WO2011058779A1 - 光センサ回路、表示パネル、表示装置、及び光センサ回路の駆動方法 - Google Patents

光センサ回路、表示パネル、表示装置、及び光センサ回路の駆動方法 Download PDF

Info

Publication number
WO2011058779A1
WO2011058779A1 PCT/JP2010/060863 JP2010060863W WO2011058779A1 WO 2011058779 A1 WO2011058779 A1 WO 2011058779A1 JP 2010060863 W JP2010060863 W JP 2010060863W WO 2011058779 A1 WO2011058779 A1 WO 2011058779A1
Authority
WO
WIPO (PCT)
Prior art keywords
transistor
wiring
source
voltage
drain
Prior art date
Application number
PCT/JP2010/060863
Other languages
English (en)
French (fr)
Inventor
淳人 村井
一典 森本
幸彦 西山
元 今井
英樹 北川
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US13/508,045 priority Critical patent/US20120241768A1/en
Publication of WO2011058779A1 publication Critical patent/WO2011058779A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04166Details of scanning methods, e.g. sampling time, grouping of sub areas or time sharing with display driving
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/042Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means

Definitions

  • the present invention relates to an optical sensor circuit, a display panel incorporating the optical sensor circuit, a display device, and a driving method of the optical sensor circuit.
  • liquid crystal display device provided with a photosensor circuit in a picture element or a pixel.
  • FIG. 11 is an equivalent circuit diagram of the liquid crystal display panel described in Patent Document 1.
  • FIG. 11 shows the configuration of the nth row extracted from the display area of the liquid crystal display panel.
  • the gate line Gn the gate line Gn
  • the source line S Sm to Sm + 3 are shown in the figure
  • a plurality of picture elements PIX partitioned by the storage capacitor line Csn the reset line Vrstn
  • the read control One or more photosensor circuits 100 connected to the wiring Vrwn are arranged.
  • N at the end of each code indicates a row number
  • “m” indicates a column number.
  • the picture element PIX includes a TFT 101 as a selection element, a liquid crystal capacitor CL, and a holding capacitor CS.
  • the gate of the TFT 101 is connected to the gate line Gn
  • the source is connected to the source line S
  • the drain is connected to the pixel electrode 102.
  • the liquid crystal capacitor CL is a capacitor in which a liquid crystal layer is disposed between the pixel electrode 102 and the common electrode Com
  • the storage capacitor CS is between the pixel electrode 102 or the drain electrode of the TFT 101 and the storage capacitor line Csn.
  • the capacitor is formed by arranging an insulating film. For example, a constant voltage is applied to each of the common electrode Com and the storage capacitor line Csn.
  • the optical sensor circuit 100 is provided in an arbitrary number such as one for each picture element PIX or one pixel (for example, a set of RGB picture elements PIX...), And includes a TFT 100a, a capacitor 100b, and a photodiode 100c. It has.
  • the gate of the TFT 100a is connected to an electrode called node netA here, the drain is connected to one source wiring S (here, Sm), and the source is connected to another source wiring S (here, Sm + 1).
  • the anode of the photodiode 100c is connected to the reset wiring Vrstn, and the cathode is connected to the node netA.
  • One end of the capacitor 100b is connected to the node netA, and the other end is connected to the read control wiring Vrwn.
  • the optical sensor circuit 100 uses a period other than the period during which the data signal is written to the picture element PIX, and converts the voltage appearing at the node netA according to the intensity of light received by the photodiode 100c from the source of the TFT 100a to the sensor output voltage.
  • a sensor readout circuit outside the display area is output via a source wiring S that is output as Vom and is connected to the source (which becomes a sensor output wiring Vom (for convenience, the same sign as the sensor output voltage) at the time of light detection). (Not shown).
  • the TFT 100a functions as a source follower.
  • the source line S connected to the drain of the TFT 100a functions as a power supply line Vsm to which a constant voltage is applied during light detection.
  • the source wiring S, the optical sensor output wiring Vom, and the power supply wiring Vsm are also used, reading of the optical sensor circuit 100 is limited to the retrace period. For this reason, when the display resolution becomes high (VGA, XGA, etc.), when the blanking period becomes short, it becomes difficult to share wiring.
  • the sensor output wiring Vom and the power supply wiring Vsm can be formed as wirings independent of the source wiring S as indicated by broken lines in the vicinity of the source wiring S, respectively.
  • FIG. 12 is a waveform diagram for explaining the operation of the optical sensor circuit 100.
  • a gate pulse composed of, for example, a high level of +21 V and a low level of ⁇ 10 V is output to the gate line Gn, and a data signal is output to each source line S.
  • a constant voltage of +4 V is applied to the storage capacitor line Csn. This operation is repeated every one vertical period (1 V) for the picture elements PIX in each row, but during the writing period, the photodetection result by the photosensor circuit 100 can be output to the sensor readout circuit.
  • the node netA is boosted.
  • the voltage of the node netA is set so as to reach a region exceeding the threshold voltage of the TFT 100a. Since the sensor output voltage Vom output from the source of the TFT 100a while the read pulse Prwn is applied is a value corresponding to the voltage of the node netA, that is, a value corresponding to the light intensity, the sensor output voltage Vom is The light intensity can be detected by reading out with a sensor reading circuit via the sensor output wiring Vom.
  • the optical sensor circuit 100 stops operating until the next reset operation.
  • the reset pulse Prstn is again applied to the reset wiring Vrstn from the external sensor readout circuit, the photodiode 100c becomes conductive in the forward direction, and the voltage of the node netA is reset to the voltage of the reset wiring Vrstn.
  • the node netA is boosted.
  • the voltage of the node netA is set so as to reach a region exceeding the threshold voltage of the TFT 100a. Since the sensor output voltage Vom output from the source of the TFT 100a while the read pulse Prwn is applied is a value corresponding to the voltage of the node netA, that is, a value corresponding to the light intensity, the sensor output voltage Vom is The light intensity can be detected by reading out with a sensor reading circuit via the sensor output wiring Vom.
  • the sensor output voltage is low in the period (3), and the sensor output voltage is high in the period (7).
  • Patent Document 2 discloses an optical sensor circuit as shown in FIG.
  • a Photo TFT composed of a so-called diode-connected TFT in which a gate and a drain are connected to each other is used as a photodiode.
  • the output of the PhotoTFT is connected to the drain of the Readout TFT, which is a TFT for reading out.
  • a sensor output is output from the source of the Readout TFT and is read out to a charge readout amplifier (Charge Readout Amplifier).
  • the optical sensor circuit described in Patent Document 1 has a sensor output S (signal) / N (noise) value, D.R. (sensor output voltage when the intensity of irradiated light is low ⁇ the intensity of irradiated light. There is a problem that the sensor output voltage at the time of high value decreases.
  • the sensor output voltage Vom when the intensity of the irradiated light is low is higher than the sensor output voltage Vom when the intensity of the irradiated light is high. This is because stray light from light improves the driving capability of the sensor output TFT 100a (improves TFT mobility due to stray light) and increases the sensor output voltage Vom.
  • the photodiode 100c is a photoelectric conversion element having a-Si as a photoelectric conversion layer
  • a D.R when light having a wavelength (700 nm or more) with low relative sensitivity of a-Si is used, a D.R. There is a problem that decreases.
  • FIG. 14 is a graph showing sensitivity characteristics with respect to each wavelength of the photodiode 100c using a-Si as a light receiving layer.
  • the relative sensitivity of a-Si described on the vertical axis of the graph is derived from the relationship between the reverse bias current of the photodiode 100c and each wavelength. Specifically, the light of each wavelength is equal energy.
  • the value of the reverse bias current that flows when the photodiode 100c is irradiated is shown.
  • the relative sensitivity when irradiating light with a wavelength of 540 nm is set to 1. That is, the relative sensitivity shown in FIG. 14 is calculated by the following equation (1).
  • I_xnm is a reverse bias current that flows when light of a certain wavelength xnm is irradiated
  • I_540 nm is a reverse bias current that flows when light of a wavelength of 540 nm is irradiated.
  • the relative sensitivity of a-Si is extremely low when the wavelength of irradiation light is 700 nm or more.
  • the DR value is lowered. This is because the reverse bias current of the photodiode 100c is sufficient due to the low sensitivity. This is because the capacitor 102b cannot be sufficiently discharged within a certain period, and the voltage difference of the node netA between the low irradiation light intensity and the high irradiation light intensity cannot be obtained.
  • the intensity of irradiation light is detected by using the discharge due to the reverse bias current of the photodiode 100c. For this reason, sensing requires a predetermined time for discharging, which causes a problem that rapid sensing cannot be performed.
  • FIG. 15 is a graph showing changes in characteristics of the photodiode 100c having a-Si as the light receiving layer with respect to each wavelength.
  • A) of FIG. 15 is a graph showing the absorption for each wavelength of the a-Si single film (170 nm)
  • (b) of FIG. 15 is a graph showing the relative sensitivity for each wavelength of the photodiode 100c.
  • C) of FIG. 15 is a graph which shows the relative characteristic change with respect to each wavelength of the photodiode 100c.
  • the characteristic change means a change in the reverse bias current with respect to the initial reverse bias current when light of each wavelength is continuously irradiated for a certain period of time. That is, the characteristic change rate (characteristic change rate) is calculated by the following equation (2).
  • Characteristic change rate V (%) (1 ⁇ I2 / I1) ⁇ 100 (2)
  • I1 is an initial reverse bias current
  • I2 is a reverse bias current that flows when light of a certain wavelength is irradiated for a certain time.
  • V_xnm is a characteristic change rate when irradiated with light having a certain wavelength xnm
  • V_365nm is a characteristic change rate when irradiated with light having a wavelength of 365nm.
  • the longer the wavelength of the irradiation light the less the absorption of the a-Si single film.
  • the wavelength exceeds 750 nm the irradiation light is hardly absorbed.
  • the longer the wavelength of the irradiation light the smaller the change in characteristics of the photodiode 100c due to absorption of the a-Si single film.
  • the output of the photo TFT which is a photodiode
  • the output of the photodiode is directly loaded from the drain of the readout TFT through the source to the load. Since it is output to the input of the charge readout amplifier and the wiring leading to the input, it is output without being amplified by the Readout TFT. Accordingly, it is necessary to increase the capacitance value of the capacitor Cst2 connected to the output of the PhotoTFT and to turn on the Readout TFT after charging the capacitor Cst2 for a long time by the output of the PhotoTFT.
  • the optical sensor circuit disclosed in Patent Document 2 also detects the intensity of irradiated light by using the discharge caused by the reverse bias current of a photodiode (phototransistor) PhotoTFT, and thus there is a problem that rapid sensing cannot be performed. .
  • the present invention has been made in view of the above-described conventional problems, and an object of the present invention is to suppress a decrease in sensor accuracy and to provide a highly reliable photosensor circuit, a decrease in the aperture ratio of pixels, and the periphery of a display unit.
  • An object of the present invention is to provide a display panel and a display device incorporating the above-described photosensor circuit capable of suppressing an increase in the frame area.
  • an optical sensor circuit of the present invention is an optical sensor circuit including at least a first transistor and a second transistor, wherein the first transistor and the second transistor are provided. Are connected in series, and light is incident on the first transistor, while a light-shielding portion is provided at a position facing the second transistor, and the light irradiation intensity to the first transistor Accordingly, the voltage at the connection point connecting the first transistor and the second transistor changes.
  • the light incident on the first transistor means light of any wavelength. That is, this light includes at least ultraviolet light, visible light, and infrared light.
  • the voltage at the connection point can be quickly changed according to the light receiving state of the first transistor, so that the change in the light receiving state can be detected quickly by sequentially reading this voltage. it can. That is, unlike the conventional case, long-time discharge is not required during sensing, so that detection accuracy can be maintained even when the sensing frequency is increased.
  • the sensor output S / N value can be improved, and the reliability of the optical sensor can be improved.
  • An optical sensor circuit driving method is an optical sensor circuit including a first transistor, a second transistor, a third transistor, and a fourth transistor, wherein the first transistor and the first transistor are provided. 2 is connected in series, and light is incident on the first transistor, while a light-shielding portion is provided at a position facing the second transistor, and the gate of the fourth transistor Is connected to the readout control wiring, the drain is connected to the sensor output wiring, the source is connected to the drain of the third transistor, and the gate of the third transistor is connected to the first transistor and the second transistor.
  • the first to fourth voltage control wirings are wirings for controlling the voltage at the connection point.
  • the fourth transistor A read pulse is applied to the read control wiring connected to the gate of the first transistor, and the voltage appearing at the connection point is changed according to the irradiation intensity of the light received by the first transistor.
  • the fourth sensor output wiring connected to the drain from the drain of the transistor.
  • the sensor output voltage when the intensity of the irradiation light is high can be obtained when the intensity of the irradiation light is low.
  • the sensor output voltage can be higher. Therefore, it is possible to prevent the S / N value (DR value) from being lowered due to the influence of stray light from external light. Thereby, the reliability of the optical sensor circuit can be improved.
  • the change in the light receiving state can be quickly detected by sequentially reading this voltage.
  • the sensor output S / N value can be improved, and the reliability of the optical sensor can be improved.
  • An optical sensor circuit of the present invention is an optical sensor circuit including at least a first transistor and a second transistor, wherein the first transistor and the second transistor are connected in series, and the first transistor In this configuration, the voltage at a connection point connecting the first transistor and the second transistor changes in accordance with the light irradiation intensity to one transistor.
  • FIG. 3 is an equivalent circuit diagram of the display panel according to Embodiment 1 of the present invention. It is a block diagram which shows the structure of the principal part of the liquid crystal display device which concerns on Embodiment 1 of this invention. It is sectional drawing which shows schematic structure of the principal part of the liquid crystal display device which concerns on Embodiment 1 of this invention, (a) shows schematic structure of the principal part of the liquid crystal display device in which the visible light cut filter is not provided, (B) has shown the schematic structure of the principal part of the liquid crystal display device provided with the visible light cut filter. It is a circuit diagram which shows the structure of the principal part of the optical sensor circuit which concerns on Embodiment 1 of this invention.
  • FIG. 6 is an equivalent circuit diagram of a display panel according to Embodiment 2 of the present invention.
  • FIG. 10 is an equivalent circuit diagram of a display panel according to Embodiment 3 of the present invention.
  • FIG. 10 is an equivalent circuit diagram of a display panel according to Embodiment 4 of the present invention.
  • FIG. 10 is an equivalent circuit diagram of a display panel according to Embodiment 5 of the present invention.
  • FIG. 11 is an equivalent circuit diagram of a display panel described in Patent Document 1.
  • FIG. 6 is a waveform diagram for explaining the operation of the optical sensor circuit described in Patent Document 1.
  • FIG. FIG. 11 is an equivalent circuit diagram of a display panel described in Patent Document 2. It is a graph which shows the sensitivity characteristic with respect to each wavelength of the photodiode 100c which uses a-Si as a light receiving layer. It is a graph which shows the characteristic change with respect to each wavelength of the photodiode 100c which uses a-Si as a light receiving layer.
  • FIG. 2 is a block diagram showing a configuration of a main part of the liquid crystal display device (display device) according to the present embodiment.
  • the liquid crystal display device 10 is an active matrix display device, and includes a display panel 1, a display scanning signal line drive circuit 2, a display data signal line drive circuit 3, a sensor scanning signal line drive circuit 4, a sensor readout circuit 5, A power supply circuit 6 and a sensing image processing device 7 are provided.
  • the display panel 1 is a display in which a plurality of gate lines G and a plurality of source lines S intersecting each other, and picture elements PIX provided corresponding to the intersections of the gate lines G and the source lines S are arranged in a matrix. Region 8 is provided.
  • the display scanning signal line drive circuit 2 drives the gate wiring G by sequentially outputting a scanning signal for selecting the pixel PIX for writing the data signal to each gate wiring G.
  • the display data signal line drive circuit 3 drives the source line S by outputting a data signal to each source line S.
  • the sensor scanning signal line drive circuit 4 sequentially drives the sensor scanning signal lines E by sequentially outputting scanning signals (voltages Vc1 to Vc4, voltage Vrw) for operating the optical sensor circuit 20 to each sensor scanning signal line E. To do.
  • the sensor readout circuit 5 reads the sensor output voltage Vo (for the sake of convenience, using the same sign as the sensor output wiring) from each sensor output wiring Vo and supplies the power supply voltage to the power supply wiring Vs.
  • the power supply circuit 6 supplies power necessary for the operation of the display scanning signal line drive circuit 2, the display data signal line drive circuit 3, the sensor scan signal line drive circuit 4, the sensor readout circuit 5, and the sensing image processing device 7. Supply.
  • the sensing image processing device 7 analyzes the distribution of sensor detection results within the surface of the display panel 1 based on the sensor output voltage Vo read by the sensor readout circuit 5.
  • the liquid crystal display device shown in FIG. 2 is an example, and is not limited to this configuration.
  • the functions of the sensor scanning signal line drive circuit 4 and the sensor readout circuit 5 are, for example, the display scanning signal line drive circuit 2. And other circuits such as the display data signal line driving circuit 3 may be provided.
  • the function of the sensor readout circuit 5 may be provided in the sensing image processing device 7. Further, the sensing image processing device 7 may be provided in the liquid crystal display device 10 as an LSI or a computer configuration, but may be provided outside the liquid crystal display device 10. Similarly, the sensor readout circuit 5 may be provided outside the liquid crystal display device 10.
  • FIG. 3 is a cross-sectional view showing a schematic configuration of a main part of the liquid crystal display device according to the present embodiment.
  • the display panel 1 has a configuration in which a liquid crystal layer 50 is sandwiched between a counter substrate 30 and an active matrix substrate 40.
  • the active matrix substrate 40 has a polarizing plate 32 formed on one surface of an insulating substrate 31 made of a glass plate or the like, and the optical sensor circuit 20 and the display element driving circuit 21 formed on the other surface of the insulating substrate 31. Yes.
  • the counter substrate 30 has a color filter layer 33, a counter electrode, an alignment film (not shown), and the like formed on one surface of an insulating substrate 31 made of a glass plate or the like.
  • a polarizing plate 32 is formed on the other surface of 31.
  • the color filter layer 33 is composed of colored portions having respective colors of red (R), green (G), and blue (B), and a black matrix 34. , And is formed so as to avoid a position facing the transistor 20d provided in the photosensor circuit 20.
  • the black matrix 34 (light-shielding portion) is provided at a position facing the transistor 20c (described later), and light of all wavelengths is blocked.
  • the position facing the transistor 20d is open, the irradiated light is received.
  • the transistor 20d detects the amount of received light by flowing a current according to the intensity of the received light.
  • a backlight 38 is disposed on the back side of the active matrix substrate 40, that is, on the surface on which the polarizing plate 32 is formed.
  • the backlight 38 includes a plurality of white LEDs as light sources.
  • the optical sensor circuit 20 including the transistor 20d detects the touched position by detecting light reflected by the finger pad of the operator who touched the display panel 1, for example. be able to.
  • the incident light intensity of the visible light component of the external light on the TFT 20d may be a magnitude that cannot be ignored.
  • the visible light component of the external light becomes noise (N)
  • N the sensitivity of the TFT 20d is lowered and the accuracy as the touch sensor is lowered.
  • a visible light cut filter (infrared transmission filter) 35 for blocking visible light component light is formed in the same layer as the color filter layer 33. It is preferable.
  • the visible light cut filter 35 is formed at a position facing the TFT 20d provided on the active matrix substrate 40, and shields light having a wavelength shorter than the visible light wavelength.
  • the visible light average transmittance of the visible light cut filter 35 is preferably 1% or less.
  • the visible light cut filter 35 for reducing the average visible light transmittance to 1% or less is preferably a color filter composed of three layers of RGB.
  • the color filter layer 33 can be formed at the same time, the cost can be reduced as compared with the case where the visible light cut filter 35 is manufactured using a different material and a different process.
  • the backlight 38 may be provided with a plurality of white LEDs and a plurality of infrared LEDs as light sources.
  • the infrared LED emits light having a wavelength in the infrared region, and in particular, one that emits infrared light in a wavelength region that transmits the visible light cut filter (infrared light transmitting portion) 35 is used. is doing.
  • the infrared light irradiated from the infrared LED in the backlight 38 is reflected by the finger pad of the operator, and the reflected infrared light is emitted as light.
  • the sensor circuit 20 can detect it. Therefore, it is possible to detect which position the operator has touched based on the intensity of the infrared light detected by each optical sensor circuit 20.
  • the a-si film absorption with respect to infrared light is small, so that the change in characteristics over time is small, and the reliability of the optical sensor circuit 20 can be improved.
  • a plurality of pixels are arranged in a matrix with RGB picture elements PIX as one unit.
  • FIG. 1 is an equivalent circuit diagram in which the configuration of the nth row in the display area 8 is extracted.
  • a plurality of picture elements PIX partitioned by a gate wiring Gn, a source wiring S (Sm to Sm + 3 are shown in the figure), and a storage capacitor wiring Csn, and sensor scanning signal lines E are used.
  • the node netB voltage control lines Vc1n to Vc4n and one or more photosensor circuits 20 connected to the read control line Vrwn are arranged.
  • the storage capacitor line Csn, the node netB voltage control lines Vc1n to Vc4n, and the read control line Vrwn are provided in parallel with the gate line Gn.
  • the picture element PIX includes a display element driving circuit 21 including a TFT 22 as a selection element, a liquid crystal capacitor CL, a storage capacitor CS, and the like.
  • the gate of the TFT 22 is connected to the gate line Gn
  • the source is connected to the source line S
  • the drain is connected to the pixel electrode 23.
  • the liquid crystal capacitor CL is a capacitor in which a liquid crystal layer is disposed between the pixel electrode 23 and the common electrode Com
  • the storage capacitor CS is between the drain electrode of the pixel electrode 23 or the TFT 22 and the storage capacitor line Csn.
  • the capacitor is formed by arranging an insulating film. For example, a constant voltage is applied to each of the common electrode Com and the storage capacitor line Csn.
  • the photosensor circuit 20 is one for each pixel (for example, a set of RGB picture elements PIX9) Composed of one picture element PIX or a plurality of picture elements, or a plurality of the above picture elements or a plurality of picture elements.
  • Arbitrary numbers such as one for each pixel are provided, TFT (sensor output transistor) 20a, TFT (sensor output voltage control transistor) 20b, TFT (node netB voltage dividing transistor) 20c, TFT (phototransistor) 20d.
  • the gate of the TFT 20a (fourth transistor) is connected to the read control wiring Vrwn, the drain is connected to the source wiring S (here, Sm), and the source is connected to the drain of the TFT 20b.
  • the gate of the TFT 20b (third transistor) is connected to an electrode called node netB, the drain is connected to the source of the TFT 20a, and the source is connected to the source wiring S (here, Sm + 1).
  • the gate of the TFT 20c is the node netB voltage control wiring Vc2n (second voltage control wiring), the drain is the node netB voltage control wiring Vc1n (first voltage control wiring), and the source is the TFT 20d. Each drain is connected.
  • the gate of the TFT 20d (first transistor) is the node netB voltage control wiring Vc3n (third voltage control wiring), the drain is the source of the TFT 20c, and the source is the node netB voltage control wiring Vc4n (fourth voltage control wiring). ) Are connected to each other.
  • One end of the node netB is connected to the gate of the TFT 20b, and the other end is connected to a connection point between the source of the TFT 20c and the drain of the TFT 20d.
  • the optical sensor circuit 20 uses a period other than the period during which the data signal is written to the picture element PIX, and the voltage appearing at the node netB according to the irradiation intensity of the light received by the TFT 20d from the drain of the TFT 20a via the TFT 20b.
  • the sensor output voltage Vom is output and output toward the sensor readout circuit 5 outside the display area via the source line S connected to the drain (which becomes the sensor output line Vom when detecting light).
  • the source line S connected to the source of the TFT 20b functions as a power supply line Vsm to which a constant voltage is applied during light detection.
  • the sensor output wiring Vom and the source wiring S are also used in common.
  • the power supply wiring Vsm and the source wiring S are shared with each other.
  • the present invention is not limited to such a configuration, and the sensor output wiring Vom and the power supply wiring Vsm are formed as wirings independent of the source wiring S as indicated by broken lines in the vicinity of the source wiring S, respectively. It is also possible to do.
  • the TFT 22 as the selection element of the picture element PIX and the TFTs 20a to 20d provided in the optical sensor circuit 20 are preferably formed on the active matrix substrate 40 by substantially the same process.
  • FIG. 4 is a diagram illustrating a configuration of a main part of the optical sensor circuit 20.
  • the gate of the TFT 20c is connected to the node netB voltage control wiring Vc2n, the drain is connected to the node netB voltage control wiring Vc1n, and the source is connected to the drain of the TFT 20d.
  • the gate of the TFT 20d is connected to the node netB voltage control wiring Vc3n, the drain is connected to the source of the TFT 20c, and the source is connected to the node netB voltage control wiring Vc4n.
  • the gate (node netB) of the TFT 20b is connected to a connection point between the TFT 20c and the TFT 20d.
  • a constant voltage of, for example, + 3V is applied to the node netB voltage control wiring Vc1n
  • a constant voltage of, for example, + 4V is applied to the node netB voltage control wiring Vc2n
  • a voltage of, for example, + 16V is applied to the node netB voltage control wiring Vc3n
  • a constant voltage of +21 V is applied to the node netB voltage control wiring Vc4n.
  • FIG. 5 is a circuit diagram when the TFT 20c and the TFT 20d are considered as resistors.
  • the resistance when the intensity of the irradiation light of the TFT 20c is low (dark) is the resistance RcD
  • the resistance when the intensity of the irradiation light is high (bright) is the resistance RcP
  • the resistance when the intensity of the irradiation light of the TFT 20d is low is the resistance when dark)
  • resistance RdP is resistance when irradiation light intensity is high (light)
  • the TFT 20c Since the TFT 20c is shielded from light, it is not affected by the intensity of irradiation light, and the resistance values of the resistors RcD and RcP are almost the same.
  • the resistance value of the TFT 20d changes depending on the light receiving state, and RdD> RdP. This is because when the TFT 20d is irradiated with light, electrons and holes are generated to be in a low resistance state, and when light is blocked, electrons and holes due to light are not generated and a high resistance state is obtained.
  • the node netB voltage when the intensity of irradiation light is high (bright) is higher than the node netB voltage when the intensity of irradiation light is low (dark), and the TFT 20b is supplied when the intensity of irradiation light is high (bright).
  • the current capability is improved and the sensor output voltage Vom is also increased.
  • Vc1n (+ 3V) and Vc4n (+ 21V) that is, the voltage at the connection point between the drain of the TFT 20d and the source of the TFT 20c
  • Vc1n (+ 3V) and Vc4n (+ 21V) that is, the voltage at the connection point between the drain of the TFT 20d and the source of the TFT 20c
  • the TFT 20c and the TFT 20d have substantially the same size. Then, when the intensity of the irradiation light received by the TFT 20d is low (dark) (see the upper part of FIG. 5), a node netB voltage of about 10.5V is output, and the intensity of the irradiation light received by the TFT 20d is high (bright) ) (See the lower part of FIG. 5), the node netB voltage of about 21V is output.
  • a node in order to detect the intensity of irradiation light, a node is discharged with a reverse bias current of a photodiode to generate a sensor output difference, and the time required for sensing allocated to each photosensor circuit Is the sum of the discharge time and the readout time.
  • the sensing frequency is high, the discharge time is shortened, and in order to prevent the S / N value (DR value) from decreasing, the size of the photodiode is increased or the sensitivity to each wavelength is improved. It was necessary to take measures.
  • the node netB voltage changes rapidly according to the light receiving state of the TFT 20d and the above discharge time is not required, which is particularly advantageous when the sensing frequency is increased.
  • the potential of the node netB voltage control wiring Vc1n to Vc4n is set to a predetermined value (particularly, the potential of the node netB voltage control wiring Vc1n is set lower than the potential of the node netB voltage control wiring Vc4n).
  • the sensor output voltage Vom when the intensity of irradiation light is high can be made higher than the sensor output voltage Vom when the intensity of irradiation light is low. Therefore, it is possible to prevent the S / N value (DR value) from being lowered due to the influence of stray light from external light. Thereby, the reliability of the optical sensor circuit can be improved.
  • a gate pulse composed of, for example, a high level of +21 V and a low level of ⁇ 10 V is output to the gate line Gn, and a data signal is output to each source line S.
  • a constant voltage of +4 V is applied to the storage capacitor line Csn. This operation is repeated every one vertical period (1 V) for the picture elements PIX in each row.
  • the photodetection result can be output to the sensor reading circuit 5 by the photosensor circuit 20. .
  • a constant voltage of + 3V is applied to the node netB voltage control wiring Vc1n, and a constant voltage of + 4V is applied to the node netB voltage control wiring Vc2n.
  • a constant voltage of + 16V is applied to the node netB voltage control wiring Vc3n, and a constant voltage of + 21V is applied to the node netB voltage control wiring Vc4n.
  • the intensity of irradiation light received by the TFT 20d is gradually lowered (dark), and the voltage at the node netB is lowered at a rate corresponding to the light intensity.
  • the sensor output voltage Vom is output from the drain, and is output toward the sensor readout circuit 5 outside the display area via the source line S (which becomes the sensor output line Vom when detecting light) connected to the drain.
  • the sensor output voltage Vom is a value corresponding to the voltage of the node netB, that is, a value corresponding to the voltage appearing at the connection point according to the light intensity. Therefore, the sensor output voltage Vom is changed to the sensor output wiring Vom.
  • the light intensity can be detected by reading out the sensor via the sensor reading circuit 5.
  • the application of the read pulse Prwn to the read control wiring Vrwn is stopped, and the read operation of the TFT 20a is also stopped.
  • the intensity of irradiation light received by the TFT 20d is gradually increased (bright), and the voltage of the node netB is boosted at a rate corresponding to the light intensity.
  • the intensity of irradiation light received by the TFT 20d is different, and the sensor output voltage Vom is also different.
  • the intensity of irradiation light received by the TFT 20d is high (bright), and the voltage at the node netB is also high, so that the supply current capability of the TFT 20b is improved and the sensor output voltage Vom is also high.
  • the sensor readout circuit 5 reads out the sensor output voltage Vom from each source wiring S (which becomes the sensor output wiring Vom at the time of light detection), and the sensing image processing device 7 uses the sensor output voltage Vom read out by the sensor readout circuit 5. Then, the distribution of the sensor detection result in the panel surface is analyzed.
  • Emodiment 2 Another embodiment of the liquid crystal display device of the present invention will be described as follows with reference to FIG.
  • FIG. 7 shows an extracted configuration of the nth row in the display area of the liquid crystal display panel in the present embodiment.
  • the optical sensor circuit 20 is provided in an arbitrary number such as one for each picture element PIX or one pixel (for example, one set of RGB picture elements PIX%), And includes TFT 20a and TFT 20b. TFT 20c and TFT 20d are provided.
  • the gate of the TFT 20a is connected to the readout control wiring Vrwn, the drain is connected to the sensor output wiring Vom, and the source is connected to the drain of the TFT 20b.
  • the gate of the TFT 20b is connected to an electrode called node netB, the drain is connected to the source of the TFT 20a, and the source is connected to the power supply wiring Vsm.
  • the gate of the TFT 20c is connected to the node netB voltage control wiring Vc2n, the drain is connected to the node netB voltage control wiring Vc1n, and the source is connected to the drain of the TFT 20d.
  • the gate of the TFT 20d is connected to the node netB voltage control wiring Vc3n, the drain is connected to the source of the TFT 20c, and the source is connected to the power supply wiring Vsm.
  • the source of the TFT 20d is connected to the power supply wiring Vsm instead of the node netB voltage control wiring Vc4n. That is, the point that the node netB voltage control wiring Vc4n is not provided is different from the first embodiment.
  • a gate pulse composed of, for example, a high level of +21 V and a low level of ⁇ 10 V is output to the gate line Gn, and a data signal is output to each source line S.
  • a constant voltage of +4 V is applied to the storage capacitor line Csn.
  • the optical sensor circuit 20 is used regardless of whether or not it is in the writing period. Can output the light detection result to the sensor readout circuit 5.
  • a constant voltage of +21 V is applied to the power supply wiring Vsm.
  • a constant voltage of, for example, + 5V is applied to the node netB voltage control wiring Vc1n
  • a constant voltage of, for example, + 7V is applied to the node netB voltage control wiring Vc2n
  • a voltage of, for example, + 10V is applied to the node netB voltage control wiring Vc3n.
  • a constant voltage is applied.
  • the number of power supplies and the number of wirings supplied from the power supply circuit 6 can be reduced.
  • a display device incorporating the sensor circuit 20 can prevent the aperture ratio from decreasing.
  • the configuration in which the sensor output wiring Vom and the power supply wiring Vsm are formed as wirings independent of the source wiring S is described as an example.
  • the sensor output wiring Vom and the source wiring Vsm are formed.
  • the wiring S may be shared with each other, and the power supply wiring Vsm and the source wiring S may be shared with each other.
  • FIG. 8 shows the extracted configuration of the nth row in the display area of the liquid crystal display panel in the present embodiment.
  • the optical sensor circuit 20 is provided in an arbitrary number such as one for each picture element PIX or one pixel (for example, one set of RGB picture elements PIX%), And TFT 20a and TFT 20b. TFT 20c and TFT 20d are provided.
  • the gate of the TFT 20a is connected to the readout control wiring Vrwn, the drain is connected to the sensor output wiring Vom, and the source is connected to the drain of the TFT 20b.
  • the gate of the TFT 20b is connected to an electrode called node netB, the drain is connected to the source of the TFT 20a, and the source is connected to the power supply wiring Vsm.
  • the gate of the TFT 20c is connected to the node netB voltage control wiring Vc2n, the drain is connected to the storage capacitor wiring Csn, and the source is connected to the drain of the TFT 20d.
  • the drain of the TFT 20c is connected to the storage capacitor line Csn provided in the display panel to assist the liquid crystal capacitor, not the node netB voltage control line Vc1n. That is, the point that the node netB voltage control wiring Vc1n is not provided is different from the first embodiment.
  • the gate of the TFT 20d is connected to the node netB voltage control wiring Vc3n, the drain is connected to the source of the TFT 20c, and the source is connected to the node netB voltage control wiring Vc4n.
  • a gate pulse composed of, for example, a high level of +21 V and a low level of ⁇ 10 V is output to the gate line Gn, and a data signal is output to each source line S.
  • a constant voltage of +3 V is applied to the storage capacitor line Csn.
  • the optical sensor circuit 20 is used regardless of whether or not it is in the writing period. Can output the light detection result to the sensor readout circuit 5.
  • a constant voltage of +21 V is applied to the power supply wiring Vsm.
  • a constant voltage of, for example, + 7V is applied to the node netB voltage control wiring Vc2n
  • a constant voltage of, for example, + 10V is applied to the node netB voltage control wiring Vc3n
  • a voltage of, for example, + 21V is applied to the node netB voltage control wiring Vc4n.
  • a constant voltage is applied.
  • the node netB voltage control wiring Vc1n and the storage capacitor wiring Csn are shared with each other, the number of power supplies supplied from the power supply circuit 6 and the number of wirings can be reduced.
  • a display device including the circuit 20 can prevent a decrease in aperture ratio.
  • the configuration in which the sensor output wiring Vom and the power supply wiring Vsm are formed as wirings independent of the source wiring S is described as an example.
  • the sensor output wiring Vom and the source wiring Vsm are formed.
  • the wiring S may be shared with each other, and the power supply wiring Vsm and the source wiring S may be shared with each other.
  • FIG. 9 shows the extracted configuration of the nth row in the display area of the liquid crystal display panel in this embodiment.
  • the optical sensor circuit 20 is provided in an arbitrary number such as one for each picture element PIX or one pixel (for example, one set of RGB picture elements PIX), and includes TFT 20a and TFT 20b. TFT 20c and TFT 20d are provided.
  • the gate of the TFT 20a is connected to the readout control wiring Vrwn, the drain is connected to the sensor output wiring Vom, and the source is connected to the drain of the TFT 20b.
  • the gate of the TFT 20b is connected to an electrode called node netB, the drain is connected to the source of the TFT 20a, and the source is connected to the power supply wiring Vsm.
  • the drain of the TFT 20c is connected to the node netB voltage control wiring Vc1n, the gate is connected to the node netB voltage control wiring Vc2n, and the source is connected to the drain of the TFT 20d.
  • the gate of the TFT 20d is connected to the node netB voltage control wiring Vc2n, the drain is connected to the source of the TFT 20c, and the source is connected to the node netB voltage control wiring Vc4n.
  • the gate of the TFT 20d is connected not to the node netB voltage control wiring Vc3n but to the node netB voltage control wiring Vc2n. That is, the point that the node netB voltage control wiring Vc3n is not provided is different from the first embodiment.
  • a gate pulse composed of, for example, a high level of +21 V and a low level of ⁇ 10 V is output to the gate line Gn, and a data signal is output to each source line S.
  • a constant voltage of +4 V is applied to the storage capacitor line Csn.
  • the optical sensor circuit 20 is used regardless of whether or not it is in the writing period. Can output the light detection result to the sensor readout circuit 5.
  • a constant voltage of +21 V is applied to the power supply wiring Vsm.
  • a constant voltage of, for example, + 5V is applied to the node netB voltage control wiring Vc1n
  • a constant voltage of, for example, + 10V is applied to the node netB voltage control wiring Vc2n
  • a voltage of, for example, + 21V is applied to the node netB voltage control wiring Vc4n.
  • a constant voltage is applied.
  • the display device incorporating the optical sensor circuit 20 can prevent the aperture ratio from decreasing.
  • the configuration in which the sensor output wiring Vom and the power supply wiring Vsm are formed as wirings independent of the source wiring S is described as an example.
  • the sensor output wiring Vom and the source wiring Vsm are formed.
  • the wiring S may be shared with each other, and the power supply wiring Vsm and the source wiring S may be shared with each other.
  • FIG. 10 shows the extracted configuration of the nth row in the display area of the liquid crystal display panel in the present embodiment.
  • the optical sensor circuit 20 is provided in an arbitrary number such as one for each picture element PIX or one pixel (for example, one set of RGB picture elements PIX...), And TFT 20a and TFT 20b. TFT 20c and TFT 20d are provided.
  • the gate of the TFT 20a is connected to the readout control wiring Vrwn, the drain is connected to the sensor output wiring Vom, and the source is connected to the drain of the TFT 20b.
  • the gate of the TFT 20b is connected to an electrode called node netB, the drain is connected to the source of the TFT 20a, and the source is connected to the power supply wiring Vsm.
  • the gate of the TFT 20c is connected to the node netB voltage control wiring Vc2n, the drain is connected to the storage capacitor wiring Csn, and the source is connected to the drain of the TFT 20d.
  • the gate of the TFT 20d is connected to the node netB voltage control wiring Vc2n, the drain is connected to the source of the TFT 20c, and the source is connected to the power supply wiring Vsm.
  • a constant voltage of +10 V is applied to the node netB voltage control wiring Vc2n.
  • a constant voltage of +21 V is applied to the power supply wiring Vsm.
  • a constant voltage of +3 V is applied to the storage capacitor line Csn.
  • a gate pulse composed of, for example, a high level of +21 V and a low level of ⁇ 10 V is output to the gate line Gn, and a data signal is output to each source line S.
  • a constant voltage of +3 V is applied to the storage capacitor line Csn.
  • the sensor output wiring Vom and the power supply wiring Vsm are formed as wirings independent of the source wiring S, and light detection by the photosensor circuit 20 is performed regardless of whether or not it is in the writing period.
  • the resulting output to the sensor readout circuit 5 is possible.
  • a constant voltage of +21 V is applied to the power supply wiring Vsm.
  • a constant voltage of +10 V is applied to the node netB voltage control wiring Vc2n.
  • the node netB voltage control wiring Vc4n and the power supply wiring Vsm, the node netB voltage control wiring Vc1n and the storage capacitor wiring Csn, the node netB voltage control wiring Vc3n and the node netB voltage control wiring Vc2n are Each is also used for each other.
  • the node netB voltage control wiring Vc1n, the node netB voltage control wiring Vc3n, and the node netB voltage control wiring Vc4n are also used as other wirings. It is different from the first embodiment in that it is not provided. Therefore, the number of power supplies supplied from the power supply circuit 6 and the number of wirings can be reduced, and the display device incorporating the photosensor circuit 20 can prevent a decrease in aperture ratio.
  • the configuration in which the sensor output wiring Vom and the power supply wiring Vsm are formed as wirings independent of the source wiring S is described as an example.
  • the sensor output wiring Vom and the source wiring Vsm are formed.
  • the wiring S may be shared with each other, and the power supply wiring Vsm and the source wiring S may be shared with each other.
  • the drain of the second transistor is connected to the first voltage control wiring, the gate is connected to the second voltage control wiring, and the source is connected to the drain of the first transistor.
  • the gate of the first transistor is connected to the third voltage control wiring, the drain is connected to the source of the second transistor, and the source is connected to the fourth voltage control wiring.
  • the fourth voltage control wiring is preferably a wiring for controlling the voltage at the connection point.
  • the sensor output voltage when the intensity of the irradiation light is high can be obtained when the intensity of the irradiation light is low.
  • the sensor output voltage can be higher. Therefore, it is possible to prevent the S / N value (DR value) from being lowered due to the influence of stray light from external light. Thereby, the reliability of the optical sensor circuit can be improved.
  • the optical sensor circuit of the present invention further includes a third transistor and a fourth transistor, the gate of the fourth transistor being a readout control wiring, the drain being a sensor output wiring, and the source being the third transistor.
  • the third transistor has a gate connected to the connection point, a drain connected to the source of the fourth transistor, and a source connected to the power supply wiring, respectively.
  • the wiring for wiring is a wiring to which a read pulse for reading the voltage appearing at the connection point is applied, and the sensor output wiring is connected to the connection point according to the irradiation intensity of light received by the first transistor. Is a wiring that outputs the voltage appearing at the drain of the fourth transistor through the third transistor.
  • the fourth transistor when a read pulse is applied to the read control wiring, the fourth transistor starts a read operation and outputs it as a sensor output voltage from the drain of the fourth transistor.
  • the sensor output voltage is a value corresponding to the voltage at the connection point, that is, a value corresponding to the voltage appearing at the connection point according to the light intensity. Therefore, the light intensity is detected by outputting this sensor output voltage. can do.
  • the fourth voltage control wiring and the power supply wiring are used in combination.
  • the second voltage control wiring and the third voltage control wiring are combined.
  • the display panel of the present invention includes the above-described photosensor circuit in order to solve the above-described problems.
  • the display panel of the present invention has a configuration in which a plurality of gate wirings and a plurality of source wirings intersecting each other, and pixels provided corresponding to the intersections of the gate wirings and the source wirings are arranged in a matrix. It is characterized by having.
  • one photosensor circuit is provided for each pixel composed of one picture element or a plurality of picture elements.
  • the photo sensor circuit is arranged one by one for each pixel composed of one picture element or a plurality of the picture elements. Can be improved.
  • the sensor output wiring and the source wiring are combined.
  • the power supply wiring and the source wiring are combined.
  • the display panel of the present invention further includes a storage capacitor line for assisting the capacity of the display element, and the first voltage control line is also used as the storage capacitor line.
  • the display panel of the present invention preferably includes a color filter layer, which is the same layer as the color filter layer, and a filter that blocks visible light component light at a position facing the first transistor. .
  • a visible light component that is likely to be noise among various types of light included in external light is not easily incident on the first transistor, and infrared light is mainly incident. Therefore, a stable sensing operation can be performed in a wide range of environments that are not affected by the environment outside the liquid crystal display device (external light intensity or the like). For example, in a transistor having a light-receiving layer of a-Si, reliability can be improved by blocking light (visible light) having a wavelength whose characteristic change with time is large.
  • the filter is composed of the color filter layer including three layers of RGB.
  • the cost can be reduced as compared with the case where the filter is manufactured by a different material and a different process.
  • the display device of the present invention includes the display panel in order to solve the above problems.
  • the present invention is suitably used for an electronic device equipped with an optical sensor.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Position Input By Displaying (AREA)
  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

 トランジスタ(20c)とトランジスタ(20d)とを備えている光センサ回路(20)において、トランジスタ(20c)とトランジスタ(20d)とは直列に接続され、トランジスタ(20d)には、光が入射する一方、トランジスタ(20c)に対向する位置には、ブラックマトリクスが設けられており、トランジスタ(20d)への光照射強度に応じてトランジスタ(20d)とトランジスタ(20c)とを接続する接続点の電圧、即ちノード(netB)の電圧が変化する。

Description

光センサ回路、表示パネル、表示装置、及び光センサ回路の駆動方法
 本発明は、光センサ回路、当該光センサ回路を内蔵した表示パネル、表示装置、及び光センサ回路の駆動方法に関する。
 絵素内や画素内に光センサ回路を備えた液晶表示装置が知られている。
 例えば、特許文献1に記載された、光センサ回路を備えた液晶表示装置の構成を、図11に基づいて説明する。
 図11は、特許文献1に記載された液晶表示パネルの等価回路図である。
 図11には、液晶表示パネルの表示領域のうち、第n行目の構成を抽出して記載してある。第n行目には、ゲート配線Gn、ソース配線S(図ではSm~Sm+3が示されている)、及び、保持容量配線Csnによって区画された複数の絵素PIXと、リセット配線Vrstn及び読み出し制御用配線Vrwnに接続された1つ以上の光センサ回路100とが配置されている。各符号の末尾の「n」は行番号、「m」は列番号を示す。
 絵素PIXは、選択素子としてのTFT101、液晶容量CL、及び、保持容量CSを備えている。TFT101のゲートはゲート配線Gnに、ソースはソース配線Sに、ドレインは絵素電極102に、それぞれ接続されている。液晶容量CLは、絵素電極102と共通電極Comとの間に液晶層が配置されてなる容量であり、保持容量CSは、絵素電極102あるいはTFT101のドレイン電極と保持容量配線Csnとの間に絶縁膜が配置されてなる容量である。共通電極Com及び保持容量配線Csnには、それぞれに例えば一定の電圧が印加される。
 光センサ回路100は、1つの絵素PIXや1つの画素(例えばRGBの絵素PIX…の一組)につき1つずつなど、任意の数で設けられ、TFT100a、容量100b、及び、フォトダイオード100cを備えている。TFT100aのゲートはここでノードnetAと称する電極に、ドレインは1つのソース配線S(ここではSm)に、ソースは他の1つのソース配線S(ここではSm+1)に、それぞれ接続されている。フォトダイオード100cのアノードはリセット配線Vrstnに、カソードはノードnetAに、それぞれ接続されている。容量100bの一端はノードnetAに、他端は読み出し制御用配線Vrwnに、それぞれ接続されている。
 光センサ回路100は、絵素PIXへデータ信号を書き込む期間以外の期間を利用して、フォトダイオード100cで受けた光の強度に応じてノードnetAに現れた電圧を、TFT100aのソースからセンサ出力電圧Vomとして出力し、当該ソースに接続されたソース配線S(光検出時にはセンサ出力用配線Vom(便宜上、センサ出力電圧と同じ符号を用いる)となる)を介して表示領域外のセンサ読み出し回路(図示せず)に向けて出力する構成である。このとき、TFT100aはソースフォロワとして機能する。また、このとき、TFT100aのドレインに接続されているソース配線Sは、光検出時には一定電圧が印加された電源配線Vsmとして機能する。
 ここで、ソース配線Sと、光センサ出力用配線Vom、電源配線Vsmとが兼用されているので、光センサ回路100の読み出しは、帰線期間中に限定される。このため、表示の解像度が高く(VGA、XGA、etc.)なった場合のように、帰線期間が短くなる場合などには、配線の共有化は難しくなるという問題が生じる。
 上記問題を解決するために、センサ出力用配線Vom及び電源配線Vsmを、ソース配線Sの近傍にそれぞれ破線で示したように、ソース配線Sとは独立した配線として形成することも可能である。
 次に、光センサ回路100の動作について、図12に基づいて詳細に説明する。なお、以降のTFT、フォトダイオードはn-ch半導体を用いた例で記載する。
 図12は、光センサ回路100の動作を説明する波形図である。
 データ信号の書き込み期間にはゲート配線Gnに、走査信号として例えば+21VのHighレベルと-10VのLowレベルとからなるゲートパルスが出力されるとともに、各ソース配線Sにデータ信号が出力される。保持容量配線Csnには例えば+4Vの一定電圧が印加される。各行の絵素PIXに対して1垂直期間(1V)ごとにこの動作が繰り返されるが、当該書き込み期間以外には、光センサ回路100による光検出結果のセンサ読み出し回路への出力が可能である。
 期間(1)において、リセット配線Vrstnに外部のセンサ読み出し回路から例えば-4VのHighレベルと-16VのLowレベルとからなるリセットパルスPrstnが印加されると、フォトダイオード100cが順方向に導通して、ノードnetAの電圧がリセット配線Vrstnの電圧にリセットされる。
 その後、期間(2)の間に、逆バイアス状態となったフォトダイオード100cに照射光の強度に応じたリークが発生するため、この光強度に応じた割合でノードnetAの電圧が低下していく。
 そして期間(3)に読み出し制御用配線Vrwnにセンサ読み出し回路から例えば+21VのHighレベルと-10VのLowレベルとからなる読み出しパルスPrwnが印加されると、ノードnetAが昇圧される。このとき、ノードnetAの電圧は、TFT100aの閾値電圧を越える領域に達するように設定される。読み出しパルスPrwnが印加されている間にTFT100aのソースから出力されたセンサ出力電圧Vomは、ノードnetAの電圧に応じた値、すなわち光強度に応じた値となるので、このセンサ出力電圧Vomを、センサ出力用配線Vomを介してセンサ読み出し回路で読み出すことによって光強度を検出することができる。
 期間(4)でセンサ出力を終えると、次のリセット動作まで光センサ回路100は動作を停止する。
 期間(5)において、リセット配線Vrstnに再び外部のセンサ読み出し回路からリセットパルスPrstnが印加され、フォトダイオード100cが順方向に導通して、ノードnetAの電圧がリセット配線Vrstnの電圧にリセットされる。
 その後、期間(6)の間に、逆バイアス状態となったフォトダイオード100cに照射光の強度に応じたリークが発生するため、この光強度に応じた割合でノードnetAの電圧が低下していく。
 そして期間(7)に読み出し制御用配線Vrwnにセンサ読み出し回路から例えば+21VのHighレベルと-10VのLowレベルとからなる読み出しパルスPrwnが印加されると、ノードnetAが昇圧される。このとき、ノードnetAの電圧は、TFT100aの閾値電圧を越える領域に達するように設定される。読み出しパルスPrwnが印加されている間にTFT100aのソースから出力されたセンサ出力電圧Vomは、ノードnetAの電圧に応じた値、すなわち光強度に応じた値となるので、このセンサ出力電圧Vomを、センサ出力用配線Vomを介してセンサ読み出し回路で読み出すことによって光強度を検出することができる。
 なお、期間(2)においては、照射光の強度が高く(明)、ノードnetAの電圧の低下が大きい一方、期間(6)においては、照射光の強度が低く(暗)、ノードnetAの電圧の低下が小さい。
 よって、期間(3)においては、センサ出力電圧が低く、期間(7)においては、センサ出力電圧が高い。
 また、特許文献2には、図13に示すような光センサ回路が開示されている。
 図13に示すように、フォトダイオードとしてゲートとドレインとを互いに接続した、いわゆるダイオード接続のTFTで構成されるPhotoTFTが用いられている。PhotoTFTの出力は読み出しを行うTFTであるReadoutTFTのドレインに接続されており、ReadoutTFTがON状態になるとReadoutTFTのソースからセンサ出力を行い、電荷読み出しアンプ(Charge Readout Amplifier)に読み出される。
国際公開WO2007/145347号公報(2007年12月21日公開) 米国特許公報第6995743号(2006年2月7日発行)
 しかしながら、上記特許文献1に記載された光センサ回路は、センサ出力S(信号)/N(ノイズ)値、D.R.(照射光の強度が低い時のセンサ出力電圧-照射光の強度が高い時のセンサ出力電圧)値が低下する問題がある。
 これは、図12に示すように、照射光の強度が低い時のセンサ出力電圧Vomは、照射光の強度が高い時のセンサ出力電圧Vomよりも高くなるが、照射光の強度が高い時に外光からの迷光により、センサ出力用TFT100aの駆動能力が向上し(迷光によるTFT移動度向上)、センサ出力電圧Vomを高めるためである。
 また、上記フォトダイオード100cは、a-Siを光電変換層とする光電変換素子であるとすると、a-Siの相対感度が低い波長(700nm以上)の光を利用した場合、D.R.値が低下する問題がある。
 以下、図14に基づいて詳細に説明する。
 図14は、a-Siを受光層とするフォトダイオード100cの各波長に対する感度特性を示すグラフである。グラフの縦軸に記載したa-Siの相対感度は、フォトダイオード100cの逆バイアス電流と各波長との関係から導きだされるものであり、具体的には、各波長の光を等エネルギーでフォトダイオード100cに照射した際に流れる逆バイアス電流の値を示す。なお、波長540nmの光を照射した際の相対感度を1としている。即ち、図14に示す相対感度は、以下の式(1)で算出される。
  相対感度=I_xnm/I_540nm  …(1)
 式(1)で、I_xnmは、ある波長xnmの光を照射した際に流れる逆バイアス電流で、I_540nmは、波長540nmの光を照射した際に流れる逆バイアス電流である。
 図14に示すように、a-Siの相対感度は、照射光の波長が700nm以上になると極めて低い。
 よって、波長が700nm以上の光を利用して照射光の強度を検知しようとした場合、D.R.値が低下するが、これは、感度が低い分、フォトダイオード100cの逆バイアス電流が十分に流れず、ある一定期間内に容量102bが十分に放電できなくなり、照射光の強度が低い状態と、照射光の強度が高い状態におけるノードnetAの電圧の差が取れないためである。
 また、上記のように、特許文献1の光センサ回路では、フォトダイオード100cの逆バイアス電流による放電を利用して照射光の強度を検知している。そのため、センシングには放電を行うための所定の時間が必要となり、迅速なセンシングが行えないという問題も生じる。
 さらに、a-Siの相対感度が高い波長の光を利用した場合、フォトダイオード100cの特性が著しく変化し、センサ出力電圧Vomにバラツキ大きくなる問題がある。
 以下、図15に基づいて詳細に説明する。
 図15は、a-Siを受光層とするフォトダイオード100cの各波長に対する特性変化を示すグラフである。図15の(a)は、a-Si単膜(170nm)の各波長に対する吸収を示すグラフであり、図15の(b)は、フォトダイオード100cの各波長に対する相対感度を示すグラフであり、図15の(c)は、フォトダイオード100cの各波長に対する相対特性変化を示すグラフである。
 ここで特性変化とは、各波長の光を一定時間連続して照射した場合、初期逆バイアス電流に対する逆バイアス電流の変化を意味する。即ち、特性変化の割合(特性変化率)は、以下の式(2)で算出される。
  特性変化率V(%)=(1-I2/I1)×100  …(2)
 式(2)で、I1は初期の逆バイアス電流であり、I2はある波長の光を一定時間照射した際に流れる逆バイアス電流である。
 なお、図15の(b)は、波長540nmの光を照射した際の相対感度を1とし、図15の(c)波長365nmの光を照射した際の相対特性変化を1としている。即ち、図15の(c)に示す相対特性変化は、以下の式(3)で算出される。
  相対特性変化=V_xnm/V_365nm  …(3)
 式(3)で、V_xnmは、ある波長xnmの光を照射した際の特性変化率であり、V_365nmは、波長365nmの光を照射した際の特性変化率である。
 図15に示すように、照射光の波長が長くなるほどa-Si単膜の吸収が少なくなり、波長が750nm以上になると照射光はほぼ吸収されない。また、照射光の波長が長くなるほどa-Si単膜の吸収によるフォトダイオード100c特性変化が小さい傾向が見られる。
 よって、a-Siの相対感度が高い波長の光を利用して照射光の強度を検知しようとした場合、a-Si単膜の吸収が大きく、フォトダイオード100cの経時特性変化も大きくなり、センサ出力電圧Vomにバラツキが大きくなる。
 特許文献2に記載された光センサ回路の構成では、フォトダイオードであるPhotoTFTの出力がReadoutTFTのゲートに接続されてはいないが、当該フォトダイオードの出力がReadoutTFTのドレインからソースを介してそのまま、負荷である電荷読み出しアンプの入力及び当該入力に至る配線に出力されるため、ReadoutTFTで電力増幅が行われることなく出力される。従って、PhotoTFTの出力に接続された容量Cst2の容量値を大きくして、PhotoTFTの出力によって長時間この容量Cst2を充電した後にReadoutTFTをON状態にしなければならない。これは容量Cst2の素子サイズの拡大を必要とするが、容量Cst2を大きくすると、フォトダイオードPhotoTFTの大きな電流容量を得るために、フォトダイオードPhotoTFTに印加する逆バイアス電圧も大きくせざるを得ず、高耐圧化や低抵抗化に伴うフォトダイオードPhotoTFTのサイズ拡大をももたらす。これは、表示装置の開口率の低下につながる。
 また、上記特許文献2の光センサ回路も、フォトダイオード(フォトトランジスタ)PhotoTFTの逆バイアス電流による放電を利用して照射光の強度を検知しているため、迅速なセンシングが行えないという問題も生じる。
 本発明は、上記従来の問題点に鑑みなされたものであり、その目的は、センサ精度の低下を抑制し、信頼性が高い光センサ回路、及び、画素の開口率の低下や表示部周辺の額縁領域の増加を抑制し得る上記光センサ回路を内蔵した表示パネル及び表示装置を提供することにある。
 上記の問題を解決するために、本発明の光センサ回路は少なくとも、第1のトランジスタと第2のトランジスタとを備えている光センサ回路であって、上記第1のトランジスタと上記第2のトランジスタとは直列に接続され、上記第1のトランジスタには光が入射する一方、上記第2のトランジスタに対向する位置には、遮光部が設けられており、上記第1のトランジスタへの光照射強度に応じて上記第1のトランジスタと上記第2のトランジスタとを接続する接続点の電圧が変化することを特徴とする。
 ここで、上記第1のトランジスタに入射する光は、あらゆる波長の光を意味する。つまり、この光には、紫外光、可視光、および赤外光が少なくとも含まれる。
 上記構成によれば、第1のトランジスタの受光状態に応じて、迅速に接続点の電圧を変化させることができるため、この電圧を順次読み出すことで、受光状態の変化を速やかに検出することができる。つまり、従来のようにセンシング時に長時間の放電を必要としないため、センシング周波数を高くする場合にも検出精度を維持することができる。
 また、相対感度の低い波長の光を検出する場合にも、長時間の放電を必要とせずに精度の高い検出を行うことができる。つまり、検出する光の波長によらず、光センサの精度を向上させることができる。
 また、センシング時に長時間の放電を必要としないため、センサ出力S/N値を向上させることも可能となり、光センサの信頼性を向上させることができる。
 本発明の光センサ回路の駆動方法は、第1のトランジスタ、第2のトランジスタ、第3のトランジスタ、及び第4のトランジスタを備えている光センサ回路であって、上記第1のトランジスタと上記第2のトランジスタとは直列に接続され、上記第1のトランジスタには光が入射する一方、上記第2のトランジスタに対向する位置には、遮光部が設けられており、上記第4のトランジスタのゲートは読み出し制御用配線に、ドレインはセンサ出力用配線に、ソースは上記第3のトランジスタのドレインに、それぞれ接続されおり、上記第3のトランジスタのゲートは上記第1のトランジスタと上記第2のトランジスタとを接続する接続点に、ドレインは上記第4のトランジスタのソースに、ソースは電源配線に、それぞれ接続されており、上記第2のトランジスタのドレインは第1の電圧制御用配線に、ゲートは第2の電圧制御用配線に、ソースは第1のトランジスタのドレインに、それぞれ接続されており、上記第1のトランジスタのゲートは第3の電圧制御用配線に、ドレインは第2のトランジスタのソースに、ソースは第4の電圧制御用配線に、それぞれ接続されている光センサ回路を駆動する駆動方法であって、上記第1~第4の電圧制御用配線は、上記接続点の電圧を制御するための配線であり、上記第1~第4の電圧制御用配線に電圧をそれぞれ印加しつつ、上記第4のトランジスタのゲートに接続されている上記読み出し制御用配線に読み出しパルスを印加し、上記第1のトランジスタで受けた光の照射強度に応じて上記接続点に現れた電圧を、上記第3のトランジスタを介して、上記第4のトランジスタのドレインから当該ドレインに接続されたセンサ出力用配線を介して出力することを特徴とする。
 上記構成によれば、上記第1~第4の電圧制御用配線の電位をそれぞれ所定の値に設定することにより、照射光の強度が高い時のセンサ出力電圧を、照射光の強度が低い時のセンサ出力電圧より高くすることができる。そのため、外光から迷光の影響により、S/N値(D.R.値)が低下することを防止することができる。これにより、光センサ回路の信頼性を向上させることができる。
 また、第1のトランジスタの受光状態に応じて、迅速に接続点の電圧を変化させることができるため、この電圧を順次読み出すことで、受光状態の変化を速やかに検出することができる。
 つまり、従来のようにセンシング時に長時間の放電を必要としないため、センシング周波数を高くする場合にも検出精度を維持することができる。
 また、相対感度の低い波長の光を検出する場合にも、長時間の放電を必要とせずに精度の高い検出を行うことができる。つまり、検出する光の波長によらず、光センサの精度を向上させることができる。
 また、センシング時に長時間の放電を必要としないため、センサ出力S/N値を向上させることも可能となり、光センサの信頼性を向上させることができる。
 本発明の光センサ回路は少なくとも、第1のトランジスタと第2のトランジスタとを備えている光センサ回路であって、上記第1のトランジスタと上記第2のトランジスタとは直列に接続され、上記第1のトランジスタへの光照射強度に応じて上記第1のトランジスタと上記第2のトランジスタとを接続する接続点の電圧が変化する構成である。
 それゆえ、センサ精度の低下を抑制し、信頼性が高い光センサ回路を実現することができるという効果を奏する。
本発明の実施の形態1に係る表示パネルの等価回路図である。 本発明の実施の形態1に係る液晶表示装置の要部の構成を示すブロック図である。 本発明の実施の形態1に係る液晶表示装置の要部の概略構成を示す断面図であり、(a)は可視光カットフィルタが設けられていない液晶表示装置の要部の概略構成を示し、(b)は可視光カットフィルタが設けられている液晶表示装置の要部の概略構成を示している。 本発明の実施の形態1に係る光センサ回路の要部の構成を示す回路図である。 本発明の実施の形態1に係る光センサ回路の動作原理を説明するための図である。 本発明の実施の形態1に係る光センサ回路の動作原理を説明する波形図である。 本発明の実施の形態2に係る表示パネルの等価回路図である。 本発明の実施の形態3に係る表示パネルの等価回路図である。 本発明の実施の形態4に係る表示パネルの等価回路図である。 本発明の実施の形態5に係る表示パネルの等価回路図である。 特許文献1に記載された表示パネルの等価回路図である。 特許文献1に記載された光センサ回路の動作を説明する波形図である。 特許文献2に記載された表示パネルの等価回路図である。 a-Siを受光層とするフォトダイオード100cの各波長に対する感度特性を示すグラフである。 a-Siを受光層とするフォトダイオード100cの各波長に対する特性変化を示すグラフである。
 以下、本発明の実施の形態について、詳細に説明する。
〔実施の形態1〕
 本発明の実施の形態について、図1~図6を用いて説明すれば以下の通りである。以下に記載の実施形態では、本発明の光センサ回路を液晶表示装置に適用した場合を例として記載する。
 先ずは、本実施の形態において、液晶表示装置の全体構成を図2、図3に基づいて説明する。
 図2は、本実施の形態に係る液晶表示装置(表示装置)の要部の構成を示すブロック図である。
 液晶表示装置10は、アクティブマトリクス型の表示装置であり、表示パネル1、表示用走査信号線駆動回路2、表示用データ信号線駆動回路3、センサ走査信号線駆動回路4、センサ読み出し回路5、電源回路6、及び、センシング画像処理装置7を備えている。
 表示パネル1は、互いに交差する複数のゲート配線G及び複数のソース配線Sと、各ゲート配線Gと各ソース配線Sとの交点に対応して設けられる絵素PIXがマトリクス状に配置された表示領域8を備えている。
 表示用走査信号線駆動回路2は、各ゲート配線Gに絵素PIXをデータ信号の書き込みのために選択する走査信号を順次出力することにより、ゲート配線Gを駆動する。
 表示用データ信号線駆動回路3は、各ソース配線Sにデータ信号を出力することによりソース配線Sを駆動する。
 センサ走査信号線駆動回路4は、各センサ走査信号線Eに光センサ回路20を動作させる走査信号(電圧Vc1~Vc4、電圧Vrw)を順次出力することにより、センサ走査信号線Eを順次に駆動する。
 センサ読み出し回路5は、各センサ出力用配線Voからセンサ出力電圧Vo(便宜上、センサ出力用配線と同じ符号を用いる)を読み出すとともに、電源配線Vsに電源電圧を供給する。
 電源回路6は、表示用走査信号線駆動回路2、表示用データ信号線駆動回路3、センサ走査信号線駆動回路4、センサ読み出し回路5、及び、センシング画像処理装置7の動作に必要な電源を供給する。
 センシング画像処理装置7は、センサ読み出し回路5が読み取ったセンサ出力電圧Voを基にして表示パネル1面内におけるセンサ検出結果の分布を解析する。
 なお、図2に示す液晶表示装置は、一例であって、この構成に限られることはなく、センサ走査信号線駆動回路4やセンサ読み出し回路5の機能は、例えば表示用走査信号線駆動回路2や表示用データ信号線駆動回路3などの他の回路に備えられていてもよい。また、センサ読み出し回路5の機能はセンシング画像処理装置7に備えられていてもよい。さらに、センシング画像処理装置7は、LSIやコンピュータ構成などとして液晶表示装置10に備えられていてもよいが、液晶表示装置10の外部にあってもよい。同様に、センサ読み出し回路5が液晶表示装置10の外部にあってもよい。
 図3は、本実施の形態に係る液晶表示装置の要部の概略構成を示す断面図である。
 図3の(a)及び(b)に示すように、表示パネル1は、対向基板30と、アクティブマトリクス基板40との間に液晶層50を挟持した構成である。
 アクティブマトリクス基板40は、ガラス板等からなる絶縁性基板31の一面に偏光板32が形成され、上記絶縁性基板31の他の面に光センサ回路20、表示素子駆動用回路21が形成されている。
 対向基板30は、アクティブマトリクス基板40と同様に、ガラス板等からなる絶縁性基板31の一面にカラーフィルタ層33、及び、対向電極及び配向膜(図示せず)などが形成され、絶縁性基板31の他の面に偏光板32が形成されている。
 なお、カラーフィルタ層33は、図3の(a)に示すように、赤(R)、緑(G)、青(B)のそれぞれの色を有する着色部と、ブラックマトリクス34とから構成され、光センサ回路20に設けられたトランジスタ20dに対向する位置を避けて形成されている。
 このように、トランジスタ20c(後述する)に対向する位置には、ブラックマトリクス34(遮光部)が設けられており、全波長の光が遮断される。一方、トランジスタ20dに対向する位置は開口しているため、照射された光を受光する。トランジスタ20dは、受光した光の強度に応じた電流を流すことによって、受光量を検知する。
 アクティブマトリクス基板40の背面側、すなわち偏光板32形成面側には、バックライト38が配置されている。バックライト38には、複数個の白色LEDが光源として備えられている。
 バックライト38から光が出射されると、トランジスタ20dを含む光センサ回路20は、例えば表示パネル1にタッチした操作者の指腹により反射された光を検知することにより、タッチした位置を検出することができる。
 しかしながら、表示パネル1を使用している環境によっては、外光の可視光成分のTFT20dへの入射光強度が、無視できない大きさになる可能性がある。この場合、外光の可視光成分がノイズ(N)となるので、TFT20dの感度が低下し、タッチセンサとしての精度が低下する問題がある。
 上記問題を解決するために、図3の(b)に示すように、上記カラーフィルタ層33と同層に可視光成分の光を遮光する可視光カットフィルタ(赤外透過フィルタ)35を形成することが好ましい。
 この可視光カットフィルタ35は、上記アクティブマトリクス基板40上に設けられたTFT20dに対向する位置に形成され、可視光波長以下の光を遮光するようになっている。
 これにより、外光の可視光成分がTFT20dに入射され難い構造となるので、液晶表示装置の外部の環境(外光強度等)に影響されない、幅広い環境下で安定したセンシング動作が可能となる。
 ここで上記可視光カットフィルタ35の可視光の平均透過率は、1%以下であることが好ましい。
 これにより、可視光カットフィルタ35の下方に配置されているトランジスタ20dへの外光入射をカットすることができる。
 なお、可視光の平均透過率を1%以下にするための可視光カットフィルタ35としては、RGBの3層からなるカラーフィルタで構成されていることが好ましい。
 これにより、カラーフィルタ層33と同時に形成することが可能となるので、可視光カットフィルタ35を別の材料及び別工程で製造する場合よりもコストを削減することができる。
 また、バックライト38には、複数個の白色LEDと複数個の赤外LEDとが光源として備えられていてもよい。なお、赤外LEDは、赤外領域の波長の光を発するものであるが、特に、可視光カットフィルタ(赤外光透過部)35を透過する波長域の赤外光を出射するものを使用している。
 これにより、例えば操作者が表示パネル1をタッチした場合に、バックライト38内の赤外LEDから照射された赤外光が操作者の指腹により反射され、この反射された赤外光を光センサ回路20が検知することができる。そのため、各光センサ回路20が検知した赤外光の強度によって、操作者がどの位置にタッチしたかを検知することができる。
 ここで、例えばTFT20dは、a-siを受光層として利用した場合、赤外光に対するa-si膜吸収が少ないため、経時特性変化が小さく、光センサ回路20の信頼性を向上させることができる。
 次に、図1に基づいて表示領域の詳細な構成について説明する。
 表示パネル1の表示領域8には、複数の画素が、RGBの絵素PIXを1単位として、マトリクス状に配列されている。
 図1は、表示領域8のうち、第n行目の構成を抽出した等価回路図である。第n行目には、ゲート配線Gn、ソース配線S(図ではSm~Sm+3が示されている)、及び、保持容量配線Csnによって区画された複数の絵素PIXと、センサ走査信号線EとしてのノードnetB電圧制御用配線Vc1n~Vc4n、及び読み出し制御用配線Vrwnに接続された1つ以上の光センサ回路20とが配置されている。保持容量配線Csn、ノードnetB電圧制御用配線Vc1n~Vc4n、及び読み出し制御用配線Vrwnは、ゲート配線Gnと平行に設けられている。
 絵素PIXは、選択素子としてのTFT22、液晶容量CL、保持容量CSなどからなる表示素子駆動用回路21を備えている。TFT22のゲートはゲート配線Gnに、ソースはソース配線Sに、ドレインは絵素電極23に、それぞれ接続されている。液晶容量CLは、絵素電極23と共通電極Comとの間に液晶層が配置されてなる容量であり、保持容量CSは、絵素電極23あるいはTFT22のドレイン電極と保持容量配線Csnとの間に絶縁膜が配置されてなる容量である。共通電極Com及び保持容量配線Csnには、それぞれに例えば一定の電圧が印加される。
 光センサ回路20は、1つの絵素PIXや複数の絵素で構成される1つの画素(例えばRGBの絵素PIX…の一組)につき1つずつ、または、複数の上記絵素または複数の上記画素につき1つずつなど、任意の数で設けられ、TFT(センサ出力用トランジスタ)20a、TFT(センサ出力電圧制御用トランジスタ)20b、TFT(ノードnetB分圧用トランジスタ)20c,TFT(フォトトランジスタ)20dを備えている。
 TFT20a(第4のトランジスタ)のゲートは読み出し制御用配線Vrwnに、ドレインはソース配線S(ここではSm)に、ソースはTFT20bのドレインに、それぞれ接続されている。
 TFT20b(第3のトランジスタ)のゲートはノードnetBと称する電極に、ドレインはTFT20aのソースに、ソースはソース配線S(ここではSm+1)に、それぞれ接続されている。
 TFT20c(第2のトランジスタ)のゲートはノードnetB電圧制御用配線Vc2n(第2の電圧制御配線)に、ドレインはノードnetB電圧制御用配線Vc1n(第1の電圧制御配線)に、ソースはTFT20dのドレインに、それぞれ接続されている。
 TFT20d(第1のトランジスタ)のゲートはノードnetB電圧制御用配線Vc3n(第3の電圧制御配線)に、ドレインはTFT20cのソースに、ソースはノードnetB電圧制御用配線Vc4n(第4の電圧制御配線)に、それぞれ接続されている。
 ノードnetBの一端はTFT20bのゲートに、他端はTFT20cのソースと、TFT20dのドレインとの接続点に、それぞれ接続されている。
 光センサ回路20は、絵素PIXへデータ信号を書き込む期間以外の期間を利用して、TFT20dで受けた光の照射強度に応じてノードnetBに現れた電圧をTFT20bを介して、TFT20aのドレインからセンサ出力電圧Vomとして出力し、当該ドレインに接続されたソース配線S(光検出時にはセンサ出力用配線Vomとなる)を介して表示領域外のセンサ読み出し回路5に向けて出力する構成である。このとき、TFT20bのソースに接続されているソース配線Sは、光検出時には一定電圧が印加された電源配線Vsmとして機能する。このように、センサ出力用配線Vomとソース配線Sとは互いに兼用されている。また、電源配線Vsmとソース配線Sとは互いに兼用されている。しかしながら、本発明はこのような構成に限定はされず、センサ出力用配線Vom及び電源配線Vsmを、ソース配線Sの近傍にそれぞれ破線で示したように、ソース配線Sとは独立した配線として形成することも可能である。
 なお、絵素PIXの選択素子としてのTFT22及び光センサ回路20に備えられたTFT20a~20dは、アクティブマトリクス基板40上に、ほぼ同一のプロセスによって形成されたものであることが好ましい。
 これにより、製造コストを低減し、プロセス工程数の増加を抑制することができる。
 次に、図4及び図5に基づいてTFT20dで受けた光の照射強度に応じてノードnetBに現れる電圧が変化する原理について説明する。
 図4は、光センサ回路20の要部の構成を示す図である。
 図4の(a)に示すように、TFT20cのゲートはノードnetB電圧制御用配線Vc2nに、ドレインはノードnetB電圧制御用配線Vc1nに、ソースはTFT20dのドレインに、それぞれ接続されている。
 TFT20dのゲートはノードnetB電圧制御用配線Vc3nに、ドレインはTFT20cのソースに、ソースはノードnetB電圧制御用配線Vc4nに、それぞれ接続されている。
 なお、TFT20bのゲート(ノードnetB)は、TFT20cとTFT20dとの接続点に接続されている。
 ここで、ノードnetB電圧制御用配線Vc1nには例えば+3Vの一定電圧が印加され、ノードnetB電圧制御用配線Vc2nには例えば+4Vの一定電圧が印加され、ノードnetB電圧制御用配線Vc3nには例えば+16Vの一定電圧が印加され、ノードnetB電圧制御用配線Vc4nには例えば+21Vの一定電圧が印加される。
 図5は、TFT20cとTFT20dを抵抗として考えた時の回路図である。
 図5に示すように、TFT20cの照射光の強度が低い(暗)時の抵抗を抵抗RcD、照射光の強度が高い(明)時の抵抗を抵抗RcP、TFT20dの照射光の強度が低い(暗)時の抵抗を抵抗RdD、照射光の強度が高い(明)時の抵抗を抵抗RdPとする。
 TFT20cは遮光されているため、照射光の強度による影響を受けなく、抵抗RcDと抵抗RcPの抵抗値はほぼ同じである。
 一方、TFT20dは受光状態により、抵抗値が変化し、RdD>RdPとなる。これは、TFT20dに光を照射すると、電子及び正孔が発生して、低抵抗状態となり、光を遮断すると、光による電子及び正孔は発生しなくなり、高抵抗状態になるためである。
 したがって、照射光の強度が高い(明)時のノードnetB電圧が、照射光の強度が低い(暗)時のノードnetB電圧より高くなり、照射光の強度が高い(明)時のTFT20bの供給電流能力が向上し、センサ出力電圧Vomも高くなる。
 なお、Vc1n(+3V)とVc4n(+21V)の中間電位(即ち、TFT20dのドレインとTFT20cソースとの接続点の電圧)がノードnetBの電圧として出力されるが、例えば、TFT20cとTFT20dがほぼ同じサイズであれば、TFT20dで受けた照射光の強度が低い(暗)時(図5の上段参照)、約10.5VのノードnetB電圧が出力され、TFT20dで受けた照射光の強度が高い(明)時(図5の下段参照)、約21VのノードnetB電圧が出力される。
 従来の回路構成では、照射光の強度を検知するために、あるノードをフォトダイオードの逆バイアス電流で放電することにより、センサ出力差を生成し、各光センサ回路に割り当てられるセンシングに必要な時間は、放電時間と読み出し時間の和であった。センシング周波数が高い場合には、放電時間が短くなり、S/N値(D.R.値)の低下を防止するために、フォトダイオードのサイズを大きくしたり、各波長に対する感度を向上したりする対策を必要とした。
 本実施の形態においては、上述したように、TFT20dの受光状態に応じて、迅速にノードnetB電圧が変化し、上記放電時間を必要としないため、センシング周波数を高くする場合に特に有利である。
 さらに、上記ノードnetB電圧制御用配線Vc1n~Vc4nの電位をそれぞれ所定の値に設定する(特に、ノードnetB電圧制御用配線Vc1nの電位をノードnetB電圧制御用配線Vc4nの電位よりも低くする)ことにより、照射光の強度が高い時のセンサ出力電圧Vomを、照射光の強度が低い時のセンサ出力電圧Vomより高くすることができる。そのため、外光から迷光の影響により、S/N値(D.R.値)が低下することを防止することができる。これにより、光センサ回路の信頼性を向上させることができる。
 次に、光センサ回路20の動作について、図6に基づいて詳細に説明する。
 データ信号の書き込み期間にはゲート配線Gnに、走査信号として例えば+21VのHighレベルと-10VのLowレベルとからなるゲートパルスが出力されるとともに、各ソース配線Sにデータ信号が出力される。保持容量配線Csnには例えば+4Vの一定電圧が印加される。各行の絵素PIXに対して1垂直期間(1V)ごとにこの動作が繰り返されるが、当該書き込み期間以外には、光センサ回路20による光検出結果のセンサ読み出し回路5への出力が可能である。なお、センサ出力用配線Vom及び電源配線Vsmを、それぞれの近傍に破線で示したように、ソース配線Sとは独立した配線として形成する場合には、書き込み期間であるか否かに関わらず、光センサ回路20による光検出結果のセンサ読み出し回路5への出力が可能である。
 ノードnetB電圧制御用配線Vc1nには例えば+3Vの一定電圧が印加され、ノードnetB電圧制御用配線Vc2nには例えば+4Vの一定電圧が印加される。ノードnetB電圧制御用配線Vc3nには例えば+16Vの一定電圧が印加され、ノードnetB電圧制御用配線Vc4nには例えば+21Vの一定電圧が印加される。
 期間(1)において、TFT20dで受ける照射光の強度が段々低く(暗)なり、ノードnetBの電圧はこの光強度に応じた割合で降圧される。
 期間(2)において、読み出し制御用配線Vrwnにセンサ読み出し回路5から例えば+21VのHighレベルと-10VのLowレベルとからなる読み出しパルスPrwnが印加されると、TFT20aは読み出し動作を開始し、TFT20aのドレインからセンサ出力電圧Vomとして出力し、当該ドレインに接続されたソース配線S(光検出時にはセンサ出力用配線Vomとなる)を介して表示領域外のセンサ読み出し回路5に向けて出力する。なお、センサ出力電圧Vomは、ノードnetBの電圧に応じた値、即ち光強度に応じて上記接続点に現れた電圧に応じた値となるので、このセンサ出力電圧Vomを、センサ出力用配線Vomを介してセンサ読み出し回路5で読み出すことによって光強度を検出することができる。
 そして期間(3)において、読み出し制御用配線Vrwnに読み出しパルスPrwnの印加は停止され、TFT20aの読み出し動作も停止する。TFT20dで受ける照射光の強度が段々高く(明)なり、ノードnetBの電圧はこの光強度に応じた割合で昇圧される。
 期間(4)において、読み出し制御用配線Vrwnにセンサ読み出し回路5から再び例えば+21VのHighレベルと-10VのLowレベルとからなる読み出しパルスPrwnが印加されると、TFT20aは読み出し動作を開始し、TFT20aのドレインからノードnetBの電圧に応じた値、すなわち光強度に応じた値をセンサ出力電圧Vomとして出力し、当該ドレインに接続されたソース配線S(光検出時にはセンサ出力用配線Vomとなる)を介して表示領域外のセンサ読み出し回路5に向けて出力する。なお、読み出し制御用配線Vrwnに読み出しパルスPrwnの印加を停止するとTFT20aの読み出し動作も停止する。
 ここで、期間(2)及び期間(4)において、TFT20dで受ける照射光の強度が異なり、センサ出力電圧Vomも異なる。具体的には、期間(4)において、TFT20dで受ける照射光の強度が高く(明)、ノードnetBの電圧も高くなるため、TFT20bの供給電流能力が向上し、センサ出力電圧Vomも高くなる。
 センサ読み出し回路5は、各ソース配線S(光検出時にはセンサ出力用配線Vomとなる)からセンサ出力電圧Vomを読み出し、センシング画像処理装置7は、センサ読み出し回路5が読み取ったセンサ出力電圧Vomを基にしてパネル面内におけるセンサ検出結果の分布を解析する。
〔実施の形態2〕
 本発明の液晶表示装置に関する他の実施形態について、図7に基づいて説明すれば、以下のとおりである。
 なお、説明の便宜上、前記実施の形態1にて説明した図面と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
 図7は、本実施の形態において、液晶表示パネルの表示領域のうち、第n行目の構成を抽出して記載してある。
 図7に示すように、光センサ回路20は、1つの絵素PIXや1つの画素(例えばRGBの絵素PIX…の一組)につき1つずつなど、任意の数で設けられ、TFT20a、TFT20b、TFT20c、TFT20dを備えている。
 TFT20aのゲートは読み出し制御用配線Vrwnに、ドレインはセンサ出力用配線Vomに、ソースはTFT20bのドレインに、それぞれ接続されている。
 TFT20bのゲートはノードnetBと称する電極に、ドレインはTFT20aのソースに、ソースは電源配線Vsmに、それぞれ接続されている。
 TFT20cのゲートはノードnetB電圧制御用配線Vc2nに、ドレインはノードnetB電圧制御用配線Vc1nに、ソースはTFT20dのドレインに、それぞれ接続されている。
 TFT20dのゲートはノードnetB電圧制御用配線Vc3nに、ドレインはTFT20cのソースに、ソースは電源配線Vsmに、それぞれ接続されている。
 このように、本実施の形態では、TFT20dのソースがノードnetB電圧制御用配線Vc4nではなく、電源配線Vsmに接続されている。つまり、ノードnetB電圧制御用配線Vc4nが設けられていないという点が実施の形態1とは異なる。
 データ信号の書き込み期間にはゲート配線Gnに、走査信号として例えば+21VのHighレベルと-10VのLowレベルとからなるゲートパルスが出力されるとともに、各ソース配線Sにデータ信号が出力される。保持容量配線Csnには例えば+4Vの一定電圧が印加される。なお、本実施の形態においては、センサ出力用配線Vom及び電源配線Vsmを、ソース配線Sとは独立した配線として形成しているため、書き込み期間であるか否かに関わらず、光センサ回路20による光検出結果のセンサ読み出し回路5への出力が可能である。電源配線Vsmには例えば+21Vの一定電圧が印加される。
 ここで、ノードnetB電圧制御用配線Vc1nには例えば+5Vの一定電圧が印加され、ノードnetB電圧制御用配線Vc2nには例えば+7Vの一定電圧が印加され、ノードnetB電圧制御用配線Vc3nには例えば+10Vの一定電圧が印加される。
 本実施の形態においては、ノードnetB電圧制御用配線Vc4nと電源配線Vsmとが互いに兼用されるため、電源回路6から供給する電源数、及び配線の数を削減することが可能であり、上記光センサ回路20を内蔵した表示装置は、開口率の低下を防ぐことができる。
 なお、ここでは、センサ出力用配線Vom及び電源配線Vsmを、ソース配線Sとは独立した配線として形成する構成を例に挙げたが、実施の形態1と同様に、センサ出力用配線Vomとソース配線Sとを互いに兼用し、また、電源配線Vsmとソース配線Sとを互いに兼用してもよい。
〔実施の形態3〕
 本発明の液晶表示装置に関する他の実施形態について、図8に基づいて説明すれば、以下のとおりである。
 なお、説明の便宜上、前記実施の形態1にて説明した図面と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
 図8は、本実施の形態において、液晶表示パネルの表示領域のうち、第n行目の構成を抽出して記載してある。
 図8に示すように、光センサ回路20は、1つの絵素PIXや1つの画素(例えばRGBの絵素PIX…の一組)につき1つずつなど、任意の数で設けられ、TFT20a、TFT20b、TFT20c、TFT20dを備えている。
 TFT20aのゲートは読み出し制御用配線Vrwnに、ドレインはセンサ出力用配線Vomに、ソースはTFT20bのドレインに、それぞれ接続されている。
 TFT20bのゲートはノードnetBと称する電極に、ドレインはTFT20aのソースに、ソースは電源配線Vsmに、それぞれ接続されている。
 TFT20cのゲートはノードnetB電圧制御用配線Vc2nに、ドレインは保持容量配線Csnに、ソースはTFT20dのドレインに、それぞれ接続されている。このように、本実施の形態では、TFT20cのドレインがノードnetB電圧制御用配線Vc1nではなく、液晶容量を補助するために表示パネル内に設けられた保持容量配線Csnに接続されている。つまり、ノードnetB電圧制御用配線Vc1nが設けられていないという点が実施の形態1とは異なる。
 TFT20dのゲートはノードnetB電圧制御用配線Vc3nに、ドレインはTFT20cのソースに、ソースはノードnetB電圧制御用配線Vc4nに、それぞれ接続されている。
 データ信号の書き込み期間にはゲート配線Gnに、走査信号として例えば+21VのHighレベルと-10VのLowレベルとからなるゲートパルスが出力されるとともに、各ソース配線Sにデータ信号が出力される。保持容量配線Csnには例えば+3Vの一定電圧が印加される。なお、本実施の形態においては、センサ出力用配線Vom及び電源配線Vsmを、ソース配線Sとは独立した配線として形成しているため、書き込み期間であるか否かに関わらず、光センサ回路20による光検出結果のセンサ読み出し回路5への出力が可能である。電源配線Vsmには例えば+21Vの一定電圧が印加される。
 ここで、ノードnetB電圧制御用配線Vc2nには例えば+7Vの一定電圧が印加され、ノードnetB電圧制御用配線Vc3nには例えば+10Vの一定電圧が印加され、ノードnetB電圧制御用配線Vc4nには例えば+21Vの一定電圧が印加される。
 本実施の形態において、ノードnetB電圧制御用配線Vc1nと保持容量配線Csnが互いに兼用されるため、電源回路6から供給する電源数、及び配線の数を削減することが可能であり、上記光センサ回路20を内蔵した表示装置は、開口率の低下を防ぐことができる。
 なお、ここでは、センサ出力用配線Vom及び電源配線Vsmを、ソース配線Sとは独立した配線として形成する構成を例に挙げたが、実施の形態1と同様に、センサ出力用配線Vomとソース配線Sとを互いに兼用し、また、電源配線Vsmとソース配線Sとを互いに兼用してもよい。
〔実施の形態4〕
 本発明の液晶表示装置に関する他の実施形態について、図9に基づいて説明すれば、以下のとおりである。
 なお、説明の便宜上、前記実施の形態1にて説明した図面と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
 図9は、本実施の形態において、液晶表示パネルの表示領域のうち、第n行目の構成を抽出して記載してある。
 図9に示すように、光センサ回路20は、1つの絵素PIXや1つの画素(例えばRGBの絵素PIX…の一組)につき1つずつなど、任意の数で設けられ、TFT20a、TFT20b、TFT20c、TFT20dを備えている。
 TFT20aのゲートは読み出し制御用配線Vrwnに、ドレインはセンサ出力用配線Vomに、ソースはTFT20bのドレインに、それぞれ接続されている。
 TFT20bのゲートはノードnetBと称する電極に、ドレインはTFT20aのソースに、ソースは電源配線Vsmに、それぞれ接続されている。
 TFT20cのドレインはノードnetB電圧制御用配線Vc1nに、ゲートはノードnetB電圧制御用配線Vc2nに、ソースはTFT20dのドレインに、それぞれ接続されている。
 TFT20dのゲートはノードnetB電圧制御用配線Vc2nに、ドレインはTFT20cのソースに、ソースはノードnetB電圧制御用配線Vc4nに、それぞれ接続されている。このように、本実施の形態では、TFT20dのゲートがノードnetB電圧制御用配線Vc3nではなく、ノードnetB電圧制御用配線Vc2nに接続されている。つまり、ノードnetB電圧制御用配線Vc3nが設けられていないという点が実施の形態1とは異なる。
 データ信号の書き込み期間にはゲート配線Gnに、走査信号として例えば+21VのHighレベルと-10VのLowレベルとからなるゲートパルスが出力されるとともに、各ソース配線Sにデータ信号が出力される。保持容量配線Csnには例えば+4Vの一定電圧が印加される。なお、本実施の形態においては、センサ出力用配線Vom及び電源配線Vsmを、ソース配線Sとは独立した配線として形成しているため、書き込み期間であるか否かに関わらず、光センサ回路20による光検出結果のセンサ読み出し回路5への出力が可能である。電源配線Vsmには例えば+21Vの一定電圧が印加される。
 ここで、ノードnetB電圧制御用配線Vc1nには例えば+5Vの一定電圧が印加され、ノードnetB電圧制御用配線Vc2nには例えば+10Vの一定電圧が印加され、ノードnetB電圧制御用配線Vc4nには例えば+21Vの一定電圧が印加される。
 本実施の形態においては、ノードnetB電圧制御用配線Vc3nとノードnetB電圧制御用配線Vc2nとが互いに兼用されるため、電源回路6から供給する電源数、及び配線の数を削減することが可能であり、上記光センサ回路20を内蔵した表示装置は、開口率の低下を防ぐことができる。
 なお、ここでは、センサ出力用配線Vom及び電源配線Vsmを、ソース配線Sとは独立した配線として形成する構成を例に挙げたが、実施の形態1と同様に、センサ出力用配線Vomとソース配線Sとを互いに兼用し、また、電源配線Vsmとソース配線Sとを互いに兼用してもよい。
〔実施の形態5〕
 本発明の液晶表示装置に関する他の実施形態について、図10に基づいて説明すれば、以下のとおりである。
 なお、説明の便宜上、前記実施の形態1にて説明した図面と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
 図10は、本実施の形態において、液晶表示パネルの表示領域のうち、第n行目の構成を抽出して記載してある。
 図10に示すように、光センサ回路20は、1つの絵素PIXや1つの画素(例えばRGBの絵素PIX…の一組)につき1つずつなど、任意の数で設けられ、TFT20a、TFT20b、TFT20c、TFT20dを備えている。
 TFT20aのゲートは読み出し制御用配線Vrwnに、ドレインはセンサ出力用配線Vomに、ソースはTFT20bのドレインに、それぞれ接続されている。
 TFT20bのゲートはノードnetBと称する電極に、ドレインはTFT20aのソースに、ソースは電源配線Vsmに、それぞれ接続されている。
 TFT20cのゲートはノードnetB電圧制御用配線Vc2nに、ドレインは保持容量配線Csnに、ソースはTFT20dのドレインに、それぞれ接続されている。
 TFT20dのゲートはノードnetB電圧制御用配線Vc2nに、ドレインはTFT20cのソースに、ソースは電源配線Vsmに、それぞれ接続されている。
 ここで、ノードnetB電圧制御用配線Vc2nには例えば+10Vの一定電圧が印加される。電源配線Vsmには例えば+21Vの一定電圧が印加される。保持容量配線Csnには例えば+3Vの一定電圧が印加される。
 データ信号の書き込み期間にはゲート配線Gnに、走査信号として例えば+21VのHighレベルと-10VのLowレベルとからなるゲートパルスが出力されるとともに、各ソース配線Sにデータ信号が出力される。保持容量配線Csnには例えば+3Vの一定電圧が印加される。なお、本実施の形態においては、センサ出力用配線Vom及び電源配線Vsmを、ソース配線Sとは独立した配線として形成し、書き込み期間であるか否かに関わらず、光センサ回路20による光検出結果のセンサ読み出し回路5への出力が可能である。電源配線Vsmには例えば+21Vの一定電圧が印加される。
 ここで、ノードnetB電圧制御用配線Vc2nには例えば+10Vの一定電圧が印加される。
 本実施の形態においては、ノードnetB電圧制御用配線Vc4nと電源配線Vsm、ノードnetB電圧制御用配線Vc1nと保持容量配線Csn、及びノードnetB電圧制御用配線Vc3nとノードnetB電圧制御用配線Vc2nが、それぞれ互いに兼用される。
 以上のように、本実施の形態では、ノードnetB電圧制御用配線Vc1n、ノードnetB電圧制御用配線Vc3n、及び、ノードnetB電圧制御用配線Vc4nが他の配線と兼用されており、単独の構成として設けられていないという点が実施の形態1とは異なる。そのため、電源回路6から供給する電源数、及び配線の数を削減することが可能であり、上記光センサ回路20を内蔵した表示装置は、開口率の低下を防ぐことができる。
 なお、ここでは、センサ出力用配線Vom及び電源配線Vsmを、ソース配線Sとは独立した配線として形成する構成を例に挙げたが、実施の形態1と同様に、センサ出力用配線Vomとソース配線Sとを互いに兼用し、また、電源配線Vsmとソース配線Sとを互いに兼用してもよい。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 本発明の光センサ回路は、上記第2のトランジスタのドレインは第1の電圧制御用配線に、ゲートは第2の電圧制御用配線に、ソースは第1のトランジスタのドレインに、それぞれ接続されており、上記第1のトランジスタのゲートは第3の電圧制御用配線に、ドレインは第2のトランジスタのソースに、ソースは第4の電圧制御用配線に、それぞれ接続されており、上記第1~第4の電圧制御用配線は、上記接続点の電圧を制御するための配線であることが好ましい。
 上記構成によれば、上記第1~第4の電圧制御用配線の電位をそれぞれ所定の値に設定することにより、照射光の強度が高い時のセンサ出力電圧を、照射光の強度が低い時のセンサ出力電圧より高くすることができる。そのため、外光から迷光の影響により、S/N値(D.R.値)が低下することを防止することができる。これにより、光センサ回路の信頼性を向上させることができる。
 本発明の光センサ回路は、第3のトランジスタと、第4のトランジスタとをさらに備え、上記第4のトランジスタのゲートは読み出し制御用配線に、ドレインはセンサ出力用配線に、ソースは上記第3のトランジスタのドレインに、それぞれ接続されおり、上記第3のトランジスタのゲートは上記接続点に、ドレインは上記第4のトランジスタのソースに、ソースは電源配線に、それぞれ接続されており、上記読み出し制御用配線は、上記接続点に現れた電圧を読み出すための読出しパルスが印加される配線であり、上記センサ出力用配線は、上記第1のトランジスタで受けた光の照射強度に応じて上記接続点に現れた電圧を上記第3のトランジスタを介して、上記第4のトランジスタのドレインから出力する配線であることを特徴とする。
 上記構成によれば、読み出し制御用配線に読出しパルスが印加されると、第4のトランジスタは読み出し動作を開始し、第4のトランジスタのドレインからセンサ出力電圧として出力する。なお、センサ出力電圧は、接続点の電圧に応じた値、即ち光強度に応じて上記接続点に現れた電圧に応じた値となるので、このセンサ出力電圧を出力することにより光強度を検出することができる。
 本発明の光センサ回路は、上記第4の電圧制御用配線と上記電源配線は兼用されることが好ましい。
 上記構成により、供給する電源数を削減することが可能であり、上記光センサ回路を内蔵した表示装置において、開口率の低下を防ぐことができる。
 本発明の光センサ回路は、上記第2の電圧制御用配線と上記第3の電圧制御用配線は兼用されることが好ましい。
 上記構成により、供給する電源数を削減することが可能であり、上記光センサ回路を内蔵した表示装置において、開口率の低下を防ぐことができる。
 本発明の表示パネルは、上記の課題を解決するために、上記光センサ回路を備えていることを特徴とする。
 本発明の表示パネルでは、互いに交差する複数のゲート配線及び複数のソース配線と、各ゲート配線と各ソース配線との交点に対応して設けられる絵素とがマトリクス状に配置されている構成を有していることを特徴とする。
 本発明の表示パネルでは、上記光センサ回路は、1つの上記絵素または複数の上記絵素で構成されるからなる1つの画素につき1つずつ、設けられていることが好ましい。
 上記構成によれば、例えばタッチパネルにおいて、1つの上記絵素または複数の上記絵素で構成されるからなる1つの画素につき1つずつ、上記光センサ回路を配置することにより、タッチ位置検出の精度を向上させることができる。
 本発明の表示パネルでは、上記センサ出力用配線と上記ソース配線は兼用されることが好ましい。
 上記構成により、供給する電源数を削減することが可能であり、上記光センサ回路を内蔵した表示装置において、開口率の低下を防ぐことができる。
 本発明の表示パネルでは、上記電源配線と上記ソース配線は兼用されることが好ましい。
 上記構成により、供給する電源数を削減することが可能であり、上記光センサ回路を内蔵した表示装置において、開口率の低下を防ぐことができる。
 本発明の表示パネルは、表示素子の容量を補助するための保持容量配線をさらに有しており、上記第1の電圧制御用配線は、上記保持容量配線と兼用されることが好ましい。
 上記構成により、供給する電源数を削減することが可能であり、上記光センサ回路を内蔵した表示装置において、開口率の低下を防ぐことができる。
 本発明の表示パネルは、カラーフィルタ層を備え、上記カラーフィルタ層と同層であり、上記第1のトランジスタに対向する位置に可視光成分の光を遮光するフィルタが形成されていることが好ましい。
 上記構成によれば、外光に含まれる各種光のうち、ノイズとなりやすい可視光成分が第1のトランジスタに入射され難く、主に赤外光が入射される構造となる。そのため、液晶表示装置の外部の環境(外光強度等)に影響されない、幅広い環境下で安定したセンシング動作が可能となる。例えば、a-Siを受光層とするトランジスタにおいて、経時特性変化が大きい波長の光(可視光)を遮断することにより、信頼性を向上させることができる。
 本発明の表示パネルは、上記フィルタは、RGBの3層からなる上記カラーフィルタ層で構成されていることが好ましい。
 上記構成によれば、カラーフィルタ層と同時に形成することが可能となるので、上記フィルタを別の材料及び別工程で製造する場合よりもコストを削減することができる。
 本発明の表示装置は、上記課題を解決するために上記表示パネルを備えていることを特徴とする。
 本発明は、光センサを搭載した電子機器に好適に用いられる。
 1 表示パネル
 2 表示用走査信号線駆動回路
 3 表示用データ信号線駆動回路
 4 センサ走査信号線駆動回路
 5 センサ読み出し回路
 6 電源回路
 7 センシング画像処理装置
 8 表示領域
 10 液晶表示装置
 20 光センサ回路
 20a~20d TFT(第4~第1のトランジスタ)
 21 表示素子駆動用回路
 22 TFT
 23 絵素電極
 30 対向基板
 31 絶縁性基板
 32 偏光板
 33 カラーフィルタ層
 34 ブラックマトリクス(遮光部)
 35 可視光カットフィルタ
 38 バックライト
 40 アクティブマトリクス基板
 50 液晶層
 Cs 保持容量配線
 E センサ走査信号線
 G ゲート配線
 S ソース配線
 PIX 絵素
 Prwn 読み出しパルス
 Vc1n~Vc4n ノードnetB電圧制御用配線(第1~第4の電圧制御配線)
 Vo センサ出力用配線
 Vrwn 読み出し制御用配線
 Vs 電源配線
 netB ノード

Claims (16)

  1.  少なくとも、第1のトランジスタと第2のトランジスタとを備えている光センサ回路であって、
     上記第1のトランジスタと上記第2のトランジスタとは直列に接続され、
     上記第1のトランジスタには光が入射する一方、上記第2のトランジスタに対向する位置には、遮光部が設けられており、
     上記第1のトランジスタへの光照射強度に応じて上記第1のトランジスタと上記第2のトランジスタとを接続する接続点の電圧が変化することを特徴とする光センサ回路。
  2.  上記第2のトランジスタのドレインは第1の電圧制御用配線に、ゲートは第2の電圧制御用配線に、ソースは第1のトランジスタのドレインに、それぞれ接続されており、
     上記第1のトランジスタのゲートは第3の電圧制御用配線に、ドレインは第2のトランジスタのソースに、ソースは第4の電圧制御用配線に、それぞれ接続されており、
     上記第1~第4の電圧制御用配線は、上記接続点の電圧を制御するための配線であることを特徴とする請求項1に記載の光センサ回路。
  3.  第3のトランジスタと、第4のトランジスタとをさらに備え、
     上記第4のトランジスタのゲートは読み出し制御用配線に、ドレインはセンサ出力用配線に、ソースは上記第3のトランジスタのドレインに、それぞれ接続されおり、
     上記第3のトランジスタのゲートは上記接続点に、ドレインは上記第4のトランジスタのソースに、ソースは電源配線に、それぞれ接続されており、
     上記読み出し制御用配線は、上記接続点に現れた電圧を読み出すための読出しパルスが印加される配線であり、
     上記センサ出力用配線は、上記第1のトランジスタで受けた光の照射強度に応じて上記接続点に現れた電圧を上記第3のトランジスタを介して、上記第4のトランジスタのドレインから出力する配線であることを特徴とする請求項2に記載の光センサ回路。
  4.  上記第4の電圧制御用配線と上記電源配線は兼用されることを特徴とする請求項3に記載の光センサ回路。
  5.  上記第2の電圧制御用配線と上記第3の電圧制御用配線は兼用されることを特徴とする請求項3又は4に記載の光センサ回路。
  6.  請求項1又は2に記載の光センサ回路を備えていることを特徴とする表示パネル。
  7.  請求項3から5までのいずれか1項に記載の光センサ回路を備えていることを特徴とする表示パネル。
  8.  互いに交差する複数のゲート配線及び複数のソース配線と、各ゲート配線と各ソース配線との交点に対応して設けられる絵素とがマトリクス状に配置されていることを特徴とする請求項7に記載の表示パネル。
  9.  上記光センサ回路は、1つの上記絵素または複数の上記絵素で構成されるからなる1つの画素につき1つずつ、設けられていることを特徴とする請求項8に記載の表示パネル。
  10.  上記センサ出力用配線と上記ソース配線は兼用されることを特徴とする請求項8又は9に記載の表示パネル。
  11.  上記電源配線と上記ソース配線は兼用されることを特徴とする請求項8から10までの何れか1項に記載の表示パネル。
  12.  表示素子の容量を補助するための保持容量配線をさらに有しており、
     上記第1の電圧制御用配線は、上記保持容量配線と兼用されることを特徴とする請求項7から11までの何れか1項に記載の表示パネル。
  13.  カラーフィルタ層を備え、
     上記カラーフィルタ層と同層であり、上記第1のトランジスタに対向する位置に可視光成分の光を遮光するフィルタが形成されていることを特徴とする請求項6から12までの何れか1項に記載の表示パネル。
  14.  上記フィルタは、RGBの3層からなるカラーフィルタで構成されていることを特徴とする請求項13に記載の表示パネル。
  15.  請求項6から14までの何れか1項に記載の表示パネルを備えていることを特徴とする表示装置。
  16.  第1のトランジスタ、第2のトランジスタ、第3のトランジスタ、及び第4のトランジスタを備えている光センサ回路であって、
     上記第1のトランジスタと上記第2のトランジスタとは直列に接続され、
     上記第1のトランジスタには光が入射する一方、上記第2のトランジスタに対向する位置には、遮光部が設けられており、
     上記第4のトランジスタのゲートは読み出し制御用配線に、ドレインはセンサ出力用配線に、ソースは上記第3のトランジスタのドレインに、それぞれ接続されおり、
     上記第3のトランジスタのゲートは上記第1のトランジスタと上記第2のトランジスタとを接続する接続点に、ドレインは上記第4のトランジスタのソースに、ソースは電源配線に、それぞれ接続されており、
     上記第2のトランジスタのドレインは第1の電圧制御用配線に、ゲートは第2の電圧制御用配線に、ソースは第1のトランジスタのドレインに、それぞれ接続されており、
     上記第1のトランジスタのゲートは第3の電圧制御用配線に、ドレインは第2のトランジスタのソースに、ソースは第4の電圧制御用配線に、それぞれ接続されている光センサ回路を駆動する駆動方法であって、
     上記第1~第4の電圧制御用配線は、上記接続点の電圧を制御するための配線であり、
     上記第1~第4の電圧制御用配線に電圧をそれぞれ印加しつつ、
     上記第4のトランジスタのゲートに接続されている上記読み出し制御用配線に読み出しパルスを印加し、
     上記第1のトランジスタで受けた光の照射強度に応じて上記接続点に現れた電圧を、上記第3のトランジスタを介して、上記第4のトランジスタのドレインから当該ドレインに接続されたセンサ出力用配線を介して出力することを特徴とする駆動方法。
PCT/JP2010/060863 2009-11-12 2010-06-25 光センサ回路、表示パネル、表示装置、及び光センサ回路の駆動方法 WO2011058779A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/508,045 US20120241768A1 (en) 2009-11-12 2010-06-25 Optical sensor circuit, display panel, display device, and method for driving an optical sensor circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-259248 2009-11-12
JP2009259248 2009-11-12

Publications (1)

Publication Number Publication Date
WO2011058779A1 true WO2011058779A1 (ja) 2011-05-19

Family

ID=43991443

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/060863 WO2011058779A1 (ja) 2009-11-12 2010-06-25 光センサ回路、表示パネル、表示装置、及び光センサ回路の駆動方法

Country Status (2)

Country Link
US (1) US20120241768A1 (ja)
WO (1) WO2011058779A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013046618A1 (en) * 2011-09-29 2013-04-04 Sharp Kabushiki Kaisha Sensor array, matrix-type sensor array and touch display
JP2014194758A (ja) * 2013-03-01 2014-10-09 Semiconductor Energy Lab Co Ltd 情報入出力パネル、情報入出力パネルの駆動方法
WO2021255571A1 (ja) * 2020-06-19 2021-12-23 株式会社半導体エネルギー研究所 電子機器

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010100796A1 (ja) * 2009-03-06 2010-09-10 シャープ株式会社 表示装置
TWI554993B (zh) * 2012-11-20 2016-10-21 劍揚股份有限公司 具有光感應輸入的顯示驅動電路
JP2015201014A (ja) * 2014-04-07 2015-11-12 株式会社ジャパンディスプレイ 入力センサ付き表示装置及び表示装置の制御方法
CN104932692B (zh) * 2015-06-24 2017-12-08 京东方科技集团股份有限公司 三维触摸感测方法、三维显示设备、可穿戴设备
TWI571618B (zh) * 2016-05-17 2017-02-21 國立交通大學 紫外光感測元件及其感測方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008164672A (ja) * 2006-12-27 2008-07-17 Seiko Epson Corp 液晶装置及び電子機器
JP2009129397A (ja) * 2007-11-28 2009-06-11 Sony Corp 表示装置及び表示装置の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7408598B2 (en) * 2002-02-20 2008-08-05 Planar Systems, Inc. Light sensitive display with selected interval of light sensitive elements
US7602380B2 (en) * 2004-08-10 2009-10-13 Toshiba Matsushita Display Technology Co., Ltd. Display device with optical input function

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008164672A (ja) * 2006-12-27 2008-07-17 Seiko Epson Corp 液晶装置及び電子機器
JP2009129397A (ja) * 2007-11-28 2009-06-11 Sony Corp 表示装置及び表示装置の製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013046618A1 (en) * 2011-09-29 2013-04-04 Sharp Kabushiki Kaisha Sensor array, matrix-type sensor array and touch display
JP2014194758A (ja) * 2013-03-01 2014-10-09 Semiconductor Energy Lab Co Ltd 情報入出力パネル、情報入出力パネルの駆動方法
US10013089B2 (en) 2013-03-01 2018-07-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and driving method thereof
WO2021255571A1 (ja) * 2020-06-19 2021-12-23 株式会社半導体エネルギー研究所 電子機器

Also Published As

Publication number Publication date
US20120241768A1 (en) 2012-09-27

Similar Documents

Publication Publication Date Title
WO2011058779A1 (ja) 光センサ回路、表示パネル、表示装置、及び光センサ回路の駆動方法
JP4799696B2 (ja) 表示装置
JP5014971B2 (ja) ディスプレイ装置
US8212793B2 (en) Liquid crystal device, image sensor, and electronic apparatus
KR101587284B1 (ko) 전기 광학 장치 및 전자 기기
JP2007310628A (ja) 画像表示装置
JP4573856B2 (ja) マルチタッチ感知機能を有する液晶表示装置及びその駆動方法
JP4932526B2 (ja) 画面入力機能付き画像表示装置
KR101319346B1 (ko) 광센싱 방식의 터치 패널 내장형 액정 표시 장치 및 이의 구동 방법
WO2009148084A1 (ja) 表示装置
US20120242636A1 (en) Display device
US20120313912A1 (en) Display device with light sensor
CN101680803A (zh) 光传感器和包括该光传感器的显示装置
EP2287657A1 (en) Display device
JP2012164686A (ja) 光センサおよび表示装置
WO2013084947A1 (ja) 光センサ回路の動作方法、および、当該光センサ回路を備えた表示装置の動作方法
WO2010001929A1 (ja) 表示装置
US8593443B2 (en) Display device
JP5008016B2 (ja) 表示装置
US20110102393A1 (en) Display device
US20130113768A1 (en) Display device and drive method for same
WO2010097984A1 (ja) 光センサおよびこれを備えた表示装置
WO2010100785A1 (ja) 表示装置
WO2011065554A1 (ja) 表示装置
WO2011013631A1 (ja) 光センサおよび表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10829739

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13508045

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 10829739

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP