WO2011059084A1 - Circuit connecting material and connection structure for circuit member using same - Google Patents

Circuit connecting material and connection structure for circuit member using same Download PDF

Info

Publication number
WO2011059084A1
WO2011059084A1 PCT/JP2010/070286 JP2010070286W WO2011059084A1 WO 2011059084 A1 WO2011059084 A1 WO 2011059084A1 JP 2010070286 W JP2010070286 W JP 2010070286W WO 2011059084 A1 WO2011059084 A1 WO 2011059084A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
conductive particles
connection
resin
electrode
Prior art date
Application number
PCT/JP2010/070286
Other languages
French (fr)
Japanese (ja)
Inventor
孝 中澤
小林 宏治
Original Assignee
日立化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成工業株式会社 filed Critical 日立化成工業株式会社
Priority to JP2010548315A priority Critical patent/JP5518747B2/en
Priority to BR112012011692-4A priority patent/BR112012011692B1/en
Priority to KR1020127013954A priority patent/KR101342255B1/en
Priority to CN201080051290.2A priority patent/CN102598419B/en
Publication of WO2011059084A1 publication Critical patent/WO2011059084A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R11/00Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts
    • H01R11/01Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts characterised by the form or arrangement of the conductive interconnection between the connecting locations
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J4/00Adhesives based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; adhesives, based on monomers of macromolecular compounds of groups C09J183/00 - C09J183/16
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/16Non-insulated conductors or conductive bodies characterised by their form comprising conductive material in insulating or poorly conductive material, e.g. conductive rubber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/03Contact members characterised by the material, e.g. plating, or coating materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/14Structural association of two or more printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/14Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using spraying techniques to apply the conductive material, e.g. vapour evaporation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/36Assembling printed circuits with other printed circuits
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/102Esters of polyhydric alcohols or polyhydric phenols of dialcohols, e.g. ethylene glycol di(meth)acrylate or 1,4-butanediol dimethacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/106Esters of polycondensation macromers
    • C08F222/1065Esters of polycondensation macromers of alcohol terminated (poly)urethanes, e.g. urethane(meth)acrylates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F230/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal
    • C08F230/02Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances

Definitions

  • the present invention relates to a circuit connecting material and a circuit member connecting structure using the same.
  • thermosetting resin such as an epoxy resin having excellent adhesiveness and high reliability is used (for example, see Patent Document 1).
  • a curing agent such as an epoxy resin, a phenol resin having reactivity with the epoxy resin, and a thermal latent catalyst for promoting the reaction between the epoxy resin and the curing agent are generally used.
  • the heat latent catalyst is an important factor for determining the curing temperature and curing rate of the adhesive, and various compounds are used from the viewpoint of storage stability at room temperature and curing rate during heating.
  • a radical curable adhesive composed of a radical polymerizable compound such as an acrylate derivative or a methacrylate derivative and a peroxide as a radical polymerization initiator has attracted attention.
  • the radical curable adhesive can be cured at a low temperature in a short time (see, for example, Patent Documents 2 to 4).
  • FPD liquid crystal panels
  • PWB printed wiring boards
  • TCP tape carrier package
  • COF chip-on-flex
  • a circuit connection material is used for connection between a flexible printed wiring board (Flexible Printed Circuits, hereinafter referred to as “FPC” in some cases) in the field of FPD and PWB, and the circuit is generally subjected to gold plating.
  • An anionic polymerization type adhesive using an epoxy resin can give good adhesion and connection reliability even to an OSP-treated substrate.
  • the structure of the circuit board is mainly a multilayer structure, and via holes, through holes, and the like are provided in the vicinity of the connection portions in order to release heat at the time of connection. Due to the via holes and through holes, it is not possible to give a sufficient amount of heat to cure the anionic polymerization adhesive. If a sufficient amount of heat is applied for a sufficient amount of time, a long-time connection is required, and using an anionic polymerization adhesive is not practical in terms of production efficiency.
  • radical curable adhesives are used to connect FPC and PWB in the FPD field and can be cured in a short time of less than 10 seconds, but when applied to OSP-treated substrates, they are gold-plated. There is a problem that the connection resistance is likely to increase as compared with the case of applying to a different substrate. This is because the OSP film itself is non-conductive.
  • the present invention provides a circuit connection material that can be cured at a low temperature in a short time and that provides sufficiently high connection reliability when applied to an OSP-treated substrate, and connection of circuit members using the circuit connection material
  • the purpose is to provide a structure.
  • the present invention is a circuit connecting material for electrically connecting opposing circuit electrodes, and contains an adhesive composition and conductive particles, and the conductive particles are made of a metal having a Vickers hardness of 300 to 1000.
  • a circuit connecting material having a core and an outermost layer made of a noble metal covering the surface of the core, and having an average particle diameter of 5 to 20 ⁇ m.
  • the present invention is also a circuit connection material for electrically connecting opposing circuit electrodes, containing an adhesive composition and conductive particles, the conductive particles comprising a core made of nickel, There is provided a circuit connecting material having an outermost layer made of a noble metal covering the surface of a core and having an average particle diameter of 5 to 20 ⁇ m.
  • the circuit connection material of the present invention can be cured at a low temperature in a short time by containing the conductive particles as described above together with the adhesive composition, and can be connected well to a substrate subjected to OSP treatment. Reliability can be shown.
  • the adhesive composition preferably includes a radical polymerizable substance and a curing agent that generates free radicals upon heating.
  • the adhesive composition contains an epoxy resin and a latent curing agent, the connection reliability of the circuit member connection structure using the circuit connection material can be further improved.
  • the present invention includes a first circuit member having a first circuit electrode formed on a main surface of a first circuit board, a second circuit electrode formed on a main surface of a second circuit board, A second circuit member disposed so that the second circuit electrode is opposed to the first circuit electrode; and the first circuit board and the second circuit board, A circuit connecting portion for connecting the first circuit member and the second circuit member so that the circuit electrodes are electrically connected to each other.
  • the circuit member connection structure using the conventional short-curing circuit connection material when the circuit electrode has an OSP film, it tends to be difficult to improve the connectivity in a short time of less than 10 seconds. .
  • the circuit member connection structure of the present invention can obtain good connectivity even with a connection time of less than 10 seconds, because the circuit connection portion is a cured product of the circuit connection material of the present invention. .
  • connection structure of the present invention since the surface of the circuit electrode is formed by a film made of a material containing an organic resin, the circuit electrode is protected from oxidation and good solderability can be obtained.
  • the connection structure of the present invention has sufficiently high adhesive strength and connection reliability because the circuit members are connected by the circuit connection material of the present invention.
  • a circuit connection material that can be cured at a low temperature in a short time and that provides sufficiently high connection reliability when applied to an OSP-treated substrate, and connection of circuit members using the circuit connection material Structure can be provided.
  • FIG. 1 is a cross-sectional view showing an embodiment of a circuit connecting material.
  • a circuit connecting material 1 shown in FIG. 1 is composed of a resin layer 3 and a plurality of conductive particles 5 dispersed in the resin layer 3 and has a film shape.
  • the conductive particles 5 have a core made of a metal having a Vickers hardness of 300 to 1000 and an outermost layer made of a noble metal covering the surface of the core, and have an average particle diameter of 5 to 20 ⁇ m.
  • the conductive particles 5 have a core made of nickel and an outermost layer made of a noble metal covering the surface of the core, and have an average particle diameter of 5 to 20 ⁇ m.
  • Such conductive particles tend to penetrate the non-conductive coating of the circuit electrode and easily suppress an increase in connection resistance. Therefore, a circuit member connection structure having excellent connection reliability can be produced using the circuit connection material containing the conductive particles.
  • the core of the conductive particles 5 is at least one selected from transition metals such as nickel, chromium, molybdenum, manganese, cobalt, iron, manganese, vanadium, titanium, platinum, iridium, osmium, tungsten, tantalum, niobium, zirconium, and palladium. It is preferable that it is comprised with the metal of this, and it is more preferable that it is comprised with nickel.
  • transition metals such as nickel, chromium, molybdenum, manganese, cobalt, iron, manganese, vanadium, titanium, platinum, iridium, osmium, tungsten, tantalum, niobium, zirconium, and palladium. It is preferable that it is comprised with the metal of this, and it is more preferable that it is comprised with nickel.
  • the Vickers hardness of the metal constituting the core is 300 to 1000, more preferably 400 to 800, and still more preferably 500 to 700. If the core has a Vickers hardness of less than 300, the conductive particles are likely to be deformed, and the OSP film on the electrode tends to be excluded, and if it exceeds 1000, the particles are difficult to deform and give good connection reliability. It is difficult to secure a sufficient contact area.
  • the outermost layer of the conductive particles 5 is preferably composed of at least one metal selected from noble metals such as gold, silver, platinum, palladium, rhodium, iridium, ruthenium, osmium, and is composed of gold or platinum. It is more preferable that it is made of gold.
  • the thickness of the outermost layer of the conductive particles 5 is preferably 0.03 to 0.4 ⁇ m, more preferably 0.08 to 0.2 ⁇ m. If the thickness of the outermost layer is less than 0.03, the conductivity of the conductive particles tends to decrease and the connection resistance tends to increase. If the thickness exceeds 0.4 ⁇ m, the cost for forming the outermost layer on the core increases. , Tend to be inferior in price. In addition, although it is preferable that the whole nucleus is covered with the outermost layer which consists of noble metals, a part of nucleus may be exposed in the range which does not deviate from the effect of this invention.
  • the average particle diameter of the conductive particles is 5 to 20 ⁇ m, preferably 8 to 20 ⁇ m, and more preferably 8 to 15 ⁇ m.
  • the resin layer 3 cures before the conductive particles come into contact with the electrode.
  • the average particle diameter exceeds 20 ⁇ m, the radius of curvature of the conductive particles is large. In any case, it becomes difficult to obtain electrical continuity.
  • the average particle diameter of the conductive particles defined in the present application is a value measured by a laser diffraction method measured using “SALD-1000” (manufactured by Shimadzu Corporation, trade name).
  • the blending amount of the conductive particles 5 is appropriately set depending on the application, but usually 0.1 to 30 parts by volume with respect to 100 parts by volume of the adhesive layer 3 (that is, the part other than the conductive particles 5 in the circuit connecting material 1). Is within the range. Further, from the viewpoint of preventing short circuit between adjacent circuit electrodes on the same circuit board, the blending amount of the conductive particles is more preferably 0.1 to 10 parts by volume.
  • the resin layer 3 preferably contains a curing agent that generates free radicals and a radical polymerizable substance.
  • the circuit connecting material 1 preferably contains an adhesive composition containing a curing agent that generates free radicals, a radical polymerizable substance, and the conductive particles 5.
  • the circuit connecting material 1 is heated, a crosslinked structure is formed in the resin layer 3 by polymerization of the radical polymerizable substance, and a cured product of the circuit connecting material 1 is formed.
  • the circuit connection material 1 functions as a radical curable adhesive.
  • the curing agent that generates free radicals used in the circuit connection material 1 is a substance that decomposes by heating a peroxide compound, an azo compound, or the like to generate free radicals.
  • the target connection temperature, connection time, pot life It is selected as appropriate.
  • the blending amount is preferably 0.05 to 10% by mass, based on the total mass of the circuit connecting material 1, and 0.1 to 5% by mass (0.05 to 10 Part by mass, preferably 0.1 to 5 parts by mass).
  • the curing agent that generates free radicals can be selected from diacyl peroxide, peroxydicarbonate, peroxyester, peroxyketal, dialkyl peroxide, hydroperoxide, and the like.
  • it is preferably selected from peroxyesters, dialkyl peroxides, and hydroperoxides, and more preferably selected from peroxyesters that provide high reactivity. .
  • diacyl peroxides examples include 2,4-dichlorobenzoyl peroxide, 3,5,5-trimethylhexanoyl peroxide, octanoyl peroxide, lauroyl peroxide, stearoyl peroxide, succinic peroxide, and benzoyl peroxide.
  • diacyl peroxides examples include 2,4-dichlorobenzoyl peroxide, 3,5,5-trimethylhexanoyl peroxide, octanoyl peroxide, lauroyl peroxide, stearoyl peroxide, succinic peroxide, and benzoyl peroxide.
  • peroxydicarbonates examples include di-n-propyl peroxydicarbonate, diisopropyl peroxydicarbonate, bis (4-tert-butylcyclohexyl) peroxydicarbonate, and di-2-ethoxymethoxyperoxydicarbonate. Di (2-ethylhexylperoxy) dicarbonate, dimethoxybutylperoxydicarbonate and di (3-methyl-3-methoxybutylperoxy) dicarbonate.
  • peroxyesters examples include 1,1,3,3-tetramethylbutylperoxyneodecanoate, 1-cyclohexyl-1-methylethylperoxynodecanoate, and t-hexylperoxyneodecanoate.
  • t-butylperoxypivalate 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanoate, 2,5-dimethyl-2,5-di (2-ethylhexanoylperoxy) ) Hexane, 1-cyclohexyl-1-methylethylperoxy 2-ethylhexanate, t-hexylperoxy-2-ethylhexanate, t-butylperoxy-2-ethylhexanoate, t-butylper Oxyisobutyrate, 1,1-bis (t-butylperoxy) cyclohexane, t-hexylperoxy Propyl monocarbonate, t-butylperoxy-3,5,5-trimethylhexanonate, t-butylperoxylaurate, 2,5-dimethyl-2,5-di (m-toluoylperoxy) hexane
  • peroxyketals examples include 1,1-bis (t-hexylperoxy) -3,3,5-trimethylcyclohexane, 1,1-bis (t-hexylperoxy) cyclohexane, 1,1-bis. (T-Butylperoxy) -3,3,5-trimethylcyclohexane, 1,1- (t-butylperoxy) cyclododecane and 2,2-bis- (t-butylperoxy) decane.
  • dialkyl peroxides examples include ⁇ , ⁇ ′bis (t-butylperoxy) diisopropylbenzene, dicumyl peroxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane and t -Butylcumyl peroxide.
  • hydroperoxides examples include diisopropylbenzene hydroperoxide and cumene hydroperoxide.
  • curing agents that generate free radicals can be used alone or in combination, and may be used in combination with a decomposition accelerator, an inhibitor, and the like.
  • a decomposition accelerator an inhibitor
  • the radical polymerizable substance used for the circuit connecting material 1 is a substance having a functional group that is polymerized by radicals, and examples thereof include acrylates, methacrylates, maleimide compounds, citraconic imide resins, and nadiimide resins.
  • the blending amount of the radical polymerizable substance is preferably 20 to 50 parts by mass, more preferably 30 to 40 parts by mass, with the total mass of the circuit connecting material 1 being 100 parts by mass.
  • the radical polymerizable substance can be used in any state of a monomer and an oligomer, and a monomer and an oligomer can be used in combination.
  • Examples of the acrylate include, for example, methyl acrylate, ethyl acrylate, isopropyl acrylate, isobutyl acrylate, ethylene glycol diacrylate, diethylene glycol diacrylate, trimethylol propane triacrylate, tetramethylol methane tetraacrylate, 2-hydroxy-1,3-diaacryloxypropane, 2,2-bis [4- (acryloxymethoxy) phenyl] propane, 2,2-bis [4- (acryloxypolyethoxy) phenyl] propane, dicyclo Examples include pentenyl acrylate, tricyclodecanyl acrylate, tris (acryloyloxyethyl) isocyanurate, and urethane acrylate.
  • a polymerization inhibitor such as hydroquinone or methyl ether hydroquinone may be used as necessary.
  • a polymerization inhibitor such as hydroquinone or methyl ether hydroquinone may be used as necessary.
  • it has a dicyclopentenyl group and / or a tricyclodecanyl group and / or a triazine ring, since heat resistance improves, it is preferable.
  • maleimide compound examples include those containing at least two maleimide groups in the molecule, such as 1-methyl-2,4-bismaleimidebenzene, N, N′-m-phenylenebismaleimide, N, N ′.
  • -P-phenylene bismaleimide N, N'-m-toluylene bismaleimide, N, N'-4,4-biphenylene bismaleimide, N, N'-4,4- (3,3'-dimethylbiphenylene) Bismaleimide, N, N′-4,4- (3,3′-dimethyldiphenylmethane) bismaleimide, N, N′-4,4- (3,3′-diethyldiphenylmethane) bismaleimide, N, N′- 4,4-diphenylmethane bismaleimide, N, N′-4,4-diphenylpropane bismaleimide, N, N′-3,3′-diphenylsulfone bismale N, N
  • the citraconic imide resin is obtained by polymerizing a citraconic imide compound having at least one citraconic imide group in the molecule.
  • the citraconic imide compound include phenyl citraconic imide, 1-methyl-2,4 -Biscitraconimide benzene, N, N'-m-phenylene biscitraconimide, N, N'-p-phenylene biscitraconimide, N, N'-4,4-biphenylenebiscitraconimide, N, N'-4 , 4- (3,3-Dimethylbiphenylene) biscitraconimide, N, N′-4,4- (3,3-dimethyldiphenylmethane) biscitraconimide, N, N′-4,4- (3,3- Diethyldiphenylmethane) biscitraconimide, N, N′-4,4-diphenylmethanebiscitraconimide, N'-4,4-
  • the nadiimide resin is obtained by polymerizing a nadiimide compound having at least one nadiimide group in the molecule.
  • the nadiimide compound include phenyl nadiimide, 1-methyl-2,4-bisnadiimidebenzene, N, N′-m-phenylenebisnadiimide, N, N′-p-phenylenebisnadiimide, N, N′-4,4-biphenylenebisnadiimide, N, N′-4,4- (3,3-dimethyl Biphenylene) bisnadiimide, N, N′-4,4- (3,3-dimethyldiphenylmethane) bisnadiimide, N, N′-4,4- (3,3-diethyldiphenylmethane) bisnadiimide, N, N′-4,4 -Diphenylmethane bisnadiimi
  • the circuit connection material 1 may contain other components in addition to the curing agent that generates free radicals and the radical polymerizable substance.
  • a thermoplastic resin and a thermosetting resin can be contained.
  • thermoplastic resin polyethylene resin, polyimide resin, polyvinyl chloride resin, polyphenylene oxide resin, polyvinyl butyral resin, polyvinyl formal resin, polyamide resin, polyester resin, phenoxy resin, polystyrene resin, xylene resin, polyurethane resin, etc. can be used. .
  • thermoplastic resin a hydroxyl group-containing resin having a Tg (glass transition temperature) of 40 ° C. or higher and a molecular weight of 10,000 or more can be preferably used.
  • a phenoxy resin can be preferably used.
  • the phenoxy resin can be obtained by reacting a bifunctional phenol with epihalohydrin until it has a high molecular weight or by polyaddition reaction of a bifunctional epoxy resin with a bifunctional phenol.
  • thermosetting resin examples include urea resin, melamine resin, phenol resin, xylene resin, epoxy resin, and polyisocyanate resin.
  • thermoplastic resin When the above thermoplastic resin is contained, it is preferable because it is easy to handle and is excellent in stress relaxation during curing. Further, the thermoplastic resin and the thermosetting resin are more preferable when having a functional group such as a hydroxyl group because the adhesiveness is improved, and may be modified with an epoxy group-containing elastomer or a radical polymerizable functional group. Those modified with a radically polymerizable functional group are preferred because the heat resistance is improved.
  • the weight average molecular weight of the thermoplastic resin is preferably 10,000 or more from the viewpoint of film forming property and the like, but when it becomes 1000000 or more, the mixing property tends to deteriorate.
  • regulated by this application means what was measured using the analytical curve by a standard polystyrene by the gel permeation chromatography method (GPC) according to the following conditions.
  • the resin layer 3 can also contain an epoxy resin and a latent curing agent in place of the curing agent that generates free radicals and the radical polymerizable substance. That is, the circuit connection material 1 can contain an adhesive composition containing an epoxy resin and a latent curing agent and the conductive particles 5. When the circuit connection material 1 is heated, a crosslinked structure is formed in the resin layer 3 by curing of the epoxy resin, and a cured product of the circuit connection material 1 is formed. In this case, the circuit connecting material 1 functions as an epoxy curable adhesive.
  • Typical epoxy resins include bisphenol type epoxy resins that are glycidyl ethers of bisphenols such as bisphenol A, F, and AD, and epoxy novolac resins derived from phenol novolac or cresol novolac.
  • Other examples include naphthalene type epoxy resins having a naphthalene skeleton, glycidylamine type epoxy resins, glycidyl ester type epoxy resins, alicyclic epoxy resins and heterocyclic epoxy resins. These are used individually or in mixture of 2 or more types.
  • bisphenol type epoxy resins are preferred because they are widely available in grades with different molecular weights, and adhesiveness and reactivity can be arbitrarily set.
  • bisphenol type epoxy resins bisphenol F type epoxy resins are particularly preferable.
  • the viscosity of the bisphenol F type epoxy resin is low, and the fluidity of the circuit connecting material can be easily set in a wide range by using it in combination with the phenoxy resin.
  • the bisphenol F type epoxy resin has an advantage that it is easy to impart good adhesiveness to the circuit connecting material.
  • an epoxy resin having an impurity ion (Na + , Cl ⁇ etc.) concentration or hydrolyzable chlorine of 300 ppm or less to prevent electron migration.
  • the latent curing agent may be a compound that reacts with the epoxy resin and is incorporated into the crosslinked structure, or may be a catalytic curing agent that accelerates the curing reaction of the epoxy resin. Both can be used in combination.
  • catalytic curing agent examples include an anionic polymerization latent curing agent that promotes anionic polymerization of an epoxy resin and a cationic polymerization latent curing agent that promotes cationic polymerization of an epoxy resin.
  • anionic polymerization type latent curing agent examples include imidazole series, hydrazide series, trifluoroboron-amine complex, amine imide, polyamine salt, dicyandiamide, and modified products thereof.
  • the imidazole-based anionic polymerization latent curing agent is formed, for example, by adding imidazole or a derivative thereof to an epoxy resin.
  • a photosensitive onium salt an aromatic diazonium salt, an aromatic sulfonium salt or the like is mainly used
  • an aromatic diazonium salt an aromatic sulfonium salt or the like is mainly used
  • an aromatic sulfonium salt that is activated by heating to cure the epoxy resin.
  • This type of curing agent is preferable because it has a feature of fast curing.
  • the blending amount of the latent curing agent is preferably 30 to 60 parts by mass and more preferably 40 to 55 parts by mass with respect to 100 parts by mass of the epoxy resin.
  • the blending amount of the latent curing agent is less than 30 parts by mass, the tightening force on the adherend due to curing shrinkage of the circuit connecting material is reduced. As a result, the contact between the conductive particles 5 and the circuit electrode is not maintained, and the connection resistance after the reliability test tends to increase.
  • the blending amount of the latent curing agent exceeds 60 parts by mass, the tightening force becomes too strong, so that the internal stress in the cured product of the circuit connection material tends to increase, and the adhesive strength tends to decrease.
  • the circuit connecting material is an epoxy resin adhesive
  • the film-forming material when the liquid is solidified and the constituent composition is made into a film shape, facilitates the handling of the film and imparts mechanical properties that do not easily tear, crack, or stick.
  • the film can be handled in a normal state (normal temperature and pressure).
  • thermoplastic resin As the film forming material, the above-described thermoplastic resin can be used, and it is preferable to use a phenoxy resin because of excellent adhesiveness, compatibility, heat resistance, and mechanical strength.
  • the phenoxy resin is a resin obtained by reacting a bifunctional phenol and epihalohydrin until they are polymerized, or by polyaddition of a bifunctional epoxy resin and a bifunctional phenol.
  • the phenoxy resin contains 1 mol of a bifunctional phenol and 0.985 to 1.015 mol of epihalohydrin in the presence of a catalyst such as an alkali metal hydroxide at a temperature of 40 to 120 ° C. in a non-reactive solvent. It can be obtained by reacting.
  • a catalyst such as an alkali metal compound, an organophosphorus compound, or a cyclic amine compound, an amide, ether, ketone, lactone, alcohol, or the like having a boiling point of 120 ° C. or higher.
  • a product obtained by polyaddition reaction by heating to 50 to 200 ° C. in an organic solvent under a reaction solid content of 50% by mass or less is preferable.
  • Bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol AD type epoxy resin, and bisphenol S type epoxy resin can be used as the bifunctional epoxy resin.
  • Bifunctional phenols have two phenolic hydroxyl groups, and examples thereof include bisphenol compounds such as hydroquinones, bisphenol A, bisphenol F, bisphenol AD, and bisphenol S.
  • the phenoxy resin may be modified with a radical polymerizable functional group.
  • a phenoxy resin can be used individually by 1 type or in mixture of 2 or more types.
  • the circuit connection material 1 may contain a filler, a softening material, an accelerator, an anti-aging agent, a colorant, a flame retardant, a thixotropic agent, a coupling agent, and isocyanates. it can.
  • a filler When a filler is contained, it is preferable because connection reliability and the like can be improved. If the maximum diameter of the filler is less than the particle diameter of the conductive particles 5, it can be used, and the blending amount is preferably in the range of 5 to 60% by volume. If it exceeds 60% by volume, the effect of improving reliability is saturated.
  • a compound having a vinyl group, an acrylic group, an amino group, an epoxy group or an isocyanate group is preferable from the viewpoint of improving the adhesiveness.
  • a polymerization inhibitor such as hydroquinone or methyl ether hydroquinone may be used as necessary.
  • the circuit connection material 1 is a connection structure in which circuit components having one or more circuit electrodes (connection terminals) such as chip parts such as semiconductor chips, resistor chips and capacitor chips, and printed wiring boards are connected to each other. It is suitably used to form
  • FIG. 2 is a cross-sectional view showing an embodiment of a circuit member connection structure.
  • a circuit member connection structure 100 shown in FIG. 2 includes a first circuit board 11 and a first circuit member 10 having a first circuit electrode 13 formed on the main surface thereof, and a second circuit board 21. And a second circuit member 20 having a second circuit electrode 23 formed on the main surface thereof and disposed so that the second circuit electrode 23 and the first circuit electrode 13 face each other.
  • the circuit connection part 1a interposed between the first circuit member 10 and the second circuit member 20 is provided.
  • connection part 1a is a cured product formed by curing the circuit connection material 1, and is composed of a cured resin layer 3a and conductive particles 5.
  • the connection portion 1a bonds the first circuit member 10 and the second circuit member 20 so that the first circuit electrode 13 and the second circuit electrode 23 facing each other are electrically connected. .
  • the first circuit electrode 13 and the second circuit electrode 23 facing each other are electrically connected via the conductive particles 5. Even when the connection portion does not contain the conductive particles 5, the first circuit electrode 13 and the second circuit electrode 23 can be electrically connected via the circuit connection material 1.
  • the first substrate 11 is a resin film containing at least one resin selected from the group consisting of polyester terephthalate, polyethersulfone, epoxy resin, acrylic resin and polyimide resin.
  • the first circuit electrode 13 is formed of a material having conductivity that can function as an electrode (preferably at least one selected from the group consisting of gold, silver, tin, platinum group metals, and indium-tin oxide). Has been.
  • the second substrate 21 is a multilayer wiring board formed of an insulating substrate such as silicon, gallium / arsenic, etc. of semiconductor chips, glass, ceramics, glass / epoxy composite, plastic, or the like.
  • the second circuit electrode 23 includes a conductor portion 23 a and a coating 23 b that forms a portion of the surface of the circuit electrode 23 that contacts the connection portion 1 a.
  • the conductor portion 23a is formed of a material having conductivity that allows the circuit electrode 23 to function as an electrode (preferably at least one selected from the group consisting of gold, silver, tin, platinum group metals, and indium-tin oxide). Has been.
  • the coating 23b is a coating made of a material containing an organic resin, and preferably contains an organic resin such as an imidazole compound.
  • the coating 23b is formed by subjecting the second substrate 21 to an OSP (Organic Solderability Preservative) treatment.
  • OSP treatment is a method for treating a substrate, also called a water-soluble preflux, and generally an OSP film is formed by treating a substrate with a solution containing an imidazole compound.
  • a film containing an imidazole compound is a film formed by bonding complexes formed from an imidazole derivative and a metal to each other on the electrode surface.
  • the film containing the imidazole compound can be formed by subjecting the substrate on which the circuit electrode is formed to an OSP treatment with a solution containing the imidazole compound.
  • a benzimidazole derivative is preferably used from the viewpoint of heat resistance.
  • the OSP treatment commercially available product names “Tough Ace F2”, “Tough Ace F2 (LX)” manufactured by Shikoku Kasei Co., Ltd., and “DoCoat GVII” manufactured by Sanwa Laboratory Co., Ltd.
  • Endone Use the product names “Entek106A”, “Entek106A (X)” manufactured by Inc, or the product names “MECSEAL CL-5824S”, “MECSEAL CL-5018”, and “MECSEAL CL-5018S” manufactured by MEC Co., Ltd. Can be done. These can be used alone or in combination of two or more.
  • the circuit connection material according to the present invention can be used for connection of a circuit member in which at least one of the first and second circuit electrodes has a film made of a material containing an organic resin.
  • a circuit member connection structure shown in FIG. 3 not only the second circuit electrode 23 but also the first circuit electrode 13 includes the conductor portion 13 a and the surface of the circuit electrode 13.
  • a film 13b that forms a portion in contact with the connecting portion 1a may be included.
  • the coating 13b is formed by the same method as the coating 23b.
  • the circuit member connection structure 100 includes, for example, a first circuit member 10, the above-described film-like circuit connection material 1, and a second circuit member 20, and a first circuit electrode 13 and a second circuit electrode.
  • the first and second circuit electrodes 13 and 23 are electrically connected to each other by heating, pressurizing, or irradiating light with the laminate laminated in this order so as to oppose each other.
  • the circuit member 10 and the second circuit member 20 are connected to each other.
  • the circuit-connecting material 1 formed on the support film is temporarily bonded to the second circuit member 20 by heating and pressurizing the circuit-connecting material 1 while being bonded together, After peeling off the support film, the first circuit member 10 can be placed while being aligned so that the circuit electrodes face each other to prepare a laminate.
  • the conditions for heating and pressurizing the laminate are appropriately adjusted so that the circuit connecting material is cured and sufficient adhesive strength is obtained according to the curability of the composition in the circuit connecting material.
  • the substrate included in the circuit member constituting the connection structure may be a semiconductor chip such as silicon and gallium / arsenic, and an insulating substrate such as glass, ceramics, glass / epoxy composite, and plastic.
  • circuit connection material (1-1) Preparation of each component constituting adhesive composition “Perhexa25O”: 2,5-dimethyl-2,5-di (2-ethylhexanoylperoxy) hexane (Nippon Yushi, product name) “UN5500”: Urethane acrylate oligomer (trade name, manufactured by Negami Kogyo) “DCP-A”: dicyclopentadiene type diacrylate (product name, manufactured by Toagosei Co., Ltd.) “M-215”: Isocyanuric acid EO-modified diacrylate (product name) “P-2M”: 2-methacryloyloxyethyl acid phosphate (trade name, manufactured by Kyoeisha Chemical Co., Ltd.) “HX3941HP-SS”: An anionic polymerization type latent curing agent-containing epoxy resin (containing 35% by mass of an imidazole microcapsule type curing agent, trade name, manufactured by Asah
  • Conductive Particle A a conductive material having a core made of Ni particles having an average particle diameter of 9 ⁇ m and a top layer made of gold formed by plating the core with gold. Particles were prepared.
  • conductive particles B conductive particles made of Ni particles having an average particle size of 9 ⁇ m were prepared as “conductive particles B”.
  • conductive particles C conductive particles made of Ni particles having an average particle diameter of 4 ⁇ m and having a large number of protrusions on the surface were prepared.
  • Example 2 A film-like circuit connection material was obtained in the same manner as in Example 1 except that the blending amount of the conductive particles A was changed to 5 parts by mass.
  • compositions of the circuit connection materials of Examples 1 to 3 are shown in Table 1 in parts by mass (in terms of nonvolatile content), and the compositions of the circuit connection materials in Comparative Examples 1 to 5 are shown in Table 2 in terms of parts by mass (in terms of nonvolatile content).
  • connection resistance value between circuits including the circuit connection part of the produced connection structure was measured by a two-terminal method using a digital multimeter.
  • the connection resistance is measured immediately after the connection, after performing a high temperature and high humidity treatment for 1000 hours in a constant temperature and humidity chamber of 85 ° C. and 85% RH, and a thermal shock test of 1000 cycles of ⁇ 40 ° C. to + 100 ° C. Measurements were made after each. The results are shown in Table 3.
  • circuit connection materials of Examples 1 to 3 had a small increase in connection resistance and excellent connection reliability both after the high temperature and high humidity treatment and after the thermal shock test.
  • the contact resistance after each test greatly increased in the circuit connection materials of Comparative Examples 1 and 4 using conductive particles made of only Ni particles.
  • the circuit connection materials of Comparative Examples 2, 3 and 5 using conductive particles made of Ni particles having protrusions on the surface showed a relatively small increase in connection resistance in the high temperature and high humidity test, but after the thermal shock test. The connection resistance increased significantly.
  • SYMBOLS 1 Circuit connection material, 1a ... Connection part, 3 ... Resin layer, 3a ... Hardened resin layer, 5 ... Conductive particle, 10 ... 1st circuit member, 11 ... 1st board

Abstract

Disclosed is a circuit connecting material for electrically connecting circuit electrodes that face each other. The circuit connecting material contains an adhesive composition and conductive particles. The conductive particles have an average particle diameter of 5-20 μm, and each conductive particle has a core body that is formed of a metal having a Vickers hardness of 300-1000 or a core body that is formed of nickel, and an outermost layer that is formed of a noble metal and covers the surface of the core body.

Description

回路接続材料及びそれを用いた回路部材の接続構造Circuit connection material and circuit member connection structure using the same
 本発明は、回路接続材料及びそれを用いた回路部材の接続構造に関する。 The present invention relates to a circuit connecting material and a circuit member connecting structure using the same.
 半導体素子や液晶表示素子用の接着剤としては、接着性に優れ、かつ高い信頼性を示すエポキシ樹脂等の熱硬化性樹脂が用いられている(例えば、特許文献1参照)。上記接着剤の構成成分としては、エポキシ樹脂、エポキシ樹脂と反応性を有するフェノール樹脂等の硬化剤、エポキシ樹脂と硬化剤との反応を促進する熱潜在性触媒が一般に用いられている。熱潜在性触媒は、接着剤の硬化温度及び硬化速度を決定する重要な因子となっており、室温での貯蔵安定性及び加熱時の硬化速度の観点から種々の化合物が用いられている。 As an adhesive for a semiconductor element or a liquid crystal display element, a thermosetting resin such as an epoxy resin having excellent adhesiveness and high reliability is used (for example, see Patent Document 1). As a constituent component of the adhesive, a curing agent such as an epoxy resin, a phenol resin having reactivity with the epoxy resin, and a thermal latent catalyst for promoting the reaction between the epoxy resin and the curing agent are generally used. The heat latent catalyst is an important factor for determining the curing temperature and curing rate of the adhesive, and various compounds are used from the viewpoint of storage stability at room temperature and curing rate during heating.
 また、最近では、アクリレート誘導体やメタクリレート誘導体等のラジカル重合性化合物とラジカル重合開始剤である過酸化物とから構成されるラジカル硬化型接着剤が注目されている。ラジカル硬化型接着剤は、低温かつ短時間での硬化が可能である(例えば、特許文献2~4参照)。 Recently, a radical curable adhesive composed of a radical polymerizable compound such as an acrylate derivative or a methacrylate derivative and a peroxide as a radical polymerization initiator has attracted attention. The radical curable adhesive can be cured at a low temperature in a short time (see, for example, Patent Documents 2 to 4).
特開平1-113480号公報Japanese Patent Laid-Open No. 1-113480 特開2002-203427号公報JP 2002-203427 A 国際公開第98/044067号パンフレットInternational Publication No. 98/044067 Pamphlet 特開2005-314696号公報JP 2005-314696 A
 これらの技術は、液晶パネル等のフラット・パネル・ディスプレイ(Flat Panel Display、以下「FPD」という)の分野で主に普及してきており、プリント配線板(Printed Wiring Board、以下場合により「PWB」という)と、テープ・キャリア・パッケージ(Tape Carrier Package、以下「TCP」という)又はチップ・オン・フレックス(Chip On Flex、以下「COF」という)との接続に使用され始めた。FPDの分野のフレキシブルプリント配線板(Flexible Printed Circuits、以下場合により「FPC」という)とPWBとの接続には回路接続材料が使用され、回路には一般的に金めっき処理が施されている。一方、チップやコンデンサ等の部品が実装されるPWBでは、半田による実装が主流である。良好な半田付け性を得るため、回路の表面処理として、イミダゾール化合物を含む樹脂被膜を形成する処理が試みられている。また、大型のマザーボード等には、金を使用せずコストを削減できることから、イミダゾール化合物等の有機樹脂を含む溶液で処理(以下場合により「OSP処理」という)することにより、有機被膜(以下、場合により「OSP膜」という)を形成するのが一般的である。このようなOSP処理された回路基板の実装においても、上記回路接続材料の使用が検討されつつある。 These technologies are mainly used in the field of flat panel displays such as liquid crystal panels (Flat Panel Display, hereinafter referred to as “FPD”), and printed wiring boards (Printed Board, sometimes referred to as “PWB” in some cases). ) And a tape carrier package (Tape Carrier Package, hereinafter referred to as “TCP”) or a chip-on-flex (hereinafter referred to as “COF”). A circuit connection material is used for connection between a flexible printed wiring board (Flexible Printed Circuits, hereinafter referred to as “FPC” in some cases) in the field of FPD and PWB, and the circuit is generally subjected to gold plating. On the other hand, in PWB on which components such as a chip and a capacitor are mounted, mounting by solder is the mainstream. In order to obtain good solderability, an attempt has been made to form a resin film containing an imidazole compound as a surface treatment of a circuit. In addition, since it is possible to reduce the cost without using gold for a large mother board or the like, an organic coating (hereinafter referred to as “OSP treatment” in some cases) is treated with a solution containing an organic resin such as an imidazole compound. In some cases, an “OSP film” is generally formed. The use of the circuit connection material is also being studied for mounting such an OSP-treated circuit board.
 エポキシ樹脂を用いたアニオン重合系の接着剤であれば、OSP処理された基板に対しても、良好な接着力と接続信頼性を与えることができる。しかしながら、高密度実装の流れから、回路基板の構造は多層構成が主流となっており、接続時の熱を逃がすために、接続部の近傍にビアホールやスルーホールなどが設けられている。このビアホールやスルーホールのために、アニオン重合系の接着剤の硬化に十分な熱量を与えることができない。十分な時間を掛けて必要な熱量を与えると長時間の接続が必要となり、アニオン重合系の接着剤を用いることは、生産効率上、現実的ではない。一方、ラジカル硬化型接着剤は、FPD分野のFPCとPWBとの接続に使用され10秒未満の短時間でも硬化可能であるが、OSP処理された基板に適用した場合には、金めっき処理された基板に適用した場合と比較して、接続抵抗が上昇しやすいという問題がある。これはOSP膜自体が非導電性であるためである。 An anionic polymerization type adhesive using an epoxy resin can give good adhesion and connection reliability even to an OSP-treated substrate. However, due to the flow of high-density mounting, the structure of the circuit board is mainly a multilayer structure, and via holes, through holes, and the like are provided in the vicinity of the connection portions in order to release heat at the time of connection. Due to the via holes and through holes, it is not possible to give a sufficient amount of heat to cure the anionic polymerization adhesive. If a sufficient amount of heat is applied for a sufficient amount of time, a long-time connection is required, and using an anionic polymerization adhesive is not practical in terms of production efficiency. On the other hand, radical curable adhesives are used to connect FPC and PWB in the FPD field and can be cured in a short time of less than 10 seconds, but when applied to OSP-treated substrates, they are gold-plated. There is a problem that the connection resistance is likely to increase as compared with the case of applying to a different substrate. This is because the OSP film itself is non-conductive.
 そこで、本発明は、低温かつ短時間での硬化が可能であり、かつOSP処理された基板に適用した場合に十分に高い接続信頼性を与える回路接続材料、及びそれを用いた回路部材の接続構造を提供することを目的とする。 Accordingly, the present invention provides a circuit connection material that can be cured at a low temperature in a short time and that provides sufficiently high connection reliability when applied to an OSP-treated substrate, and connection of circuit members using the circuit connection material The purpose is to provide a structure.
 本発明は、対向する回路電極同士を電気的に接続するための回路接続材料であって、接着剤組成物と、導電粒子とを含有し、導電粒子は、ビッカース硬度300~1000の金属からなる核体と、該核体の表面を被覆する貴金属からなる最表層とを有し、平均粒径が5~20μmである回路接続材料を提供する。 The present invention is a circuit connecting material for electrically connecting opposing circuit electrodes, and contains an adhesive composition and conductive particles, and the conductive particles are made of a metal having a Vickers hardness of 300 to 1000. Provided is a circuit connecting material having a core and an outermost layer made of a noble metal covering the surface of the core, and having an average particle diameter of 5 to 20 μm.
 本発明はまた、対向する回路電極同士を電気的に接続するための回路接続材料であって、接着剤組成物と、導電粒子とを含有し、導電粒子は、ニッケルからなる核体と、該核体の表面を被覆する貴金属からなる最表層とを有し、平均粒径が5~20μmである回路接続材料を提供する。 The present invention is also a circuit connection material for electrically connecting opposing circuit electrodes, containing an adhesive composition and conductive particles, the conductive particles comprising a core made of nickel, There is provided a circuit connecting material having an outermost layer made of a noble metal covering the surface of a core and having an average particle diameter of 5 to 20 μm.
 本発明の回路接続材料は、上述のような導電粒子を接着剤組成物と共に含有することにより、低温かつ短時間での硬化が可能であり、かつOSP処理された基板に対しても良好な接続信頼性を示すことができる。 The circuit connection material of the present invention can be cured at a low temperature in a short time by containing the conductive particles as described above together with the adhesive composition, and can be connected well to a substrate subjected to OSP treatment. Reliability can be shown.
 より短時間での硬化を可能とする観点から、本発明の回路接続材料において、接着剤組成物が、ラジカル重合性物質と、加熱により遊離ラジカルを発生する硬化剤とを含むことが好ましい。 From the viewpoint of enabling curing in a shorter time, in the circuit connection material of the present invention, the adhesive composition preferably includes a radical polymerizable substance and a curing agent that generates free radicals upon heating.
 また、接着剤組成物が、エポキシ樹脂と、潜在性硬化剤とを含む場合、回路接続材料を用いた回路部材の接続構造の接続信頼性をより一層向上することができる。 Also, when the adhesive composition contains an epoxy resin and a latent curing agent, the connection reliability of the circuit member connection structure using the circuit connection material can be further improved.
 本発明は、第一の回路基板の主面上に第一の回路電極が形成された第一の回路部材と、第二の回路基板の主面上に第二の回路電極が形成され、第二の回路電極が第一の回路電極と対向配置されるように配置された第二の回路部材と、第一の回路基板と第二の回路基板との間に設けられ、第一及び第二の回路電極が電気的に接続されるように第一の回路部材と第二の回路部材とを接続する回路接続部と、を備えた回路部材の接続構造であって、回路接続部が、上記本発明の回路接続材料の硬化物であり、第一及び第二の回路電極のうち少なくとも一方が、イミダゾール化合物から形成される被膜を有する回路部材の接続構造を提供する。 The present invention includes a first circuit member having a first circuit electrode formed on a main surface of a first circuit board, a second circuit electrode formed on a main surface of a second circuit board, A second circuit member disposed so that the second circuit electrode is opposed to the first circuit electrode; and the first circuit board and the second circuit board, A circuit connecting portion for connecting the first circuit member and the second circuit member so that the circuit electrodes are electrically connected to each other. A cured product of the circuit connection material of the present invention, wherein at least one of the first and second circuit electrodes has a circuit member connection structure having a film formed of an imidazole compound.
 従来の短時間硬化型の回路接続材料を用いた回路部材の接続構造では、回路電極がOSP膜を有している場合、10秒未満の短時間では接続性を向上することが難しい傾向にある。これに対して、本発明の回路部材の接続構造は、回路接続部が上記本発明の回路接続材料の硬化物であることにより、10秒未満の接続時間でも良好な接続性を得ることができる。 In the circuit member connection structure using the conventional short-curing circuit connection material, when the circuit electrode has an OSP film, it tends to be difficult to improve the connectivity in a short time of less than 10 seconds. . On the other hand, the circuit member connection structure of the present invention can obtain good connectivity even with a connection time of less than 10 seconds, because the circuit connection portion is a cured product of the circuit connection material of the present invention. .
 本発明の回路部材の接続構造は、回路電極表面を、有機樹脂を含む材料からなる被膜で形成させているために、回路電極が酸化から守られ、良好な半田付け性を得ることができる。また、本発明の接続構造は、上記本発明の回路接続材料により回路部材同士が接続されていることにより、十分に高い接着強度及び接続信頼性を有している。 In the circuit member connection structure of the present invention, since the surface of the circuit electrode is formed by a film made of a material containing an organic resin, the circuit electrode is protected from oxidation and good solderability can be obtained. The connection structure of the present invention has sufficiently high adhesive strength and connection reliability because the circuit members are connected by the circuit connection material of the present invention.
 本発明によれば、低温かつ短時間での硬化が可能であり、かつOSP処理された基板に適用した場合に十分に高い接続信頼性を与える回路接続材料、及びそれを用いた回路部材の接続構造を提供することができる。 According to the present invention, a circuit connection material that can be cured at a low temperature in a short time and that provides sufficiently high connection reliability when applied to an OSP-treated substrate, and connection of circuit members using the circuit connection material Structure can be provided.
回路接続材料の一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of a circuit connection material. 接続構造の一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of a connection structure. 接続構造の一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of a connection structure.
 以下、必要に応じて図面を参照しつつ、本発明の好適な実施形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。なお、図面中、同一要素には同一符号を付すこととし、重複する説明は省略する。また、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。更に、図面の寸法比率は図示の比率に限られるものではない。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings as necessary. However, the present invention is not limited to the following embodiments. In the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted. Further, the positional relationship such as up, down, left and right is based on the positional relationship shown in the drawings unless otherwise specified. Further, the dimensional ratios in the drawings are not limited to the illustrated ratios.
 本実施形態に係る回路接続材料は、回路電極同士を電気的に接続するために用いられる接着剤である。図1は、回路接続材料の一実施形態を示す断面図である。図1に示す回路接続材料1は、樹脂層3と、樹脂層3内に分散している複数の導電粒子5とから構成され、フィルム状の形状を有する。 The circuit connection material according to the present embodiment is an adhesive used for electrically connecting circuit electrodes. FIG. 1 is a cross-sectional view showing an embodiment of a circuit connecting material. A circuit connecting material 1 shown in FIG. 1 is composed of a resin layer 3 and a plurality of conductive particles 5 dispersed in the resin layer 3 and has a film shape.
 以下、回路接続材料1の各構成材料について説明する。 Hereinafter, each constituent material of the circuit connection material 1 will be described.
(導電粒子)
 導電粒子5は、ビッカース硬度300~1000の金属からなる核体と、該核体の表面を被覆する貴金属からなる最表層とを有し、平均粒径が5~20μmである。また、導電粒子5は、ニッケルからなる核体と、該核体の表面を被覆する貴金属からなる最表層とを有し、平均粒径が5~20μmである。このような導電粒子は、回路電極の非導電性の被膜を貫通しやすく、接続抵抗の上昇を抑制しやすい。そのため、上記導電粒子を含有する回路接続材料を用いて、接続信頼性に優れる回路部材の接続構造を作製することができる。
(Conductive particles)
The conductive particles 5 have a core made of a metal having a Vickers hardness of 300 to 1000 and an outermost layer made of a noble metal covering the surface of the core, and have an average particle diameter of 5 to 20 μm. The conductive particles 5 have a core made of nickel and an outermost layer made of a noble metal covering the surface of the core, and have an average particle diameter of 5 to 20 μm. Such conductive particles tend to penetrate the non-conductive coating of the circuit electrode and easily suppress an increase in connection resistance. Therefore, a circuit member connection structure having excellent connection reliability can be produced using the circuit connection material containing the conductive particles.
 導電粒子5の核体は、ニッケル、クロム、モリブデン、マンガン、コバルト、鉄、マンガン、バナジウム、チタン、プラチナ、イリジウム、オスミウム、タングステン、タンタル、ニオブ、ジルコニウム、パラジウム等の遷移金属から選ばれる少なくとも一種の金属で構成されることが好ましく、ニッケルで構成されていることがより好ましい。 The core of the conductive particles 5 is at least one selected from transition metals such as nickel, chromium, molybdenum, manganese, cobalt, iron, manganese, vanadium, titanium, platinum, iridium, osmium, tungsten, tantalum, niobium, zirconium, and palladium. It is preferable that it is comprised with the metal of this, and it is more preferable that it is comprised with nickel.
 核体を構成する金属のビッカース硬度は、300~1000であり、400~800であることがより好ましく、500~700であることが更に好ましい。核体のビッカース硬度が300未満では、導電粒子が変形しやすく、電極上のOSP膜の排除性が低下する傾向があり、1000を超えると、粒子が変形しづらく、良好な接続信頼性を与えるのに十分な接触面積を確保でき難くなる。 The Vickers hardness of the metal constituting the core is 300 to 1000, more preferably 400 to 800, and still more preferably 500 to 700. If the core has a Vickers hardness of less than 300, the conductive particles are likely to be deformed, and the OSP film on the electrode tends to be excluded, and if it exceeds 1000, the particles are difficult to deform and give good connection reliability. It is difficult to secure a sufficient contact area.
 導電粒子5の最表層は、金、銀、白金、パラジウム、ロジウム、イリジウム、ルテニルム、オスミウム等の貴金属から選ばれる少なくとも一種の金属で構成されていることが好ましく、金又は白金で構成されていることがより好ましく、金で構成されていることが更に好ましい。導電粒子5の最表層をこれらの金属で構成することにより、回路接続材料1のポットライフを十分に長くできる。 The outermost layer of the conductive particles 5 is preferably composed of at least one metal selected from noble metals such as gold, silver, platinum, palladium, rhodium, iridium, ruthenium, osmium, and is composed of gold or platinum. It is more preferable that it is made of gold. By constituting the outermost layer of the conductive particles 5 with these metals, the pot life of the circuit connecting material 1 can be sufficiently lengthened.
 導電粒子5の最表層の厚みは、0.03~0.4μmであることが好ましく、0.08~0.2μmであることがより好ましい。最表層の厚みが0.03未満では、導電粒子の導電性が低下して接続抵抗が増加する傾向があり、0.4μmを超えると、核体に最表層を形成する際のコストが高くなり、廉価性に劣る傾向がある。なお、核体はその全面が貴金属からなる最表層で覆われていることが好ましいが、本発明の効果を逸脱しない範囲で核体の一部が露出していてもよい。 The thickness of the outermost layer of the conductive particles 5 is preferably 0.03 to 0.4 μm, more preferably 0.08 to 0.2 μm. If the thickness of the outermost layer is less than 0.03, the conductivity of the conductive particles tends to decrease and the connection resistance tends to increase. If the thickness exceeds 0.4 μm, the cost for forming the outermost layer on the core increases. , Tend to be inferior in price. In addition, although it is preferable that the whole nucleus is covered with the outermost layer which consists of noble metals, a part of nucleus may be exposed in the range which does not deviate from the effect of this invention.
 導電粒子の平均粒径は5~20μmであるが、8~20μmであることが好ましく、8~15μmであることがより好ましい。導電粒子の平均粒径が5μm未満では、導電粒子と電極とが接触する前に樹脂層3の硬化が進行し、20μmを越えると、導電粒子の曲率半径が大きいために、電極上のOSP膜の排除性が低下し、いずれの場合も電気的導通が取れづらくなる。なお、本願で規定する導電粒子の平均粒径は、「SALD-1000」(島津製作所製、商品名)を用いて測定されたレーザー回折方式による測定値である。 The average particle diameter of the conductive particles is 5 to 20 μm, preferably 8 to 20 μm, and more preferably 8 to 15 μm. When the average particle diameter of the conductive particles is less than 5 μm, the resin layer 3 cures before the conductive particles come into contact with the electrode. When the average particle diameter exceeds 20 μm, the radius of curvature of the conductive particles is large. In any case, it becomes difficult to obtain electrical continuity. The average particle diameter of the conductive particles defined in the present application is a value measured by a laser diffraction method measured using “SALD-1000” (manufactured by Shimadzu Corporation, trade name).
 導電粒子5の配合量は用途により適宜設定されるが、通常、接着剤層3(すなわち、回路接続材料1のうち導電粒子5以外の部分)100体積部に対して0.1~30体積部の範囲内である。更に、同一回路基板上で隣り合う回路電極同士の短絡を防止する観点からは、導電粒子の配合量は0.1~10体積部であることがより好ましい。 The blending amount of the conductive particles 5 is appropriately set depending on the application, but usually 0.1 to 30 parts by volume with respect to 100 parts by volume of the adhesive layer 3 (that is, the part other than the conductive particles 5 in the circuit connecting material 1). Is within the range. Further, from the viewpoint of preventing short circuit between adjacent circuit electrodes on the same circuit board, the blending amount of the conductive particles is more preferably 0.1 to 10 parts by volume.
(接着剤組成物)
 樹脂層3は、遊離ラジカルを発生する硬化剤と、ラジカル重合性物質とを含有することが好ましい。言い換えると、回路接続材料1は、遊離ラジカルを発生する硬化剤と、ラジカル重合性物質とを含む接着剤組成物と、導電粒子5とを含有することが好ましい。回路接続材料1が加熱されたときにラジカル重合性物質の重合により樹脂層3において架橋構造が形成され、回路接続材料1の硬化物が形成される。この場合、回路接続材料1は、ラジカル硬化型の接着剤として機能する。
(Adhesive composition)
The resin layer 3 preferably contains a curing agent that generates free radicals and a radical polymerizable substance. In other words, the circuit connecting material 1 preferably contains an adhesive composition containing a curing agent that generates free radicals, a radical polymerizable substance, and the conductive particles 5. When the circuit connecting material 1 is heated, a crosslinked structure is formed in the resin layer 3 by polymerization of the radical polymerizable substance, and a cured product of the circuit connecting material 1 is formed. In this case, the circuit connection material 1 functions as a radical curable adhesive.
 回路接続材料1に用いられる遊離ラジカルを発生する硬化剤は、過酸化化合物、アゾ系化合物などの加熱により分解して遊離ラジカルを発生するものであり、目的とする接続温度、接続時間、ポットライフ等により適宜選定される。配合量は回路接続材料1の全体質量を基準として、0.05~10質量%が好ましく、0.1~5質量%(回路接続材料1の全体質量を100質量部として、0.05~10質量部が好ましく、0.1~5質量部)がより好ましい。遊離ラジカルを発生する硬化剤は、具体的には、ジアシルパーオキサイド、パーオキシジカーボネート、パーオキシエステル、パーオキシケタール、ジアルキルパーオキサイド、ハイドロパーオキサイド等から選定できる。また、回路部材の接続端子の腐食を抑えるために、パーオキシエステル、ジアルキルパーオキサイド、ハイドロパーオキサイドから選定されることが好ましく、高反応性が得られるパーオキシエステルから選定されることがより好ましい。 The curing agent that generates free radicals used in the circuit connection material 1 is a substance that decomposes by heating a peroxide compound, an azo compound, or the like to generate free radicals. The target connection temperature, connection time, pot life It is selected as appropriate. The blending amount is preferably 0.05 to 10% by mass, based on the total mass of the circuit connecting material 1, and 0.1 to 5% by mass (0.05 to 10 Part by mass, preferably 0.1 to 5 parts by mass). Specifically, the curing agent that generates free radicals can be selected from diacyl peroxide, peroxydicarbonate, peroxyester, peroxyketal, dialkyl peroxide, hydroperoxide, and the like. Further, in order to suppress corrosion of the connection terminals of the circuit member, it is preferably selected from peroxyesters, dialkyl peroxides, and hydroperoxides, and more preferably selected from peroxyesters that provide high reactivity. .
 ジアシルパーオキサイド類としては、例えば、2,4-ジクロロベンゾイルパーオキサイド、3,5,5-トリメチルヘキサノイルパーオキサイド、オクタノイルパーオキサイド、ラウロイルパーオキサイド、ステアロイルパーオキサイド、スクシニックパーオキサイド、ベンゾイルパーオキシトルエン及びベンゾイルパーオキサイドが挙げられる。 Examples of diacyl peroxides include 2,4-dichlorobenzoyl peroxide, 3,5,5-trimethylhexanoyl peroxide, octanoyl peroxide, lauroyl peroxide, stearoyl peroxide, succinic peroxide, and benzoyl peroxide. Examples include oxytoluene and benzoyl peroxide.
 パーオキシジカーボネート類としては、例えば、ジ-n-プロピルパーオキシジカーボネート、ジイソプロピルパーオキシジカーボネート、ビス(4-t-ブチルシクロヘキシル)パーオキシジカーボネート、ジ-2-エトキシメトキシパーオキシジカーボネート、ジ(2-エチルヘキシルパーオキシ)ジカーボネート、ジメトキシブチルパーオキシジカーボネート及びジ(3-メチル-3-メトキシブチルパーオキシ)ジカーボネートが挙げられる。 Examples of peroxydicarbonates include di-n-propyl peroxydicarbonate, diisopropyl peroxydicarbonate, bis (4-tert-butylcyclohexyl) peroxydicarbonate, and di-2-ethoxymethoxyperoxydicarbonate. Di (2-ethylhexylperoxy) dicarbonate, dimethoxybutylperoxydicarbonate and di (3-methyl-3-methoxybutylperoxy) dicarbonate.
 パーオキシエステル類としては、例えば、1,1,3,3-テトラメチルブチルパーオキシネオデカノエート、1-シクロヘキシル-1-メチルエチルパーオキシノエデカノエート、t-ヘキシルパーオキシネオデカノエート、t-ブチルパーオキシピバレート、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノネート、2,5-ジメチル-2,5-ジ(2-エチルヘキサノイルパーオキシ)ヘキサン、1-シクロヘキシル-1-メチルエチルパーオキシ2-エチルヘキサノネート、t-ヘキシルパーオキシ-2-エチルヘキサノネート、t-ブチルパーオキシ-2-エチルヘキサノネート、t-ブチルパーオキシイソブチレート、1,1-ビス(t-ブチルパーオキシ)シクロヘキサン、t-ヘキシルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシ-3,5,5-トリメチルヘキサノネート、t-ブチルパーオキシラウレート、2,5-ジメチル-2,5-ジ(m-トルオイルパーオキシ)ヘキサン、t-ブチルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシ-2-エチルヘキシルモノカーボネート、t-ヘキシルパーオキシベンゾエート及びt-ブチルパーオキシアセテートが挙げられる。 Examples of peroxyesters include 1,1,3,3-tetramethylbutylperoxyneodecanoate, 1-cyclohexyl-1-methylethylperoxynodecanoate, and t-hexylperoxyneodecanoate. Ate, t-butylperoxypivalate, 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanoate, 2,5-dimethyl-2,5-di (2-ethylhexanoylperoxy) ) Hexane, 1-cyclohexyl-1-methylethylperoxy 2-ethylhexanate, t-hexylperoxy-2-ethylhexanate, t-butylperoxy-2-ethylhexanoate, t-butylper Oxyisobutyrate, 1,1-bis (t-butylperoxy) cyclohexane, t-hexylperoxy Propyl monocarbonate, t-butylperoxy-3,5,5-trimethylhexanonate, t-butylperoxylaurate, 2,5-dimethyl-2,5-di (m-toluoylperoxy) hexane, Examples include t-butyl peroxyisopropyl monocarbonate, t-butyl peroxy-2-ethylhexyl monocarbonate, t-hexyl peroxybenzoate, and t-butyl peroxyacetate.
 パーオキシケタール類としては、例えば、1,1-ビス(t-ヘキシルパーオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(t-ヘキシルパーオキシ)シクロヘキサン、1,1-ビス(t-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン、1、1-(t-ブチルパーオキシ)シクロドデカン及び2,2-ビス-(t-ブチルパーオキシ)デカンが挙げられる。 Examples of peroxyketals include 1,1-bis (t-hexylperoxy) -3,3,5-trimethylcyclohexane, 1,1-bis (t-hexylperoxy) cyclohexane, 1,1-bis. (T-Butylperoxy) -3,3,5-trimethylcyclohexane, 1,1- (t-butylperoxy) cyclododecane and 2,2-bis- (t-butylperoxy) decane.
 ジアルキルパーオキサイド類としては、例えば、α,α’ビス(t-ブチルパーオキシ)ジイソプロピルベンゼン、ジクミルパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン及びt-ブチルクミルパーオキサイドが挙げられる。 Examples of the dialkyl peroxides include α, α′bis (t-butylperoxy) diisopropylbenzene, dicumyl peroxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane and t -Butylcumyl peroxide.
 ハイドロパーオキサイド類としては、例えば、ジイソプロピルベンゼンハイドロパーオキサイド及びクメンハイドロパーオキサイドが挙げられる。 Examples of hydroperoxides include diisopropylbenzene hydroperoxide and cumene hydroperoxide.
 これらの遊離ラジカルを発生する硬化剤は、単独又は混合して使用することができ、分解促進剤、抑制剤等を混合して用いてもよい。また、これらの硬化剤をポリウレタン系、ポリエステル系の高分子物質等で被覆してマイクロカプセル化したものは、可使時間が延長されるため好ましい。 These curing agents that generate free radicals can be used alone or in combination, and may be used in combination with a decomposition accelerator, an inhibitor, and the like. In addition, it is preferable to use these hardeners coated with a polyurethane-based or polyester-based polymer substance to form microcapsules because the pot life is extended.
 回路接続材料1に用いられるラジカル重合性物質とは、ラジカルにより重合する官能基を有する物質であり、アクリレート、メタクリレート、マレイミド化合物、シトラコンイミド樹脂、ナジイミド樹脂等が挙げられる。ラジカル重合性物質の配合量は回路接続材料1の全体質量を100質量部として、20~50質量部が好ましく、30~40質量部がより好ましい。ラジカル重合性物質はモノマー及びオリゴマーのいずれの状態でも用いることが可能であり、モノマーとオリゴマーを併用することも可能である。 The radical polymerizable substance used for the circuit connecting material 1 is a substance having a functional group that is polymerized by radicals, and examples thereof include acrylates, methacrylates, maleimide compounds, citraconic imide resins, and nadiimide resins. The blending amount of the radical polymerizable substance is preferably 20 to 50 parts by mass, more preferably 30 to 40 parts by mass, with the total mass of the circuit connecting material 1 being 100 parts by mass. The radical polymerizable substance can be used in any state of a monomer and an oligomer, and a monomer and an oligomer can be used in combination.
 上記アクリレート(対応するメタクリレートも含む、以下同じ)としては、例えば、メチルアクリレート、エチルアクリレート、イソプロピルアクリレート、イソブチルアクリレート、エチレングリコールジアクリレート、ジエチレングリコールジアクリレート、トリメチロールプロパントリアクリレート、テトラメチロールメタンテトラアクリレート、2-ヒドロキシ-1,3-ジアクリロキシプロパン、2,2-ビス[4-(アクリロキシメトキシ)フェニル]プロパン、2,2-ビス[4-(アクリロキシポリエトキシ)フェニル]プロパン、ジシクロペンテニルアクリレート、トリシクロデカニルアクリレート、トリス(アクリロイロキシエチル)イソシアヌレート及びウレタンアクリレートが挙げられる。これらは単独で又は2種類以上を組み合わせて用いることができ、必要によりハイドロキノン、メチルエーテルハイドロキノン類などの重合禁止剤を適宜用いてもよい。また、ジシクロペンテニル基及び/又はトリシクロデカニル基及び/又はトリアジン環を有する場合は、耐熱性が向上するので好ましい。 Examples of the acrylate (including the corresponding methacrylate, hereinafter the same) include, for example, methyl acrylate, ethyl acrylate, isopropyl acrylate, isobutyl acrylate, ethylene glycol diacrylate, diethylene glycol diacrylate, trimethylol propane triacrylate, tetramethylol methane tetraacrylate, 2-hydroxy-1,3-diaacryloxypropane, 2,2-bis [4- (acryloxymethoxy) phenyl] propane, 2,2-bis [4- (acryloxypolyethoxy) phenyl] propane, dicyclo Examples include pentenyl acrylate, tricyclodecanyl acrylate, tris (acryloyloxyethyl) isocyanurate, and urethane acrylate. These may be used alone or in combination of two or more, and a polymerization inhibitor such as hydroquinone or methyl ether hydroquinone may be used as necessary. Moreover, when it has a dicyclopentenyl group and / or a tricyclodecanyl group and / or a triazine ring, since heat resistance improves, it is preferable.
 上記マレイミド化合物としては、分子中にマレイミド基を少なくとも2個以上含有するもので、例えば、1-メチル-2,4-ビスマレイミドベンゼン、N,N’-m-フェニレンビスマレイミド、N,N’-p-フェニレンビスマレイミド、N,N’-m-トルイレンビスマレイミド、N,N’-4,4-ビフェニレンビスマレイミド、N,N’-4,4-(3,3’-ジメチルビフェニレン)ビスマレイミド、N,N’-4,4-(3,3’-ジメチルジフェニルメタン)ビスマレイミド、N,N’-4,4-(3,3’-ジエチルジフェニルメタン)ビスマレイミド、N,N’-4,4-ジフェニルメタンビスマレイミド、N,N’-4,4-ジフェニルプロパンビスマレイミド、N,N’-3,3’-ジフェニルスルホンビスマレイミド、N,N’-4,4-ジフェニルエーテルビスマレイミド、2,2-ビス(4-(4-マレイミドフェノキシ)フェニル)プロパン、2,2-ビス(3-s-ブチル-4,8-(4-マレイミドフェノキシ)フェニル)プロパン、1,1-ビス(4-(4-マレイミドフェノキシ)フェニル)デカン、4,4’-シクロヘキシリデン-ビス(1-(4-マレイミドフェノキシ)-2-シクロヘキシルベンゼン及び2,2-ビス(4-(4-マレイミドフェノキシ)フェニル)ヘキサフルオロプロパンが挙げられる。これらは単独で又は2種類以上を組み合わせて使用することができる。 Examples of the maleimide compound include those containing at least two maleimide groups in the molecule, such as 1-methyl-2,4-bismaleimidebenzene, N, N′-m-phenylenebismaleimide, N, N ′. -P-phenylene bismaleimide, N, N'-m-toluylene bismaleimide, N, N'-4,4-biphenylene bismaleimide, N, N'-4,4- (3,3'-dimethylbiphenylene) Bismaleimide, N, N′-4,4- (3,3′-dimethyldiphenylmethane) bismaleimide, N, N′-4,4- (3,3′-diethyldiphenylmethane) bismaleimide, N, N′- 4,4-diphenylmethane bismaleimide, N, N′-4,4-diphenylpropane bismaleimide, N, N′-3,3′-diphenylsulfone bismale N, N′-4,4-diphenyl ether bismaleimide, 2,2-bis (4- (4-maleimidophenoxy) phenyl) propane, 2,2-bis (3-s-butyl-4,8- ( 4-maleimidophenoxy) phenyl) propane, 1,1-bis (4- (4-maleimidophenoxy) phenyl) decane, 4,4′-cyclohexylidene-bis (1- (4-maleimidophenoxy) -2-cyclohexyl Examples include benzene and 2,2-bis (4- (4-maleimidophenoxy) phenyl) hexafluoropropane, which can be used alone or in combination of two or more.
 上記シトラコンイミド樹脂とは、分子中にシトラコンイミド基を少なくとも1個有しているシトラコンイミド化合物を重合させたもので、シトラコンイミド化合物としては、例えば、フェニルシトラコンイミド、1-メチル-2,4-ビスシトラコンイミドベンゼン、N,N’-m-フェニレンビスシトラコンイミド、N,N’-p-フェニレンビスシトラコンイミド、N,N’-4,4-ビフェニレンビスシトラコンイミド、N,N’-4,4-(3,3-ジメチルビフェニレン)ビスシトラコンイミド、N,N’-4,4-(3,3-ジメチルジフェニルメタン)ビスシトラコンイミド、N,N’-4,4-(3,3-ジエチルジフェニルメタン)ビスシトラコンイミド、N,N’-4,4-ジフェニルメタンビスシトラコンイミド、N,N’-4,4-ジフェニルプロパンビスシトラコンイミド、N,N’-4,4-ジフェニルエーテルビスシトラコンイミド、N,N’-4,4-ジフェニルスルホンビスシトラコンイミド、2,2-ビス(4-(4-シトラコンイミドフェノキシ)フェニル)プロパン、2,2-ビス(3-s-ブチル-3,4-(4-シトラコンイミドフェノキシ)フェニル)プロパン、1,1-ビス(4-(4-シトラコンイミドフェノキシ)フェニル)デカン、4,4’-シクロヘキシリデン-ビス(1-(4-シトラコンイミドフェノキシ)フェノキシ)-2-シクロヘキシルベンゼン及び2,2-ビス(4-(4-シトラコンイミドフェノキシ)フェニル)ヘキサフルオロプロパンが挙げられる。これらは単独で又は2種類以上を組み合わせて使用することができる。 The citraconic imide resin is obtained by polymerizing a citraconic imide compound having at least one citraconic imide group in the molecule. Examples of the citraconic imide compound include phenyl citraconic imide, 1-methyl-2,4 -Biscitraconimide benzene, N, N'-m-phenylene biscitraconimide, N, N'-p-phenylene biscitraconimide, N, N'-4,4-biphenylenebiscitraconimide, N, N'-4 , 4- (3,3-Dimethylbiphenylene) biscitraconimide, N, N′-4,4- (3,3-dimethyldiphenylmethane) biscitraconimide, N, N′-4,4- (3,3- Diethyldiphenylmethane) biscitraconimide, N, N′-4,4-diphenylmethanebiscitraconimide, N'-4,4-diphenylpropane biscitraconimide, N, N'-4,4-diphenyl ether biscitraconimide, N, N'-4,4-diphenylsulfone biscitraconimide, 2,2-bis (4 -(4-citraconimidophenoxy) phenyl) propane, 2,2-bis (3-s-butyl-3,4- (4-citraconimidophenoxy) phenyl) propane, 1,1-bis (4- (4- Citraconimidophenoxy) phenyl) decane, 4,4′-cyclohexylidene-bis (1- (4-citraconimidophenoxy) phenoxy) -2-cyclohexylbenzene and 2,2-bis (4- (4-citraconimidophenoxy) ) Phenyl) hexafluoropropane. These can be used alone or in combination of two or more.
 上記ナジイミド樹脂とは、分子中にナジイミド基を少なくとも1個有しているナジイミド化合物を重合したもので、ナジイミド化合物としては、例えば、フェニルナジイミド、1-メチル-2,4-ビスナジイミドベンゼン、N,N’-m-フェニレンビスナジイミド、N,N’-p-フェニレンビスナジイミド、N,N’-4,4-ビフェニレンビスナジイミド、N,N’-4,4-(3,3-ジメチルビフェニレン)ビスナジイミド、N,N’-4,4-(3,3-ジメチルジフェニルメタン)ビスナジイミド、N,N’-4,4-(3,3-ジエチルジフェニルメタン)ビスナジイミド、N,N’-4,4-ジフェニルメタンビスナジイミド、N,N’-4,4-ジフェニルプロパンビスナジイミド、N,N’-4,4-ジフェニルエーテルビスナジイミド、N,N’-4,4-ジフェニルスルホンビスナジイミド、2,2-ビス(4-(4-ナジイミドフェノキシ)フェニル)プロパン、2,2-ビス(3-s-ブチル-3,4-(4-ナジイミドフェノキシ)フェニル)プロパン、1,1-ビス(4-(4-ナジイミドフェノキシ)フェニル)デカン、4,4’-シクロヘキシリデン-ビス(1-(4-ナジイミドフェノキシ)フェノキシ)-2-シクロヘキシルベンゼン及び2,2-ビス(4-(4-ナジイミドフェノキシ)フェニル)ヘキサフルオロプロパンが挙げられる。これらは単独で又は2種類以上を組み合わせて使用することができる。 The nadiimide resin is obtained by polymerizing a nadiimide compound having at least one nadiimide group in the molecule. Examples of the nadiimide compound include phenyl nadiimide, 1-methyl-2,4-bisnadiimidebenzene, N, N′-m-phenylenebisnadiimide, N, N′-p-phenylenebisnadiimide, N, N′-4,4-biphenylenebisnadiimide, N, N′-4,4- (3,3-dimethyl Biphenylene) bisnadiimide, N, N′-4,4- (3,3-dimethyldiphenylmethane) bisnadiimide, N, N′-4,4- (3,3-diethyldiphenylmethane) bisnadiimide, N, N′-4,4 -Diphenylmethane bisnadiimide, N, N'-4,4-diphenylpropane bisnadiimide, N, N'-4,4-diphenyl -Terbisnadiimide, N, N'-4,4-diphenylsulfone bisnadiimide, 2,2-bis (4- (4-nadiimidophenoxy) phenyl) propane, 2,2-bis (3-s-butyl- 3,4- (4-Nadiimidophenoxy) phenyl) propane, 1,1-bis (4- (4-nadiimidophenoxy) phenyl) decane, 4,4′-cyclohexylidene-bis (1- (4- Nadiimidophenoxy) phenoxy) -2-cyclohexylbenzene and 2,2-bis (4- (4-nadiimidophenoxy) phenyl) hexafluoropropane. These can be used alone or in combination of two or more.
 回路接続材料1(樹脂層3)は、遊離ラジカルを発生する硬化剤及びラジカル重合性物質に加えて、他の成分を含有していてもよい。例えば、熱可塑性樹脂及び熱硬化性樹脂を含有することができる。 The circuit connection material 1 (resin layer 3) may contain other components in addition to the curing agent that generates free radicals and the radical polymerizable substance. For example, a thermoplastic resin and a thermosetting resin can be contained.
 熱可塑性樹脂としては、ポリエチレン樹脂、ポリイミド樹脂、ポリ塩化ビニル樹脂、ポリフェニレンオキサイド樹脂、ポリビニルブチラール樹脂、ポリビニルホルマール樹脂、ポリアミド樹脂、ポリエステル樹脂、フェノキシ樹脂、ポリスチレン樹脂、キシレン樹脂、ポリウレタン樹脂等が使用できる。 As the thermoplastic resin, polyethylene resin, polyimide resin, polyvinyl chloride resin, polyphenylene oxide resin, polyvinyl butyral resin, polyvinyl formal resin, polyamide resin, polyester resin, phenoxy resin, polystyrene resin, xylene resin, polyurethane resin, etc. can be used. .
 また、熱可塑性樹脂としてTg(ガラス転移温度)が40℃以上で分子量10000以上の水酸基含有樹脂が好ましく使用することができ、例えばフェノキシ樹脂を好適に使用することができる。フェノキシ樹脂は、二官能フェノール類とエピハロヒドリンを高分子量になるまで反応させるか、又は二官能エポキシ樹脂と二官能フェノール類を重付加反応させることにより得られる。 Further, as the thermoplastic resin, a hydroxyl group-containing resin having a Tg (glass transition temperature) of 40 ° C. or higher and a molecular weight of 10,000 or more can be preferably used. For example, a phenoxy resin can be preferably used. The phenoxy resin can be obtained by reacting a bifunctional phenol with epihalohydrin until it has a high molecular weight or by polyaddition reaction of a bifunctional epoxy resin with a bifunctional phenol.
 熱硬化性樹脂としては、例えば、尿素樹脂、メラミン樹脂、フェノール樹脂、キシレン樹脂、エポキシ樹脂及びポリイソシアネート樹脂が挙げられる。 Examples of the thermosetting resin include urea resin, melamine resin, phenol resin, xylene resin, epoxy resin, and polyisocyanate resin.
 上記熱可塑性樹脂を含有した場合取り扱い性もよく硬化時の応力緩和に優れるため好ましい。また、上記熱可塑性樹脂及び熱硬化性樹脂は水酸基等の官能基を有する場合接着性が向上するためより好ましく、エポキシ基含有エラストマー、ラジカル重合性の官能基によって変性されていてもよい。ラジカル重合性の官能基で変性したものは耐熱性が向上するため好ましい。 When the above thermoplastic resin is contained, it is preferable because it is easy to handle and is excellent in stress relaxation during curing. Further, the thermoplastic resin and the thermosetting resin are more preferable when having a functional group such as a hydroxyl group because the adhesiveness is improved, and may be modified with an epoxy group-containing elastomer or a radical polymerizable functional group. Those modified with a radically polymerizable functional group are preferred because the heat resistance is improved.
 上記熱可塑性樹脂の重量平均分子量は10000以上であることが製膜性等の観点から好ましいが、1000000以上になると混合性が悪くなる傾向にある。なお、本願で規定する重量平均分子量とは、以下の条件に従ってゲルパーミエイションクロマトグラフィー法(GPC)により標準ポリスチレンによる検量線を用いて測定したもののことをいう。 The weight average molecular weight of the thermoplastic resin is preferably 10,000 or more from the viewpoint of film forming property and the like, but when it becomes 1000000 or more, the mixing property tends to deteriorate. In addition, the weight average molecular weight prescribed | regulated by this application means what was measured using the analytical curve by a standard polystyrene by the gel permeation chromatography method (GPC) according to the following conditions.
 <GPC条件>
使用機器:日立L-6000型(日立製作所(株)製)
カラム:ゲルパックGL-R420+ゲルパックGL-R430+ゲルパックGL-R440(計3本)(日立化成工業(株)製)
溶離液:テトラヒドロフラン
測定温度:40℃
流量:1.75mL/分
検出器:L-3300RI(日立製作所(株)製)
<GPC conditions>
Equipment used: Hitachi L-6000 (manufactured by Hitachi, Ltd.)
Column: Gel pack GL-R420 + Gel pack GL-R430 + Gel pack GL-R440 (3 in total) (manufactured by Hitachi Chemical Co., Ltd.)
Eluent: Tetrahydrofuran Measurement temperature: 40 ° C
Flow rate: 1.75 mL / min Detector: L-3300RI (manufactured by Hitachi, Ltd.)
 また、樹脂層3は、遊離ラジカルを発生する硬化剤及びラジカル重合性物質に替えて、エポキシ樹脂と潜在性硬化剤とを含有することもできる。すなわち、回路接続材料1は、エポキシ樹脂と潜在性硬化剤とを含む接着剤組成物と、導電粒子5とを含有することができる。回路接続材料1が加熱されたときにエポキシ樹脂の硬化により樹脂層3において架橋構造が形成され、回路接続材料1の硬化物が形成される。この場合、回路接続材料1は、エポキシ硬化型の接着剤として機能する。 The resin layer 3 can also contain an epoxy resin and a latent curing agent in place of the curing agent that generates free radicals and the radical polymerizable substance. That is, the circuit connection material 1 can contain an adhesive composition containing an epoxy resin and a latent curing agent and the conductive particles 5. When the circuit connection material 1 is heated, a crosslinked structure is formed in the resin layer 3 by curing of the epoxy resin, and a cured product of the circuit connection material 1 is formed. In this case, the circuit connecting material 1 functions as an epoxy curable adhesive.
 エポキシ樹脂としては、ビスフェノールA、F、AD等のビスフェノールのグリシジルエーテルであるビスフェノール型エポキシ樹脂及びフェノールノボラック又はクレゾールノボラックから誘導されるエポキシノボラック樹脂が代表的なエポキシ樹脂である。その他の例として、ナフタレン骨格を有するナフタレン型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、脂環式エポキシ樹脂及び複素環式エポキシ樹脂が挙げられる。これらは単独又は2種以上混合して用いられる。 Typical epoxy resins include bisphenol type epoxy resins that are glycidyl ethers of bisphenols such as bisphenol A, F, and AD, and epoxy novolac resins derived from phenol novolac or cresol novolac. Other examples include naphthalene type epoxy resins having a naphthalene skeleton, glycidylamine type epoxy resins, glycidyl ester type epoxy resins, alicyclic epoxy resins and heterocyclic epoxy resins. These are used individually or in mixture of 2 or more types.
 上記エポキシ樹脂の中でも、ビスフェノール型エポキシ樹脂が分子量の異なるグレードが広く入手可能で、接着性や反応性等を任意に設定できることから好ましい。ビスフェノール型エポキシ樹脂の中でも、ビスフェノールF型エポキシ樹脂が特に好ましい。ビスフェノールF型エポキシ樹脂の粘度は低く、フェノキシ樹脂との組み合わせて用いることにより、回路接続材料の流動性を容易に広範囲に設定できる。また、ビスフェノールF型エポキシ樹脂は、回路接続材料に良好な粘着性を付与し易いという利点も有する。 Among the above epoxy resins, bisphenol type epoxy resins are preferred because they are widely available in grades with different molecular weights, and adhesiveness and reactivity can be arbitrarily set. Among bisphenol type epoxy resins, bisphenol F type epoxy resins are particularly preferable. The viscosity of the bisphenol F type epoxy resin is low, and the fluidity of the circuit connecting material can be easily set in a wide range by using it in combination with the phenoxy resin. Further, the bisphenol F type epoxy resin has an advantage that it is easy to impart good adhesiveness to the circuit connecting material.
 不純物イオン(Na、Cl等)濃度又は加水分解性塩素が300ppm以下であるエポキシ樹脂を用いることが、エレクトロンマイグレーション防止のために好ましい。 It is preferable to use an epoxy resin having an impurity ion (Na + , Cl etc.) concentration or hydrolyzable chlorine of 300 ppm or less to prevent electron migration.
 潜在性硬化剤としては、エポキシ樹脂を硬化させることができるものであればよい。また、潜在性硬化剤は、エポキシ樹脂と反応して架橋構造中に取り込まれる化合物であってもよいし、エポキシ樹脂の硬化反応を促進する触媒型硬化剤であってもよい。両者を併用することも可能である。 Any latent curing agent may be used as long as it can cure the epoxy resin. The latent curing agent may be a compound that reacts with the epoxy resin and is incorporated into the crosslinked structure, or may be a catalytic curing agent that accelerates the curing reaction of the epoxy resin. Both can be used in combination.
 触媒型硬化剤としては、例えば、エポキシ樹脂のアニオン重合を促進するアニオン重合型潜在性硬化剤、及びエポキシ樹脂のカチオン重合を促進するカチオン重合型潜在性硬化剤が挙げられる。 Examples of the catalytic curing agent include an anionic polymerization latent curing agent that promotes anionic polymerization of an epoxy resin and a cationic polymerization latent curing agent that promotes cationic polymerization of an epoxy resin.
 アニオン重合型潜在性硬化剤としては、例えば、イミダゾール系、ヒドラジド系、三フッ素ホウ素-アミン錯体、アミンイミド、ポリアミンの塩、ジシアンジアミド及びこれらの変性物が挙げられる。イミダゾール系のアニオン重合型潜在性硬化剤は、例えば、イミダゾール又はその誘導体をエポキシ樹脂に付加して形成される。 Examples of the anionic polymerization type latent curing agent include imidazole series, hydrazide series, trifluoroboron-amine complex, amine imide, polyamine salt, dicyandiamide, and modified products thereof. The imidazole-based anionic polymerization latent curing agent is formed, for example, by adding imidazole or a derivative thereof to an epoxy resin.
 カチオン重合型潜在性硬化剤としては、例えば、エネルギー線照射によりエポキシ樹脂を硬化させる感光性オニウム塩(芳香族ジアゾニウム塩、芳香族スルホニウム塩等が主として用いられる)が好ましい。また、エネルギー線照射以外に加熱によって活性化しエポキシ樹脂を硬化させるものとして、脂肪族スルホニウム塩がある。この種の硬化剤は、速硬化性という特徴を有することから好ましい。 As the cationic polymerization type latent curing agent, for example, a photosensitive onium salt (an aromatic diazonium salt, an aromatic sulfonium salt or the like is mainly used) that cures an epoxy resin by irradiation with energy rays is preferable. In addition to irradiation with energy rays, there is an aliphatic sulfonium salt that is activated by heating to cure the epoxy resin. This type of curing agent is preferable because it has a feature of fast curing.
 これらの潜在性硬化剤を、ポリウレタン系、ポリエステル系等の高分子物質、ニッケル、銅等の金属薄膜及びケイ酸カルシウム等の無機物で被覆してマイクロカプセル化したものは、可使時間が延長できるため好ましい。 When these latent curing agents are coated with a polymer material such as polyurethane or polyester, a metal thin film such as nickel or copper, and an inorganic material such as calcium silicate, the pot life can be extended. Therefore, it is preferable.
 潜在性硬化剤の配合量は、エポキシ樹脂100質量部に対して30~60質量部であることが好ましく、40~55質量部であることがより好ましい。潜在性硬化剤の配合量が30質量部未満であると回路接続材料の硬化収縮による被着体に対する締め付け力が低下する。その結果、導電粒子5と回路電極との接触が保持されず、信頼性試験後の接続抵抗が上昇しやすくなる傾向がある。一方、潜在性硬化剤の配合量の60質量部を超えると締め付け力が強くなりすぎるため、回路接続材料の硬化物における内部応力が大きくなり、接着強度の低下を招き易くなる傾向がある。 The blending amount of the latent curing agent is preferably 30 to 60 parts by mass and more preferably 40 to 55 parts by mass with respect to 100 parts by mass of the epoxy resin. When the blending amount of the latent curing agent is less than 30 parts by mass, the tightening force on the adherend due to curing shrinkage of the circuit connecting material is reduced. As a result, the contact between the conductive particles 5 and the circuit electrode is not maintained, and the connection resistance after the reliability test tends to increase. On the other hand, if the blending amount of the latent curing agent exceeds 60 parts by mass, the tightening force becomes too strong, so that the internal stress in the cured product of the circuit connection material tends to increase, and the adhesive strength tends to decrease.
 回路接続材料がエポキシ樹脂系の接着剤である場合、フィルム形成材を含有することが好ましい。フィルム形成材は、液状物を固形化し構成組成物をフィルム形状とした場合に、そのフィルムの取扱いを容易とし、容易に裂けたり、割れたり、べたついたりしない機械的特性等を付与するものであり、通常の状態(常温常圧)でフィルムとしての取扱いができるものである。 When the circuit connecting material is an epoxy resin adhesive, it is preferable to contain a film forming material. The film-forming material, when the liquid is solidified and the constituent composition is made into a film shape, facilitates the handling of the film and imparts mechanical properties that do not easily tear, crack, or stick. The film can be handled in a normal state (normal temperature and pressure).
 フィルム形成材として、上述した熱可塑性樹脂を用いることができ、接着性、相溶性、耐熱性及び機械的強度に優れることからフェノキシ樹脂を用いることが好ましい。 As the film forming material, the above-described thermoplastic resin can be used, and it is preferable to use a phenoxy resin because of excellent adhesiveness, compatibility, heat resistance, and mechanical strength.
 フェノキシ樹脂は、2官能性フェノール類とエピハロヒドリンとを高分子化するまで反応させるか、又は2官能性エポキシ樹脂と2官能性フェノール類とを重付加させることにより得られる樹脂である。フェノキシ樹脂は、例えば、2官能性フェノール類1モルとエピハロヒドリン0.985~1.015モルとをアルカリ金属水酸化物等の触媒の存在下、非反応性溶媒中で40~120℃の温度で反応させることにより得ることができる。 The phenoxy resin is a resin obtained by reacting a bifunctional phenol and epihalohydrin until they are polymerized, or by polyaddition of a bifunctional epoxy resin and a bifunctional phenol. For example, the phenoxy resin contains 1 mol of a bifunctional phenol and 0.985 to 1.015 mol of epihalohydrin in the presence of a catalyst such as an alkali metal hydroxide at a temperature of 40 to 120 ° C. in a non-reactive solvent. It can be obtained by reacting.
 また、フェノキシ樹脂としては、樹脂の機械的特性や熱的特性の観点からは、特に2官能性エポキシ樹脂と2官能性フェノール類との配合当量比をエポキシ基/フェノール水酸基=1/0.9~1/1.1とし、アルカリ金属化合物、有機リン系化合物、環状アミン系化合物等の触媒の存在下、沸点が120℃以上のアミド系、エーテル系、ケトン系、ラクトン系、アルコール系等の有機溶剤中で、反応固形分が50質量%以下の条件で50~200℃に加熱して重付加反応させて得たものが好ましい。 Further, as the phenoxy resin, from the viewpoint of the mechanical properties and thermal properties of the resin, the blending equivalent ratio of the bifunctional epoxy resin and the bifunctional phenols is particularly preferably epoxy group / phenol hydroxyl group = 1 / 0.9. In the presence of a catalyst such as an alkali metal compound, an organophosphorus compound, or a cyclic amine compound, an amide, ether, ketone, lactone, alcohol, or the like having a boiling point of 120 ° C. or higher. A product obtained by polyaddition reaction by heating to 50 to 200 ° C. in an organic solvent under a reaction solid content of 50% by mass or less is preferable.
 2官能性エポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、ビスフェノールS型エポキシ樹脂を用いることができる。2官能性フェノール類は2個のフェノール性水酸基を有するものであり、例えば、ハイドロキノン類、ビスフェノールA、ビスフェノールF、ビスフェノールAD、ビスフェノールS等のビスフェノール化合物が挙げられる。 Bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol AD type epoxy resin, and bisphenol S type epoxy resin can be used as the bifunctional epoxy resin. Bifunctional phenols have two phenolic hydroxyl groups, and examples thereof include bisphenol compounds such as hydroquinones, bisphenol A, bisphenol F, bisphenol AD, and bisphenol S.
 フェノキシ樹脂は、ラジカル重合性の官能基により変性されていてもよい。フェノキシ樹脂は、1種を単独で又は2種以上を混合して用いることができる。 The phenoxy resin may be modified with a radical polymerizable functional group. A phenoxy resin can be used individually by 1 type or in mixture of 2 or more types.
 さらに、回路接続材料1(樹脂層3)は、充填材、軟化材、促進剤、老化防止剤、着色剤、難燃化剤、チキソトロピック剤、カップリング剤及びイソシアネート類等を含有することもできる。充填材を含有した場合、接続信頼性等の向上が得られるので好ましい。充填材の最大径が導電粒子5の粒径未満であれば使用でき、配合量は、5~60体積%の範囲が好ましい。60体積%を超すと信頼性向上の効果が飽和する。カップリング剤としては、ビニル基、アクリル基、アミノ基、エポキシ基又はイソシアネート基を有する化合物が、接着性の向上の点から好ましい。必要に応じて、ハイドロキノン、メチルエーテルハイドロキノン類などの重合禁止剤を適宜用いてもよい。 Furthermore, the circuit connection material 1 (resin layer 3) may contain a filler, a softening material, an accelerator, an anti-aging agent, a colorant, a flame retardant, a thixotropic agent, a coupling agent, and isocyanates. it can. When a filler is contained, it is preferable because connection reliability and the like can be improved. If the maximum diameter of the filler is less than the particle diameter of the conductive particles 5, it can be used, and the blending amount is preferably in the range of 5 to 60% by volume. If it exceeds 60% by volume, the effect of improving reliability is saturated. As the coupling agent, a compound having a vinyl group, an acrylic group, an amino group, an epoxy group or an isocyanate group is preferable from the viewpoint of improving the adhesiveness. A polymerization inhibitor such as hydroquinone or methyl ether hydroquinone may be used as necessary.
 次に、回路接続材料1を用いた本発明の回路部材の接続構造について説明する。回路接続材料1は、半導体チップ、抵抗体チップ及びコンデンサチップ等のチップ部品、並びにプリント配線板のような、1又は2以上の回路電極(接続端子)を有する回路部材同士が接続された接続構造を形成するために好適に用いられる。 Next, the circuit member connection structure of the present invention using the circuit connection material 1 will be described. The circuit connection material 1 is a connection structure in which circuit components having one or more circuit electrodes (connection terminals) such as chip parts such as semiconductor chips, resistor chips and capacitor chips, and printed wiring boards are connected to each other. It is suitably used to form
 図2は、回路部材の接続構造の一実施形態を示す断面図である。図2に示す回路部材の接続構造100は、第一の回路基板11及びこれの主面上に形成された第一の回路電極13を有する第一の回路部材10と、第二の回路基板21及びこれの主面上に形成された、第二の回路電極23を有し、第二の回路電極23と第一の回路電極13とが対向するように配置された第二の回路部材20と、第一の回路部材10及び第二の回路部材20の間に介在する回路接続部1aとを備える。 FIG. 2 is a cross-sectional view showing an embodiment of a circuit member connection structure. A circuit member connection structure 100 shown in FIG. 2 includes a first circuit board 11 and a first circuit member 10 having a first circuit electrode 13 formed on the main surface thereof, and a second circuit board 21. And a second circuit member 20 having a second circuit electrode 23 formed on the main surface thereof and disposed so that the second circuit electrode 23 and the first circuit electrode 13 face each other. The circuit connection part 1a interposed between the first circuit member 10 and the second circuit member 20 is provided.
 接続部1aは、回路接続材料1が硬化して形成された硬化物であり、硬化した樹脂層3aと導電粒子5とから構成されている。接続部1aは、対向する第一の回路電極13と第二の回路電極23とが電気的に接続されるように、第一の回路部材10と第二の回路部材20とを接着している。対向する第一の回路電極13と第二の回路電極23とは、導電粒子5を介して電気的に接続されている。なお、接続部が導電粒子5を含有していない場合でも、回路接続材料1を介して第一の回路電極13と第二の回路電極23とは電気的な接続が可能である。 The connection part 1a is a cured product formed by curing the circuit connection material 1, and is composed of a cured resin layer 3a and conductive particles 5. The connection portion 1a bonds the first circuit member 10 and the second circuit member 20 so that the first circuit electrode 13 and the second circuit electrode 23 facing each other are electrically connected. . The first circuit electrode 13 and the second circuit electrode 23 facing each other are electrically connected via the conductive particles 5. Even when the connection portion does not contain the conductive particles 5, the first circuit electrode 13 and the second circuit electrode 23 can be electrically connected via the circuit connection material 1.
 第一の基板11は、ポリエステルテレフタレート、ポリエーテルサルフォン、エポキシ樹脂、アクリル樹脂及びポリイミド樹脂からなる群より選ばれる少なくとも1種の樹脂を含む樹脂フィルムである。第一の回路電極13は、電極として機能し得る程度の導電性を有する材料(好ましくは金、銀、錫、白金族の金属及びインジウム-錫酸化物からなる群より選ばれる少なくとも一種)から形成されている。 The first substrate 11 is a resin film containing at least one resin selected from the group consisting of polyester terephthalate, polyethersulfone, epoxy resin, acrylic resin and polyimide resin. The first circuit electrode 13 is formed of a material having conductivity that can function as an electrode (preferably at least one selected from the group consisting of gold, silver, tin, platinum group metals, and indium-tin oxide). Has been.
 第二の基板21は半導体チップ類のシリコンやガリウム・ヒ素等や、ガラス、セラミックス、ガラス・エポキシ複合体、プラスチック等の絶縁基板で形成される多層配線板である。第二の回路電極23は、導体部23aと、回路電極23の表面のうち接続部1aと接する部分を形成する被膜23bとを有する。導体部23aは回路電極23が電極として機能し得る程度の導電性を有する材料(好ましくは金、銀、錫、白金族の金属及びインジウム-錫酸化物からなる群より選ばれる少なくとも一種)から形成されている。 The second substrate 21 is a multilayer wiring board formed of an insulating substrate such as silicon, gallium / arsenic, etc. of semiconductor chips, glass, ceramics, glass / epoxy composite, plastic, or the like. The second circuit electrode 23 includes a conductor portion 23 a and a coating 23 b that forms a portion of the surface of the circuit electrode 23 that contacts the connection portion 1 a. The conductor portion 23a is formed of a material having conductivity that allows the circuit electrode 23 to function as an electrode (preferably at least one selected from the group consisting of gold, silver, tin, platinum group metals, and indium-tin oxide). Has been.
 被膜23bは、有機樹脂を含む材料からなる被膜であり、イミダゾール化合物等の有機樹脂を含むことが好ましい。被膜23bは、第二の基板21をOSP(Organic Solderability Preservative)処理することで形成される。ここで、OSP処理とは、水溶性プリフラックスとも呼ばれる基板の処理方法であり、一般には、イミダゾール化合物を含む溶液で基板を処理することでOSP膜を形成している。イミダゾール化合物を含む被膜とは、イミダゾール系誘導体と金属から生じた錯体が、電極表面上でお互いに結合することによって形成された膜である。すなわち、イミダゾール化合物を含む被膜は、回路電極が形成された基板をイミダゾール化合物を含む溶液でOSP処理することにより形成できる。イミダゾール化合物としては、耐熱性の観点からベンズイミダゾール系誘導体が好適に用いられる。OSP処理は、例えば、市販されているものとしては、四国化成(株)製の商品名「タフエースF2」、「タフエースF2(LX)」、(株)三和研究所製の商品名「ドーコートGVII」、Enthone.Inc製の商品名「Entek106A」、「Entek106A(X)」、又はメック(株)製の商品名「メックシール CL-5824S」、「メックシール CL-5018」、「メックシール CL-5018S」を用いて行うことができる。これらは単独で又は2種類以上を組み合わせて使用することができる。 The coating 23b is a coating made of a material containing an organic resin, and preferably contains an organic resin such as an imidazole compound. The coating 23b is formed by subjecting the second substrate 21 to an OSP (Organic Solderability Preservative) treatment. Here, the OSP treatment is a method for treating a substrate, also called a water-soluble preflux, and generally an OSP film is formed by treating a substrate with a solution containing an imidazole compound. A film containing an imidazole compound is a film formed by bonding complexes formed from an imidazole derivative and a metal to each other on the electrode surface. That is, the film containing the imidazole compound can be formed by subjecting the substrate on which the circuit electrode is formed to an OSP treatment with a solution containing the imidazole compound. As the imidazole compound, a benzimidazole derivative is preferably used from the viewpoint of heat resistance. For example, as for the OSP treatment, commercially available product names “Tough Ace F2”, “Tough Ace F2 (LX)” manufactured by Shikoku Kasei Co., Ltd., and “DoCoat GVII” manufactured by Sanwa Laboratory Co., Ltd. "Enthone." Use the product names “Entek106A”, “Entek106A (X)” manufactured by Inc, or the product names “MECSEAL CL-5824S”, “MECSEAL CL-5018”, and “MECSEAL CL-5018S” manufactured by MEC Co., Ltd. Can be done. These can be used alone or in combination of two or more.
 本発明に係る回路接続材料は、第一及び第二の回路電極のうち少なくとも一方が、有機樹脂を含む材料からなる被膜を有している回路部材の接続に用いることができる。なお、図3に示す回路部材の接続構造の一実施形態を示す断面図ように、第二の回路電極23だけでなく、第一の回路電極13が、導体部13aと、回路電極13の表面のうち接続部1aと接する部分を形成する被膜13bとを有してもよい。被膜13bは被膜23bと同様の方法で形成される。 The circuit connection material according to the present invention can be used for connection of a circuit member in which at least one of the first and second circuit electrodes has a film made of a material containing an organic resin. As shown in a cross-sectional view of an embodiment of the circuit member connection structure shown in FIG. 3, not only the second circuit electrode 23 but also the first circuit electrode 13 includes the conductor portion 13 a and the surface of the circuit electrode 13. Of these, a film 13b that forms a portion in contact with the connecting portion 1a may be included. The coating 13b is formed by the same method as the coating 23b.
 回路部材の接続構造100は、例えば、第一の回路部材10と、上述のフィルム状の回路接続材料1と、第二の回路部材20とを、第一の回路電極13と第二の回路電極23とが対峙するようにこの順に積層した積層体を加熱及び加圧又は光照射することにより、第一の回路電極13と第二の回路電極23とが電気的に接続されるように第一の回路部材10と第二の回路部材20とを接続する方法によって、得られる。 The circuit member connection structure 100 includes, for example, a first circuit member 10, the above-described film-like circuit connection material 1, and a second circuit member 20, and a first circuit electrode 13 and a second circuit electrode. The first and second circuit electrodes 13 and 23 are electrically connected to each other by heating, pressurizing, or irradiating light with the laminate laminated in this order so as to oppose each other. The circuit member 10 and the second circuit member 20 are connected to each other.
 この方法においては、まず、支持フィルム上に形成されているフィルム状の回路接続材料1を第二の回路部材20上に貼り合わせた状態で加熱及び加圧して回路接続材料1を仮接着し、支持フィルムを剥離してから、第一の回路部材10を、回路電極が対向するように位置合わせしながら載せて、積層体を準備することができる。接続の際の加熱によって発生する揮発成分による接続への影響を防止するために、接続工程の前に回路部材を予め加熱処理しておくことが好ましい。 In this method, first, the circuit-connecting material 1 formed on the support film is temporarily bonded to the second circuit member 20 by heating and pressurizing the circuit-connecting material 1 while being bonded together, After peeling off the support film, the first circuit member 10 can be placed while being aligned so that the circuit electrodes face each other to prepare a laminate. In order to prevent the influence on the connection due to the volatile components generated by the heating at the time of connection, it is preferable to heat-treat the circuit member in advance before the connection step.
 上記積層体を加熱及び加圧する条件は、回路接続材料中の組成物の硬化性等に応じて、回路接続材料が硬化して十分な接着強度が得られるように、適宜調整される。 The conditions for heating and pressurizing the laminate are appropriately adjusted so that the circuit connecting material is cured and sufficient adhesive strength is obtained according to the curability of the composition in the circuit connecting material.
 接続構造を構成する回路部材が有する基板は、シリコン及びガリウム・ヒ素等の半導体チップ、並びに、ガラス、セラミックス、ガラス・エポキシ複合体及びプラスチック等の絶縁基板であってもよい。 The substrate included in the circuit member constituting the connection structure may be a semiconductor chip such as silicon and gallium / arsenic, and an insulating substrate such as glass, ceramics, glass / epoxy composite, and plastic.
 以下、本発明の内容を、実施例を用いてさらに具体的に説明する。ただし、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the contents of the present invention will be described more specifically using examples. However, the present invention is not limited to these examples.
(1)回路接続材料の作製
(1-1)接着剤組成物を構成する各成分の準備
「パーヘキサ25O」:2,5-ジメチル-2,5-ジ(2-エチルヘキサノイルパーオキシ)ヘキサン(日本油脂製、商品名)
「UN5500」:ウレタンアクリレートオリゴマー(根上工業製、商品名)
「DCP-A」:ジシクロペンタジエン型ジアクリレート(東亞合成製、商品名)
「M-215」:イソシアヌル酸EO変成ジアクリレート(東亞合成製、商品名)
「P-2M」:2-メタクリロイロキシエチルアシッドホスフェート(共栄社化学製、商品名)
「HX3941HP-SS」:アニオン重合型潜在性硬化剤含有エポキシ樹脂(イミダゾール系マイクロカプセル型硬化剤を35質量%含有、旭化成ケミカルズ製、商品名)
「UR-800」:ポリエステルウレタン(東洋紡績製、商品名)
「EV40W」:エチレン-酢酸ビニル共重合体(三井・デュポンポリケミカル製、商品名)
「PKHC」:ビスフェノールA型フェノキシ樹脂(Mw45000、インケム・コーポレーション製、商品名)
「アクリルゴムA」:ブチルアクリレート40質量部-エチルアクリレート30質量部―アクリロニトリル30質量部―グリシジルメタクリレート3質量部の共重合体(重量平均分子量約85万)
「SH6040」:シランカップリング剤(γ-グリシドキシプロピルトリメトキシシラン、東レ・ダウコーニング・シリコーン製、商品名)、
(1) Production of circuit connection material (1-1) Preparation of each component constituting adhesive composition “Perhexa25O”: 2,5-dimethyl-2,5-di (2-ethylhexanoylperoxy) hexane (Nippon Yushi, product name)
“UN5500”: Urethane acrylate oligomer (trade name, manufactured by Negami Kogyo)
“DCP-A”: dicyclopentadiene type diacrylate (product name, manufactured by Toagosei Co., Ltd.)
“M-215”: Isocyanuric acid EO-modified diacrylate (product name)
“P-2M”: 2-methacryloyloxyethyl acid phosphate (trade name, manufactured by Kyoeisha Chemical Co., Ltd.)
“HX3941HP-SS”: An anionic polymerization type latent curing agent-containing epoxy resin (containing 35% by mass of an imidazole microcapsule type curing agent, trade name, manufactured by Asahi Kasei Chemicals)
"UR-800": Polyester urethane (product name, manufactured by Toyobo)
“EV40W”: Ethylene-vinyl acetate copolymer (Mitsui / DuPont Polychemical, trade name)
“PKHC”: Bisphenol A type phenoxy resin (Mw45000, manufactured by Inchem Corporation, trade name)
“Acrylic rubber A”: copolymer of 40 parts by mass of butyl acrylate—30 parts by mass of ethyl acrylate—30 parts by mass of acrylonitrile—3 parts by mass of glycidyl methacrylate (weight average molecular weight of about 850,000)
“SH6040”: Silane coupling agent (γ-glycidoxypropyltrimethoxysilane, manufactured by Toray Dow Corning Silicone, trade name),
(1-2)導電粒子の準備
 「導電粒子A」として、平均粒径9μmのNi粒子からなる核体と、該核体に金めっきを施して形成された金からなる最表層とを有する導電粒子を準備した。また、「導電粒子B」として、平均粒径9μmのNi粒子からなる導電粒子を準備した。さらに、「導電粒子C」として、表面に多数の突起部を有する、平均粒径4μmのNi粒子からなる導電粒子を準備した。
(1-2) Preparation of Conductive Particles As “conductive particle A”, a conductive material having a core made of Ni particles having an average particle diameter of 9 μm and a top layer made of gold formed by plating the core with gold. Particles were prepared. In addition, conductive particles made of Ni particles having an average particle size of 9 μm were prepared as “conductive particles B”. Furthermore, as “conductive particles C”, conductive particles made of Ni particles having an average particle diameter of 4 μm and having a large number of protrusions on the surface were prepared.
(実施例1)
 「パーヘキサ25O」の50質量%炭化水素溶媒溶液8質量部(不揮発分換算で4質量部)、ラジカル重合性物質として、「UN5500」の50質量%トルエン溶液60質量部(不揮発分換算で30質量部)、「DCP-A」8質量部、「M-215」8質量部、「P-2M」2質量部、「UR-8200」の30質量%メチルエチルケトン/トルエン(=50/50)溶液を150質量部(不揮発分換算で45質量部)及び「EV40W」の20質量%トルエン溶液50質量部(不揮発分換算で10質量部)を配合し、更に、「導電粒子A」10質量部を配合した。この混合溶液をアプリケータでPETフィルム上に塗布し、70℃10分の熱風乾燥により、接着剤層の厚みが35μmであるフィルム状の回路接続材料を得た。
Example 1
8 parts by mass (4 parts by mass in terms of nonvolatile content) of a 50% by mass hydrocarbon solvent solution of “Perhexa 25O”, and 60 parts by mass of a 30% by mass toluene solution of “UN5500” (in terms of nonvolatile content 30 masses). Part), 8 parts by mass of “DCP-A”, 8 parts by mass of “M-215”, 2 parts by mass of “P-2M”, and a 30% by mass methyl ethyl ketone / toluene (= 50/50) solution of “UR-8200”. 150 parts by mass (45 parts by mass in terms of non-volatile content) and 50 parts by mass of a 20% by weight toluene solution of “EV40W” (10 parts by mass in terms of non-volatile content) are blended, and further 10 parts by mass of “conductive particles A” are blended. did. This mixed solution was applied onto a PET film with an applicator and dried with hot air at 70 ° C. for 10 minutes to obtain a film-like circuit connecting material having an adhesive layer thickness of 35 μm.
(実施例2)
 導電粒子Aの配合量を5質量部に変更した以外は、実施例1と同様にしてフィルム状の回路接続材料を得た。
(Example 2)
A film-like circuit connection material was obtained in the same manner as in Example 1 except that the blending amount of the conductive particles A was changed to 5 parts by mass.
(実施例3)
 「HX3941HP-SS」50質量部、「PKHC」の40質量%トルエン/酢酸エチル(=50/50)溶液37.5質量部(不揮発分換算で15質量部)、「アクリルゴムA」の10質量%トルエン/酢酸エチル(=50/50)溶液350質量部(不揮発分換算で35質量部)及び「SH6040」1質量部を配合し、更に、「導電粒子A」10質量部を配合した。この混合溶液をアプリケータでPETフィルム上に塗布し、70℃10分の熱風乾燥により、接着剤層の厚みが35μmであるフィルム状の回路接続材料を得た。
(Example 3)
“HX3941HP-SS” 50 parts by mass, “PKHC” 40% by mass toluene / ethyl acetate (= 50/50) solution 37.5 parts by mass (15 parts by mass in terms of nonvolatile content), “acrylic rubber A” 10 masses 350 parts by mass of a% toluene / ethyl acetate (= 50/50) solution (35 parts by mass in terms of nonvolatile content) and 1 part by mass of “SH6040” were blended, and further, 10 parts by mass of “conductive particles A” were blended. This mixed solution was applied onto a PET film with an applicator and dried with hot air at 70 ° C. for 10 minutes to obtain a film-like circuit connecting material having an adhesive layer thickness of 35 μm.
(比較例1)
 「導電粒子A」10質量部を「導電粒子B」10質量部に変更した以外は、実施例1と同様にして回路接続材料を得た。
(Comparative Example 1)
A circuit connecting material was obtained in the same manner as in Example 1 except that 10 parts by weight of “conductive particle A” was changed to 10 parts by weight of “conductive particle B”.
(比較例2)
 「導電粒子A」10質量部を「導電粒子C」10質量部に変更した以外は、実施例1と同様にして回路接続材料を得た。
(Comparative Example 2)
A circuit connecting material was obtained in the same manner as in Example 1 except that 10 parts by weight of “conductive particle A” was changed to 10 parts by weight of “conductive particle C”.
(比較例3)
 「導電粒子A」10質量部を「導電粒子C」5質量部に変更した以外は、実施例1と同様にして回路接続材料を得た。
(Comparative Example 3)
A circuit connecting material was obtained in the same manner as in Example 1 except that 10 parts by weight of “conductive particles A” was changed to 5 parts by weight of “conductive particles C”.
(比較例4)
 「導電粒子A」10質量部を「導電粒子B」10質量部に変更した以外は、実施例3と同様にして回路接続材料を得た。
(Comparative Example 4)
A circuit connection material was obtained in the same manner as in Example 3 except that 10 parts by mass of “conductive particle A” was changed to 10 parts by mass of “conductive particle B”.
(比較例5)
 「導電粒子A」10質量部を「導電粒子C」10質量部に変更した以外は、実施例3と同様にして回路接続材料を得た。
(Comparative Example 5)
A circuit connection material was obtained in the same manner as in Example 3 except that 10 parts by weight of “conductive particles A” was changed to 10 parts by weight of “conductive particles C”.
 実施例1~3の回路接続材料の組成を質量部(不揮発分換算)で表1に、比較例1~5の回路接続材料の組成を質量部(不揮発分換算)で表2に示す。 The compositions of the circuit connection materials of Examples 1 to 3 are shown in Table 1 in parts by mass (in terms of nonvolatile content), and the compositions of the circuit connection materials in Comparative Examples 1 to 5 are shown in Table 2 in terms of parts by mass (in terms of nonvolatile content).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(2)回路部材の接続構造の作製
(2-1)OSP処理されたプリント配線板(PWB)の作製
 ガラス・エポキシ多層プリント配線板上に、ライン幅100μm、ピッチ400μm、厚み35μmの銅回路電極を形成させた(これを以下「PWB」という)。更にPWBの銅回路電極表面に、ベンズイミダゾール化合物(四国化成(株)製、商品名「タフエース」)を用いてOSP処理をし、厚み0.10~0.32μmのベンズイミダゾール系樹脂錯体の被膜を形成させた(これを以下「OSP-PWB」という)。
(2) Fabrication of circuit member connection structure (2-1) Fabrication of OSP-processed printed wiring board (PWB) Copper circuit electrode having a line width of 100 μm, a pitch of 400 μm and a thickness of 35 μm on a glass / epoxy multilayer printed wiring board (This is hereinafter referred to as “PWB”). Further, the surface of the copper circuit electrode of PWB was subjected to OSP treatment using a benzimidazole compound (trade name “Tufface”, manufactured by Shikoku Kasei Co., Ltd.), and a coating of benzimidazole resin complex having a thickness of 0.10 to 0.32 μm. (Hereinafter referred to as “OSP-PWB”).
(2-2)OSP処理されたフレキシブルプリント配線板(FPC)の作製
 厚み25μmのポリイミドフィルム上に、ライン幅100μm、ピッチ400μm、厚み18μmの銅回路電極が直接形成されたフレキシブルプリント配線板(これを以下「FPC」という)を用意した。これに上と同様にして、OSP処理を施し、厚み0.10~0.32μmのベンズイミダゾール系樹脂錯体の被膜を形成させた(これを以下「OSP-FPC」という)。
(2-2) Fabrication of OSP-processed flexible printed wiring board (FPC) A flexible printed wiring board in which copper circuit electrodes having a line width of 100 μm, a pitch of 400 μm, and a thickness of 18 μm are directly formed on a polyimide film having a thickness of 25 μm. (Hereinafter referred to as “FPC”). This was subjected to OSP treatment in the same manner as above to form a benzimidazole resin complex film having a thickness of 0.10 to 0.32 μm (hereinafter referred to as “OSP-FPC”).
(2-3)回路電極の接続(PWBとFPCの接続)
 OSP-PWB上に、上記のフィルム状の回路接続材料の接着面を貼り付けた後、70℃、1MPaで2秒間加熱及び加圧して仮接続し、その後、PETフィルムを剥離した。次に、OSP-FPCの回路電極とOSP-PWBの回路電極とが向かい合うように位置合わせした後、160℃、4MPaで6秒間加熱及び加圧した。FPCとPWBとの基板間の幅は2mmであった。
(2-3) Connection of circuit electrode (connection of PWB and FPC)
After the adhesive surface of the film-like circuit connecting material was pasted on the OSP-PWB, it was temporarily connected by heating and pressing at 70 ° C. and 1 MPa for 2 seconds, and then the PET film was peeled off. Next, after positioning so that the circuit electrode of OSP-FPC and the circuit electrode of OSP-PWB face each other, it was heated and pressurized at 160 ° C. and 4 MPa for 6 seconds. The width between the substrates of FPC and PWB was 2 mm.
(3)回路部材の接続構造の評価
(3-1)接続抵抗の測定
 作製した接続構造の回路接続部を含む回路間の抵抗値を、デジタルマルチメータを用いて2端子法で測定した。接続抵抗の測定は、接続直後、85℃85%RHの恒温恒湿槽中に1000時間保持する高温高湿処理を行った後、及び、-40℃~+100℃の熱衝撃試験1000サイクル処理を行った後にそれぞれ測定した。結果を表3に示す。
(3) Evaluation of connection structure of circuit members (3-1) Measurement of connection resistance The resistance value between circuits including the circuit connection part of the produced connection structure was measured by a two-terminal method using a digital multimeter. The connection resistance is measured immediately after the connection, after performing a high temperature and high humidity treatment for 1000 hours in a constant temperature and humidity chamber of 85 ° C. and 85% RH, and a thermal shock test of 1000 cycles of −40 ° C. to + 100 ° C. Measurements were made after each. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 実施例1~3の回路接続材料は、高温高湿処理後及び熱衝撃試験後のいずれにおいても接続抵抗の上昇が小さく接続信頼性に優れることが確認された。一方、Ni粒子のみからなる導電粒子を用いた比較例1及び4の回路接続材料は、各試験後の接触抵抗が大きく上昇した。また、表面に突起を有するNi粒子からなる導電粒子を用いた比較例2、3及び5の回路接続材料は、高温高湿試験の接続抵抗の上昇は比較的小さかったものの、熱衝撃試験後では、接続抵抗が著しく上昇した。 It was confirmed that the circuit connection materials of Examples 1 to 3 had a small increase in connection resistance and excellent connection reliability both after the high temperature and high humidity treatment and after the thermal shock test. On the other hand, the contact resistance after each test greatly increased in the circuit connection materials of Comparative Examples 1 and 4 using conductive particles made of only Ni particles. Further, the circuit connection materials of Comparative Examples 2, 3 and 5 using conductive particles made of Ni particles having protrusions on the surface showed a relatively small increase in connection resistance in the high temperature and high humidity test, but after the thermal shock test. The connection resistance increased significantly.
 1…回路接続材料、1a…接続部、3…樹脂層、3a…硬化した樹脂層、5…導電粒子、10…第一の回路部材、11…第一の基板、13…第一の回路電極、13a…導体部、13b…被膜、20…第二の回路部材、21…第二の基板、23…第二の回路電極、23a…導体部、23b…被膜、100…回路部材の接続構造。 DESCRIPTION OF SYMBOLS 1 ... Circuit connection material, 1a ... Connection part, 3 ... Resin layer, 3a ... Hardened resin layer, 5 ... Conductive particle, 10 ... 1st circuit member, 11 ... 1st board | substrate, 13 ... 1st circuit electrode , 13a ... conductor portion, 13b ... coating, 20 ... second circuit member, 21 ... second substrate, 23 ... second circuit electrode, 23a ... conductor portion, 23b ... coating, 100 ... connection structure of circuit members.

Claims (5)

  1.  対向する回路電極同士を電気的に接続するための回路接続材料であって、
     接着剤組成物と、導電粒子とを含有し、
     前記導電粒子は、ビッカース硬度300~1000の金属からなる核体と、該核体の表面を被覆する貴金属からなる最表層とを有し、平均粒径が5~20μmである、回路接続材料。
    A circuit connection material for electrically connecting opposing circuit electrodes,
    Containing an adhesive composition and conductive particles;
    The circuit connecting material, wherein the conductive particles have a core composed of a metal having a Vickers hardness of 300 to 1000 and an outermost layer composed of a noble metal covering the surface of the core, and have an average particle diameter of 5 to 20 μm.
  2.  対向する回路電極同士を電気的に接続するための回路接続材料であって、
     接着剤組成物と、導電粒子とを含有し、
     前記導電粒子は、ニッケルからなる核体と、該核体の表面を被覆する貴金属からなる最表層とを有し、平均粒径が5~20μmである、回路接続材料。
    A circuit connection material for electrically connecting opposing circuit electrodes,
    Containing an adhesive composition and conductive particles;
    The circuit connection material, wherein the conductive particles have a core made of nickel and an outermost layer made of a noble metal covering the surface of the core, and have an average particle diameter of 5 to 20 μm.
  3.  前記接着剤組成物が、ラジカル重合性物質と、加熱により遊離ラジカルを発生する硬化剤とを含む、請求項1又は2記載の回路接続材料。 The circuit connection material according to claim 1 or 2, wherein the adhesive composition contains a radical polymerizable substance and a curing agent that generates free radicals upon heating.
  4.  前記接着剤組成物が、エポキシ樹脂と、潜在性硬化剤とを含む、請求項1又は2記載の回路接続材料。 The circuit connection material according to claim 1 or 2, wherein the adhesive composition contains an epoxy resin and a latent curing agent.
  5.  第一の回路基板の主面上に第一の回路電極が形成された第一の回路部材と、
     第二の回路基板の主面上に第二の回路電極が形成され、前記第二の回路電極が前記第一の回路電極と対向配置されるように配置された第二の回路部材と、
     前記第一の回路基板と前記第二の回路基板との間に設けられ、前記第一及び前記第二の回路電極が電気的に接続されるように前記第一の回路部材と前記第二の回路部材とを接続する回路接続部と、
    を備えた回路部材の接続構造であって、
     前記回路接続部が、請求項1~4のいずれか一項に記載の回路接続材料の硬化物であり、
     前記第一及び前記第二の回路電極のうち少なくとも一方が、イミダゾール化合物から形成される被膜を有する、回路部材の接続構造。
    A first circuit member having a first circuit electrode formed on the main surface of the first circuit board;
    A second circuit member is formed on the main surface of the second circuit board, and the second circuit electrode is disposed so that the second circuit electrode is opposed to the first circuit electrode;
    The first circuit member and the second circuit board are provided between the first circuit board and the second circuit board so that the first and second circuit electrodes are electrically connected to each other. A circuit connection for connecting the circuit members;
    A circuit member connection structure comprising:
    The circuit connection portion is a cured product of the circuit connection material according to any one of claims 1 to 4,
    A circuit member connection structure in which at least one of the first and second circuit electrodes has a coating formed of an imidazole compound.
PCT/JP2010/070286 2009-11-16 2010-11-15 Circuit connecting material and connection structure for circuit member using same WO2011059084A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010548315A JP5518747B2 (en) 2009-11-16 2010-11-15 Circuit connection material and circuit member connection structure using the same
BR112012011692-4A BR112012011692B1 (en) 2009-11-16 2010-11-15 circuit connection material and connection structure for circuit member using the same
KR1020127013954A KR101342255B1 (en) 2009-11-16 2010-11-15 Circuit connecting material and connection structure for circuit member using same
CN201080051290.2A CN102598419B (en) 2009-11-16 2010-11-15 Circuit connecting material and connection structure for circuit member using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-261000 2009-11-16
JP2009261000 2009-11-16

Publications (1)

Publication Number Publication Date
WO2011059084A1 true WO2011059084A1 (en) 2011-05-19

Family

ID=43991737

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/070286 WO2011059084A1 (en) 2009-11-16 2010-11-15 Circuit connecting material and connection structure for circuit member using same

Country Status (6)

Country Link
JP (2) JP5518747B2 (en)
KR (1) KR101342255B1 (en)
CN (1) CN102598419B (en)
BR (1) BR112012011692B1 (en)
TW (1) TWI494402B (en)
WO (1) WO2011059084A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013031702A1 (en) * 2011-08-26 2013-03-07 旭化成イーマテリアルズ株式会社 Method for manufacturing solar cell connecting structure
WO2013089062A1 (en) * 2011-12-15 2013-06-20 デクセリアルズ株式会社 Adhesive agent, and method for connecting electronic component
JP2013182823A (en) * 2012-03-02 2013-09-12 Dexerials Corp Manufacturing method of connection body and anisotropic conductive adhesive
JP2014060151A (en) * 2012-08-24 2014-04-03 Dexerials Corp Method for manufacturing anisotropic conductive film and anisotropic conductive film
JP2014060150A (en) * 2012-08-24 2014-04-03 Dexerials Corp Anisotropic conductive film and method for manufacturing the same
WO2014156930A1 (en) * 2013-03-28 2014-10-02 デクセリアルズ株式会社 Connection method for circuit member, and assembly

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6102105B2 (en) * 2012-07-19 2017-03-29 日立化成株式会社 Film-like circuit connection material and circuit connection structure
WO2016152943A1 (en) * 2015-03-23 2016-09-29 デクセリアルズ株式会社 Conductive particles, anisotropic conductive adhesive, and connection structure
WO2017037951A1 (en) * 2015-09-04 2017-03-09 日立化成株式会社 Adhesive composition, anisotropically electroconductive adhesive composition, circuit connecting material, and connected object
US20180175290A1 (en) * 2016-12-19 2018-06-21 Arm Ltd. Forming nucleation layers in correlated electron material devices
JP7446095B2 (en) 2019-12-03 2024-03-08 デクセリアルズ株式会社 Manufacturing method of film wrapping body and connection body

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009057612A1 (en) * 2007-10-31 2009-05-07 Hitachi Chemical Company, Ltd. Circuit connecting material and connecting structure for circuit member
JP2009111327A (en) * 2007-10-12 2009-05-21 Hitachi Chem Co Ltd Circuit connecting material and connection structure for circuit member using the same

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63308880A (en) * 1987-06-11 1988-12-16 Sony Chem Corp Anisotropic conductive adhesive
JP2905121B2 (en) * 1995-07-19 1999-06-14 ソニーケミカル株式会社 Anisotropic conductive adhesive film
JPH0955279A (en) * 1995-08-10 1997-02-25 Hitachi Chem Co Ltd Electrode connecting method and connection structure of electrode obtained by the method
JP3738655B2 (en) * 2000-03-31 2006-01-25 ソニーケミカル株式会社 Anisotropic conductive adhesive material and connection method
JP2003100367A (en) * 2001-09-20 2003-04-04 Denso Corp Conductive bond, and connection method and connection structure between circuit boards using bond
JP2005071817A (en) * 2003-08-25 2005-03-17 Asahi Kasei Electronics Co Ltd Anisotropic conductive film
JP2005197032A (en) * 2004-01-05 2005-07-21 Asahi Kasei Electronics Co Ltd Anisotropic conductive film
JP4466650B2 (en) * 2004-06-09 2010-05-26 日立化成工業株式会社 Film adhesive, film circuit connecting material, circuit member connecting method, and semiconductor device
JP2006108523A (en) * 2004-10-08 2006-04-20 Hitachi Chem Co Ltd Method of connecting electrical component using anisotropic conductive film
JP4860163B2 (en) * 2005-02-15 2012-01-25 積水化学工業株式会社 Method for producing conductive fine particles
WO2009048070A1 (en) * 2007-10-12 2009-04-16 Hitachi Chemical Company, Ltd. Circuit connecting material and connection structure for circuit member using the same
JP2009242508A (en) * 2008-03-31 2009-10-22 Asahi Kasei E-Materials Corp Adhesive and bonded body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009111327A (en) * 2007-10-12 2009-05-21 Hitachi Chem Co Ltd Circuit connecting material and connection structure for circuit member using the same
WO2009057612A1 (en) * 2007-10-31 2009-05-07 Hitachi Chemical Company, Ltd. Circuit connecting material and connecting structure for circuit member

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013031702A1 (en) * 2011-08-26 2013-03-07 旭化成イーマテリアルズ株式会社 Method for manufacturing solar cell connecting structure
WO2013089062A1 (en) * 2011-12-15 2013-06-20 デクセリアルズ株式会社 Adhesive agent, and method for connecting electronic component
JP2013124329A (en) * 2011-12-15 2013-06-24 Dexerials Corp Adhesive, and method for connecting electronic component
JP2013182823A (en) * 2012-03-02 2013-09-12 Dexerials Corp Manufacturing method of connection body and anisotropic conductive adhesive
JP2014060151A (en) * 2012-08-24 2014-04-03 Dexerials Corp Method for manufacturing anisotropic conductive film and anisotropic conductive film
JP2014060150A (en) * 2012-08-24 2014-04-03 Dexerials Corp Anisotropic conductive film and method for manufacturing the same
US10272598B2 (en) 2012-08-24 2019-04-30 Dexerials Corporation Method of producing anisotropic conductive film and anisotropic conductive film
US11136476B2 (en) 2012-08-24 2021-10-05 Dexerials Corporation Method of producing anisotropic conductive film and anisotropic conductive film
US11404391B2 (en) 2012-08-24 2022-08-02 Dexerials Corporation Anisotropic conductive film and method of producing the same
US11784154B2 (en) 2012-08-24 2023-10-10 Dexerials Corporation Anisotropic conductive film and method of producing the same
US11787976B2 (en) 2012-08-24 2023-10-17 Dexerials Corporation Method of producing anisotropic conductive film and anisotropic conductive film
WO2014156930A1 (en) * 2013-03-28 2014-10-02 デクセリアルズ株式会社 Connection method for circuit member, and assembly

Also Published As

Publication number Publication date
JP5518747B2 (en) 2014-06-11
JP2013138013A (en) 2013-07-11
TW201134904A (en) 2011-10-16
BR112012011692B1 (en) 2020-11-17
CN102598419B (en) 2015-04-29
JP5716763B2 (en) 2015-05-13
BR112012011692A2 (en) 2018-03-27
CN102598419A (en) 2012-07-18
JPWO2011059084A1 (en) 2013-04-04
KR20120088782A (en) 2012-08-08
KR101342255B1 (en) 2013-12-16
TWI494402B (en) 2015-08-01

Similar Documents

Publication Publication Date Title
JP5716763B2 (en) Circuit connection material and circuit member connection structure using the same
KR100732017B1 (en) Circuit connecting material, film-like circuit connecting material using the same, circuit member connecting structure, and method of producing the same
JP5247968B2 (en) Circuit connection material and circuit member connection structure using the same
JP2017073386A (en) Circuit connecting material, connection structure of circuit member, and method for manufacturing connection structure of circuit member
KR20090075749A (en) Circuit connection structure
KR20100009540A (en) Circuit-connecting material, and connection structure for circuit member
JP2009277769A (en) Circuits connecting material and connection structure of circuit member using the same
JP5176139B2 (en) Circuit connection material and circuit member connection structure using the same
JP2013055058A (en) Circuit connection material and connection structure of circuit member
JP2008111092A (en) Circuit-connecting material and connection structure using the same
JP4872949B2 (en) Circuit connection material and circuit member connection structure using the same
JP2007224228A (en) Circuit-connecting material, connection structure of circuit terminal, and method for connecting circuit terminal
KR20100039419A (en) Circuit member connecting structure
JP4154919B2 (en) Circuit connection material and circuit terminal connection structure using the same
JP4844461B2 (en) Circuit connection material and circuit terminal connection structure using the same
JP2009275079A (en) Circuit-connecting material and connected structure of circuit member using the same
JP2011054988A (en) Circuit connecting material
JP2011119154A (en) Connection method and connection structure
JP4400674B2 (en) Circuit connection material and circuit terminal connection structure using the same
JP5365666B2 (en) Circuit connection material, circuit terminal connection structure and connection method
JP5387592B2 (en) Circuit connection material and method of manufacturing circuit member connection structure
JP2006111806A (en) Circuit connecting material and circuit connection structure using the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080051290.2

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2010548315

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10830040

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 4241/CHENP/2012

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127013954

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012011692

Country of ref document: BR

122 Ep: pct application non-entry in european phase

Ref document number: 10830040

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112012011692

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120516