WO2011058881A1 - 超微小液滴調製装置 - Google Patents

超微小液滴調製装置 Download PDF

Info

Publication number
WO2011058881A1
WO2011058881A1 PCT/JP2010/069104 JP2010069104W WO2011058881A1 WO 2011058881 A1 WO2011058881 A1 WO 2011058881A1 JP 2010069104 W JP2010069104 W JP 2010069104W WO 2011058881 A1 WO2011058881 A1 WO 2011058881A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic vibration
microchannel
ultrasonic
emulsion
ultrafine
Prior art date
Application number
PCT/JP2010/069104
Other languages
English (en)
French (fr)
Inventor
神田岳文
鈴森康一
小野努
檜垣和孝
大河原賢一
Original Assignee
国立大学法人岡山大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人岡山大学 filed Critical 国立大学法人岡山大学
Priority to JP2011540465A priority Critical patent/JP5645169B2/ja
Publication of WO2011058881A1 publication Critical patent/WO2011058881A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0093Microreactors, e.g. miniaturised or microfabricated reactors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/41Emulsifying
    • B01F23/411Emulsifying using electrical or magnetic fields, heat or vibrations
    • B01F23/4111Emulsifying using electrical or magnetic fields, heat or vibrations using vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/433Mixing tubes wherein the shape of the tube influences the mixing, e.g. mixing tubes with varying cross-section or provided with inwardly extending profiles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/433Mixing tubes wherein the shape of the tube influences the mixing, e.g. mixing tubes with varying cross-section or provided with inwardly extending profiles
    • B01F25/4331Mixers with bended, curved, coiled, wounded mixing tubes or comprising elements for bending the flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F31/00Mixers with shaking, oscillating, or vibrating mechanisms
    • B01F31/80Mixing by means of high-frequency vibrations above one kHz, e.g. ultrasonic vibrations
    • B01F31/86Mixing by means of high-frequency vibrations above one kHz, e.g. ultrasonic vibrations with vibration of the receptacle or part of it
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/30Micromixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00783Laminate assemblies, i.e. the reactor comprising a stack of plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00851Additional features
    • B01J2219/00858Aspects relating to the size of the reactor
    • B01J2219/0086Dimensions of the flow channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00889Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00891Feeding or evacuation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00925Irradiation
    • B01J2219/00932Sonic or ultrasonic vibrations

Definitions

  • the present invention is an apparatus capable of preparing microdroplets (hereinafter also referred to as “emulsion”) in a liquid into ultrafine droplets in the production of pharmaceuticals, electronic materials, foods, cosmetics and the like.
  • the present invention relates to an ultrafine droplet preparation device capable of preparing and producing a chemical emulsion of an anticancer drug into ultrafine droplets.
  • Microdroplets (emulsions) in liquid take the form of o / w (oil in water), w / o (water in oil).
  • o / w oil in water
  • w / o water in oil
  • an emulsion preparation of paclitaxel which is an anticancer agent of a liquid preparation
  • an emulsion is generated by a method based on emulsification using a sound wave vibrator having a frequency of 20 kHz.
  • the method based on emulsification using an ultrasonic transducer probe with a frequency of 20 kHz has heretofore been difficult to obtain an emulsion preparation with a stable diameter, and the apparatus used for production is large and has a high noise level. It was intense. Furthermore, it is a batch (batch) type, and a necessary amount cannot be continuously generated at any time.
  • the present invention provides the following ultrafine droplet preparation apparatus capable of realizing stable miniaturization of a chemical emulsion and miniaturization of a production apparatus.
  • an ultrafine droplet preparation apparatus wherein a microchannel unit that joins a fluid that forms a continuous phase and a fluid that forms a dispersed phase into a single microchannel having a microscopic cross section. And an ultrasonic vibration irradiation unit that irradiates the micro flow path of the micro flow path unit with ultrasonic vibration, and the drive frequency of the ultrasonic vibration irradiation unit matches the resonance frequency of the vibration field that is formed in the micro flow path.
  • an emulsion is formed and the dispersed phase can be prepared into ultrafine droplets.
  • the dispersed phase can be prepared into ultrafine droplets. As a result, the dispersed phase can be stably miniaturized, and droplets having a uniform diameter can be generated.
  • An ultrafine droplet preparation apparatus is the ultrafine droplet preparation apparatus according to the first aspect of the present invention, wherein the ultrasonic vibration is transmitted from an ultrasonic vibration irradiation unit to a microchannel.
  • the antinodes of ultrasonic vibrations are positioned on the propagation surface where the ultrasonic vibrations are propagated in contact with the micro flow path.
  • the ultrasonic vibration is irradiated from the ultrasonic vibration irradiation unit in the depth direction from the entire surface forming one surface of the microchannel, and the ultrasonic wave is transmitted to the propagation surface that is in contact with the microchannel and propagates the ultrasonic vibration.
  • the vibration antinode By positioning the vibration antinode, the drive frequency of the ultrasonic vibration irradiation unit and the resonance frequency of the vibration field formed in the depth direction in the microchannel can be matched.
  • powerful ultrasonic waves can be generated by the resonance phenomenon, and the emulsion generation is realized by uniformly mixing the fluid as the continuous phase and the fluid as the dispersed phase flowing in the microchannel. Can do.
  • An ultrafine droplet preparation apparatus is the ultrafine droplet preparation apparatus according to the first aspect of the invention, wherein the ultrasonic vibration is transmitted from an ultrasonic vibration irradiation unit to a microchannel.
  • the antinode of ultrasonic vibration is located on the propagation surface that propagates ultrasonic vibration while being in contact with the micro flow path.
  • the ultrasonic vibration is irradiated from the ultrasonic vibration irradiation unit in the extending direction of the microchannel, and the antinode of the ultrasonic vibration is positioned on the propagation surface that is in contact with the microchannel and propagates the ultrasonic vibration.
  • the driving frequency of the ultrasonic vibration irradiating unit and the resonance frequency of the vibration field formed in the extending direction in the micro flow path can be matched.
  • powerful ultrasonic waves can be generated by the resonance phenomenon, and the emulsion generation is realized by uniformly mixing the fluid as the continuous phase and the fluid as the dispersed phase flowing in the microchannel. Can do.
  • An ultrafine droplet preparation apparatus is the ultrafine droplet preparation apparatus according to any one of the first to third aspects, wherein the ultrasonic vibration irradiation unit The frequency of the irradiated ultrasonic wave is 2 MHz or more.
  • the frequency of the ultrasonic wave emitted from the ultrasonic vibration irradiation unit is 2 MHz or higher, that is, by using an overwhelmingly higher frequency than the human audible range (about 20 kHz), quietness can be achieved. It can be ensured to reduce noise damage. Therefore, the use at a medical site is also facilitated.
  • the operating frequency (resonance frequency) depends on the size of the device (the smaller the device, the higher the resonance frequency tends to be), but cavitation is less likely to occur as the frequency increases. That is, the frequency dependence of the cavitation threshold value (the intensity of sound causing cavitation) is as shown in FIG. 37 (Source: Japan Electronic Mechanical Manufacturers Association, “Ultrasonic Engineering”, Corona, 1993).
  • the sound intensity when the frequency of the ultrasonic wave irradiated from the ultrasonic vibration irradiation unit is 2 MHz or higher is a value significantly lower than the cavitation threshold value in the MHz order.
  • the prior art includes an apparatus for producing an emulsion using cavitation, but the apparatus using cavitation has a limit in miniaturization, and is combined with a micro (micro) channel as used in the present invention. It is also difficult.
  • the apparatus according to the present invention is significantly different from the prior art using cavitation in that it does not use cavitation.
  • An ultrafine droplet preparation apparatus is the ultrafine droplet preparation apparatus according to any one of claims 1 to 4, wherein the ultrasonic vibration irradiation unit
  • the depth or extension of the microchannel in the direction of irradiation is characterized by being an integral multiple of the half-wavelength of the ultrasonic vibration.
  • the depth of the microchannel in the direction irradiated from the ultrasonic vibration irradiation unit or the extension / extension of the microchannel is set to an integral multiple of the half-wavelength of the ultrasonic vibration, resulting in strong resonance. It is possible to enhance the effect of generating ultrasonic waves.
  • An ultrafine droplet preparation apparatus is the ultrafine droplet preparation apparatus according to any one of the first to fifth aspects, wherein the ultrasonic vibration irradiation unit irradiates the apparatus.
  • the ultrasonic vibration is reflected or refracted by the inner wall surface of the microchannel, and is concentrated at a predetermined position of a micro cross section in the microchannel.
  • the ultrasonic vibration by concentrating the ultrasonic vibration at a predetermined position of a micro cross section in the micro channel, a physical action such as a compression action or a shear action is given to the fluid flowing in the micro channel.
  • a physical action such as a compression action or a shear action is given to the fluid flowing in the micro channel.
  • ultra-fine emulsion 100 nm to 150 nm level in a syringe
  • homogenization homogenization
  • An ultrafine droplet preparation device as set forth in claim 7 is the ultrafine droplet preparation device according to any one of claims 1 to 5, which is irradiated from the ultrasonic vibration irradiation unit.
  • the ultrasonic vibration is reflected or refracted on the inner wall surface of the microchannel, and reflected waves or refracted waves intersect in the microchannel.
  • the shearing action by the reflected wave or refracted wave flowing to the fluid flowing in the micro flow path is increased, and the ultrafine emulsion ( (100 nm to 150 nm level) and homogenization (homogenization) can be realized in a syringe.
  • the pressure acting in the microchannel tends to be uniform, and the homogenization (homogenization) of the emulsion is promoted.
  • An ultrafine droplet preparation apparatus is the ultrafine droplet preparation apparatus according to any one of claims 1 to 5, which is irradiated from the ultrasonic vibration irradiation unit.
  • the ultrasonic vibrations are reflected or refracted on the inner wall surface of the microchannel and diffused in the microchannel.
  • the homogenization (homogenization) of the emulsion can be further promoted.
  • An ultrafine droplet preparation device as set forth in claim 9 is the ultrafine droplet preparation device according to any one of claims 1 to 5, wherein the microchannel is disposed downstream from the upstream side.
  • the drive frequency of the ultrasonic vibration irradiated to each section is divided into a plurality of sections toward the side, and the drive frequency of each section is gradually increased from the upstream side to the downstream side of the microchannel.
  • the driving frequency of the ultrasonic vibration irradiation unit and the resonance frequency in the micro-channel direction need to coincide with each other, it is necessary to generate a strong ultrasonic wave due to the resonance phenomenon, so the driving frequency is of the order (or mode). Set to a different resonant frequency.
  • An ultrafine droplet preparation device as set forth in claim 10 is the ultrafine droplet preparation device according to any one of claims 1 to 5, wherein the microchannel is disposed downstream from the upstream side.
  • the drive frequency of the ultrasonic vibration irradiated to each section is divided into a plurality of sections toward the side, and the drive frequency of each section is gradually decreased from the upstream side to the downstream side of the micro flow path.
  • the driving frequency of the ultrasonic vibration irradiation unit and the resonance frequency in the micro-channel direction need to coincide with each other, it is necessary to generate a strong ultrasonic wave due to the resonance phenomenon, so the driving frequency is of the order (or mode). Set to a different resonant frequency.
  • a fluid as a continuous phase and a fluid as a disperse phase can be mixed uniformly (homogeneously) to produce an emulsion.
  • the fluid as the dispersed phase can be stably miniaturized at the submicron level to form droplets with uniform diameters, and uniform droplet diameter can be ensured. Therefore, it is possible to administer the preparation to a specific site from the relationship with the blood vessel diameter. In particular, the effect of the emulsion preparation at the submicron level is great.
  • the flow system can be a small apparatus integrated with a flow path, continuous processing is simplified. Therefore, it becomes possible to obtain the required amount on demand. And downsizing of the apparatus is also important in terms of enhancing portability. If it is only an emulsion production
  • the damage of noise is extremely small because a frequency that is 2 MHz or higher and an overwhelmingly higher frequency than the human audible range (about 20 kHz) is used. As a result, quietness can be ensured. From the above, it is considered easy to use in the medical field.
  • the effect of the device itself according to the present invention is recognized, a ripple effect for R & D use is also expected.
  • it is small and can stably produce nanoemulsions, so it can be used for the production of formulations using liquid polymer substances and the production of emulsions using various organic materials.
  • Emulsion generation is a technique required not only in the pharmaceutical field but also in a wide range of fields such as food and electronic materials. Because the scale of installation is small and the introduction cost is low, it can also be introduced by small and medium-sized test research institutions and companies. Furthermore, for the same reason, it can be introduced into a medical institution for pets and livestock, which is smaller than a general hospital.
  • Exploded perspective view of an ultrafine droplet preparation apparatus according to the present invention The partially cutaway side view of the ultrafine droplet preparation apparatus which concerns on this invention.
  • wire arrow of FIG. Explanatory drawing of the end surface of the microchannel main body as 1st Embodiment.
  • Explanatory drawing of the end surface of the microchannel main body as 2nd Embodiment.
  • Explanatory drawing of the ultrafine droplet preparation apparatus as 5th Embodiment.
  • the ultrafine droplet preparation apparatus 1 shown in FIG. 1 and FIG. 2 is an ultrafine droplet preparation apparatus according to the present invention.
  • the ultrafine droplet preparation apparatus 1 is configured as a small-sized apparatus with a flow system and a flow path integrated type by integrally connecting the micro flow path section 10 and the ultrasonic vibration irradiation section 30 in a polymerized state. .
  • the micro flow path portion 10 has a small cross section (the flow path width W is equal to the flow path depth D) on the upper surface portion of the substrate 11 formed in the shape of a square plate and has a concave cross section with the upper surface opened.
  • a single microchannel 12 having a square cross section of less than 1 mm is formed.
  • the microchannel 12 is formed by arranging an upstream start end 13 and a downstream end end 14 in the left-right direction and meandering along the upper surface of the substrate 11 in a meandering manner in the front-rear direction. By doing so, the flow path length is ensured to a desired length.
  • substrate 11 can be shape
  • the inflow channel 16 is connected to the start end 13 of the microchannel 12 via the inflow side communication path 15.
  • the proximal end portion of the inflow channel 16 is connected to the distal end portions of a plurality (two in this embodiment) of the first and second branch channels 17 and 18 to form a Y shape.
  • a first fluid supply unit 19 that supplies a fluid as a continuous phase is connected to a proximal end portion of the first branch channel 17, while a fluid as a dispersed phase is connected to a proximal end portion of the second branch channel 18.
  • Reference numeral 21 denotes an outflow side communication path
  • reference numeral 22 denotes an outflow path.
  • the outflow path 22 is connected to the end portion 14 of the microchannel 12 via the outflow side communication path 21.
  • the amount of fluid supplied from each of the first and second fluid supply units 19 and 20 can be adjusted by a control device (such as a personal computer).
  • the ultrasonic vibration irradiation unit 30 is formed of an ultrasonic vibrator 31 that generates ultrasonic vibration and a support body 32 that supports the ultrasonic vibrator 31.
  • the ultrasonic transducer 31 includes a single-plate piezoelectric body and electrodes (not shown) on both sides thereof, and is formed in a square plate shape.
  • the left and right widths of the ultrasonic transducer 31 are formed so as to be slightly wider than the distance between the start end portion 13 and the end end portion 14 of the microchannel 12, and the front-rear width is the microchannel 12 The width is slightly narrower than the front-rear width (front-rear folded width).
  • Reference numerals 33 and 34 denote electric wires having tips connected to electrodes, and the base ends of the wires are connected to a power source. In this way, when an AC voltage is applied between the electrodes, thickness vibration is excited in the piezoelectric body.
  • the support 32 also functions as a vibration plate that propagates the ultrasonic vibration excited by the ultrasonic vibrator 31 to the microchannel unit 10, and is a rectangular plate that is substantially the same shape as the substrate 11 of the microchannel unit 10. It is formed in a shape.
  • An ultrasonic transducer 31 is connected to the center of the upper surface of the support 32, and a number of support screw holes 35 that penetrate the support 32 in the thickness direction are formed around the ultrasonic transducer 31. Yes.
  • a large number of substrate screw holes 23 are formed in the substrate 11 so as to coincide with the support screw holes 35 and penetrate in the thickness direction of the substrate 11, and the lower surface of the support 32 is brought into surface contact with the upper surface of the substrate 11. They are connected to the polymerized state by screws 36.
  • the support 32 can be formed of a metal such as stainless steel (SUS), a material such as plastic, glass, or ceramic.
  • the upper surface of the open microchannel 12 is closed by bringing the lower surface of the support 32 into surface contact with the upper surface of the substrate 11 and connecting them in a polymerized state.
  • vibrator 31 correspond to the resonant frequency of the vibration field formed in the microchannel 12, it is possible to produce an emulsion and prepare a dispersed phase into ultrafine droplets.
  • the ultrasonic transducer 31 is not limited to the above-described configuration, and a stacked piezoelectric actuator in which a piezoelectric layer and an electrode layer are stacked can also be used.
  • the ultrafine droplet preparation apparatus 1 is configured as described above. Then, in the microchannel section 10, a fixed amount of fluid as a continuous phase is supplied from the first fluid supply section 19, and a fixed amount of fluid as a dispersed phase is supplied from the second fluid supply section 20, and both fluids flow in. Combined with the flow path 16, it flows out from the inflow side communication path 15 ⁇ the start end 13 of the micro flow path 12 ⁇ the micro flow path 12 ⁇ the end section 14 of the micro flow path 12 ⁇ the outflow side communication path 21 ⁇ the outflow path 22. I am doing so. At this time, the fluid as the continuous phase and the fluid as the dispersed phase are emulsified by a shearing action when flowing in the microchannel 12 while meandering. That is, the microchannel unit 10 functions as a microreactor that makes a fluid as a dispersed phase into micro droplets at a micro level. The emulsified fluid can be recovered by flowing out through the outflow channel 22.
  • the vibration of the ultrasonic wave excited by the ultrasonic vibrator 31 is propagated in the thickness direction of the ultrasonic vibrator 31 and the support 32, and as shown in FIG.
  • the fluid flowing in the microchannel 12 from the support 32 is propagated in the depth direction of the microchannel 12.
  • U is ultrasonic vibration.
  • the drive frequency of the ultrasonic transducer 31 coincides with the resonance frequency in the depth direction of the microchannel 12, powerful ultrasonic waves are generated by the resonance phenomenon.
  • t is the thickness of the support 32
  • t ′ is the thickness of the ultrasonic transducer 31
  • ⁇ and ⁇ ′ are wavelengths obtained from the sound velocity of the support material and the ultrasonic transducer material
  • n is an integer. is there.
  • the thickness t of the support 32 and the thickness t ′ of the ultrasonic transducer 31 are 0.5 times the wavelengths ⁇ and ⁇ ′ obtained from the sound speeds of the support material and the ultrasonic transducer material, respectively.
  • a powerful ultrasonic wave is generated by a resonance phenomenon. Then, a strong ultrasonic wave generation effect due to the resonance phenomenon is caused such that the antinode of the ultrasonic vibration is positioned on the lower surface (propagation surface) of the support body 32 that is in contact with the microchannel 12 and propagates the ultrasonic vibration. I try to do it.
  • the depth D of the microchannel 12 coincide with 0.5 times the wavelength obtained from the speed of sound in the fluid flowing in the microchannel 12 or an integer multiple thereof, the resonance channel is more powerful. Sound waves are generated.
  • the frequency of the ultrasonic vibration irradiated from the ultrasonic transducer 31 (the driving frequency of the ultrasonic transducer 31) is a high frequency of 2 MHz or more (preferably 2.25 MHz), that is, the human audible range (20 kHz).
  • the frequency that is overwhelmingly higher than that of (about) quietness can be ensured and noise damage can be reduced. Therefore, the use at a medical site is also facilitated.
  • the fluid as the continuous phase flowing in the micro flow channel 12 and the fluid as the dispersed phase are mixed uniformly (homogeneously) to realize emulsion generation. can do.
  • the dispersed phase can be prepared into ultrafine droplets (100 nm to 150 nm level in a syringe). As a result, the dispersed phase can be stably miniaturized, and droplets having a uniform diameter can be generated.
  • the ultrafine droplet preparation apparatus 1 as the second embodiment has the same basic structure as the ultrafine droplet preparation apparatus 1 of the first embodiment.
  • the shape of the path 12 is different. That is, the ultrasonic vibration irradiated from the ultrasonic vibration irradiation unit 30 is reflected by the inner wall surface of the microchannel 12 so that the reflected wave is concentrated at a predetermined position K of the micro cross section in the microchannel 12. Yes.
  • the inner wall surface of the microchannel 12 is made into inclined surfaces 12a, 12a that are symmetrical with respect to the left and right lines, and the cross-sectional shape of the microchannel 12 is formed in an inverted isosceles triangle shape with the apex portion 12b having an acute angle.
  • the ultrasonic vibrations at a predetermined position K of the micro cross section in the micro flow channel 12, it compresses the fluid flowing in the micro flow channel 12 (especially when it is large, cavitation) action or shear action.
  • ultrafine emulsion at a level of 100 nm to 150 nm in a syringe
  • homogenization homogenization
  • the inner wall surface of the micro-channel 12 serving as a reflective surface is not limited to a simple inclined surface, and for example, by forming an ultrasonic horn shape according to an exponential function or the like, The action of ultrasonic waves on the side) can be increased.
  • the cross-sectional shape of the microchannel 12 is formed in an inverted isosceles triangle shape with the apex portion 12b having an obtuse angle, and the ultrasonic vibration irradiated from the ultrasonic vibration irradiation unit 30 is microscopic. It is also possible to configure such that the reflected wave intersects within the microchannel 12 by being reflected by the inner wall surface of the channel 12.
  • the shearing action by the reflected waves with respect to the fluid flowing in the microchannel 12 is increased, and the ultrafine emulsion (100 nm in the syringe) is obtained. ⁇ 150 nm level) and homogenization (homogenization).
  • the pressure acting in the microchannel tends to be uniform, and the homogenization (homogenization) of the emulsion is promoted.
  • the ultrafine droplet preparation apparatus 1 as the third embodiment has the same basic structure as the ultrafine droplet preparation apparatus 1 of the first embodiment.
  • the shape of the path 12 is different. That is, the lower surface portion of the support body 32 that forms the upper surface of the microchannel 12 is formed as a concave surface 32a that curves upward in an arc shape, and the ultrasonic vibration irradiated from the ultrasonic vibration irradiation unit 30 is the support body 32. It propagates inward and is refracted by the concave surface 32a so as to concentrate at a predetermined position K of the micro cross section in the micro flow path 12.
  • an effect as an acoustic lens can be obtained by forming the concave surface 32a into an arcuate curved surface. Then, by concentrating the ultrasonic vibrations at a predetermined position K of the micro cross section in the micro channel 12, the fluid flowing in the micro channel 12 can be compressed (particularly cavitation) or sheared. By imparting a physical action, it is possible to achieve ultra-fine emulsion (100 nm to 150 nm level in a syringe) and homogenization (homogenization). Note that the location where the ultrasonic waves converge can be freely set by changing the curvature of the concave surface 32a formed in an arc shape.
  • the ultrafine droplet preparation apparatus 1 as the fourth embodiment has the same basic structure as the ultrafine droplet preparation apparatus 1 of the first embodiment.
  • the shape of the path 12 is different. That is, the ultrasonic vibration irradiated from the ultrasonic vibration irradiation unit 30 is refracted on the inner wall surface of the microchannel 12 and diffused into the microchannel.
  • the portion of the lower surface of the support 32 that forms the upper surface of the microchannel 12 is formed on a convex surface 32b that is curved downward in an arc shape, and the ultrasonic vibration irradiated from the ultrasonic vibration irradiation unit 30 is The light propagates through the support 32 and is refracted by the convex surface 32 b so as to be diffused within a micro cross section in the microchannel 12.
  • an effect as an acoustic lens can be obtained by forming the convex surface 32b into an arcuate curved surface. Then, by diffusing the ultrasonic vibration into the micro flow path, the homogenization (homogenization) of the emulsion can be further promoted. In addition, by changing the curvature of the convex surface 32b formed in an arc shape and appropriately changing the diffusion state of the ultrasonic wave, homogenization (homogenization) of the emulsion can be promoted.
  • the lower surface of the microchannel 12 is formed on a convex surface (not shown) that is curved upward in an arc shape, and the ultrasonic vibration irradiated from the ultrasonic vibration irradiation unit 30 is It can also be configured such that the reflected wave is diffused in the microchannel 12 by being reflected by the convex surface of the microchannel 12. Also in this case, the homogenization (homogenization) of the emulsion can be further promoted.
  • the ultrafine droplet preparation apparatus 1 as the fifth embodiment has the same basic structure as the ultrafine droplet preparation apparatus 1 of the first embodiment.
  • the road 12 is divided into a plurality of sections (in the present embodiment, the first section Z1 to the fourth section Z4) from the upstream side to the downstream side, and a total of more than four are associated with each of the first section Z1 to the fourth section Z4.
  • the ultrasonic transducers 31 are arranged so that the drive frequencies of the ultrasonic vibrations emitted from the ultrasonic transducers 31 are different, and the drive frequencies of the ultrasonic transducers 31 in each of the first section Z1 to the fourth section Z4.
  • the driving frequency of the ultrasonic transducer 31 and the resonance frequency in the direction of the microchannel 12 need to be matched, it is necessary to generate a strong ultrasonic wave due to the resonance phenomenon, and therefore the driving frequency is the order (or mode). Set to different resonance frequencies.
  • the ultrafine droplet preparation apparatus 1 as the sixth embodiment has the same basic structure as the ultrafine droplet preparation apparatus 1 of the fifth embodiment.
  • the driving frequencies of the ultrasonic transducers 31 in the first section Z1 to the fourth section Z4 are different in that they are gradually decreased in a stepped manner from the upstream side to the downstream side of the microchannel 12.
  • the ultrafine droplet preparation apparatus 1 as the seventh embodiment has the same basic structure as the ultrafine droplet preparation apparatus 1 as the first embodiment described above. However, it is different in that the microchannel 12 is three-dimensionally formed. That is, the micro flow channel 12 of the first embodiment is formed by meandering the narrow string-shaped flow channels on the same plane, whereas the micro flow channel 12 of the seventh embodiment is a thin-band flow. The difference is that the path is formed by meandering in the ultrasonic irradiation direction.
  • an ultrafine droplet preparation apparatus 1 as a seventh embodiment is configured by laminating a substrate 11, a flow path forming body 25, and a support 32 in a polymerized state. Yes.
  • the flow path forming body 25 is formed in a rectangular plate shape that is substantially the same shape as the substrate 11 and has a slightly thin plate thickness.
  • a plate thickness direction flow path 12c extending in the width direction and narrow in the longitudinal direction is formed so as to penetrate in the plate thickness direction (vertical direction in the present embodiment).
  • a large number of plate thickness direction flow paths 12c are formed at regular intervals in the longitudinal direction of the flow path forming body 25.
  • Each thickness direction flow path 12c communicates with the adjacent one plate thickness direction flow path 12c and the lower ends thereof via the lower end longitudinal direction flow path 12d, and the other adjacent thickness direction flow path 12c and the upper end part. They communicate with each other via the upper end longitudinal flow path 12e.
  • a diffusion channel 26 communicates with the plate thickness direction channel 12c over the entire width.
  • Reference numeral 27 denotes a flow path communication path that communicates with the base end side of the diffusion flow path 26, and the base end portion of the flow path communication path 27 communicates with the inflow side communication path 15 formed in the substrate 11.
  • the plate thickness direction channel 12c, the upper end longitudinal channel 12e, and the diffusion channel 26 are closed at the upper end by the support 32, and the plate thickness direction channel 12c and the lower end longitudinal channel 12d are the lower end surfaces. Is closed by the substrate 11 to form the microchannel 12. Then, the fluid supplied from the first and second fluid supply units 19 and 20 flows while meandering the microchannel 12 through the inflow side communication channel 15 ⁇ the channel communication channel 27 ⁇ the diffusion channel 26. At this time, ultrasonic waves are propagated from the ultrasonic transducer 31 through the support body 32 along the extending direction to the plate thickness direction flow paths 12c.
  • FIG. 14 is a pressure distribution in the plate thickness direction flow path 12c (ultrasonic irradiation is from the lower surface). A pressure distribution of a plurality of wavelengths is formed in the flow path extending direction of the plate thickness direction flow path 12c.
  • the ultrafine droplet preparation apparatus 1 as the eighth embodiment has the same basic structure as the ultrafine droplet preparation apparatus 1 as the first embodiment described above. However, it is different in that the microchannel 12 is three-dimensionally formed. In other words, the micro flow channel 12 of the first embodiment is in a state in which a narrow string-shaped flow path is meandered on the same plane, whereas the micro flow path 12 of the eighth embodiment is a thin string-shaped flow path. The difference is that the flow path is formed to meander in the ultrasonic wave irradiation direction.
  • an ultrafine droplet preparation apparatus 1 as an eighth embodiment is configured by laminating a substrate 11, a flow path forming body 25, and a support 32 in a polymerized state. Yes.
  • the flow path forming body 25 is formed in a rectangular plate shape substantially the same as the substrate 11.
  • a concave channel 12f extending in the width direction is formed in the channel forming body 25.
  • a large number of the concave channel 12f are formed at regular intervals in the longitudinal direction of the channel forming body 25.
  • a plate thickness direction vertical flow channel 12g is formed through both ends of each concave channel 12f in the plate thickness direction (vertical direction in the present embodiment).
  • Reference numeral 28 denotes a flow passage communication passage communicating with the end of the concave flow passage 12 d, and a proximal end portion of the flow passage communication passage 28 communicates with the inflow side communication passage 15 formed in the substrate 11.
  • the upper end surface of the concave channel 12f is closed by the support 32, and the lower end longitudinal horizontal channel 12h is closed by the substrate 11 to form the microchannel 12.
  • the fluid supplied from the first and second fluid supply units 19 and 20 flows while meandering through the micro flow path 12 through the inflow side communication path 15 ⁇ the flow path communication path 28.
  • the ultrasonic wave propagates from the ultrasonic transducer 31 through the support body 32 along the depth direction of each concave channel 12f and along the extending direction of each longitudinal channel 12g in the plate thickness direction. Is done.
  • the ultrafine droplet preparation apparatus 1 has the same basic structure as the ultrafine droplet preparation apparatus 1 of the first embodiment.
  • Reference numeral 40 denotes a Y-type microchannel formed by connecting the inflow channel 16 and the first and second branch channels 17 and 18 in a Y shape.
  • 41 is an aqueous phase supply syringe pump as the first fluid supply unit 19
  • 42 is an oil phase supply syringe pump as the second fluid supply unit
  • 43 is an emulsion recovery container
  • E is a produced emulsion.
  • the channel width of the first branch channel 17 was 141 ⁇ m
  • the channel width of the second branch channel 18 was 104 ⁇ m
  • the channel width of the inflow channel 16 was 137 ⁇ m.
  • the microchannel 12 of the microchannel section 10 has a channel width W of 0.711 mm, a channel depth D of 0.35 mm, and a corner radius of curvature, as shown in the cross-sectional explanatory diagram of FIG. R1 was formed to 0.3 mm.
  • the front-rear width L of the microchannel 12 is 30.2 mm
  • the curvature radius R2 of the folded portion is 0.6 mm.
  • the substrate 11 was a stainless steel rectangular flat plate with a vertical width of 50 mm, a horizontal width of 80 mm, and a thickness of 7 mm
  • the support 32 was a stainless steel rectangular flat plate with a vertical width of 50 mm, a horizontal width of 80 mm, and a thickness of 5 mm.
  • An aqueous phase (2.25 wt% glycerin aqueous solution) as a continuous phase is supplied from the aqueous phase supply syringe pump 41, and an oil phase (tricaprylin + tricaproin + Tween 80 + lecithin) as a dispersed phase is supplied from the oil phase supply syringe pump 42 as a Y-type micro.
  • An emulsion of a certain size was generated by supplying to the flow path 40.
  • the liquid containing the emulsion generated in the Y-type microchannel 40 was introduced into the microchannel 12, and an ultrasonic voltage was applied to the ultrasonic transducer 31 to irradiate the microchannel 12 with ultrasonic waves. .
  • generated emulsion was collect
  • FIG. 20 shows a state immediately after being discharged from the Y-shaped microchannel 40 (before entering the ultrasonic vibration irradiation unit 30). Although emulsions are produced, there are many variations and large diameters of several tens of micrometers or more.
  • FIG. 21 shows the state of the emulsion after ultrasonic irradiation.
  • the driving frequency of the ultrasonic transducer 31 was 2.25 MHz, and the applied voltage was 100 Vp-p.
  • FIG. 22 shows the result of measuring the emulsion diameter by the dynamic light scattering method with a water phase of 100 ⁇ l / min, an oil phase of 1 ⁇ l / min, and an applied frequency of 2.25 MHz—comparison of applied voltage.
  • Table 1 shows P.d.i values at the time of voltage change at each voltage, that is, at a frequency of 2.25 MHz.
  • the P.d.i value is an abbreviation for polydisperse degree index (polydispersity index), and is a value serving as an index of whether or not monodispersion. Generally, it is said that it is monodisperse if it is 10% or less.
  • FIG. 22 shows that the peak of the emulsion generated by increasing the applied voltage narrows, and an emulsion having a size of about 200 nm is generated. However, on the other hand, it can be seen that an emulsion having a size of several ⁇ m remains a little. Moreover, it can be seen from Table 1 that the value of P.d.i is small and close to monodispersion.
  • FIG. 23 shows that the flow ratio of water phase: oil phase is 100: 2 (100-2 ⁇ l / min), 100: 5 (100-5 ⁇ l / min), 100: 8 (100-8 ⁇ l / min), and the applied frequency is 2.25 MHz.
  • the measurement result of the emulsion diameter by the dynamic light scattering method and the oil phase flow rate comparison are shown. As a result, it was found that a uniform emulsion can be produced up to a flow rate ratio of water phase: oil phase of 100: 5 (100-5 ⁇ l / min).
  • Experiment 2 As Experiment 2, an experiment was conducted to examine the effect of changing the frequency on emulsion generation.
  • the frequency was changed to 83 kHz, which is one of the frequencies at which resonance can be obtained by the ultrasonic vibration irradiation unit 30.
  • the flow rate conditions were fixed at 100 ⁇ l / min in the water phase and 1 ⁇ l / min in the oil phase, and the emulsion conditions were tested with the same chemical conditions. As a result, the state of emulsion generation was different from that in Experiment 1.
  • FIG. 27 a photograph of the emulsion produced using the Y-shaped microchannel 40 is shown in FIG. 27 (upper magnification of 5 times, lower magnification of 20 times). From FIG. 27, it can be seen that there is variation in the size of the generated emulsion.
  • a photograph of the emulsion after ultrasonic irradiation at a driving frequency of 83 kHz is shown in FIG. 28 (upper magnification of 5 times, lower magnification of 20 times). The applied voltage was 150 Vp-p. From FIG. 28, it can be seen that an emulsion having a small droplet size is generated, but an emulsion having a large droplet size still remains.
  • FIG. 29 shows the measurement result of the emulsion diameter after ultrasonic irradiation at a driving frequency of 83 kHz by the dynamic light scattering method. FIG. 29 also shows that the size of the produced emulsion varies.
  • the experiment was performed by changing the drive frequency to 2.25 MHz which is the thickness resonance frequency by the ultrasonic vibrator 31.
  • the experiment was conducted with the flow rate set to 100 ⁇ l / min for the water phase, 1 ⁇ l / min for the oil phase, and the applied voltage set to 100 Vp-p.
  • the results are shown in FIG. 30 (upper magnification 20 times, lower magnification 50 times).
  • an experiment was conducted at a drive frequency of 1.354 MHz, which can obtain resonance in the high-frequency MHz region.
  • the experiment was performed at an applied voltage of 50 Vp-p, with the flow rate and the water phase / oil phase conditions being the same as the production conditions of the chemical used as the drug.
  • FIG. 31 A photograph of the emulsion at this time is shown in FIG. 31 (upper magnification 20 times, lower magnification 50 times). From the comparison between FIG. 30 and FIG. 31, it can be seen that the droplet diameter of the produced emulsion is clearly smaller when the frequency is 2.25 MHz. From the above, it can be said that the drive frequency of 2.25 MHz is the best frequency in the current apparatus.
  • the produced emulsion has a size of about 200 nm even if the flow rate is changed. Therefore, it is considered that there is almost no influence on the emulsion generation due to the flow rate change. This can also be seen by comparing the P.d.i values in Table 3.
  • Experiment 3 As Experiment 3, an experiment was conducted to examine the influence on the emulsion generation by changing the microchannel volume (extending residence time).
  • the ultrafine droplet preparation apparatus 1 used in Experiment 3 has the same basic structure as the ultrafine droplet preparation apparatus 1 used in Experiment 1, but the flow path of the microchannel 12 of the microchannel section 10 is the same. The difference is that the depth D is 0.65 mm. That is, the residence time of the fluid was increased by deepening the flow path.
  • FIG. 33 shows a pressure distribution in the microchannel 12 having a channel depth D of 0.35 mm used in Experiment 1 (ultrasonic irradiation is from the lower surface). A half-wave pressure distribution is formed in the microchannel 12.
  • FIG. 34 shows the pressure distribution in the microchannel 12 having a channel depth D of 0.65 mm (ultrasonic irradiation is from the lower surface). A pressure distribution of one wavelength is formed in the microchannel 12.
  • FIG. 35 is a graph showing the result of measuring the emulsion diameter by the dynamic light scattering method-the comparison of the channel depth.
  • the distribution of emulsion diameters when the water phase: oil phase is 100-1 ⁇ l / min and the channel depth D is 0.35 mm and the channel depth D is 0.65 mm. From this, it was confirmed that the droplet diameter of the emulsion could be reduced (from 200 nm to 80 nm) by increasing the flow path depth D and increasing the fluid residence time.
  • FIG. 36 is a graph showing a result of measuring the emulsion diameter by the dynamic light scattering method-comparison of channel depth.
  • the distribution of emulsion diameters when the water phase: oil phase is 100-5 ⁇ l / min, and the flow rate D is 0.35 mm and the channel depth D is 0.65 mm at 100-8 ⁇ l / min. From this, it was confirmed that the emulsion droplet size could be reduced and made uniform by increasing the residence time. Thus, by extending the ultrasonic wave irradiation time, the droplet diameter of the emulsion could be reduced and made uniform.
  • the ultrafine droplet preparation apparatus can generate emulsions that are required in a wide range of fields such as pharmaceuticals, foods, and electronic materials. Moreover, since the ultra-small droplet preparation apparatus according to the present invention has a small installation scale and low introduction cost, it can be introduced even by small and medium-sized test research institutions and companies. Furthermore, for the same reason, it can be introduced into a medical institution for pets and livestock, which is smaller than a general hospital.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Mixers With Rotating Receptacles And Mixers With Vibration Mechanisms (AREA)
  • Colloid Chemistry (AREA)
  • Medicinal Preparation (AREA)
  • Cosmetics (AREA)

Abstract

 分散相を安定的に微細化することができて、径の揃った液滴を生成する。 連続相を形成する流体と分散相を形成する流体を、微小断面となした単一のマイクロ流路に合流させるマイクロ流路部と、前記マイクロ流路部のマイクロ流路に超音波振動を照射する超音波振動照射部を備えて、超音波振動照射部の駆動周波数をマイクロ流路内に形成させる振動場の共振周波数に一致させることで、エマルションを生成するとともに分散相を超微小液滴に調製可能とした。従って、超音波振動照射部の駆動周波数とマイクロ流路方向の共振周波数を一致させることで、共振現象により強力な超音波を発生させることができて、この強力な超音波をマイクロ流路に照射することで、マイクロ流路中を流動する連続相としての流体と分散相としての流体を均一(均質)に混合してエマルション生成を実現することができる。分散相は超微小液滴に調製することができる。

Description

超微小液滴調製装置
 本発明は、医薬品、電子材料、食品、化粧品等の生成において、液体中の微小液滴(以下、「エマルション」ともいう。)を超微小液滴に調製することが可能な装置であって、特に、制癌剤の薬液エマルションを超微小液滴に調製して生成することが可能な超微小液滴調製装置に関する。
 液体中の微小液滴(エマルション)は、o/w(oil in water)、w/o(water in oil)などの形を取る。発明者のうち大河原・檜垣らは、液状製剤の抗がん剤であるパクリタキセルのエマルション製剤が効果的であることを確認している。この実験では、周波数20kHzの音波振動子による乳化を基本とした方法により、エマルションを生成している。しかし、従来、安定的に直径が揃ったエマルション製剤を得ることは困難であった。
 一方、このほかにエマルション生成の方法としては、複数のマイクロ流路をY字・T字型に組み合わせた流体のせん断作用を利用する方法が知られている。例えば、岡山大学の吉澤らによるもの(特許文献1)、東大の鳥居らによるもの(特許文献2、特許文献3)がある。このような方法では、物質によっては小さい径を持つエマルション生成に成功しているものの、液体の粘度や表面エネルギーの制約がある。また、発明者である神田らによる超音波振動子と微細孔を組み合わせた装置による液滴生成(特許文献4、特許文献5)では、微細孔の加工限界から直径数マイクロメートル以下のエマルションを生成することは難しい。
特開2008-238117号公報 特開2004-59802号公報 特開2004-67953号公報 特開2008-246277号公報 特開2008-246278号公報
 上記のうち、周波数20kHzの超音波振動子プローブによる乳化を基本とした方法では、従来、安定的に直径が揃ったエマルション製剤を得ることは困難であるうえ、生成に用いる装置は大型かつ騒音の激しいものであった。さらに回分(バッチ)式であり、連続的に必要量を随時生成することはできない。
 また、小型化が容易であるY字型の流路による流体のせん断作用を利用したエマルション生成方法では、上記の製剤についてサブミクロンレベルの安定的なエマルションは得られていない。これはT字型の流路においても同様と考えられる。
 以上のような実状から、薬液エマルションの安定的微細化、生成装置の小型化を実現する必要性が生じている。
 そこで、本発明では、薬液エマルションの安定的微細化、生成装置の小型化を実現することができる下記の超微小液滴調製装置を提供するものである。
 請求項1記載の発明に係る超微小液滴調製装置は、連続相を形成する流体と分散相を形成する流体を、微小断面となした単一のマイクロ流路に合流させるマイクロ流路部と、前記マイクロ流路部のマイクロ流路に超音波振動を照射する超音波振動照射部を備えて、超音波振動照射部の駆動周波数をマイクロ流路内に形成させる振動場の共振周波数に一致させることで、エマルションを生成するとともに分散相を超微小液滴に調製可能としたことを特徴とする。
 このように、超音波振動照射部の駆動周波数とマイクロ流路内に形成させる振動場の共振周波数を一致させることで、共振現象により強力な超音波を発生させることができる。そして、この強力な超音波をマイクロ流路に照射することで、マイクロ流路中を流動する連続相としての流体と分散相としての流体を均一(均質)に混合してエマルション生成を実現することができる。この際、分散相は超微小液滴に調製することができる。その結果、分散相を安定的に微細化することができて、径の揃った液滴を生成することができる。
 請求項2記載の発明に係る超微小液滴調製装置は、請求項1記載の発明に係る超微小液滴調製装置であって、前記超音波振動は超音波振動照射部からマイクロ流路の深さ方向に照射されるとともに、マイクロ流路に面接して超音波振動を伝播する伝播面に超音波振動の腹が位置するようにしたことを特徴とする。
 このように、マイクロ流路の一面を形成する全面から深さ方向に超音波振動照射部から超音波振動を照射するとともに、マイクロ流路に面接して超音波振動を伝播する伝播面に超音波振動の腹を位置させることで、超音波振動照射部の駆動周波数とマイクロ流路内にてその深さ方向に形成させる振動場の共振周波数を一致させることができる。そして、共振現象により強力な超音波を発生させることができて、マイクロ流路中を流動する連続相としての流体と分散相としての流体を均一(均質)に混合してエマルション生成を実現することができる。
 請求項3記載の発明に係る超微小液滴調製装置は、請求項1記載の発明に係る超微小液滴調製装置であって、前記超音波振動は超音波振動照射部からマイクロ流路の伸延方向に照射されるとともに、マイクロ流路に面接して超音波振動を伝播する伝播面に超音波振動の腹が位置するようにしたことを特徴とする。
 このように、マイクロ流路の伸延方向に超音波振動照射部から超音波振動を照射するとともに、マイクロ流路に面接して超音波振動を伝播する伝播面に超音波振動の腹を位置させることで、超音波振動照射部の駆動周波数とマイクロ流路内にてその伸延方向に形成させる振動場の共振周波数を一致させることができる。そして、共振現象により強力な超音波を発生させることができて、マイクロ流路中を流動する連続相としての流体と分散相としての流体を均一(均質)に混合してエマルション生成を実現することができる。
 請求項4記載の発明に係る超微小液滴調製装置は、請求項1~3のいずれか1項記載の発明に係る超微小液滴調製装置であって、前記超音波振動照射部から照射される超音波の周波数は、2MHz以上としたことを特徴とする。
 このように、超音波振動照射部から照射される超音波の周波数を2MHz以上の高い周波数、すなわち、人間の可聴域(20kHz程度)に比べて圧倒的に高い周波数を用いることで、静音性を確保して騒音の被害を小さくすることができる。従って、医療現場での利用も容易となる。
 ここで、使用周波数(共振周波数)は、装置の大きさに依存する(装置が小さいほど共振周波数が高い傾向がある)が、周波数が高くなるとキャビテーションは発生しにくくなる。すなわち、キャビテーション閾値(キャビテーションの生じる音の強さ)の周波数依存性は、図37(出典:(社)日本電子機械工業会、“超音波工学”、コロナ社、1993)に示す通りである。かかるD図よりすると、超音波振動照射部から照射される超音波の周波数が2MHz以上での音の強さは、MHzオーダーでのキャビテーション閾値よりも大幅に低い値である。例えば、2.25MHz駆動の超音波デバイスで得られる音の強さI=0.2844[W/cm]である。そこで、本発明に係る装置では超音波振動照射部から照射される超音波の周波数を2MHz以上とすることで、キャビテーション現象を生じさせることなく、装置の小型化を実現した。しかも、キャビテーション現象が生じないことは装置の寿命を長くすることにつながる。換言すると、先行技術にはキャビテーションを利用したエマルションの生成装置もあるが、キャビテーションを利用する装置は小型化に限界があり、本発明で使用しているような微細(マイクロ)流路との組み合わせも困難である。このように、本発明に係る装置はキャビテーションを利用したものではない点で、キャビテーションを利用した先行技術とは大きく異なる。
 請求項5記載の発明に係る超微小液滴調製装置は、請求項1~4のいずれか1項記載の発明に係る超微小液滴調製装置であって、前記超音波振動照射部から照射される方向のマイクロ流路の深さないしはマイクロ流路の伸延長さは、超音波振動の振幅半波長の整数倍としたことを特徴とする。
 このように、超音波振動照射部から照射される方向のマイクロ流路の深さないしはマイクロ流路の伸延長さを、超音波振動の振幅半波長の整数倍とすることで、共振現象による強力な超音波発生効果を高めることができる。
 請求項6記載の発明に係る超微小液滴調製装置は、請求項1~5のいずれか1項記載の超微小液滴調製装置であって、前記超音波振動照射部から照射される超音波振動は、前記マイクロ流路の内壁面で反射ないしは屈折させて、マイクロ流路内における微小断面の所定箇所に集中させるようにしたことを特徴とする。
 このように、超音波振動をマイクロ流路内における微小断面の所定箇所に集中させることで、マイクロ流路中を流動している流体に圧縮作用やせん断作用等の物理的な作用を付与して、エマルションの超微細化(注射器中で100nm~150nmレベル)と均一化(均質化)を実現することができる。つまり、血管内皮の間隙が100nm~200nmであり、かかる血管内皮の間隙を透過可能なエマルション径(分散相を超微小液滴)に調整することができる。
 請求項7記載の本発明に係る超微小液滴調製装置は、請求項1~5のいずれか1項記載の超微小液滴調製装置であって、前記超音波振動照射部から照射される超音波振動は、前記マイクロ流路の内壁面で反射ないしは屈折させて、マイクロ流路内で反射波ないしは屈折波が交差するようにしたことを特徴とする。
 このように、マイクロ流路内で反射波ないしは屈折波を交差させることで、マイクロ流路中を流動している流体に対する反射波ないしは屈折波によるせん断作用を増大させて、エマルションの超微細化(注射器中で100nm~150nmレベル)と均一化(均質化)を実現することができる。この際、マイクロ流路内で作用する圧力は均一化される傾向となり、エマルションの均一化(均質化)が促進される。
 請求項8記載の本発明に係る超微小液滴調製装置は、請求項1~5のいずれか1項記載の超微小液滴調製装置であって、前記超音波振動照射部から照射される超音波振動は、前記マイクロ流路の内壁面で反射ないしは屈折させて、マイクロ流路内に拡散させるようにしたことを特徴とする。
 このように、超音波振動をマイクロ流路内に拡散させることで、エマルションの均一化(均質化)をより一層促進させることができる。
 請求項9記載の本発明に係る超微小液滴調製装置は、請求項1~5のいずれか1項記載の超微小液滴調製装置であって、前記マイクロ流路を上流側から下流側に向けて複数に区分けし、各区分に照射される超音波振動の駆動周波数を異ならせるとともに、各区分の駆動周波数はマイクロ流路の上流側から下流側に向けて漸次増大させたことを特徴とする。
 このように、駆動周波数をマイクロ流路の上流側から下流側に向けて漸次増大させることで、流体の種類に応じて効率良くエマルション生成を実現することができる。ここで、超音波振動照射部の駆動周波数とマイクロ流路方向の共振周波数は一致させることで、共振現象により強力な超音波を発生させる必要性があるため、駆動周波数は次数(あるいはモード)の異なる共振周波数に設定する。
 請求項10記載の本発明に係る超微小液滴調製装置は、請求項1~5のいずれか1項記載の超微小液滴調製装置であって、前記マイクロ流路を上流側から下流側に向けて複数に区分けし、各区分に照射される超音波振動の駆動周波数を異ならせるとともに、各区分の駆動周波数はマイクロ流路の上流側から下流側に向けて漸次減少させたことを特徴とする。
 このように、駆動周波数をマイクロ流路の上流側から下流側に向けて漸次減少させることで、流体の種類に応じて効率良くエマルション生成を実現することができる。ここで、超音波振動照射部の駆動周波数とマイクロ流路方向の共振周波数は一致させることで、共振現象により強力な超音波を発生させる必要性があるため、駆動周波数は次数(あるいはモード)の異なる共振周波数に設定する。
 本発明では、連続相としての流体と分散相としての流体を均一(均質)に混合してエマルション生成を実現することができる。しかも、分散相としての流体は、サブミクロンレベルで安定的に微細化して、径の揃った液滴となすことができて、液滴の径の均一化を確保することができる。そのため、血管径との関係から特定部位への製剤投与が可能となる。特に、サブミクロンレベルのエマルション製剤の効果は大きい。
 また、本発明では、フロー系で流路一体型の小型の装置とすることができるため、連続的処理が簡易となる。そのため、必要量をオンデマンドに得ることが可能となる。そして、装置の小型化は、可搬性を高められるという点でも重要である。エマルション生成部だけであれば手のひら大であり、周辺装置を含めても数十cm角程度に設置可能の装置を構成することができる。また、エマルション生成部は小型かつ一体であるため、オートクレイブによる滅菌も比較的容易である。その結果、エマルション生成過程において外気に触れないフロー型システムによる無菌性の確保が実現できる。また、本発明では2MHz以上と、人間の可聴域(20kHz程度)に比べて圧倒的に高い周波数を用いるため、騒音の被害が非常に小さい。その結果、静音性を確保することができる。以上から、医療現場での利用も容易と考えられる。
 本発明に係る装置自体の効果が認められれば研究開発用途への波及効果も期待される。従来の装置に比べて小型で安定的にナノエマルションの生成が可能であるため、一般的に液状の高分子物質を用いた製剤の生成、各種有機材料を用いたエマルション生成にも用いることができる。エマルションの生成は製薬の分野のみならず、食品、電子材料など幅広い分野で必要となっている技術である。設置規模が小さく導入コストが低いため、中小規模の試験研究機関や企業でも導入が可能である。さらに同様の理由から、一般の病院に比べて規模が小さいペット・家畜向けの医療機関への導入も可能となる。
本発明に係る超微小液滴調製装置の分解斜視説明図。 本発明に係る超微小液滴調製装置の一部切欠側面図。 図2のI-I線矢視説明図。 第1実施形態としてのマイクロ流路本体の端面説明図。 支持体と超音波振動子の厚さの説明図。 第2実施形態としてのマイクロ流路本体の端面説明図。 第3実施形態としてのマイクロ流路本体の端面説明図。 第4実施形態としてのマイクロ流路本体の端面説明図。 第5実施形態としての超微小液滴調製装置の説明図。 第6実施形態としての超微小液滴調製装置の説明図。 第7実施形態としての超微小液滴調製装置の分解斜視説明図。 第7実施形態としての超微小液滴調製装置の一部断面側面図。 第7実施形態としてのマイクロ流路の説明図。 第7実施形態としてのマイクロ流路内の圧力分布。 第8実施形態としての超微小液滴調製装置の分解斜視説明図。 第8実施形態としての超微小液滴調製装置の一部断面側面図。 第8実施形態としてのマイクロ流路の説明図。 本発明に係る超微小液滴調製装置としての実験装置の説明図。 マイクロ流路の断面説明図(a)とマイクロ流路の平面説明図(b)。 Y型マイクロ流路で生成されたエマルションの光学顕微鏡写真。 超音波照射されたマイクロ流路で生成されたエマルションの光学顕微鏡写真。 動的光散乱法によるエマルション径の計測結果-印加電圧比較を示すグラフ。 動的光散乱法によるエマルション径の計測結果-油相流量比較を示すグラフ。 駆動周波数2.21MHzにおける超音波照射後のエマルションの光学顕微鏡写真。 駆動周波数2.23MHzにおける超音波照射後のエマルションの光学顕微鏡写真。 駆動周波数2.27MHzにおける超音波照射後のエマルションの光学顕微鏡写真。 Y型マイクロ流路で生成されたエマルションの光学顕微鏡写真。 駆動周波数83kHzにおける超音波照射後のエマルションの光学顕微鏡写真。 駆動周波数83kHzにおける超音波照射後のエマルション径の動的光散乱法による計測結果を示すグラフ。 駆動周波数2.25MHzにおける超音波照射後のエマルションの光学顕微鏡写真。 駆動周波数1.354MHzにおける超音波照射後のエマルションの光学顕微鏡写真。 動的光散乱法による計測結果-流量比較を示すグラフ。 流路深さが0.35mmのマイクロ流路内の圧力分布。 流路深さが0.65mmのマイクロ流路内の圧力分布。 動的光散乱法によるエマルション径の計測結果-流路深さ比較を示すグラフ(水相:油相が100-1μl/min)。 動的光散乱法によるエマルション径の計測結果-流路深さ比較を示すグラフ(水相:油相が100-5μl/min、100-8μl/min)。 キャビテーション閾値の周波数依存性を示すグラフ。
 本発明の実施形態を、図面を参照しながら説明する。
 [第1実施形態]
 図1及び図2に示す1は本発明に係る超微小液滴調製装置である。超微小液滴調製装置1は、マイクロ流路部10と超音波振動照射部30を重合状態にかつ一体的に連結して、フロー系で流路一体型の小型の装置として構成している。
 マイクロ流路部10は、図1~図4に示すように、四角形板状に形成した基板11の上面部に、上面が開口した断面凹状で微小断面(流路幅Wも流路深さDも1mm未満の四角形断面)となした単一のマイクロ流路12を形成している。そして、マイクロ流路12は、上流側の始端部13と下流側の終端部14を左右方向に配置して、中途部を基板11の上面に沿わせて前後方向に折り返し状に蛇行させて形成することで、流路長を所望の長さに確保している。ここで、基板11は、ステンレス鋼(SUS)等の金属、プラスチック、ガラス、セラミック等の材質によって成形することができる。
 マイクロ流路12の始端部13には、流入側連通路15を介して流入流路16を接続している。流入流路16の基端部には複数(本実施形態では二つ)の第1・第2分岐流路17,18の先端部を接続してY字状となしている。第1分岐流路17の基端部には、連続相としての流体を供給する第1流体供給部19を接続する一方、第2分岐流路18の基端部には、分散相としての流体を供給する第2流体供給部20を接続している。21は流出側連通路、22は流出流路であり、マイクロ流路12の終端部14に流出側連通路21を介して流出流路22を接続している。なお、第1・第2流体供給部19,20からそれぞれ供給される流体の量は、制御装置(パソコン等)により調節可能とすることができる。
 超音波振動照射部30は、図1~図3に示すように、超音波振動を生起する超音波振動子31と、この超音波振動子31を支持する支持体32とから形成している。超音波振動子31は、単板の圧電体とその両面の電極(不図示)からなり、四角形板状に形成している。そして、超音波振動子31の左右幅は、図3に示すように、マイクロ流路12の始端部13と終端部14との間隔よりもやや幅広に形成するとともに、前後幅はマイクロ流路12の前後幅(前後折り返し幅)よりもやや幅狭に形成している。33,34は電極に先端を接続した電線であり、電線の基端は電源に接続している。このようにして、電極間に交流電圧が印加されると、圧電体に厚み振動が励起されるようにしている。
 支持体32は、超音波振動子31で励起された超音波振動をマイクロ流路部10に伝播する振動板としても機能するものであり、マイクロ流路部10の基板11と略同形の四角形板状に形成している。支持体32の上面中央部には超音波振動子31を連設して、超音波振動子31の周囲に支持体32の厚さ方向に貫通する多数の支持体用ビス孔35を形成している。基板11には支持体用ビス孔35に符合させて基板11の厚さ方向に貫通する多数の基板用ビス孔23を形成して、基板11の上面に支持体32の下面を面接触させてビス36により重合状態に連結している。支持体32は、ステンレス鋼(SUS)等の金属、プラスチック、ガラス、セラミック等の材質によって成形することができる。
 このように、基板11の上面に支持体32の下面を面接触させて重合状態に連結することで、開口したマイクロ流路12の上面を閉塞している。そして、超音波振動子31の駆動周波数をマイクロ流路12内に形成させる振動場の共振周波数に一致させることで、エマルションを生成するとともに分散相を超微小液滴に調製可能としている。なお、超音波振動子31としては、上記した構成に限らず、圧電体層と電極層が積層された積層型圧電アクチュエータを使用することもできる。
 超微小液滴調製装置1は、上記のように構成しているものである。そして、マイクロ流路部10において、第1流体供給部19から連続相としての流体を一定量供給するとともに、第2流体供給部20から分散相としての流体を一定量供給し、両流体を流入流路16に合流させて、流入側連通路15→マイクロ流路12の始端部13→マイクロ流路12→マイクロ流路12の終端部14→流出側連通路21→流出流路22から流出させるようにしている。この際、連続相としての流体と分散相としての流体は、マイクロ流路12中を蛇行しながら流動する際に、せん断作用によりエマルション化されるようにしている。すなわち、マイクロ流路部10は、分散相としての流体をマイクロレベルに微小液滴化するマイクロリアクタとして機能するようにしている。なお、エマルション化された流体は、流出流路22を通して流出させることで回収することができる。
 また、超音波振動照射部30において、超音波振動子31で励起された超音波の振動は、超音波振動子31と支持体32の厚さ方向に伝播されて、図4に示すように、支持体32からマイクロ流路12内を流動する流体にマイクロ流路12の深さ方向に伝播されるようにしている。図4において、Uは超音波振動である。しかも、超音波振動子31の駆動周波数とマイクロ流路12の深さ方向の共振周波数を一致させることで、共振現象により強力な超音波を発生させるようにしている。
 すなわち、図5に示すように、t=n・λ/2、t’=n’・λ’/2を満たすように設定する。ここで、tは支持体32の厚さ、t’は超音波振動子31の厚さ、λ、λ’はそれぞれ支持体材料、超音波振動子材料の音速から得られる波長、nは整数である。このように、支持体32の厚さtと超音波振動子31の厚さt’を、それぞれ支持体材料、超音波振動子材料の音速から得られる波長λ、λ’の0.5倍またはその整数倍と一致させることで、共振現象により強力な超音波を発生させるようにしている。そして、マイクロ流路12に面接して超音波振動を伝播する支持体32の下面(伝播面)に超音波振動の腹が位置するようにして、共振現象による強力な超音波発生効果が生起されるようにしている。同様に、マイクロ流路12の深さDも、マイクロ流路12中を流動する流体内の音速から得られる波長の0.5倍またはその整数倍と一致させることで、共振現象により強力な超音波を発生させるようにしている。
 ここで、超音波振動子31から照射される超音波振動の周波数(超音波振動子31の駆動周波数)は、2MHz以上(好ましくは2.25MHz)の高い周波数、すなわち、人間の可聴域(20kHz程度)に比べて圧倒的に高い周波数を用いることで、静音性を確保して、騒音の被害を小さくすることができる。従って、医療現場での利用も容易となる。
 そして、この強力な超音波をマイクロ流路12に照射することで、マイクロ流路12中を流動する連続相としての流体と分散相としての流体を均一(均質)に混合してエマルション生成を実現することができる。この際、分散相は超微小液滴(注射器中で100nm~150nmレベル)に調製することができる。その結果、分散相を安定的に微細化することができて、径の揃った液滴を生成することができる。
 [第2実施形態]
 第2実施形態としての超微小液滴調製装置1は、図6に示すように、基本的構造を第1実施形態の超微小液滴調製装置1と同じく構成しているが、マイクロ流路12の形状が異なる。すなわち、超音波振動照射部30から照射される超音波振動は、マイクロ流路12の内壁面で反射させて、マイクロ流路12内における微小断面の所定箇所Kに反射波を集中させるようにしている。具体的には、マイクロ流路12の内壁面を左右線対称の傾斜面12a,12aとなして、マイクロ流路12の断面形状を頂部12bが鋭角の逆二等辺三角形状に形成している。
 このように、超音波振動をマイクロ流路12内における微小断面の所定箇所Kに集中させることで、マイクロ流路12中を流動している流体に圧縮(特に大きい場合はキャビテーション)作用やせん断作用等の物理的な作用を付与して、エマルションの超微細化(注射器中で100nm~150nmレベル)と均一化(均質化)を実現することができる。なお、反射面となるマイクロ流路12の内壁面は、単純な傾斜面に限らず、例えば、指数関数などに従った超音波ホーンの形状となすことで、流路先端側(図5の下側)での超音波の作用を大きくすることができる。
 また、第2実施形態の変形例として、マイクロ流路12の断面形状を頂部12bが鈍角の逆二等辺三角形状に形成して、超音波振動照射部30から照射される超音波振動が、マイクロ流路12の内壁面で反射して、マイクロ流路12内で反射波が交差するように構成することもできる。
 このように、マイクロ流路12内で反射波を交差させることで、マイクロ流路12中を流動している流体に対する反射波によるせん断作用を増大させて、エマルションの超微細化(注射器中で100nm~150nmレベル)と均一化(均質化)を実現することができる。この際、マイクロ流路内で作用する圧力は均一化される傾向となり、エマルションの均一化(均質化)が促進される。
 [第3実施形態]
 第3実施形態としての超微小液滴調製装置1は、図7に示すように、基本的構造を第1実施形態の超微小液滴調製装置1と同じく構成しているが、マイクロ流路12の形状が異なる。すなわち、マイクロ流路12の上面を形成す支持体32の下面の部分を上方へ円弧状に湾曲する凹面32aに形成して、超音波振動照射部30から照射される超音波振動が支持体32内を伝播して凹面32aで屈折されて、マイクロ流路12内における微小断面の所定箇所Kに集中するようにしている。
 このように、凹面32aを円弧状の湾曲面となすことで音響レンズとしての効果が得られる。そして、超音波振動をマイクロ流路12内における微小断面の所定箇所Kに集中させることで、マイクロ流路12中を流動している流体に圧縮(特に大きい場合はキャビテーション)作用やせん断作用等の物理的な作用を付与して、エマルションの超微細化(注射器中で100nm~150nmレベル)と均一化(均質化)を実現することができる。なお、超音波が収束する箇所は、円弧状に形成した凹面32aの曲率を変えることで自由に設定することができる。
 [第4実施形態]
 第4実施形態としての超微小液滴調製装置1は、図8に示すように、基本的構造を第1実施形態の超微小液滴調製装置1と同じく構成しているが、マイクロ流路12の形状が異なる。すなわち、超音波振動照射部30から照射される超音波振動は、マイクロ流路12の内壁面で屈折させて、マイクロ流路内に拡散させるようにしている。具体的には、マイクロ流路12の上面を形成す支持体32の下面の部分を下方へ円弧状に湾曲する凸面32bに形成して、超音波振動照射部30から照射される超音波振動が支持体32内を伝播して凸面32bで屈折されて、マイクロ流路12内における微小断面内で拡散されるようにしている。
 このように、凸面32bを円弧状の湾曲面となすことで音響レンズとしての効果が得られる。そして、超音波振動をマイクロ流路内に拡散させることで、エマルションの均一化(均質化)をより一層促進させることができる。なお、円弧状に形成した凸面32bの曲率を変えることで、超音波の拡散状態を適宜変更することで、エマルションの均一化(均質化)を促進させることができる。
 また、第4実施形態の変形例として、マイクロ流路12の下面を上方へ円弧状に湾曲する凸面(不図示)に形成して、超音波振動照射部30から照射される超音波振動が、マイクロ流路12の凸面で反射して、マイクロ流路12内で反射波が拡散するように構成することもできる。この場合も、エマルションの均一化(均質化)をより一層促進させることができる。
 [第5実施形態]
 第5実施形態としての超微小液滴調製装置1は、図9に示すように、基本的構造を第1実施形態の超微小液滴調製装置1と同じく構成しているが、マイクロ流路12を上流側から下流側に向けて複数(本実施形態では第1区分Z1~第4区分Z4)に区分けし、各第1区分Z1~第4区分Z4に対応させて計4個の超音波振動子31を配置して、各超音波振動子31から照射される超音波振動の駆動周波数を異ならせるとともに、各第1区分Z1~第4区分Z4における各超音波振動子31の駆動周波数はマイクロ流路12の上流側から下流側に向けて漸次階段状に増大させている点で異なる。ここで、超音波振動子31の駆動周波数とマイクロ流路12方向の共振周波数は一致させることで、共振現象により強力な超音波を発生させる必要性があるため、駆動周波数は次数(あるいはモード)の異なる共振周波数に設定する。
 このように、駆動周波数をマイクロ流路の上流側から下流側に向けて漸次階段状に増大させることで、流体の種類や粘性等に応じて効率良くエマルション生成を実現することができる。
 [第6実施形態]
 第6実施形態としての超微小液滴調製装置1は、図10に示すように、基本的構造を第5実施形態の超微小液滴調製装置1と同じく構成しているが、各第1区分Z1~第4区分Z4における各超音波振動子31の駆動周波数はマイクロ流路12の上流側から下流側に向けて漸次階段状に減少させている点で異なる。
 このように、駆動周波数をマイクロ流路12の上流側から下流側に向けて漸次減少させることで、流体の種類や粘性等に応じて効率良くエマルション生成を実現することができる。
 [第7実施形態]
 第7実施形態としての超微小液滴調製装置1は、図11~図13に示すように、前記した第1実施形態としての超微小液滴調製装置1と基本的構造を同じくしているが、マイクロ流路12を立体的に形成している点で異なる。すなわち、第1実施形態のマイクロ流路12は細紐状の流路を同一平面上に蛇行させて形成した状態であるのに対して、第7実施形態のマイクロ流路12は薄帯状の流路を超音波照射方向に蛇行させて形成した状態である点で異なる。
 具体的には、第7実施形態としての超微小液滴調製装置1は、図11に示すように、基板11と流路形成体25と支持体32を重合状態に積層して構成している。流路形成体25は基板11と略同形の四角形板状に形成して、板厚をやや薄肉に形成している。流路形成体25には幅方向に伸延しかつ長手方向に細幅の板厚方向流路12cを板厚方向(本実施形態では上下方向)に貫通させて形成している。そして、板厚方向流路12cは流路形成体25の長手方向に一定の間隔を開けて多数形成している。各板厚方向流路12cは、隣接する一方の板厚方向流路12cと下端部同士を下端長手方向流路12dを介して連通するとともに、隣接する他方の板厚方向流路12cと上端部同士を上端長手方向流路12eを介して連通している。26は板厚方向流路12cと全幅にわたって連通する拡散流路である。27は拡散流路26の基端側と連通する流路連通路であり、流路連通路27の基端部は基板11に形成した流入側連通路15と連通している。
 このようにして、板厚方向流路12cと上端長手方向流路12eと拡散流路26は上端面が支持体32により閉塞され、板厚方向流路12cと下端長手方向流路12dは下端面が基板11により閉塞されて、マイクロ流路12を形成している。そして、第1・第2流体供給部19,20から供給された流体は流入側連通路15→流路連通路27→拡散流路26を通してマイクロ流路12を蛇行しながら流動する。この際、各板厚方向流路12cにはその伸延方向に沿って超音波振動子31から支持体32を介して超音波が伝播される。しかも、超音波振動子31の駆動周波数と板厚方向流路12cの共振周波数を一致させることで、共振現象により強力な超音波を発生させるようにしている。図14は板厚方向流路12c内での圧力分布(超音波照射は下面から)である。板厚方向流路12cの流路伸延方向に複数波長の圧力分布が形成されている。その結果、連続相としての流体と分散相としての流体は、超微細にかつ均一(均質)にエマルション化される。
 [第8実施形態]
 第8実施形態としての超微小液滴調製装置1は、図15~図19に示すように、前記した第1実施形態としての超微小液滴調製装置1と基本的構造を同じくしているが、マイクロ流路12を立体的に形成している点で異なる。すなわち、第1実施形態のマイクロ流路12は細紐状の流路を同一平面上に蛇行させて形成した状態であるのに対して、第8実施形態のマイクロ流路12は細紐状の流路を超音波照射方向にも蛇行させて形成した状態である点で異なる。
 具体的には、第8実施形態としての超微小液滴調製装置1は、図15に示すように、基板11と流路形成体25と支持体32を重合状態に積層して構成している。流路形成体25は基板11と略同形の四角形板状に形成している。流路形成体25には幅方向に伸延する凹条流路12fを形成している。そして、凹条流路12fは流路形成体25の長手方向に一定の間隔を開けて多数形成している。各凹条流路12fの両端部には板厚方向縦流路12gを板厚方向(本実施形態では上下方向)に貫通させて形成している。隣接する板厚方向縦流路12gの下端部同士は下端長手方向横流路12hを介して連通している。28は凹条流路12dの端部と連通する流路連通路であり、流路連通路28の基端部は基板11に形成した流入側連通路15と連通している。
 このようにして、凹条流路12fは上端面が支持体32により閉塞され、下端長手方向横流路12hは下端面が基板11により閉塞されて、マイクロ流路12を形成している。そして、第1・第2流体供給部19,20から供給された流体は流入側連通路15→流路連通路28を通してマイクロ流路12を蛇行しながら流動する。この際、各凹条流路12fにはその深さ方向、また、各板厚方向縦流路12gにはその伸延方向に沿って超音波振動子31から支持体32を介して超音波が伝播される。しかも、超音波振動子31の駆動周波数と振動場である各凹条流路12f及び各板厚方向縦流路12gの共振周波数を一致させることで、共振現象により強力な超音波を発生させるようにしている。その結果、連続相としての流体と分散相としての流体は、超微細にかつ均一(均質)にエマルション化される。
 [実験1]
 図18に示す超微小液滴調製装置1により、薬液エマルションを生成する実験を行った。図18において、超微小液滴調製装置1は第1実施形態の超微小液滴調製装置1と基本的構造を同じくした。40は流入流路16と第1・第2分岐流路17,18をY字状に接続してなるY型マイクロ流路である。41は第1流体供給部19としての水相供給シリンジポンプ、42は第2流体供給部20としての油相供給シリンジポンプ、43はエマルション回収容器、Eは生成されたエマルションである。
 ここで、第1分岐流路17の流路幅は141μm、第2分岐流路18の流路幅は104μm、流入流路16の流路幅は137μmに形成した。マイクロ流路部10のマイクロ流路12は、図19(a)の断面説明図に示すように、流路幅Wは0.711mm、流路深さDは0.35mm、角部の曲率半径R1は0.3mmに形成した。また、図19(b)の平面説明図に示すように、マイクロ流路12の前後幅Lは30.2mm、折り返し部の曲率半径R2は0.6mmに形成した。基板11は縦幅50mm、横幅80mm、厚さ7mmのステンレス鋼製の四角形平板とし、支持体32は縦幅50mm、横幅80mm、厚さ5mmのステンレス鋼製の四角形平板とした。
 水相供給シリンジポンプ41から連続相としての水相(2.25wt%グリセリン水溶液)を、また、油相供給シリンジポンプ42から分散相としての油相(トリカプリリン+トリカプロイン+Tween80+レシチン)をY型マイクロ流路40に供給してある程度の大きさのエマルションを生成した。Y型マイクロ流路40で生成されたエマルションを含む液体を、マイクロ流路12に導入するとともに、超音波振動子31に交流電圧を印加することによって、マイクロ流路12に超音波照射を行なった。そして、生成されたエマルションをエマルション回収容器43に回収して観察し、評価を行った。
 図20にY型マイクロ流路40から吐出された直後(超音波振動照射部30へ入る前)の様子を示す。エマルションが生成されているものの、ばらつきが大きく、直径が数十マイクロメートル以上のものも多い。図21に超音波照射後のエマルションの様子を示す。超音波振動子31の駆動周波数は2.25MHz、印加電圧は100Vp-pにした。
 次に、印加電圧を50Vp-p、80Vp-p、100Vp-pと変化させて実験を行った。これは印加電圧の変化によって生じる、照射強度の違いによるエマルション生成への影響を調べるためである。図22に水相100μl/min、油相1μl/min、印加周波数2.25MHzとした動的光散乱法によるエマルション径の計測結果-印加電圧比較を示す。そして、表1にそれぞれの電圧、つまり周波数2.25MHzにおける電圧変化時のP.d.i値を示す。ここで、P.d.i値とは、polydisperse degree index(多分散度指数)の略で、単分散かどうかの指標となる値である。一般的に10%以下であると単分散といえるといわれている。
Figure JPOXMLDOC01-appb-T000001
 図22から、印加電圧が上がることで生成されるエマルションのピークが狭まり、約200nmの大きさのエマルションが生成されることが分かる。しかし、一方で数μmの大きさのエマルションが少し残っていることが分かる。また、表1から、P.d.iの値は小さくなっており、単分散に近くなっていることが分かる。
 次に、水相の流量を100μl/minで固定し、油相の流量を2μl/min、5μl/min、8μl/minと変化させて実験を行った。これは油相流量の変化によって生じる、水相:油相の流量比の違いによる均一なエマルション生成の影響を調べるためである。図23に水相:油相の流量比が100:2(100-2μl/min)、100:5(100-5μl/min)、100:8(100-8μl/min)、印加周波数2.25MHzとした動的光散乱法によるエマルション径の計測結果-油相流量比較を示す。この結果、水相:油相の流量比が100:5(100-5μl/min)まで均一なエマルションを生成可能であることが分かった。
 次に、共振周波数2.25MHz付近において非共振となるように設定した場合のエマルション生成状況を確認した。すなわち、駆動周波数を2.21MHz、2.23MHz、2.27 MHzに設定してエマルションを生成実験をした。その結果、駆動周波数2.21、2.23、2.27 MHzのいずれにおいても、共振周波数2.25MHzを駆動周波数とした場合とは異なる分布となった。動的光散乱法による測定結果では、特に直径数μm以上に分布が見られる。サブミクロンレベルの液滴の分布も、2.25MHz駆動の際と比べて単調ではない。また、図24~図26に示すように、光学顕微鏡でも大きな液滴が観察され、いずれの場合にもサブミクロンレベルでピークを得ることができず、サブミクロンレベルの液滴のみを生成するには至っていない。
 [実験2]
 実験2として、周波数変更によるエマルション生成への影響を調べる実験を行った。最初に、実験1に使用した超微小液滴調整装置1で、周波数を超音波振動照射部30で共振が得られる周波数の一つである83kHzに変更した。流量の条件を実験1と同様に水相100μl/min、油相1μl/minと固定し、薬品の条件も同一としてエマルション生成実験を行った。この結果、エマルション生成の様子は実験1とは異なるものとなった。
 最初に、Y型マイクロ流路40を用いて生成したエマルションの写真を図27に示す(上段倍率5倍、下段倍率20倍)。図27から、生成されたエマルションの大きさにばらつきがあることが分かる。駆動周波数83kHzにおける超音波照射後のエマルションの写真を図28に示す(上段倍率5倍、下段倍率20倍)。印加電圧は150Vp-pで行った。図28から、生成されたエマルションは、液滴径の小さいエマルションが生成されているが、液滴径の大きなエマルションがまだ残っていることが分かる。駆動周波数83kHzにおける超音波照射後のエマルション径の動的光散乱法による計測結果を図29に示す。図29からも、生成されたエマルションの大きさにばらつきがあることが分かる。
 次に、駆動周波数を超音波振動子31で厚み共振周波数となる2.25MHzに変更して実験を行った。流量を水相100μl/min、油相1μl/minとし、印加電圧を100Vp-pとして実験を行った。その結果を図30に示す(上段倍率20倍、下段倍率50倍)。比較対象として、同じく高周波のMHzの領域で共振を得られる駆動周波数1.354MHzで実験を行った。流量および、水相・油相の条件を薬剤として用いる薬品の生成条件と同じとし、印加電圧50Vp-pで実験を行った。この時のエマルションの写真を図31に示す(上段倍率20倍、下段倍率50倍)。図30及び図31の比較から、生成されたエマルションの液滴径は、明らかに周波数2.25MHzの時の方が小さくなっていることが分かる。以上から、現在の装置においては、駆動周波数2.25MHzが最もよい周波数であるといえる。
 次に、印加周波数2.25MHz、印加電圧100Vp-pとし、水相と油相の流量を変化させて、エマルション生成実験を行った。これは、滞留時間の変化によるエマルション生成への影響を調べるためである。水相と油相の比は100:1とし、水相100μl/min、油相1μl/min、水相200μl/min、油相2μl/min、水相50μl/min、油相0.5μl/minで行った。それぞれの流量における滞留時間を表2に、それぞれの流量におけるP.d.i値を表3に、動的光散乱法による計測結果-流量比較を図32に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 図32から、生成されるエマルションは流量を変化させても200nm程度の大きさとなっている。よって、流量変化によるエマルション生成への影響はほとんどないと考えられる。これは、表3のP.d.i値を比較しても分かる。
 [実験3]
 実験3として、マイクロ流路体積の変更(滞留時間の延長)によるエマルション生成への影響を調べる実験を行った。実験3で使用した超微小液滴調製装置1は、実験1で使用した超微小液滴調製装置1と基本的構造を同じくするが、マイクロ流路部10のマイクロ流路12の流路深さDを0.65mmに形成した点で異なる。すなわち、流路を深くすることで、流体の滞留時間を増加させた。
 図33は実験1で使用した流路深さDが0.35mmのマイクロ流路12内の圧力分布である(超音波照射は下面から)。そのマイクロ流路12内には半波長の圧力分布が形成されている。図34は流路深さDが0.65mmのマイクロ流路12内の圧力分布である(超音波照射は下面から)。そのマイクロ流路12内には1波長の圧力分布が形成されている。図35は、動的光散乱法によるエマルション径の計測結果-流路深さ比較を示すグラフである。つまり、水相:油相が100-1μl/minでの流路深さDが0.35mmと流路深さDが0.65mmにおけるエマルション径の分布である。これより流路深さDを大きくして流体の滞留時間を増加させることで、エマルションの液滴径の減少(200nmから80nmに)を実現できたことを確認することができた。
 また、図36は、動的光散乱法によるエマルション径の計測結果-流路深さ比較を示すグラフである。つまり、水相:油相が100-5μl/min、100-8μl/minでの流路深さDが0.35mmと流路深さDが0.65mmにおけるエマルション径の分布である。これより滞留時間増加によるエマルションの液滴径の減少と均一化が実現できたことを確認することができた。このように、超音波照射時間を長くすることで、エマルションの液滴径を小径化させるとともに均一化させることができた。
 本発明に係る超微小液滴調製装置は、製薬、食品、電子材料など幅広い分野において必要とされているエマルションの生成が可能である。しかも、本発明に係る超微小液滴調製装置は、設置規模が小さく導入コストが低いため、中小規模の試験研究機関や企業でも導入が可能である。さらに同様の理由から、一般の病院に比べて規模が小さいペット・家畜向けの医療機関への導入も可能となる。
 1 超微小液滴調製装置
 10 マイクロ流路部
 11 基板
 12 マイクロ流路
 30 超音波振動照射部
 31 超音波振動子
 32 支持体

Claims (10)

  1.  連続相を形成する流体と分散相を形成する流体を、微小断面となした単一のマイクロ流路に合流させるマイクロ流路部と、
     前記マイクロ流路部に超音波振動を照射する超音波振動照射部を備えて、
     超音波振動照射部の駆動周波数をマイクロ流路内に形成させる振動場の共振周波数に一致させることで、エマルションを生成するとともに分散相を超微小液滴に調製可能としたことを特徴とする超微小液滴調製装置。
  2.  前記超音波振動は超音波振動照射部からマイクロ流路の深さ方向に照射されるとともに、マイクロ流路に面接して超音波振動を伝播する伝播面に超音波振動の腹が位置するようにしたことを特徴とする請求項1記載の超微小液滴調製装置。
  3.  前記超音波振動は超音波振動照射部からマイクロ流路の伸延方向に照射されるとともに、マイクロ流路に面接して超音波振動を伝播する伝播面に超音波振動の腹が位置するようにしたことを特徴とする請求項1記載の超微小液滴調製装置。
  4.  前記超音波振動照射部から照射される超音波の周波数は、2MHz以上としたことを特徴とする請求項1~3のいずれか1項記載の超微小液滴調製装置。
  5.  前記超音波振動照射部から照射される方向のマイクロ流路の深さないしはマイクロ流路の伸延長さは、超音波振動の振幅半波長の整数倍としたことを特徴とする請求項1~4のいずれか1項記載の超微小液滴調製装置。
  6.  前記超音波振動照射部から照射される超音波振動は、前記マイクロ流路の内壁面で反射ないしは屈折させて、マイクロ流路内における微小断面の所定箇所に集中させるようにしたことを特徴とする請求項1~5のいずれか1項記載の超微小液滴調製装置。
  7.  前記超音波振動照射部から照射される超音波振動は、前記マイクロ流路の内壁面で反射ないしは屈折させて、マイクロ流路内で反射波ないしは屈折波が交差するようにしたことを特徴とする請求項1~5のいずれか1項記載の超微小液滴調製装置。
  8.  前記超音波振動照射部から照射される超音波振動は、前記マイクロ流路の内壁面で反射ないしは屈折させて、マイクロ流路内に拡散させるようにしたことを特徴とする請求項1~5のいずれか1項記載の超微小液滴調製装置。
  9.  前記マイクロ流路を上流側から下流側に向けて複数に区分けし、各区分に照射される超音波振動の駆動周波数を異ならせるとともに、各区分の駆動周波数はマイクロ流路の上流側から下流側に向けて漸次増大させたことを特徴とする請求項1~5のいずれか1項記載の超微小液滴調製装置。
  10.  前記マイクロ流路を上流側から下流側に向けて複数に区分けし、各区分に照射される超音波振動の駆動周波数を異ならせるとともに、各区分の駆動周波数はマイクロ流路の上流側から下流側に向けて漸次減少させたことを特徴とする請求項1~5のいずれか1項記載の超微小液滴調製装置。
PCT/JP2010/069104 2009-11-13 2010-10-27 超微小液滴調製装置 WO2011058881A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011540465A JP5645169B2 (ja) 2009-11-13 2010-10-27 超微小液滴調製装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-260180 2009-11-13
JP2009260180 2009-11-13
JP2010209620 2010-09-17
JP2010-209620 2010-09-17

Publications (1)

Publication Number Publication Date
WO2011058881A1 true WO2011058881A1 (ja) 2011-05-19

Family

ID=43991540

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/069104 WO2011058881A1 (ja) 2009-11-13 2010-10-27 超微小液滴調製装置

Country Status (2)

Country Link
JP (1) JP5645169B2 (ja)
WO (1) WO2011058881A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015093205A (ja) * 2013-11-08 2015-05-18 セイコーエプソン株式会社 ナノバブル発生装置
JP2017119243A (ja) * 2015-12-28 2017-07-06 株式会社コンソナルバイオテクノロジーズ 溶液撹拌装置
EP3511069A1 (en) * 2012-08-20 2019-07-17 Resodyn Corporation Mechanical system that continuously processes a combination of materials
US10835880B2 (en) 2017-09-05 2020-11-17 Resodyn Corporation Continuous acoustic mixer
CN112108453A (zh) * 2019-06-19 2020-12-22 国立大学法人东北大学 超声波处理装置以及超声波处理方法
US10967355B2 (en) 2012-05-31 2021-04-06 Resodyn Corporation Continuous acoustic chemical microreactor
US11097240B2 (en) 2017-06-19 2021-08-24 University Industry Foundation, Yonsei University Wonju Campus Pickering emulsion composition using polyimide particles and preparation method thereof
US11110413B2 (en) 2012-05-31 2021-09-07 Resodyn Corporation Mechanical system that fluidizes, mixes, coats, dries, combines, chemically reacts, and segregates materials

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0398634A (ja) * 1989-09-13 1991-04-24 Furuno Electric Co Ltd 超音波分散乳化方法
JPH0459032A (ja) * 1990-06-21 1992-02-25 Nippon Steel Corp 超音波乳化装置
WO2009119578A1 (ja) * 2008-03-25 2009-10-01 国立大学法人岡山大学 微小液滴調製装置
JP2009226271A (ja) * 2008-03-19 2009-10-08 Kanagawa Acad Of Sci & Technol エマルションをプラグ流に変化させる方法及びそのためのマイクロ流路
JP2010269256A (ja) * 2009-05-22 2010-12-02 Hitachi Ltd 液液抽出システム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10325307B3 (de) * 2003-02-27 2004-07-15 Advalytix Ag Verfahren und Vorrichtung zur Durchmischung kleiner Flüssigkeitsmengen in Mikrokavitäten
JP2004354180A (ja) * 2003-05-28 2004-12-16 Kyocera Corp マイクロ化学チップ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0398634A (ja) * 1989-09-13 1991-04-24 Furuno Electric Co Ltd 超音波分散乳化方法
JPH0459032A (ja) * 1990-06-21 1992-02-25 Nippon Steel Corp 超音波乳化装置
JP2009226271A (ja) * 2008-03-19 2009-10-08 Kanagawa Acad Of Sci & Technol エマルションをプラグ流に変化させる方法及びそのためのマイクロ流路
WO2009119578A1 (ja) * 2008-03-25 2009-10-01 国立大学法人岡山大学 微小液滴調製装置
JP2010269256A (ja) * 2009-05-22 2010-12-02 Hitachi Ltd 液液抽出システム

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10967355B2 (en) 2012-05-31 2021-04-06 Resodyn Corporation Continuous acoustic chemical microreactor
US11110413B2 (en) 2012-05-31 2021-09-07 Resodyn Corporation Mechanical system that fluidizes, mixes, coats, dries, combines, chemically reacts, and segregates materials
US11565234B2 (en) 2012-05-31 2023-01-31 Resodyn Corporation Continuous acoustic chemical microreactor
US11794155B2 (en) 2012-05-31 2023-10-24 Resodyn Corporation Mechanical system that fluidizes, mixes, coats, dries, combines, chemically reacts, and segregates materials
EP3511069A1 (en) * 2012-08-20 2019-07-17 Resodyn Corporation Mechanical system that continuously processes a combination of materials
JP2015093205A (ja) * 2013-11-08 2015-05-18 セイコーエプソン株式会社 ナノバブル発生装置
JP2017119243A (ja) * 2015-12-28 2017-07-06 株式会社コンソナルバイオテクノロジーズ 溶液撹拌装置
US11097240B2 (en) 2017-06-19 2021-08-24 University Industry Foundation, Yonsei University Wonju Campus Pickering emulsion composition using polyimide particles and preparation method thereof
US10835880B2 (en) 2017-09-05 2020-11-17 Resodyn Corporation Continuous acoustic mixer
US11623189B2 (en) 2017-09-05 2023-04-11 Resodyn Corporation Continuous acoustic mixer
US11938455B2 (en) 2017-09-05 2024-03-26 Resodyn Corporation Continuous acoustic mixer
CN112108453A (zh) * 2019-06-19 2020-12-22 国立大学法人东北大学 超声波处理装置以及超声波处理方法

Also Published As

Publication number Publication date
JPWO2011058881A1 (ja) 2013-03-28
JP5645169B2 (ja) 2014-12-24

Similar Documents

Publication Publication Date Title
JP5645169B2 (ja) 超微小液滴調製装置
Ahmed et al. A millisecond micromixer via single-bubble-based acoustic streaming
Le et al. Ultrafast star-shaped acoustic micromixer for high throughput nanoparticle synthesis
Connacher et al. Micro/nano acoustofluidics: materials, phenomena, design, devices, and applications
Destgeer et al. Recent advances in microfluidic actuation and micro-object manipulation via surface acoustic waves
Collis et al. Cavitation microstreaming and stress fields created by microbubbles
CN107979352B (zh) 一种薄膜体声波微流控混合装置
Wang et al. Frequency dependence and frequency control of microbubble streaming flows
US6210128B1 (en) Fluidic drive for miniature acoustic fluidic pumps and mixers
Ahmed et al. A fast microfluidic mixer based on acoustically driven sidewall-trapped microbubbles
Hellman et al. Laser-induced mixing in microfluidic channels
JPH11347392A (ja) 攪拌装置
Meng et al. Acoustic aligning and trapping of microbubbles in an enclosed PDMS microfluidic device
US20110127164A1 (en) Non-invasive acoustic technique for mixing and segregation of fluid suspensions in microfluidic applications
JP2013242335A (ja) 音響収束ハードウェアおよび実装のためのシステムおよび方法
KR20090094115A (ko) 초음파 처리 장치, 및 초음파 처리 챔버 및 방법
Agha et al. A review on microfluidic-assisted nanoparticle synthesis, and their applications using multiscale simulation methods
Weber et al. Computational fluid dynamics analysis of microbubble formation in microfluidic flow-focusing devices
US11007495B2 (en) Method and apparatus for generating bubbles
JP4590557B2 (ja) マイクロミキサーおよび流体の撹拌方法並びに流体の混合方法
Lim et al. Acoustically driven micromixing: Effect of transducer geometry
JP2014198327A (ja) 微細気泡製造方法及び製造装置
Ozcelik et al. Fundamentals and applications of acoustics in microfluidics
WO2013184075A1 (en) Microfluidic devices and methods for providing an emulsion of a plurality of fluids
Zhao et al. Ultrasound emulsification in microreactors: effects of channel material, surfactant nature, and ultrasound parameters

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10829841

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011540465

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10829841

Country of ref document: EP

Kind code of ref document: A1