WO2011058898A1 - Electroconductive laminate and process for production thereof - Google Patents

Electroconductive laminate and process for production thereof Download PDF

Info

Publication number
WO2011058898A1
WO2011058898A1 PCT/JP2010/069405 JP2010069405W WO2011058898A1 WO 2011058898 A1 WO2011058898 A1 WO 2011058898A1 JP 2010069405 W JP2010069405 W JP 2010069405W WO 2011058898 A1 WO2011058898 A1 WO 2011058898A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
resin
conductive
base resin
conductive laminate
Prior art date
Application number
PCT/JP2010/069405
Other languages
French (fr)
Japanese (ja)
Inventor
義和 佐藤
渡邊 修
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to US13/509,173 priority Critical patent/US20120231248A1/en
Priority to CN201080045653.1A priority patent/CN102574388B/en
Priority to EP20100829858 priority patent/EP2500170A4/en
Priority to JP2011502185A priority patent/JP5423784B2/en
Publication of WO2011058898A1 publication Critical patent/WO2011058898A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/208Touch screens
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]

Definitions

  • the present invention relates to a conductive laminate having a conductive layer on a base resin layer. Further, the present invention relates to a conductive laminate suitable for electrode members used for displays such as touch panels, liquid crystal displays, organic electroluminescence, electronic paper, and solar cell modules.
  • a conductive member for an electrode is used for the touch panel, but fine input by a pen or the like to the touch panel has progressed, and writing quality, high input sensitivity, and durability are required for the conductive member to be used.
  • a conductive laminate in which a non-conductive layer surface of a substrate having a conductive layer laminated on the surface by a dry process and another substrate are bonded to each other through an adhesive layer is used for a touch panel.
  • a conductive laminate having an adhesive layer has good writing quality and input sensitivity because the adhesive layer serves as a cushion.
  • the conductive layer is laminated by a high cost dry process and further uses a plurality of base materials, the cost is very high and it cannot be produced at low cost.
  • a conductive laminate in which a cushion layer is provided on a base material and a resin layer and a conductive layer are laminated in this order on the substrate is a base layer for laminating the conductive layer, even if the cushion layer is provided. Since the layer was provided, the cushion effect of the cushion layer could not be obtained.
  • a conductive laminate in which a resin layer, a layer having a refractive index different from that of the substrate, and a conductive layer are laminated in this order on the substrate are poor in writing quality and input sensitivity even if the multilayered layer is a thin film. It was.
  • the conductive laminate in which the base layer is much thinner than the base material has no cushion effect and writing quality and input sensitivity are poor.
  • Patent Document 1 A conductive laminate in which the base layer is made of a polyurethane resin is known (Patent Document 1).
  • the conductive laminate composed of the polyurethane resin for the underlayer lacked the cushion effect of the underlayer, and the writing quality and input sensitivity were poor.
  • a conductive laminate in which the base layer is made of a urethane acrylate resin is known (Patent Document 2).
  • the conductive laminate comprising the base layer made of urethane acrylate resin did not have the cushion effect of the base layer, and the writing quality and input sensitivity were poor.
  • An electrically conductive laminate comprising a urethane acrylate resin having a glycol skeleton as an underlayer is known (Patent Document 3). If the underlying layer is only urethane acrylate resin, the hydrophilicity of the surface of the underlying resin layer is insufficient. In particular, in the case of a conductive layer using a conductive component made of a water-containing composition, unevenness and defects are formed when laminated on the base resin layer, the appearance of the conductive laminate is poor, and the surface conductivity is poor. The input sensitivity was bad.
  • the present invention provides a conductive laminate that improves the writing quality and input sensitivity of a touch panel and has good durability.
  • the present invention is a conductive laminate in which a base resin layer and a conductive layer are laminated in order of a base resin layer and a conductive layer on at least one surface of the base material from the base material side, and the base resin is a urethane having a glycol skeleton.
  • the conductive laminate is a resin containing an acrylate resin and a resin having a graft structure having a hydrophilic group in a side chain.
  • the present invention is a method for producing a conductive laminate in which a base resin layer is formed on a base material and then a conductive layer is formed on the base resin layer, wherein the base resin has a glycol skeleton side with a urethane acrylate resin. It is a manufacturing method of the electrically conductive laminated body containing resin of the graft structure which has a hydrophilic group in a chain
  • the touch panel using the conductive laminate of the present invention has good writing quality, high input sensitivity, and good durability.
  • the conductive laminate of the present invention can be suitably used for display members such as liquid crystal displays, organic electroluminescence, and electronic paper, and used electrode members such as solar cell modules.
  • the conductive laminate of the present invention is a conductive laminate in which a base resin layer and a conductive layer are laminated in order of a base resin layer and a conductive layer from at least one surface of the base material in this order, and the base resin is glycol.
  • the conductive laminate is a resin containing a urethane acrylate resin having a skeleton in the structure and a graft structure resin having a hydrophilic group in the side chain.
  • the base material in the conductive laminate of the present invention is preferably a base material having a high visible light total light transmittance, and more preferably a transparent base material.
  • the substrate is preferably a substrate having a total light transmittance of 80% or more based on JIS K7361-1 (1997), more preferably a substrate having transparency of 90% or more. .
  • the base material in the conductive laminate of the present invention is preferably resin or glass.
  • As the type of the substrate an optimum one can be selected from transparency, durability, flexibility, cost, etc. according to the application.
  • polyesters such as polyethylene terephthalate and polyethylene naphthalate, polyamide, polyimide, polyphenylene sulfide, aramid, polypropylene, polyethylene, polylactic acid, polyvinyl chloride, polycarbonate, polymethyl methacrylate, alicyclic acrylic resin, and cycloolefin resin.
  • Triacetyl cellulose and those obtained by mixing and / or copolymerizing these resins, and polyethylene terephthalate is particularly preferable.
  • the substrate can be a film or a substrate.
  • the resin can be formed into a film by uniaxial stretching or biaxial stretching.
  • the substrate is preferably a film having a thickness of 250 ⁇ m or less, particularly preferably a film having a thickness of 190 ⁇ m or less, and more preferably a film having a thickness of 150 nm or less, from the viewpoints of cost, productivity, handleability, and the like.
  • the base material may be a single-layer base material or a composite base material such as a laminate of a plurality of base materials.
  • a base material combining a resin and glass and a base material combining two or more resins can be used.
  • the base material can be subjected to a surface treatment as necessary.
  • the surface treatment is, for example, physical treatment such as glow discharge, corona discharge, plasma treatment, or flame treatment, or a resin layer may be provided.
  • a film having an easy-adhesion layer may be used.
  • the conductive laminate of the present invention comprises a base resin layer laminated on at least one surface of a substrate, and the base resin contains a urethane acrylate resin having a glycol skeleton and a resin having a graft structure having a hydrophilic group in the side chain. Resin.
  • the base resin layer is not provided, even if the conductive laminate is incorporated in the touch panel, writing quality and input sensitivity are not improved and durability is inferior.
  • the base resin layer of the conductive laminate of the present invention contains a urethane acrylate resin having a glycol skeleton.
  • the urethane acrylate resin is a resin having a urethane structure formed by a reaction between a polyol and a polyfunctional isocyanate, and an end of the reaction product structure is an acrylate.
  • Urethane acrylate resins include, for example, polyols having two or more hydroxyl groups in the molecular structure such as diols, and aliphatic / aromatic / alicyclic polymers having two or more isocyanate groups in the molecular structure such as diisocyanate.
  • the terminal of the reaction product structure is then reacted with an acrylate having a hydroxyl group in the molecular structure (hydroxy functional acrylate) to end-capping to produce a method.
  • the urethane acrylate resin contained in the base resin layer according to the present invention has a glycol skeleton.
  • the urethane acrylate resin does not have a glycol skeleton, when used as a touch panel, the writing quality and input sensitivity of the touch panel are not improved and the durability is inferior.
  • glycol skeleton examples include an ethylene glycol skeleton, a propylene glycol skeleton, a diethylene glycol skeleton, a butanediol skeleton, a hexanediol skeleton, a 1,4-cyclohexanedimethanol skeleton, a glycolic acid skeleton, and a polyglycolic acid skeleton.
  • the glycol skeleton is more preferably a polyethylene glycol skeleton and / or a polypropylene glycol skeleton.
  • Polyethylene glycol is ethylene glycol
  • polypropylene glycol is propylene glycol, which is a polymerized high molecular weight compound that has a longer linear structure and is therefore more flexible when incorporated into the skeleton of urethane acrylate resin. It becomes resin, and it becomes easy to improve the writing quality and input sensitivity of the touch panel.
  • urethane acrylate having a glycol skeleton for example, a product number selected from Art Resin UN series (manufactured by Negami Kogyo Co., Ltd.) can be used.
  • the urethane acrylate resin having a glycol skeleton may be contained alone or in combination of two or more in the base resin layer, and these glycol skeletons may be reacted in advance before being incorporated into the urethane acrylate resin skeleton.
  • the base resin layer may contain a urethane acrylate resin having two or more glycol skeletons in the same structure.
  • a urethane acrylate resin having a polyethylene glycol skeleton and / or a polypropylene glycol skeleton is contained alone or mixed and contained in the base resin layer.
  • the urethane acrylate resin having both the polyethylene glycol skeleton and the polypropylene glycol skeleton in the same structure is obtained by copolymerizing the polyethylene glycol skeleton and the polypropylene glycol skeleton in advance and then incorporating them into the skeleton of the urethane acrylate resin.
  • the base resin layer When the urethane acrylate resin having a polyethylene glycol skeleton or a polypropylene glycol skeleton is used as a touch panel, the effect of further improving the writing quality and input sensitivity of the touch panel can be obtained.
  • the urethane acrylate resin has both a polyol moiety that is a flexible skeleton and an acrylate moiety that is a hard skeleton in its structure.
  • the glycol skeleton (1) The linearity of the molecular structure is strong.
  • the oxygen element in the molecular structure is not bonded to an element other than the carbon element (for example, a hydrogen element) and is not subject to spatial inhibition due to steric hindrance of the element other than the carbon element, A large free space, From these two points, it is presumed that a more flexible urethane acrylate resin can be obtained by introducing it into the polyol moiety.
  • the base resin layer is easily deformed by a load when input with a pen or a finger.
  • the acrylate part is hard, it is considered that when the load is released, it repels deformation and quickly returns to its original state.
  • the writing quality is improved because the base resin layer plays a role of a cushion against the load at the time of input, but the present invention is not limited to this estimation.
  • the number of functional groups at the acrylate moiety in one molecule of urethane acrylate is preferably bifunctional. Since the acrylate portion easily imparts a hard property, the urethane acrylate resin tends to be hard if it exists in a polyfunctionality of 3 or more in one molecule of urethane acrylate, and the cushioning effect of the base resin layer may be reduced. In order to improve the writing quality and input sensitivity, it may be necessary to make adjustments such as increasing the thickness of the base resin layer.
  • the ratio of the acrylate moiety that is, the hard part in one molecule of urethane acrylate is small, so that the obtained urethane acrylate resin becomes more flexible and the cushioning effect of the base resin layer is further increased. . For this reason, it becomes easy to further improve the writing quality and input sensitivity of the touch panel.
  • the number of functional groups in the acrylate moiety can be adjusted by the number of isocyanate functional groups of the aliphatic, aromatic, and alicyclic polyfunctional isocyanates used in the step of synthesizing the urethane acrylate resin. Moreover, as a kind of acrylate site
  • bifunctional urethane acrylate specifically, for example, a product number selected from Art Resin UN series (manufactured by Negami Kogyo Co., Ltd.) can be used.
  • the urethane acrylate resin used in the present invention preferably has an acrylate moiety bonded to another acrylate moiety by polymerization.
  • the durability is further improved.
  • a known photopolymerization initiator is contained together with the urethane acrylate resin in the base resin layer, and the reaction is performed by irradiating with an active electron beam such as ultraviolet light, visible light, or electron beam. There is a way to make it.
  • the photopolymerization initiator is a substance that absorbs light in the ultraviolet region, light in the visible region, electron beam, etc., generates active species such as radical species, cation species, and anion species, and initiates polymerization of the resin.
  • a product number selected from Ciba (registered trademark) IRGACURE (registered trademark) series can be used as the photopolymerization initiator.
  • a photoinitiator may be used individually by 1 type, and may mix 2 or more types.
  • the urethane acrylate resin contained in the base resin layer when the urethane acrylate resin contained in the base resin layer is one kind, the acrylate sites may be bonded to each other in the acrylate sites.
  • the same type of urethane acrylate resins or different types of urethane acrylate resins may be bonded.
  • the base resin layer contains a component having an acrylate moiety other than the urethane acrylate resin, it may be combined with a component having an acrylate moiety other than the urethane acrylate resin.
  • the content of the urethane acrylate resin in the base resin layer is 10% by mass or more, more preferably 15% by mass or more, further preferably 20% by mass or more, particularly preferably 50% by mass or more, based on the entire base resin layer. Preferably 80 mass% or more is preferable.
  • the base resin of the conductive laminate of the present invention contains a graft resin having a hydrophilic group in the side chain.
  • the graft resin is a block polymerization resin, and its structure is illustrated in FIG. FIG. 2 shows a state in which the branched side chains of the backbone polymer as the main chain are bonded in a branch shape.
  • Graft resins come in a variety of forms depending on the type of backbone polymer and side chain, degree of polymerization, molecular weight, molecular chain terminal, molecular chain / branched chain functional group, and degree of crosslinking. It has various performances depending on the degree and molecular weight.
  • the graft resin used in the present invention is a graft resin having a hydrophilic group in the side chain.
  • a graft resin having a hydrophilic group in the side chain has a branched side chain, and even when the trunk polymer is present inside the underlayer, the hydrophilic group reaches the surface of the underlayer, It is possible to impart wettability to the formation.
  • the base resin layer contains a resin having a graft structure having a hydrophilic group in the side chain
  • the surface of the base resin layer is modified and applied uniformly without repelling the dispersion solution of the conductive component. Therefore, it is possible to improve the writing quality and input sensitivity and to supply a conductive laminate having a good appearance and quality with high productivity.
  • a resin having a graft structure having a hydrophilic group in the side chain is not contained, writing quality and input sensitivity cannot be improved due to defective portions such as unevenness and defects after lamination of the conductive layer.
  • the hydrophilic group includes, for example, a hydroxyl group (—OH), a carboxyl group (—COOH), a sulfonic acid group (—SO 3 H), a phosphoric acid group (H 2 PO 4 —), And an amino group (—NH 2 ).
  • the graft resin may be in a state in which a part of H + of the hydrophilic group has a counter cation such as Na + or K + (for example, —ONa, —COONa, —SO 3 Na, etc.).
  • the groups may be present alone or in combination of two or more in the branched branch side chain.
  • a copolymer and / or a mixture of two kinds of graft resins having different hydrophilic groups may be used.
  • graft resins having a hydrophilic group in the side chain include L-20, L-40M, LH-448, etc. of Chemitry (registered trademark) series (manufactured by Soken Chemical Co., Ltd.). can do.
  • the backbone polymer of the graft resin used in the present invention includes, for example, polyester resins such as polyethylene terephthalate and polyethylene naphthalate, polycarbonate resin, polyurethane resin, acrylic resin, methacrylic resin, epoxy resin, polyamide resin, polyimide resin, polyethylene resin, polypropylene Examples thereof include resins such as resin, polystyrene resin, polyvinyl acetate resin, nylon resin, melamine resin, phenol resin, and fluororesin.
  • the graft resin may be used alone, or two or more types of copolymers and / or mixtures may be used. Depending on the application, the graft resin may have a partially crosslinked structure.
  • a functional group is present in the trunk polymer of the graft resin. More preferably, there is a reactive functional group that forms a bond with each resin or component in the base resin layer, or a functional group that is compatible with an organic solvent or water.
  • the functional groups of the graft resin trunk polymer include, for example, linear alkyl groups, branched alkyl groups, cycloalkyl groups, alkenyl groups such as vinyl, allyl, hexenyl, and aryls such as phenyl, tolyl, xylyl, styryl, naphthyl, and biphenyl.
  • aralkyl groups such as benzyl and phenethyl, other aromatic groups including heterocyclic rings such as lactone, oxazole, and imidazole, and ring-opening groups thereof, alkoxy groups such as methoxy, ethoxy, and isopropoxy, acetoxy groups, acrylic groups, and methacrylic groups , Acryloxy groups, methacryloxy groups, oxycarbonyl groups such as allyloxycarbonyl / benzyloxycarbonyl, epoxy groups, isocyanate groups, hydroxyl groups, carboxyl groups, sulfo groups, phosphate groups, amino groups, mercapto sulfides, etc.
  • Elemental sulfur functional groups nitrogen-containing elements functional groups such as ureido-ketimino, such as halogen-containing elements functional group such as a fluoroalkyl group.
  • these functional groups hydrophilic groups such as hydroxyl group, carboxyl group, sulfonic acid group, phosphoric acid group and amino group can be preferably used.
  • the functional group of the backbone polymer of the graft resin may be used by arbitrarily selecting at least one type depending on the application and required properties, and two or more types may be mixed, and is not particularly limited thereto.
  • the graft resin in the base resin layer may be contained in any manner in the base resin layer. It may be contained simply in a mixed state, or may exist in a bond with the urethane acrylate resin and other components in the base resin layer.
  • the content of the graft resin is preferably 5% by mass or more and 90% by mass or less, more preferably 10% by mass or more and 80% by mass or less with respect to the entire base resin layer. If the amount is less than 5% by mass, the modification effect on the surface of the underlying resin layer may be small. If the amount is more than 90% by mass, the writing quality and input sensitivity of the touch panel may be improved depending on the type, structure, and bonding mode of the urethane acrylate resin. The effect may be reduced.
  • the thickness T of the base material and the thickness t of the base resin layer preferably satisfy the following formula.
  • the base resin layer is more likely to be deformed more efficiently with a load when input with a pen or a finger.
  • the writing quality and input sensitivity of the touch panel can be further improved.
  • the value of t / T is more preferably 0.050 or more and 0.070 or less.
  • the base resin layer and the conductive layer are stacked in the order of the base resin layer and the conductive layer from the base material side. In the case where a conductive layer is not provided, conductivity is not exhibited.
  • the component of the conductive layer is preferably a linear structure.
  • Examples of the linear structure include a fibrous conductor and a needle-like conductor such as a whisker.
  • the length of the minor axis is preferably 1 nm to 1000 nm (1 ⁇ m).
  • linear structures can be used alone or in combination, and further, other micro-to-nano conductive materials can be added as necessary.
  • the fibrous conductor examples include a carbon-based fibrous conductor, a metal-based fibrous conductor, and a metal oxide-based fibrous conductor.
  • carbon-based fibrous conductors include polyacrylonitrile-based carbon fibers, pitch-based carbon fibers, rayon-based carbon fibers, glassy carbon, carbon nanotubes, carbon nanocoils, carbon nanowires, carbon nanofibers, carbon whiskers, and graphite fibrils. Etc.
  • Metallic fibrous conductors include gold, platinum, silver, nickel, silicon, stainless steel, copper, brass, aluminum, zirconium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum, manganese, technetium, rhenium, iron, Examples thereof include fibrous or nanowire-like metals and alloys produced from osmium, cobalt, zinc, scandium, boron, gallium, indium, silicon, germanium, tin, magnesium, and the like.
  • the metal oxide fibrous conductor examples include InO 2 , InO 2 Sn, SnO 2 , ZnO, SnO 2 —Sb 2 O 4 , SnO 2 —V 2 O 5 , TiO 2 (Sn / Sb) O 2 , SiO 2 2 (Sn / Sb) O 2 , K 2 O—nTiO 2 — (Sn / Sb) O 2 , K 2 O—nTiO 2 —C, etc. manufactured from fibrous or nanowire metal oxides and metal oxides Compound complex and the like.
  • the fibrous conductor may be subjected to a surface treatment.
  • a non-metallic material such as plant fiber, synthetic fiber, inorganic fiber, gold, platinum, silver, nickel, silicon, stainless steel, copper, brass, aluminum, zirconium, hafnium, vanadium , niobium, tantalum, chromium, molybdenum, manganese, technetium, rhenium, iron, osmium, cobalt, zinc, scandium, boron, gallium, indium, silicon, germanium, tin, magnesium, InO 2, InO 2 Sn, SnO 2, ZnO SnO 2 —Sb 2 O 4 , SnO 2 —V 2 O 5 , TiO 2 (Sn / Sb) O 2 , SiO 2 (Sn / Sb) O 2 , K 2 O—nTiO 2 — (Sn / Sb) O 2, K 2 O-nTiO 2 -C or carbon nanotubes, also coated or deposited
  • carbon nanotubes can be preferably used as the fibrous conductor from the viewpoints of optical properties such as transparency and conductivity.
  • the carbon nanotubes used as components of the conductive layer may be any of single-walled carbon nanotubes, double-walled carbon nanotubes, and multi-walled carbon nanotubes having three or more layers. Those having a diameter of about 0.3 to 100 nm and a length of about 0.1 to 20 ⁇ m are preferably used. In order to increase the transparency of the conductive laminate and reduce the surface resistance, single-walled carbon nanotubes and double-walled carbon nanotubes having a diameter of 10 nm or less and a length of 1 to 10 ⁇ m are more preferable.
  • the aggregate of carbon nanotubes preferably contains as little impurities as possible such as amorphous carbon and catalytic metal.
  • impurities When impurities are contained in the carbon nanotube, it can be appropriately purified by acid treatment or heat treatment.
  • Carbon nanotubes are synthesized and manufactured by an arc discharge method, a laser ablation method, a catalytic chemical vapor phase method (a method using a catalyst having a transition metal supported on a carrier in a chemical vapor phase method), or the like. It is preferable to produce carbon nanotubes by a catalytic chemical vapor phase method that can reduce the generation of impurities such as amorphous carbon with high productivity.
  • a conductive layer can be formed by applying a carbon nanotube dispersion.
  • a carbon nanotube dispersion it is common to perform a dispersion treatment with a carbon nanotube together with a solvent using a mixing and dispersing machine or an ultrasonic irradiation device, and it is desirable to add a dispersant.
  • the dispersant is a synthetic polymer, natural high polymer in terms of adhesion to the substrate of the conductive layer containing carbon nanotubes coated and dried on the substrate, hardness of the film, and scratch resistance. It is preferred to select a polymer of molecules. Furthermore, a crosslinking agent may be added within a range that does not impair the dispersibility.
  • Synthetic polymers include, for example, polyether diol, polyester diol, polycarbonate diol, polyvinyl alcohol, partially saponified polyvinyl alcohol, acetoacetyl group-modified polyvinyl alcohol, acetal group-modified polyvinyl alcohol, butyral group-modified polyvinyl alcohol, silanol group-modified polyvinyl alcohol, Ethylene-vinyl alcohol copolymer, ethylene-vinyl alcohol-vinyl acetate copolymer resin, dimethylaminoethyl acrylate, dimethylaminoethyl methacrylate, acrylic resin, epoxy resin, modified epoxy resin, phenoxy resin, modified phenoxy resin, phenoxy Ether resin, phenoxy ester resin, fluorine resin, melamine resin, alkyd resin, phenol resin, polyacrylic resin Amides, polyacrylic acid, polystyrene sulfonic acid, polyethylene glycol, polyvinylpyrrolidone
  • Natural polymers include, for example, polysaccharides such as starch, pullulan, dextran, dextrin, guar gum, xanthan gum, amylose, amylopectin, alginic acid, gum arabic, carrageenan, chondroitin sulfate, hyaluronic acid, curdlan, chitin, chitosan, cellulose and the like It can be selected from derivatives.
  • the derivative means a conventionally known compound such as ester or ether. These may be used alone or in combination of two or more.
  • polysaccharides and derivatives thereof are preferable because of excellent dispersibility of the carbon nanotubes.
  • cellulose and derivatives thereof are preferable because of high film forming ability. Of these, esters and ether derivatives are preferable, and specifically, carboxymethyl cellulose and salts thereof are preferable.
  • the compounding ratio of the carbon nanotubes and the dispersant is preferably a compounding ratio that does not cause problems in adhesion to the substrate, hardness, and scratch resistance.
  • the carbon nanotubes are preferably in the range of 10% by mass to 90% by mass with respect to the entire conductive layer. More preferably, it is in the range of 30% to 70% by mass.
  • the conductivity required for the touch panel is easily obtained, and furthermore, it is easy to apply uniformly without being repelled when applied to the surface of the base material.
  • the conductive laminate having the above can be supplied with high productivity.
  • the carbon nanotubes are 90% by mass or less, the dispersibility of the carbon nanotubes in the solvent is improved and it is difficult to agglomerate, a good carbon nanotube coating layer is easily obtained, and the productivity is good. Furthermore, the coating film is also strong, and it is preferable because scratches are less likely to occur during the production process and the uniformity of the surface resistance value can be maintained.
  • the acicular conductor is preferably an acicular conductor that is a compound made of a metal, a carbon-based compound, a metal oxide, or the like.
  • the metal belongs to the group IIA, IIIA, IVA, VA, VIA, VIIA, VIII, IB, IIB, IIIB, IVB or VB in the short periodic table of elements. Elements.
  • examples thereof include iron, osmium, cobalt, zinc, scandium, boron, gallium, indium, silicon, germanium, tellurium, tin, magnesium, and alloys containing these.
  • Examples of the carbon-based compound include carbon nanohorn, fullerene, and graphene.
  • metal oxide examples include InO 2 , InO 2 Sn, SnO 2 , ZnO, SnO 2 —Sb 2 O 4 , SnO 2 —V 2 O 5 , TiO 2 (Sn / Sb) O 2 , SiO 2 (Sn / Sb ) O 2 , K 2 O—nTiO 2 — (Sn / Sb) O 2 , K 2 O—nTiO 2 —C, and the like.
  • silver nanowires can be preferably used as the acicular conductor from the viewpoints of optical properties such as transparency and conductivity.
  • Examples of the acicular conductor include WK200B, WK300R, and WK500 of DENTOR WK series (manufactured by Otsuka Chemical Co., Ltd.), which is a composite compound of potassium titanate fiber, tin, and antimony oxide, and silicon dioxide fiber and tin.
  • DENTOR TM series manufactured by Otsuka Chemical Co., Ltd.
  • TM100 which is a complex compound of antimony oxide, is commercially available.
  • the surface resistance value on the conductive layer side is preferably 1 ⁇ 10 0 ⁇ / ⁇ or more and 1 ⁇ 10 4 ⁇ / ⁇ or less, more preferably 1 ⁇ 10 1 ⁇ / ⁇ .
  • the above is 1.5 ⁇ 10 3 or less.
  • the surface resistance value is 1 ⁇ 10 0 ⁇ / ⁇ or more and 1 ⁇ 10 4 ⁇ / ⁇ or less, it can be preferably used as a conductive laminate for a touch panel. That is, if it is 1 ⁇ 10 0 ⁇ / ⁇ or more, power consumption can be reduced, and if it is 1 ⁇ 10 4 ⁇ / ⁇ or less, the influence of errors in the coordinate reading of the touch panel can be reduced.
  • the conductive layer laminated thereon is also deformed. It is estimated that the area of the contact surface that contributes to the conduction increases due to the deformation of the conductive layer, and as a result, the input current is improved because the total amount of flowing current increases even with a small input load. It is not limited to this estimation.
  • the conductive laminate of the present invention is preferably a transparent conductive laminate having a total light transmittance of 80% or more based on JIS K7361-1 (1997) when incident from the conductive layer side.
  • the conductive laminate of the present invention is incorporated into a touch panel as a transparent conductive laminate, the touch panel not only has good writing quality and input sensitivity, but also exhibits excellent transparency, and the lower layer of the touch panel using this transparent conductive laminate.
  • the display on the display can be clearly recognized.
  • the transparency in the present invention means that the total light transmittance based on JIS K7361-1 (1997) when incident from the conductive layer side is 80% or more, preferably 85% or more, more Preferably it is 90% or more.
  • Examples of the method for increasing the total light transmittance include, for example, a method for increasing the total light transmittance of a substrate to be used, a method for reducing the thickness of the conductive layer, and a conductive layer provided on the base resin layer. And a method of laminating a transparent protective layer to be an optical interference film.
  • a method of increasing the total light transmittance of the base material a method of reducing the thickness of the base material or a method of selecting a base material made of a material having a large total light transmittance can be mentioned.
  • a base resin layer containing a urethane acrylate resin having a glycol skeleton and a resin having a graft structure having a hydrophilic group in a side chain is formed on a base resin layer. It can be preferably manufactured in the step of forming the conductive layer. More preferably, in the conductive laminate of the present invention, the conductive layer is formed by applying a water-containing dispersion of carbon nanotubes or silver nanoware and then drying.
  • additives can be added to the base material and / or each layer according to the present invention within a range that does not impair the effects of the present invention.
  • the additives include organic and / or inorganic fine particles, crosslinking agents, flame retardants, flame retardant aids, heat stabilizers, oxidation stabilizers, leveling agents, slip activators, conductive agents, antistatic agents, and ultraviolet rays.
  • Absorbers, light stabilizers, nucleating agents, dyes, fillers, dispersants, coupling agents, and the like can be used.
  • a protective layer is preferably formed on the conductive layer.
  • the conductive layer reflects and absorbs light due to the physical properties of the conductive component itself. Therefore, in order to increase the total light transmittance of the transparent conductive laminate including the conductive layer provided on the substrate, a transparent protective layer serving as an optical interference film with a transparent material is provided on the conductive layer. It is preferable to reduce the average reflectance at a wavelength of 380 to 780 nm to 4% or less.
  • the average reflectance at a wavelength of 380 to 780 nm on the optical interference film side is preferably 3% or less, more preferably 2% or less.
  • the average reflectance is 4% or less, a performance with a total light transmittance of 80% or more when used for touch panel applications can be obtained with good productivity.
  • the presence of the transparent protective layer is preferable because generation of interference fringes due to interference of reflected light between the upper and lower sides through the space 5 on the touch panel shown in FIG. 4 can be suppressed.
  • a transparent protective layer serving as an optical interference film provided on the conductive layer in addition to the role of this optical interference, it also has the role of improving the scratch resistance of the conductive layer and preventing the conductive component from falling off. It is more preferable to use a transparent protective film.
  • the transparent protective layer preferably has a refractive index of the transparent protective layer lower than that of the conductive layer and a difference from the refractive index of the conductive layer of 0.3 or more, more preferably 0. It is preferable to use 4 or more. If the refractive index of the transparent protective layer is 0.3 or more, the control range in which the average reflectance is 4% or less is widened, and the process margin in production is increased, which is preferable.
  • the transparent protective layer is preferably composed of an inorganic compound, an organic compound, and an inorganic / organic composite and having a structure having a cavity inside.
  • Single substances include inorganic compounds such as silicon oxide, magnesium fluoride, cerium fluoride, lanthanum fluoride, and calcium fluoride, organic compounds such as polymers containing silicon element and fluorine element, Obtained by polymerizing fine particles of silica, acryl, etc. having voids and monofunctional or polyfunctional (meth) acrylic acid ester, or / and siloxane compounds, and / or organic compounds having perfluoroalkyl groups. There are mixtures with polymers to be prepared.
  • silicon oxide examples include tetraalkoxysilanes such as tetramethoxysilane, tetraethoxysilane, tetra-n-propoxysilane, tetra-i-propoxysilane, tetra-n-butoxysilane, and methyltrimethoxysilane.
  • a coating layer such as a sol-gel coating layer that forms a coating solution obtained by hydrolyzing these silicon oxides with various solvents such as alcohol, water, and acid by a polymerization reaction may be used.
  • a vapor-deposited layer or a sputtered layer can be used.
  • Opstar registered trademark
  • TU-2180 manufactured by JSR Co., Ltd.
  • an optimal method may be selected depending on the material to be formed, and a dry method such as vacuum deposition, EB deposition, or sputtering.
  • a dry method such as vacuum deposition, EB deposition, or sputtering.
  • General methods such as casting, spin coating, dip coating, bar coating, spraying, blade coating, slit die coating, gravure coating, reverse coating, screen printing, mold coating, printing transfer, inkjet, etc. Can do.
  • the base resin layer, the conductive layer, and the transparent protective layer can be uniformly laminated, and the slit die coat that prevents the conductive layer from being scratched, or the base resin layer, the conductive layer, and the transparent protective layer can be formed uniformly and with high productivity.
  • a wet coating method using microgravure is preferred.
  • the conductive laminate of the present invention is preferably produced by a production method including a step of forming a transparent protective layer, which is a more preferable embodiment, on the conductive layer.
  • FIG. 4 is a schematic cross-sectional view showing an example of a resistive film type touch panel.
  • the resistive touch panel has a configuration in which an upper electrode 13 is fixed on a lower electrode 14 by a frame-like double-sided adhesive tape 19.
  • the base resin layer 2 and the conductive layer 3 are laminated in this order on the base materials 15 and 16 constituting the upper and lower electrodes, and the conductive layers 3 of the upper and lower electrodes sandwich the space 20.
  • the transparent protective layer 4 may be provided on the conductive layer 3 of the substrate 15 or 16.
  • Dot spacers 18 are provided in the space 20 at regular intervals, thereby holding a gap between the upper and lower conductive layers.
  • the upper surface of the base material 15 is a surface where the pen 22 and the tip of the finger come into contact, and a hard coat layer 17 is provided to prevent scratches.
  • voltage is applied by the power source 21 and the surface of the hard coat layer 17 is pushed by the pen 22 or the tip of a finger to apply a load, whereby electricity flows from the contacted portion.
  • the touch panel having the above configuration is used, for example, by attaching a lead wire and a drive unit and incorporating it on the front surface of the liquid crystal display.
  • the resistive film type touch panel shown in FIG. 4 is configured through the space 20, the base resin layer is deformed by a load when input with a pen or a finger, thereby improving the writing quality and input sensitivity of the touch panel.
  • This is a touch panel configuration that is extremely effective and has the highest effect of using the conductive laminate of the present invention.
  • each substance is appropriately concentrated and diluted, and nuclear magnetic resonance spectroscopy ( 1 H-NMR, 13 C-NMR), two-dimensional nuclear magnetic resonance spectroscopy (2D-NMR), infrared spectrophotometry (IR), Raman spectroscopy, mass spectrometry (Mass), X-ray diffraction (XRD), neutron diffraction (ND), low-energy electron diffraction (LEED), high-energy reflection electron diffraction (RHEED), atomic absorption spectrometry ( AAS), ultraviolet photoelectron spectroscopy (UPS), X-ray photoelectron spectroscopy (XPS), X-ray fluorescence elemental analysis (XRF), inductively coupled plasma emission spectroscopy (ICP-AES), electron beam microanalyzer (EPMA), Structural identification was performed by appropriately selecting and combining methods from gel permeation chromatography (GPC) and other elemental analysis.
  • GPC gel permeation chromatography
  • Base material thickness T base resin layer thickness t
  • the sample was cut in a direction perpendicular to the sample plane at a knife inclination angle of 3 ° using a rotary microtome manufactured by Nippon Microtome Laboratories.
  • ABT-32 manufactured by Topcon Corporation, select any three magnifications from an observation magnification of 2500 to 10000 times, and adjust the contrast of the image as appropriate, and observe the obtained sample cross section at each magnification.
  • From the obtained cross-sectional photograph arbitrary five locations respectively corresponding to the base material and the base resin layer were similarly measured at arbitrary three magnifications (calculated from the enlargement magnification), and the average values of the total 15 locations were thicknesses T and t, respectively. It was.
  • Total light transmittance Total light transmittance in the thickness direction of the conductive laminate based on JIS K7361-1 (1997) using a turbidimeter (cloudiness meter) NDH2000 (manufactured by Nippon Denshoku Industries Co., Ltd.) The rate was measured by making light incident from the conductive layer side. The average value of the values measured for the five samples was calculated and used as the total light transmittance.
  • the indicators of the text quality and input sensitivity are the ON load [g] and the contact resistance value [k ⁇ ].
  • the ON load is, for example, the minimum load at which the touch panel can be operated for the first time when the touch panel shown in FIG. 4 is loaded with the pen 22, and the touch panel can operate.
  • the ON load is weaker. This means that the touch panel can be operated with force, and is an indicator of writing quality.
  • the contact resistance is a resistance value when electricity flows from the surface where the upper and lower electrodes in FIG. 4 are in contact with each other when a load is applied, and the upper and lower electrodes are in contact via the space 20. If not, the insulation state is established, the contact resistance value becomes infinite, and electricity does not flow. The lower the contact resistance value, the better the input sensitivity is.
  • the ON load and contact resistance value were determined as follows. First, in the touch panel of FIG. 4, conductive glass with ITO (made by Touch Panel Laboratories Co., Ltd.) is used as the lower electrode 14, and the conductive laminates of the examples and comparative examples of the present invention are used as the upper electrode, respectively. A touch panel was prepared. Next, using a HEIDON TRIBOGEAR surface property measuring instrument TYPE: HEIDON-14DR (manufactured by Shinto Kagaku Co., Ltd.), a polyacetal pen with a radius of 0.8 mm on the sample stage side of the attached load unit.
  • HEIDON TRIBOGEAR surface property measuring instrument TYPE: HEIDON-14DR manufactured by Shinto Kagaku Co., Ltd.
  • the surface opposite to the transparent measurement surface (the surface on which the transparent protective layer is provided) is evenly distributed with water resistant sandpaper No. 320-400 so that the 60 ° C glossiness (JIS Z 8741 (1997)) is 10 or less. After roughening, a black paint was applied and colored so that the visible light transmittance was 5% or less.
  • a spectrophotometer UV-3150 manufactured by Shimadzu Corporation, the absolute reflection spectrum in the wavelength region of 300 nm to 800 nm was measured at an interval of 1 nm at an incident angle of 5 degrees from the measurement surface, and at a wavelength of 380 nm to 780 nm. Average reflectance was determined.
  • Resins, photopolymerization initiators, and films used in Examples and Comparative Examples are shown below.
  • Resin A Art Resin LPVC-3 manufactured by Negami Kogyo Co., Ltd., polypropylene glycol skeleton bifunctional urethane acrylate, solid concentration 100 mass%).
  • Resin B Chemitly (registered trademark) L-20 manufactured by Soken Chemical Co., Ltd., graft acrylic having a hydroxyl group (—OH) as a hydrophilic group in the side chain, solid content concentration: 26 mass% solution).
  • Resin C Art Resin UN-7600 manufactured by Negami Kogyo Co., Ltd., polyester skeleton bifunctional urethane acrylate, solid concentration 100 mass%).
  • Resin D Aronix registered trademark
  • M240 manufactured by Toagosei Co., Ltd., polyethylene glycol skeleton bifunctional acrylate, solid concentration 100 mass%).
  • Resin E Aronix registered trademark
  • M270 manufactured by Toagosei Co., Ltd., polypropylene glycol skeleton bifunctional acrylate, solid concentration 100 mass%).
  • Resin F TRSC-006 manufactured by Negami Kogyo Co., Ltd., polypropylene glycol skeleton bifunctional urethane, solid concentration 58.8% by mass solution.
  • Resin G X-22-8114 manufactured by Shin-Etsu Chemical Co., Ltd., graft acrylic, which is a silicone having a side chain having a methyl group (—CH 3 ) and an n-butyl (—CH 2 CH 2 CH 2 CH 3 ) group, solid content 40% by weight solution).
  • Conductive layer A “Carbon nanotube conductive layer” (Catalyst adjustment) 2.459 g of ammonium iron citrate (green) (manufactured by Wako Pure Chemical Industries, Ltd.) was dissolved in 500 mL of methanol (manufactured by Kanto Chemical Co., Inc.). To this solution, 100 g of light magnesia (Iwatani Chemical Industry Co., Ltd.) was added, stirred at room temperature for 60 minutes, dried under reduced pressure while stirring at 40 ° C. to 60 ° C. to remove methanol, and a metal salt was added to the light magnesia powder. Was obtained.
  • the reactor 100 is a cylindrical quartz tube having an inner diameter of 32 mm and a length of 1200 mm.
  • a quartz sintered plate 101 is provided at the center, an inert gas and source gas supply line 104 is provided at the lower part of the quartz tube, and an exhaust gas line 105 and a catalyst charging line 103 are provided at the upper part.
  • a heater 106 is provided that surrounds the circumference of the reactor so that the reactor can be maintained at an arbitrary temperature.
  • the heater 106 is provided with an inspection port 107 so that the flow state in the apparatus can be confirmed.
  • the temperature was maintained, the argon flow rate of the raw material gas supply line 104 was increased to 2000 mL / min, and fluidization of the solid catalyst on the quartz sintered plate was started. After confirming fluidization from the heating furnace inspection port 107, supply of methane to the reactor at 95 mL / min was started. After supplying the mixed gas for 90 minutes, the flow was switched to a flow of only argon gas, and the synthesis was terminated.
  • the heating was stopped and the mixture was allowed to stand at room temperature, and after reaching room temperature, the carbon nanotube composition containing the catalyst and carbon nanotubes was taken out from the reactor.
  • Carbon nanotube dispersion coating solution In a 50 mL container, 10 mg of the above carbon nanotube composition (converted when dried), 10 mg of sodium carboxymethylcellulose (Sigma, 90 kDa, 50-200 cps) as a dispersant, add distilled water to 10 g, and output an ultrasonic homogenizer of 20 W. Then, the dispersion treatment was carried out under ice cooling for 20 minutes to prepare a carbon nanotube coating solution. The obtained liquid was centrifuged at 10,000 G for 15 minutes with a high-speed centrifuge to obtain 9 mL of the supernatant.
  • sodium carboxymethylcellulose Sigma, 90 kDa, 50-200 cps
  • the carbon nanotube dispersion coating liquid was applied with a micro gravure coater (gravure wire number 100R or 150R, gravure rotation ratio 80%) and dried at 100 ° C. for 1 minute to provide a carbon nanotube coating film.
  • a micro gravure coater gravure wire number 100R or 150R, gravure rotation ratio 80%
  • Silver nanowires were obtained by the method disclosed in Example 1 (synthesis of silver nanowires) of International Publication No. WO2007 / 022226.
  • a silver nanowire-dispersed coating liquid was obtained by the method disclosed in Example 8 (nanowire dispersion) of International Publication No. WO2007 / 022226.
  • This silver nanowire-dispersed coating solution was applied using a bar coater manufactured by Matsuo Sangyo Co., Ltd. and dried at 120 ° C. for 2 minutes to provide a silver nanowire coating film.
  • the transparent protective layer in Examples and Comparative Examples is shown below.
  • the transparent protective layer was laminated on the conductive layer by the methods of Examples and Comparative Examples.
  • Transparent protective layer material A In a 100 mL plastic container, 20 g of ethanol was added, and 40 g of n-butyl silicate was added and stirred for 30 minutes. Thereafter, 10 g of 0.1N hydrochloric acid aqueous solution was added, and the mixture was stirred for 2 hours (hydrolysis reaction) and stored at 4 ° C. On the next day, this solution was diluted with an isopropyl alcohol / toluene / n-butanol mixed solution (mixing mass ratio 2/1/1) so that the solid concentration was 1.0, 1.2, and 1.5% by mass. . The refractive index of the transparent protective layer of silicon oxide obtained by applying this solution to a silicon wafer and drying was 1.44.
  • Transparent protective layer material B A hollow silica particle-containing acrylic UV curable low refractive index material TU-2180 (solid content concentration 10 mass%) manufactured by JSR Corporation was diluted with methyl ethyl ketone so that the solid content concentration was 1.5 mass%.
  • Example 1 KAYANOVA (registered trademark) FOP1740 (Nippon Kayaku Co., Ltd., solid content concentration 82% by mass) on one side with a “film” having a thickness of 188 ⁇ m as a base material and a solid content concentration of 40: 1 with toluene / methyl ethyl ketone mass% ratio.
  • a hard coating agent diluted to mass% is applied with a micro gravure coater (gravure wire number 80R, gravure rotation ratio 100%), dried at 80 ° C. for 1 minute, irradiated with ultraviolet rays at 1.0 J / cm 2 and cured to a thickness of 5 ⁇ m.
  • the hard coat layer was provided.
  • a base resin layer coating solution 1.40 g of “resin A”, 13.85 g of “resin B”, and 2.00 g of ethyl acetate were mixed and stirred to prepare a base resin layer coating solution.
  • This base resin layer coating solution is applied to the opposite surface of the base material provided with the hard coat layer using a bar coater count 30 manufactured by Matsuo Sangyo Co., Ltd., and dried by heating at 100 ° C. for 3 minutes.
  • a base resin layer having a subsequent coating thickness of 13 ⁇ m was provided.
  • conductive layer A was laminated on the base resin layer with a gravure wire number 150R to obtain a conductive laminate of the present invention.
  • Example 2 The composition of the base resin layer coating solution is 1.40 g of “resin A”, 13.96 g of “resin B”, 0.041 g of “photopolymerization initiator”, and 2.08 g of ethyl acetate. Created in the same manner as in Example 1 except that ultraviolet rays were irradiated at 1.2 J / cm 2 , and “conductive layer A” was laminated with gravure wire number 150R on a base resin layer having a coating thickness after drying of 13 ⁇ m. The conductive laminate of the present invention was obtained.
  • Example 3 KAYANOVA (registered trademark) FOP1740 (Nippon Kayaku Co., Ltd., solid content concentration 82% by mass) on one side with a “film” having a thickness of 188 ⁇ m as a base material and a solid content concentration of 40: 1 with toluene / methyl ethyl ketone mass% ratio.
  • a hard coating agent diluted to mass% is applied with a micro gravure coater (gravure wire number 80R, gravure rotation ratio 100%), dried at 80 ° C. for 1 minute, irradiated with ultraviolet rays at 1.0 J / cm 2 and cured to a thickness of 5 ⁇ m.
  • the hard coat layer was provided.
  • conductive layer B was laminated on the base resin layer to obtain a conductive laminate of the present invention.
  • Example 4 KAYANOVA (registered trademark) FOP1740 (Nippon Kayaku Co., Ltd., solid concentration 82 mass%) on one side with a “film” having a thickness of 125 ⁇ m as a one-to-one ratio of toluene to methyl ethyl ketone mass ratio 40
  • a hard coating agent diluted to mass% is applied with a micro gravure coater (gravure wire number 80R, gravure rotation ratio 100%), dried at 80 ° C. for 1 minute, irradiated with ultraviolet rays at 1.0 J / cm 2 and cured to a thickness of 5 ⁇ m.
  • the hard coat layer was provided.
  • a base resin layer coating solution 3.64 g of “resin A”, 1.38 g of “resin B”, and 14.97 g of ethyl acetate were mixed and stirred to prepare a base resin layer coating solution.
  • This base resin layer coating solution is applied to the opposite side of the base material provided with the hard coat layer using a bar coater count 24 manufactured by Matsuo Sangyo Co., Ltd., and dried by heating at 100 ° C. for 3 minutes. A base resin layer having a subsequent coating thickness of 7 ⁇ m was provided.
  • “conductive layer B” was laminated on the base resin layer to obtain a conductive laminate of the present invention.
  • Example 5 The base resin layer coating solution was prepared in the same manner as in Example 4 except that 3.84 g of “resin A”, 0.62 g of “resin B”, and 15.55 g of ethyl acetate, and the coating thickness after drying was A “conductive layer B” was laminated on a 7 ⁇ m ground resin layer to obtain a conductive laminate of the present invention.
  • Example 6 KAYANOVA (registered trademark) FOP1740 (Nippon Kayaku Co., Ltd., solid concentration 82 mass%) on one side with a “film” having a thickness of 125 ⁇ m as a one-to-one ratio of toluene to methyl ethyl ketone mass ratio 40
  • a hard coating agent diluted to mass% is applied with a micro gravure coater (gravure wire number 80R, gravure rotation ratio 100%), dried at 80 ° C. for 1 minute, irradiated with ultraviolet rays at 1.0 J / cm 2 and cured to a thickness of 5 ⁇ m.
  • the hard coat layer was provided.
  • a base resin layer coating solution 1.40 g of “resin A”, 13.96 g of “resin B”, 0.041 g of “photopolymerization initiator”, and 9.95 g of ethyl acetate were mixed and stirred to prepare a base resin layer coating solution.
  • This base resin layer coating solution is applied to the opposite surface of the base material provided with the hard coat layer using a bar coater count 24 manufactured by Matsuo Sangyo Co., Ltd. 1.2 J / cm 2 was irradiated and cured, and a base resin layer having a coating thickness of 7 ⁇ m was provided.
  • conductive layer A was laminated on the base resin layer with a gravure wire number 150R to obtain a conductive laminate of the present invention.
  • Example 7 The composition of the base resin layer coating solution is 1.80 g of “resin A”, 8.48 g of “resin B”, 0.043 g of “photopolymerization initiator”, and 9.92 g of ethyl acetate. Except that the ultraviolet ray was irradiated at 1.2 J / cm 2 , it was prepared in the same manner as in Example 6, and the “conductive layer A” was laminated on the base resin layer having a coating thickness of 7 ⁇ m with a gravure wire number 150R. A conductive laminate was obtained.
  • Example 8 The composition of the base resin layer coating solution is 1.00 g of “resin A”, 16.40 g of “resin B”, 0.030 g of “photopolymerization initiator”, 9.04 g of ethyl acetate, and after applying and drying the coating solution, Except that the ultraviolet ray was irradiated at 1.2 J / cm 2 , it was prepared in the same manner as in Example 6, and the “conductive layer A” was laminated on the base resin layer having a coating thickness of 7 ⁇ m with a gravure wire number 150R. A conductive laminate was obtained.
  • Example 9 The composition of the base resin layer coating solution was 0.80 g of “resin A”, 18.90 g of “resin B”, 0.024 g of “photopolymerization initiator”, and 8.97 g of “ethyl acetate”, and the coating solution was applied and dried. Later, it was prepared in the same manner as in Example 6 except that ultraviolet rays were further irradiated at 1.2 J / cm 2 , and “conductive layer A” was laminated with gravure wire number 150R on the base resin layer having a coating thickness of 7 ⁇ m. The conductive laminate of the present invention was obtained.
  • Example 10 KAYANOVA (registered trademark) FOP1740 (Nippon Kayaku Co., Ltd., solid concentration 82 mass%) on one side with a “film” having a thickness of 125 ⁇ m as a one-to-one ratio of toluene to methyl ethyl ketone mass ratio 40
  • a hard coating agent diluted to mass% is applied with a micro gravure coater (gravure wire number 80R, gravure rotation ratio 100%), dried at 80 ° C. for 1 minute, irradiated with ultraviolet rays at 1.0 J / cm 2 and cured to a thickness of 5 ⁇ m.
  • the hard coat layer was provided.
  • a base resin layer coating solution 0.50 g of “resin A”, 19.44 g of “resin B”, 0.015 g of “photopolymerization initiator”, and 0.67 g of ethyl acetate were mixed and stirred to prepare a base resin layer coating solution.
  • This base resin layer coating solution was applied to the opposite surface of the base material provided with the hard coat layer using a bar coater count 26 manufactured by Matsuo Sangyo Co., Ltd. Was irradiated and cured to 1.2 J / cm 2 to provide a base resin layer having a coating thickness of 10.5 ⁇ m.
  • conductive layer A was laminated on the base resin layer with a gravure wire number 150R to obtain a conductive laminate of the present invention.
  • Example 11 KAYANOVA (registered trademark) FOP1740 (Nippon Kayaku Co., Ltd., solid concentration 82 mass%) on one side with a “film” having a thickness of 125 ⁇ m as a one-to-one ratio of toluene to methyl ethyl ketone mass ratio 40
  • a hard coating agent diluted to mass% is applied with a micro gravure coater (gravure wire number 80R, gravure rotation ratio 100%), dried at 80 ° C. for 1 minute, irradiated with ultraviolet rays at 1.0 J / cm 2 and cured to a thickness of 5 ⁇ m.
  • the hard coat layer was provided.
  • a base resin layer coating solution 1.00 g of “resin A”, 9.89 g of “resin B”, 0.030 g of “photopolymerization initiator” and 7.09 g of ethyl acetate were mixed and stirred to prepare a base resin layer coating solution.
  • This base resin layer coating solution is applied to the opposite surface of the base material provided with the hard coat layer using a bar coater count 16 manufactured by Matsuo Sangyo Co., Ltd. 1.2 J / cm 2 irradiation and curing were performed, and a base resin layer having a coating thickness of 4.8 ⁇ m was provided.
  • conductive layer A was laminated on the base resin layer with a gravure wire number 150R to obtain a conductive laminate of the present invention.
  • Example 12 Except having laminated
  • Example 13 On the “conductive layer A” of Example 6, a coating solution of “transparent protective layer material A” having a solid content concentration of 1.0 mass% was applied by microgravure coating (gravure wire number 80R, gravure rotation ratio 100%). The film was dried at 125 ° C. for 1 minute to provide a transparent protective layer having a thickness of 60 nm to obtain a conductive laminate of the present invention.
  • Example 14 On the “conductive layer A” of Example 6, a coating solution of “transparent protective layer material A” having a solid content concentration of 1.2 mass% was applied by microgravure coating (gravure wire number 80R, gravure rotation ratio 100%). The film was dried at 125 ° C. for 1 minute, and a transparent protective layer having a thickness of 75 nm was provided to obtain a conductive laminate of the present invention.
  • Example 15 On the “conductive layer A” of Example 6, a coating solution of “transparent protective layer material A” having a solid content concentration of 1.5 mass% was applied by microgravure coating (gravure wire number 80R, gravure rotation ratio 100%). The film was dried at 125 ° C. for 1 minute to provide a transparent protective layer having a thickness of 100 nm to obtain a conductive laminate of the present invention.
  • Example 16 A coating liquid of “transparent protective layer material B” having a solid content concentration of 1.5% by mass was applied by microgravure coating (gravure wire number 120R, gravure rotation ratio 100%) on “conductive layer A” of Example 6. After drying at 80 ° C. for 30 seconds, the film was cured by irradiation with ultraviolet rays of 1.2 J / cm 2 to provide a transparent protective layer having a thickness of 65 nm to obtain a conductive laminate of the present invention.
  • microgravure coating gravure wire number 120R, gravure rotation ratio 100%
  • Example 17 On the “conductive layer A” in Example 6, a coating solution of “transparent protective layer material B” having a solid content concentration of 1.5 mass% was applied by microgravure coating (gravure wire number 80R, gravure rotation ratio 100%). After drying at 80 ° C. for 30 seconds, the film was cured by irradiation with ultraviolet rays of 1.2 J / cm 2 to provide a transparent protective layer having a thickness of 100 nm to obtain a conductive laminate of the present invention.
  • microgravure coating gravure wire number 80R, gravure rotation ratio 100%
  • Comparative Example 1 KAYANOVA (registered trademark) FOP1740 (Nippon Kayaku Co., Ltd., solid content concentration 82% by mass) on one side with a “film” having a thickness of 188 ⁇ m as a base material and a solid content concentration of 40: 1 with toluene / methyl ethyl ketone mass% ratio.
  • a hard coating agent diluted to mass% is applied with a micro gravure coater (gravure wire number 80R, gravure rotation ratio 100%), dried at 80 ° C. for 1 minute, irradiated with ultraviolet rays at 1.0 J / cm 2 and cured to a thickness of 5 ⁇ m.
  • the hard coat layer was provided. Subsequently, it was set as the laminated body which does not provide a base resin layer and a conductive layer on the opposite surface which provided the hard-coat layer of the base material.
  • Comparative Example 2 KAYANOVA (registered trademark) FOP1740 (Nippon Kayaku Co., Ltd., solid content concentration 82% by mass) on one side with a “film” having a thickness of 188 ⁇ m as a base material and a solid content concentration of 40: 1 with toluene / methyl ethyl ketone mass% ratio.
  • a hard coating agent diluted to mass% is applied with a micro gravure coater (gravure wire number 80R, gravure rotation ratio 100%), dried at 80 ° C. for 1 minute, irradiated with ultraviolet rays at 1.0 J / cm 2 and cured to a thickness of 5 ⁇ m.
  • the hard coat layer was provided.
  • Comparative Example 3 KAYANOVA (registered trademark) FOP1740 (Nippon Kayaku Co., Ltd., solid content concentration 82% by mass) on one side with a “film” having a thickness of 188 ⁇ m as a base material and a solid content concentration of 40: 1 with toluene / methyl ethyl ketone mass% ratio.
  • a hard coating agent diluted to mass% is applied with a micro gravure coater (gravure wire number 80R, gravure rotation ratio 100%), dried at 80 ° C. for 1 minute, irradiated with ultraviolet rays at 1.0 J / cm 2 and cured to a thickness of 5 ⁇ m.
  • the hard coat layer was provided.
  • the “conductive layer C” was directly laminated on the opposite surface of the base material on which the hard coat layer was provided, without providing the base resin layer, to obtain a conductive laminate.
  • Comparative Example 4 A conductive laminate was prepared in the same manner as in Comparative Example 3 except that the conductive layer was “conductive layer A” (laminated with gravure wire number 150R).
  • Comparative Example 5 A conductive laminate was prepared in the same manner as Comparative Example 3 except that the conductive layer was “conductive layer B”.
  • Comparative Example 6 Except that the resin used for the base resin layer coating solution was “resin C”, it was prepared in the same manner as in Example 1, and “conductive layer A” was formed on the base resin layer having a coating thickness after drying of 13 ⁇ m. No. 150R was laminated to obtain a conductive laminate.
  • Comparative Example 7 A conductive laminate was prepared in the same manner as Comparative Example 6 except that the “conductive layer A” to be laminated was laminated with the gravure wire number 100R.
  • Comparative Example 8 Except that the resin used for the base resin layer coating solution was “resin D”, it was prepared in the same manner as in Example 2, and “conductive layer A” was formed on the base resin layer having a coating thickness after drying of 13 ⁇ m. No. 150R was laminated to obtain a conductive laminate.
  • Comparative Example 9 Except that the resin used for the base resin layer coating solution was “resin E”, it was prepared in the same manner as in Example 28, and “conductive layer A” was formed on the base resin layer having a coating thickness after drying of 13 ⁇ m. No. 150R was laminated to obtain a conductive laminate.
  • Comparative Example 10 KAYANOVA (registered trademark) FOP1740 (Nippon Kayaku Co., Ltd., solid content concentration 82% by mass) on one side with a “film” having a thickness of 188 ⁇ m as a base material and a solid content concentration of 40: 1 with toluene / methyl ethyl ketone mass% ratio.
  • a hard coating agent diluted to mass% is applied with a micro gravure coater (gravure wire number 80R, gravure rotation ratio 100%), dried at 80 ° C. for 1 minute, irradiated with ultraviolet rays at 1.0 J / cm 2 and cured to a thickness of 5 ⁇ m.
  • the hard coat layer was provided.
  • a base resin layer coating solution 1.00 g of “resin F”, 5.82 g of “resin B”, and 0.43 g of ethyl acetate were mixed and stirred to prepare a base resin layer coating solution.
  • This base resin layer coating solution was applied to the opposite surface of the base material provided with the hard coat layer using a bar coater count 30 manufactured by Matsuo Sangyo Co., Ltd., and heated and dried at 100 ° C. for 3 minutes. A base resin layer having a coating thickness of 13 ⁇ m after drying was provided.
  • conductive layer A was laminated on the base resin layer with a gravure wire number 150R to obtain a conductive laminate.
  • Comparative Example 11 KAYANOVA (registered trademark) FOP1740 (Nippon Kayaku Co., Ltd., solid content concentration 82% by mass) on one side with a “film” having a thickness of 188 ⁇ m as a base material and a solid content concentration of 40: 1 with toluene / methyl ethyl ketone mass% ratio.
  • a hard coating agent diluted to mass% is applied with a micro gravure coater (gravure wire number 80R, gravure rotation ratio 100%), dried at 80 ° C. for 1 minute, irradiated with ultraviolet rays at 1.0 J / cm 2 and cured to a thickness of 5 ⁇ m.
  • the hard coat layer was provided.
  • a base resin layer coating solution 1.00 g of “resin F”, 3.87 g of “resin G” and 2.46 g of ethyl acetate were mixed and stirred to prepare a base resin layer coating solution.
  • This base resin layer coating solution is applied to the opposite surface of the base material provided with the hard coat layer using a bar coater count 30 manufactured by Matsuo Sangyo Co., Ltd., and dried by heating at 100 ° C. for 3 minutes. A base resin layer having a subsequent coating thickness of 13 ⁇ m was provided.
  • Examples 1 to 17 the writing quality and input sensitivity of the touch panel could be improved.
  • a base resin layer in which a urethane acrylate having a specific structure of a glycol skeleton and a bifunctional acrylate moiety and a graft resin having a hydrophilic group in the side chain is used (Examples 1 to 4).
  • 3, 6, 13-17) Not only was it possible to apply a water-dispersed coating liquid of the conductive component of the linear structure, but also the writing quality and input sensitivity were greatly improved.
  • the acrylate moiety of the urethane acrylate resin was bonded to another acrylate moiety (Examples 2, 6, 13 to 17), good durability could be obtained.
  • the present invention is a conductive laminate having good touch panel writing, high input sensitivity, and good durability. Furthermore, it is an electroconductive laminated body used also for electrode members used, such as a liquid crystal display, organic electroluminescence, electronic paper related display, and a solar cell module.

Abstract

An electroconductive laminate obtained by laminating an undercoat resin layer and an electroconductive layer on at least one surface of a substrate in this order from the substrate side, wherein the undercoat resin layer comprises both a urethane acrylate resin that contains a glycol skeleton and a resin that has a graft structure and contains hydrophilic groups in the side chain. A touch panel using the electroconductive laminate ensures smooth writing and exhibits high input sensitivity and high durability. Further, the electroconductive laminate is suitable for use as an electrode member in a display (such as a liquid crystal display, an organic electroluminescent device or an electronic paper), a solar cell module, or the like.

Description

導電積層体およびその製造方法Conductive laminate and manufacturing method thereof
 本発明は、下地樹脂層の上に導電層を有する導電積層体に関するものである。さらに、タッチパネル、液晶ディスプレイ、有機エレクトロルミネッセンス、電子ペーパーなどのディスプレイ、および、太陽電池モジュールなどの使用される電極部材に好適な導電積層体に関するものである。 The present invention relates to a conductive laminate having a conductive layer on a base resin layer. Further, the present invention relates to a conductive laminate suitable for electrode members used for displays such as touch panels, liquid crystal displays, organic electroluminescence, electronic paper, and solar cell modules.
 近年、タッチパネルを搭載する携帯電話やゲーム機等が普及している。タッチパネルには電極用の導電部材が使用されているが、タッチパネルへのペン等による微細入力化が進み、使用する導電部材に対して、書き味や高い入力感度、耐久性が求められている。 In recent years, mobile phones and game machines equipped with touch panels have become widespread. A conductive member for an electrode is used for the touch panel, but fine input by a pen or the like to the touch panel has progressed, and writing quality, high input sensitivity, and durability are required for the conductive member to be used.
 ドライプロセスによって表面に導電層を積層した基材の非導電層面と別の基材とを、接着層を介して貼り合わせた導電積層体がタッチパネルに使用されている。接着層を有する導電積層体は、接着層がクッションの役割をするため、書き味や入力感度は良い。しかし、導電層を、コストが高いドライプロセスで積層し、さらに複数の基材を使用する構成であるため、コストが非常に高く、安価に生産することができなかった。 A conductive laminate in which a non-conductive layer surface of a substrate having a conductive layer laminated on the surface by a dry process and another substrate are bonded to each other through an adhesive layer is used for a touch panel. A conductive laminate having an adhesive layer has good writing quality and input sensitivity because the adhesive layer serves as a cushion. However, since the conductive layer is laminated by a high cost dry process and further uses a plurality of base materials, the cost is very high and it cannot be produced at low cost.
 基材上にクッション層を設け、その上に樹脂層と導電層をこの順に積層した導電積層体は、クッション層を設けても、導電層を積層するための下地層として、その上に更に樹脂層を設けるので、クッション層のクッション効果が得られなかった。 A conductive laminate in which a cushion layer is provided on a base material and a resin layer and a conductive layer are laminated in this order on the substrate is a base layer for laminating the conductive layer, even if the cushion layer is provided. Since the layer was provided, the cushion effect of the cushion layer could not be obtained.
 基材上に樹脂層、基材よりも薄膜の屈折率の異なる層、導電層、をこの順に積層した導電積層体は、多層積層する層が薄膜であっても、書き味や入力感度は悪かった。 A conductive laminate in which a resin layer, a layer having a refractive index different from that of the substrate, and a conductive layer are laminated in this order on the substrate are poor in writing quality and input sensitivity even if the multilayered layer is a thin film. It was.
 基材上に下地層を設け、その上に導電層を積層する導電積層体において、下地層が基材よりも極めて薄い導電性積層体は、クッション効果がなく、書き味や入力感度は悪かった。 In a conductive laminate in which a base layer is provided on a base material and a conductive layer is laminated thereon, the conductive laminate in which the base layer is much thinner than the base material has no cushion effect and writing quality and input sensitivity are poor. .
 下地層がポリウレタン系樹脂からなる導電積層体が知られている(特許文献1)。下地層がポリウレタン系樹脂からなる導電積層体は、下地層のクッション効果が不足し、書き味や入力感度は悪かった。 A conductive laminate in which the base layer is made of a polyurethane resin is known (Patent Document 1). The conductive laminate composed of the polyurethane resin for the underlayer lacked the cushion effect of the underlayer, and the writing quality and input sensitivity were poor.
 下地層がウレタンアクリレート系樹脂からなる導電積層体が知られている(特許文献2)。下地層がウレタンアクリレート系樹脂からなる導電積層体は、下地層のクッション効果がなく、書き味や入力感度は悪かった。 A conductive laminate in which the base layer is made of a urethane acrylate resin is known (Patent Document 2). The conductive laminate comprising the base layer made of urethane acrylate resin did not have the cushion effect of the base layer, and the writing quality and input sensitivity were poor.
 下地層がグリコール骨格を有するウレタンアクリレート系樹脂からなる導電積層体が知られている(特許文献3)。下地層がウレタンアクリレート系樹脂のみでは下地樹脂層表面の親水性が不足する。特に、水含有組成物からなる導電成分を用いる導電層の場合には、下地樹脂層上に積層した際にムラや欠点が形成し、導電積層体の外観が悪く、表面の導電性が悪いので、入力感度が悪かった。 An electrically conductive laminate comprising a urethane acrylate resin having a glycol skeleton as an underlayer is known (Patent Document 3). If the underlying layer is only urethane acrylate resin, the hydrophilicity of the surface of the underlying resin layer is insufficient. In particular, in the case of a conductive layer using a conductive component made of a water-containing composition, unevenness and defects are formed when laminated on the base resin layer, the appearance of the conductive laminate is poor, and the surface conductivity is poor. The input sensitivity was bad.
特開2008-243532号公報JP 2008-243532 A 特開2007-42284号公報JP 2007-42284 A 特開2009-302013号公報JP 2009-302013 A
 本発明は、タッチパネルの書き味及び入力感度の向上を図り、且つ、良好な耐久性を有する導電積層体を提供するものである。 The present invention provides a conductive laminate that improves the writing quality and input sensitivity of a touch panel and has good durability.
 本発明は、基材の少なくとも片面に、基材側から、下地樹脂層、導電層の順に、下地樹脂層、導電層を積層した導電積層体であって、下地樹脂が、グリコール骨格を有するウレタンアクリレート樹脂と、側鎖中に親水基を有するグラフト構造の樹脂とを含有する樹脂である導電積層体である。 The present invention is a conductive laminate in which a base resin layer and a conductive layer are laminated in order of a base resin layer and a conductive layer on at least one surface of the base material from the base material side, and the base resin is a urethane having a glycol skeleton. The conductive laminate is a resin containing an acrylate resin and a resin having a graft structure having a hydrophilic group in a side chain.
 さらに本発明は、基材上に、下地樹脂層を形成した後、下地樹脂層上に導電層を形成する導電積層体の製造方法であって、下地樹脂が、グリコール骨格をウレタンアクリレート樹脂と側鎖中に親水基を有するグラフト構造の樹脂とを含有する導電積層体の製造方法である。 Furthermore, the present invention is a method for producing a conductive laminate in which a base resin layer is formed on a base material and then a conductive layer is formed on the base resin layer, wherein the base resin has a glycol skeleton side with a urethane acrylate resin. It is a manufacturing method of the electrically conductive laminated body containing resin of the graft structure which has a hydrophilic group in a chain | strand.
 本発明の導電積層体を使用したタッチパネルは、書き味がよく、入力感度が高く、良好な耐久性を有する。 The touch panel using the conductive laminate of the present invention has good writing quality, high input sensitivity, and good durability.
 さらに、本発明の導電積層体は、液晶ディスプレイ、有機エレクトロルミネッセンス、電子ペーパーなどのディスプレイ関連および太陽電池モジュールなどの使用される電極部材に好適に使用することができる。 Further, the conductive laminate of the present invention can be suitably used for display members such as liquid crystal displays, organic electroluminescence, and electronic paper, and used electrode members such as solar cell modules.
本発明の導電積層体の断面模式図の一例である。It is an example of the cross-sectional schematic diagram of the electrically conductive laminated body of this invention. 本発明の側鎖中に親水基を有するグラフト構造の樹脂の模式図の一例である。It is an example of the schematic diagram of resin of the graft structure which has a hydrophilic group in the side chain of this invention. 本発明の導電積層体の導電層側から観察した線状構造体の模式図の一例である。It is an example of the schematic diagram of the linear structure observed from the conductive layer side of the conductive laminated body of the present invention. 本発明の一様態であるタッチパネルの一例を示した模式図である。It is the schematic diagram which showed an example of the touchscreen which is the one aspect | mode of this invention. 流動床縦型反応装置の概略図Schematic diagram of fluidized bed vertical reactor
 以下、本発明をさらに詳細に説明する。 Hereinafter, the present invention will be described in more detail.
 本発明の導電積層体は、基材の少なくとも片面に、基材側から、下地樹脂層、導電層の順に、下地樹脂層、導電層を積層した導電積層体であって、下地樹脂が、グリコール骨格を構造内に有するウレタンアクリレート樹脂と、側鎖中に親水基を有するグラフト構造の樹脂とを含有する樹脂である導電積層体である。 The conductive laminate of the present invention is a conductive laminate in which a base resin layer and a conductive layer are laminated in order of a base resin layer and a conductive layer from at least one surface of the base material in this order, and the base resin is glycol. The conductive laminate is a resin containing a urethane acrylate resin having a skeleton in the structure and a graft structure resin having a hydrophilic group in the side chain.
 本発明の導電積層体における基材は、好ましくは、可視光線の全光線透過率が高い基材であり、透明基材であることがより好ましい。さらに、基材は、JIS K7361-1(1997年)に基づいた全光線透過率が80%以上の基材が好ましく、より好ましくは、90%以上の透明性を有している基材である。 The base material in the conductive laminate of the present invention is preferably a base material having a high visible light total light transmittance, and more preferably a transparent base material. Furthermore, the substrate is preferably a substrate having a total light transmittance of 80% or more based on JIS K7361-1 (1997), more preferably a substrate having transparency of 90% or more. .
 本発明の導電積層体における基材は、樹脂、ガラスが好ましい。基材の種類は、用途に応じて透明性や耐久性や可撓性やコスト等から最適なものを選ぶことができる。 The base material in the conductive laminate of the present invention is preferably resin or glass. As the type of the substrate, an optimum one can be selected from transparency, durability, flexibility, cost, etc. according to the application.
 基材がガラスの場合は、通常のソーダガラスを用いることができる。樹脂としては、ポリエチレンテレフタレート、ポリエチレンナフタレートなどのポリエステル、ポリアミド、ポリイミド、ポリフェニレンスルフィド、アラミド、ポリプロピレン、ポリエチレン、ポリ乳酸、ポリ塩化ビニル、ポリカーボネート、ポリメタクリル酸メチル、脂環式アクリル樹脂、シクロオレフィン樹脂、トリアセチルセルロース、及びこれら樹脂の混合及び/又は共重合したものが挙げられ、特に、ポリエチレンテレフタレートが好ましい。 When the substrate is glass, ordinary soda glass can be used. Examples of the resin include polyesters such as polyethylene terephthalate and polyethylene naphthalate, polyamide, polyimide, polyphenylene sulfide, aramid, polypropylene, polyethylene, polylactic acid, polyvinyl chloride, polycarbonate, polymethyl methacrylate, alicyclic acrylic resin, and cycloolefin resin. , Triacetyl cellulose, and those obtained by mixing and / or copolymerizing these resins, and polyethylene terephthalate is particularly preferable.
 基材は、フィルムも、基板も使用可能である。樹脂は、一軸延伸、二軸延伸してフィルムとすることができる。基材は、コスト、生産性、取り扱い性等の観点からは250μm以下のフィルムが好ましく、特に好ましくは、190μm以下のフィルム、さらに好ましくは、150nm以下のフィルムである。 The substrate can be a film or a substrate. The resin can be formed into a film by uniaxial stretching or biaxial stretching. The substrate is preferably a film having a thickness of 250 μm or less, particularly preferably a film having a thickness of 190 μm or less, and more preferably a film having a thickness of 150 nm or less, from the viewpoints of cost, productivity, handleability, and the like.
 基材は、単層の基材であっても、複数の基材を積層したなどの複合基材であってもよい。例えば、樹脂とガラスを組み合わせた基材、2種以上の樹脂を組み合わせた基材を使用することができる。 The base material may be a single-layer base material or a composite base material such as a laminate of a plurality of base materials. For example, a base material combining a resin and glass and a base material combining two or more resins can be used.
 基材は、必要に応じ、表面処理を施すことができる。表面処理は、例えば、グロー放電、コロナ放電、プラズマ処理、火炎処理等の物理的処理であり、あるいは樹脂層を設けても良い。基材がフィルムの場合、易接着層のあるフィルムでも良い。 The base material can be subjected to a surface treatment as necessary. The surface treatment is, for example, physical treatment such as glow discharge, corona discharge, plasma treatment, or flame treatment, or a resin layer may be provided. When the substrate is a film, a film having an easy-adhesion layer may be used.
 本発明の導電積層体は、基材の少なくとも片面に、下地樹脂層を積層し、下地樹脂が、グリコール骨格を有するウレタンアクリレート樹脂と、側鎖中に親水基を有するグラフト構造の樹脂とを含有する樹脂である。下地樹脂層を設けない場合は、導電積層体をタッチパネルに組み込んでも、書き味及び入力感度は向上せず、耐久性が劣る。 The conductive laminate of the present invention comprises a base resin layer laminated on at least one surface of a substrate, and the base resin contains a urethane acrylate resin having a glycol skeleton and a resin having a graft structure having a hydrophilic group in the side chain. Resin. When the base resin layer is not provided, even if the conductive laminate is incorporated in the touch panel, writing quality and input sensitivity are not improved and durability is inferior.
 本発明の導電積層体の下地樹脂層には、グリコール骨格を有するウレタンアクリレート樹脂を含有する。ウレタンアクリレート樹脂は、ポリオールと、多官能イソシアネートが反応して生成したウレタン構造を有し、反応物構造の末端がアクリレートである樹脂である。ウレタンアクリレート樹脂は、例えば、ジオールなど分子構造中に2個以上のヒドロキシル基を有するポリオールと、ジイソシアネートなど分子構造中に2個以上のイソシアネート基を有する脂肪族・芳香族・脂環族系の多官能イソシアネートとを反応させた後、次いでその反応物構造の末端と、分子構造中にヒドロキシル基を有するアクリレート(ヒドロキシ官能性アクリレート)とを反応させ末端封止して製造方法する。 The base resin layer of the conductive laminate of the present invention contains a urethane acrylate resin having a glycol skeleton. The urethane acrylate resin is a resin having a urethane structure formed by a reaction between a polyol and a polyfunctional isocyanate, and an end of the reaction product structure is an acrylate. Urethane acrylate resins include, for example, polyols having two or more hydroxyl groups in the molecular structure such as diols, and aliphatic / aromatic / alicyclic polymers having two or more isocyanate groups in the molecular structure such as diisocyanate. After the reaction with the functional isocyanate, the terminal of the reaction product structure is then reacted with an acrylate having a hydroxyl group in the molecular structure (hydroxy functional acrylate) to end-capping to produce a method.
 本発明にかかる下地樹脂層に含有されるウレタンアクリレート樹脂は、グリコール骨格を有する。グリコール骨格を有さないウレタンアクリレート樹脂であると、タッチパネルとして使用した場合、タッチパネルの書き味及び入力感度は向上せず、耐久性が劣る。 The urethane acrylate resin contained in the base resin layer according to the present invention has a glycol skeleton. When the urethane acrylate resin does not have a glycol skeleton, when used as a touch panel, the writing quality and input sensitivity of the touch panel are not improved and the durability is inferior.
 グリコール骨格としては、例えば、エチレングリコール骨格、プロピレングリコール骨格、ジエチレングリコール骨格、ブタンジオール骨格、ヘキサンジオール骨格、1,4-シクロヘキサンジメタノール骨格、グリコール酸骨格、ポリグリコール酸骨格などが挙げられる。 Examples of the glycol skeleton include an ethylene glycol skeleton, a propylene glycol skeleton, a diethylene glycol skeleton, a butanediol skeleton, a hexanediol skeleton, a 1,4-cyclohexanedimethanol skeleton, a glycolic acid skeleton, and a polyglycolic acid skeleton.
 グリコール骨格としては、ポリエチレングリコール骨格及び/又はポリプロピレングリコール骨格であることがさらに好ましい。ポリエチレングリコールはエチレングリコールが、ポリプロピレングリコールはプロピレングリコールが、それぞれ重合した高分子量化合物であり直線構造がより長く結合しているため、ウレタンアクリレート樹脂の骨格内に組み込んだ際に、さらに柔軟なウレタンアクリレート樹脂となり、タッチパネルの書き味及び入力感度をより向上させることが容易となる。 The glycol skeleton is more preferably a polyethylene glycol skeleton and / or a polypropylene glycol skeleton. Polyethylene glycol is ethylene glycol, and polypropylene glycol is propylene glycol, which is a polymerized high molecular weight compound that has a longer linear structure and is therefore more flexible when incorporated into the skeleton of urethane acrylate resin. It becomes resin, and it becomes easy to improve the writing quality and input sensitivity of the touch panel.
 これら、グリコール骨格を有するウレタンアクリレートとしては、例えば、アートレジン UNシリーズ(根上工業(株)製)から選定される品番等を使用することができる。 As the urethane acrylate having a glycol skeleton, for example, a product number selected from Art Resin UN series (manufactured by Negami Kogyo Co., Ltd.) can be used.
 グリコール骨格を有するウレタンアクリレート樹脂を単体もしくは2種以上を混合して下地樹脂層中に含有しても良く、また、これらグリコール骨格同士をあらかじめ反応させてからウレタンアクリレート樹脂の骨格内に組み込むことで、同一構造内に2種以上のグリコール骨格を有するウレタンアクリレート樹脂として下地樹脂層中に含有しても良い。 The urethane acrylate resin having a glycol skeleton may be contained alone or in combination of two or more in the base resin layer, and these glycol skeletons may be reacted in advance before being incorporated into the urethane acrylate resin skeleton. The base resin layer may contain a urethane acrylate resin having two or more glycol skeletons in the same structure.
 本発明において、好ましくは、ポリエチレングリコール骨格及び/又はポリプロピレングリコール骨格を有するウレタンアクリレート樹脂を単体もしくは混合して下地樹脂層中に含有させる。また、好ましくは、ポリエチレングリコール骨格とポリプロピレングリコール骨格同士をあらかじめ共重合させてからウレタンアクリレート樹脂の骨格内に組み込むことで、同一構造内にポリエチレングリコール骨格とポリプロピレングリコール骨格の両骨格を有するウレタンアクリレート樹脂として下地樹脂層中に含有させる。ポリエチレングリコール骨格もしくはポリプロピレングリコール骨格を有したウレタンアクリレート樹脂は、タッチパネルとして使用した場合、タッチパネルの書き味及び入力感度をより向上させる効果を充分に得ることができる。 In the present invention, preferably, a urethane acrylate resin having a polyethylene glycol skeleton and / or a polypropylene glycol skeleton is contained alone or mixed and contained in the base resin layer. Preferably, the urethane acrylate resin having both the polyethylene glycol skeleton and the polypropylene glycol skeleton in the same structure is obtained by copolymerizing the polyethylene glycol skeleton and the polypropylene glycol skeleton in advance and then incorporating them into the skeleton of the urethane acrylate resin. In the base resin layer. When the urethane acrylate resin having a polyethylene glycol skeleton or a polypropylene glycol skeleton is used as a touch panel, the effect of further improving the writing quality and input sensitivity of the touch panel can be obtained.
 下地樹脂層中に、グリコール骨格を有するウレタンアクリレート樹脂を含有すると、タッチパネルの書き味及び入力感度が向上し、良好な耐久性を有する。 When a urethane acrylate resin having a glycol skeleton is contained in the base resin layer, the writing quality and input sensitivity of the touch panel are improved and the durability is good.
 ウレタンアクリレート樹脂は、その構造内に柔軟な骨格であるポリオール部位と硬質な骨格であるアクリレート部位との両者を有している。特にグリコール骨格は、
(1)、分子構造の直線性が強いこと、
(2)、分子構造内の酸素元素が、炭素元素以外の元素(例えば、水素元素)と結合しておらず、炭素元素以外の元素の立体障害による空間阻害を受けないため、酸素元素周辺の自由空間が広いこと、
の2点から、ポリオール部位に導入することで、より柔軟なウレタンアクリレート樹脂となると推定される。従って、このグリコール骨格を有するウレタンアクリレート樹脂を下地樹脂層に含有することで、ペンや指等によって入力した際の荷重で下地樹脂層が変形しやすくなると考えられる。一方、アクリレート部位は硬質であるため、荷重を開放した際、変形に対し反発して速やかに元に戻す役割を果たすと考えられる。その結果、入力時の荷重に対して、下地樹脂層がクッションの役割を果たすため書き味が良くなると推定されるが、本発明は、この推定に限定されない。
The urethane acrylate resin has both a polyol moiety that is a flexible skeleton and an acrylate moiety that is a hard skeleton in its structure. In particular, the glycol skeleton
(1) The linearity of the molecular structure is strong.
(2) Since the oxygen element in the molecular structure is not bonded to an element other than the carbon element (for example, a hydrogen element) and is not subject to spatial inhibition due to steric hindrance of the element other than the carbon element, A large free space,
From these two points, it is presumed that a more flexible urethane acrylate resin can be obtained by introducing it into the polyol moiety. Therefore, it is considered that by including the urethane acrylate resin having the glycol skeleton in the base resin layer, the base resin layer is easily deformed by a load when input with a pen or a finger. On the other hand, since the acrylate part is hard, it is considered that when the load is released, it repels deformation and quickly returns to its original state. As a result, it is estimated that the writing quality is improved because the base resin layer plays a role of a cushion against the load at the time of input, but the present invention is not limited to this estimation.
 ウレタンアクリレート樹脂は、ウレタンアクリレート1分子中のアクリレート部位の官能基数が、2官能であることが好ましい。アクリレート部位は硬質な性質を付与しやすいため、ウレタンアクリレート1分子中に3官能以上の多官能で存在するとウレタンアクリレート樹脂が硬くなりやすく、下地樹脂層のクッション効果が小さくなる場合があるため、タッチパネルの書き味及び入力感度を向上させるためには下地樹脂層の厚みを厚くする等の調整が必要となる場合がある。 In the urethane acrylate resin, the number of functional groups at the acrylate moiety in one molecule of urethane acrylate is preferably bifunctional. Since the acrylate portion easily imparts a hard property, the urethane acrylate resin tends to be hard if it exists in a polyfunctionality of 3 or more in one molecule of urethane acrylate, and the cushioning effect of the base resin layer may be reduced. In order to improve the writing quality and input sensitivity, it may be necessary to make adjustments such as increasing the thickness of the base resin layer.
 一方、アクリレート部位の官能基数が、2官能であると、ウレタンアクリレート1分子中におけるアクリレート部位すなわち硬質部位の割合が少ないため、得られるウレタンアクリレート樹脂はより柔軟となり下地樹脂層のクッション効果がさらに上がる。このため、タッチパネルの書き味及び入力感度をより向上させることが容易となる。 On the other hand, when the number of functional groups in the acrylate moiety is bifunctional, the ratio of the acrylate moiety, that is, the hard part in one molecule of urethane acrylate is small, so that the obtained urethane acrylate resin becomes more flexible and the cushioning effect of the base resin layer is further increased. . For this reason, it becomes easy to further improve the writing quality and input sensitivity of the touch panel.
 アクリレート部位の官能基数は、ウレタンアクリレート樹脂を合成する段階で使用する脂肪族・芳香族・脂環族系の多官能イソシアネートのイソシアネート官能基数で調整することができる。また、アクリレート部位の種類としては、例えば、アクリレート、メタアクリレート等が挙げられる。 The number of functional groups in the acrylate moiety can be adjusted by the number of isocyanate functional groups of the aliphatic, aromatic, and alicyclic polyfunctional isocyanates used in the step of synthesizing the urethane acrylate resin. Moreover, as a kind of acrylate site | part, an acrylate, a methacrylate, etc. are mentioned, for example.
 2官能のウレタンアクリレートとしては、具体的には、例えば、アートレジン UNシリーズ(根上工業(株)製)から選定される品番等を使用することができる。 As the bifunctional urethane acrylate, specifically, for example, a product number selected from Art Resin UN series (manufactured by Negami Kogyo Co., Ltd.) can be used.
 本発明に用いられるウレタンアクリレート樹脂は、アクリレート部位が、重合により他のアクリレート部位と結合をしていることが好ましい。アクリレート部位が、他のアクリレート部位と結合していると、耐久性がさらに向上する。アクリレート部位を結合する方法としては、例えば、下地樹脂層中にウレタンアクリレート樹脂と共に公知の光重合開始剤を含有し、そこに紫外光、可視光、電子線等の活性電子線を照射して反応させる方法がある。光重合開始剤とは、紫外領域の光、可視領域の光、電子線等を吸収し、ラジカル種、カチオン種、アニオン種等の活性種を生成し、樹脂の重合を開始する物質である。光重合開始剤は、具体的には、例えば、Ciba(登録商標)IRGACURE(登録商標)シリーズ(チバ・ジャパン(株)製)から選定される品番等を使用することができる。光重合開始剤は、1種を単独で使用しても、また、2種以上を混合しても良い。 The urethane acrylate resin used in the present invention preferably has an acrylate moiety bonded to another acrylate moiety by polymerization. When the acrylate moiety is bonded to another acrylate moiety, the durability is further improved. As a method for bonding the acrylate moiety, for example, a known photopolymerization initiator is contained together with the urethane acrylate resin in the base resin layer, and the reaction is performed by irradiating with an active electron beam such as ultraviolet light, visible light, or electron beam. There is a way to make it. The photopolymerization initiator is a substance that absorbs light in the ultraviolet region, light in the visible region, electron beam, etc., generates active species such as radical species, cation species, and anion species, and initiates polymerization of the resin. Specifically, for example, a product number selected from Ciba (registered trademark) IRGACURE (registered trademark) series (manufactured by Ciba Japan Co., Ltd.) can be used as the photopolymerization initiator. A photoinitiator may be used individually by 1 type, and may mix 2 or more types.
 本発明においては、アクリレート部位の結合は、下地樹脂層に含有されるウレタンアクリレート樹脂が1種である場合は、ウレタンアクリレート樹脂のアクレート部位同士が結合していれば良い。下地樹脂層に含有されるウレタンアクリレート樹脂を、2種以上含有する場合は、同種のウレタンアクリレート樹脂もしくは異種のウレタンアクリレート樹脂が結合していても良い。さらに、ウレタンアクリレート樹脂以外のアクリレート部位を有する成分を下地樹脂層中に含有する場合は、そのウレタンアクリレート樹脂以外のアクリレート部位を有する成分と結合していても良い。 In the present invention, when the urethane acrylate resin contained in the base resin layer is one kind, the acrylate sites may be bonded to each other in the acrylate sites. When two or more types of urethane acrylate resins contained in the base resin layer are contained, the same type of urethane acrylate resins or different types of urethane acrylate resins may be bonded. Furthermore, when the base resin layer contains a component having an acrylate moiety other than the urethane acrylate resin, it may be combined with a component having an acrylate moiety other than the urethane acrylate resin.
 下地樹脂層中のウレタンアクリレート樹脂の含有率は、下地樹脂層全体に対して10質量%以上、より好ましくは15質量%以上、さらに好ましくは20質量%以上、特に好ましくは50質量%以上、最も好ましくは80質量%以上が好ましい。 The content of the urethane acrylate resin in the base resin layer is 10% by mass or more, more preferably 15% by mass or more, further preferably 20% by mass or more, particularly preferably 50% by mass or more, based on the entire base resin layer. Preferably 80 mass% or more is preferable.
 本発明の導電積層体の下地樹脂は、側鎖中に親水基を有するグラフト樹脂を含有する。 The base resin of the conductive laminate of the present invention contains a graft resin having a hydrophilic group in the side chain.
 本発明においてグラフト樹脂とは、ブロック重合樹脂であり、図2にその構造を例示する。図2は、主鎖である幹ポリマーの分岐した側鎖が枝状に結合している状態を示している。グラフト樹脂は、幹ポリマーや側鎖の種類、重合度、分子量、分子鎖末端・分子鎖中・分岐鎖中の官能基、架橋度によって様々な形態があり、幹ポリマーや側鎖の種類、重合度、分子量などにより、様々な性能を持つ。本発明で使用するグラフト樹脂は、側鎖中に親水基を有しているグラフト樹脂である。側鎖中に親水基を有しているグラフト樹脂は、分岐した側鎖を持ち、幹ポリマーが下地層内部に存在している場合であっても、下地の表面に親水基が到達し、下地層に濡れ性を付与することができる。 In the present invention, the graft resin is a block polymerization resin, and its structure is illustrated in FIG. FIG. 2 shows a state in which the branched side chains of the backbone polymer as the main chain are bonded in a branch shape. Graft resins come in a variety of forms depending on the type of backbone polymer and side chain, degree of polymerization, molecular weight, molecular chain terminal, molecular chain / branched chain functional group, and degree of crosslinking. It has various performances depending on the degree and molecular weight. The graft resin used in the present invention is a graft resin having a hydrophilic group in the side chain. A graft resin having a hydrophilic group in the side chain has a branched side chain, and even when the trunk polymer is present inside the underlayer, the hydrophilic group reaches the surface of the underlayer, It is possible to impart wettability to the formation.
 本発明においては、下地樹脂層中に側鎖中に親水基を有するグラフト構造の樹脂を含有していると、下地樹脂層表面が改質され、導電成分の分散溶液をはじくことなく均一に塗布しやすくなり、書き味及び入力感度を向上して良好な外観・品位を有する導電積層体を生産性良く供給することができる。一方、側鎖中に親水基を有するグラフト構造の樹脂を含有しない場合は、導電層積層後のムラや欠点等の不良部分により書き味及び入力感度を向上させることができない。 In the present invention, if the base resin layer contains a resin having a graft structure having a hydrophilic group in the side chain, the surface of the base resin layer is modified and applied uniformly without repelling the dispersion solution of the conductive component. Therefore, it is possible to improve the writing quality and input sensitivity and to supply a conductive laminate having a good appearance and quality with high productivity. On the other hand, when a resin having a graft structure having a hydrophilic group in the side chain is not contained, writing quality and input sensitivity cannot be improved due to defective portions such as unevenness and defects after lamination of the conductive layer.
 本発明で使用するグラフト樹脂では、親水基は、例えば、ヒドロキシル基(-OH)、カルボキシル基(-COOH)、スルホ酸基(-SOH)、リン酸基(HPO-)、アミノ基(-NH)等、が挙げられる。グラフト樹脂は、親水基のHの一部がNa、K等のカウンターカチオンを有した状態(例えば、-ONa、-COONa、-SONaなど)であってもよく、これらの親水基は分岐した枝状の側鎖中に単独あるいは2種類以上で有していてもよい。グラフト樹脂は、親水基の異なる2種のグラフト樹脂の共重合体及び/又は混合物としたものを用いてもよい。 In the graft resin used in the present invention, the hydrophilic group includes, for example, a hydroxyl group (—OH), a carboxyl group (—COOH), a sulfonic acid group (—SO 3 H), a phosphoric acid group (H 2 PO 4 —), And an amino group (—NH 2 ). The graft resin may be in a state in which a part of H + of the hydrophilic group has a counter cation such as Na + or K + (for example, —ONa, —COONa, —SO 3 Na, etc.). The groups may be present alone or in combination of two or more in the branched branch side chain. As the graft resin, a copolymer and / or a mixture of two kinds of graft resins having different hydrophilic groups may be used.
 これら、側鎖中に親水基を有するグラフト樹脂は、具体的には、例えば、ケミトリー(登録商標)シリーズ(綜研化学(株)製)のL-20、L-40M、LH-448等を使用することができる。 Specific examples of these graft resins having a hydrophilic group in the side chain include L-20, L-40M, LH-448, etc. of Chemitry (registered trademark) series (manufactured by Soken Chemical Co., Ltd.). can do.
 本発明で使用するグラフト樹脂の幹ポリマーは、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレートなどのポリエステル樹脂、ポリカーボネート樹脂、ポリウレタン樹脂、アクリル樹脂、メタクリル樹脂、エポキシ樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリスチレン樹脂、ポリ酢酸ビニル樹脂、ナイロン樹脂、メラミン樹脂、フェノール樹脂、フッ素樹脂等の樹脂が挙げられる。グラフト樹脂は単独で用いても、あるいは2種類以上の共重合体及び/又は混合物としたものを用いてもよい。また、用途によっては、グラフト樹脂は、一部架橋構造を有していてもよい。 The backbone polymer of the graft resin used in the present invention includes, for example, polyester resins such as polyethylene terephthalate and polyethylene naphthalate, polycarbonate resin, polyurethane resin, acrylic resin, methacrylic resin, epoxy resin, polyamide resin, polyimide resin, polyethylene resin, polypropylene Examples thereof include resins such as resin, polystyrene resin, polyvinyl acetate resin, nylon resin, melamine resin, phenol resin, and fluororesin. The graft resin may be used alone, or two or more types of copolymers and / or mixtures may be used. Depending on the application, the graft resin may have a partially crosslinked structure.
 グラフト樹脂の幹ポリマーには、官能基が存在することが好ましい。下地樹脂層中の各樹脂や成分と結合を形成する反応性の官能基や、有機溶剤や水との相溶性がある官能基が存在することがより好ましい。 It is preferable that a functional group is present in the trunk polymer of the graft resin. More preferably, there is a reactive functional group that forms a bond with each resin or component in the base resin layer, or a functional group that is compatible with an organic solvent or water.
 グラフト樹脂の幹ポリマーの官能基は、例えば、直鎖アルキル基、分岐状アルキル基、シクロアルキル基、ビニル・アリル・ヘキセニルなどのアルケニル基、フェニル・トリル・キシリル・スチリル・ナフチル・ビフェニルなどのアリール基、ベンジル・フェネチルなどのアラルキル基、ラクトン・オキサゾール・イミダゾールなどの複素環を含むその他芳香族基及びその開環基、メトキシ・エトキシ・イソプロポキシなどのアルコキシ基、アセトキシ基、アクリル基、メタクリル基、アクリロキシ基、メタクリロキシ基、アリルオキシカルボニル・ベンジルオキシカルボニルなどのオキシカルボニル基、エポキシ基、イソシアネート基、ヒドロキシル基、カルボキシル基、スルホ基、リン酸基、アミノ基、メルカプト・スルフィドなどの含硫黄元素官能基、ウレイド・ケチミノなどの含窒素元素官能基、フロロアルキル基などの含ハロゲン元素官能基などが挙げられる。これら官能基のうち、ヒドロキシル基、カルボキシル基、スルホ酸基、リン酸基、アミノ基等の親水基が好ましく用いることができる。グラフト樹脂の幹ポリマーの官能基は、用途や要求する特性によって少なくとも1種類を任意に選択して使用すればよく、2種以上を混合してもよく、特にこれらに限定されるものではない。 The functional groups of the graft resin trunk polymer include, for example, linear alkyl groups, branched alkyl groups, cycloalkyl groups, alkenyl groups such as vinyl, allyl, hexenyl, and aryls such as phenyl, tolyl, xylyl, styryl, naphthyl, and biphenyl. Groups, aralkyl groups such as benzyl and phenethyl, other aromatic groups including heterocyclic rings such as lactone, oxazole, and imidazole, and ring-opening groups thereof, alkoxy groups such as methoxy, ethoxy, and isopropoxy, acetoxy groups, acrylic groups, and methacrylic groups , Acryloxy groups, methacryloxy groups, oxycarbonyl groups such as allyloxycarbonyl / benzyloxycarbonyl, epoxy groups, isocyanate groups, hydroxyl groups, carboxyl groups, sulfo groups, phosphate groups, amino groups, mercapto sulfides, etc. Elemental sulfur functional groups, nitrogen-containing elements functional groups such as ureido-ketimino, such as halogen-containing elements functional group such as a fluoroalkyl group. Among these functional groups, hydrophilic groups such as hydroxyl group, carboxyl group, sulfonic acid group, phosphoric acid group and amino group can be preferably used. The functional group of the backbone polymer of the graft resin may be used by arbitrarily selecting at least one type depending on the application and required properties, and two or more types may be mixed, and is not particularly limited thereto.
 下地樹脂層中のグラフト樹脂は、下地樹脂層中にいかなる様態で含有していても良い。単純に混合状態で含有していても良く、下地樹脂層中のウレタンアクリレート樹脂やその他成分と結合を有して存在していてもよい。 The graft resin in the base resin layer may be contained in any manner in the base resin layer. It may be contained simply in a mixed state, or may exist in a bond with the urethane acrylate resin and other components in the base resin layer.
 グラフト樹脂の含有率は、下地樹脂層全体に対して、好ましくは、5質量%以上90質量%以下、より好ましくは10質量%以上80質量%以下である。5質量%より少ない場合、下地樹脂層表面の改質効果が小さい場合があり、90質量%より多いと、ウレタンアクリレート樹脂の種類や構造・結合様式によっては、タッチパネルの書き味及び入力感度の向上効果が小さくなる場合がある。 The content of the graft resin is preferably 5% by mass or more and 90% by mass or less, more preferably 10% by mass or more and 80% by mass or less with respect to the entire base resin layer. If the amount is less than 5% by mass, the modification effect on the surface of the underlying resin layer may be small. If the amount is more than 90% by mass, the writing quality and input sensitivity of the touch panel may be improved depending on the type, structure, and bonding mode of the urethane acrylate resin. The effect may be reduced.
 本発明の導電積層体では、基材の厚みTと下地樹脂層の厚みtは、下記式を満たしていることが好ましい。 In the conductive laminate of the present invention, the thickness T of the base material and the thickness t of the base resin layer preferably satisfy the following formula.
          0.040≦t/T≦0.080
基材の厚みTと下地樹脂層の厚みtが、上記式を満たした導電積層体をタッチパネルに組み込むと、ペンや指等によって入力した際の荷重で、下地樹脂層がより効率よく変形しやすくタッチパネルの書き味及び入力感度をより向上させることができる。t/Tの値は、より好ましくは、0.050以上0.070以下である。
0.040 ≦ t / T ≦ 0.080
When the conductive laminate satisfying the above formula with the thickness T of the base material and the thickness t of the base resin layer is incorporated into the touch panel, the base resin layer is more likely to be deformed more efficiently with a load when input with a pen or a finger. The writing quality and input sensitivity of the touch panel can be further improved. The value of t / T is more preferably 0.050 or more and 0.070 or less.
 本発明の導電積層体は、基材側から下地樹脂層、導電層、の順に、下地樹脂層、導電層を積層する。導電層を設けない場合は、導電性を示さない。 In the conductive laminate of the present invention, the base resin layer and the conductive layer are stacked in the order of the base resin layer and the conductive layer from the base material side. In the case where a conductive layer is not provided, conductivity is not exhibited.
 本発明においては、導電層の成分は線状構造体であることが好ましい。本発明における線状構造体とは短軸の長さと長軸の長さの比、すなわちアスペクト比=長軸の長さ/短軸の長さが1より大きい構造体のことである(一方、例えば球状はアスペクト比=1である。)。線上構造体としては、例えば、繊維状導電体、ウィスカーのような針状導電体等が挙げられる。短軸の長さは1nm~1000nm(1μm)が好ましい。長軸の長さは、短軸の長さに対し、前記アスペクト比=長軸の長さ/短軸の長さが1より大きくなるような長さが好ましい。長軸の長さが、1μm~100μm(0.1mm)であると、光学特性と導電特性の両立ができ、好ましい。 In the present invention, the component of the conductive layer is preferably a linear structure. The linear structure in the present invention is a structure in which the ratio of the length of the short axis to the length of the long axis, that is, the aspect ratio = the length of the long axis / the length of the short axis is greater than 1 (on the other hand, For example, a spherical shape has an aspect ratio = 1). Examples of the linear structure include a fibrous conductor and a needle-like conductor such as a whisker. The length of the minor axis is preferably 1 nm to 1000 nm (1 μm). The length of the major axis is preferably such that the aspect ratio = the length of the major axis / the length of the minor axis is greater than 1 with respect to the length of the minor axis. It is preferable that the length of the long axis is 1 μm to 100 μm (0.1 mm) because both optical characteristics and conductive characteristics can be achieved.
 線状構造体は、単独、又は複数を組み合わせて混合させ使用することができ、さらに、必要に応じて他のマイクロ~ナノサイズの導電性材料を添加しても良い。 The linear structures can be used alone or in combination, and further, other micro-to-nano conductive materials can be added as necessary.
 繊維状導電体としては、炭素系繊維状導電体、金属系繊維状導電体、金属酸化物系繊維状導電体などが挙げられる。炭素系繊維状導電体としては、ポリアクリルニトリル系炭素繊維、ピッチ系炭素繊維、レーヨン系炭素繊維、ガラス状カーボン、カーボンナノチューブ、カーボンナノコイル、カーボンナノワイヤー、カーボンナノファイバー、カーボンウィスカー、グラファイトフィブリルなどが挙げられる。金属系繊維状導電体としては、金、白金、銀、ニッケル、シリコン、ステンレス鋼、銅、黄銅、アルミニウム、ジルコニウム、ハフニウム、バナジウム、ニオブ、タンタル、クロム、モリブデン、マンガン、テクネチウム、レニウム、鉄、オスミウム、コバルト、亜鉛、スカンジウム、ホウ素、ガリウム、インジウム、ケイ素、ゲルマニウム、錫、マグネシウムなどから製造される繊維状またはナノワイヤー状の金属および合金などが挙げられる。金属酸化物系繊維状導電体としては、InO、InOSn、SnO、ZnO、SnO-Sb、SnO-V、TiO(Sn/Sb)O、SiO(Sn/Sb)O、KO-nTiO-(Sn/Sb)O、KO-nTiO-Cなどから製造された繊維状またはナノワイヤー状の金属酸化物および金属酸化物複合体などが挙げられる。繊維状導電体は表面処理を施されていてもよい。 Examples of the fibrous conductor include a carbon-based fibrous conductor, a metal-based fibrous conductor, and a metal oxide-based fibrous conductor. Examples of carbon-based fibrous conductors include polyacrylonitrile-based carbon fibers, pitch-based carbon fibers, rayon-based carbon fibers, glassy carbon, carbon nanotubes, carbon nanocoils, carbon nanowires, carbon nanofibers, carbon whiskers, and graphite fibrils. Etc. Metallic fibrous conductors include gold, platinum, silver, nickel, silicon, stainless steel, copper, brass, aluminum, zirconium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum, manganese, technetium, rhenium, iron, Examples thereof include fibrous or nanowire-like metals and alloys produced from osmium, cobalt, zinc, scandium, boron, gallium, indium, silicon, germanium, tin, magnesium, and the like. Examples of the metal oxide fibrous conductor include InO 2 , InO 2 Sn, SnO 2 , ZnO, SnO 2 —Sb 2 O 4 , SnO 2 —V 2 O 5 , TiO 2 (Sn / Sb) O 2 , SiO 2 2 (Sn / Sb) O 2 , K 2 O—nTiO 2 — (Sn / Sb) O 2 , K 2 O—nTiO 2 —C, etc. manufactured from fibrous or nanowire metal oxides and metal oxides Compound complex and the like. The fibrous conductor may be subjected to a surface treatment.
 繊維状導電体としては、さらに、植物繊維、合成繊維、無機繊維などの非金属材料の表面に、金、白金、銀、ニッケル、シリコン、ステンレス鋼、銅、黄銅、アルミニウム、ジルコニウム、ハフニウム、バナジウム、ニオブ、タンタル、クロム、モリブデン、マンガン、テクネチウム、レニウム、鉄、オスミウム、コバルト、亜鉛、スカンジウム、ホウ素、ガリウム、インジウム、ケイ素、ゲルマニウム、錫、マグネシウム、InO、InOSn、SnO、ZnO、SnO-Sb、SnO-V、TiO(Sn/Sb)O、SiO(Sn/Sb)O、KO-nTiO-(Sn/Sb)O、KO-nTiO-Cまたはカーボンナノチューブで、コーティングまたは蒸着したものが挙げられる。 In addition, as a fibrous conductor, the surface of a non-metallic material such as plant fiber, synthetic fiber, inorganic fiber, gold, platinum, silver, nickel, silicon, stainless steel, copper, brass, aluminum, zirconium, hafnium, vanadium , niobium, tantalum, chromium, molybdenum, manganese, technetium, rhenium, iron, osmium, cobalt, zinc, scandium, boron, gallium, indium, silicon, germanium, tin, magnesium, InO 2, InO 2 Sn, SnO 2, ZnO SnO 2 —Sb 2 O 4 , SnO 2 —V 2 O 5 , TiO 2 (Sn / Sb) O 2 , SiO 2 (Sn / Sb) O 2 , K 2 O—nTiO 2 — (Sn / Sb) O 2, K 2 O-nTiO 2 -C or carbon nanotubes, also coated or deposited And the like.
 本発明の導電積層体では、繊維状導電体として、透明性等の光学特性、導電性等の観点から、カーボンナノチューブを好ましく使用することができる。 In the conductive laminate of the present invention, carbon nanotubes can be preferably used as the fibrous conductor from the viewpoints of optical properties such as transparency and conductivity.
 カーボンナノチューブについて説明する。本発明において、導電層の成分に用いられるカーボンナノチューブは、単層カーボンナノチューブ、二層カーボンナノチューブ、三層以上の多層カーボンナノチューブのいずれでもよい。直径が0.3~100nm、長さ0.1~20μm程度のものが好ましく用いられる。導電積層体の透明性を高め、表面抵抗値を低減するためには、直径10nm以下、長さ1~10μmの単層カーボンナノチューブ、二層カーボンナノチューブがより好ましい。 The carbon nanotube will be described. In the present invention, the carbon nanotubes used as components of the conductive layer may be any of single-walled carbon nanotubes, double-walled carbon nanotubes, and multi-walled carbon nanotubes having three or more layers. Those having a diameter of about 0.3 to 100 nm and a length of about 0.1 to 20 μm are preferably used. In order to increase the transparency of the conductive laminate and reduce the surface resistance, single-walled carbon nanotubes and double-walled carbon nanotubes having a diameter of 10 nm or less and a length of 1 to 10 μm are more preferable.
 カーボンナノチューブの集合体にはアモルファスカーボンや触媒金属などの不純物は極力含まれないことが好ましい。カーボンナノチューブに不純物が含まれる場合は、酸処理や加熱処理などによって適宜精製することができる。 The aggregate of carbon nanotubes preferably contains as little impurities as possible such as amorphous carbon and catalytic metal. When impurities are contained in the carbon nanotube, it can be appropriately purified by acid treatment or heat treatment.
 カーボンナノチューブは、アーク放電法、レーザーアブレーション法、触媒化学気相法(化学気相法の中で担体に遷移金属を担持した触媒を用いる方法)などによって合成、製造される。生産性よくアモルファスカーボン等の不純物の生成を少なくできる触媒化学気相法により、カーボンナノチューブを製造することが好ましい。 Carbon nanotubes are synthesized and manufactured by an arc discharge method, a laser ablation method, a catalytic chemical vapor phase method (a method using a catalyst having a transition metal supported on a carrier in a chemical vapor phase method), or the like. It is preferable to produce carbon nanotubes by a catalytic chemical vapor phase method that can reduce the generation of impurities such as amorphous carbon with high productivity.
 本発明において、カーボンナノチューブ分散液を塗布して導電層を形成することができる。カーボンナノチューブ分散液を得るには、カーボンナノチューブを溶媒とともに、混合分散機や超音波照射装置によって分散処理を行うことが一般的であり、さらに分散剤を添加することが望ましい。 In the present invention, a conductive layer can be formed by applying a carbon nanotube dispersion. In order to obtain a carbon nanotube dispersion, it is common to perform a dispersion treatment with a carbon nanotube together with a solvent using a mixing and dispersing machine or an ultrasonic irradiation device, and it is desirable to add a dispersant.
 分散剤は、カーボンナノチューブ分散液を基材上に塗布、乾燥させたカーボンナノチューブを含有する導電層の基材との密着性、膜の硬度、耐擦過性の点で、合成高分子、天然高分子のポリマーを選択することが好ましい。さらに、分散性を損わない範囲で架橋剤を添加してもよい。 The dispersant is a synthetic polymer, natural high polymer in terms of adhesion to the substrate of the conductive layer containing carbon nanotubes coated and dried on the substrate, hardness of the film, and scratch resistance. It is preferred to select a polymer of molecules. Furthermore, a crosslinking agent may be added within a range that does not impair the dispersibility.
 合成高分子は、例えば、ポリエーテルジオール、ポリエステルジオール、ポリカーボネートジオール、ポリビニルアルコール、部分けん化ポリビニルアルコール、アセトアセチル基変性ポリビニルアルコール、アセタール基変性ポリビニルアルコール、ブチラール基変性ポリビニルアルコール、シラノール基変性ポリビニルアルコール、エチレン-ビニルアルコール共重合体、エチレン-ビニルアルコール-酢酸ビニル共重合樹脂、ジメチルアミノエチルアクリレート、ジメチルアミノエチルメタクリレート、アクリル系樹脂、エポキシ樹脂、変性エポキシ系樹脂、フェノキシ樹脂、変性フェノキシ系樹脂、フェノキシエーテル樹脂、フェノキシエステル樹脂、フッ素系樹脂、メラミン樹脂、アルキッド樹脂、フェノール樹脂、ポリアクリルアミド、ポリアクリル酸、ポリスチレンスルホン酸、ポリエチレングリコール、ポリビニルピロリドンである。天然高分子は、例えば、多糖類であるデンプン、プルラン、デキストラン、デキストリン、グアーガム、キサンタンガム、アミロース、アミロペクチン、アルギン酸、アラビアガム、カラギーナン、コンドロイチン硫酸、ヒアルロン酸、カードラン、キチン、キトサン、セルロースおよびその誘導体から選択できる。誘導体とはエステルやエーテルなどの従来公知の化合物を意味する。これらは、1種または2種以上を混合して用いることができる。中でも、カーボンナノチューブの分散性に優れることから、多糖類ならびにその誘導体が好ましい。さらにセルロースならびにその誘導体が、膜形成能が高く好ましい。中でもエステルやエーテル誘導体が好ましく、具体的には、カルボキシメチルセルロースやその塩などが好適である。 Synthetic polymers include, for example, polyether diol, polyester diol, polycarbonate diol, polyvinyl alcohol, partially saponified polyvinyl alcohol, acetoacetyl group-modified polyvinyl alcohol, acetal group-modified polyvinyl alcohol, butyral group-modified polyvinyl alcohol, silanol group-modified polyvinyl alcohol, Ethylene-vinyl alcohol copolymer, ethylene-vinyl alcohol-vinyl acetate copolymer resin, dimethylaminoethyl acrylate, dimethylaminoethyl methacrylate, acrylic resin, epoxy resin, modified epoxy resin, phenoxy resin, modified phenoxy resin, phenoxy Ether resin, phenoxy ester resin, fluorine resin, melamine resin, alkyd resin, phenol resin, polyacrylic resin Amides, polyacrylic acid, polystyrene sulfonic acid, polyethylene glycol, polyvinylpyrrolidone. Natural polymers include, for example, polysaccharides such as starch, pullulan, dextran, dextrin, guar gum, xanthan gum, amylose, amylopectin, alginic acid, gum arabic, carrageenan, chondroitin sulfate, hyaluronic acid, curdlan, chitin, chitosan, cellulose and the like It can be selected from derivatives. The derivative means a conventionally known compound such as ester or ether. These may be used alone or in combination of two or more. Among these, polysaccharides and derivatives thereof are preferable because of excellent dispersibility of the carbon nanotubes. Furthermore, cellulose and derivatives thereof are preferable because of high film forming ability. Of these, esters and ether derivatives are preferable, and specifically, carboxymethyl cellulose and salts thereof are preferable.
 また、カーボンナノチューブと分散剤との配合比を調整することも可能である。カーボンナノチューブと分散剤の配合比は、基材との密着性、硬度、耐擦過性に問題のない配合比が好ましい。具体的には、カーボンナノチューブが導電層全体に対し10質量%~90質量%の範囲にあることが好ましい。より好ましくは、30質量%~70質量%の範囲である。カーボンナノチューブが10質量%以上であると、タッチパネルに必要な導電性が得られ易く、またさらに、基材表面に塗布する際にはじくことなく均一に塗布しやすくなり、ひいては良好な外観・品位を有する導電積層体を生産性良く供給することができる。カーボンナノチューブが90質量%以下であると、カーボンナノチューブの溶媒中での分散性が良化、凝集し難くなり、良好なカーボンナノチューブ塗布層が得られ易くなり、生産性が良いので好ましい。さらに塗布膜も強固で、生産工程中に擦過傷が発生し難くなり、表面抵抗値の均一性を維持できるので好ましい。 It is also possible to adjust the compounding ratio of the carbon nanotube and the dispersant. The compounding ratio of the carbon nanotubes and the dispersant is preferably a compounding ratio that does not cause problems in adhesion to the substrate, hardness, and scratch resistance. Specifically, the carbon nanotubes are preferably in the range of 10% by mass to 90% by mass with respect to the entire conductive layer. More preferably, it is in the range of 30% to 70% by mass. When the carbon nanotubes are 10% by mass or more, the conductivity required for the touch panel is easily obtained, and furthermore, it is easy to apply uniformly without being repelled when applied to the surface of the base material. The conductive laminate having the above can be supplied with high productivity. When the carbon nanotubes are 90% by mass or less, the dispersibility of the carbon nanotubes in the solvent is improved and it is difficult to agglomerate, a good carbon nanotube coating layer is easily obtained, and the productivity is good. Furthermore, the coating film is also strong, and it is preferable because scratches are less likely to occur during the production process and the uniformity of the surface resistance value can be maintained.
 針状導電体は、金属、炭素系化合物、金属酸化物などからなる化合物である針状導電体が好ましい。金属としては、元素の短周期型周期律表におけるIIA属、IIIA属、IVA属、VA属、VIA属、VIIA属、VIII属、IB属、IIB属、IIIB属、IVB属またはVB属に属する元素が挙げられる。具体的には、金、白金、銀、ニッケル、ステンレス鋼、銅、黄銅、アルミニウム、ガリウム、ジルコニウム、ハフニウム、バナジウム、ニオブ、タンタル、クロム、モリブデン、マンガン、アンチモン、パラジウム、ビスマス、テクネチウム、レニウム、鉄、オスミウム、コバルト、亜鉛、スカンジウム、ホウ素、ガリウム、インジウム、ケイ素、ゲルマニウム、テルル、錫、マグネシウムや、これらを含む合金が挙げられる。炭素系化合物としては、カーボンナノホーン、フラーレン、グラフェンなどが挙げられる。金属酸化物としては、InO、InOSn、SnO、ZnO、SnO-Sb、SnO-V、TiO(Sn/Sb)O、SiO(Sn/Sb)O、KO-nTiO-(Sn/Sb)O、KO-nTiO-Cなどが挙げられる。 The acicular conductor is preferably an acicular conductor that is a compound made of a metal, a carbon-based compound, a metal oxide, or the like. The metal belongs to the group IIA, IIIA, IVA, VA, VIA, VIIA, VIII, IB, IIB, IIIB, IVB or VB in the short periodic table of elements. Elements. Specifically, gold, platinum, silver, nickel, stainless steel, copper, brass, aluminum, gallium, zirconium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum, manganese, antimony, palladium, bismuth, technetium, rhenium, Examples thereof include iron, osmium, cobalt, zinc, scandium, boron, gallium, indium, silicon, germanium, tellurium, tin, magnesium, and alloys containing these. Examples of the carbon-based compound include carbon nanohorn, fullerene, and graphene. Examples of the metal oxide include InO 2 , InO 2 Sn, SnO 2 , ZnO, SnO 2 —Sb 2 O 4 , SnO 2 —V 2 O 5 , TiO 2 (Sn / Sb) O 2 , SiO 2 (Sn / Sb ) O 2 , K 2 O—nTiO 2 — (Sn / Sb) O 2 , K 2 O—nTiO 2 —C, and the like.
 本発明の導電積層体では、針状導電体として、透明性等の光学特性、導電性等の観点から、銀ナノワイヤーを好ましく使用することができる。 In the conductive laminate of the present invention, silver nanowires can be preferably used as the acicular conductor from the viewpoints of optical properties such as transparency and conductivity.
 針状導電体としては、例えば、チタン酸カリウム繊維とスズ及びアンチモン系酸化物の複合化合物であるデントールWKシリーズ(大塚化学(株)製)のWK200B、WK300R、WK500や、二酸化ケイ素繊維とスズ及びアンチモン系酸化物の複合化合物であるデントールTMシリーズ(大塚化学(株)製)のTM100等が市販されている。 Examples of the acicular conductor include WK200B, WK300R, and WK500 of DENTOR WK series (manufactured by Otsuka Chemical Co., Ltd.), which is a composite compound of potassium titanate fiber, tin, and antimony oxide, and silicon dioxide fiber and tin. DENTOR TM series (manufactured by Otsuka Chemical Co., Ltd.) TM100, which is a complex compound of antimony oxide, is commercially available.
 本発明の導電積層体は、導電層側の表面抵抗値が、1×10Ω/□以上、1×10Ω/□以下であることが好ましく、より好ましくは1×10Ω/□以上、1.5×10以下である。表面抵抗値が、1×10Ω/□以上、1×10Ω/□以下にあることで、タッチパネル用の導電積層体として好ましく用いることができる。すなわち、1×10Ω/□以上であれば消費電力を少なくすることができ、1×10Ω/□以下であれば、タッチパネルの座標読みとりにおける誤差の影響を小さくすることができる。 In the conductive laminate of the present invention, the surface resistance value on the conductive layer side is preferably 1 × 10 0 Ω / □ or more and 1 × 10 4 Ω / □ or less, more preferably 1 × 10 1 Ω / □. The above is 1.5 × 10 3 or less. When the surface resistance value is 1 × 10 0 Ω / □ or more and 1 × 10 4 Ω / □ or less, it can be preferably used as a conductive laminate for a touch panel. That is, if it is 1 × 10 0 Ω / □ or more, power consumption can be reduced, and if it is 1 × 10 4 Ω / □ or less, the influence of errors in the coordinate reading of the touch panel can be reduced.
 下地樹脂層の変形に伴いその上に積層した導電層も追従して変形する。導電層が変形することで導電に寄与する接触面の面積が増加し、結果、小さい入力荷重であっても流れる総電流量が増加するため入力感度が良くなると推定されるが、本発明は、この推定に限定されない。 As the underlying resin layer is deformed, the conductive layer laminated thereon is also deformed. It is estimated that the area of the contact surface that contributes to the conduction increases due to the deformation of the conductive layer, and as a result, the input current is improved because the total amount of flowing current increases even with a small input load. It is not limited to this estimation.
 本発明の導電積層体は、前記導電層側から入射した際のJIS K7361-1(1997年)に基づいた全光線透過率が80%以上である透明導電積層体であることが好ましい。本発明の導電積層体を透明導電積層体としてタッチパネルに組み込むと、そのタッチパネルは書き味及び入力感度が良好なだけでなく、優れた透明性を示し、この透明導電積層体を用いたタッチパネルの下層に設けたディスプレイの表示を鮮やかに認識することができる。本発明における透明性とは、前記導電層側から入射した際のJIS K7361-1(1997年)に基づいた全光線透過率が80%以上であることを意味し、好ましくは85%以上、より好ましくは90%以上である。全光線透過率を上げるための方法としては、例えば、使用する基材の全光線透過率を上げる方法、前記導電層の膜厚をより薄くする方法、また、下地樹脂層の上に設ける導電層のさらに上に光学干渉膜となる透明保護層を積層する方法等が挙げられる。 基材の全光線透過率を上げる方法としては、基材の厚みを薄くする方法、あるいは全光線透過率の大きな材質の基材を選定する方法が挙げられる。 The conductive laminate of the present invention is preferably a transparent conductive laminate having a total light transmittance of 80% or more based on JIS K7361-1 (1997) when incident from the conductive layer side. When the conductive laminate of the present invention is incorporated into a touch panel as a transparent conductive laminate, the touch panel not only has good writing quality and input sensitivity, but also exhibits excellent transparency, and the lower layer of the touch panel using this transparent conductive laminate. The display on the display can be clearly recognized. The transparency in the present invention means that the total light transmittance based on JIS K7361-1 (1997) when incident from the conductive layer side is 80% or more, preferably 85% or more, more Preferably it is 90% or more. Examples of the method for increasing the total light transmittance include, for example, a method for increasing the total light transmittance of a substrate to be used, a method for reducing the thickness of the conductive layer, and a conductive layer provided on the base resin layer. And a method of laminating a transparent protective layer to be an optical interference film. As a method of increasing the total light transmittance of the base material, a method of reducing the thickness of the base material or a method of selecting a base material made of a material having a large total light transmittance can be mentioned.
 本発明の導電積層体は、基材上に、グリコール骨格を有するウレタンアクリレート樹脂と側鎖中に親水基を有するグラフト構造の樹脂とを含有する下地樹脂層を形成した後、下地樹脂層上に導電層を形成する工程にて好ましく作製することができる。さらに好ましくは、本発明の導電積層体は、導電層は、カーボンナノチューブ、または、銀ナノワーヤーの水含有分散液を塗布後乾燥して形成する。 In the conductive laminate of the present invention, a base resin layer containing a urethane acrylate resin having a glycol skeleton and a resin having a graft structure having a hydrophilic group in a side chain is formed on a base resin layer. It can be preferably manufactured in the step of forming the conductive layer. More preferably, in the conductive laminate of the present invention, the conductive layer is formed by applying a water-containing dispersion of carbon nanotubes or silver nanoware and then drying.
 本発明にかかる基材及び/或いは各層には、本発明の効果を阻害しない範囲内で各種の添加剤を添加することができる。添加剤としては、例えば、有機および/又は無機の微粒子、架橋剤、難燃剤、難燃助剤、耐熱安定剤、耐酸化安定剤、レベリング剤、滑り賦活剤、導電剤、帯電防止剤、紫外線吸収剤、光安定化剤、核剤、染料、充填剤、分散剤およびカップリング剤などを用いることができる。 Various additives can be added to the base material and / or each layer according to the present invention within a range that does not impair the effects of the present invention. Examples of the additives include organic and / or inorganic fine particles, crosslinking agents, flame retardants, flame retardant aids, heat stabilizers, oxidation stabilizers, leveling agents, slip activators, conductive agents, antistatic agents, and ultraviolet rays. Absorbers, light stabilizers, nucleating agents, dyes, fillers, dispersants, coupling agents, and the like can be used.
 本発明の導電積層体は、好ましくは、導電層の上に、保護層を形成する。 In the conductive laminate of the present invention, a protective layer is preferably formed on the conductive layer.
 導電層は、その導電成分自身の物性により光を反射や吸収する。そのため、基材上に設けた導電層を含む透明導電積層体の全光線透過率を上げるには、導電層上に透明な材料で光学干渉膜となる透明保護層を設け、光学干渉膜側の波長380~780nmでの平均反射率を4%以下に下げることが好ましい。光学干渉膜側の波長380~780nmでの平均反射率は、好ましくは3%以下、より好ましくは2%以下である。平均反射率が4%以下であると、タッチパネル用途などに用いる場合の全光線透過率80%以上の性能を生産性良く得ることができるので好ましい。また、透明保護層が存在すると、図4に示すタッチパネルでの空間5を介した上下間での反射光の干渉による干渉縞の発生を抑えることができるので好ましい。 The conductive layer reflects and absorbs light due to the physical properties of the conductive component itself. Therefore, in order to increase the total light transmittance of the transparent conductive laminate including the conductive layer provided on the substrate, a transparent protective layer serving as an optical interference film with a transparent material is provided on the conductive layer. It is preferable to reduce the average reflectance at a wavelength of 380 to 780 nm to 4% or less. The average reflectance at a wavelength of 380 to 780 nm on the optical interference film side is preferably 3% or less, more preferably 2% or less. When the average reflectance is 4% or less, a performance with a total light transmittance of 80% or more when used for touch panel applications can be obtained with good productivity. In addition, the presence of the transparent protective layer is preferable because generation of interference fringes due to interference of reflected light between the upper and lower sides through the space 5 on the touch panel shown in FIG. 4 can be suppressed.
 本発明の導電積層体では、導電層上に設ける光学干渉膜となる透明保護層として、この光学干渉の役割に加え、導電層の耐擦過性の向上、導電成分の脱落防止の役割も兼ねた透明保護膜とすることがより好ましい。 In the conductive laminate of the present invention, as a transparent protective layer serving as an optical interference film provided on the conductive layer, in addition to the role of this optical interference, it also has the role of improving the scratch resistance of the conductive layer and preventing the conductive component from falling off. It is more preferable to use a transparent protective film.
 透明保護層は平均反射率を下げるために、透明保護層の屈折率が導電層の屈折率より低く、かつ導電層の屈折率との差が0.3以上のものが好ましく、さらに好ましくは0.4以上のものを用いるが好ましい。透明保護層の屈折率が、屈折率差が0.3以上であると平均反射率が4%以下とする制御範囲が広くなり、生産でのプロセスマージンが拡大するので好ましい。 In order to reduce the average reflectance, the transparent protective layer preferably has a refractive index of the transparent protective layer lower than that of the conductive layer and a difference from the refractive index of the conductive layer of 0.3 or more, more preferably 0. It is preferable to use 4 or more. If the refractive index of the transparent protective layer is 0.3 or more, the control range in which the average reflectance is 4% or less is widened, and the process margin in production is increased, which is preferable.
 透明保護層は、無機化合物、有機化合物、および無機・有機の複合物で構成されたもので内部に空洞を有する構成のあるものが良い。単一物質としては、ケイ素酸化物、フッ化マグネシウム、フッ化セリウム、フッ化ランタン、フッ化カルシウムなどの無機化合物、ケイ素元素、フッ素元素を含有するポリマーなどの有機化合物、複合体としては、内部に空洞を有するシリカ、アクリルなどの微粒子と単官能もしくは多官能(メタ)アクリル酸エステル、または/およびシロキサン化合物、または/およびパーフルオロアルキル基を有する有機化合物の単量体成分を重合して得られる重合体との混合物がある。 The transparent protective layer is preferably composed of an inorganic compound, an organic compound, and an inorganic / organic composite and having a structure having a cavity inside. Single substances include inorganic compounds such as silicon oxide, magnesium fluoride, cerium fluoride, lanthanum fluoride, and calcium fluoride, organic compounds such as polymers containing silicon element and fluorine element, Obtained by polymerizing fine particles of silica, acryl, etc. having voids and monofunctional or polyfunctional (meth) acrylic acid ester, or / and siloxane compounds, and / or organic compounds having perfluoroalkyl groups. There are mixtures with polymers to be prepared.
 ケイ素酸化物は、具体例に例えば、テトラメトキシシラン、テトラエトキシシラン、テトラ-n-プロポキシシラン、テトラ-i-プロポキシシラン、テトラ-n-ブトキシシランなどのテトラアルコシシラン類、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、n-プロピルトリメトキシシラン、n-プロピルトリエトキシシラン、i-プロピルトリメトキシシラン、i-プロピルトリエトキシシラン、n-ブチルトリメトキシシラン、n-ブチルトリエトキシシラン、n-ペンチルトリメトキシシラン、n-ペンチルトリエトキシシラン、n-ヘキシルトリメトキシシラン、n-ヘプチルトリメトキシシラン、n-オクチルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、シクロヘキシルトリメトキシシラン、シクロヘキシルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリエトキシシラン、3-クロロプロピルトリメトキシシラン、3-クロロプロピルトリエトキシシラン、3,3,3-トリフロロプロピルトリメトキシシラン、3,3,3-トリフロロプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、2-ヒドロキシエチルトリメトキシシラン、2-ヒドロキシエチルトリエトキシシラン、2-ヒドロキシプロピルトリメトキシシラン、2-ヒドロキシプロピルトリエトキシシラン、3-ヒドロキシプロピルトリメトキシシラン、3-ヒドロキシプロピルトリエトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、3-イソシアネートプロピルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン、3-(メタ)アクリルオキシプロピルトリメトキシシラン、3-(メタ)アクリルオキシプロピルトリエトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、アリルトリメトキシシラン、ビニルトリアセトキシシラン等のトリアルコキシシラン類、メチルトリアセチルオキシシラン、メチルトリフェノキシシランなどのオルガノアルコシシランが挙げられ、これらケイ素酸化物をアルコール・水・酸などの各種溶剤にて加水分解した塗液を重合反応によって形成させるゾル-ゲルコーティング層のような塗布層であってもよく、また、それらケイ素酸化物の蒸着層、スパッタ層なども使用できる。 Specific examples of the silicon oxide include tetraalkoxysilanes such as tetramethoxysilane, tetraethoxysilane, tetra-n-propoxysilane, tetra-i-propoxysilane, tetra-n-butoxysilane, and methyltrimethoxysilane. , Methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, n-propyltrimethoxysilane, n-propyltriethoxysilane, i-propyltrimethoxysilane, i-propyltriethoxysilane, n-butyltrimethoxysilane N-butyltriethoxysilane, n-pentyltrimethoxysilane, n-pentyltriethoxysilane, n-hexyltrimethoxysilane, n-heptyltrimethoxysilane, n-octyltrimethoxysilane, vinyltrimethoxysilane Vinyltriethoxysilane, cyclohexyltrimethoxysilane, cyclohexyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, N- (2-amino Ethyl) -3-aminopropyltriethoxysilane, 3-chloropropyltrimethoxysilane, 3-chloropropyltriethoxysilane, 3,3,3-trifluoropropyltrimethoxysilane, 3,3,3-trifluoropropyltri Ethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 2-hydroxyethyltrimethoxysilane, 2-hydroxyethyltriethoxysilane, 2-hydroxypropyltrimethoxysilane, 2-hydride Xylpropyltriethoxysilane, 3-hydroxypropyltrimethoxysilane, 3-hydroxypropyltriethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 3-isocyanatopropyltrimethoxysilane, 3-isocyanatopropyl Triethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyl Triethoxysilane, 3- (meth) acryloxypropyltrimethoxysilane, 3- (meth) acryloxypropyltriethoxysilane, 3-ureidopropyltrimethoxysilane, 3-urei Examples include trialkoxysilanes such as dopropyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, allyltrimethoxysilane, vinyltriacetoxysilane, and organoalkoxysilanes such as methyltriacetyloxysilane and methyltriphenoxysilane. In addition, a coating layer such as a sol-gel coating layer that forms a coating solution obtained by hydrolyzing these silicon oxides with various solvents such as alcohol, water, and acid by a polymerization reaction may be used. A vapor-deposited layer or a sputtered layer can be used.
 また、内部に空洞を有するシリカ微粒子を用いた複合物としては、具体的にオプスター(登録商標)TU-2180(JSR(株)製)などを使用することができる。 Further, as a composite using silica fine particles having cavities inside, Opstar (registered trademark) TU-2180 (manufactured by JSR Co., Ltd.) or the like can be specifically used.
 本発明における下地樹脂層、導電層、および、透明保護層を導電層上に形成する方法としては、形成する物質により最適な方法を選択すれば良く、真空蒸着、EB蒸着、スパッタなどのドライ法、キャスト、スピンコート、ディップコート、バーコート、スプレー、ブレードコート、スリットダイコート、グラビアコート、リバースコート、スクリーン印刷、鋳型塗布、印刷転写、インクジェットなどのウエットコート法等、一般的な方法を挙げることができる。なかでも、下地樹脂層、導電層、透明保護層を均一に積層できかつ導電層への傷が入りにくいスリットダイコート、もしくは下地樹脂層、導電層、透明保護層を均一にかつ生産性良く形成できるマイクログラビアを使用したウエットコート法が好ましい。本発明の導電積層体は、より好ましい様態である透明保護層を、導電層上に形成する工程を含む製造方法にて生産されることが好ましい。 As a method for forming the base resin layer, the conductive layer, and the transparent protective layer on the conductive layer in the present invention, an optimal method may be selected depending on the material to be formed, and a dry method such as vacuum deposition, EB deposition, or sputtering. General methods such as casting, spin coating, dip coating, bar coating, spraying, blade coating, slit die coating, gravure coating, reverse coating, screen printing, mold coating, printing transfer, inkjet, etc. Can do. Among them, the base resin layer, the conductive layer, and the transparent protective layer can be uniformly laminated, and the slit die coat that prevents the conductive layer from being scratched, or the base resin layer, the conductive layer, and the transparent protective layer can be formed uniformly and with high productivity. A wet coating method using microgravure is preferred. The conductive laminate of the present invention is preferably produced by a production method including a step of forming a transparent protective layer, which is a more preferable embodiment, on the conductive layer.
 次に、本発明のタッチパネルについて説明する。図4は抵抗膜式タッチパネルの一例を示す模式断面図である。抵抗膜式タッチパネルは、下部電極14上に、上部電極13が枠状の両面接着テープ19によって固定された構成である。上部及び下部電極を構成する各基材15、16上には、下地樹脂層2、導電層3、がこの順に積層されており、上部及び下部電極の導電層3同士が空間20を挟むように対向して面状に形成されている。また、基材15または16の導電層3の上には透明保護層4が設けてあってもよい。空間20には、一定間隔でドットスペーサー18を設けてあり、これによって、上側と下側の導電層の間隙を保持している。基材15の上面はペン22や指の先が接触する面であり、傷つきを防止するためにハードコート層17が設けられる。このタッチパネルは、電源21にて電圧をかけ、ペン22や指の先でハードコート層17の表面を押して荷重をかけることで、接触した部分から電気が流れ動作する。以上の構成からなるタッチパネルは、例えば、リード線と駆動ユニットを取り付け、液晶ディスプレイの前面に組み込んで用いられる。 Next, the touch panel of the present invention will be described. FIG. 4 is a schematic cross-sectional view showing an example of a resistive film type touch panel. The resistive touch panel has a configuration in which an upper electrode 13 is fixed on a lower electrode 14 by a frame-like double-sided adhesive tape 19. The base resin layer 2 and the conductive layer 3 are laminated in this order on the base materials 15 and 16 constituting the upper and lower electrodes, and the conductive layers 3 of the upper and lower electrodes sandwich the space 20. Oppositely formed in a planar shape. Further, the transparent protective layer 4 may be provided on the conductive layer 3 of the substrate 15 or 16. Dot spacers 18 are provided in the space 20 at regular intervals, thereby holding a gap between the upper and lower conductive layers. The upper surface of the base material 15 is a surface where the pen 22 and the tip of the finger come into contact, and a hard coat layer 17 is provided to prevent scratches. In this touch panel, voltage is applied by the power source 21 and the surface of the hard coat layer 17 is pushed by the pen 22 or the tip of a finger to apply a load, whereby electricity flows from the contacted portion. The touch panel having the above configuration is used, for example, by attaching a lead wire and a drive unit and incorporating it on the front surface of the liquid crystal display.
 図4に示す抵抗膜式タッチパネルでは、空間20を介して構成されているため、ペンや指によって入力した際の荷重で下地樹脂層が変形し、タッチパネルの書き味及び入力感度の向上を図るのに非常に有効的であり、本発明の導電積層体を用いる効果が最も高いタッチパネル構成である。 Since the resistive film type touch panel shown in FIG. 4 is configured through the space 20, the base resin layer is deformed by a load when input with a pen or a finger, thereby improving the writing quality and input sensitivity of the touch panel. This is a touch panel configuration that is extremely effective and has the highest effect of using the conductive laminate of the present invention.
 以下、本発明を実施例に基づき、具体的に説明する。各実施例および比較例における評価方法を説明する。 Hereinafter, the present invention will be specifically described based on examples. An evaluation method in each example and comparative example will be described.
 (1)各層の化合物の構造、結合様態の同定
 先ず、サンプルを溶剤に浸漬して各層を剥離採取し、浸漬した後の溶剤を濾過する。濾物がある場合は、濾物に対する溶解度の高い溶剤を選択し再度溶解した。次いでシリカゲルカラムクロマトグラフィー、ゲル浸透クロマトグラフィー、液体高速クロマトグラフィー、ガスクロマトグラフィー等に代表される一般的なクロマトグラフィーのうち分離可能な方法を選択し、濾液及び再溶解した濾物溶液をそれぞれ単一物質に分離精製した。他成分と結合して分離が困難な場合はそのまま用いた。
(1) Identification of structure and bonding mode of compound in each layer First, a sample is immersed in a solvent, each layer is peeled and collected, and the solvent after immersion is filtered. When there was a filter cake, a solvent having high solubility in the filter cake was selected and dissolved again. Next, a separable method is selected from general chromatography represented by silica gel column chromatography, gel permeation chromatography, liquid high-performance chromatography, gas chromatography, etc., and the filtrate and the redissolved filtrate solution are each simply used. Separated and purified to one substance. When separation with other components was difficult, it was used as it was.
 その後各物質について適宜濃縮及び希釈を行い、核磁気共鳴分光法(H-NMR、13C-NMR)、二次元核磁気共鳴分光法(2D-NMR)、赤外分光光度法(IR)、ラマン分光法、質量分析法(Mass)、X線回折法(XRD)、中性子回折法(ND)、低速電子線回折法(LEED)、高速反射電子線回折法(RHEED)、原子吸光分析法(AAS)、紫外光電子分光法(UPS)、X線光電子分光法(XPS)、蛍光X線元素分析法(XRF)、誘導結合プラズマ発光分光法(ICP-AES)、電子線マイクロアナライザ(EPMA)、ゲル浸透クロマトグラフィー(GPC)、その他元素分析、から方法を適宜選択・組み合わせて構造同定を行った。 Thereafter, each substance is appropriately concentrated and diluted, and nuclear magnetic resonance spectroscopy ( 1 H-NMR, 13 C-NMR), two-dimensional nuclear magnetic resonance spectroscopy (2D-NMR), infrared spectrophotometry (IR), Raman spectroscopy, mass spectrometry (Mass), X-ray diffraction (XRD), neutron diffraction (ND), low-energy electron diffraction (LEED), high-energy reflection electron diffraction (RHEED), atomic absorption spectrometry ( AAS), ultraviolet photoelectron spectroscopy (UPS), X-ray photoelectron spectroscopy (XPS), X-ray fluorescence elemental analysis (XRF), inductively coupled plasma emission spectroscopy (ICP-AES), electron beam microanalyzer (EPMA), Structural identification was performed by appropriately selecting and combining methods from gel permeation chromatography (GPC) and other elemental analysis.
 (2)表面抵抗値R
 導電層側の表面抵抗は、低抵抗率計Loresta-EP MCP-T360(三菱化学(株)製)を用い4探針法で100mm×50mmのサンプルの中央部分を測定した。5サンプルについて平均値を算出し、これを表面抵抗値Rとした。
(2) Surface resistance value R 0
The surface resistance on the conductive layer side was measured at a central portion of a 100 mm × 50 mm sample by a four-probe method using a low resistivity meter Loresta-EP MCP-T360 (manufactured by Mitsubishi Chemical Corporation). An average value was calculated for five samples, and this was defined as a surface resistance value R0 .
 (3)耐久性
 前記(2)項のサンプルを安全扉つき恒温器セーフティーオーブン(エスペック(株)製、SPHH-201)にて150℃、1時間加熱後、前記(2)項と同様の方法にて再度同位置の表面抵抗値Rを測定しR/R(Rは前記(2)項によって求められる値)を算出した。同様に5サンプルについて実施し、各R/Rの平均値を表面抵抗値の上昇率として耐久性の指標とした。本発明における判定基準は、下記により判定した。
A級:R/R≦1.5
B級:1.5<R/R≦1.8
C級:R/R>1.8
A、B級であれば合格とし、A級が最も好ましい。
(3) Durability The sample of (2) above was heated in a thermostatic safety oven with a safety door (SPHH-201, manufactured by Espec Corp.) at 150 ° C. for 1 hour, and then the same method as in (2) above Then, the surface resistance value R at the same position was measured again to calculate R / R 0 (R 0 is a value obtained by the above item (2)). Similarly, it implemented about 5 samples and made the average value of each R / R0 the durability index as the rate of increase of the surface resistance value. The determination criteria in the present invention were determined as follows.
Class A: R / R 0 ≦ 1.5
Class B: 1.5 <R / R 0 ≦ 1.8
Class C: R / R 0 > 1.8
If it is A and B class, it will be a pass and A class is the most preferable.
 (4)基材厚みT、下地樹脂層厚みt
 サンプルを日本ミクトローム研究所(株)製ロータリー式ミクロトームを使用し、ナイフ傾斜角度3°にてサンプル平面に垂直な方向に切断した。得られたサンプル断面を、トプコン社製走査型電子顕微鏡ABT-32を用いて観察倍率2500~10000倍から任意の3倍率を選択し、画像のコントラストを適宜調節して各倍率にて観察し、得られた断面写真から基材及び下地樹脂層にそれぞれ該当する任意の5箇所を同様に任意の3倍率で測定(拡大倍率から計算)し、その計15箇所の平均値を各々厚みT、tとした。
(4) Base material thickness T, base resin layer thickness t
The sample was cut in a direction perpendicular to the sample plane at a knife inclination angle of 3 ° using a rotary microtome manufactured by Nippon Microtome Laboratories. Using the scanning electron microscope ABT-32 manufactured by Topcon Corporation, select any three magnifications from an observation magnification of 2500 to 10000 times, and adjust the contrast of the image as appropriate, and observe the obtained sample cross section at each magnification. From the obtained cross-sectional photograph, arbitrary five locations respectively corresponding to the base material and the base resin layer were similarly measured at arbitrary three magnifications (calculated from the enlargement magnification), and the average values of the total 15 locations were thicknesses T and t, respectively. It was.
 (5)導電成分の構造
 サンプルの導電層側の表面を、電界放射型走査電子顕微鏡(日本電子(株)製 JSM-6700-F)を用いて加速電圧3.0kVにて、もしくは原子間力顕微鏡(Digital Instruments社製 NanoScopeIII)にて観察した。表面観察では観察できない場合は、(1)と同様のいずれかの方法にて導電層の成分を離精製後、導電成分に該当する物質を採取・集めてから、同様に観察した。
(5) Structure of conductive component The surface of the sample on the conductive layer side is accelerated at an acceleration voltage of 3.0 kV by using a field emission scanning electron microscope (JSM-6700-F manufactured by JEOL Ltd.) or atomic force. The images were observed with a microscope (NanoScope III manufactured by Digital Instruments). In the case where the surface could not be observed by surface observation, the components of the conductive layer were separated and purified by any of the methods similar to (1), and then the substances corresponding to the conductive components were collected and collected, and then observed in the same manner.
 (6)全光線透過率
 濁度計(曇り度計)NDH2000(日本電色工業(株)製)を用いてJIS K7361-1(1997年)に基づいて、導電積層体厚み方向の全光線透過率を、導電層側から光を入射させて測定した。5サンプルについて測定した値の平均値を算出し、これを全光線透過率とした。
(6) Total light transmittance Total light transmittance in the thickness direction of the conductive laminate based on JIS K7361-1 (1997) using a turbidimeter (cloudiness meter) NDH2000 (manufactured by Nippon Denshoku Industries Co., Ltd.) The rate was measured by making light incident from the conductive layer side. The average value of the values measured for the five samples was calculated and used as the total light transmittance.
 (7)タッチパネルの書き味、入力感度
 本発明において、書き味と入力感度の指標はON荷重[g]と接触抵抗値[kΩ]とした。ON荷重とは、例えば図4のタッチパネルにおいてペン22で荷重した際に、タッチパネルが後述する接触抵抗値を初めて示しタッチパネルが動作することのできる最小の荷重のことであり、ON荷重が小さいほど弱い力でタッチパネルを操作させることができることを意味し、書き味の指標となる。また、接触抵抗とは、荷重をかけた際に例えば図4の上部及び下部電極が接触した面から電気が流れた際の抵抗値であり、上部及び下部電極が空間20を介して接触していない場合は、絶縁状態となり、接触抵抗値は無限大となり、電気が流れない。接触抵抗値が低いほど入力感度良くタッチパネルを操作できることを意味する指標となる。
(7) Touch quality and input sensitivity of touch panel In the present invention, the indicators of the text quality and input sensitivity are the ON load [g] and the contact resistance value [kΩ]. The ON load is, for example, the minimum load at which the touch panel can be operated for the first time when the touch panel shown in FIG. 4 is loaded with the pen 22, and the touch panel can operate. The ON load is weaker. This means that the touch panel can be operated with force, and is an indicator of writing quality. Further, the contact resistance is a resistance value when electricity flows from the surface where the upper and lower electrodes in FIG. 4 are in contact with each other when a load is applied, and the upper and lower electrodes are in contact via the space 20. If not, the insulation state is established, the contact resistance value becomes infinite, and electricity does not flow. The lower the contact resistance value, the better the input sensitivity is.
 ON荷重、接触抵抗値は以下のようにして求めた。まず図4のタッチパネルにおいて、下部電極14としてITO付き導電ガラス((株)タッチパネル研究所製)、上部電極として本発明の実施例及び比較例の導電積層体をそれぞれ用いて、縦70mm×横100mmのタッチパネルを作製した。次いで、HEIDON TRIBOGEAR 表面性測定機 TYPE:HEIDON-14DR(新東科学(株)製)を用いて、付属の荷重ユニットの試料台側にペン先の形状が半径0.8mmであるポリアセタールペン0.8R((株)タッチパネル研究所製)をセットし、ペン先がタッチパネルの中心位置(縦位置35mm、横位置50mm)となるよう、作製したタッチパネルを試料台に設置した。荷重ユニットの上に分銅を1gずつ300gまで順次乗せてペンによる荷重を加えていき、各荷重に対する接触抵抗の値を読みとり。また、初めて接触抵抗の値を示した分銅の重量をON荷重とした。同様に1サンプルにつき3回、3サンプルの計9回実施し、その平均値を、本発明の接触抵抗値及びON荷重とした。 The ON load and contact resistance value were determined as follows. First, in the touch panel of FIG. 4, conductive glass with ITO (made by Touch Panel Laboratories Co., Ltd.) is used as the lower electrode 14, and the conductive laminates of the examples and comparative examples of the present invention are used as the upper electrode, respectively. A touch panel was prepared. Next, using a HEIDON TRIBOGEAR surface property measuring instrument TYPE: HEIDON-14DR (manufactured by Shinto Kagaku Co., Ltd.), a polyacetal pen with a radius of 0.8 mm on the sample stage side of the attached load unit. 8R (manufactured by Touch Panel Laboratories Co., Ltd.) was set, and the prepared touch panel was placed on the sample stage so that the pen tip was at the center position of the touch panel (vertical position 35 mm, horizontal position 50 mm). Load the weights on the load unit in increments of 1 g up to 300 g and apply the load with the pen, and read the value of the contact resistance for each load. Moreover, the weight of the weight which showed the value of contact resistance for the first time was made into ON load. Similarly, 3 times per sample and 3 times of 3 samples were carried out, and the average value was defined as the contact resistance value and ON load of the present invention.
 (8)導電積層体の外観
 導電積層体の導電層側を、該導電面に対し90度方向(垂直方向)、45度方向、10度方向から、蛍光灯下にて目視観察した。本発明における判定基準は、導電層欠点(ハジキ等)の目視認識可否を判断し、下記により判定した。
A級:全角度方向において、欠点なし
B級:いずれかの角度方向にて、欠点あり
C級:全角度方向において、欠点あり
A、B級であれば合格とし、A級が最も好ましい。
(8) Appearance of the conductive laminate The conductive layer side of the conductive laminate was visually observed under a fluorescent lamp from 90 ° direction (vertical direction), 45 ° direction, and 10 ° direction with respect to the conductive surface. The determination criteria in the present invention were determined as follows by judging whether or not the conductive layer defects (such as repelling) were visually recognized.
Class A: No defects in all angle directions Class B: Defects in any angle direction C class: Defects in all angle directions: A and B are acceptable, and Class A is most preferred.
 (9)屈折率
 シリコンウエハーまたは石英ガラス上にコーターにて形成された塗膜について、高速分光メーターM-2000(J.A.Woollam社製)を用い、塗膜の反射光の偏光状態の変化を入射角度60度、65度、70度で測定、解析ソフトWVASE32にて、波長550nmの屈折率を計算で求めた。
(9) Refractive index For coating films formed on a silicon wafer or quartz glass with a coater, using a high-speed spectrophotometer M-2000 (manufactured by JA Woollam), changes in the polarization state of the reflected light of the coating film Was measured at an incident angle of 60 degrees, 65 degrees, and 70 degrees, and the refractive index at a wavelength of 550 nm was obtained by calculation using analysis software WVASE32.
 (10)透明保護層の膜厚
 作製した透明導電積層体の透明保護膜の膜厚は、電界放射型走査電子顕微鏡(日本電子(株)製 JSM-6700-F)を用いて加速電圧3.0kVにて観察倍率10000~200000倍から任意の3倍率を選択し、画像のコントラストを適宜調節して各倍率にて観察した。試料断面調整は前記(4)項に記載のミクロトームを用いて行った。得られた断面写真から任意の5箇所を同様に任意の3倍率で測定(拡大倍率から計算)、計15箇所の値を平均化して求めた。
(10) Film thickness of transparent protective layer The film thickness of the transparent protective film of the produced transparent conductive laminate was measured by using an electric field emission scanning electron microscope (JSM-6700-F, manufactured by JEOL Ltd.) with an acceleration voltage of 3. Three arbitrary magnifications were selected from observation magnifications of 10,000 to 200,000 at 0 kV, and images were observed at various magnifications by appropriately adjusting the contrast of the image. The sample cross-section was adjusted using the microtome described in the item (4). From any of the obtained cross-sectional photographs, five arbitrary positions were similarly measured at three arbitrary magnifications (calculated from the magnification), and the values at a total of 15 positions were averaged.
 (11)平均反射率
 透明保護層を設けた場合は、下記の方法で平均反射率を求めた。
(11) Average reflectance When a transparent protective layer was provided, the average reflectance was determined by the following method.
 透明測定面(透明保護層を設けた側の面)の反対側表面を60℃光沢度(JIS Z 8741(1997年))が10以下になるように320~400番の耐水サンドペーパーで均一に粗面化した後、可視光線透過率が5%以下となるように黒色塗料を塗布して着色した。測定面を島津製作所製の分光光度計(UV-3150)にて、測定面から5度の入射角で、波長領域300nm~800nmにおける絶対反射スペクトルを1nm間隔で測定し、波長380nm~780nmでの平均反射率を求めた。 The surface opposite to the transparent measurement surface (the surface on which the transparent protective layer is provided) is evenly distributed with water resistant sandpaper No. 320-400 so that the 60 ° C glossiness (JIS Z 8741 (1997)) is 10 or less. After roughening, a black paint was applied and colored so that the visible light transmittance was 5% or less. Using a spectrophotometer (UV-3150) manufactured by Shimadzu Corporation, the absolute reflection spectrum in the wavelength region of 300 nm to 800 nm was measured at an interval of 1 nm at an incident angle of 5 degrees from the measurement surface, and at a wavelength of 380 nm to 780 nm. Average reflectance was determined.
 実施例及び比較例に使用した、樹脂、光重合開始剤、フィルムを以下に示す。 Resins, photopolymerization initiators, and films used in Examples and Comparative Examples are shown below.
 (1)樹脂A
 アートレジンLPVC-3(根上工業(株)製、ポリプロピレングリコール骨格2官能ウレタンアクリレート、固形分濃度100質量%)。
(1) Resin A
Art Resin LPVC-3 (manufactured by Negami Kogyo Co., Ltd., polypropylene glycol skeleton bifunctional urethane acrylate, solid concentration 100 mass%).
 (2)樹脂B
 ケミトリー(登録商標)L-20(綜研化学(株)製、側鎖中に親水基としてヒドロキシル基(-OH)を有するグラフトアクリル、固形分濃度26質量%溶液)。
(2) Resin B
Chemitly (registered trademark) L-20 (manufactured by Soken Chemical Co., Ltd., graft acrylic having a hydroxyl group (—OH) as a hydrophilic group in the side chain, solid content concentration: 26 mass% solution).
 (3)樹脂C
 アートレジンUN-7600(根上工業(株)製、ポリエステル骨格2官能ウレタンアクリレート、固形分濃度100質量%)。
(3) Resin C
Art Resin UN-7600 (manufactured by Negami Kogyo Co., Ltd., polyester skeleton bifunctional urethane acrylate, solid concentration 100 mass%).
 (4)樹脂D
 アロニックス(登録商標)M240(東亞合成(株)製、ポリエチレングリコール骨格2官能アクリレート、固形分濃度100質量%)。
(4) Resin D
Aronix (registered trademark) M240 (manufactured by Toagosei Co., Ltd., polyethylene glycol skeleton bifunctional acrylate, solid concentration 100 mass%).
 (5)樹脂E
 アロニックス(登録商標)M270(東亞合成(株)製、ポリプロピレングリコール骨格2官能アクリレート、固形分濃度100質量%)。
(5) Resin E
Aronix (registered trademark) M270 (manufactured by Toagosei Co., Ltd., polypropylene glycol skeleton bifunctional acrylate, solid concentration 100 mass%).
 (6)樹脂F
 TRSC-006(根上工業(株)製、ポリプロピレングリコール骨格2官能ウレタン、固形分濃度58.8質量%溶液)。
(6) Resin F
TRSC-006 (manufactured by Negami Kogyo Co., Ltd., polypropylene glycol skeleton bifunctional urethane, solid concentration 58.8% by mass solution).
 (7)樹脂G
 X-22-8114(信越化学工業(株)製、側鎖がメチル基(-CH)、n-ブチル(-CHCHCHCH)基を有するシリコーンであるグラフトアクリル、固形分濃度40質量%溶液)。
(7) Resin G
X-22-8114 (manufactured by Shin-Etsu Chemical Co., Ltd., graft acrylic, which is a silicone having a side chain having a methyl group (—CH 3 ) and an n-butyl (—CH 2 CH 2 CH 2 CH 3 ) group, solid content 40% by weight solution).
 (8)光重合開始剤
 Ciba IRGACURE(登録商標)184(チバ・ジャパン(株)製)。
(8) Photopolymerization initiator Ciba IRGACURE (registered trademark) 184 (manufactured by Ciba Japan Co., Ltd.).
 (9)フィルム
 ポリエチレンレテフタレートフィルム、ルミラー(登録商標)U46(東レ(株)製)。
(9) Film Polyethylene terephthalate film, Lumirror (registered trademark) U46 (manufactured by Toray Industries, Inc.).
 実施例及び比較例における、導電層を以下に示す。 The conductive layers in Examples and Comparative Examples are shown below.
 (1)導電層A「カーボンナノチューブ導電層」
 (触媒調整)
 クエン酸アンモニウム鉄(緑色)(和光純薬工業(株)製)2.459gをメタノール(関東化学(株)製)500mLに溶解した。この溶液に、軽質マグネシア(岩谷化学工業(株)製)を100g加え、室温で60分間攪拌し、40℃から60℃で攪拌しながら減圧乾燥してメタノールを除去し、軽質マグネシア粉末に金属塩が担持された触媒を得た。
(1) Conductive layer A “Carbon nanotube conductive layer”
(Catalyst adjustment)
2.459 g of ammonium iron citrate (green) (manufactured by Wako Pure Chemical Industries, Ltd.) was dissolved in 500 mL of methanol (manufactured by Kanto Chemical Co., Inc.). To this solution, 100 g of light magnesia (Iwatani Chemical Industry Co., Ltd.) was added, stirred at room temperature for 60 minutes, dried under reduced pressure while stirring at 40 ° C. to 60 ° C. to remove methanol, and a metal salt was added to the light magnesia powder. Was obtained.
 (カーボンナノチューブ組成物製造)
 図5の概略図で示す流動床縦型反応装置でカーボンナノチューブを合成した。反応器100は内径32mm、長さは1200mmの円筒形石英管である。中央部に石英焼結板101を具備し、石英管下方部には、不活性ガスおよび原料ガス供給ライン104、上部には排ガスライン105および、触媒投入ライン103を具備する。さらに、反応器を任意温度に保持できるように、反応器の円周を取り囲む加熱器106を具備する。加熱器106には装置内の流動状態が確認できるよう点検口107が設けられている。
(Production of carbon nanotube composition)
Carbon nanotubes were synthesized in a fluidized bed vertical reactor shown in the schematic diagram of FIG. The reactor 100 is a cylindrical quartz tube having an inner diameter of 32 mm and a length of 1200 mm. A quartz sintered plate 101 is provided at the center, an inert gas and source gas supply line 104 is provided at the lower part of the quartz tube, and an exhaust gas line 105 and a catalyst charging line 103 are provided at the upper part. In addition, a heater 106 is provided that surrounds the circumference of the reactor so that the reactor can be maintained at an arbitrary temperature. The heater 106 is provided with an inspection port 107 so that the flow state in the apparatus can be confirmed.
 触媒12gを取り、密閉型触媒供給器102から触媒投入ライン103を通して、石英焼結板101上に前記「触媒調整」部分で示した触媒108をセットした。次いで、原料ガス供給ライン104からアルゴンガスを1000mL/分で供給開始した。反応器内をアルゴンガス雰囲気下とした後、温度を850℃に加熱した。 12 g of the catalyst was taken, and the catalyst 108 shown in the “catalyst adjustment” portion was set on the quartz sintered plate 101 through the catalyst charging line 103 from the sealed catalyst supplier 102. Subsequently, supply of argon gas from the source gas supply line 104 was started at 1000 mL / min. After the inside of the reactor was placed in an argon gas atmosphere, the temperature was heated to 850 ° C.
 850℃に到達した後、温度を保持し、原料ガス供給ライン104のアルゴン流量を2000mL/分に上げ、石英焼結板上の固体触媒の流動化を開始させた。加熱炉点検口107から流動化を確認した後、さらにメタンを95mL/分で反応器に供給開始した。該混合ガスを90分供給した後、アルゴンガスのみの流通に切り替え、合成を終了させた。 After reaching 850 ° C., the temperature was maintained, the argon flow rate of the raw material gas supply line 104 was increased to 2000 mL / min, and fluidization of the solid catalyst on the quartz sintered plate was started. After confirming fluidization from the heating furnace inspection port 107, supply of methane to the reactor at 95 mL / min was started. After supplying the mixed gas for 90 minutes, the flow was switched to a flow of only argon gas, and the synthesis was terminated.
 加熱を停止させ室温まで放置し、室温になってから反応器から触媒とカーボンナノチューブを含有するカーボンナノチューブ組成物を取り出した。 The heating was stopped and the mixture was allowed to stand at room temperature, and after reaching room temperature, the carbon nanotube composition containing the catalyst and carbon nanotubes was taken out from the reactor.
 上記で示した触媒付きカーボンナノチューブ組成物23.4gを磁性皿に取り、予め446℃まで加熱しておいたマッフル炉(ヤマト科学(株)製、FP41)にて大気下、446℃で2時間加熱した後、マッフル炉から取り出した。次に、触媒を除去するため、カーボンナノチューブ組成物を6Nの塩酸水溶液に添加し、室温で1時間攪拌した。濾過して得られた回収物を、さらに6Nの塩酸水溶液に添加し、室温で1時間攪拌した。これを濾過し、数回水洗した後、濾過物を120℃のオーブンで一晩乾燥することでマグネシアおよび金属が除去されたカーボンナノチューブ組成物を57.1mg得ることができ、上記操作を繰り返すことによりマグネシアおよび金属が除去されたカーボンナノチューブ組成物を500mg用意した。 23.4 g of the carbon nanotube composition with catalyst shown above was put on a magnetic dish and heated in a muffle furnace (FP41, manufactured by Yamato Scientific Co., Ltd.) that had been heated to 446 ° C. for 2 hours at 446 ° C. for 2 hours. After heating, it was removed from the muffle furnace. Next, in order to remove the catalyst, the carbon nanotube composition was added to a 6N aqueous hydrochloric acid solution and stirred at room temperature for 1 hour. The recovered product obtained by filtration was further added to a 6N aqueous hydrochloric acid solution and stirred at room temperature for 1 hour. After filtering this and washing with water several times, 57.1 mg of the carbon nanotube composition from which magnesia and metal have been removed can be obtained by drying the filtrate overnight in an oven at 120 ° C. The above procedure is repeated. Thus, 500 mg of a carbon nanotube composition from which magnesia and metal were removed was prepared.
 次に、マッフル炉で加熱して触媒を取り除いたカーボンナノチューブ組成物80mgを濃硝酸(和光純薬工業(株)製 1級 Assay60~61%)27mLに添加し、130℃のオイルバスで5時間攪拌しながら加熱した。加熱攪拌終了後、カーボンナノチューブを含む硝酸溶液をろ過し、蒸留水で水洗後、水を含んだウエット状態のままカーボンナノチューブ組成物を1266.4mg得た。 Next, 80 mg of the carbon nanotube composition from which the catalyst has been removed by heating in a muffle furnace is added to 27 mL of concentrated nitric acid (1st grade Assay 60-61%, manufactured by Wako Pure Chemical Industries, Ltd.), and 5 hours in an oil bath at 130 ° C. Heated with stirring. After heating and stirring, the nitric acid solution containing carbon nanotubes was filtered, washed with distilled water, and 1266.4 mg of carbon nanotube composition was obtained in a wet state containing water.
 (カーボンナノチューブ分散塗液)
 50mLの容器に上記カーボンナノチューブ組成物を10mg(乾燥時換算)、分散剤としてカルボキシメチルセルロースナトリウム(シグマ社製90kDa,50-200cps)10mgを量りとり、蒸留水を加え10gにし、超音波ホモジナイザー出力20W、20分間で氷冷下分散処理し、カーボンナノチューブ塗液を調製した。得られた液を高速遠心分離機にて10000G、15分遠心し、上清9mLを得た。この操作を複数回繰り返し得た上清145mLにエタノール5mL加え、コーターで塗布可能なカーボンナノチューブ濃度約0.1質量%のカーボンナノチューブ分散塗液(カーボンナノチューブと分散剤の配合比1対1)を得た。このカーボンナノチューブ分散塗液を石英ガラスに塗布、乾燥したカーボンナノチューブ導電層の屈折率は1.82であった。
(Carbon nanotube dispersion coating solution)
In a 50 mL container, 10 mg of the above carbon nanotube composition (converted when dried), 10 mg of sodium carboxymethylcellulose (Sigma, 90 kDa, 50-200 cps) as a dispersant, add distilled water to 10 g, and output an ultrasonic homogenizer of 20 W. Then, the dispersion treatment was carried out under ice cooling for 20 minutes to prepare a carbon nanotube coating solution. The obtained liquid was centrifuged at 10,000 G for 15 minutes with a high-speed centrifuge to obtain 9 mL of the supernatant. 5 mL of ethanol was added to 145 mL of supernatant obtained by repeating this operation several times, and a carbon nanotube dispersion coating liquid (carbon nanotube / dispersing agent mixing ratio of 1: 1) having a carbon nanotube concentration of about 0.1% by mass that can be applied by a coater. Obtained. The carbon nanotube conductive layer coated and dried with this carbon nanotube dispersion coating liquid on quartz glass had a refractive index of 1.82.
 (カーボンナノチューブ導電層の形成)
 カーボンナノチューブ分散塗液をマイクログラビアコーター(グラビア線番100Rもしくは150R、グラビア回転比80%)で塗布、100℃で1分間乾燥し、カーボンナノチューブ塗膜を設けた。
(Formation of carbon nanotube conductive layer)
The carbon nanotube dispersion coating liquid was applied with a micro gravure coater (gravure wire number 100R or 150R, gravure rotation ratio 80%) and dried at 100 ° C. for 1 minute to provide a carbon nanotube coating film.
 (2)導電層B「銀ナノワイヤー導電層」
 国際公開番号WO2007/022226公報の例1(銀ナノワイヤーの合成)に開示されている方法にて銀ナノワイヤーを得た。次いで、国際公開番号WO2007/022226公報の例8(ナノワイヤー分散)に開示されている方法にて銀ナノワイヤー分散塗液を得た。この銀ナノワイヤー分散塗液を松尾産業(株)製 バーコーターを使用して塗布、120℃で2分間乾燥し銀ナノワイヤー塗膜を設けた。
(2) Conductive layer B "Silver nanowire conductive layer"
Silver nanowires were obtained by the method disclosed in Example 1 (synthesis of silver nanowires) of International Publication No. WO2007 / 022226. Next, a silver nanowire-dispersed coating liquid was obtained by the method disclosed in Example 8 (nanowire dispersion) of International Publication No. WO2007 / 022226. This silver nanowire-dispersed coating solution was applied using a bar coater manufactured by Matsuo Sangyo Co., Ltd. and dried at 120 ° C. for 2 minutes to provide a silver nanowire coating film.
 (3)導電層C「ITO導電層」
 組成In/SnO=90/10のインジウム・スズ酸化物ターゲットを用いて、真空度10-4Torrにてアルゴン/酸素混合ガス導入のもとスパッタリング法にて、厚み250nmのITO導電性薄膜を設けた。
(3) Conductive layer C “ITO conductive layer”
Using an indium tin oxide target having a composition of In 2 O 2 / SnO 2 = 90/10, an ITO conductive film having a thickness of 250 nm was formed by sputtering under an argon / oxygen mixed gas introduction at a vacuum degree of 10 −4 Torr. A functional thin film was provided.
 実施例及び比較例における、透明保護層を以下に示す。透明保護層は導電層の上に実施例及び比較例の各方法で積層した。 The transparent protective layer in Examples and Comparative Examples is shown below. The transparent protective layer was laminated on the conductive layer by the methods of Examples and Comparative Examples.
 (1)透明保護層材料A
 100mLポリ容器中に、エタノール20gを入れ、n-ブチルシリケート40gを添加し30分間撹拌した。その後、0.1N塩酸水溶液を10g添加した後2時間撹拌を行い(加水分解反応)、4℃で保管した。翌日、この溶液をイソプロピルアルコール/トルエン/n-ブタノール混合液(混合質量比2/1/1)で固形分濃度が、1.0、1.2、1.5質量%となるように希釈した。この液をシリコンウエハーに塗布、乾燥したケイ素酸化物の透明保護層の屈折率は、1.44であった。
(1) Transparent protective layer material A
In a 100 mL plastic container, 20 g of ethanol was added, and 40 g of n-butyl silicate was added and stirred for 30 minutes. Thereafter, 10 g of 0.1N hydrochloric acid aqueous solution was added, and the mixture was stirred for 2 hours (hydrolysis reaction) and stored at 4 ° C. On the next day, this solution was diluted with an isopropyl alcohol / toluene / n-butanol mixed solution (mixing mass ratio 2/1/1) so that the solid concentration was 1.0, 1.2, and 1.5% by mass. . The refractive index of the transparent protective layer of silicon oxide obtained by applying this solution to a silicon wafer and drying was 1.44.
 (2)透明保護層材料B
 JSR(株)製、中空シリカ粒子含有アクリル系UV硬化型低屈折率材料TU-2180(固形分濃度10質量%)を固形分濃度が1.5質量%になるようにメチルエチルケトンで希釈した。この液をシリコンウエハーに塗布、乾燥したケイ素酸化物の透明保護層の屈折率は、1.37であった。
(2) Transparent protective layer material B
A hollow silica particle-containing acrylic UV curable low refractive index material TU-2180 (solid content concentration 10 mass%) manufactured by JSR Corporation was diluted with methyl ethyl ketone so that the solid content concentration was 1.5 mass%. The refractive index of the silicon oxide transparent protective layer obtained by applying this solution to a silicon wafer and drying was 1.37.
 実施例1
 厚み188μmの「フィルム」を基材として、片面にKAYANOVA(登録商標)FOP1740(日本化薬(株)、固形分濃度82質量%)をトルエンとメチルエチルケトン質量%比1対1で、固形分濃度40質量%まで希釈したハードコート剤をマイクログラビアコーター(グラビア線番80R、グラビア回転比100%)で塗布、80℃で1分間乾燥後、紫外線を1.0J/cm照射、硬化させ、厚み5μmのハードコート層を設けた。
Example 1
KAYANOVA (registered trademark) FOP1740 (Nippon Kayaku Co., Ltd., solid content concentration 82% by mass) on one side with a “film” having a thickness of 188 μm as a base material and a solid content concentration of 40: 1 with toluene / methyl ethyl ketone mass% ratio. A hard coating agent diluted to mass% is applied with a micro gravure coater (gravure wire number 80R, gravure rotation ratio 100%), dried at 80 ° C. for 1 minute, irradiated with ultraviolet rays at 1.0 J / cm 2 and cured to a thickness of 5 μm. The hard coat layer was provided.
 次いで、「樹脂A」1.40g、「樹脂B」13.85g、酢酸エチル2.00gを混合、撹拌し、下地樹脂層塗布液を作った。この下地樹脂層塗布液を、基材のハードコート層を設けた反対面に、松尾産業(株)製 バーコーター番手30を使用して塗布し、100℃、3分間で加熱乾燥して、乾燥後の塗布厚みが13μmの下地樹脂層を設けた。 Next, 1.40 g of “resin A”, 13.85 g of “resin B”, and 2.00 g of ethyl acetate were mixed and stirred to prepare a base resin layer coating solution. This base resin layer coating solution is applied to the opposite surface of the base material provided with the hard coat layer using a bar coater count 30 manufactured by Matsuo Sangyo Co., Ltd., and dried by heating at 100 ° C. for 3 minutes. A base resin layer having a subsequent coating thickness of 13 μm was provided.
 次いで、「導電層A」をグラビア線番150Rにて前記下地樹脂層上に積層し、本発明の導電積層体を得た。 Next, “conductive layer A” was laminated on the base resin layer with a gravure wire number 150R to obtain a conductive laminate of the present invention.
 実施例2
 下地樹脂層塗布液の組成を「樹脂A」1.40g、「樹脂B」13.96g、「光重合開始剤」0.041g、酢酸エチル2.08gとし、塗布液を塗布、乾燥後に、さらに紫外線を1.2J/cm照射したこと以外は、実施例1と同様に作成し、乾燥後の塗布厚みが13μmの下地樹脂層上に「導電層A」をグラビア線番150Rにて積層し、本発明の導電積層体を得た。
Example 2
The composition of the base resin layer coating solution is 1.40 g of “resin A”, 13.96 g of “resin B”, 0.041 g of “photopolymerization initiator”, and 2.08 g of ethyl acetate. Created in the same manner as in Example 1 except that ultraviolet rays were irradiated at 1.2 J / cm 2 , and “conductive layer A” was laminated with gravure wire number 150R on a base resin layer having a coating thickness after drying of 13 μm. The conductive laminate of the present invention was obtained.
 実施例3
 厚み188μmの「フィルム」を基材として、片面にKAYANOVA(登録商標)FOP1740(日本化薬(株)、固形分濃度82質量%)をトルエンとメチルエチルケトン質量%比1対1で、固形分濃度40質量%まで希釈したハードコート剤をマイクログラビアコーター(グラビア線番80R、グラビア回転比100%)で塗布、80℃で1分間乾燥後、紫外線を1.0J/cm照射、硬化させ、厚み5μmのハードコート層を設けた。
Example 3
KAYANOVA (registered trademark) FOP1740 (Nippon Kayaku Co., Ltd., solid content concentration 82% by mass) on one side with a “film” having a thickness of 188 μm as a base material and a solid content concentration of 40: 1 with toluene / methyl ethyl ketone mass% ratio. A hard coating agent diluted to mass% is applied with a micro gravure coater (gravure wire number 80R, gravure rotation ratio 100%), dried at 80 ° C. for 1 minute, irradiated with ultraviolet rays at 1.0 J / cm 2 and cured to a thickness of 5 μm. The hard coat layer was provided.
 次いで、「樹脂A」3.48g、「樹脂B」8.92g、酢酸エチル7.59gを混合、撹拌し、下地樹脂層塗布液を作った。この下地樹脂層塗布液を、基材のハードコート層を設けた反対面に、松尾産業(株)製 バーコーター番手30を使用して塗布し、100℃、3分間で加熱乾燥して、乾燥後の塗布厚みが13μmの下地樹脂層を設けた。 Next, 3.48 g of “Resin A”, 8.92 g of “Resin B” and 7.59 g of ethyl acetate were mixed and stirred to prepare a base resin layer coating solution. This base resin layer coating solution is applied to the opposite surface of the base material provided with the hard coat layer using a bar coater count 30 manufactured by Matsuo Sangyo Co., Ltd., and dried by heating at 100 ° C. for 3 minutes. A base resin layer having a subsequent coating thickness of 13 μm was provided.
 次いで、「導電層B」を前記下地樹脂層上に積層し、本発明の導電積層体を得た。 Next, “conductive layer B” was laminated on the base resin layer to obtain a conductive laminate of the present invention.
 実施例4
 厚み125μmの「フィルム」を基材として、片面にKAYANOVA(登録商標)FOP1740(日本化薬(株)、固形分濃度82質量%)をトルエンとメチルエチルケトン質量%比1対1で、固形分濃度40質量%まで希釈したハードコート剤をマイクログラビアコーター(グラビア線番80R、グラビア回転比100%)で塗布、80℃で1分間乾燥後、紫外線を1.0J/cm照射、硬化させ、厚み5μmのハードコート層を設けた。
Example 4
KAYANOVA (registered trademark) FOP1740 (Nippon Kayaku Co., Ltd., solid concentration 82 mass%) on one side with a “film” having a thickness of 125 μm as a one-to-one ratio of toluene to methyl ethyl ketone mass ratio 40 A hard coating agent diluted to mass% is applied with a micro gravure coater (gravure wire number 80R, gravure rotation ratio 100%), dried at 80 ° C. for 1 minute, irradiated with ultraviolet rays at 1.0 J / cm 2 and cured to a thickness of 5 μm. The hard coat layer was provided.
 次いで、「樹脂A」3.64g、「樹脂B」1.38g、酢酸エチル14.97gを混合、撹拌し、下地樹脂層塗布液を作った。この下地樹脂層塗布液を、基材のハードコート層を設けた反対面に、松尾産業(株)製 バーコーター番手24を使用して塗布し、100℃、3分間で加熱乾燥して、乾燥後の塗布厚みが7μmの下地樹脂層を設けた。次いで、「導電層B」を前記下地樹脂層上に積層し、本発明の導電積層体を得た。 Next, 3.64 g of “resin A”, 1.38 g of “resin B”, and 14.97 g of ethyl acetate were mixed and stirred to prepare a base resin layer coating solution. This base resin layer coating solution is applied to the opposite side of the base material provided with the hard coat layer using a bar coater count 24 manufactured by Matsuo Sangyo Co., Ltd., and dried by heating at 100 ° C. for 3 minutes. A base resin layer having a subsequent coating thickness of 7 μm was provided. Next, “conductive layer B” was laminated on the base resin layer to obtain a conductive laminate of the present invention.
 実施例5
 下地樹脂層塗布液の組成を「樹脂A」3.84g、「樹脂B」0.62g、酢酸エチル15.55gとしたこと以外は、実施例4と同様に作成し、乾燥後の塗布厚みが7μmの下地樹脂層上に「導電層B」を積層し、本発明の導電積層体を得た。
Example 5
The base resin layer coating solution was prepared in the same manner as in Example 4 except that 3.84 g of “resin A”, 0.62 g of “resin B”, and 15.55 g of ethyl acetate, and the coating thickness after drying was A “conductive layer B” was laminated on a 7 μm ground resin layer to obtain a conductive laminate of the present invention.
 実施例6
 厚み125μmの「フィルム」を基材として、片面にKAYANOVA(登録商標)FOP1740(日本化薬(株)、固形分濃度82質量%)をトルエンとメチルエチルケトン質量%比1対1で、固形分濃度40質量%まで希釈したハードコート剤をマイクログラビアコーター(グラビア線番80R、グラビア回転比100%)で塗布、80℃で1分間乾燥後、紫外線を1.0J/cm照射、硬化させ、厚み5μmのハードコート層を設けた。
Example 6
KAYANOVA (registered trademark) FOP1740 (Nippon Kayaku Co., Ltd., solid concentration 82 mass%) on one side with a “film” having a thickness of 125 μm as a one-to-one ratio of toluene to methyl ethyl ketone mass ratio 40 A hard coating agent diluted to mass% is applied with a micro gravure coater (gravure wire number 80R, gravure rotation ratio 100%), dried at 80 ° C. for 1 minute, irradiated with ultraviolet rays at 1.0 J / cm 2 and cured to a thickness of 5 μm. The hard coat layer was provided.
 次いで、「樹脂A」1.40g、「樹脂B」13.96g、「光重合開始剤」0.041g、酢酸エチル9.95gを混合、撹拌し、下地樹脂層塗布液を作った。この下地樹脂層塗布液を、基材のハードコート層を設けた反対面に、松尾産業(株)製 バーコーター番手24を使用して塗布し、100℃、3分間で加熱乾燥後、紫外線を1.2J/cm照射、硬化させ、塗布厚みが7μmの下地樹脂層を設けた。 Next, 1.40 g of “resin A”, 13.96 g of “resin B”, 0.041 g of “photopolymerization initiator”, and 9.95 g of ethyl acetate were mixed and stirred to prepare a base resin layer coating solution. This base resin layer coating solution is applied to the opposite surface of the base material provided with the hard coat layer using a bar coater count 24 manufactured by Matsuo Sangyo Co., Ltd. 1.2 J / cm 2 was irradiated and cured, and a base resin layer having a coating thickness of 7 μm was provided.
 次いで、「導電層A」をグラビア線番150Rにて前記下地樹脂層上に積層し、本発明の導電積層体を得た。 Next, “conductive layer A” was laminated on the base resin layer with a gravure wire number 150R to obtain a conductive laminate of the present invention.
 実施例7
 下地樹脂層塗布液の組成を「樹脂A」1.80g、「樹脂B」8.48g、「光重合開始剤」0.043g、酢酸エチル9.92gとし、塗布液を塗布、乾燥後に、さらに紫外線を1.2J/cm照射したこと以外は、実施例6と同様に作成し、塗布厚みが7μmの下地樹脂層上に「導電層A」をグラビア線番150Rにて積層し、本発明の導電積層体を得た。
Example 7
The composition of the base resin layer coating solution is 1.80 g of “resin A”, 8.48 g of “resin B”, 0.043 g of “photopolymerization initiator”, and 9.92 g of ethyl acetate. Except that the ultraviolet ray was irradiated at 1.2 J / cm 2 , it was prepared in the same manner as in Example 6, and the “conductive layer A” was laminated on the base resin layer having a coating thickness of 7 μm with a gravure wire number 150R. A conductive laminate was obtained.
 実施例8
 下地樹脂層塗布液の組成を「樹脂A」1.00g、「樹脂B」16.40g、「光重合開始剤」0.030g、酢酸エチル9.04gとし、塗布液を塗布、乾燥後に、さらに紫外線を1.2J/cm照射したこと以外は、実施例6と同様に作成し、塗布厚みが7μmの下地樹脂層上に「導電層A」をグラビア線番150Rにて積層し、本発明の導電積層体を得た。
Example 8
The composition of the base resin layer coating solution is 1.00 g of “resin A”, 16.40 g of “resin B”, 0.030 g of “photopolymerization initiator”, 9.04 g of ethyl acetate, and after applying and drying the coating solution, Except that the ultraviolet ray was irradiated at 1.2 J / cm 2 , it was prepared in the same manner as in Example 6, and the “conductive layer A” was laminated on the base resin layer having a coating thickness of 7 μm with a gravure wire number 150R. A conductive laminate was obtained.
 実施例9
 下地樹脂層塗布液の組成を「樹脂A」0.80g、「樹脂B」18.90g、「光重合開始剤」0.024g、「酢酸エチル」8.97gとし、該塗布液を塗布、乾燥後に、さらに紫外線を1.2J/cm照射したこと以外は、実施例6と同様に作成し、塗布厚みが7μmの下地樹脂層上に「導電層A」をグラビア線番150Rにて積層し、本発明の導電積層体を得た。
Example 9
The composition of the base resin layer coating solution was 0.80 g of “resin A”, 18.90 g of “resin B”, 0.024 g of “photopolymerization initiator”, and 8.97 g of “ethyl acetate”, and the coating solution was applied and dried. Later, it was prepared in the same manner as in Example 6 except that ultraviolet rays were further irradiated at 1.2 J / cm 2 , and “conductive layer A” was laminated with gravure wire number 150R on the base resin layer having a coating thickness of 7 μm. The conductive laminate of the present invention was obtained.
 実施例10
 厚み125μmの「フィルム」を基材として、片面にKAYANOVA(登録商標)FOP1740(日本化薬(株)、固形分濃度82質量%)をトルエンとメチルエチルケトン質量%比1対1で、固形分濃度40質量%まで希釈したハードコート剤をマイクログラビアコーター(グラビア線番80R、グラビア回転比100%)で塗布、80℃で1分間乾燥後、紫外線を1.0J/cm照射、硬化させ、厚み5μmのハードコート層を設けた。
Example 10
KAYANOVA (registered trademark) FOP1740 (Nippon Kayaku Co., Ltd., solid concentration 82 mass%) on one side with a “film” having a thickness of 125 μm as a one-to-one ratio of toluene to methyl ethyl ketone mass ratio 40 A hard coating agent diluted to mass% is applied with a micro gravure coater (gravure wire number 80R, gravure rotation ratio 100%), dried at 80 ° C. for 1 minute, irradiated with ultraviolet rays at 1.0 J / cm 2 and cured to a thickness of 5 μm. The hard coat layer was provided.
 次いで、「樹脂A」0.50g、「樹脂B」19.44g、「光重合開始剤」0.015g、酢酸エチル0.67gを混合、撹拌し、下地樹脂層塗布液を作った。この下地樹脂層塗布液を、前記基材のハードコート層を設けた反対面に、松尾産業(株)製 バーコーター番手26を使用して塗布し、100℃、3分間で加熱乾燥後、紫外線を1.2J/cm照射、硬化させ、塗布厚みが10.5μmの下地樹脂層を設けた。 Next, 0.50 g of “resin A”, 19.44 g of “resin B”, 0.015 g of “photopolymerization initiator”, and 0.67 g of ethyl acetate were mixed and stirred to prepare a base resin layer coating solution. This base resin layer coating solution was applied to the opposite surface of the base material provided with the hard coat layer using a bar coater count 26 manufactured by Matsuo Sangyo Co., Ltd. Was irradiated and cured to 1.2 J / cm 2 to provide a base resin layer having a coating thickness of 10.5 μm.
 次いで、「導電層A」をグラビア線番150Rにて前記下地樹脂層上に積層し、本発明の導電積層体を得た。 Next, “conductive layer A” was laminated on the base resin layer with a gravure wire number 150R to obtain a conductive laminate of the present invention.
 実施例11
 厚み125μmの「フィルム」を基材として、片面にKAYANOVA(登録商標)FOP1740(日本化薬(株)、固形分濃度82質量%)をトルエンとメチルエチルケトン質量%比1対1で、固形分濃度40質量%まで希釈したハードコート剤をマイクログラビアコーター(グラビア線番80R、グラビア回転比100%)で塗布、80℃で1分間乾燥後、紫外線を1.0J/cm照射、硬化させ、厚み5μmのハードコート層を設けた。
Example 11
KAYANOVA (registered trademark) FOP1740 (Nippon Kayaku Co., Ltd., solid concentration 82 mass%) on one side with a “film” having a thickness of 125 μm as a one-to-one ratio of toluene to methyl ethyl ketone mass ratio 40 A hard coating agent diluted to mass% is applied with a micro gravure coater (gravure wire number 80R, gravure rotation ratio 100%), dried at 80 ° C. for 1 minute, irradiated with ultraviolet rays at 1.0 J / cm 2 and cured to a thickness of 5 μm. The hard coat layer was provided.
 次いで、「樹脂A」1.00g、「樹脂B」9.89g、「光重合開始剤」0.030g、酢酸エチル7.09gを混合、撹拌し、下地樹脂層塗布液を作った。この下地樹脂層塗布液を、基材のハードコート層を設けた反対面に、松尾産業(株)製 バーコーター番手16を使用して塗布し、100℃、3分間で加熱乾燥後、紫外線を1.2J/cm照射、硬化させ、塗布厚みが4.8μmの下地樹脂層を設けた。 Next, 1.00 g of “resin A”, 9.89 g of “resin B”, 0.030 g of “photopolymerization initiator” and 7.09 g of ethyl acetate were mixed and stirred to prepare a base resin layer coating solution. This base resin layer coating solution is applied to the opposite surface of the base material provided with the hard coat layer using a bar coater count 16 manufactured by Matsuo Sangyo Co., Ltd. 1.2 J / cm 2 irradiation and curing were performed, and a base resin layer having a coating thickness of 4.8 μm was provided.
 次いで、「導電層A」をグラビア線番150Rにて下地樹脂層上に積層し、本発明の導電積層体を得た。 Next, “conductive layer A” was laminated on the base resin layer with a gravure wire number 150R to obtain a conductive laminate of the present invention.
 実施例12
 積層する「導電層A」をグラビア線番100Rにて積層したこと以外は、実施例11と同様に作成し、本発明の導電積層体を得た。
Example 12
Except having laminated | stacked the "electroconductive layer A" by the gravure wire number 100R, it produced similarly to Example 11 and obtained the conductive laminated body of this invention.
 実施例13
 実施例6の「導電層A」の上に、固形分濃度1.0質量%の「透明保護層材料A」の塗液をマイクログラビアコート(グラビア線番80R、グラビア回転比100%)で塗布、125℃で1分間乾燥し厚み60nmの透明保護層を設け、本発明の導電積層体を得た。
Example 13
On the “conductive layer A” of Example 6, a coating solution of “transparent protective layer material A” having a solid content concentration of 1.0 mass% was applied by microgravure coating (gravure wire number 80R, gravure rotation ratio 100%). The film was dried at 125 ° C. for 1 minute to provide a transparent protective layer having a thickness of 60 nm to obtain a conductive laminate of the present invention.
 実施例14
 実施例6の「導電層A」の上に、固形分濃度1.2質量%の「透明保護層材料A」の塗液をマイクログラビアコート(グラビア線番80R、グラビア回転比100%)で塗布、125℃で1分間乾燥し厚み75nmの透明保護層を設け、本発明の導電積層体を得た。
Example 14
On the “conductive layer A” of Example 6, a coating solution of “transparent protective layer material A” having a solid content concentration of 1.2 mass% was applied by microgravure coating (gravure wire number 80R, gravure rotation ratio 100%). The film was dried at 125 ° C. for 1 minute, and a transparent protective layer having a thickness of 75 nm was provided to obtain a conductive laminate of the present invention.
 実施例15
 実施例6の「導電層A」の上に、固形分濃度1.5質量%の「透明保護層材料A」の塗液をマイクログラビアコート(グラビア線番80R、グラビア回転比100%)で塗布、125℃で1分間乾燥し厚み100nmの透明保護層を設け、本発明の導電積層体を得た。
Example 15
On the “conductive layer A” of Example 6, a coating solution of “transparent protective layer material A” having a solid content concentration of 1.5 mass% was applied by microgravure coating (gravure wire number 80R, gravure rotation ratio 100%). The film was dried at 125 ° C. for 1 minute to provide a transparent protective layer having a thickness of 100 nm to obtain a conductive laminate of the present invention.
 実施例16
 実施例6の「導電層A」の上に、固形分濃度1.5質量%の「透明保護層材料B」の塗液をマイクログラビアコート(グラビア線番120R、グラビア回転比100%)で塗布、80℃で30秒間乾乾燥後、紫外線を1.2J/cm照射して硬化させ、厚み65nmの透明保護層を設け、本発明の導電積層体を得た。
Example 16
A coating liquid of “transparent protective layer material B” having a solid content concentration of 1.5% by mass was applied by microgravure coating (gravure wire number 120R, gravure rotation ratio 100%) on “conductive layer A” of Example 6. After drying at 80 ° C. for 30 seconds, the film was cured by irradiation with ultraviolet rays of 1.2 J / cm 2 to provide a transparent protective layer having a thickness of 65 nm to obtain a conductive laminate of the present invention.
 実施例17
 実施例6の「導電層A」の上に、固形分濃度1.5質量%の「透明保護層材料B」の塗液をマイクログラビアコート(グラビア線番80R、グラビア回転比100%)で塗布、80℃で30秒間乾乾燥後、紫外線を1.2J/cm照射して硬化させ、厚み100nmの透明保護層を設け、本発明の導電積層体を得た。
Example 17
On the “conductive layer A” in Example 6, a coating solution of “transparent protective layer material B” having a solid content concentration of 1.5 mass% was applied by microgravure coating (gravure wire number 80R, gravure rotation ratio 100%). After drying at 80 ° C. for 30 seconds, the film was cured by irradiation with ultraviolet rays of 1.2 J / cm 2 to provide a transparent protective layer having a thickness of 100 nm to obtain a conductive laminate of the present invention.
 比較例1
 厚み188μmの「フィルム」を基材として、片面にKAYANOVA(登録商標)FOP1740(日本化薬(株)、固形分濃度82質量%)をトルエンとメチルエチルケトン質量%比1対1で、固形分濃度40質量%まで希釈したハードコート剤をマイクログラビアコーター(グラビア線番80R、グラビア回転比100%)で塗布、80℃で1分間乾燥後、紫外線を1.0J/cm照射、硬化させ、厚み5μmのハードコート層を設けた。次いで、基材のハードコート層を設けた反対面に、下地樹脂層及び導電層を設けない積層体とした。
Comparative Example 1
KAYANOVA (registered trademark) FOP1740 (Nippon Kayaku Co., Ltd., solid content concentration 82% by mass) on one side with a “film” having a thickness of 188 μm as a base material and a solid content concentration of 40: 1 with toluene / methyl ethyl ketone mass% ratio. A hard coating agent diluted to mass% is applied with a micro gravure coater (gravure wire number 80R, gravure rotation ratio 100%), dried at 80 ° C. for 1 minute, irradiated with ultraviolet rays at 1.0 J / cm 2 and cured to a thickness of 5 μm. The hard coat layer was provided. Subsequently, it was set as the laminated body which does not provide a base resin layer and a conductive layer on the opposite surface which provided the hard-coat layer of the base material.
 比較例2
 厚み188μmの「フィルム」を基材として、片面にKAYANOVA(登録商標)FOP1740(日本化薬(株)、固形分濃度82質量%)をトルエンとメチルエチルケトン質量%比1対1で、固形分濃度40質量%まで希釈したハードコート剤をマイクログラビアコーター(グラビア線番80R、グラビア回転比100%)で塗布、80℃で1分間乾燥後、紫外線を1.0J/cm照射、硬化させ、厚み5μmのハードコート層を設けた。
Comparative Example 2
KAYANOVA (registered trademark) FOP1740 (Nippon Kayaku Co., Ltd., solid content concentration 82% by mass) on one side with a “film” having a thickness of 188 μm as a base material and a solid content concentration of 40: 1 with toluene / methyl ethyl ketone mass% ratio. A hard coating agent diluted to mass% is applied with a micro gravure coater (gravure wire number 80R, gravure rotation ratio 100%), dried at 80 ° C. for 1 minute, irradiated with ultraviolet rays at 1.0 J / cm 2 and cured to a thickness of 5 μm. The hard coat layer was provided.
 次いで、「樹脂A」5.80g、「光重合開始剤」0.174g、酢酸エチル14.63gを混合、撹拌し、下地樹脂層塗布液を作った。この下地樹脂層塗布液を、基材のハードコート層を設けた反対面に、松尾産業(株)製 バーコーター番手30を使用して塗布し、100℃、3分間で加熱乾燥後、紫外線を1.2J/cm照射、硬化させ、塗布厚みが13μmの下地樹脂層のみを設け、導電層を設けない積層体とした。 Next, 5.80 g of “resin A”, 0.174 g of “photopolymerization initiator” and 14.63 g of ethyl acetate were mixed and stirred to prepare a base resin layer coating solution. This base resin layer coating solution is applied to the opposite surface of the base material provided with the hard coat layer using a bar coater count 30 manufactured by Matsuo Sangyo Co., Ltd. 1.2 J / cm 2 was irradiated and cured, and only a base resin layer having a coating thickness of 13 μm was provided, and a laminate without a conductive layer was obtained.
 比較例3
 厚み188μmの「フィルム」を基材として、片面にKAYANOVA(登録商標)FOP1740(日本化薬(株)、固形分濃度82質量%)をトルエンとメチルエチルケトン質量%比1対1で、固形分濃度40質量%まで希釈したハードコート剤をマイクログラビアコーター(グラビア線番80R、グラビア回転比100%)で塗布、80℃で1分間乾燥後、紫外線を1.0J/cm照射、硬化させ、厚み5μmのハードコート層を設けた。
Comparative Example 3
KAYANOVA (registered trademark) FOP1740 (Nippon Kayaku Co., Ltd., solid content concentration 82% by mass) on one side with a “film” having a thickness of 188 μm as a base material and a solid content concentration of 40: 1 with toluene / methyl ethyl ketone mass% ratio. A hard coating agent diluted to mass% is applied with a micro gravure coater (gravure wire number 80R, gravure rotation ratio 100%), dried at 80 ° C. for 1 minute, irradiated with ultraviolet rays at 1.0 J / cm 2 and cured to a thickness of 5 μm. The hard coat layer was provided.
 次いで、前記基材のハードコート層を設けた反対面に、下地樹脂層を設けずに「導電層C」を直接積層し、導電積層体とした。 Next, the “conductive layer C” was directly laminated on the opposite surface of the base material on which the hard coat layer was provided, without providing the base resin layer, to obtain a conductive laminate.
 比較例4
 導電層を「導電層A」(グラビア線番150Rにて積層)としたこと以外は、比較例3と同様に作成し、導電積層体とした。
Comparative Example 4
A conductive laminate was prepared in the same manner as in Comparative Example 3 except that the conductive layer was “conductive layer A” (laminated with gravure wire number 150R).
 比較例5
 導電層を「導電層B」としたこと以外は、比較例3と同様に作成し、導電積層体とした。
Comparative Example 5
A conductive laminate was prepared in the same manner as Comparative Example 3 except that the conductive layer was “conductive layer B”.
 比較例6
 下地樹脂層塗布液に使用する樹脂を「樹脂C」としたこと以外は、実施例1と同様に作成し、乾燥後の塗布厚みが13μmの下地樹脂層上に「導電層A」をグラビア線番150Rにて積層し、導電積層体とした。
Comparative Example 6
Except that the resin used for the base resin layer coating solution was “resin C”, it was prepared in the same manner as in Example 1, and “conductive layer A” was formed on the base resin layer having a coating thickness after drying of 13 μm. No. 150R was laminated to obtain a conductive laminate.
 比較例7
 積層する「導電層A」をグラビア線番100Rにて積層したこと以外は、比較例6と同様に作成し、導電積層体とした。
Comparative Example 7
A conductive laminate was prepared in the same manner as Comparative Example 6 except that the “conductive layer A” to be laminated was laminated with the gravure wire number 100R.
 比較例8
 下地樹脂層塗布液に使用する樹脂を「樹脂D」としたこと以外は、実施例2と同様に作成し、乾燥後の塗布厚みが13μmの下地樹脂層上に「導電層A」をグラビア線番150Rにて積層し、導電積層体とした。
Comparative Example 8
Except that the resin used for the base resin layer coating solution was “resin D”, it was prepared in the same manner as in Example 2, and “conductive layer A” was formed on the base resin layer having a coating thickness after drying of 13 μm. No. 150R was laminated to obtain a conductive laminate.
 比較例9
 下地樹脂層塗布液に使用する樹脂を「樹脂E」としたこと以外は、実施例28と同様に作成し、乾燥後の塗布厚みが13μmの下地樹脂層上に「導電層A」をグラビア線番150Rにて積層し、導電積層体とした。
Comparative Example 9
Except that the resin used for the base resin layer coating solution was “resin E”, it was prepared in the same manner as in Example 28, and “conductive layer A” was formed on the base resin layer having a coating thickness after drying of 13 μm. No. 150R was laminated to obtain a conductive laminate.
 比較例10
 厚み188μmの「フィルム」を基材として、片面にKAYANOVA(登録商標)FOP1740(日本化薬(株)、固形分濃度82質量%)をトルエンとメチルエチルケトン質量%比1対1で、固形分濃度40質量%まで希釈したハードコート剤をマイクログラビアコーター(グラビア線番80R、グラビア回転比100%)で塗布、80℃で1分間乾燥後、紫外線を1.0J/cm照射、硬化させ、厚み5μmのハードコート層を設けた。
Comparative Example 10
KAYANOVA (registered trademark) FOP1740 (Nippon Kayaku Co., Ltd., solid content concentration 82% by mass) on one side with a “film” having a thickness of 188 μm as a base material and a solid content concentration of 40: 1 with toluene / methyl ethyl ketone mass% ratio. A hard coating agent diluted to mass% is applied with a micro gravure coater (gravure wire number 80R, gravure rotation ratio 100%), dried at 80 ° C. for 1 minute, irradiated with ultraviolet rays at 1.0 J / cm 2 and cured to a thickness of 5 μm. The hard coat layer was provided.
 次いで、「樹脂F」1.00g、「樹脂B」5.82g、酢酸エチル0.43gを混合、撹拌し、下地樹脂層塗布液を作った。この下地樹脂層塗布液を、前記基材のハードコート層を設けた反対面に、松尾産業(株)製 バーコーター番手30を使用して塗布し、100℃、3分間で加熱乾燥して、乾燥後の塗布厚みが13μmの下地樹脂層を設けた。 Next, 1.00 g of “resin F”, 5.82 g of “resin B”, and 0.43 g of ethyl acetate were mixed and stirred to prepare a base resin layer coating solution. This base resin layer coating solution was applied to the opposite surface of the base material provided with the hard coat layer using a bar coater count 30 manufactured by Matsuo Sangyo Co., Ltd., and heated and dried at 100 ° C. for 3 minutes. A base resin layer having a coating thickness of 13 μm after drying was provided.
 次いで、「導電層A」をグラビア線番150Rにて下地樹脂層上に積層し、導電積層体とした。 Next, “conductive layer A” was laminated on the base resin layer with a gravure wire number 150R to obtain a conductive laminate.
 比較例11
 厚み188μmの「フィルム」を基材として、片面にKAYANOVA(登録商標)FOP1740(日本化薬(株)、固形分濃度82質量%)をトルエンとメチルエチルケトン質量%比1対1で、固形分濃度40質量%まで希釈したハードコート剤をマイクログラビアコーター(グラビア線番80R、グラビア回転比100%)で塗布、80℃で1分間乾燥後、紫外線を1.0J/cm照射、硬化させ、厚み5μmのハードコート層を設けた。
Comparative Example 11
KAYANOVA (registered trademark) FOP1740 (Nippon Kayaku Co., Ltd., solid content concentration 82% by mass) on one side with a “film” having a thickness of 188 μm as a base material and a solid content concentration of 40: 1 with toluene / methyl ethyl ketone mass% ratio. A hard coating agent diluted to mass% is applied with a micro gravure coater (gravure wire number 80R, gravure rotation ratio 100%), dried at 80 ° C. for 1 minute, irradiated with ultraviolet rays at 1.0 J / cm 2 and cured to a thickness of 5 μm. The hard coat layer was provided.
 次いで、「樹脂F」1.00g、「樹脂G」3.87g、酢酸エチル2.46gを混合、撹拌し、下地樹脂層塗布液を作った。この下地樹脂層塗布液を、基材のハードコート層を設けた反対面に、松尾産業(株)製 バーコーター番手30を使用して塗布し、100℃、3分間で加熱乾燥して、乾燥後の塗布厚みが13μmの下地樹脂層を設けた。 Next, 1.00 g of “resin F”, 3.87 g of “resin G” and 2.46 g of ethyl acetate were mixed and stirred to prepare a base resin layer coating solution. This base resin layer coating solution is applied to the opposite surface of the base material provided with the hard coat layer using a bar coater count 30 manufactured by Matsuo Sangyo Co., Ltd., and dried by heating at 100 ° C. for 3 minutes. A base resin layer having a subsequent coating thickness of 13 μm was provided.
 次いで、「導電層A」のカーボンナノチューブ分散塗液を前記下地樹脂層上への塗布を試みたが、はじいてしまい、導電層を積層することができなかった。 Next, an attempt was made to apply the carbon nanotube dispersion coating solution of “conductive layer A” onto the base resin layer, but it was repelled and the conductive layer could not be laminated.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 実施例1~17は、タッチパネルの書き味及び入力感度を向上することができた。中でもグリコール骨格が特定の構造で且つアクリレート部位の官能基数が2官能であるウレタンアクリレートと、側鎖中に親水基を有するグラフト構造の樹脂とを混合した下地樹脂層とした場合(実施例1~3、6、13~17)、線状構造体の導電成分の水分散塗液を塗布することができただけでなく、書き味と入力感度が大きく向上した。さらに、ウレタンアクリレート樹脂のアクリレート部位が他のアクリレート部位と結合している場合(実施例2、6、13~17)、良好な耐久性を得ることができた。 In Examples 1 to 17, the writing quality and input sensitivity of the touch panel could be improved. In particular, a base resin layer in which a urethane acrylate having a specific structure of a glycol skeleton and a bifunctional acrylate moiety and a graft resin having a hydrophilic group in the side chain is used (Examples 1 to 4). 3, 6, 13-17) Not only was it possible to apply a water-dispersed coating liquid of the conductive component of the linear structure, but also the writing quality and input sensitivity were greatly improved. Furthermore, when the acrylate moiety of the urethane acrylate resin was bonded to another acrylate moiety (Examples 2, 6, 13 to 17), good durability could be obtained.
 導電層を設けない場合(比較例1、2)は、タッチパネルが動作しない。下地樹脂層を設けない場合(比較例3~5)は書き味及び入力感度が悪かった。下地樹脂層中のウレタンアクリレート樹脂の骨格構造がグリコール骨格でない場合(比較例6、7)や、グリコール骨格であってもウレタンアクリレートで無い場合(比較例8、9、10)は、書き味及び入力感度が悪化した。さらに、グラフト樹脂の側鎖が疎水基であると、水分散塗液を塗布することができず、導電層を積層することができなかった(比較例11)。 When the conductive layer is not provided (Comparative Examples 1 and 2), the touch panel does not work. When no base resin layer was provided (Comparative Examples 3 to 5), the writing quality and input sensitivity were poor. When the skeleton structure of the urethane acrylate resin in the base resin layer is not a glycol skeleton (Comparative Examples 6 and 7), or when it is a glycol skeleton but not a urethane acrylate (Comparative Examples 8, 9, and 10), Input sensitivity has deteriorated. Furthermore, when the side chain of the graft resin was a hydrophobic group, the aqueous dispersion coating solution could not be applied and the conductive layer could not be laminated (Comparative Example 11).
 本発明は、タッチパネルの書き味がよく、入力感度が高く、且つ、良好な耐久性を有する導電積層体である。さらに、液晶ディスプレイ、有機エレクトロルミネッセンス、電子ペーパーなどのディスプレイ関連および太陽電池モジュールなどの使用される電極部材にも使用される導電積層体である。 The present invention is a conductive laminate having good touch panel writing, high input sensitivity, and good durability. Furthermore, it is an electroconductive laminated body used also for electrode members used, such as a liquid crystal display, organic electroluminescence, electronic paper related display, and a solar cell module.
1:基材
2:下地樹脂層
3:導電層
4:透明保護層
5:主鎖の幹ポリマー
6:分岐した側鎖
7:親水基
8:積層面に垂直な方向より観察した導電面
9:カーボンナノチューブの一例(線上構造体の一例)
10:金属や金属酸化物のナノワイヤーの一例(線上構造体の一例)
11:金属酸化物のウィスカーや繊維状のような針状結晶の一例(線上構造体の一例)
12:導電性薄膜
13:上部電極
14:下部電極
15:上部電極の基材
16:下部電極の基材
17:ハードコート層
18:ドットスペーサー
19:両面接着テープ
20:空間
21:電源
22:ペン
100:反応器
101:石英焼結板
102:密閉型触媒供給機
103:触媒投入ライン
104:原料ガス供給ライン
105:排ガスライン
106:加熱器
107:点検口
108:触媒
1: base material 2: base resin layer 3: conductive layer 4: transparent protective layer 5: backbone polymer 6 of main chain: branched side chain 7: hydrophilic group 8: conductive surface 9 observed from a direction perpendicular to the laminated surface: Example of carbon nanotube (example of line structure)
10: An example of a nanowire of metal or metal oxide (an example of a linear structure)
11: Example of metal oxide whisker or fibrous needle-like crystal (an example of a linear structure)
12: Conductive thin film 13: Upper electrode 14: Lower electrode 15: Upper electrode substrate 16: Lower electrode substrate 17: Hard coat layer 18: Dot spacer 19: Double-sided adhesive tape 20: Space 21: Power supply 22: Pen DESCRIPTION OF SYMBOLS 100: Reactor 101: Quartz sintered board 102: Sealed catalyst supply machine 103: Catalyst injection line 104: Raw material gas supply line 105: Exhaust gas line 106: Heater 107: Inspection port 108: Catalyst

Claims (12)

  1. 基材の少なくとも片面に、基材側から、下地樹脂層、導電層の順に、下地樹脂層、導電層を積層した導電積層体であって、下地樹脂が、グリコール骨格を有するウレタンアクリレート樹脂と、側鎖中に親水基を有するグラフト構造の樹脂とを含有する樹脂である導電積層体。 A conductive laminate in which a base resin layer and a conductive layer are laminated in order of a base resin layer and a conductive layer from at least one side of the base material in the order of the base resin layer, and the base resin is a urethane acrylate resin having a glycol skeleton; A conductive laminate, which is a resin containing a graft structure resin having a hydrophilic group in a side chain.
  2. 導電層にカーボンナノチューブを含有する請求項1に記載の導電積層体。 The conductive laminate according to claim 1, wherein the conductive layer contains carbon nanotubes.
  3. グリコール骨格が、ポリエチレングリコール骨格及び/又はポリプロピレングリコール骨格である請求項1に記載の導電積層体。 The conductive laminate according to claim 1, wherein the glycol skeleton is a polyethylene glycol skeleton and / or a polypropylene glycol skeleton.
  4. ウレタンアクリレート樹脂が、ウレタンアクリレート1分子中のアクリレート部位の官能基数が2官能であるウレタンアクリレート樹脂である請求項1に記載の導電積層体。 The conductive laminate according to claim 1, wherein the urethane acrylate resin is a urethane acrylate resin in which the number of functional groups at the acrylate moiety in one molecule of urethane acrylate is bifunctional.
  5. ウレタンアクリレート樹脂のアクリレート部位が、重合により他のアクリレート部位と結合している請求項1に記載の導電積層体。 The conductive laminate according to claim 1, wherein an acrylate moiety of the urethane acrylate resin is bonded to another acrylate moiety by polymerization.
  6. 基材の厚みTと下地樹脂層の厚みtとの比t/Tが、
              0.040≦t/T≦0.080 
    である請求項1に記載の導電積層体。
    The ratio t / T between the thickness T of the substrate and the thickness t of the base resin layer is
    0.040 ≦ t / T ≦ 0.080
    The conductive laminate according to claim 1, wherein
  7. 導電層側から入射した際のJIS K7361-1(1997年)に基づいた全光線透過率が80%以上である請求項1に記載の導電積層体。 The conductive laminate according to claim 1, wherein the total light transmittance based on JIS K7361-1 (1997) when incident from the conductive layer side is 80% or more.
  8. 基材が透明基材である請求項1に記載の導電積層体。 The conductive laminate according to claim 1, wherein the substrate is a transparent substrate.
  9. 基材上に、下地樹脂層を形成した後、下地樹脂層上に導電層を形成する導電積層体の製造方法であって、下地樹脂が、グリコール骨格をウレタンアクリレート樹脂と側鎖中に親水基を有するグラフト構造の樹脂とを含有する導電積層体の製造方法。 A method for producing a conductive laminate in which a base resin layer is formed on a substrate and then a conductive layer is formed on the base resin layer, wherein the base resin has a glycol skeleton with a urethane acrylate resin and a hydrophilic group in a side chain. The manufacturing method of the electrically conductive laminated body containing resin of the graft structure which has this.
  10. カーボンナノチューブ、または、銀ナノワーヤーの水含有分散液を塗布後乾燥して導電層を形成する請求項9に記載の導電積層体の製造方法。 The method for producing a conductive laminate according to claim 9, wherein the conductive layer is formed by applying a water-containing dispersion of carbon nanotubes or silver nanowires and then drying.
  11. 導電層の上に、保護層を形成する請求項11に記載の導電積層体の製造方法。 The manufacturing method of the conductive laminated body of Claim 11 which forms a protective layer on a conductive layer.
  12. 請求項1~8に記載の導電積層体を用いてなるタッチパネル。 A touch panel using the conductive laminate according to any one of claims 1 to 8.
PCT/JP2010/069405 2009-11-11 2010-11-01 Electroconductive laminate and process for production thereof WO2011058898A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/509,173 US20120231248A1 (en) 2009-11-11 2010-11-01 Conductive laminate and method of producing the same
CN201080045653.1A CN102574388B (en) 2009-11-11 2010-11-01 Electroconductive laminate and process for production thereof
EP20100829858 EP2500170A4 (en) 2009-11-11 2010-11-01 Electroconductive laminate and process for production thereof
JP2011502185A JP5423784B2 (en) 2009-11-11 2010-11-01 Conductive laminate and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009257833 2009-11-11
JP2009-257833 2009-11-11

Publications (1)

Publication Number Publication Date
WO2011058898A1 true WO2011058898A1 (en) 2011-05-19

Family

ID=43991557

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/069405 WO2011058898A1 (en) 2009-11-11 2010-11-01 Electroconductive laminate and process for production thereof

Country Status (7)

Country Link
US (1) US20120231248A1 (en)
EP (1) EP2500170A4 (en)
JP (1) JP5423784B2 (en)
KR (1) KR20120101381A (en)
CN (1) CN102574388B (en)
TW (1) TW201126547A (en)
WO (1) WO2011058898A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012002332A1 (en) * 2010-07-02 2012-01-05 富士フイルム株式会社 Conductive layer transfer material and touch panel
WO2013191228A1 (en) * 2012-06-18 2013-12-27 Fujifilm Corporation Under layer film-forming composition for imprints and method of forming pattern
US20140050909A1 (en) * 2012-01-27 2014-02-20 Jin Hee Choi Laminate for window sheet, window sheet comprising the same, and display apparatus comprising the same
JP2014188828A (en) * 2013-03-27 2014-10-06 Toppan Printing Co Ltd Transparent conductive film
JP2015133090A (en) * 2014-01-14 2015-07-23 サムソン エレクトロ−メカニックス カンパニーリミテッド. touch panel
JP2016507801A (en) * 2012-12-07 2016-03-10 スリーエム イノベイティブ プロパティズ カンパニー Conductive article
JP2016076013A (en) * 2014-10-03 2016-05-12 コニカミノルタ株式会社 Transparent conductive film, manufacturing method thereof, and touch panel

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103123547A (en) * 2011-11-16 2013-05-29 宸鸿科技(厦门)有限公司 Piling structure of optics panel and manufacturing method thereof
EP2781996B1 (en) * 2011-12-16 2019-12-04 Fujifilm Corporation Conductive sheet and touch panel
TWI460644B (en) * 2012-01-06 2014-11-11 Egalax Empia Technology Inc Thin capacitive touch panel
CN103325441A (en) * 2012-03-21 2013-09-25 宸鸿科技(厦门)有限公司 Conductive thin film of touch panel and manufacturing method thereof
CN104520793B (en) * 2012-09-27 2017-09-29 东丽薄膜先端加工股份有限公司 Electrically conducting transparent lamilate
CN103838440B (en) * 2012-11-23 2016-08-10 北京富纳特创新科技有限公司 Touch screen
CN103838455B (en) * 2012-11-23 2016-12-21 北京富纳特创新科技有限公司 Resistive touch screen
KR102148154B1 (en) * 2013-01-22 2020-08-26 주식회사 동진쎄미켐 Coating composition for transparent conductive film, transparent conductive film and method for fabricating the same
KR20140110539A (en) 2013-03-08 2014-09-17 삼성디스플레이 주식회사 Display apparatus
US20160118156A1 (en) * 2013-06-07 2016-04-28 Seiko Pmc Corporation Metal nanowire-containing composition
KR102035715B1 (en) 2013-06-27 2019-10-24 삼성디스플레이 주식회사 Liquid crystal display
US10042504B2 (en) 2013-08-13 2018-08-07 Samsung Electronics Company, Ltd. Interaction sensing
US10042446B2 (en) 2013-08-13 2018-08-07 Samsung Electronics Company, Ltd. Interaction modes for object-device interactions
WO2015056445A1 (en) * 2013-10-16 2015-04-23 日立化成株式会社 Laminate containig conductive fiber, photosensitive conductive film, method for producing conductive pattern, conductive pattern substrate, and touch panel
KR101477430B1 (en) * 2013-12-30 2014-12-29 삼성전기주식회사 Multi-layered ceramic electronic part, manufacturing method thereof and board having the same mounted thereon
CN104505150A (en) * 2014-12-09 2015-04-08 广州北峻工业材料有限公司 Transparent conducting film and preparation method thereof
CN104575701B (en) * 2014-12-17 2017-01-11 张家港康得新光电材料有限公司 High polymer transparent conductive film and preparation method thereof
KR20170130175A (en) * 2016-05-18 2017-11-28 삼성전자주식회사 Method of producing cellulose separator membrane and cellulose separator membrane therefrom and secondary ion battery including the cellulose separator membrane
WO2018172269A1 (en) 2017-03-21 2018-09-27 Basf Se Electrically conductive film comprising nanoobjects
EP3401928B1 (en) * 2017-05-09 2021-08-18 Henkel AG & Co. KGaA Electrically conductive adhesive for attaching solar cells
JP7378952B2 (en) * 2018-04-25 2023-11-14 ナガセケムテックス株式会社 Optical laminate having transparent conductive film and coating composition
CN110942843A (en) * 2019-10-23 2020-03-31 清远高新华园科技协同创新研究院有限公司 Polymer conductive film for electric automobile, production equipment and preparation method
KR20210146491A (en) * 2020-05-26 2021-12-06 삼성디스플레이 주식회사 Transport complex and transport module including the same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000079662A (en) * 1998-06-22 2000-03-21 Toyobo Co Ltd Highly antistatic laminate and molded product using the same
JP2002098803A (en) * 2000-09-22 2002-04-05 Fuji Photo Film Co Ltd Transparent conductive antireflection film and display device using the same
JP2004213990A (en) * 2002-12-27 2004-07-29 Toyobo Co Ltd Transparent conductive film and touch panel
JP2007042284A (en) 2003-10-27 2007-02-15 Teijin Ltd Transparent conductive lamination body and transparent touch panel
WO2007022226A2 (en) 2005-08-12 2007-02-22 Cambrios Technologies Corporation Nanowires-based transparent conductors
JP2008004304A (en) * 2006-06-20 2008-01-10 Fujifilm Corp Conductive pattern formation method, and wire grid polarizer
JP2008243532A (en) 2007-03-27 2008-10-09 Konica Minolta Holdings Inc Transparent conductive film
WO2009038183A1 (en) * 2007-09-20 2009-03-26 Toyo Boseki Kabushiki Kaisha Adhesive sheet, upper electrode for touch panel, and image display device
JP2009302013A (en) 2008-06-17 2009-12-24 Nof Corp Transparent conductive film, and touch panel with the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100744876B1 (en) * 1998-06-22 2007-08-01 도요 보세키 가부시키가이샤 Highly antistatic laminate
WO2003032332A1 (en) * 2001-10-05 2003-04-17 Bridgestone Corporation Transparent electroconductive film, method for manufacture thereof, and touch panel
US7196136B2 (en) * 2004-04-29 2007-03-27 Hewlett-Packard Development Company, L.P. UV curable coating composition
JP5266889B2 (en) * 2008-06-04 2013-08-21 ソニー株式会社 Method for manufacturing light transmissive conductor

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000079662A (en) * 1998-06-22 2000-03-21 Toyobo Co Ltd Highly antistatic laminate and molded product using the same
JP2002098803A (en) * 2000-09-22 2002-04-05 Fuji Photo Film Co Ltd Transparent conductive antireflection film and display device using the same
JP2004213990A (en) * 2002-12-27 2004-07-29 Toyobo Co Ltd Transparent conductive film and touch panel
JP2007042284A (en) 2003-10-27 2007-02-15 Teijin Ltd Transparent conductive lamination body and transparent touch panel
WO2007022226A2 (en) 2005-08-12 2007-02-22 Cambrios Technologies Corporation Nanowires-based transparent conductors
JP2008004304A (en) * 2006-06-20 2008-01-10 Fujifilm Corp Conductive pattern formation method, and wire grid polarizer
JP2008243532A (en) 2007-03-27 2008-10-09 Konica Minolta Holdings Inc Transparent conductive film
WO2009038183A1 (en) * 2007-09-20 2009-03-26 Toyo Boseki Kabushiki Kaisha Adhesive sheet, upper electrode for touch panel, and image display device
JP2009302013A (en) 2008-06-17 2009-12-24 Nof Corp Transparent conductive film, and touch panel with the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2500170A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012002332A1 (en) * 2010-07-02 2012-01-05 富士フイルム株式会社 Conductive layer transfer material and touch panel
US20140050909A1 (en) * 2012-01-27 2014-02-20 Jin Hee Choi Laminate for window sheet, window sheet comprising the same, and display apparatus comprising the same
WO2013191228A1 (en) * 2012-06-18 2013-12-27 Fujifilm Corporation Under layer film-forming composition for imprints and method of forming pattern
JP2016507801A (en) * 2012-12-07 2016-03-10 スリーエム イノベイティブ プロパティズ カンパニー Conductive article
US10076026B2 (en) 2012-12-07 2018-09-11 3M Innovative Properties Company Electrically conductive articles
US11449181B2 (en) 2012-12-07 2022-09-20 3M Innovative Properties Company Electrically conductive articles
JP2014188828A (en) * 2013-03-27 2014-10-06 Toppan Printing Co Ltd Transparent conductive film
JP2015133090A (en) * 2014-01-14 2015-07-23 サムソン エレクトロ−メカニックス カンパニーリミテッド. touch panel
JP2016076013A (en) * 2014-10-03 2016-05-12 コニカミノルタ株式会社 Transparent conductive film, manufacturing method thereof, and touch panel

Also Published As

Publication number Publication date
CN102574388B (en) 2014-05-14
JP5423784B2 (en) 2014-02-19
EP2500170A4 (en) 2014-04-02
CN102574388A (en) 2012-07-11
JPWO2011058898A1 (en) 2013-03-28
TW201126547A (en) 2011-08-01
EP2500170A1 (en) 2012-09-19
KR20120101381A (en) 2012-09-13
US20120231248A1 (en) 2012-09-13

Similar Documents

Publication Publication Date Title
JP5423784B2 (en) Conductive laminate and manufacturing method thereof
JP5445042B2 (en) Conductive laminate and touch panel using the same
KR101811068B1 (en) Conductive laminated body and touch panel using the same
JP5793142B2 (en) Conductive laminate and touch panel
KR101918335B1 (en) Nanostructured articles and methods to make the same
JP5521348B2 (en) Transparent conductive laminate
WO2014010270A1 (en) Conductive laminated body, patterned conductive laminated body, method of manufacture thereof, and touch panel employing same
JP2012066580A (en) Transparent conductive laminate
JP5428924B2 (en) Conductive laminate and touch panel using the same
CN107562251B (en) Transferable nanocomposites for touch sensors
KR20220013564A (en) Transparent conductive polyester film and its use
JP2012069515A (en) Transparent conductive laminate and method for manufacturing the same
JP5273325B1 (en) Conductive laminate and display body using the same
JP2012183737A (en) Electroconductive laminate, and touch panel obtained by using the same
JP2014017110A (en) Conductive laminate, and polarizing plate, display, and touch panel device using the same
JP2023159680A (en) transparent conductive film
JP2014102962A (en) Conductive laminate, patterned conductive laminate, its manufacturing method and touch panel using them
JP5560667B2 (en) Method for producing transparent conductive composite material and touch panel using the same
JP2017065053A (en) Conductive laminate
JP2016081210A (en) Conductive laminate and touch panel prepared therewith
TW202346091A (en) Optical laminate, article

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080045653.1

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2011502185

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10829858

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2010829858

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010829858

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127012055

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13509173

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE