WO2011057601A1 - Séparation de co2 à partir de gaz de fumée par lavage chimique et intégration de chaleur avec un séchage de charbon, et dispositif pour la réalisation du procédé - Google Patents

Séparation de co2 à partir de gaz de fumée par lavage chimique et intégration de chaleur avec un séchage de charbon, et dispositif pour la réalisation du procédé Download PDF

Info

Publication number
WO2011057601A1
WO2011057601A1 PCT/DE2010/001284 DE2010001284W WO2011057601A1 WO 2011057601 A1 WO2011057601 A1 WO 2011057601A1 DE 2010001284 W DE2010001284 W DE 2010001284W WO 2011057601 A1 WO2011057601 A1 WO 2011057601A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
absorbent
desorption
gas
liquid separation
Prior art date
Application number
PCT/DE2010/001284
Other languages
German (de)
English (en)
Inventor
Jewgeni Nazarko
Sebastian Schiebahn
Ernst Riensche
Ludger Blum
Detlef Stolten
Original Assignee
Forschungszentrum Jülich GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Jülich GmbH filed Critical Forschungszentrum Jülich GmbH
Publication of WO2011057601A1 publication Critical patent/WO2011057601A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1425Regeneration of liquid absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1475Removing carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/02Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material
    • F23J15/04Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material using washing fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2215/00Preventing emissions
    • F23J2215/50Carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2219/00Treatment devices
    • F23J2219/40Sorption with wet devices, e.g. scrubbers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/32Direct CO2 mitigation

Definitions

  • the invention relates to a method for C0 2 separation from power plant exhaust gases (flue gases) by means of a chemical wash, and a device for carrying out the method, in particular an adsorption desorption plant.
  • a device for carrying out the method in particular an adsorption desorption plant.
  • the C0 2 wash as chemical absorption functions. as follows.
  • the flue gas is passed through a washing liquid after denitrification and desulfurization and possibly further cooling.
  • This liquid usually contains amines.
  • the C0 2 can first be bound chemically or physically in the detergent (absorption).
  • the entire cleaning liquid is then heated, whereby the C0 2 separates again from the amines (desorption).
  • the washed-out C0 2 is almost pure and can then be compressed and possibly transported away to a storage.
  • the amine-containing washing liquid is reusable after heating. For low to moderate C0 2 partial pressures, a separation of 75 to 90% can be achieved.
  • the regeneration of the detergent is an energy-consuming process, since the exothermic reaction detergent C0 2 is reversed by supplying heat.
  • the required heat which is taken from the power plant process, usually has a detrimental effect on the power plant efficiency.
  • the enriched with C0 2 raw gas usually enters from below into the absorber and flows through it to the top. Clean, C0 2 -depleted detergent (absorbent) is added to the absorption column over the beds and trickles down in countercurrent to the gas.
  • the detergent loads in the direction of the thermodynamic equilibrium with the C0 2 to be washed out of the gas, so that the flue gas leaves the wash column with a reduced C0 2 content, whereas the detergent is enriched with C0 2 ,
  • the regeneration of the detergent preferably takes place at elevated temperature, so that, for reasons of energy optimization, a first heat exchanger heats the laden detergent and simultaneously cools the warm, regenerated and thus again C0 2 -depleted detergent. Further heating of the absorbent can take place either in a heater before the desorber or in another apparatus which is located at the bottom of the regenerating. The heated detergent trickles down in the desorber over the bed, whereby a part of the C0 2 goes back into the gas phase and rises in the desorber upwards.
  • the gaseous C0 2 is cooled by a further heat exchanger, with evaporated detergent condensed out and via a line in the Desorption is returned. If necessary, water introduced into the process with the raw gas can also be discharged here.
  • desorption can be carried out by lowering the pressure with the aid of a vacuum pump arranged at the head of the desorber.
  • the C0 2 -depleted detergent from the bottom of the regeneration column can now be reloaded in the absorber. For this purpose, it is to cool to absorber temperature, which is used in addition to the detergent countercurrent usually a second heat exchanger with cooling water.
  • detergents in particular amine-based solvents are known, for example, diethanolamine, triethanolamine, activated methyldiethanolamine and monoethanol amine.
  • Mono-ethanol-amine (MEA) is known to require a high desorption temperature of about 120 to 130 ° C due to the strong binding effect between C0 2 and MEA. This energy requirement must be additionally made available by the power plant, thus adversely reducing the efficiency by about 1 to 13 percentage points.
  • the brown coal contains up to 60% by weight of water.
  • the lignite was also to be dried for the application of C0 2 separation (regardless of the deposition concept).
  • the lignite is dried with hot flue gases at a temperature of 900 to 1000 ° C, the flue gases are withdrawn from the furnace.
  • drying and dewatering processes have already been developed for use in power plants, such as the fluidized-bed dryer, in which the coal water evaporates as it passes through the fluidized bed.
  • the energy required for drying is usually provided by a steam-heated heat exchanger.
  • heating steam can also be taken from a low-pressure turbine at only about 3 bar, which is available at about 133 ° C. for drying the brown coal.
  • the drying takes place at a pressure of about 1, 1 bar and at a fluidized bed temperature of about 1 10 ° C in almost pure steam atmosphere.
  • Part of the heat of the evaporated water from lignite can be recovered by using the vapors (water vapor from lignite drying) either for boiler feed water pre-heating or also for heating lignite coal drying.
  • the vapors for coal drying must be recompressed with a compressor so that a temperature difference between the vapors to be cooled and the water to be evaporated from the brown coal is given.
  • the heat recovery lignite drying is an energy-consuming process due to the steam extraction or due to the repeated compression of the vapors. Task and solution
  • the object of the invention is to provide a further method for the effective reduction of C0 2 emissions from the exhaust gases of combustion plants, which is overall more energy efficient and thus cheaper than before.
  • the invention relates to a combined method for reducing C0 2 emissions from the exhaust gases of combustion plants, in particular from flue gases of energy conversion plants, with an integrated coal drying, especially a lignite drying. Furthermore, the invention relates to a device suitable for carrying out this method.
  • firing plant is understood to mean any plant in which a gaseous, liquid and / or solid fuel is oxidized to utilize the heat generated.
  • gas burners which are operated with natural gas, liquefied petroleum gas, city gas or landfill gas, oil burners, the z. B. with petroleum, fuel oil, or alcohols are operated, and also grate firing for particulate fuels, such as gas-rich coal or woodchips, fluidized bed or dust firing.
  • Flue gas is the gaseous combustion product produced during the technical combustion of fuels.
  • Flue gases usually include solid, liquid and / or gaseous impurities such as nitrogen, carbon dioxide, sulfur dioxide, nitrogen oxide and water vapor as gases, solid particles such as fly ash and soot, and optionally also carbon monoxide or hydrogen.
  • the idea of the invention is based on an improved over the prior art and To provide more effective C0 2 separation from a flue gas by means of chemical absorption, in which a coal drying is integrated to the more effective energy yield of this process and taking advantage of synergistic effects.
  • a cooling step required in the CO 2 removal from a flue gas is advantageously used to dry coal, in particular moist brown coal, at least in part.
  • the CO 2 separation takes place from the flue gas by means of chemical scrubbing.
  • the C0 2 -rich wash solution is passed into a desorption column.
  • the heating of the washing solution can be effected, for example, by a heat exchanger operated with low-pressure steam taken from the turbines.
  • part of the washing solution in particular water, is evaporated together with C0 2 .
  • the amount of the evaporated wash solution varies depending on the operating conditions of the process, in particular temperature, pressure, C0 2 loading of the wash solution.
  • washing solutions in particular amine-based liquids are suitable.
  • a cooling and a subsequent gas / liquid separation are provided regularly.
  • the previous cooling is required so far as the most effective separation, in other words a pure C0 2 stream, is sought.
  • the lower the temperature selected during the gas / liquid separation the more completely the previously evaporated wash solution can condense out again.
  • the temperatures required for desorption (release) of C0 2 from the absorbent are generally well above 100 ° C. for amine-based wash solutions. Accordingly, the released C0 2 together with the proportion of absorbent evaporated in the desorption unit when leaving the desorption unit usually has temperatures of more than 100 ° C, in particular more than 120 ° C, and advantageously more than 130 ° C.
  • This heated and possibly pressurized mixture is advantageously suitable to be used as a heat transfer agent for the process of coal drying.
  • the invention provides, the released C0 2 together with the vaporized in the desorption unit of absorbent, which is discharged from the desorption unit, direct to a coal drying unit to be used there at least for partial drying of the coal.
  • this mixture acts as a medium for a heat exchanger, which is arranged in the coal drying.
  • this heat exchanger fed by the mixture is placed directly in the fluidized bed of a fluidized bed dryer of a coal drying unit.
  • other heat exchangers for example, with steam-operated heat exchangers, as previously customary be arranged within the coal drying unit.
  • the condensation of the evaporated washing solution takes place at a corresponding pressure regularly at a temperature which is above the temperature of the coal drying, so that the water contained in the coal at least partially evaporated.
  • the actual separation of the gaseous C0 2 from the absorbent is carried out regularly in the downstream gas / liquid separation unit.
  • the mixture can be fed directly to the gas / liquid separation unit after passing through the coal drying unit, or, if necessary, also be further cooled before.
  • the condensed wash solution from the heat exchanger is separated after passing through the coal dryer from C0 2 -rich gas stream and for washing solution treatment recycled. If necessary, the washing solution can be prepared beforehand and, if appropriate, appropriately tempered via a further heat exchanger.
  • the evaporated water from the coal drying can be used as before for the supply of gas, district heating or for another purpose. Part of the resulting water vapor can be used for direct turbulence of the brown coal to be dried and for the production of the floating fluidized bed or in addition as a heat exchanger to support the brown coal drying process.
  • the heat for lignite drying at another point from the adsorption / desorption process for example by the heated regenerated wash solution is first used for lignite drying before they preheat with C0 2- loaded wash water before the desorption column is used.
  • the advantage of the invention is that a large part of the energy for coal drying, in particular completely or in part by waste heat from the C0 2 may be provided -Redu- z istsvon, in particular by the heat for the de- sorption of C0 2 from the loaded wash water is needed. Due to the condensation of the evaporated washing solution outside the desorption column, it is advantageously possible to cover the energy required for drying the coal at least partially. As a result, on the one hand eliminates the amount of cooling water to cool the wash solution or at least reduced, and on the other hand, less energy from other processes, in particular in the form of steam from the turbine to be decoupled for drying the lignite. In total, this leads to a significant increase in power plant efficiency.
  • FIGS. 1 to 4 In this case, in FIGS. 1 to 4:
  • FIG 1 shows the diagram of an energy conversion process, here an energy production in a coal power plant with the C0 2 separation from the flue gas (decarbonization) by means of chemical scrubbing (eg 30% aqueous solution of the monoethanolamine) after the flue gas cleaning according to FIG the current state of the art.
  • the flue gas cleaning of a fired with a solid fuel and the current state of the art large combustion plant includes the denitrification, dedusting and desulfurization in this order.
  • the chemical washing separates 90% of the CO 2 contained in the flue gas (a) with a purity of 99% by volume (g). Due to the regeneration of the washing solution and the electrical consumption of the decarburisa- tion plant, the power plant net efficiency is reduced by 10 percentage points in a defined design case.
  • FIG. 1 shows a washing process from the prior art.
  • the raw flue gas (a) loaded with C0 2 is fed to an absorption unit (1), which flows through it from bottom to top.
  • the washing solution (d) (absorbent), often an aqueous solution of amines, which is added to the head of the absorption unit (1) and receives in countercurrent C0 2 from the flue gas.
  • the C0 2 -saturated wash solution (c) is passed into a desorption unit (2), where it is heated to about 120 ° C (WT1). At these temperatures, the C0 2 (desorbed) dissolves again from the wash solution.
  • FIG. 2 shows the scheme of a brown coal drying process with vapor condensation from the prior art.
  • the wet coal (i) is fed to a coal drying unit (4).
  • a heat exchanger operated with steam (k) provides the heat transfer required for the drying of the wet coal, so that it can be withdrawn, mainly dried, from the coal drying unit (4) as dried coal (j).
  • the steam already partially condenses in this process (1).
  • Part of the vapors (m) is used to fluidize the fluidized bed in the coal drying unit (4), another part after cooling (WT5) condensed (n).
  • WT5 part after cooling
  • FIG. 4 shows the diagram of an energy conversion process with the combined method according to the invention for reducing C0 2 emissions from flue gases of energy conversion plants with integrated coal drying.
  • the flue gas (a) of the absorption unit (1) is supplied. There, the C0 2 by means of the washing solution (d) washed out of the C0 2 -containing flue gas (a). The C0 2 depleted flue gas (b) leaves the absorption column (1).
  • the C0 2 enriched wash solution (c) passes after preheating via a heat exchanger (WT1) in the desorption unit (2), where the C0 2 is released under heating.
  • WT6 heat exchanger
  • the liberated gaseous C0 2 and the evaporated washing solution (e) together leave the desorption column (2) with an overpressure, and are fed to a heat exchanger (WT6) a coal drying unit (4).
  • the condensation of the evaporated washing solution takes place regularly at a temperature which is above the temperature of the coal drying, so that the water contained in the coal evaporates as vapors (m).
  • the scrubbing solution freed from C0 2 leaves the desorption unit (2), is cooled (WT1 and optionally WT2) and returned to the absorption unit (1).
  • the CO 2 leaving the coal drying unit is supplied directly to a gas / liquid separation unit (3a) together with the washing solution evaporated in the desorption unit (2).
  • the separated condensate of the washing solution (h) is fed directly back to the desorption unit (2).
  • the separated C0 2 -rich gas stream (g) is fed to a further treatment.
  • the gas / liquid separation takes place this takes place without further cooling of the mixture at a high temperature level.
  • the separated under these conditions C0 2 disadvantageously still has a significant proportion of water.
  • the separated washing solution still has such a high temperature level that it can be returned directly to the desorption unit.
  • the CO 2 leaving the coal drying unit is first cooled (WT 7) together with the scrubbing solution evaporated in the desorption unit (2) and only then supplied to a gas / liquid separation unit (3b).
  • the gas / liquid separation is carried out in such a way that the proportion of water still present in the separated C0 2 - stream can be significantly lowered.
  • the condensed wash solution now has such low temperatures that a direct use in the desorption unit makes little sense energetically. Therefore, in this case, the washing solution is fed directly or through further cooling (WT2) to the absorption unit (1).
  • WT2 further cooling
  • a procedure may also be advantageous in which both paths indicated above are taken simultaneously.
  • the proportions for a direct return to the desorption unit or to the absorption unit could advantageously be regulated directly as required.
  • the evaporated water from the coal drying (vapors) can be used for feedwater pre-heating, district heating or for another purpose. After the heat release the vapor condensate is optionally fed to the water treatment. Part of the resulting water vapor can be used as in the prior art for turbulence of the brown coal to be dried and for the production of the floating fluidized bed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Treating Waste Gases (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)

Abstract

L'invention concerne un procédé de séparation de dioxyde de carbone à partir d'un gaz de fumée qui comprend les étapes suivantes : - le gaz de fumée (a) est introduit dans une unité d'absorption (1), dans laquelle au moins une partie du CO2 du gaz de fumée est absorbée à l'aide d'un agent d'absorption liquide (d) introduit dans l'unité d'absorption, - l'agent d'absorption liquide enrichi avec le CO2 (c) est introduit dans une unité de désorption (2) et chauffé, au moins une partie du CO2 étant libérée de l'agent d'absorption, - le CO2 libéré est évacué (e) de l'unité de désorption avec la fraction d'agent d'absorption vaporisée dans l'unité de désorption, et introduit dans une unité de séparation gaz/liquide (3a), - dans l'unité de séparation gaz/liquide, le CO2 gazeux est séparé (g) de l'agent d'absorption condensé. Le procédé selon l'invention est caractérisé en ce que le CO2 libéré dans l'unité de désorption est tout d'abord introduit (4) avec la fraction d'agent d'absorption vaporisée dans l'unité de désorption dans une unité de séchage de charbon en tant que caloporteur (e), avant d'être introduit dans l'unité de séparation gaz/liquide.
PCT/DE2010/001284 2009-11-16 2010-11-03 Séparation de co2 à partir de gaz de fumée par lavage chimique et intégration de chaleur avec un séchage de charbon, et dispositif pour la réalisation du procédé WO2011057601A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009053009.6 2009-11-16
DE102009053009A DE102009053009A1 (de) 2009-11-16 2009-11-16 CO2-Abtrennung aus Rauchgasen durch chemische Wäsche sowie Vorrichtung zur Durchführung des Verfahrens

Publications (1)

Publication Number Publication Date
WO2011057601A1 true WO2011057601A1 (fr) 2011-05-19

Family

ID=43618679

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2010/001284 WO2011057601A1 (fr) 2009-11-16 2010-11-03 Séparation de co2 à partir de gaz de fumée par lavage chimique et intégration de chaleur avec un séchage de charbon, et dispositif pour la réalisation du procédé

Country Status (2)

Country Link
DE (1) DE102009053009A1 (fr)
WO (1) WO2011057601A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112014006458B4 (de) 2014-03-13 2019-05-16 Mitsubishi Heavy Industries Engineering, Ltd. Minderwertige Kohle nutzendes Energieerzeugungssystem

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008127709A2 (fr) * 2007-04-11 2008-10-23 Great River Energy Appareil et procede permettant d'ameliorer la qualite de materiaux a forte humidite et de separer et concentrer un materiau organique et/ou non organique contenu dans lesdits materiaux
US20090151566A1 (en) * 2007-12-13 2009-06-18 Alstom Technology Ltd System and method for regeneration of an absorbent solution

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2792777B2 (ja) * 1992-01-17 1998-09-03 関西電力株式会社 燃焼排ガス中の炭酸ガスの除去方法
DE19623209C1 (de) * 1996-06-11 1998-02-26 Rheinische Braunkohlenw Ag Verfahren zum Betrieb eines mit Braunkohle befeuerten Kraftwerkes sowie ein derartiges Kraftwerk
GB2434330B (en) * 2006-01-13 2010-02-17 Project Invest Energy As Removal of CO2 from flue gas

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008127709A2 (fr) * 2007-04-11 2008-10-23 Great River Energy Appareil et procede permettant d'ameliorer la qualite de materiaux a forte humidite et de separer et concentrer un materiau organique et/ou non organique contenu dans lesdits materiaux
US20090151566A1 (en) * 2007-12-13 2009-06-18 Alstom Technology Ltd System and method for regeneration of an absorbent solution

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HARKIN T ET AL: "Process integration analysis of a brown coal-fired power station with CO2 capture and storage and lignite drying", ENERGY PROCEDIA, ELSEVIER, NL, vol. 1, no. 1, 1 February 2009 (2009-02-01), pages 3817 - 3825, XP026472341, ISSN: 1876-6102, [retrieved on 20090201], DOI: DOI:10.1016/J.EGYPRO.2009.02.183 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112014006458B4 (de) 2014-03-13 2019-05-16 Mitsubishi Heavy Industries Engineering, Ltd. Minderwertige Kohle nutzendes Energieerzeugungssystem

Also Published As

Publication number Publication date
DE102009053009A1 (de) 2011-05-19

Similar Documents

Publication Publication Date Title
EP1682638B1 (fr) Procede d'extraction d'un flux de gaz acide sous haute pression par extraction des gaz acides contenus dans un flux fluidique
DE60004795T2 (de) Verfahren zur entfernung und wiedergewinnung von c02 aus abgasen
EP2382028B1 (fr) Procédéde séparation du dioxyde de carbone contenu dans un gaz d'échappement d'une centrale électrique à combustible fossile
EP2452051A2 (fr) Centrale thermique au charbon avec lavage des fumées et récupération de chaleur
EP2414076A1 (fr) DISPOSITIF ET PROCÉDÉ PERMETTANT D'ÉLIMINER LE DIOXYDE DE CARBONE (CO2) DU GAZ DE COMBUSTION D'UNE INSTALLATION DE CHAUFFAGE APRÈS LA CONVERSION D'ÉNERGIE& xA;
EP2105189A1 (fr) Procédé et dispositif de séparation de dioxyde de carbone d'un gaz de fumée d'une centrale à combustible fossile
WO2007093615A1 (fr) Conversion d'installations pour l'extraction de gaz acides
WO2010006825A1 (fr) Procédé et dispositif pour séparer le dioxyde de carbone d’un gaz d’échappement rejeté par une centrale électrique fonctionnant aux énergies fossiles
WO2014037214A1 (fr) Procédé pour séparer des gaz acides d'un courant de fluide contenant de l'eau
WO2013013749A1 (fr) Récupération de chaleur au cours de processus d'absorption et de désorption
DE202020005634U1 (de) Ein System für integrierte Entfernung von mehreren Schadstoffe aus einem Rauchgas vom Nahe-Null-Emissionstyp
WO2018024598A1 (fr) Procédé en deux étapes permettant d'extraire su co2 présent dans du gaz de synthèse
EP2435667A2 (fr) Procédé pour faire fonctionner une centrale turboélectrique à vapeur et dispositif de production de vapeur à partir de lignite
EP2105191A1 (fr) Procédé et dispositif de séparation de dioxyde de carbone d'un gaz d'échappement d'une centrale à combustible fossile
WO2011107187A1 (fr) Procédé permettant de faire fonctionner une centrale turboélectrique à vapeur comportant au moins un générateur de vapeur alimenté en lignite
WO2009118227A1 (fr) Procédé et dispositif de séparation de dioxyde de carbone d'un effluent gazeux d'une centrale électrique à combustible fossile
DE102010061538A1 (de) Rauchgaswäscher mit zugeordnetem Kühlturm
WO2009118274A1 (fr) Procédé et dispositif de séparation de dioxyde de carbone d'un effluent gazeux d'une centrale électrique à combustible fossile
WO2011057601A1 (fr) Séparation de co2 à partir de gaz de fumée par lavage chimique et intégration de chaleur avec un séchage de charbon, et dispositif pour la réalisation du procédé
WO2013124125A1 (fr) Amélioration de l'efficacité de traitement enthalpique d'un dispositif de séparation de co2 dans une centrale électrique
WO2009118225A1 (fr) Procédé et dispositif de séparation de dioxyde de carbone d'un effluent gazeux d'une centrale électrique à combustible fossile
DE102008010367A1 (de) Vorteilhafte Einbindung einer Rauchgaswäsche auf Kohlendioxid in ein fossiles Kaftwerk
WO2013029927A1 (fr) Procédé et installation pour l'élimination du dioxyde de carbone de gaz de carneau
US20190291042A1 (en) Method and system for separating co2 based on chemical absorption
DE102009017215A1 (de) Verfahren und Vorrichtung zur Behandlung eines kohlendioxidhaltigen Gasstroms

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10794860

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 10794860

Country of ref document: EP

Kind code of ref document: A1