 inserted into the through hole 12b is an appropriate height position.
  • the rotor manufacturing method includes a third step of fixing the magnet 13 by plastically deforming at least one magnetic steel plate 120 including the outermost magnetic steel plate 120 on at least one side in the axial direction.
  • one magnetic steel sheet 120 positioned at the extreme end is plastically deformed on both the upper side and the lower side in the axial direction.
  • one magnetic steel plate 120 located at the upper end and one magnetic steel plate 120 located at the lower end are plastically deformed by applying a radially inward force to a predetermined portion of the radially outer end surface. Is done.
  • the predetermined locations where the radially inward force is applied are a plurality of locations so that one fixed portion 14 is formed for each magnet 13 in each of the upper and lower axial directions.
  • the plastically deformed magnetic steel plate 120 is pressed against the magnet 13 and the magnets 13 are fixed by caulking.
  • each magnet 13 After each magnet 13 is fixed, each magnet 13 is magnetized. After the magnetization, in the plurality of magnets 13 arranged in the circumferential direction, the magnetic poles on the surface facing the stator core 21 are alternately opposite to each other.
  • the manufacturing process of the rotor 10 also includes a process of fitting the shaft 11 into the shaft hole 12a formed by overlapping a plurality of first openings 120a with the lamination of the plurality of magnetic steel plates 120.
  • the step of fitting the shaft 11 may be performed after the magnet 13 is magnetized, but is not limited to this timing. For example, it may be performed after integrating a plurality of laminated magnetic steel plates 120.
  • a plurality of magnetic steel plates 120 having the same shape are stacked, and a part of the plurality of stacked magnetic steel plates 120 is plastically deformed to fix the magnet 13. That is, according to the method for manufacturing the rotor 10 of the present embodiment, it is possible to omit adding a part for fixing the magnet 13 or applying an adhesive. For this reason, according to the manufacturing method of the rotor 10 of this embodiment, the rotor 10 can be manufactured simply and at low cost.
  • FIG. 6 is a schematic diagram for explaining a first modification of the rotor 10 according to the embodiment of the present invention.
  • the fixing portion 14 is in contact with the chamfered portion 13a.
  • This configuration is exemplary.
  • the fixed portion 14 may be configured to contact the upper end surface 13 b of the magnet 13.
  • FIG. 7 is a schematic diagram for explaining a second modification of the rotor 10 according to the embodiment of the present invention.
  • the fixing portion 14 is caulked in the radial direction.
  • This configuration is exemplary.
  • the fixed portion may be configured to be caulked in the axial direction as indicated by broken line arrows in FIG.
  • the configuration in which the fixing portion 14 is caulked in the radial direction can more reliably fix the magnet 13 than the configuration in which the fixing portion 14 is caulked in the axial direction.
  • FIG. 8 is a schematic diagram for explaining a third modification of the rotor 10 according to the embodiment of the present invention.
  • the magnet 13 embedded in the rotor 10 is configured to have a longitudinal direction in the circumferential direction.
  • This configuration is exemplary.
  • the present invention can be applied to, for example, a configuration in which the magnet 13 embedded in the rotor 10 has a longitudinal direction in the radial direction as shown in FIG. In this case, the position where the fixing portion 14 for fixing the magnet 13 is provided may be changed as appropriate from the position of the embodiment described above.
  • FIG. 9 is a schematic diagram for explaining a fourth modification of the rotor 10 according to the embodiment of the present invention.
  • one magnetic pole is formed by one magnet 13.
  • This configuration is exemplary.
  • one magnetic pole is formed by two magnets 13 arranged in a V shape.
  • the present invention can also be applied to a rotor having a configuration in which one magnetic pole is formed by a plurality of magnets as shown in FIG. In this case, the position where the fixing portion 14 for fixing the magnet 13 is provided may be changed as appropriate from the position of the embodiment described above.
  • the present invention can be widely applied to motors used for home appliances, automobiles, ships, airplanes, trains, and the like.
  • the present invention can be widely applied to generators used for automobiles, electrically assisted bicycles, wind power generation, and the like.

Abstract

A rotor of a dynamo-electric machine, the rotor rotating about a center shaft, has: a rotor core having a plurality of magnetic steel plates laminated in the axial direction, and a through-hole that passes through in the axial direction; and a magnet inserted in the through-hole, the rotor core having a securing section on at least one side in the axial direction, in which one or more magnetic steel plates, including the endmost magnetic steel plate, are plastically deformed, and the magnet being secured by the securing section.

Description

ロータ、回転電機、及びロータの製造方法Rotor, rotating electrical machine, and method of manufacturing rotor
 本発明は、ロータ、回転電機、及びロータの製造方法に関する。 The present invention relates to a rotor, a rotating electrical machine, and a method for manufacturing the rotor.
 従来、ロータの内部に界磁用の永久磁石を埋め込んだ構造のIPM(Interior Permanent magnet)モータが知られる。特開2015-163019号公報には、第1積層コアに対して、マグネット挿入孔が形成された第2積層コアを積層させ、マグネット挿入孔にマグネットを挿入した後に、第2積層コアに対して端板として第3積層コアを積層させたロータ積層コア体を有するIPMモータ用ロータ構造が開示される。当該ロータ構造では、マグネット挿入孔に挿入されたマグネットの両端は、第1、第3積層コアによって挟持される。 Conventionally, an IPM (Interior Permanent Magnet) motor having a structure in which a permanent magnet for a field is embedded in a rotor is known. In Japanese Patent Laying-Open No. 2015-163019, a second laminated core in which a magnet insertion hole is formed is laminated on the first laminated core, and after inserting a magnet into the magnet insertion hole, A rotor structure for an IPM motor having a rotor laminated core body in which a third laminated core is laminated as an end plate is disclosed. In the rotor structure, both ends of the magnet inserted into the magnet insertion hole are sandwiched between the first and third laminated cores.
 また、特開2015-204718号公報には、円筒状のロータコアと、複数の永久磁石と、複数の楔部材と、を有する埋込磁石型ロータが開示される。ロータコアは、環状に並ぶ複数の磁石挿入孔ならびに各磁石挿入孔の並びに対する内側および外側においてそれぞれ環状に並ぶ複数の楔挿入孔を有する。複数の永久磁石は、複数の磁石挿入孔にそれぞれ挿入される。複数の楔部材は、複数の楔挿入孔にそれぞれ挿入される。各楔挿入孔に各楔部材が挿入されることによるロータコアの変形に伴い各磁石挿入孔が狭まることで、各永久磁石が各磁石挿入孔の内部に固定される。 JP-A-2015-204718 discloses an embedded magnet rotor having a cylindrical rotor core, a plurality of permanent magnets, and a plurality of wedge members. The rotor core has a plurality of magnet insertion holes arranged in a ring shape and a plurality of wedge insertion holes arranged in a ring shape inside and outside the row of the respective magnet insertion holes. The plurality of permanent magnets are inserted into the plurality of magnet insertion holes, respectively. The plurality of wedge members are respectively inserted into the plurality of wedge insertion holes. The permanent magnets are fixed inside the magnet insertion holes by narrowing the magnet insertion holes as the rotor core is deformed by inserting the wedge members into the wedge insertion holes.
特開2015-163019号公報Japanese Patent Laying-Open No. 2015-163019 特開2015-204718号公報JP2015-204718A
 特開2015-163019号公報及び特開2015-204718号公報に開示される構成によれば、接着剤を用いることなく、挿入孔内に永久磁石を固定することができる。しかしながら、特開2015-163019号公報に開示される構成では、第1積層コア及び第3積層コアは、第2積層コアと異なる形状である。すなわち、形状の異なる複数種類の積層コアを準備する必要がある。 According to the configurations disclosed in Japanese Unexamined Patent Publication Nos. 2015-163019 and 2015-204718, a permanent magnet can be fixed in the insertion hole without using an adhesive. However, in the configuration disclosed in Japanese Patent Application Laid-Open No. 2015-163019, the first laminated core and the third laminated core have different shapes from the second laminated core. That is, it is necessary to prepare a plurality of types of laminated cores having different shapes.
 また、特開2015-204718号公報に開示される構成によれば、永久磁石を固定するための楔部材が必要となる。すなわち、永久磁石を固定するために部材の追加が必要であり、部品点数が多くなる。 Further, according to the configuration disclosed in Japanese Patent Application Laid-Open No. 2015-204718, a wedge member for fixing the permanent magnet is required. That is, it is necessary to add a member to fix the permanent magnet, and the number of parts increases.
 そこで、本発明は、内部に磁石が埋め込まれるロータを、簡易かつ低コストで製造可能とする技術を提供することを目的とする。また、本発明は、そのようなロータを有し、簡易かつ低コストで製造することができる回転電機を提供することを他の目的とする。 Therefore, an object of the present invention is to provide a technique that makes it possible to manufacture a rotor in which a magnet is embedded inside at a low cost. Another object of the present invention is to provide a rotating electrical machine that has such a rotor and can be manufactured easily and at low cost.
 本発明の例示的なロータは、中心軸を中心として回転する、回転電機のロータであって、複数の磁性鋼板が軸方向に積層され、軸方向に貫通する貫通孔を有するロータコアと、前記貫通孔に挿入されたマグネットと、を有する。前記ロータコアは、軸方向の少なくとも一方側に、最端の前記磁性鋼板を含む少なくとも1枚の前記磁性鋼板が塑性変形された固定部を有する。前記マグネットは、前記固定部によって固定されている。 An exemplary rotor of the present invention is a rotor of a rotating electrical machine that rotates about a central axis, a rotor core having a plurality of magnetic steel plates laminated in the axial direction and having a through-hole penetrating in the axial direction, and the penetration And a magnet inserted into the hole. The rotor core has, on at least one side in the axial direction, a fixing portion in which at least one magnetic steel plate including the outermost magnetic steel plate is plastically deformed. The magnet is fixed by the fixing portion.
 本発明の例示的な回転電機は、上述した本発明の例示的なロータを有する。 The exemplary rotating electrical machine of the present invention has the exemplary rotor of the present invention described above.
 本発明の例示的なロータの製造方法は、中心軸を中心として回転する、回転電機のロータの製造方法であって、開口を有する磁性鋼板を軸方向に複数積層する第1の工程と、複数の前記磁性鋼板の積層に伴って前記開口が複数重なって形成される貫通孔に前記マグネットを挿入する第2の工程と、軸方向の少なくとも一方側において、最端の前記磁性鋼板を含む少なくとも1枚の前記磁性鋼板を塑性変形して前記マグネットを固定する第3の工程と、を有する。 An exemplary method for manufacturing a rotor of the present invention is a method for manufacturing a rotor of a rotating electrical machine that rotates about a central axis, the first step of laminating a plurality of magnetic steel plates having openings in the axial direction, and a plurality of methods A second step of inserting the magnet into a through-hole formed by overlapping a plurality of the openings along with the lamination of the magnetic steel sheets, and at least one including the outermost magnetic steel sheet on at least one side in the axial direction. And a third step of fixing the magnet by plastic deformation of the magnetic steel sheets.
 例示的な本発明によれば、内部に磁石が埋め込まれるロータを、簡易かつ低コストで製造可能とする技術を提供することができる。また、例示的な本発明によれば、簡易かつ低コストで製造することができる回転電機を提供することができる。 According to the exemplary present invention, it is possible to provide a technique that makes it possible to easily and inexpensively manufacture a rotor in which a magnet is embedded. Further, according to the exemplary present invention, it is possible to provide a rotating electrical machine that can be manufactured easily and at low cost.
図1は、本発明の実施形態に係る回転電機の概略断面図である。FIG. 1 is a schematic cross-sectional view of a rotating electrical machine according to an embodiment of the present invention. 図2は、本発明の実施形態に係るロータが有する磁性鋼板の概略平面図である。FIG. 2 is a schematic plan view of a magnetic steel plate included in the rotor according to the embodiment of the present invention. 図3は、本発明の実施形態に係るロータが有するロータコアの概略平面図である。FIG. 3 is a schematic plan view of a rotor core included in the rotor according to the embodiment of the present invention. 図4は、図3のX-X位置における断面模式図である。FIG. 4 is a schematic sectional view taken along the line XX in FIG. 図5は、本発明の実施形態に係るロータにおける、マグネットと固定部との関係を説明するための模式図である。FIG. 5 is a schematic diagram for explaining the relationship between the magnet and the fixed portion in the rotor according to the embodiment of the present invention. 図6は、本発明の実施形態に係るロータの第1変形例を説明するための模式図である。FIG. 6 is a schematic diagram for explaining a first modification of the rotor according to the embodiment of the present invention. 図7は、本発明の実施形態に係るロータの第2変形例を説明するための模式図である。FIG. 7 is a schematic diagram for explaining a second modification of the rotor according to the embodiment of the invention. 図8は、本発明の実施形態に係るロータの第3変形例を説明するための模式図である。FIG. 8 is a schematic diagram for explaining a third modification of the rotor according to the embodiment of the present invention. 図9は、本発明の実施形態に係るロータの第4変形例を説明するための模式図である。FIG. 9 is a schematic diagram for explaining a fourth modification of the rotor according to the embodiment of the invention.
 以下、本発明の例示的な実施形態について、図面を参照しながら詳細に説明する。なお、本明細書では、図1に示す回転電機の中心軸Aの延びる方向を単に「軸方向」と呼び、回転電機の中心軸Aを中心とする径方向及び周方向を単に「径方向」及び「周方向」と呼ぶことにする。同様にして、ロータについても、回転電機内に組み込まれた状態において回転電機の軸方向、径方向及び周方向と一致する方向を単に「軸方向」、「径方向」及び「周方向」と呼ぶことにする。本明細書では、図1に示す方向に回転電機を配置した場合の軸方向を上下方向と定義する。なお、上下方向は単に説明のための用いられる名称であって、実際の位置関係や方向を限定しない。 Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the drawings. In this specification, the extending direction of the central axis A of the rotating electrical machine shown in FIG. 1 is simply referred to as “axial direction”, and the radial direction and the circumferential direction around the central axis A of the rotating electrical machine are simply “radial direction”. And called “circumferential direction”. Similarly, with respect to the rotor, the directions that coincide with the axial direction, the radial direction, and the circumferential direction of the rotating electrical machine when incorporated in the rotating electrical machine are simply referred to as “axial direction”, “radial direction”, and “circumferential direction”. I will decide. In this specification, the axial direction when the rotating electrical machine is arranged in the direction shown in FIG. 1 is defined as the vertical direction. The vertical direction is simply a name used for explanation, and does not limit the actual positional relationship or direction.
<1.回転電機の概略構成>
 図1は、本発明の実施形態に係る回転電機1の概略断面図である。なお、図1は、回転電機1の中心軸Aを含む切断面により切断した断面図である。図1に示すように、回転電機1は、ロータ10と、ステータ20と、ケーシング30と、を有する。ケーシング30は、ケーシング本体31と、ケーシングカバー32とを有する。ケーシング本体31は、軸方向上方に開口31aを有する有底円筒状の部材である。ケーシング本体31は、ロータ10及びステータ20を収容する。ケーシングカバー32は、ケーシング本体31の開口31aを塞ぐ蓋体である。
<1. Schematic configuration of rotating electrical machine>
FIG. 1 is a schematic cross-sectional view of a rotating electrical machine 1 according to an embodiment of the present invention. FIG. 1 is a cross-sectional view taken along a cut surface including the central axis A of the rotating electrical machine 1. As shown in FIG. 1, the rotating electrical machine 1 includes a rotor 10, a stator 20, and a casing 30. The casing 30 includes a casing body 31 and a casing cover 32. The casing body 31 is a bottomed cylindrical member having an opening 31a on the upper side in the axial direction. The casing body 31 accommodates the rotor 10 and the stator 20. The casing cover 32 is a lid that closes the opening 31 a of the casing body 31.
 ロータ10は中心軸Aを中心として回転する。ロータ10は、シャフト11を有する。シャフト11は、ロータ10の回転中心に配置される。シャフト11は、軸方向に延びる円柱状の部材である。シャフト11は、軸方向に間隔をあけて配置される上側軸受け33aと下側軸受け33bとによって回転可能に支持される。上側軸受け33aは、ケーシングカバー32に保持される。下側軸受け33bは、ケーシング本体31の底部に保持される。本実施形態では、2つの軸受け33a、33bは玉軸受けであるが、軸受けの種類は玉軸受けに限定されず、スリーブ軸受け等であってもよい。シャフト11の上端部は、ケーシングカバー32から上方に突出する。シャフト11の突出部は出力軸として利用される。 The rotor 10 rotates about the central axis A. The rotor 10 has a shaft 11. The shaft 11 is disposed at the rotation center of the rotor 10. The shaft 11 is a columnar member extending in the axial direction. The shaft 11 is rotatably supported by an upper bearing 33a and a lower bearing 33b that are arranged with an interval in the axial direction. The upper bearing 33 a is held by the casing cover 32. The lower bearing 33 b is held at the bottom of the casing body 31. In the present embodiment, the two bearings 33a and 33b are ball bearings, but the type of bearing is not limited to a ball bearing, and may be a sleeve bearing or the like. The upper end portion of the shaft 11 protrudes upward from the casing cover 32. The protruding portion of the shaft 11 is used as an output shaft.
 ロータ10は、ロータコア12と、マグネット13とを有する。ロータコア12は円筒状であり、シャフト11の径方向外側に配置される。ロータコア12は、複数の磁性鋼板120が軸方向に積層された構成である。磁性鋼板120は、例えばケイ素鋼板で構成される。ロータコア12は、中心部に軸方向に延びるシャフト孔12aを有する。シャフト11は、シャフト孔12aに挿入される。シャフト孔12aとは別に、ロータコア12は、軸方向に貫通する貫通孔12bを有する。貫通孔12bは、ロータコア12の外縁近傍に配置される。本実施形態では、貫通孔12bは、周方向に複数配列される。 The rotor 10 has a rotor core 12 and a magnet 13. The rotor core 12 has a cylindrical shape and is arranged on the outer side in the radial direction of the shaft 11. The rotor core 12 has a configuration in which a plurality of magnetic steel plates 120 are laminated in the axial direction. The magnetic steel plate 120 is made of, for example, a silicon steel plate. The rotor core 12 has a shaft hole 12a extending in the axial direction at the center. The shaft 11 is inserted into the shaft hole 12a. Apart from the shaft hole 12a, the rotor core 12 has a through hole 12b penetrating in the axial direction. The through hole 12 b is disposed in the vicinity of the outer edge of the rotor core 12. In the present embodiment, a plurality of through holes 12b are arranged in the circumferential direction.
 マグネット13は、貫通孔12bに挿入される。マグネット13は、貫通孔12b内で固定されている。マグネット13の固定方法については後述する。マグネット13は界磁用の永久磁石であり、例えば焼結磁石又はボンド磁石等であってよい。本実施形態では、上述のように、貫通孔12bは周方向に複数配列されており、ロータ10は複数のマグネット13を有する。回転電機1においては、ロータ10の内部に界磁用のマグネット13が埋め込まれる。本実施形態の回転電機1はIPM型の回転電機である。 The magnet 13 is inserted into the through hole 12b. The magnet 13 is fixed in the through hole 12b. A method for fixing the magnet 13 will be described later. The magnet 13 is a permanent magnet for a field, and may be, for example, a sintered magnet or a bonded magnet. In the present embodiment, as described above, a plurality of through holes 12 b are arranged in the circumferential direction, and the rotor 10 has a plurality of magnets 13. In the rotating electrical machine 1, a field magnet 13 is embedded in the rotor 10. The rotating electrical machine 1 of the present embodiment is an IPM type rotating electrical machine.
 ステータ20は、回転電機1の電機子である。ステータ20は、略円環状に設けられ、ロータ10の径方向外側に配置される。ステータ20は、ケーシング本体31に固定される。ステータ20は、ステータコア21と、コイル22と、インシュレータ23と、を有する。 The stator 20 is an armature of the rotating electrical machine 1. The stator 20 is provided in a substantially annular shape, and is disposed on the radially outer side of the rotor 10. The stator 20 is fixed to the casing body 31. The stator 20 includes a stator core 21, a coil 22, and an insulator 23.
 ステータコア21は、例えばケイ素鋼板等の磁性鋼板を軸方向に積層した積層鋼板である。ステータコア21は、円環状のコアバック211と、コアバック211から径方向内側に突出する複数のティース212と、を有する。コイル22は、インシュレータ23を介して、各ティース212に巻かれる。インシュレータ23は、ステータコア21とコイル22とを電気的に絶縁する絶縁部材である。コイル22に駆動電流を供給すれば、磁心であるティース212に径方向の磁束が発生する。これにより、ロータ10に周方向のトルクが発生して、ロータ10が回転軸Aを中心として回転する。 The stator core 21 is a laminated steel plate in which magnetic steel plates such as silicon steel plates are laminated in the axial direction. The stator core 21 includes an annular core back 211 and a plurality of teeth 212 protruding radially inward from the core back 211. The coil 22 is wound around each tooth 212 via the insulator 23. The insulator 23 is an insulating member that electrically insulates the stator core 21 and the coil 22 from each other. When a drive current is supplied to the coil 22, a radial magnetic flux is generated in the teeth 212, which is a magnetic core. Thereby, circumferential torque is generated in the rotor 10, and the rotor 10 rotates about the rotation axis A.
<2.ロータの詳細>
 図2は、本発明の実施形態に係るロータ10が有する磁性鋼板120の概略平面図である。図2に示すように、磁性鋼板120は、中心部に円形状の第1開口120aを有し、円環状である。第1開口120aは、磁性鋼板120を軸方向に貫通する。磁性鋼板120は、外縁近傍に矩形状の複数の第2開口120bを有する。第2開口120bは、磁性鋼板120を軸方向に貫通する。第2開口120bは、周方向に長手方向を有する。複数の第2開口120bは、周方向に等間隔で配列される。本実施形態では、複数の第2開口120bの数は8個である。
<2. Details of rotor>
FIG. 2 is a schematic plan view of the magnetic steel plate 120 included in the rotor 10 according to the embodiment of the present invention. As shown in FIG. 2, the magnetic steel plate 120 has a circular first opening 120a at the center and is annular. The first opening 120a penetrates the magnetic steel plate 120 in the axial direction. The magnetic steel plate 120 has a plurality of rectangular second openings 120b in the vicinity of the outer edge. The second opening 120b penetrates the magnetic steel plate 120 in the axial direction. The second opening 120b has a longitudinal direction in the circumferential direction. The plurality of second openings 120b are arranged at equal intervals in the circumferential direction. In the present embodiment, the number of the plurality of second openings 120b is eight.
 なお、本実施形態では、磁性鋼板120は、第1開口120aと第2開口120bとの間に、周方向に等間隔で配列される複数の第3開口120cを有する。第3開口120cは、台形状であり、磁性鋼板120を軸方向に貫通する。第3開口120cは、例えばロータコア12の重量を軽くする等の目的で設けられるが、場合によっては設けられなくてもよい。 In the present embodiment, the magnetic steel plate 120 has a plurality of third openings 120c arranged at equal intervals in the circumferential direction between the first opening 120a and the second opening 120b. The third opening 120c has a trapezoidal shape and penetrates the magnetic steel sheet 120 in the axial direction. The third opening 120c is provided for the purpose of reducing the weight of the rotor core 12, for example, but may not be provided depending on circumstances.
 複数の磁性鋼板120の積層に伴って第1開口120aが複数重なることによって、シャフト孔12aが形成される。また、第2開口120bが複数重なることによって、貫通孔12bが形成される。貫通孔12bは、周方向に長手方向を有する。複数の貫通孔12bは、周方向に等間隔に配列される。本実施形態では、複数の貫通孔12bの数は8個である。各貫通孔12bにマグネット13が挿入されるために、マグネット12の数も8個である。なお、本実施形態の貫通孔12b及びマグネット12の数は例示であり、他の数とされてもよい。 The shaft hole 12a is formed by the plurality of first openings 120a overlapping with the lamination of the plurality of magnetic steel plates 120. In addition, a plurality of second openings 120b overlap to form the through hole 12b. The through hole 12b has a longitudinal direction in the circumferential direction. The plurality of through holes 12b are arranged at equal intervals in the circumferential direction. In the present embodiment, the number of the plurality of through holes 12b is eight. Since the magnets 13 are inserted into the respective through holes 12b, the number of the magnets 12 is also eight. In addition, the number of the through-holes 12b and the magnets 12 of this embodiment is an illustration, and may be made into another number.
 図3は、本発明の実施形態に係るロータ10が有するロータコア12の概略平面図である。図3は、マグネット13が貫通孔12bに挿入され、固定された状態を示す。図4は、図3のX-X位置における断面模式図である。ロータコア12は、軸方向の少なくとも一方側に、最端の磁性鋼板120を含む少なくとも1枚の磁性鋼板120が塑性変形された固定部14を有する。マグネット13は、固定部14によって固定される。本実施形態では、マグネット13は複数あるが、複数のマグネット13のそれぞれに対して固定部14が設けられる。 FIG. 3 is a schematic plan view of the rotor core 12 included in the rotor 10 according to the embodiment of the present invention. FIG. 3 shows a state in which the magnet 13 is inserted into the through hole 12b and fixed. FIG. 4 is a schematic sectional view taken along the line XX in FIG. The rotor core 12 has, on at least one side in the axial direction, a fixing portion 14 in which at least one magnetic steel plate 120 including the outermost magnetic steel plate 120 is plastically deformed. The magnet 13 is fixed by the fixing portion 14. In the present embodiment, there are a plurality of magnets 13, but a fixing portion 14 is provided for each of the plurality of magnets 13.
 固定部14においては、磁性鋼板120の塑性変形によって貫通孔12bの一部の内壁がマグネット13に向けて突出する。このために、固定部14が設けられる箇所では、貫通孔12bの幅が狭くなる。これにより、マグネット13の動きが制限される。固定部14は、マグネット13に接触しているのが好ましい。本構成によれば、マグネット13を固定するための部品を追加したり、マグネット13を固定するために接着剤を塗布したりすることを省略できる。このために、本実施形態のロータ10は、簡易かつ低コストで製造することができる。また、本構成によれば、ロータ10の内部に埋め込まれたマグネット13が動き難く磁気特性が安定した回転電機1を簡易かつ低コストで製造することができる。 In the fixing portion 14, a part of the inner wall of the through hole 12 b protrudes toward the magnet 13 due to plastic deformation of the magnetic steel plate 120. For this reason, the width | variety of the through-hole 12b becomes narrow in the location in which the fixing | fixed part 14 is provided. Thereby, the movement of the magnet 13 is limited. The fixed portion 14 is preferably in contact with the magnet 13. According to this configuration, it is possible to omit adding a part for fixing the magnet 13 or applying an adhesive to fix the magnet 13. For this reason, the rotor 10 of this embodiment can be manufactured simply and at low cost. Further, according to this configuration, the rotating electrical machine 1 in which the magnet 13 embedded in the rotor 10 hardly moves and the magnetic characteristics are stable can be manufactured easily and at low cost.
 本実施形態では、図4に示すように、ロータコア12は、軸方向上側及び下側に固定部14を有する。ただし、これは例示であり、固定部14は、軸方向上側と下側とのうち、いずれか一方だけに設けられてもよい。また、本実施形態では、軸方向上側の固定部14においては、上端の磁性鋼板120が1枚だけ塑性変形され、軸方向下側の固定部14においては、下端の磁性鋼板120が1枚だけ塑性変形されている。ただし、これは例示であり、軸方向上側及び下側の固定部14においては、最端の磁性鋼板120を含む複数枚の磁性鋼板120が塑性変形されてもよい。軸方向上側の固定部14と、軸方向下側の固定部14とで、塑性変形される磁性鋼板120の枚数が異なってもよい。 In this embodiment, as shown in FIG. 4, the rotor core 12 has fixed portions 14 on the upper and lower sides in the axial direction. However, this is an exemplification, and the fixing portion 14 may be provided on only one of the upper side and the lower side in the axial direction. In the present embodiment, only one upper magnetic steel plate 120 is plastically deformed in the axially upper fixed portion 14, and only one lower magnetic steel plate 120 is in the axially lower fixed portion 14. It is plastically deformed. However, this is merely an example, and a plurality of magnetic steel plates 120 including the outermost magnetic steel plate 120 may be plastically deformed in the fixing portions 14 on the upper and lower sides in the axial direction. The number of the magnetic steel plates 120 that are plastically deformed may be different between the axially upper fixed portion 14 and the axially lower fixed portion 14.
 なお、固定部14を構成する磁性鋼板120の枚数が多くなると、ロータコア12の磁気特性が低下する可能性がある。このために、固定部14を構成する磁性鋼板120の枚数は、最端の1枚とするか、最端の1枚とそれに隣り合う1枚とで構成される2枚とするのが好ましい。 In addition, when the number of the magnetic steel plates 120 constituting the fixed portion 14 increases, the magnetic characteristics of the rotor core 12 may be deteriorated. For this reason, it is preferable that the number of the magnetic steel plates 120 constituting the fixing portion 14 is one at the outermost end or two at the outermost end and one adjacent thereto.
 本実施形態では、マグネット13は、固定部14によってかしめ固定される。固定部14は、径方向にかしめられている。詳細には、固定部14は、磁性鋼板120の径方向外側の端面に、径方向内向きの力が加えられて押し潰されている。固定部14は、貫通孔12bの一部の内壁を径方向内側に突出させている。すなわち、固定部14が設けられる箇所では、貫通孔12bの径方向の幅が狭くなる。固定部14は、マグネット13を径方向から押さえ付けて固定する。本実施形態では、マグネット13は固定部14と密着しており、振動等が生じた場合でもマグネット13が軸方向に動く可能性を低くすることができる。 In this embodiment, the magnet 13 is caulked and fixed by the fixing portion 14. The fixing portion 14 is caulked in the radial direction. Specifically, the fixing portion 14 is crushed by applying a radially inward force to the radially outer end face of the magnetic steel plate 120. The fixing portion 14 projects a part of the inner wall of the through hole 12b radially inward. In other words, the radial width of the through hole 12b is narrowed at the place where the fixing portion 14 is provided. The fixing portion 14 fixes the magnet 13 by pressing it from the radial direction. In the present embodiment, the magnet 13 is in close contact with the fixed portion 14, and the possibility that the magnet 13 moves in the axial direction can be reduced even when vibration or the like occurs.
 本実施形態では、図3に示すように、固定部14は、平面視において貫通孔12bの長手方向の中央部に設けられる。これによれば、貫通孔12bに挿入されるマグネット13に対して、固定部14が偏った位置に設けられることを避けることができる。このために、固定部14によるマグネット13の固定をしっかりと行うことができる。 In the present embodiment, as shown in FIG. 3, the fixing portion 14 is provided in the central portion in the longitudinal direction of the through hole 12 b in plan view. According to this, it can avoid that the fixing | fixed part 14 is provided in the position biased with respect to the magnet 13 inserted in the through-hole 12b. For this reason, the magnet 13 can be firmly fixed by the fixing portion 14.
 なお、図3に示す構成は例示であり、固定部14は、貫通孔12bの長手方向の中央部からずれた位置に設けられてもよい。また、本実施形態では、各マグネット13に対して1つの固定部14が設けられているが、これは例示である。各マグネット13に対して複数の固定部14が設けられてもよい。 Note that the configuration shown in FIG. 3 is merely an example, and the fixing portion 14 may be provided at a position shifted from the central portion in the longitudinal direction of the through hole 12b. Moreover, in this embodiment, although the one fixing | fixed part 14 is provided with respect to each magnet 13, this is an illustration. A plurality of fixing portions 14 may be provided for each magnet 13.
 本実施形態では、固定部14は、貫通孔12bと、貫通孔12bより径方向外側のロータコア12の外縁12cとの距離が最も長くなる箇所である。換言すると、固定部14は、ロータコア12の、貫通孔12bより径方向外側の最も肉厚が厚くなる部分をかしめて形成される。本構成によれば、かしめ固定のために力を加える部分からマグネット13までの距離を長くできるために、かしめ固定の際にマグネット13に損傷を与える可能性を低減することができる。 In the present embodiment, the fixing portion 14 is a portion where the distance between the through hole 12b and the outer edge 12c of the rotor core 12 radially outside the through hole 12b is the longest. In other words, the fixing portion 14 is formed by caulking a portion of the rotor core 12 where the thickness is thickest on the radially outer side from the through hole 12b. According to this configuration, since the distance from the portion to which force is applied for caulking and fixing to the magnet 13 can be increased, the possibility of damaging the magnet 13 during caulking and fixing can be reduced.
 本実施形態では、図4に示すように、マグネット13の軸方向の長さは、ロータコア12の軸方向の長さよりも短い。このために、貫通孔12bに挿入されたマグネット13は、ロータコア12の軸方向上端面及び下端面に対して引っ込んだ状態にできる。本構成によれば、マグネット13の軸方向端部のみを固定部14に接触させてマグネット13の固定を行うことができる。このために、マグネット13の磁力が強い部分を適切に利用することができ、ロータ10の磁気特性の低下を抑制することができる。 In the present embodiment, as shown in FIG. 4, the axial length of the magnet 13 is shorter than the axial length of the rotor core 12. For this reason, the magnet 13 inserted into the through hole 12 b can be retracted with respect to the upper end surface and the lower end surface in the axial direction of the rotor core 12. According to this configuration, the magnet 13 can be fixed by contacting only the axial end portion of the magnet 13 with the fixing portion 14. For this reason, the part with a strong magnetic force of the magnet 13 can be utilized appropriately, and the fall of the magnetic characteristic of the rotor 10 can be suppressed.
 なお、マグネット13の軸方向の長さが短すぎると、磁性鋼板120の塑性変形に伴うマグネット13の固定効果が得られなくなる可能性がある。マグネット13の軸方向の長さは、マグネット13と固定部14との接触が得られる範囲とするのが好ましい。 If the length of the magnet 13 in the axial direction is too short, the fixing effect of the magnet 13 accompanying the plastic deformation of the magnetic steel plate 120 may not be obtained. The axial length of the magnet 13 is preferably in a range where contact between the magnet 13 and the fixed portion 14 can be obtained.
 図5は、本発明の実施形態に係るロータ10における、マグネット13と固定部14との関係を説明するための模式図である。図5に示すように、マグネット13は、軸方向の端部に面取り部13aを有する。本実施形態では、マグネット13は、軸方向の上端部及び下端部に面取り部13aを有する。 FIG. 5 is a schematic diagram for explaining the relationship between the magnet 13 and the fixed portion 14 in the rotor 10 according to the embodiment of the present invention. As shown in FIG. 5, the magnet 13 has a chamfered portion 13a at an end portion in the axial direction. In the present embodiment, the magnet 13 has chamfered portions 13a at the upper and lower end portions in the axial direction.
 面取り部13aは、マグネット13の角の尖った部分を除去する加工が行われた部分である。本実施形態では、面取り部13aは、角を丸くするR面取りが行われている。ただし、これは例示であり、面取り部13aは、R面取りでなく、例えば軸方向の端面に対して45°の角度をなす面を形成するC面取り等であってもよい。 The chamfered portion 13a is a portion where processing for removing a sharp portion of the magnet 13 has been performed. In the present embodiment, the chamfered portion 13a is rounded with a rounded corner. However, this is merely an example, and the chamfered portion 13a may be a C chamfer that forms a surface that forms an angle of 45 ° with respect to the end surface in the axial direction, instead of the R chamfer.
 図5に示すように、本実施形態では、固定部14は面取り部13aに接触している。面取り部13aは軸方向に幅を有する。例えば、固定部14が面取り部13aの軸方向の中央位置と接触する設計にしておくのが好ましい。このように構成することで、磁性鋼板120の積み上げ公差及びマグネット13の寸法公差の影響を抑制して、固定部14をマグネット13の軸方向端部に高い確率で接触させることが可能になる。本構成によれば、磁性鋼板120を塑性変形させた固定部14によってマグネット13を固定する構成において、ロータ10の磁気特性が低下する可能性を抑制することができる。 As shown in FIG. 5, in this embodiment, the fixing | fixed part 14 is contacting the chamfer 13a. The chamfered portion 13a has a width in the axial direction. For example, it is preferable that the fixing portion 14 is designed to come into contact with the axial center position of the chamfered portion 13a. By comprising in this way, the influence of the stacking tolerance of the magnetic steel plate 120 and the dimensional tolerance of the magnet 13 can be suppressed, and the fixed portion 14 can be brought into contact with the axial end of the magnet 13 with high probability. According to this structure, in the structure which fixes the magnet 13 with the fixing | fixed part 14 which deformed the magnetic steel plate 120 plastically, possibility that the magnetic characteristic of the rotor 10 will fall can be suppressed.
<3.ロータの製造方法>
 ロータ10の製造方法は、第2開口120bを有する磁性鋼板120を軸方向に複数積層する第1の工程を有する。第2開口120bを有する磁性鋼板120は、例えば打ち抜き加工によって形成される。本実施形態では、磁性鋼板120は、上述のように第2開口120b以外に第1開口120a及び第3開口120cも有する。磁性鋼板120を積層する枚数は、特に限定されず、必要とされる磁気特性等に応じて決定される。本実施形態では、軸方向に複数積層される磁性鋼板120の形状は全て同じである。各磁性鋼板120の向きが同一方向に揃えられて、複数の磁性鋼板120が積層される。積層された磁性鋼板120は、例えばかしめ固定等により一体化される。
<3. Manufacturing method of rotor>
The method for manufacturing the rotor 10 includes a first step of laminating a plurality of magnetic steel plates 120 having the second openings 120b in the axial direction. The magnetic steel plate 120 having the second opening 120b is formed by punching, for example. In the present embodiment, the magnetic steel sheet 120 has the first opening 120a and the third opening 120c in addition to the second opening 120b as described above. The number of magnetic steel plates 120 to be stacked is not particularly limited, and is determined according to required magnetic characteristics and the like. In the present embodiment, the shapes of the magnetic steel plates 120 stacked in the axial direction are all the same. The direction of each magnetic steel plate 120 is aligned in the same direction, and a plurality of magnetic steel plates 120 are laminated. The laminated magnetic steel plates 120 are integrated by, for example, caulking and fixing.
 ロータ10の製造方法は、複数の磁性鋼板120の積層に伴って第2開口120bが複数重なって形成される貫通孔12bにマグネット13を挿入する第2の工程を有する。本実施形態では、貫通孔12bは、周方向に等間隔で複数設けられる。複数の貫通孔12bのそれぞれに、マグネット13が挿入される。本実施形態では、マグネット13は、この時点で着磁されていない。ただし、この時点で着磁されたマグネット13が貫通孔12bに挿入されてもよい。本実施形態では、貫通孔12bに挿入されたマグネット13の高さ位置が適切な高さ位置になるように、高さ位置調整用の治具が使用される。 The method for manufacturing the rotor 10 includes a second step of inserting the magnet 13 into the through hole 12b formed by overlapping a plurality of second openings 120b with the lamination of the plurality of magnetic steel plates 120. In the present embodiment, a plurality of through holes 12b are provided at equal intervals in the circumferential direction. A magnet 13 is inserted into each of the plurality of through holes 12b. In the present embodiment, the magnet 13 is not magnetized at this point. However, the magnet 13 magnetized at this time may be inserted into the through hole 12b. In the present embodiment, a jig for adjusting the height position is used so that the height position of the magnet 13 inserted into the through hole 12b is an appropriate height position.
 ロータの製造方法は、軸方向の少なくとも一方側において、最端の磁性鋼板120を含む少なくとも1枚の磁性鋼板120を塑性変形してマグネット13を固定する第3の工程を有する。本実施形態では、軸方向上側と下側との両側において、最端に位置する1枚の磁性鋼板120が塑性変形される。詳細には、上端に位置する1枚の磁性鋼板120と、下端に位置する1枚の磁性鋼板120とが、径方向外側の端面の所定箇所に径方向内向きの力を加えられて塑性変形される。径方向内向きの力が加えられる所定箇所は、軸方向上下のそれぞれにおいて、各マグネット13に対して1つの固定部14が形成されるように、複数箇所とされる。塑性変形された磁性鋼板120がマグネット13に押し付けられ、各マグネット13はかしめ固定される。 The rotor manufacturing method includes a third step of fixing the magnet 13 by plastically deforming at least one magnetic steel plate 120 including the outermost magnetic steel plate 120 on at least one side in the axial direction. In the present embodiment, one magnetic steel sheet 120 positioned at the extreme end is plastically deformed on both the upper side and the lower side in the axial direction. Specifically, one magnetic steel plate 120 located at the upper end and one magnetic steel plate 120 located at the lower end are plastically deformed by applying a radially inward force to a predetermined portion of the radially outer end surface. Is done. The predetermined locations where the radially inward force is applied are a plurality of locations so that one fixed portion 14 is formed for each magnet 13 in each of the upper and lower axial directions. The plastically deformed magnetic steel plate 120 is pressed against the magnet 13 and the magnets 13 are fixed by caulking.
 全てのマグネット13の固定後に、各マグネット13は着磁される。着磁後においては、周方向に並ぶ複数のマグネット13は、ステータコア21に対向する面の磁極が交互に反対の磁極になる。その他、ロータ10の製造工程は、複数の磁性鋼板120の積層に伴って第1開口120aが複数重なって形成されるシャフト孔12aにシャフト11を嵌め込む工程も有する。シャフト11を嵌め込む工程は、マグネット13の着磁後に行われてよいが、このタイミングに限定されない。例えば、積層された複数の磁性鋼板120を一体化した後に行われてもよい。 After each magnet 13 is fixed, each magnet 13 is magnetized. After the magnetization, in the plurality of magnets 13 arranged in the circumferential direction, the magnetic poles on the surface facing the stator core 21 are alternately opposite to each other. In addition, the manufacturing process of the rotor 10 also includes a process of fitting the shaft 11 into the shaft hole 12a formed by overlapping a plurality of first openings 120a with the lamination of the plurality of magnetic steel plates 120. The step of fitting the shaft 11 may be performed after the magnet 13 is magnetized, but is not limited to this timing. For example, it may be performed after integrating a plurality of laminated magnetic steel plates 120.
 本実施形態のロータ10の製造方法によれば、同一形状の磁性鋼板120を複数積層させ、積層された複数の磁性鋼板120の一部を塑性変形させてマグネット13を固定する。すなわち、本実施形態のロータ10の製造方法によれば、マグネット13を固定するための部品を追加したり、接着剤を塗布したりすることを省くことができる。このために、本実施形態のロータ10の製造方法によれば、ロータ10を簡易かつ低コストで製造することができる。 According to the method for manufacturing the rotor 10 of the present embodiment, a plurality of magnetic steel plates 120 having the same shape are stacked, and a part of the plurality of stacked magnetic steel plates 120 is plastically deformed to fix the magnet 13. That is, according to the method for manufacturing the rotor 10 of the present embodiment, it is possible to omit adding a part for fixing the magnet 13 or applying an adhesive. For this reason, according to the manufacturing method of the rotor 10 of this embodiment, the rotor 10 can be manufactured simply and at low cost.
<4.変形例>
 以上に示した実施形態の構成は、本発明の例示にすぎない。実施形態の構成は、本発明の技術的思想を超えない範囲で適宜変更されてよい。また、以上で述べた複数の変形例や後述する複数の変形例は、可能な範囲で適宜組み合わせて実施することもできる。
<4. Modification>
The configuration of the embodiment described above is merely an example of the present invention. The configuration of the embodiment may be changed as appropriate without departing from the technical idea of the present invention. In addition, a plurality of modified examples described above and a plurality of modified examples described later can be implemented in appropriate combinations within a possible range.
 図6は、本発明の実施形態に係るロータ10の第1変形例を説明するための模式図である。以上に示した実施形態では、固定部14が面取り部13aと接触する構成とした。この構成は例示である。例えば、固定部14は、図6に示すように、マグネット13の上端面13bに接触する構成等としてもよい。 FIG. 6 is a schematic diagram for explaining a first modification of the rotor 10 according to the embodiment of the present invention. In the embodiment described above, the fixing portion 14 is in contact with the chamfered portion 13a. This configuration is exemplary. For example, as shown in FIG. 6, the fixed portion 14 may be configured to contact the upper end surface 13 b of the magnet 13.
 図7は、本発明の実施形態に係るロータ10の第2変形例を説明するための模式図である。以上に示した実施形態では、固定部14は、径方向にかしめられている構成とした。この構成は例示である。例えば、固定部は、図7に破線矢印で示すように、軸方向にかしめられている構成としてもよい。ただし、固定部14が径方向にかしめられている構成とした方が、軸方向にかしめられている構成とする場合に比べて、マグネット13の固定をより確実に行うことができる。 FIG. 7 is a schematic diagram for explaining a second modification of the rotor 10 according to the embodiment of the present invention. In the embodiment described above, the fixing portion 14 is caulked in the radial direction. This configuration is exemplary. For example, the fixed portion may be configured to be caulked in the axial direction as indicated by broken line arrows in FIG. However, the configuration in which the fixing portion 14 is caulked in the radial direction can more reliably fix the magnet 13 than the configuration in which the fixing portion 14 is caulked in the axial direction.
 図8は、本発明の実施形態に係るロータ10の第3変形例を説明するための模式図である。以上に示した実施形態では、ロータ10の内部に埋め込まれるマグネット13は、周方向に長手方向を有する構成とした。この構成は例示である。本発明は、例えば、ロータ10の内部に埋め込まれるマグネット13が、図8に示すように、径方向に長手方向を有する構成等にも適用できる。この場合、マグネット13を固定する固定部14を設ける位置は、以上に示した実施形態の位置から適宜変更されてよい。 FIG. 8 is a schematic diagram for explaining a third modification of the rotor 10 according to the embodiment of the present invention. In the embodiment described above, the magnet 13 embedded in the rotor 10 is configured to have a longitudinal direction in the circumferential direction. This configuration is exemplary. The present invention can be applied to, for example, a configuration in which the magnet 13 embedded in the rotor 10 has a longitudinal direction in the radial direction as shown in FIG. In this case, the position where the fixing portion 14 for fixing the magnet 13 is provided may be changed as appropriate from the position of the embodiment described above.
 図9は、本発明の実施形態に係るロータ10の第4変形例を説明するための模式図である。以上に示した実施形態では、1つのマグネット13で1つの磁極を形成する構成とした。この構成は例示である。図9に示す構成では、V字状に並ぶ2つのマグネット13によって1つの磁極が形成される。本発明は、図9に示すような複数のマグネットによって1つの磁極が形成される構成を有するロータにも適用できる。この場合、マグネット13を固定する固定部14を設ける位置は、以上に示した実施形態の位置から適宜変更されてよい。 FIG. 9 is a schematic diagram for explaining a fourth modification of the rotor 10 according to the embodiment of the present invention. In the embodiment described above, one magnetic pole is formed by one magnet 13. This configuration is exemplary. In the configuration shown in FIG. 9, one magnetic pole is formed by two magnets 13 arranged in a V shape. The present invention can also be applied to a rotor having a configuration in which one magnetic pole is formed by a plurality of magnets as shown in FIG. In this case, the position where the fixing portion 14 for fixing the magnet 13 is provided may be changed as appropriate from the position of the embodiment described above.
 本発明は、例えば家電、自動車、船舶、航空機、列車等に利用されるモータに広く適用することができる。また、本発明は、例えば自動車、電動アシスト自転車、風力発電等に利用される発電機に広く適用することができる。 The present invention can be widely applied to motors used for home appliances, automobiles, ships, airplanes, trains, and the like. In addition, the present invention can be widely applied to generators used for automobiles, electrically assisted bicycles, wind power generation, and the like.
   1・・・回転電機
   10・・・ロータ
   12・・・ロータコア
   12b・・・貫通孔
   12c・・・外縁
   13・・・マグネット
   13a・・・面取り部
   14・・・固定部
   120・・・磁性鋼板
   120b・・・第2開口
   A・・・中心軸
DESCRIPTION OF SYMBOLS 1 ... Rotary electric machine 10 ... Rotor 12 ... Rotor core 12b ... Through-hole 12c ... Outer edge 13 ... Magnet 13a ... Chamfering part 14 ... Fixed part 120 ... Magnetic steel plate 120b ... second opening A ... central axis

Claims (9)

  1.  中心軸を中心として回転する、回転電機のロータであって、
     複数の磁性鋼板が軸方向に積層され、軸方向に貫通する貫通孔を有するロータコアと、
     前記貫通孔に挿入されたマグネットと、
    を有し、
     前記ロータコアは、軸方向の少なくとも一方側に、最端の前記磁性鋼板を含む少なくとも1枚の前記磁性鋼板が塑性変形された固定部を有し、
     前記マグネットは、前記固定部によって固定されている、ロータ。
    A rotor of a rotating electrical machine that rotates about a central axis,
    A plurality of magnetic steel plates are laminated in the axial direction, and a rotor core having a through hole penetrating in the axial direction;
    A magnet inserted into the through hole;
    Have
    The rotor core has, on at least one side in the axial direction, a fixing portion in which at least one of the magnetic steel plates including the outermost magnetic steel plate is plastically deformed,
    The magnet is fixed by the fixing portion.
  2.  前記マグネットは、前記固定部によってかしめ固定されている、請求項1に記載のロータ。 The rotor according to claim 1, wherein the magnet is caulked and fixed by the fixing portion.
  3.  前記固定部は、径方向にかしめられている、請求項2に記載のロータ。 The rotor according to claim 2, wherein the fixing portion is caulked in a radial direction.
  4.  前記マグネットの軸方向の長さは、前記ロータコアの軸方向の長さよりも短い、請求項1から3のいずれか1項に記載のロータ。 The rotor according to any one of claims 1 to 3, wherein an axial length of the magnet is shorter than an axial length of the rotor core.
  5.  前記マグネットは、軸方向の端部に面取り部を有し、
     前記固定部は、前記面取り部に接触している、請求項1から4のいずれか1項に記載のロータ。
    The magnet has a chamfered portion at an axial end,
    The rotor according to claim 1, wherein the fixing portion is in contact with the chamfered portion.
  6.  前記固定部は、軸方向からの平面視において、前記貫通孔の長手方向の中央部に設けられている、請求項1から5のいずれか1項に記載のロータ。 The rotor according to any one of claims 1 to 5, wherein the fixing portion is provided at a central portion in a longitudinal direction of the through hole in a plan view from an axial direction.
  7.  前記ロータコアは円筒状であり、
     前記貫通孔は、周方向に長手方向を有し、
     前記固定部は、前記貫通孔と、前記貫通孔より径方向外側の前記ロータコアの外縁との距離が最も長くなる箇所である、請求項1から6のいずれか1項に記載のロータ。
    The rotor core is cylindrical;
    The through hole has a longitudinal direction in the circumferential direction,
    The rotor according to any one of claims 1 to 6, wherein the fixing portion is a portion where a distance between the through hole and an outer edge of the rotor core radially outside the through hole is longest.
  8.  請求項1から7のいずれか1項に記載のロータを有する、回転電機。 A rotating electrical machine having the rotor according to any one of claims 1 to 7.
  9.  中心軸を中心として回転する、回転電機のロータの製造方法であって、
     開口を有する磁性鋼板を軸方向に複数積層する第1の工程と、
     複数の前記磁性鋼板の積層に伴って前記開口が複数重なって形成される貫通孔に前記マグネットを挿入する第2の工程と、
     軸方向の少なくとも一方側において、最端の前記磁性鋼板を含む少なくとも1枚の前記磁性鋼板を塑性変形して前記マグネットを固定する第3の工程と、
    を有する、ロータの製造方法。
    A method of manufacturing a rotor of a rotating electrical machine that rotates about a central axis,
    A first step of laminating a plurality of magnetic steel plates having openings in the axial direction;
    A second step of inserting the magnet into a through hole formed by a plurality of the openings overlapping with the lamination of the plurality of magnetic steel plates;
    A third step of plastically deforming at least one of the magnetic steel plates including the outermost magnetic steel plate and fixing the magnet on at least one side in the axial direction;
    A method for manufacturing a rotor.
PCT/JP2016/075873 2016-09-02 2016-09-02 Rotor, dynamo-electric machine, and method for manufacturing rotor WO2018042634A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018536649A JPWO2018042634A1 (en) 2016-09-02 2016-09-02 Rotor, rotating electrical machine, and method of manufacturing rotor
PCT/JP2016/075873 WO2018042634A1 (en) 2016-09-02 2016-09-02 Rotor, dynamo-electric machine, and method for manufacturing rotor
CN201680088763.3A CN109643920A (en) 2016-09-02 2016-09-02 The manufacturing method of rotor, rotating electric machine and rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/075873 WO2018042634A1 (en) 2016-09-02 2016-09-02 Rotor, dynamo-electric machine, and method for manufacturing rotor

Publications (1)

Publication Number Publication Date
WO2018042634A1 true WO2018042634A1 (en) 2018-03-08

Family

ID=61300474

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/075873 WO2018042634A1 (en) 2016-09-02 2016-09-02 Rotor, dynamo-electric machine, and method for manufacturing rotor

Country Status (3)

Country Link
JP (1) JPWO2018042634A1 (en)
CN (1) CN109643920A (en)
WO (1) WO2018042634A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111614177A (en) * 2020-05-21 2020-09-01 珠海格力电器股份有限公司 Rotor structure, motor and vehicle
WO2022059253A1 (en) * 2020-09-15 2022-03-24 株式会社 東芝 Rotating electric machine rotor and rotating electric machine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7234863B2 (en) * 2019-08-26 2023-03-08 株式会社デンソー Embedded magnet rotor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002064951A (en) * 2000-08-14 2002-02-28 Honda Motor Co Ltd Permanent magnet rotor
JP2007037202A (en) * 2003-10-31 2007-02-08 Neomax Co Ltd Rotor for permanent magnet embedded motor, its assembling method, and assembling device
JP2014003748A (en) * 2012-06-15 2014-01-09 Asmo Co Ltd Rotor and manufacturing method therefor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10174326A (en) * 1996-12-06 1998-06-26 Matsushita Electric Ind Co Ltd Permanent magnet-buried rotor for motor and its manufacture
JP2000354342A (en) * 1999-06-07 2000-12-19 Mitsubishi Heavy Ind Ltd Manufacture of magnet motor, and sealed compressor provided therewith
JP4666500B2 (en) * 2005-12-27 2011-04-06 三菱電機株式会社 Rotor of permanent magnet embedded motor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002064951A (en) * 2000-08-14 2002-02-28 Honda Motor Co Ltd Permanent magnet rotor
JP2007037202A (en) * 2003-10-31 2007-02-08 Neomax Co Ltd Rotor for permanent magnet embedded motor, its assembling method, and assembling device
JP2014003748A (en) * 2012-06-15 2014-01-09 Asmo Co Ltd Rotor and manufacturing method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111614177A (en) * 2020-05-21 2020-09-01 珠海格力电器股份有限公司 Rotor structure, motor and vehicle
WO2022059253A1 (en) * 2020-09-15 2022-03-24 株式会社 東芝 Rotating electric machine rotor and rotating electric machine

Also Published As

Publication number Publication date
CN109643920A (en) 2019-04-16
JPWO2018042634A1 (en) 2019-08-08

Similar Documents

Publication Publication Date Title
JP5858232B2 (en) Rotor core, motor, and motor manufacturing method
EP1414132B1 (en) Electric motor, method of fabricating the same, and hermetic compressor comprising the same
JP6429115B2 (en) motor
US9923436B2 (en) Rotor for a rotary electric machine
JP5240593B2 (en) Rotating electric machine
JP6274475B2 (en) Rotor, rotating electric machine, and method of manufacturing rotor
US20140062244A1 (en) Rotor, rotary electric machine provided with this rotor, and rotor manufacturing method
US10923974B2 (en) Rotor core, rotor and motor
CN103516081A (en) Rotor, dynamo-electric machine having rotor and rotor manufacturing method
US10833569B2 (en) Rotor core, rotor, motor, manufacturing method of rotor core, and manufacturing method of rotor
JP2003259571A (en) Rotatary electric machine
JP6545387B2 (en) Conscious pole rotor, motor and air conditioner
WO2018042634A1 (en) Rotor, dynamo-electric machine, and method for manufacturing rotor
US11056938B2 (en) Rotor and motor
KR101657938B1 (en) Method for producing a rotor
KR102490607B1 (en) magnet insert type motor rotor
JP5370686B2 (en) Brushless motor
JP2005168127A (en) Permanent magnet type rotor
US11095196B2 (en) Manufacturing method of motor core, manufacturing method of rotor core, and manufacturing method of rotor
JP2012016090A (en) Permanent magnet embedded motor
CN113541423A (en) Axial gap motor
JP2017225208A (en) Armature, rotary electric machine, and manufacturing method of armature
JP7325645B2 (en) Rotating electric machine and manufacturing method of rotating electric machine
US20230006488A1 (en) Rotating electrical machine
JP2019115217A (en) Rotor core mounting structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16915193

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018536649

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16915193

Country of ref document: EP

Kind code of ref document: A1