WO2013124125A1 - Amélioration de l'efficacité de traitement enthalpique d'un dispositif de séparation de co2 dans une centrale électrique - Google Patents

Amélioration de l'efficacité de traitement enthalpique d'un dispositif de séparation de co2 dans une centrale électrique Download PDF

Info

Publication number
WO2013124125A1
WO2013124125A1 PCT/EP2013/051717 EP2013051717W WO2013124125A1 WO 2013124125 A1 WO2013124125 A1 WO 2013124125A1 EP 2013051717 W EP2013051717 W EP 2013051717W WO 2013124125 A1 WO2013124125 A1 WO 2013124125A1
Authority
WO
WIPO (PCT)
Prior art keywords
absorption medium
line
flue gas
absorption
desorption
Prior art date
Application number
PCT/EP2013/051717
Other languages
German (de)
English (en)
Inventor
Benjamin HÄFNER
Rüdiger Schneider
Henning Schramm
Ralf Ziegler
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2013124125A1 publication Critical patent/WO2013124125A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1475Removing carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/02Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material
    • F23J15/04Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material using washing fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/06Arrangements of devices for treating smoke or fumes of coolers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/65Employing advanced heat integration, e.g. Pinch technology
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2219/00Treatment devices
    • F23J2219/40Sorption with wet devices, e.g. scrubbers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/30Technologies for a more efficient combustion or heat usage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/32Direct CO2 mitigation

Definitions

  • the invention relates to a method for separating carbon dioxide (CO 2 ) from a flue gas of a fossil-fired power plant.
  • the invention also relates to a fossil-fired power plant with a combustion device, a water-steam cycle and a carbon dioxide ⁇ device.
  • the described separation of carbon dioxide is carried out by the absorption-desorption process with a detergent.
  • a conventional absorption-desorption tion process the flue gas is brought into contact in a Absorp ⁇ tion column or absorber with a selective solvent as a detergent.
  • the washing ⁇ medium carbon dioxide absorbs.
  • the purified flue gas is discharged from the absorption column for further processing or discharge.
  • the carbon dioxide loaded solution ⁇ medium is used for removal of the solvent in a desorption column or disassembly of the carbon dioxide and Regenerie ⁇ tion sorber.
  • the separation in the desorption column can be carried out thermally. In this case, the complementary and loaded ⁇ tel is heated, wherein a gas vapor mixture of gaseous carbon dioxide and vaporized solvent (exhaust vapors) corresponds stands.
  • the evaporated solvent is then removed from the
  • the carbon dioxide can now be compressed and cooled in several stages, and sent for storage or recycling.
  • the regenerated solvent is passed again to the absorber column, where it can again absorb carbon dioxide from the carbon dioxide-containing flue gas.
  • the regenerated solvent is heat exchanged in a lean rich solvent heat exchanger with the loaded solvent in such a way that part of the heat contained in the regenerated solvent is transferred to the loaded solvent.
  • the main problem with the existing methods of separating carbon dioxide from a flue gas is, in particular, the very high energy required for desorption in the form of heating energy.
  • the heating energy is provided by steam, which must be removed from the water-steam cycle of pre ⁇ switched power plant as process steam.
  • the power plant process is therefore reduced by the proportion of extracted process steam in its performance.
  • EP0133208 a method for supporting the regeneration of the absorption medium in the desorber is called, which is also referred to as lean-solvent flash method.
  • EP 1759756-A1 shows the lean-solvent reheating process in which the desorption step is supported laterally.
  • An interconnection disclosed in DE 2817084-C2 supports the absorption step by side cooling.
  • Another method of extended interconnection disclosed the patent DE1167318 with the so-called split-feed method.
  • the object of the invention is a method for separating carbon dioxide from a flue gas of a fossil-fueled
  • Another object of the invention is to provide a fossil-fired power plant with a carbon dioxide ⁇ device, which allows a high separation efficiency with low own energy demand and at the same time favorable overall efficiency of the power plant.
  • a combustion step for separating carbon dioxide from a flue gas of a fos ⁇ sil fired power plant, a combustion step, an absorption step and a desorption step are performed.
  • a fossil fuel is burned in a combustion chamber, forming a hot, carbon dioxide-containing flue gas, which is discharged from the combustion chamber via a flue gas line.
  • the absorption step the carbon dioxide-containing flue gas from the flue-gas line is converted into a flue gas line.
  • the laden absorption medium from the absorption medium line is introduced into a desorber, wherein the desorber is supplied with heating steam from the water-steam cycle of the fossil-fired power plant ⁇ system, and in which the laden Ab ⁇ sorption medium is regenerated.
  • the laden absorption medium before it is introduced into the desorption step is then guided in heat exchange with the flue gas from the flue gas line.
  • the invention is particularly suitable for power plants with a relatively high flue gas temperature. Due to the heat exchange with the loaded absorption medium heat is removed from the flue gas. By cooling the flue gas on the one hand, the flue gas cooler (Flue gas cooler) relieved, which is required for the cooling of the flue gas. By Ent ⁇ utilization of the flue gas cooler that has less need for cooling water, which also leads to energy savings in the promotion of the cooling water. On the other hand, is relieved by the transfer of heat to the loaded absorption medium of the De ⁇ sorption so significantly less Schuener ⁇ energy is required in the form of process steam. As the power plant therefore has less process steam to remove, more steam is available for power generation, which in turn leads to a significant increase in the efficiency of the power plant process.
  • the invention has proven to be particularly advantageous in combination with the so-called solvent flash method.
  • the desorption step is followed by a relaxation process in which the regenerated absorption medium is expanded.
  • a vapor and a relaxed liquid absorption medium are formed.
  • the steam is now returned to the desorption step. leads.
  • the process according to the invention in combination with the solvent-flash process has a particularly advantageous effect on the lean-rich-solvent heat exchanger. Since the temperature of the regenerated absorption medium decreases in the relaxation process by the relaxation, more heat from the flue gas can be used in the absorption ⁇ step.
  • the advantages of solvent flash process can be used who ⁇ advantageously utilized in conjunction with the inventive method. It is surprising, in particular, that the process according to the invention does not adversely affect the solvent flash process, or vice versa, but that the positive effect effect is enhanced.
  • the erfindungsge ⁇ Permitted method behaves advantageously in combination with the split-feed- method.
  • the laden Ab ⁇ sorption medium from the absorption step is taken in a total ⁇ current, and at least divided into a first partial flow and a second partial flow.
  • the second partial flow is conducted with the relaxed absorption medium in heat exchange.
  • the first partial flow is fed to the Desorpti ⁇ onsuze at a first process stage and the second part stream ⁇ the desorption step at a second process stage.
  • the first stage of the process is operated advantageously at a temperature Tem ⁇ Tl, and the second process step at a temperature T2, said temperature Tl is lower than the temperature T2.
  • the temperatures are related to the pressures of the process stages.
  • the first process stage is preferably operated at a pressure PI, and the second process ⁇ stage at a pressure P2.
  • the pressure PI is lower than the pressure P2.
  • the pressure P2 corresponds approximately to the atmospheric pressure corresponding to the present barometric height.
  • the pressure P2 can deviate up to 50 bar from the atmospheric pressure.
  • a solution of H 2 O and amine derivatives is used as the absorption medium as the absorption medium.
  • the salts of the amino acids are suitable here, since they show no appreciable vapor pressure, and thus are not discharged into the atmosphere by the absorption.
  • the fossil-fired power plant includes a combustion device and a carbon dioxide separation device, wherein the carbon dioxide separation device comprises an absorption unit and a desorption unit, wherein the absorption unit and the desorption unit are connected to each other via an absorption medium line.
  • the absorption medium line is designed such that a loaded absorption medium from the absorption unit is transferred to Sorptionsech is performed.
  • a heat exchanger is now provided which cooperates with the flue gas line and the absorption medium line such that heat can be transferred from a flue gas guided in the flue gas line to an absorption medium guided in the absorption medium line.
  • the heat exchanger may be a cross-flow heat exchanger, in which the fluids to be passed through are cross-flow in heat exchange with each other. It is also conceivable, however, the use of countercurrent or DC heat exchangers.
  • the carbon dioxide separation device further comprises a pressure vessel, which is connected via a return line and a steam line to the desorption, that on the return line to the pressure vessel, a regenerated absorption medium from the desorption is fed, and by the liberated heat of the through Relaxation of the regenerated absorption medium formed steam via a steam line from the pressure vessel in the desorption is traceable.
  • a compressor is connected in the steam line, via which a vacuum can be set in the pressure vessel.
  • the absorption medium line branches into at least a first part line and a second part line.
  • the first part ⁇ line is connected to an upper portion of the desorption.
  • the second part of the line is connected to a lower portion of the desorption.
  • the heat exchanger is connected on the secondary side in the second sub-line of the absorption medium line.
  • the upper part of the range differs from the lower part by different pressure and temperature operating conditions.
  • 1 shows a method for separating carbon dioxide from a flue gas of a fossil-fired power plant ⁇ plant
  • FIG. 3 A further development of the method with solvent
  • the method comprises a combustion step 1, an absorption step 2 and a desorption step 3.
  • the combustion step 1 comprises a combustion chamber in which a fossil fuel such as gas, oil, coal or biomass is burned. When burning a hot carbon dioxide-containing flue gas is produced 5.
  • the flue gas 5 is discharged from the combustion chamber and leaves the combustion step 1 via a Rauchgaslei ⁇ tung fourth
  • the combustion step 1, the absorption step 2 is switched after ⁇ .
  • the absorption step 2 comprises an absorber, into which the carbon dioxide-containing flue gas 5 is introduced, and brought into contact with an absorption medium. In this case, carbon dioxide is absorbed by the absorption medium, wherein a loaded absorption medium 6 is formed.
  • the loaded absorption medium 6 is discharged via an absorption medium line 7 of the absorber, and leaves the absorption ⁇ Step 2.
  • FIG 1 is not shown as a purified by Ab ⁇ sorption flue gas is discharged from the absorption step. 2
  • the absorption step 2 is a desorption step 3 nachge ⁇ switches.
  • the desorption step 3 comprises a desorber into which the loaded absorption medium 6 is transferred.
  • the De ⁇ sorber can be thermally supplied with heating steam from the water steam cycle of the fossil fuel-fired power plant. By boiling of the loaded absorption medium 6 which ⁇ ses is freed from carbon dioxide, a regenerated Absorp ⁇ tion medium is formed.
  • the loaded absorption medium 6 is now conducted in heat exchange with the flue gas 5.
  • a first heat exchanger 10 which is connected in the flue gas line 4
  • a second heat exchanger 11 is provided, which is connected in the absorption medium line 7.
  • the first heat exchanger 10 and the second heat exchanger 11 are operatively connected in such a way that heat from the flue gas 5 from the flue gas duct 4 to the loaded absorption medium 6 in the absorption medium line 7 is transferable.
  • the heat from the flue gas 5 via a heat carrier circuit 30, in which a heat transfer medium is guided, transmitted to the Bela ⁇ dene absorption medium 6.
  • the heat exchanger 10 is on the primary side, ie with its heat receiving side, in the flue gas line 4, and on the secondary side, ie with its heat-emitting side, in the heat transfer circuit 30 ge ⁇ switches.
  • the heat exchanger 11 in turn is connected with its primary side in the heat transfer circuit 30, and with its Se ⁇ secondary side in the absorption medium line 7.
  • FIG 2 shows a further developed embodiment of the method according OF INVENTION ⁇ dung.
  • FIG 2 corresponds to wesentli ⁇ chen the embodiments of FIG 1. However, was omitted here on the heat transfer circuit 30.
  • the laden absorption medium 6 leaving the absorption step 2 is first heat exchanged in a lean rich solvent heat exchanger 13 with a regenerated absorption medium 8, wherein it is preheated. Thereafter, the loaded absorption medium 6 is supplied via the absorption medium line 7 to the first heat exchanger 10, wherein it is further heated by the flue gas 5, and further transferred via the Absorptionsme ⁇ diumtechnisch 7 in the desorption step 3.
  • the lean-rich-solvent heat exchanger 13 is usually a
  • Cross-flow heat exchanger which serves to transfer heat from the regenerated absorption medium 8 on the loaded Absorptionsme ⁇ dium 6 in cross-flow.
  • FIG. 3 shows a further developed embodiment of the method according to the invention with an interconnection in combination with the solvent flash method.
  • the method in FIG. 3 essentially corresponds to the explanations relating to FIG. 2, but a relaxation step 9 is connected between the absorption step 2 and the desorption step 3.
  • This serves the regenerated absorption medium 8 to unwind from the desorption step 3 to separate liquid Absorp ⁇ tion medium of vapor absorption medium.
  • the liquid regenerated absorption medium 8 is discharged from the expansion step 9 and passed in heat exchange with the loaded absorption medium 6. Subsequently, it is returned to the absorption step 2.
  • the vaporous absorption medium 14, however, is discharged from the expansion steps 9 and ⁇ fed back to the desorption step. 3
  • heat for Desorption of the loaded absorption medium 6 in Desorpti- ons suits 3 are recovered.
  • the flue gas 5 is cooled by the heat exchanger 10 of about 160 ° C to about 120 ° C.
  • the loaded absorption medium 6 is heated from about 40 ° C to about 80 ° C. This recovers around 30 MW of heat, which is saved directly on heating energy. This corresponds to approximately 1/4 of the total heat required at the desorption unit.
  • FIG 4 shows a further supplementary or alternative exporting ⁇ approximate shape of the inventive process in combination with a split-feed method and the solvent flash process.
  • the method essentially corresponds to the comments on FIG. 3, but here the loaded absorption medium 6 is split at a branch 15 into a first partial flow 16 and a second partial flow 17.
  • the second partial flow 17 is conducted with the regenerated absorption medium 8 in heat exchange. This is done in Lean-Rich-Solvent heat exchanger 13.
  • the second partial flow 17 is performed with loaded absorption medium 6 in the first heat exchanger 10 with the flue gas 5 in heat exchange.
  • the second substream 17, which is thus greatly heated, is now fed to the desorption step 3 of a second process stage 19.
  • the first part ⁇ stream 16 is not passed in heat exchange with other fluids, but is the desorption step 3 is supplied directly to a first process stage.
  • the first process stage and the second process stage 19 can be different areas of a desorber, which can be separated from one another by different temperatures and pressures Tempe ⁇ .
  • FIG. 5 shows a carbon dioxide separation device 21. Not shown is one of the carbon dioxide separation device 21 upstream of the combustion device.
  • the carbon dioxide separation device 21 shown here can be provided with a combustion device to be part of a fossil-fired power plant.
  • the Kohlendioxidabscheidevorraum 21 comprises an absorption unit 21, comprising a plurality of absorbers or Absorpti ⁇ onsrasen or -Kolonnen, and a desorption unit 22, with a number of desorbers or desorption or - columns.
  • an absorption unit 21 comprising a plurality of absorbers or Absorpti ⁇ onsrasen or -Kolonnen, and a desorption unit 22, with a number of desorbers or desorption or - columns.
  • a Rauchgaslei ⁇ device 4 is connected, via which the absorption unit 21, a carbon dioxide-containing flue gas 5 from the Verbrennungsvorrich ⁇ device can be fed.
  • a flue gas cooler 24 and a blower 25 are connected.
  • the flue gas cooler 24 is usually operated with cooling water.
  • the absorption unit 21 and the desorption unit 22 are connected to each other via an absorption medium line 7 and a return line 23.
  • the absorption medium line 7 serves to a loaded with carbon dioxide Absorptionsme ⁇ dium 6 from the absorption unit 21 integrated in the Desorptionsein- to promote 22nd
  • the return line 23, serves to convey a regenerated absorption medium 8 from the desorption unit 22 into the absorption unit 22.
  • the absorption medium line 7 and the return line 23 thus form a circulation 12 for absorption medium between the absorption unit 21 and the desorption unit 22.
  • a lean-rich-solvent heat exchanger 13 is provided, which is connected on the primary side in the return line 23 and the secondary side in the absorption medium line 7. As a result of the lean-rich-solvent heat exchanger 13, heat can be transferred from the regenerated absorption medium 8 to the loaded absorption medium 6.
  • a pressure vessel 26 is further connected in the return line 23, between the desorption unit 22 and the lean-rich-solvent heat exchanger 13, a pressure vessel 26 is further connected. About the return line 23 is the pressure vessel 26 regenerated absorption medium 8 from the desorption 22 fed. In the pressure vessel 26, the so-called lean-solvent flash, absorption medium is relaxed. A steam forming in the process is thus traceable via a steam line 27 from the pressure vessel 26 into the desorption unit. By means of a compressor switched into the steam line 27, a vacuum can be set in the pressure vessel 26. By lowering the pressure in the pressure vessel 26, it is coming to the pressure vessel 26 to a temperature Ernied ⁇ r Trent of the regenerated absorbing medium 8.
  • a heat exchanger 10 is now provided, which is the primary side, the secondary side to the flue gas duct 4 and in the absorption fluid line. 7 Thereby heat is transferred from the guided in the Rauchgaslei ⁇ tung 4 flue gas 5 to the line in the loaded absorption medium Absorptionsmedium- 7 guided. 6
  • the heating steam saved by the illustrated modification of the interconnection can be generated in the power plant
  • ge ⁇ showed wiring in connection with split-feed.
  • the absorption medium duct 7 branches off into at least one ers ⁇ th partial line and a second part conduit, the first sub-line is connected to an upper portion of the Desorption- unit, and the second sub-line is connected to ei ⁇ nem lower portion of the desorption.
  • the heat exchanger 10 is connected only in the second partial line of the absorption medium line 7.
  • the invention is particularly suitable for Kohlendioxi ⁇ dabscheidevoriquesen 21, which are connected downstream of a power plant with a relatively high flue gas temperature.
  • the invention is particularly suitable for Kohlendioxi ⁇ dabscheidevoriquesen 21, which are connected downstream of a power plant with a relatively high flue gas temperature.
  • the heat exchanger 10 between the hot flue gas 5 and the preheated already at the Lean-Rich-Solvent heat exchanger 13 stream of loaded absorption medium 6 of the heat demand on the desorber reduced and simultaneously the cooling water demand on the flue gas cooler 24 can be reduced.
  • This is particularly advantageous when connecting with Lean-Solvent-Flash, because behind the Lean-Rich-Solvent-Heat exchanger, due to the temperature drop in the Lean-Solvent-Flash, a particularly low temperature is present and thus more heat from the flue gas can be used.

Abstract

L'invention concerne un procédé pour séparer du dioxyde de carbone à partir de fumées émises par une centrale électrique fonctionnant avec un combustible fossile. On brûle d'abord un combustible fossile dans une chambre de combustion au cours d'une étape de combustion (1). Des fumées (5) brûlantes chargées en dioxyde de carbone se forment et sont évacuées hors de la chambre de combustion au moyen d'une conduite de fumées (4). Lors d'une étape d'absorption (2), les fumées (5) chargées en dioxyde de carbone sont acheminées de la conduite de fumées (4) dans un absorbeur et mises en contact avec un milieu absorbant. Le dioxyde de carbone est absorbé par le milieu absorbant, et il se forme un milieu absorbant chargé qui est évacué au moyen d'une conduite de milieu absorbant (7) hors de l'absorbeur. Lors d'une étape de désorption (3), le milieu d'absorption (6) chargé est introduit dans un désorbeur à partir de la conduite de milieu absorbant (7), ledit désorbeur étant alimenté thermiquement en vapeur brûlante provenant du circuit vapeur/eau de la centrale électrique fonctionnant avec un combustible fossile, et le milieu absorbant (6) chargé est régénéré de manière à former un milieu absorbant (9) régénéré. Selon l'invention, le milieu absorbant (6) chargé est acheminé avec les fumées (5) selon une configuration d'échange thermique.
PCT/EP2013/051717 2012-02-22 2013-01-30 Amélioration de l'efficacité de traitement enthalpique d'un dispositif de séparation de co2 dans une centrale électrique WO2013124125A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012202703A DE102012202703A1 (de) 2012-02-22 2012-02-22 Verbesserung der enthalpieschen Prozesseffizienz einer CO2-Abscheidevorrichtung in einer Kraftwerksanlage
DE102012202703.3 2012-02-22

Publications (1)

Publication Number Publication Date
WO2013124125A1 true WO2013124125A1 (fr) 2013-08-29

Family

ID=47683706

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/051717 WO2013124125A1 (fr) 2012-02-22 2013-01-30 Amélioration de l'efficacité de traitement enthalpique d'un dispositif de séparation de co2 dans une centrale électrique

Country Status (2)

Country Link
DE (1) DE102012202703A1 (fr)
WO (1) WO2013124125A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012208221A1 (de) 2012-02-22 2013-08-22 Siemens Aktiengesellschaft Verfahren zum Nachrüsten eines Gasturbinenkraftwerks
EP3107637B1 (fr) 2014-04-07 2020-02-05 Siemens Aktiengesellschaft Procédé et dispositif de séparation du dioxyde de carbone d'un flux de gaz et d'élimination de produits de dégradation dans l'agent de lavage par décomposition par photolyse
FR3038524B1 (fr) * 2015-07-10 2019-04-19 Leroux & Lotz Technologies Procede et installation de captage de co2

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1167318B (de) 1959-01-16 1964-04-09 Vetrocoke Spa Verfahren zum Abscheiden und Rueckgewinnen von Kohlendioxyd aus Gasgemischen
EP0133208A2 (fr) 1983-06-23 1985-02-20 Norton Company Elimination de gaz acides de mélanges gazeux
DE2817084C2 (fr) 1977-04-21 1992-02-20 Shell Internationale Research Maatschappij B.V., Den Haag, Nl
WO2007019632A1 (fr) * 2005-08-16 2007-02-22 Co2Crc Technologies Pty Ltd Installation industrielle et procede d'extraction du co2 de fumees
EP1759756A1 (fr) 2005-09-01 2007-03-07 Mitsubishi Heavy Industries, Ltd. Procédé et système pour la récupération de CO2
EP2181754A1 (fr) * 2008-10-31 2010-05-05 Siemens Aktiengesellschaft Procédé et dispositif de séparation de dioxyde de carbone d'un gaz d'échappement d'une centrale à combustible fossile
WO2010086039A1 (fr) * 2009-01-28 2010-08-05 Siemens Aktiengesellschaft Procédé et dispositif de séparation du dioxyde de carbone contenu dans un gaz d'échappement d'une centrale électrique à combustible fossile

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1167318B (de) 1959-01-16 1964-04-09 Vetrocoke Spa Verfahren zum Abscheiden und Rueckgewinnen von Kohlendioxyd aus Gasgemischen
DE2817084C2 (fr) 1977-04-21 1992-02-20 Shell Internationale Research Maatschappij B.V., Den Haag, Nl
EP0133208A2 (fr) 1983-06-23 1985-02-20 Norton Company Elimination de gaz acides de mélanges gazeux
WO2007019632A1 (fr) * 2005-08-16 2007-02-22 Co2Crc Technologies Pty Ltd Installation industrielle et procede d'extraction du co2 de fumees
EP1759756A1 (fr) 2005-09-01 2007-03-07 Mitsubishi Heavy Industries, Ltd. Procédé et système pour la récupération de CO2
EP2181754A1 (fr) * 2008-10-31 2010-05-05 Siemens Aktiengesellschaft Procédé et dispositif de séparation de dioxyde de carbone d'un gaz d'échappement d'une centrale à combustible fossile
WO2010086039A1 (fr) * 2009-01-28 2010-08-05 Siemens Aktiengesellschaft Procédé et dispositif de séparation du dioxyde de carbone contenu dans un gaz d'échappement d'une centrale électrique à combustible fossile

Also Published As

Publication number Publication date
DE102012202703A1 (de) 2013-08-22

Similar Documents

Publication Publication Date Title
DE102014105237B3 (de) Verfahren und Vorrichtung zum Speichern und Rückgewinnen von Energie
EP2382028B1 (fr) Procédéde séparation du dioxyde de carbone contenu dans un gaz d'échappement d'une centrale électrique à combustible fossile
EP2131945B1 (fr) Procédé sur la base de la distillation à deux phases pour utiliser de la chaleur à basse température afin de régénérer des solutions chargées de co2, lors de la séparation du co2 de gaz d'échappement par lavage par co2
DE102009032537A1 (de) Kohlekraftwerk mit zugeordneter CO2-Wäsche und Wärmerückgewinnung
EP1649146B1 (fr) Procede pour augmenter le rendement d'une installation de turbine a gaz, et installation de turbine a gaz conçue a cet effet
WO2008113482A2 (fr) Procédé et dispositif de surchauffe intermédiaire par mise à feu lors de l'évaporation directe solaire dans une centrale thermique solaire
DE10001110A1 (de) Verfahren zur Rückgewinnung von Wasser aus dem Rauchgas eines Kombikraftwerkes sowie Kombikraftwerk zur Durchführung des Verfahrens
EP1714009A1 (fr) Procede et installation de conversion d'energie thermique issue de fluides en energie mecanique
WO2009118229A1 (fr) Procédé et dispositif de séparation de dioxyde de carbone d'un gaz brûlé d'une centrale électrique
EP1816397A1 (fr) Procédé et dispositif destinés au gain de chaleur à partir d'air chargé en humidité
EP0139626A2 (fr) Procédé et dispositif pour produire de la chaleur à partir de gaz, contenant de la vapeur d'eau, par absorption ou adsorption
WO2013124125A1 (fr) Amélioration de l'efficacité de traitement enthalpique d'un dispositif de séparation de co2 dans une centrale électrique
WO2011124425A1 (fr) Dispositif de séparation pour co2 et centrale électrique
US9157369B2 (en) Waste heat utilization for energy efficient carbon capture
WO2013017483A1 (fr) Procédé et centrale thermique à combustible fossile pour la récupération d'un condensat
EP2105191A1 (fr) Procédé et dispositif de séparation de dioxyde de carbone d'un gaz d'échappement d'une centrale à combustible fossile
WO2009118227A1 (fr) Procédé et dispositif de séparation de dioxyde de carbone d'un effluent gazeux d'une centrale électrique à combustible fossile
WO2009118274A1 (fr) Procédé et dispositif de séparation de dioxyde de carbone d'un effluent gazeux d'une centrale électrique à combustible fossile
EP2181754A1 (fr) Procédé et dispositif de séparation de dioxyde de carbone d'un gaz d'échappement d'une centrale à combustible fossile
WO2009118225A1 (fr) Procédé et dispositif de séparation de dioxyde de carbone d'un effluent gazeux d'une centrale électrique à combustible fossile
DE10356703A1 (de) Verfahren zur Verbrennung von fossillen Brennstoffen in einem Dampferzeuger nach dem Oxyfuel-Prozess
WO2004077586A2 (fr) Procede et dispositif pour generer de maniere combinee de la force, de la chaleur et/ou du froid a partir de gaz chauds a charge polluante avec epuration des gaz integree
EP3857032A1 (fr) Procédé d'exploitation d'une centrale électrique en vue de la production d'énergie électrique par combustion d'un combustible contenant du carbone et système correspondant d'exploitation d'une centrale électrique
CN105163831A (zh) 用于降低二氧化碳捕获装置的能量需求的系统和方法
BE1030055B1 (de) Kohlendioxid-Abtrennungsvorrichtung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13703549

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13703549

Country of ref document: EP

Kind code of ref document: A1