JP2008111092A - Circuit-connecting material and connection structure using the same - Google Patents

Circuit-connecting material and connection structure using the same Download PDF

Info

Publication number
JP2008111092A
JP2008111092A JP2007140857A JP2007140857A JP2008111092A JP 2008111092 A JP2008111092 A JP 2008111092A JP 2007140857 A JP2007140857 A JP 2007140857A JP 2007140857 A JP2007140857 A JP 2007140857A JP 2008111092 A JP2008111092 A JP 2008111092A
Authority
JP
Japan
Prior art keywords
circuit
weight
connection
parts
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007140857A
Other languages
Japanese (ja)
Other versions
JP2008111092A5 (en
Inventor
Takashi Nakazawa
孝 中澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2007140857A priority Critical patent/JP2008111092A/en
Publication of JP2008111092A publication Critical patent/JP2008111092A/en
Publication of JP2008111092A5 publication Critical patent/JP2008111092A5/ja
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a circuit-connecting material able to maintain high adhesive strength under high temperature and high humidity even when used for mounting COF (chip on film) and, at the same time, exhibits excellent connection reliability and preservation stability. <P>SOLUTION: The circuit-connecting material 1 comprises (1) an epoxy resin, (2) a latent curing agent and (3) a compound having an epoxy group and an acrylate group and is used for electrically connecting mutually facing circuit electrodes to each other. <P>COPYRIGHT: (C)2008,JPO&amp;INPIT

Description

本発明は、回路接続材料及びそれを用いた接続構造体に関する。   The present invention relates to a circuit connection material and a connection structure using the same.

半導体素子や液晶表示素子の製造においては、回路部材同士を接続するために、異方導電性接着剤等の回路接続材料が用いられる。半導体シリコンチップの基板への実装においては、従来のワイヤーボンディングシートに代えて、近年は半導体シリコンチップを基板に直接実装する、いわゆるフリップチップ実装が行われており、ここでも異方導電性接着剤などの回路接続材料が適用されている。   In manufacturing a semiconductor element or a liquid crystal display element, a circuit connection material such as an anisotropic conductive adhesive is used to connect circuit members to each other. In mounting a semiconductor silicon chip on a substrate, instead of the conventional wire bonding sheet, in recent years, so-called flip chip mounting in which the semiconductor silicon chip is directly mounted on the substrate has been performed. Circuit connection materials such as are applied.

回路接続材料としては、高い接着性を有し、高信頼性を示すエポキシ樹脂を用いた熱硬化性樹脂組成物が用いられてきた(例えば、特許文献1参照)。エポキシ樹脂を用いた熱硬化性樹脂組成物は、一般に、エポキシ樹脂、エポキシ樹脂と反応するフェノール樹脂等の硬化剤といった成分から構成される。回路接続材料の室温での貯蔵安定性を確保するために、通常、潜在性硬化剤が硬化剤として用いられる。潜在性硬化剤は硬化温度及び硬化速度を決定する重要な因子であり、室温での貯蔵安定性と加熱時の硬化速度の観点から、種々の化合物が潜在性硬化剤として検討されてきた。   As a circuit connection material, a thermosetting resin composition using an epoxy resin having high adhesiveness and high reliability has been used (for example, see Patent Document 1). A thermosetting resin composition using an epoxy resin is generally composed of components such as an epoxy resin and a curing agent such as a phenol resin that reacts with the epoxy resin. In order to ensure the storage stability of the circuit connecting material at room temperature, a latent curing agent is usually used as a curing agent. The latent curing agent is an important factor for determining the curing temperature and the curing rate, and various compounds have been studied as latent curing agents from the viewpoint of storage stability at room temperature and curing rate during heating.

最近、アクリレート誘導体又はメタアクリレート誘導体とラジカル重合開始剤である過酸化物とを併用した、ラジカル硬化型接着剤の回路接続材料としての使用が注目されている。ラジカル硬化型接着剤の場合、反応活性種であるラジカルが反応性に富むため、短時間硬化が可能である(例えば、特許文献2、3参照)。   Recently, attention has been focused on the use of radical curable adhesives as circuit connection materials in which acrylate derivatives or methacrylate derivatives are combined with peroxides as radical polymerization initiators. In the case of radical curable adhesives, radicals that are reactive species are highly reactive and can be cured in a short time (see, for example, Patent Documents 2 and 3).

ところで、液晶ディスプレイと、TCP(Tape Carrier Package)又はCOF(Chip On Flex)との接続、FPC(Flexible Printed Circuit)とTCPとの接続、FPCとPWB(Printed Wiring Board)との接続において、接着剤中に導電性粒子を分散させた異方導電性接着剤などの回路接続材料が使用されている。   By the way, in the connection between the liquid crystal display and TCP (Tape Carrier Package) or COF (Chip On Flex), the connection between FPC (Flexible Printed Circuit) and TCP, and the connection between FPC and PWB (Printed Wiring Board), A circuit connection material such as an anisotropic conductive adhesive in which conductive particles are dispersed is used.

特に最近、ドライバICを液晶ディスプレイに対して実装する方式としては、COFを実装する方式が主流となりつつある。
特開平1−113480号公報 特開2002−203427号公報 国際公開第98/044067号パンフレット
In particular, as a method of mounting a driver IC on a liquid crystal display, a method of mounting a COF is becoming mainstream.
Japanese Patent Laid-Open No. 1-113480 JP 2002-203427 A International Publication No. 98/044067 Pamphlet

しかしながら、従来の回路接続材料を用いてCOFを他の回路部材と接続すると、高温高湿処理後の接着強度が、TCPの場合と比較して低下しやすいという問題があった。その要因としては、COFとTCPとで構成材料が異なることが挙げられる。一般に、TCPが「銅箔−接着剤層−ポリイミドフィルム」の3層構成を有しているのに対して、COFは「銅箔−ポリイミドフィルム」の2層構成を有する。すなわち、TCPの場合、隣り合う回路電極間に接着剤層が露出しており、この接着剤と回路接続材料との間の高い接着力により、高温処理後の接着強度が高く維持されやすい。一方、COFの場合は隣り合う回路電極間にポリイミドフィルムが露出している。ポリイミドフィルムと従来の回路接続材料との接着力は比較的低く、そのために高温高湿処理後の接着強度低下が大きくなると考えられる。   However, when COF is connected to other circuit members using a conventional circuit connecting material, there is a problem that the adhesive strength after high-temperature and high-humidity treatment tends to be lower than in the case of TCP. The reason for this is that the constituent materials differ between COF and TCP. In general, TCP has a three-layer configuration of “copper foil-adhesive layer-polyimide film”, whereas COF has a two-layer configuration of “copper foil-polyimide film”. That is, in the case of TCP, the adhesive layer is exposed between adjacent circuit electrodes, and the high adhesive strength between the adhesive and the circuit connecting material makes it easy to maintain high adhesive strength after high-temperature processing. On the other hand, in the case of COF, a polyimide film is exposed between adjacent circuit electrodes. It is considered that the adhesive strength between the polyimide film and the conventional circuit connecting material is relatively low, so that the decrease in the adhesive strength after the high temperature and high humidity treatment is increased.

そこで、本発明者らはCOFの実装の場合の高温高湿処理後の接着強度を高く維持するための手法を検討し、ある程度有効な手法をこれまでにもいくつか見出してきた。しかし、いずれの手法の場合も、接続信頼性や保存安定性といった他の特性が極端に低下してしまうという問題があった。   Accordingly, the present inventors have studied methods for maintaining high adhesive strength after high-temperature and high-humidity processing in the case of COF mounting, and have found some methods that are effective to some extent. However, both methods have a problem that other characteristics such as connection reliability and storage stability are extremely deteriorated.

本発明は、上記事情に鑑みてなされたものであり、COFを実装するために用いられたときであっても高温高湿下で高い接着強度を維持することが可能であり、同時に、優れた接続信頼性及び保存安定性を発現する回路接続材料を提供することを目的とする。   The present invention has been made in view of the above circumstances, and can maintain high adhesive strength under high temperature and high humidity even when used for mounting COF, and at the same time, excellent An object of the present invention is to provide a circuit connection material that exhibits connection reliability and storage stability.

本発明者らは、上記課題を解決するべく鋭意研究した結果、エポキシ基及びアクリレート基をそれぞれ1個以上有する化合物をエポキシ樹脂と併用することにより、接続信頼性及び保存安定性を極端に低下させることなく、高温高湿処理後の接着強度を向上できることを見出し、本発明を完成させた。   As a result of diligent research to solve the above-mentioned problems, the inventors of the present invention extremely reduce connection reliability and storage stability by using a compound having one or more epoxy groups and acrylate groups in combination with an epoxy resin. And found that the adhesive strength after the high-temperature and high-humidity treatment can be improved, and the present invention has been completed.

すなわち、本発明に係る回路接続材料は、(1)エポキシ樹脂と、(2)潜在性硬化剤と、(3)エポキシ基及びアクリレート基を有する化合物と、を含有する。この回路接続材料は、対向する回路電極同士を電気的に接続するために用いられる。   That is, the circuit connection material according to the present invention contains (1) an epoxy resin, (2) a latent curing agent, and (3) a compound having an epoxy group and an acrylate group. This circuit connection material is used to electrically connect the opposing circuit electrodes.

上記本発明に係る回路接続材料によれば、COFを実装するために用いられたときであっても高温高湿下で高い接着強度を維持することが可能であり、同時に、優れた接続信頼性及び保存安定性が得られる。   According to the circuit connecting material according to the present invention, it is possible to maintain high adhesive strength under high temperature and high humidity even when used for mounting COF, and at the same time, excellent connection reliability. And storage stability is obtained.

別の側面において、本発明は接続構造体に関する。本発明に係る接続構造体は、第一の基板及びこれの主面上に形成された第一の回路電極を有する第一の回路部材と、第二の基板及びこれの主面上に形成された第二の回路電極を有し、該第二の回路電極と第一の回路電極とが対向するように配置され、該第二の回路電極が第一の回路電極と電気的に接続されている第二の回路部材と、第一の回路部材及び第二の回路部材の間に介在する接続部と、を備える。接続部は、上記本発明に係る回路接続材料の硬化物である。   In another aspect, the invention relates to a connection structure. The connection structure according to the present invention is formed on the first substrate and the first circuit member having the first circuit electrode formed on the main surface thereof, and on the second substrate and the main surface thereof. The second circuit electrode is disposed so that the second circuit electrode and the first circuit electrode face each other, and the second circuit electrode is electrically connected to the first circuit electrode. A second circuit member, and a connection portion interposed between the first circuit member and the second circuit member. The connection portion is a cured product of the circuit connection material according to the present invention.

上記本発明に係る接続構造体は、第一の回路部材又は第二の回路部材がCOFである場合であっても高温高湿下で高い接着強度を維持することが可能であり、同時に、優れた接続信頼性及び保存安定性を有する。   The connection structure according to the present invention can maintain high adhesive strength under high temperature and high humidity even when the first circuit member or the second circuit member is COF, and at the same time, excellent Connection reliability and storage stability.

本発明に係る回路接続材料によれば、COFを実装するために用いられたときであっても高温高湿下で高い接着強度を維持することが可能であり、同時に、優れた接続信頼性及び保存安定性を発現することが可能である。   According to the circuit connection material according to the present invention, it is possible to maintain high adhesive strength under high temperature and high humidity even when used for mounting COF, and at the same time, excellent connection reliability and It is possible to develop storage stability.

本実施形態に係る回路接続材料は、回路電極同士を電気的に接続するために用いられる接着剤である。図1は、回路接続材料の一実施形態を示す断面図である。図1に示す回路接続材料1は、接着剤層3と、接着剤層3内に分散している複数の導電性粒子5とから構成され、フィルム状の形状を有する。接着剤層3は、エポキシ樹脂と、潜在性硬化剤と、エポキシ基及びアクリレート基を有する化合物とを含有する。言い換えると、回路接続材料1は、エポキシ樹脂と、潜在性硬化剤と、エポキシ基及びアクリレート基を有する化合物と、導電性粒子5とを含有する。回路接続材料1が加熱されたときにエポキシ樹脂の架橋により接着剤層3において架橋構造が形成され、回路接続材料1の硬化物が形成される。   The circuit connection material according to the present embodiment is an adhesive used to electrically connect circuit electrodes. FIG. 1 is a cross-sectional view showing an embodiment of a circuit connecting material. A circuit connecting material 1 shown in FIG. 1 is composed of an adhesive layer 3 and a plurality of conductive particles 5 dispersed in the adhesive layer 3 and has a film shape. The adhesive layer 3 contains an epoxy resin, a latent curing agent, and a compound having an epoxy group and an acrylate group. In other words, the circuit connection material 1 contains an epoxy resin, a latent curing agent, a compound having an epoxy group and an acrylate group, and conductive particles 5. When the circuit connection material 1 is heated, a crosslinked structure is formed in the adhesive layer 3 by crosslinking of the epoxy resin, and a cured product of the circuit connection material 1 is formed.

エポキシ樹脂としては、2以上のエポキシ基を有するエポキシ化合物であってアクリレート基を有していないものであれば特に制限なく用いられる。ビスフェノールA、F、D等のビスフェノールのグリシジルエーテルであるビスフェノール型エポキシ樹脂、並びに、フェノールノボラック又はクレゾールノボラックから誘導されるエポキシノボラック樹脂が代表的なエポキシ樹脂である。その他の例として、グリシジルアミン型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、脂環式エポキシ樹脂、及び複素環式エポキシ樹脂が挙げられる。これらは単独又は2種以上混合して用いられる。   As the epoxy resin, any epoxy compound having two or more epoxy groups and having no acrylate group can be used without particular limitation. Typical epoxy resins are bisphenol type epoxy resins which are glycidyl ethers of bisphenols such as bisphenol A, F and D, and epoxy novolac resins derived from phenol novolac or cresol novolac. Other examples include glycidyl amine type epoxy resins, glycidyl ester type epoxy resins, alicyclic epoxy resins, and heterocyclic epoxy resins. These are used individually or in mixture of 2 or more types.

上記エポキシ樹脂の中でも、ビスフェノール型エポキシ樹脂が分子量の異なるグレードが広く入手可能で、接着性や反応性等を任意に設定できることから好ましい。ビスフェノール型エポキシ樹脂の中でも、ビスフェノールF型エポキシ樹脂が特に好ましい。ビスフェノールF型エポキシ樹脂の粘度は低く、フェノキシ樹脂との組み合わせて用いることにより、回路接続材料の流動性を容易に広範囲に設定できる。また、ビスフェノールF型エポキシ樹脂は、回路接続材料に良好な粘着性を付与し易いという利点も有する。   Among the above epoxy resins, bisphenol type epoxy resins are preferable because grades with different molecular weights are widely available, and adhesiveness, reactivity, and the like can be arbitrarily set. Among bisphenol type epoxy resins, bisphenol F type epoxy resins are particularly preferable. The viscosity of the bisphenol F type epoxy resin is low, and the fluidity of the circuit connecting material can be easily set in a wide range by using it in combination with the phenoxy resin. Further, the bisphenol F type epoxy resin has an advantage that it is easy to impart good adhesiveness to the circuit connecting material.

また、3個以上のエポキシ基を有する、いわゆる多官能エポキシ樹脂も、硬化物の架橋密度が高められてその耐熱性が向上することから好ましい。ただし、多官能エポキシ樹脂の量が多くなると溶剤による補修が困難となる傾向があるため、接着剤層3中に占める多官能エポキシ樹脂の割合は30質量%以下であることが好ましい。   A so-called polyfunctional epoxy resin having three or more epoxy groups is also preferred because the crosslink density of the cured product is increased and its heat resistance is improved. However, since the repair with a solvent tends to be difficult when the amount of the polyfunctional epoxy resin is increased, the ratio of the polyfunctional epoxy resin in the adhesive layer 3 is preferably 30% by mass or less.

不純物イオン(Na、Cl等)濃度又は加水分解性塩素が300ppm以下であるエポキシ樹脂を用いることが、エレクトロンマイグレーション防止のために好ましい。 It is preferable to use an epoxy resin having an impurity ion (Na + , Cl etc.) concentration or hydrolyzable chlorine of 300 ppm or less to prevent electron migration.

回路接続材料1に用いられる潜在性硬化剤は、エポキシ樹脂と反応して架橋構造中に取り込まれる化合物であってもよいし、エポキシ樹脂の硬化反応を促進する触媒型硬化剤であってもよい。両者を併用することも可能である。   The latent curing agent used for the circuit connection material 1 may be a compound that reacts with the epoxy resin and is incorporated into the crosslinked structure, or may be a catalytic curing agent that accelerates the curing reaction of the epoxy resin. . Both can be used in combination.

触媒型硬化剤としては、例えば、エポキシ樹脂のアニオン重合を促進するアニオン重合型潜在性硬化剤、及びエポキシ樹脂のカチオン重合を促進するカチオン重合型潜在性硬化剤が挙げられる。特に、アニオン重合型潜在性硬化剤は、様々な被着体に対して強い接着強度を発揮することができるため好ましい。   Examples of the catalytic curing agent include an anionic polymerization latent curing agent that promotes anionic polymerization of an epoxy resin and a cationic polymerization latent curing agent that promotes cationic polymerization of an epoxy resin. In particular, an anionic polymerization type latent curing agent is preferable because it can exhibit strong adhesive strength to various adherends.

アニオン重合型潜在性硬化剤としては、例えば、イミダゾール系、ヒドラジド系、三フッ素ホウ素−アミン錯体、アミンイミド、ポリアミンの塩、ジシアンジアミド及びこれらの変性物が挙げられる。これらは単独又は2種以上の混合体として使用できる。イミダゾール系のアニオン重合型潜在性硬化剤は、例えば、イミダゾール又はその誘導体をエポキシ樹脂に付加して形成される。   Examples of the anionic polymerization type latent curing agent include imidazole series, hydrazide series, trifluoroboron-amine complex, amine imide, polyamine salt, dicyandiamide, and modified products thereof. These can be used alone or as a mixture of two or more. The imidazole-based anionic polymerization latent curing agent is formed, for example, by adding imidazole or a derivative thereof to an epoxy resin.

アニオン重合型潜在性硬化剤の配合量は、エポキシ樹脂100重量部に対して20〜50重量部であることが好ましく、30〜40重量部であることがより好ましい。20重量部未満であると回路接続材料の硬化収縮による被着体に対する締め付け力が低下する。その結果、導電性粒子5と回路電極との接触が保持されず、信頼性試験後の接続抵抗が上昇しやすくなる傾向がある。60重量部を超えると締め付け力が強くなりすぎるため、回路接続材料の硬化物における内部応力が大きくなり、接着強度の低下を招き易くなる傾向がある。   The compounding amount of the anionic polymerization type latent curing agent is preferably 20 to 50 parts by weight, and more preferably 30 to 40 parts by weight with respect to 100 parts by weight of the epoxy resin. If it is less than 20 parts by weight, the clamping force on the adherend due to the curing shrinkage of the circuit connecting material is reduced. As a result, the contact between the conductive particles 5 and the circuit electrode is not maintained, and the connection resistance after the reliability test tends to increase. If it exceeds 60 parts by weight, the tightening force becomes too strong, so that the internal stress in the cured product of the circuit connecting material tends to increase, and the adhesive strength tends to decrease.

接着剤層3は、エポキシ基及びアクリレート基を有する化合物を1種又は2種以上含有する。エポキシ基及びアクリレート基を有する化合物を用いることによって高温高湿処理後の接着強度を高く維持できる理由は、以下のように推測される。この化合物は、回路接続材料の硬化の際にそのエポキシ基が反応することにより、架橋構造体中に取り込まれる。そして、硬化後の回路接続材料中に水分が浸透すると、架橋構造体が有するアクリレート基が加水分解されて水酸基が新たに生じる。この水酸基が、高温高湿処理後の接着強度の向上に寄与していると考えられる。但し、この作用機構は未だ明らかではなく、本発明はこのような作用機能を有するものに限定されるものではない。   The adhesive layer 3 contains one or more compounds having an epoxy group and an acrylate group. The reason why the adhesive strength after high-temperature and high-humidity treatment can be maintained high by using a compound having an epoxy group and an acrylate group is presumed as follows. This compound is taken into the crosslinked structure by the reaction of the epoxy group during the curing of the circuit connecting material. When moisture penetrates into the circuit connection material after curing, the acrylate group of the crosslinked structure is hydrolyzed to newly generate a hydroxyl group. This hydroxyl group is considered to contribute to the improvement of the adhesive strength after the high temperature and high humidity treatment. However, this action mechanism is not yet clear, and the present invention is not limited to the one having such an action function.

エポキシ基及びアクリレート基を有する化合物は、好ましくは、エポキシ基を2以上有するエポキシ樹脂のエポキシ基の一部に対して、エポキシ基と反応する官能基(例えば、カルボキシル基)及びアクリレート基を有する化合物を付加させて得られる化合物である。この場合用いられるエポキシ樹脂としては、硬化後の物性保持の観点から、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック樹脂、又はクレゾールノボラック樹脂が好ましい。エポキシ基と反応する官能基及びアクリレート基を有する化合物は、典型的には、カルボキシル基及びアクリレート基を有するアクリル酸である。例えば、ビスフェノールA型エポキシ樹脂の片方のエポキシ基に対してアクリル酸を付加させて得られる化合物は、下記化学式で表される構造を有する。下記化学式で表される化合物は、「EA−1010N」(新中村化学工業(株)製)として商業的に入手可能である。   The compound having an epoxy group and an acrylate group is preferably a compound having a functional group that reacts with an epoxy group (for example, a carboxyl group) and an acrylate group with respect to a part of the epoxy group of the epoxy resin having two or more epoxy groups. Is a compound obtained by adding The epoxy resin used in this case is preferably a bisphenol A type epoxy resin, a bisphenol F type epoxy resin, a phenol novolac resin, or a cresol novolac resin from the viewpoint of maintaining physical properties after curing. The compound having a functional group that reacts with an epoxy group and an acrylate group is typically acrylic acid having a carboxyl group and an acrylate group. For example, a compound obtained by adding acrylic acid to one epoxy group of a bisphenol A type epoxy resin has a structure represented by the following chemical formula. A compound represented by the following chemical formula is commercially available as “EA-1010N” (manufactured by Shin-Nakamura Chemical Co., Ltd.).

Figure 2008111092
Figure 2008111092

エポキシ基及びアクリレート基を有する化合物は、好ましくは200〜60000、より好ましくは400〜10000の重量平均分子量を有する。重量平均分子量が200未満であると、硬化後の物性が低下しやすく、60000を超えると硬化時の回路接続材料の流動が阻害されて、接続抵抗が上昇する傾向にある。   The compound having an epoxy group and an acrylate group preferably has a weight average molecular weight of 200 to 60,000, more preferably 400 to 10,000. When the weight average molecular weight is less than 200, the physical properties after curing are likely to be lowered, and when it exceeds 60000, the flow of the circuit connecting material at the time of curing is hindered and the connection resistance tends to increase.

エポキシ基及びアクリレート基を有する化合物の配合量は、エポキシ樹脂及び潜在性硬化剤の合計量100重量部に対して10〜40重量部であることが好ましく、20〜30重量部であることがより好ましい。10重量部未満では、高温高湿処理後の接着強度を維持する効果が小さくなる傾向があり、40重量部を超えると、硬化後の接着剤の物性が低下し、接続信頼性が低下し易くなる傾向がある。   The compounding amount of the compound having an epoxy group and an acrylate group is preferably 10 to 40 parts by weight, more preferably 20 to 30 parts by weight with respect to 100 parts by weight of the total amount of the epoxy resin and the latent curing agent. preferable. If it is less than 10 parts by weight, the effect of maintaining the adhesive strength after high-temperature and high-humidity treatment tends to be small, and if it exceeds 40 parts by weight, the physical properties of the adhesive after curing are lowered, and the connection reliability is likely to be lowered. Tend to be.

回路接続材料1(接着剤層3)は、熱可塑性樹脂を含有していてもよい。熱可塑性樹脂としては、ポリビニルブチラール樹脂、ポリビニルホルマール樹脂、ポリアミド樹脂、ポリエステル樹脂、フェノール樹脂、フェノキシ樹脂、ポリスチレン樹脂、キシレン樹脂及びポリウレタン樹脂が挙げられる。これらの中でも、製膜性や接着性の観点から、フェノキシ樹脂が特に好ましい。   The circuit connection material 1 (adhesive layer 3) may contain a thermoplastic resin. Examples of the thermoplastic resin include polyvinyl butyral resin, polyvinyl formal resin, polyamide resin, polyester resin, phenol resin, phenoxy resin, polystyrene resin, xylene resin, and polyurethane resin. Among these, a phenoxy resin is particularly preferable from the viewpoints of film formability and adhesiveness.

上記熱可塑性樹脂の重量平均分子量は10000以上であることが、製膜性などの観点から好ましい。ただし、熱可塑性樹脂の重量平均分子量が1000000以上になると他の成分との混合が困難になる傾向がある。なお、本願で規定する重量平均分子量とは、以下の条件のゲルパーミエイションクロマトグラフィー法(GPC)により、標準ポリスチレンによる検量線に基づいて決定される値をいう。
GPC条件
使用機器:日立L−6000 型((株)日立製作所)
カラム :ゲルパックGL−R420+ゲルパックGL−R430+ゲルパックGL−R440(計3本)(日立化成工業(株)製商品名)
溶離液:テトラヒドロフラン
測定温度:40℃
流量:1.75ml/min
検出器:L−3300RI((株)日立製作所)
The thermoplastic resin preferably has a weight average molecular weight of 10,000 or more from the viewpoint of film forming properties. However, when the weight average molecular weight of the thermoplastic resin is 1000000 or more, mixing with other components tends to be difficult. In addition, the weight average molecular weight prescribed | regulated by this application means the value determined based on the calibration curve by a standard polystyrene by the gel permeation chromatography method (GPC) of the following conditions.
Equipment using GPC conditions: Hitachi L-6000 type (Hitachi, Ltd.)
Column: Gel pack GL-R420 + Gel pack GL-R430 + Gel pack GL-R440 (3 in total) (trade name, manufactured by Hitachi Chemical Co., Ltd.)
Eluent: Tetrahydrofuran Measurement temperature: 40 ° C
Flow rate: 1.75 ml / min
Detector: L-3300RI (Hitachi, Ltd.)

熱可塑性樹脂は、水酸基を有することが好ましい。また、熱可塑性樹脂は40℃以上のTg(ガラス転移温度)を有することが好ましい。このような観点からも、フェノキシ樹脂を好適に使用することができる。フェノキシ樹脂は、例えば、二官能フェノールとエピハロヒドリンとを重合させて高分子化させる方法、又は二官能エポキシ樹脂と二官能フェノールとを重付加反応させる方法により得られる。   The thermoplastic resin preferably has a hydroxyl group. The thermoplastic resin preferably has a Tg (glass transition temperature) of 40 ° C. or higher. From this point of view, the phenoxy resin can be preferably used. The phenoxy resin is obtained, for example, by a method of polymerizing a bifunctional phenol and epihalohydrin to polymerize or a method of polyaddition reaction of a bifunctional epoxy resin and a bifunctional phenol.

水酸基を有する樹脂は、エポキシ基含有エラストマーによって変性されていてもよいし、ラジカル重合性の官能基を有していてもよい。ラジカル重合性の官能基を有するものを用いると、回路接続材料の硬化物の耐熱性を更に向上させることができる。   The resin having a hydroxyl group may be modified with an epoxy group-containing elastomer or may have a radical polymerizable functional group. When a material having a radical polymerizable functional group is used, the heat resistance of the cured product of the circuit connection material can be further improved.

回路接続材料1(接着剤層3)は、エポキシ基を有するエラストマーを含有していてもよい。エポキシ基はエラストマーの分子末端又は分子鎖中に存在する。エポキシ基を有するエラストマーとしては、例えば、ブタジエンをモノマー単位として含むブタジエン系重合体、アクリル重合体(アクリルゴム)、ポリエーテルウレタンゴム、ポリエステルウレタンゴム、ポリアミドウレタンゴム及びシリコーンゴムが挙げられる。このらの中でも、ブタジエン系重合体及びアクリル重合体が好ましい。ブタジエン系重合体としては、ブタジエン重合体、ブタジエン−スチレン共重合体、及びブタジエン−アクリロニトリル共重合体が挙げられる。これらのうち、ブタジエン−アクリロニトリル共重合体が特に好ましい。   The circuit connection material 1 (adhesive layer 3) may contain an elastomer having an epoxy group. Epoxy groups are present at the molecular ends or molecular chains of the elastomer. Examples of the elastomer having an epoxy group include a butadiene polymer containing butadiene as a monomer unit, an acrylic polymer (acrylic rubber), a polyether urethane rubber, a polyester urethane rubber, a polyamide urethane rubber, and a silicone rubber. Of these, butadiene polymers and acrylic polymers are preferred. Examples of the butadiene polymer include a butadiene polymer, a butadiene-styrene copolymer, and a butadiene-acrylonitrile copolymer. Of these, butadiene-acrylonitrile copolymers are particularly preferred.

回路接続材料1(接着剤層3)は、以上のような成分に加えて、他の成分を含有していてもよい。例えば、充填材、軟化剤、促進剤、老化防止剤、着色剤、難燃化剤、チキソトロピック剤、カップリング剤、フェノール樹脂、メラミン樹脂、イソシアネートが他の成分として用いられ得る。カップリング剤は、接着性の向上の点から、上述の成分以外の化合物であって、ビニル基、エポキシ基、アクリル基、アミノ基又はイソシアネート基を有する化合物であることが好ましい。   The circuit connection material 1 (adhesive layer 3) may contain other components in addition to the above components. For example, fillers, softeners, accelerators, anti-aging agents, colorants, flame retardants, thixotropic agents, coupling agents, phenol resins, melamine resins, and isocyanates can be used as other components. The coupling agent is preferably a compound having a vinyl group, an epoxy group, an acrylic group, an amino group, or an isocyanate group other than the above-described components from the viewpoint of improving adhesiveness.

導電性粒子5としては、Au、Ag、Ni、Cu及びはんだ等の金属を含む金属粒子、並びにカーボン粒子が挙げられる。導電性粒子5は、好ましくはAu、Ag及び白金族の貴金属から選ばれる金属、より好ましくはAuからその最表層が構成されていることがより好ましい。導電性粒子5の最表層がこれら金属から構成されていることにより、回路接続材料1の保存安定性がより一層高められる。導電性粒子5は、Ni等の遷移金属から構成される核体と、該核体の表面を被覆する上記最表層とを有する被覆粒子であてもよい。あるいは、ガラス、セラミック又はプラスチックから構成される絶縁性の核体と、該核体の表面を被覆する上記最表層とを有する被覆粒子であってもよい。特に、核体がプラスチック又は熱溶融金属から構成される核体を有する被覆粒子が好ましい。このような被覆粒子は、回路接続材料1が加熱及び加圧されたときに変形する。その結果、導電性粒子5と回路電極との接触面積が大きくなり、接続信頼性が向上する。   Examples of the conductive particles 5 include metal particles including metals such as Au, Ag, Ni, Cu and solder, and carbon particles. The conductive particles 5 are preferably composed of a metal selected from Au, Ag and a platinum group noble metal, more preferably Au. Since the outermost layer of the conductive particles 5 is composed of these metals, the storage stability of the circuit connection material 1 is further enhanced. The conductive particles 5 may be coated particles having a core composed of a transition metal such as Ni and the outermost layer that covers the surface of the core. Alternatively, it may be a coated particle having an insulating core composed of glass, ceramic or plastic and the outermost layer covering the surface of the core. In particular, coated particles having a core composed of a plastic or a hot-melt metal are preferable. Such coated particles are deformed when the circuit connecting material 1 is heated and pressurized. As a result, the contact area between the conductive particles 5 and the circuit electrode is increased, and the connection reliability is improved.

導電性粒子5の配合量は用途により適宜設定されるが、通常、接着剤層3(すなわち、回路接続材料1のうち導電性粒子5以外の部分)100体積部に対して0.1〜30体積部の範囲内である。更に、同一回路基板上で隣り合う回路電極同士の短絡を防止する観点からは、導電性粒子の配合量は0.1〜10体積部であることがより好ましい。   Although the compounding quantity of the electroconductive particle 5 is suitably set with a use, it is 0.1-30 with respect to 100 volume parts of adhesive bond layers 3 (namely, parts other than the electroconductive particle 5 among the circuit connection materials 1) normally. Within the volume range. Furthermore, from the viewpoint of preventing short circuit between adjacent circuit electrodes on the same circuit board, the blending amount of the conductive particles is more preferably 0.1 to 10 parts by volume.

本発明に係る回路接続材料は、図1に示される構成に限定されるものではない。例えば、回路接続材料が、組成の異なる2層以上の層から構成された積層構造を有していてもよい。この場合例えば、硬化剤と導電性粒子とがそれぞれ別の層に含まれていてもよい。これにより回路接続材料の保存安定性(ポットライフ)が更に向上する。また、回路接続材料は導電性粒子を含んでいなくてもよい。   The circuit connection material according to the present invention is not limited to the configuration shown in FIG. For example, the circuit connection material may have a laminated structure composed of two or more layers having different compositions. In this case, for example, the curing agent and the conductive particles may be included in separate layers. This further improves the storage stability (pot life) of the circuit connecting material. The circuit connecting material may not contain conductive particles.

本実施形態に係る回路接続材料は、例えば、半導体チップ、抵抗体チップ及びコンデンサチップ等のチップ部品、並びにプリント配線板のような、1又は2以上の回路電極(接続端子)を有する回路部材同士が接続された接続構造体を形成するために好適に用いられる。   The circuit connection material according to the present embodiment includes, for example, chip components such as a semiconductor chip, a resistor chip and a capacitor chip, and circuit members having one or more circuit electrodes (connection terminals) such as a printed wiring board. Is preferably used to form a connection structure in which are connected.

図2は、接続構造体の一実施形態を示す断面図である。図2に示す接続構造体100は、第一の基板11及びこれの主面上に形成された第一の回路電極13を有する第一の回路部材10と、第二の基板21及びこれの主面上に形成された第二の回路電極23を有し、第二の回路電極23と第一の回路電極13とが対向するように配置された第二の回路部材20と、第一の回路部材10及び第二の回路部材20の間に介在する接続部1aとを備える。対向する第一の回路電極13と第二の回路電極23とが電気的に接続されている。   FIG. 2 is a cross-sectional view showing an embodiment of a connection structure. The connection structure 100 shown in FIG. 2 includes a first circuit member 10 having a first substrate 11 and a first circuit electrode 13 formed on the main surface of the first substrate 11, a second substrate 21, and a main body thereof. A second circuit member 20 having a second circuit electrode 23 formed on the surface and disposed so that the second circuit electrode 23 and the first circuit electrode 13 face each other; And a connecting portion 1a interposed between the member 10 and the second circuit member 20. Opposing first circuit electrode 13 and second circuit electrode 23 are electrically connected.

接続部1aは、回路接続材料1が硬化して形成された硬化物である。接続部1aは、対向する第一の回路電極13と第二の回路電極23とが電気的に接続されるように、第一の回路部材10と第二の回路部材20とを接着している。対向する第一の回路電極13と第二の回路電極23とは、導電性粒子5を介して電気的に接続されている。なお、接続部が導電性粒子を含有していない場合、第一の回路電極13と第二の回路電極23とが直接接することにより電気的な接続が可能である。   The connection part 1a is a cured product formed by curing the circuit connection material 1. The connection portion 1a bonds the first circuit member 10 and the second circuit member 20 so that the first circuit electrode 13 and the second circuit electrode 23 facing each other are electrically connected. . The opposing first circuit electrode 13 and second circuit electrode 23 are electrically connected via the conductive particles 5. In addition, when the connection part does not contain conductive particles, the first circuit electrode 13 and the second circuit electrode 23 are in direct contact with each other, so that electrical connection is possible.

第一の基板11は、ポリエステルテレフタレート、ポリエーテルサルフォン、エポキシ樹脂、アクリル樹脂及びポリイミド樹脂からなる群より選ばれる少なくとも1種の樹脂を含む樹脂フィルムである。第一の回路電極13は、電極として機能し得る程度の導電性を有する材料(好ましくは金、銀、錫、白金族の金属及びインジウム−錫酸化物からなる群より選ばれる少なくとも一種)から形成されている。   The first substrate 11 is a resin film containing at least one resin selected from the group consisting of polyester terephthalate, polyethersulfone, epoxy resin, acrylic resin, and polyimide resin. The first circuit electrode 13 is formed from a material having conductivity that can function as an electrode (preferably at least one selected from the group consisting of gold, silver, tin, platinum group metals, and indium-tin oxide). Has been.

第二の基板21はガラス基板である。第二の回路電極は、好ましくは透明導電性材料から形成される。透明導電性材料としては典型的にはITOが用いられる。   The second substrate 21 is a glass substrate. The second circuit electrode is preferably formed from a transparent conductive material. Typically, ITO is used as the transparent conductive material.

接続構造体100のように、ポリエステルテレフタレート、ポリエーテルサルフォン、エポキシ樹脂、アクリル樹脂及びポリイミド樹脂といった材料で形成された基板と接続部1aが直接密着するような構成の場合、従来の回路接続材料では、高温高湿処理後に高い接着強度を維持するが困難であった。これに対して、接続構造体100においては、接続部1aが回路接続材料1の硬化物であることにより、高温高湿環境下においても十分に高い接着強度を維持できる。このような効果は、接続部と回路部材との間に、ポリイミド樹脂、アクリル樹脂、及びシリコーン樹脂等を含有する表面層が形成されている場合にも得られる。   In the case where the connection portion 1a is in direct contact with a substrate formed of a material such as polyester terephthalate, polyethersulfone, epoxy resin, acrylic resin, or polyimide resin, as in the connection structure 100, a conventional circuit connection material However, it was difficult to maintain high adhesive strength after high-temperature and high-humidity treatment. On the other hand, in the connection structure 100, since the connection part 1a is the hardened | cured material of the circuit connection material 1, sufficiently high adhesive strength can be maintained also in a high temperature, high humidity environment. Such an effect is also obtained when a surface layer containing a polyimide resin, an acrylic resin, a silicone resin, or the like is formed between the connection portion and the circuit member.

回路部材の接続構造体100は、例えば、第一の回路部材10と、上述のフィルム状の回路接続材料1と、第二の回路部材20とを、第一の回路電極13と第二の回路電極23とが対峙するようにこの順に積層した積層体を加熱及び加圧することにより、第一の回路電極13と第二の回路電極23とが電気的に接続されるように第一の回路部材10と第二の回路部材20とを接続する方法によって、得られる。   The circuit member connection structure 100 includes, for example, the first circuit member 10, the above-described film-like circuit connection material 1, and the second circuit member 20, and the first circuit electrode 13 and the second circuit. The first circuit member is configured so that the first circuit electrode 13 and the second circuit electrode 23 are electrically connected by heating and pressurizing the laminate laminated in this order so as to face the electrode 23. 10 and the second circuit member 20 are obtained.

この方法においては、まず、支持フィルム上に形成されているフィルム状の回路接続材料1を第二の回路部材20上に貼り合わせた状態で加熱及び加圧して回路接続材料1を仮接着し、支持フィルムを剥離してから、第一の回路部材10を回路電極を位置合わせしながら載せて、積層体を準備することができる。接続の際の加熱によって発生する揮発成分による接続への影響を防止するために、接続工程の前に回路部材を予め加熱処理しておくことが好ましい。   In this method, first, the circuit-connecting material 1 formed on the support film is temporarily bonded to the second circuit member 20 by heating and pressurizing the circuit-connecting material 1 while being bonded together, After peeling off the support film, the first circuit member 10 can be placed while aligning the circuit electrodes to prepare a laminate. In order to prevent the influence on the connection due to the volatile components generated by the heating at the time of connection, it is preferable to heat-treat the circuit member in advance before the connection step.

上記積層体を加熱及び加圧する条件は、回路接続材料中の接着剤組成物の硬化性等に応
じて、回路接続材料が硬化して十分な接着強度が得られるように、適宜調整される。
Conditions for heating and pressurizing the laminate are appropriately adjusted so that the circuit connecting material is cured and sufficient adhesive strength is obtained in accordance with the curability of the adhesive composition in the circuit connecting material.

本発明は上記実施形態に限定されるものではない。本発明は、その要旨を逸脱しない範囲で様々な変形が可能である。例えば、より良好な電気的接続を得るためには、回路電極(接続端子)の少なくとも一方が、金、銀、錫及び白金族から選ばれる少なくとも1種の金属から構成される最表層を有することが好ましい。回路電極は、銅/ニッケル/金のように複数の金属を組み合わせた多層構成を有していてもよい。   The present invention is not limited to the above embodiment. The present invention can be variously modified without departing from the gist thereof. For example, in order to obtain a better electrical connection, at least one of the circuit electrodes (connection terminals) has an outermost layer composed of at least one metal selected from gold, silver, tin, and a platinum group. Is preferred. The circuit electrode may have a multilayer structure in which a plurality of metals are combined such as copper / nickel / gold.

接続構造体を構成する回路部材が有する基板は、シリコン及びガリウム/ヒ素等の半導体チップ、並びに、ガラス、セラミックス、ガラス/エポキシ複合体、及びプラスチック等の絶縁基板であってもよい。   The substrate included in the circuit member constituting the connection structure may be a semiconductor chip such as silicon and gallium / arsenic, and an insulating substrate such as glass, ceramics, glass / epoxy composite, and plastic.

以下、実施例を挙げて本発明についてより具体的に説明する。ただし、本発明は以下の実施例に限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples.

回路接続材料の作製
原料
「HX−3941HP」:エポキシ樹脂ならびに、アニオン重合型潜在性硬化剤であるイミダゾール系マイクロカプセル型硬化剤の混合物(旭化成ケミカルズ(株)製)
「EA−1010N」:エポキシ基とアクリレート基を1個ずつ有する化合物(新中村化学工業(株)製)
「PKHC」:フィルム形成成分(フェノキシ樹脂、重量平均分子量45000、インケムコーポレーション社製)
「アクリルゴム1」:ブチルアクリレート40重量部−エチルアクリレート30重量部−アクリロニトリル30重量部−グリシジルメタクリレート3重量部の共重合体(重量平均分子量約85万)
「アクリルゴム2」:ブチルアクリレート5重量部−エチルアクリレート73.5重量部−アクリロニトリル20重量部−ヘキシルメチルアクリレート2重量部−アクリル酸2重量部の共重合体(重量平均分子量50万)
「エチレン−酢酸ビニル共重合体」(酢酸ビニル含有率41%、JIS K 6730によるメルトフローレート65g/分)
「導電性の被覆粒子」:平均粒径4μmのポリスチレン球状粒子の表面に0.1μmのNi層及びAu層を設けた導電性粒子
「SH6040」:シランカップリング剤(γ−グリシドキシプロピルトリメトキシシラン、東レ・ダウコーニング・シリコーン(株)製)
Production of circuit connection material Raw material “HX-3941HP”: Mixture of epoxy resin and imidazole microcapsule type curing agent which is an anionic polymerization type latent curing agent (manufactured by Asahi Kasei Chemicals Corporation)
“EA-1010N”: Compound having one epoxy group and one acrylate group (manufactured by Shin-Nakamura Chemical Co., Ltd.)
“PKHC”: film-forming component (phenoxy resin, weight average molecular weight 45000, manufactured by Inchem Corporation)
"Acrylic rubber 1": copolymer of 40 parts by weight of butyl acrylate-30 parts by weight of ethyl acrylate-30 parts by weight of acrylonitrile-3 parts by weight of glycidyl methacrylate (weight average molecular weight of about 850,000)
"Acrylic rubber 2": 5 parts by weight of butyl acrylate-73.5 parts by weight of ethyl acrylate-20 parts by weight of acrylonitrile-2 parts by weight of hexylmethyl acrylate-2 parts by weight of acrylic acid (weight average molecular weight 500,000)
"Ethylene-vinyl acetate copolymer" (vinyl acetate content 41%, melt flow rate 65 g / min according to JIS K 6730)
“Conductive coated particles”: Conductive particles “SH6040” having a 0.1 μm Ni layer and an Au layer on the surface of polystyrene spherical particles having an average particle diameter of 4 μm: Silane coupling agent (γ-glycidoxypropyltri Methoxysilane, Toray Dow Corning Silicone Co., Ltd.)

実施例1
HX−3941HPを45重量部、EA−1010Nを10重量部、PKHCをトルエン/酢酸エチル=50/50の混合溶媒に溶解して得た40質量%のフェノキシ樹脂溶液を37.5重量部(フェノキシ樹脂として15重量部)、アクリルゴム1をトルエン/酢酸エチル=50/50の混合溶媒に溶解して得た10重量%のアクリルゴム1の溶液を300重量部(アクリルゴム1として30重量部)、導電性の被覆粒子を4重量部、SH6040を1重量部配合して、混合溶液を得た。得られた混合溶液をアプリケータでPETフィルム上に塗布し、70℃で10分の熱風乾燥により溶剤を除去して、PETフィルム上に形成された厚み20μmのフィルム状の回路接続材料を得た。
Example 1
45 parts by weight of HX-3941HP, 10 parts by weight of EA-1010N, and 37.5 parts by weight of a 40% by mass phenoxy resin solution obtained by dissolving PKHC in a mixed solvent of toluene / ethyl acetate = 50/50 (phenoxy 15 parts by weight of resin), 300 parts by weight of a solution of 10% by weight of acrylic rubber 1 obtained by dissolving acrylic rubber 1 in a mixed solvent of toluene / ethyl acetate = 50/50 (30 parts by weight as acrylic rubber 1) 4 parts by weight of conductive coated particles and 1 part by weight of SH6040 were blended to obtain a mixed solution. The obtained mixed solution was applied onto a PET film with an applicator, and the solvent was removed by hot air drying at 70 ° C. for 10 minutes to obtain a film-like circuit connection material having a thickness of 20 μm formed on the PET film. .

実施例2
HX−3941HPが45重量部、EA−1010Nが15重量部、フェノキシ樹脂溶液が37.5重量部(フェノキシ樹脂として15重量部)、アクリルゴム1の溶液が250重量部(アクリルゴム1として25重量部)、導電性の被覆粒子が4重量部、SH6040が1重量部となるように各成分の配合量を変更したことの他は実施例1と同様にして、フィルム状の回路接続材料を得た。
Example 2
45 parts by weight of HX-3941HP, 15 parts by weight of EA-1010N, 37.5 parts by weight of phenoxy resin solution (15 parts by weight as phenoxy resin), 250 parts by weight of solution of acrylic rubber 1 (25 parts by weight as acrylic rubber 1) Part), conductive coating particles are 4 parts by weight, SH6040 is 1 part by weight, except that the amount of each component was changed in the same manner as in Example 1 to obtain a film-like circuit connection material It was.

比較例1
HX−3941HPが50重量部、アクリルゴム1の溶液が350重量部(アクリルゴム1として35重量部)、フェノキシ樹脂溶液が37.5重量部(フェノキシ樹脂として15重量部)、導電性の被覆粒子が4重量部、SH6040が1重量部となるように各成分の配合量を変更し、EA−1010Nを用いなかったことの他は実施例1と同様にして、フィルム状の回路接続材料を得た。
Comparative Example 1
50 parts by weight of HX-3941HP, 350 parts by weight of acrylic rubber 1 solution (35 parts by weight as acrylic rubber 1), 37.5 parts by weight of phenoxy resin solution (15 parts by weight as phenoxy resin), conductive coated particles Was changed to 4 parts by weight and SH6040 was 1 part by weight, and the film-like circuit connecting material was obtained in the same manner as in Example 1 except that EA-1010N was not used. It was.

比較例2
HX−3941HPを50重量部、実施例1と同様のフェノキシ樹脂溶液を37.5重量部(フェノキシ樹脂として15重量部)、アクリルゴム1の溶液を250重量部(アクリルゴム1として25重量部)、アクリルゴム2をトルエン/酢酸エチル=50/50の混合溶媒に溶解して得た10重量%のアクリルゴム2の溶液を100重量部(固形分として10重量部)、導電性の被覆粒子を4重量部、SH6040を1重量部配合して、混合溶液を得た。得られた混合溶液を用いて、実施例1と同様にしてフィルム状の回路接続材料を得た。
Comparative Example 2
50 parts by weight of HX-3941HP, 37.5 parts by weight of the same phenoxy resin solution as in Example 1 (15 parts by weight as phenoxy resin), 250 parts by weight of the solution of acrylic rubber 1 (25 parts by weight as acrylic rubber 1) 100 parts by weight (10 parts by weight as a solid content) of a solution of 10% by weight acrylic rubber 2 obtained by dissolving acrylic rubber 2 in a mixed solvent of toluene / ethyl acetate = 50/50, and conductive coated particles 4 parts by weight and 1 part by weight of SH6040 were blended to obtain a mixed solution. Using the obtained mixed solution, a film-like circuit connecting material was obtained in the same manner as in Example 1.

比較例3
HX−3941HPを50重量部、アクリルゴムとしてアクリルゴム1の10重量%溶液を250重量部(固形分として25重量部)、フィルム形成成分として上述したPKHCの40重量%溶液を37.5重量部(固形分として15重量部)、エチレン−酢酸ビニル共重合体をトルエンに溶解して得た20重量%のエチレン−酢酸ビニル共重合体溶液を50重量部(エチレン−酢酸ビニル共重合体として10重量部)、導電性粒子を4重量部、SH6040を1重量部配合して、混合溶液を得た。得られた混合溶液を用いて、実施例1と同様にしてフィルム状の回路接続材料を得た。
Comparative Example 3
50 parts by weight of HX-3941HP, 250 parts by weight of a 10% by weight solution of acrylic rubber 1 as an acrylic rubber (25 parts by weight as a solid content), and 37.5 parts by weight of the 40% by weight solution of PKHC described above as a film forming component (15 parts by weight as a solid content), 50 parts by weight of an ethylene-vinyl acetate copolymer solution obtained by dissolving an ethylene-vinyl acetate copolymer in toluene (10 parts as an ethylene-vinyl acetate copolymer). Parts by weight), 4 parts by weight of conductive particles and 1 part by weight of SH6040 were blended to obtain a mixed solution. Using the obtained mixed solution, a film-like circuit connecting material was obtained in the same manner as in Example 1.

回路接続(COF)
厚み0.7mmのガラス基板全面に酸化インジウム(ITO)の薄層を形成させたITO−ガラス基板上に、各実施例及び比較例の回路接続材料をPETフィルムが付いた状態で貼り付け、80℃、1MPa、5秒間の条件の加熱及び加圧により仮接続した。その後、PETフィルムを剥離し、厚み38μmのポリイミドフィルム上に銅回路(ライン幅25μm、ピッチ50μm、厚み8μm)が直接形成されたフレキシブル回路板(COF−TEG)を、銅回路側の面が回路接続材料と隣接する向きで載せた。その状態で、180℃、3MPa、15秒、幅2.0mmの条件でITO−ガラス基板とCOF−TEGとを接続して、ITO−ガラス基板とCOF−TEGとが接続されている接続部を有する接続構造体を得た。
Circuit connection (COF)
A circuit connection material of each of the examples and comparative examples was pasted on an ITO-glass substrate having a thin layer of indium oxide (ITO) formed on the entire surface of a 0.7 mm thick glass substrate with a PET film attached thereto, 80 Temporary connection was performed by heating and pressurizing at 1 ° C. for 5 seconds. Thereafter, the PET film is peeled off, and a flexible circuit board (COF-TEG) in which a copper circuit (line width 25 μm, pitch 50 μm, thickness 8 μm) is directly formed on a 38 μm-thick polyimide film is used. It was placed in the direction adjacent to the connecting material. In that state, the ITO-glass substrate and the COF-TEG are connected under the conditions of 180 ° C., 3 MPa, 15 seconds, and a width of 2.0 mm, and the connection portion where the ITO-glass substrate and the COF-TEG are connected A connection structure having was obtained.

接着力
上記のように作製した接続構造体の初期の接着強度を、90度剥離、剥離速度50mm/minの条件で測定した。更に、接続構造体に対して85℃/85%RHの高温高湿槽内で500時間放置する高温高湿処理を施し、その後の接着強度を初期と同様の条件で測定した。
Adhesive strength The initial adhesive strength of the connection structure produced as described above was measured under the conditions of 90 ° peeling and peeling speed of 50 mm / min. Furthermore, the connection structure was subjected to a high-temperature and high-humidity treatment that was allowed to stand in a high-temperature and high-humidity tank at 85 ° C./85% RH for 500 hours.

接続信頼性
接続構造体の接続部におけるCOF−TEGの隣接回路間の抵抗値をマルチメーターを用いて測定した。測定は、初期、及び、85℃/85%RHの高温高湿槽中で500時間処理した後に行った。隣接回路間の抵抗値を150箇所で測定し、得られた測定値からx+3σを算出した。高温高湿処理後のx+3σの値が初期に対して2倍以内である場合に接続信頼性が良好であると判定した。
Connection Reliability The resistance value between adjacent circuits of COF-TEG at the connection part of the connection structure was measured using a multimeter. The measurement was performed at an initial stage and after being treated for 500 hours in a high-temperature and high-humidity bath at 85 ° C./85% RH. The resistance value between adjacent circuits was measured at 150 locations, and x + 3σ was calculated from the obtained measurement value. It was determined that the connection reliability was good when the value of x + 3σ after the high temperature and high humidity treatment was within twice the initial value.

保存安定性(ポットライフ)
25℃60%RH下で4週間保存した後の回路接続材料を用いて、上述と同様にして接続構造体を作製した。得られた接続構造体について、上記と同様に初期及び高温高湿処理後の接続信頼性を評価した。その結果、実施例1、2と比較例1は、安定した接続抵抗を示し、保存安定性は良好であった。一方、比較例2は、初期の接続抵抗が高く、さらに高温高湿処理後には抵抗が急激に上昇したことから、保存安定性は低かった。なお、比較例3は未処理品での初期接着強度が比較例1と比較して低かっため、その保存安定性の評価は行わなかった。
Storage stability (pot life)
A connection structure was produced in the same manner as described above using the circuit connection material after storage for 4 weeks at 25 ° C. and 60% RH. About the obtained connection structure, the connection reliability after an initial stage and a high-temperature, high-humidity process was evaluated similarly to the above. As a result, Examples 1 and 2 and Comparative Example 1 showed stable connection resistance and good storage stability. On the other hand, Comparative Example 2 had a high initial connection resistance, and the resistance increased rapidly after the high temperature and high humidity treatment, so that the storage stability was low. In Comparative Example 3, since the initial adhesive strength of the untreated product was lower than that of Comparative Example 1, the storage stability was not evaluated.

Figure 2008111092
Figure 2008111092

評価結果を表1にまとめて示す。実施例1、2は、高温高湿処理後も高い接着強度を維持しており、更に、接続信頼性及び保存安定性も良好であった。これに対して、比較例は高温高湿処理後の接着強度、接続信頼性及び保存安定性のいずれかの点で不十分なものであった。すなわち、本発明によれば、COFを実装するために用いられたときであっても高温高湿下で高い接着強度を維持することが可能であり、同時に、優れた接続信頼性及び保存安定性を発現する回路接続材料が提供されることが確認された。   The evaluation results are summarized in Table 1. In Examples 1 and 2, high adhesive strength was maintained even after high temperature and high humidity treatment, and connection reliability and storage stability were also good. On the other hand, the comparative example was insufficient in any one of the adhesive strength after high-temperature, high-humidity processing, connection reliability, and storage stability. That is, according to the present invention, it is possible to maintain high adhesive strength under high temperature and high humidity even when used for mounting COF, and at the same time, excellent connection reliability and storage stability. It was confirmed that a circuit connecting material that expresses the above is provided.

回路接続材料の一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of a circuit connection material. 接続構造体の一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of a connection structure.

符号の説明Explanation of symbols

1…回路接続材料、1a…接続部、3…接着剤層、5…導電性粒子、10…第一の回路部材、11…第一の基板、13…第一の回路電極、20…第二の回路部材、21…第二の基板、23…第二の回路電極、100…接続構造体。   DESCRIPTION OF SYMBOLS 1 ... Circuit connection material, 1a ... Connection part, 3 ... Adhesive layer, 5 ... Conductive particle, 10 ... 1st circuit member, 11 ... 1st board | substrate, 13 ... 1st circuit electrode, 20 ... 2nd Circuit member, 21 ... second substrate, 23 ... second circuit electrode, 100 ... connection structure.

Claims (3)

(1)エポキシ樹脂と、
(2)潜在性硬化剤と、
(3)エポキシ基及びアクリレート基を有する化合物と、
を含有し、
対向する回路電極同士を電気的に接続するための回路接続材料。
(1) an epoxy resin;
(2) a latent curing agent;
(3) a compound having an epoxy group and an acrylate group;
Containing
Circuit connection material for electrically connecting opposing circuit electrodes.
前記潜在性硬化剤がアニオン重合型潜在性硬化剤である、請求項1記載の回路接続材料。   The circuit connection material according to claim 1, wherein the latent curing agent is an anionic polymerization type latent curing agent. 第一の基板及びこれの主面上に形成された第一の回路電極を有する第一の回路部材と、
第二の基板及びこれの主面上に形成された第二の回路電極を有し、該第二の回路電極と前記第一の回路電極とが対向するように配置され、該第二の回路電極が前記第一の回路電極と電気的に接続されている第二の回路部材と、
前記第一の回路部材及び前記第二の回路部材の間に介在する接続部と、
を備え、
前記接続部は、請求項1又は2記載の回路接続材料の硬化物である、接続構造体。
A first circuit member having a first substrate and a first circuit electrode formed on a main surface of the first substrate;
A second substrate and a second circuit electrode formed on the main surface of the second substrate, the second circuit electrode and the first circuit electrode being arranged to face each other, and the second circuit A second circuit member having an electrode electrically connected to the first circuit electrode;
A connecting portion interposed between the first circuit member and the second circuit member;
With
The connection structure is a connection structure that is a cured product of the circuit connection material according to claim 1.
JP2007140857A 2006-10-06 2007-05-28 Circuit-connecting material and connection structure using the same Pending JP2008111092A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007140857A JP2008111092A (en) 2006-10-06 2007-05-28 Circuit-connecting material and connection structure using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006275079 2006-10-06
JP2007140857A JP2008111092A (en) 2006-10-06 2007-05-28 Circuit-connecting material and connection structure using the same

Publications (2)

Publication Number Publication Date
JP2008111092A true JP2008111092A (en) 2008-05-15
JP2008111092A5 JP2008111092A5 (en) 2011-01-13

Family

ID=39443794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007140857A Pending JP2008111092A (en) 2006-10-06 2007-05-28 Circuit-connecting material and connection structure using the same

Country Status (1)

Country Link
JP (1) JP2008111092A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008133330A (en) * 2006-11-27 2008-06-12 Lintec Corp Visco-adhesive composition, visco-adhesive sheet and method for producing semiconductor device
JP2009292888A (en) * 2008-06-03 2009-12-17 Lintec Corp Adhesive composition, adhesive sheet, and method for producing semiconductor device
WO2011062149A1 (en) * 2009-11-17 2011-05-26 日立化成工業株式会社 Circuit connection material, connection structure using same, and temporary pressure-bonding method
JP2012092321A (en) * 2010-09-28 2012-05-17 Sekisui Chem Co Ltd Anisotropic conductive material, b-stage cured product and connection structure
JP2013033734A (en) * 2011-07-06 2013-02-14 Sekisui Chem Co Ltd Anisotropic conductive paste, connection structure, and manufacturing method of the same
US9184082B2 (en) 2006-11-27 2015-11-10 Lintec Corporation Adhesive composition, adhesive sheet and production process for semiconductor device
US9281096B2 (en) 2010-06-21 2016-03-08 Dexerials Corporation Anisotropic conductive material and process for production thereof, and mounting body and process for production thereof
KR20170104544A (en) * 2015-02-23 2017-09-15 데쿠세리아루즈 가부시키가이샤 The multilayer adhesive film and the connection structure
JP2018030974A (en) * 2016-08-26 2018-03-01 三菱瓦斯化学株式会社 Resin composition, prepreg, metal foil-clad laminate, laminate resin sheet, resin sheet, and printed wiring board
KR101899594B1 (en) 2010-08-06 2018-09-17 데쿠세리아루즈 가부시키가이샤 Adhesive for connecting counter electrodes
WO2021111978A1 (en) * 2019-12-03 2021-06-10 デクセリアルズ株式会社 Anisotropic conductive film

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003193020A (en) * 2001-12-27 2003-07-09 Hitachi Chem Co Ltd Adhesive, method for producing the same and method for production of circuit connected structure using the adhesive
JP2003198119A (en) * 2001-12-27 2003-07-11 Hitachi Chem Co Ltd Circuit connection material and method of manufacturing circuit connection body using the same
JP2005222037A (en) * 2004-01-07 2005-08-18 Shin Etsu Chem Co Ltd Sealing agent composition for liquid crystal display element
WO2005085943A1 (en) * 2004-03-09 2005-09-15 Sekisui Chemical Co., Ltd. Light shielding sealing agent for use in liquid crystal dropping construction method, un and down conduction material and liquid crystal display device
JP2005292801A (en) * 2004-03-09 2005-10-20 Sekisui Chem Co Ltd Light shielding sealing agent for liquid crystal display element, vertical conducting material, and liquid crystal display element
JP2006099027A (en) * 2004-03-09 2006-04-13 Sekisui Chem Co Ltd Light shielding sealing agent for use in liquid crystal dropping construction method, vertical conduction material, and liquid crystal display device
JP2006119218A (en) * 2004-10-19 2006-05-11 Sekisui Chem Co Ltd Coloring sealant for liquid crystal dropping construction method, vertical conduction material, and liquid crystal display element
JP2006243018A (en) * 2005-02-28 2006-09-14 Sekisui Chem Co Ltd Liquid crystal display element, shading sealant therefor, and vertical conduction material
JP2006241323A (en) * 2005-03-03 2006-09-14 Sekisui Chem Co Ltd Sealant for liquid crystal dropping process, vertically conductive material and liquid crystal display element

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003193020A (en) * 2001-12-27 2003-07-09 Hitachi Chem Co Ltd Adhesive, method for producing the same and method for production of circuit connected structure using the adhesive
JP2003198119A (en) * 2001-12-27 2003-07-11 Hitachi Chem Co Ltd Circuit connection material and method of manufacturing circuit connection body using the same
JP2005222037A (en) * 2004-01-07 2005-08-18 Shin Etsu Chem Co Ltd Sealing agent composition for liquid crystal display element
WO2005085943A1 (en) * 2004-03-09 2005-09-15 Sekisui Chemical Co., Ltd. Light shielding sealing agent for use in liquid crystal dropping construction method, un and down conduction material and liquid crystal display device
JP2005292801A (en) * 2004-03-09 2005-10-20 Sekisui Chem Co Ltd Light shielding sealing agent for liquid crystal display element, vertical conducting material, and liquid crystal display element
JP2006099027A (en) * 2004-03-09 2006-04-13 Sekisui Chem Co Ltd Light shielding sealing agent for use in liquid crystal dropping construction method, vertical conduction material, and liquid crystal display device
JP2006119218A (en) * 2004-10-19 2006-05-11 Sekisui Chem Co Ltd Coloring sealant for liquid crystal dropping construction method, vertical conduction material, and liquid crystal display element
JP2006243018A (en) * 2005-02-28 2006-09-14 Sekisui Chem Co Ltd Liquid crystal display element, shading sealant therefor, and vertical conduction material
JP2006241323A (en) * 2005-03-03 2006-09-14 Sekisui Chem Co Ltd Sealant for liquid crystal dropping process, vertically conductive material and liquid crystal display element

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008133330A (en) * 2006-11-27 2008-06-12 Lintec Corp Visco-adhesive composition, visco-adhesive sheet and method for producing semiconductor device
US9562179B2 (en) 2006-11-27 2017-02-07 Lintec Corporation Adhesive composition, adhesive sheet and production process for semiconductor device
US9184082B2 (en) 2006-11-27 2015-11-10 Lintec Corporation Adhesive composition, adhesive sheet and production process for semiconductor device
JP2009292888A (en) * 2008-06-03 2009-12-17 Lintec Corp Adhesive composition, adhesive sheet, and method for producing semiconductor device
CN102686690A (en) * 2009-11-17 2012-09-19 日立化成工业株式会社 Circuit connection material, connection structure using same, and temporary pressure-bonding method
KR101374927B1 (en) * 2009-11-17 2014-03-14 히타치가세이가부시끼가이샤 Circuit connection material, connection structure using same, and temporary pressure-bonding method
JP2015091957A (en) * 2009-11-17 2015-05-14 日立化成株式会社 Circuit connection material, connection structure using the same and temporal crimping method
JP5944102B2 (en) * 2009-11-17 2016-07-05 日立化成株式会社 Circuit connection material and connection structure using the same
WO2011062149A1 (en) * 2009-11-17 2011-05-26 日立化成工業株式会社 Circuit connection material, connection structure using same, and temporary pressure-bonding method
US9281096B2 (en) 2010-06-21 2016-03-08 Dexerials Corporation Anisotropic conductive material and process for production thereof, and mounting body and process for production thereof
KR101899594B1 (en) 2010-08-06 2018-09-17 데쿠세리아루즈 가부시키가이샤 Adhesive for connecting counter electrodes
JP2012092321A (en) * 2010-09-28 2012-05-17 Sekisui Chem Co Ltd Anisotropic conductive material, b-stage cured product and connection structure
JP2013033734A (en) * 2011-07-06 2013-02-14 Sekisui Chem Co Ltd Anisotropic conductive paste, connection structure, and manufacturing method of the same
KR20170104544A (en) * 2015-02-23 2017-09-15 데쿠세리아루즈 가부시키가이샤 The multilayer adhesive film and the connection structure
KR101979526B1 (en) 2015-02-23 2019-05-16 데쿠세리아루즈 가부시키가이샤 The multilayer adhesive film and the connection structure
JP2018030974A (en) * 2016-08-26 2018-03-01 三菱瓦斯化学株式会社 Resin composition, prepreg, metal foil-clad laminate, laminate resin sheet, resin sheet, and printed wiring board
WO2021111978A1 (en) * 2019-12-03 2021-06-10 デクセリアルズ株式会社 Anisotropic conductive film

Similar Documents

Publication Publication Date Title
JP2008111092A (en) Circuit-connecting material and connection structure using the same
JP5716763B2 (en) Circuit connection material and circuit member connection structure using the same
KR100780136B1 (en) Adhesive composition
TWI452110B (en) A circuit-connecting material, a connecting structure using it, and a method of temporary pressing
WO2004060996A1 (en) Curing resin composition, adhesive epoxy resin paste, adhesive epoxy resin sheet, conductive connection paste, conductive connection sheet, and electronic component joined body
KR20120073354A (en) Adhesive composition, circuit connecting material using the same, method for connecting circuit members, and circuit connection structure
CN101828434A (en) Adhesive composition, circuit connecting material using the adhesive composition, method for connecting circuit member, and circuit connecting body
JP6237855B2 (en) Adhesive film, circuit member connection structure, and circuit member connection method
JP2017073386A (en) Circuit connecting material, connection structure of circuit member, and method for manufacturing connection structure of circuit member
JP5441954B2 (en) Adhesive film for circuit connection, circuit connection structure using the same, and circuit member connection method
JP2007224228A (en) Circuit-connecting material, connection structure of circuit terminal, and method for connecting circuit terminal
JP2012021140A (en) Circuit connecting adhesive film, circuit connecting structure using the same, and connecting method of circuit member
TWI554162B (en) Adhesion film for connecting circuit and usage thereof, circuit connection structure and manufacturing method thereof, and connecting method of circuit member
JP2005194413A (en) Adhesive film for circuit connection and circuit connection structure
JP5206840B2 (en) Adhesive film for circuit connection, circuit connection structure using the same, and circuit member connection method
JP2011114037A (en) Circuit connection material, and connector
JP2009161684A (en) Adhesive composition for use in circuit connection, and connection structure of circuit member and connecting method of circuit member by using the adhesive composition
JP5223946B2 (en) Adhesive film for circuit connection, circuit connection structure using the same, and circuit member connection method
JP2011202187A (en) Circuit connecting material, and structure and method for connecting circuit terminal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100430

A521 Written amendment

Effective date: 20101112

Free format text: JAPANESE INTERMEDIATE CODE: A523

A521 Written amendment

Effective date: 20101118

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121130

A02 Decision of refusal

Effective date: 20130212

Free format text: JAPANESE INTERMEDIATE CODE: A02

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130513

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130521

A912 Removal of reconsideration by examiner before appeal (zenchi)

Effective date: 20130614

Free format text: JAPANESE INTERMEDIATE CODE: A912