WO2011057482A1 - 动力高容量镍氢电池及其生产工艺 - Google Patents

动力高容量镍氢电池及其生产工艺 Download PDF

Info

Publication number
WO2011057482A1
WO2011057482A1 PCT/CN2010/070742 CN2010070742W WO2011057482A1 WO 2011057482 A1 WO2011057482 A1 WO 2011057482A1 CN 2010070742 W CN2010070742 W CN 2010070742W WO 2011057482 A1 WO2011057482 A1 WO 2011057482A1
Authority
WO
WIPO (PCT)
Prior art keywords
nickel
electrode
hydrogen
battery
diaphragm
Prior art date
Application number
PCT/CN2010/070742
Other languages
English (en)
French (fr)
Inventor
陈端典
Original Assignee
泉州劲鑫电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 泉州劲鑫电子有限公司 filed Critical 泉州劲鑫电子有限公司
Publication of WO2011057482A1 publication Critical patent/WO2011057482A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/345Gastight metal hydride accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to a nickel-hydrogen battery and a production process thereof, in particular to a nickel-hydrogen battery capable of realizing rapid charging or discharging and a production process thereof.
  • Nickel-metal hydride batteries are a new type of alkaline storage batteries that have been researched and developed at home and abroad in recent years. Compared with nickel-cadmium batteries, nickel-hydrogen batteries have higher energy density, and since nickel-hydrogen batteries do not use cadmium, they are less polluting to the environment. As the device has become smaller and more multifunctional, the battery as its power source is therefore required to have a small volume and a high capacity.
  • Patent 200720182733.7 proposes a method in which a nickel strip is used as a wire to connect a nickel electrode to a cap; the hydrogen electrode is directly in contact with the bottom of the steel shell through a copper mesh.
  • the nickel strip itself has a large electrical resistance, and the smaller contact surface between the copper mesh and the bottom of the steel shell increases the internal resistance of the battery. Therefore, the battery of the above patent has a large internal resistance and a high current density, which is not conducive to rapid charging and Discharge.
  • the invention provides a power high-capacity nickel-hydrogen battery capable of realizing rapid charging or discharging and a production process thereof, and the object thereof is to overcome the defects of long charging and discharging time of an ordinary battery.
  • a power high-capacity nickel-hydrogen battery includes a nickel electrode, a hydrogen electrode, a separator interposed between the nickel electrode and the hydrogen electrode, a battery cap, and a steel shell, and the nickel electrode, the hydrogen electrode, and the separator are wound and disposed on the steel Inside the casing, it further includes a current collector, a collecting plate, a lower end portion of the hydrogen electrode protruding from the diaphragm, and a lower end portion of the hydrogen electrode is connected to the steel shell through a current collector; an upper end portion of the nickel electrode is convex
  • the separator has an upper end portion of the nickel electrode connected to the battery cap through a collecting plate.
  • the collecting plate has a butterfly shape; the current collector has a plum blossom shape.
  • the current collector is connected to the lower end of the hydrogen electrode and the steel shell by spot welding; the current collecting tray is connected to the upper end of the nickel electrode and the battery cap by spot welding.
  • the production process of a power high-capacity nickel-hydrogen battery includes the following steps:
  • a nickel electrode production the active material, catalyst, additives, conductive agent and 10% concentration of PTFE mixed and filled into nickel-containing 99% -99.8% foamed nickel, and the distance from the foamed nickel top 5.5 - 6.5mm
  • the portion is not filled with a material, the filler material and the foamed nickel together form a nickel electrode and the thickness of the nickel electrode is controlled to be 0.42 ⁇ 0.02 mm, and the foamed nickel portion of the unfilled material is a reserved foamed nickel portion;
  • Hydrogen electrode production using copper mesh as carrier, the hydrogen storage alloy powder is mechanically crushed on the copper mesh as the electrode sheet, and the thickness of the electrode sheet is controlled to be 0.22 ⁇ 0.02mm.
  • the electrode sheet is further immersed in PTFE having a concentration of 5%, thereby effectively preventing the electrode sheet from being corroded by the electrolyte, and the above-mentioned PTFE-soaked electrode sheet is used as a hydrogen electrode;
  • the sulfonated polyolefin separator separates the nickel electrode and the hydrogen electrode, the nickel electrode reserved foamed nickel portion protrudes from the upper end of the diaphragm, and the hydrogen electrode protrudes from the lower end of the diaphragm, the nickel electrode and the hydrogen electrode And the diaphragm is wound by a high-precision machine and then wrapped with a stationery adhesive paper, and the nickel electrode, the hydrogen electrode and the separator wound by the stationery adhesive paper are used as a battery core;
  • the upper surface of the current collector is welded to the hydrogen electrode portion at the lower end of the protruding diaphragm, and then the electric core is placed in the steel shell and the lower surface of the current collector is welded to the steel shell; the nickel electrode is protruded from the diaphragm to be reserved for foaming The nickel part is gathered and knocked flat.
  • the lower surface of the collecting plate is in full contact with the nickel electrode part of the entire protruding diaphragm and is spot-welded firmly.
  • the upper surface of the collecting plate is spot-welded to the battery cap, and the upper end of the collecting plate is inverted and insulated. Rubber ring to avoid short circuit.
  • the active material is nickel hydroxide.
  • the utility model has the advantages that the electrode resistance and the polarization resistance of the battery can be effectively reduced by the application of the current collecting plate, thereby reducing the internal resistance of the battery; and the hydrogen electrode can be effectively increased by the application of the current collector.
  • the contact surface with the bottom of the steel shell reduces the internal resistance of the battery; the self-discharge of the separator paper can be effectively reduced by the sulfonated polyolefin separator.
  • Figure 1 is a cross-sectional view showing the structure of the present invention
  • FIG. 2 is a schematic cross-sectional view showing the structure of the battery core
  • FIG. 3 is a schematic view showing the structure of a nickel electrode.
  • a power high capacity nickel-hydrogen battery includes a nickel electrode 3, a hydrogen electrode 1, a separator 2 interposed between the nickel electrode 3 and the hydrogen electrode 1, a battery cap 7 and a steel shell 6, the nickel The electrode 3, the hydrogen electrode 1 and the separator 2 are wound and disposed in the steel casing 6, and further include a current collector 5, a collecting plate 4, a lower end portion of the hydrogen electrode 1 protruding from the diaphragm 2, and hydrogen The lower end portion of the electrode 1 is connected to the steel case 6 through the current collector 5; the upper end portion of the nickel electrode 3 protrudes from the separator 2, and the upper end portion of the nickel electrode 3 is connected to the battery cap 7 through the collecting pan 4.
  • the collecting plate 4 has a butterfly shape; the current collector 5 has a plum blossom shape. Further, the current collector 5 is connected to the lower end portion of the hydrogen electrode 1 and the steel can 6 by spot welding; the current collecting plate 4 is connected to the upper end portion of the nickel electrode 1 and the battery cap 7 by spot welding.
  • the separator 2 is a sulfonated polyolefin separator.
  • the electrode resistance and polarization resistance of the battery can be effectively reduced, thereby reducing the internal resistance of the battery; the application of the current collector 5 can effectively increase the contact surface between the hydrogen electrode 1 and the bottom of the steel shell 6, thereby reducing Battery internal resistance.
  • the above nickel-hydrogen battery can effectively achieve the effect of charging or discharging a nickel-hydrogen battery in a short time.
  • FIG. 1 a process for producing the above-mentioned power high-capacity nickel-hydrogen battery is carried out, and the specific steps are as follows:
  • a nickel electrode 3 production nickel hydroxide, catalyst, additives, conductive agent and 10% concentration of PTFE mixed and filled into nickel-containing 99.8% foamed nickel, and the distance from the foamed nickel tip 6mm
  • the portion of the filler material and the foamed nickel together form a nickel electrode 3 and control the thickness of the nickel electrode 3 is 0.42 mm, the foamed nickel portion of the unfilled material is a reserved foamed nickel portion 9;
  • b hydrogen electrode 1 production using copper mesh as a carrier, the hydrogen storage alloy powder is mechanically crushed on the copper mesh as an electrode sheet, and the thickness of the electrode sheet is controlled. 0.22mm, the electrode sheet is further immersed in a 5% concentration of PTFE, thereby effectively preventing the electrode sheet from being corroded by the electrolyte, the above-mentioned PTFE-soaked electrode sheet as the hydrogen electrode 1;
  • the sulfonated polyolefin separator separates the nickel electrode 3 and the hydrogen electrode 1, the reserved foamed nickel portion 9 of the nickel electrode 3 protrudes from the upper end of the separator 2, and the hydrogen electrode 1 protrudes from the lower end of the separator 2
  • the nickel electrode 3, the hydrogen electrode 1 and the separator 2 are wound by a high-precision machine and then wrapped with a stationery adhesive paper, and the nickel electrode 3, the hydrogen electrode 1 and the separator 2 wound by the stationery adhesive paper are used as the battery core 8. ;
  • d welding welding the upper surface of the current collector 5 to the hydrogen electrode 1 protruding from the lower end of the diaphragm 2, then charging the battery core 8 into the steel shell 6 and welding the lower surface of the current collector 5 to the bottom of the inner side of the steel shell 6;
  • the electrode 3 protrudes from the reserved foamed nickel portion 9 of the diaphragm 2 and is knocked out, and the lower surface of the collector disk 4 is in full contact with the nickel electrode 3 of the entire protruding diaphragm 2 and is spot-welded firmly, and the upper surface of the collecting plate 4 is fixed.
  • the spot is welded to the battery cap 7, and an insulating rubber ring (not shown) is inverted at the upper end of the collecting plate 4 to avoid a short circuit.
  • PTFE polytetrafluoroethylene
  • a power high capacity nickel-hydrogen battery includes a nickel electrode 3, a hydrogen electrode 1, a separator 2 interposed between the nickel electrode 3 and the hydrogen electrode 1, a battery cap 7 and a steel shell 6, the nickel The electrode 3, the hydrogen electrode 1 and the separator 2 are wound and disposed in the steel casing 6, and further include a current collector 5, a collecting plate 4, a lower end portion of the hydrogen electrode 1 protruding from the diaphragm 2, and hydrogen The lower end portion of the electrode 1 is connected to the steel case 6 through the current collector 5; the upper end portion of the nickel electrode 3 protrudes from the separator 2, and the upper end portion of the nickel electrode 3 is connected to the battery cap 7 through the collecting pan 4.
  • the collecting plate 4 has a butterfly shape; the current collector 5 has a plum blossom shape. Further, the current collector 5 is connected to the lower end portion of the hydrogen electrode 1 and the steel can 6 by spot welding; the current collecting plate 4 is connected to the upper end portion of the nickel electrode 1 and the battery cap 7 by spot welding.
  • the separator 2 is a sulfonated polyolefin separator.
  • the electrode resistance and polarization resistance of the battery can be effectively reduced, thereby reducing the internal resistance of the battery; the application of the current collector 5 can effectively increase the contact surface between the hydrogen electrode 1 and the bottom of the steel shell 6, thereby reducing Battery internal resistance.
  • the above nickel-hydrogen battery can effectively achieve the effect of charging or discharging a nickel-hydrogen battery in a short time.
  • FIG. 1 a process for producing the above-mentioned power high-capacity nickel-hydrogen battery is carried out, and the specific steps are as follows:
  • a nickel electrode 3 production nickel hydroxide, catalyst, additives, conductive agent and 10% concentration of PTFE mixed and filled into nickel containing 99% -99.8% of foamed nickel, and the distance from the foamed nickel top 5.5 - A portion of 6.5 mm is not filled with a material, and the above-mentioned filler material and foamed nickel together form a nickel electrode 3 and control the thickness of the nickel electrode 3 to be 0.42 ⁇ 0.02 mm.
  • the foamed nickel portion of the unfilled material is a reserved foamed nickel portion 9;
  • b hydrogen electrode 1 preparation using copper mesh as carrier, the hydrogen storage alloy powder is mechanically crushed on the copper mesh as an electrode sheet, and the thickness of the electrode sheet is controlled to be 0.22 ⁇ 0.02mm, the electrode sheet is further immersed in a 5% concentration of PTFE, thereby effectively preventing the electrode sheet from being corroded by the electrolyte, the above PTFE-soaked electrode sheet as the hydrogen electrode 1;
  • the sulfonated polyolefin separator separates the nickel electrode 3 and the hydrogen electrode 1, the nickel electrode 3 is reserved for the foamed nickel portion 9 protruding from the upper end of the separator 2, and the hydrogen electrode 1 is protruded from the lower end of the separator 2,
  • the nickel electrode 3, the hydrogen electrode 1 and the separator 2 are wound by a high-precision machine and then wrapped with a stationery adhesive paper, and the nickel electrode 3, the hydrogen electrode 1 and the separator 2 wound by the stationery adhesive paper are used as the battery core 8;
  • d welding welding the upper surface of the current collector 5 to the hydrogen electrode 1 protruding from the lower end of the diaphragm 2, then charging the battery core 8 into the steel shell 6 and welding the lower surface of the current collector 5 to the bottom of the inner side of the steel shell 6;
  • the electrode 3 protrudes from the reserved foamed nickel portion 9 of the diaphragm 2 and is knocked out, and the lower surface of the collector disk 4 is in full contact with the nickel electrode 3 of the entire protruding diaphragm 2 and is spot-welded firmly, and the upper surface of the collecting plate 4 is fixed.
  • the spot is welded to the battery cap 7, and an insulating rubber ring (not shown) is inverted at the upper end of the collecting plate 4 to avoid a short circuit.
  • the invention can effectively realize the effect of charging or discharging the nickel hydrogen battery in a short time by the improvement of the nickel hydrogen battery and the production process thereof, and has good industrial applicability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明涉及一种动力高容量镍氢电池及其生产工艺,该电池通过对集流盘和集流体的应用,较大的降低了电池内阻;本发明的生产工艺主要包括:镍电极的制作、氢电极的制作、卷绕、焊接,另外所述隔膜经过磺化处理。通过上述工艺生产的电池可极大地降低电池的内阻,从而实现镍氢电池在短时间内充、放电的效果。

Description

动力高容量镍氢电池及其生产工艺 技术领域
本发明涉及一种镍氢电池及其生产工艺,特别是指一种能够实现快速充电或放电的镍氢电池及其生产工艺。
背景技术
镍氢电池是近年来国内外大力研究和开发的一种新型碱性蓄电池。与镍镉电池相比,镍氢电池具有较高的能量密度,而且由于镍氢电池不使用镉,所以其对环境的污染较小。随着设备向小型化、多功能化的发展,作为其电源的电池也因此要求具有小的体积和高的容量。
长期以来,电动工具市场被镉镍电池所垄断,而镉具有剧毒,会对环境造成严重污染,而且2006年欧洲开始禁镉,因此开发动力高容量镍氢电池,具有广阔的市场前景。
专利200720182733.7提出一种方法,其采用镍带作为导线将镍电极与盖帽相连接;氢电极通过铜网直接与钢壳底部接触。而镍带本身具有较大的电阻,且铜网与钢壳底部的接触面较小会增大电池内阻,因此上述专利的电池内阻较大,电流密度较高,不利于快速的充电及放电。
技术问题
本发明提供了一种能够实现快速充电或放电的动力高容量镍氢电池及其生产工艺,其目的在于克服普通电池充、放电时间较长的缺陷。
技术解决方案
本发明的技术方案如下: 动力高容量镍氢电池,包括镍电极、氢电极、夹设于镍电极、氢电极之间的隔膜、电池盖帽以及钢壳,所述镍电极、氢电极及隔膜卷绕并设置于所述钢壳内,它还包括集流体、集流盘,所述氢电极的下端部凸出所述隔膜,且氢电极下端部通过集流体与钢壳连接;所述镍电极的上端部凸出所述隔膜,且镍电极的上端部通过集流盘与电池盖帽连接。
所述集流盘呈蝴蝶状;所述集流体呈梅花状。
所述集流体通过点焊方式与氢电极下端部及钢壳连接;所述集流盘通过点焊方式与镍电极上端部及电池盖帽连接。
动力高容量镍氢电池的生产工艺,包括以下步骤:
a镍电极的制作:将活性物质、催化剂、添加剂、导电剂及浓度为10%的PTFE混合后填充到含镍99%-99.8%的发泡镍内,且距离发泡镍顶端5.5 - 6.5mm 的部分不填充材料,上述填充材料及发泡镍共同形成镍电极并控制镍电极厚度为0.42± 0.02mm ,所述不填充材料的发泡镍部分为预留发泡镍部分;
b氢电极的制作:以铜网为载体,将储氢合金粉通过机械碾压于铜网作为电极片,并控制电极片厚度为0.22± 0.02mm ,所述电极片再浸泡于浓度为5%的PTFE内,从而可有效防止电极片被电解液腐蚀,上述经过PTFE浸泡的电极片作为氢电极;
c卷绕:经过磺化处理的聚烯烃隔膜将镍电极、氢电极隔开,镍电极预留发泡镍部分凸出于隔膜上端,氢电极凸出于隔膜下端,所述镍电极、氢电极及隔膜通过高精密机卷绕后用文具胶纸缠绕住,所述经文具胶纸缠绕后的镍电极、氢电极及隔膜作为电芯;
d焊接:将集流体上表面焊接于凸出隔膜下端的氢电极部分,然后将电芯装入钢壳并使集流体的下表面焊接于钢壳;将镍电极凸出隔膜的预留发泡镍部分收拢并将其敲平整,集流盘下表面与整个凸出隔膜的镍电极部分全部接触并点焊牢固,集流盘上表面点焊于电池盖帽,且在集流盘上端倒扣绝缘胶圈以避免短路。
所述活性物质为氢氧化亚镍。
有益效果
由上述对本发明的描述可知,本发明的优点在于:通过集流盘的应用可有效的降低电池的电极电阻及极化电阻,从而降低电池内阻;通过集流体的应用可有效的增加氢电极与钢壳底部的接触面,从而降低电池内阻;通过经过磺化处理的聚烯烃隔膜可有效减小隔膜纸的自放电。通过上述对镍氢电池的改进可有效地实现镍氢电池在短时间内充电或放电的效果。
附图说明
图1为本发明的结构剖视图;
图2为电芯的结构剖面示意图;
图3为镍电极的结构示意图。
本发明的最佳实施方式
参照图1、图2,动力高容量镍氢电池,包括镍电极3、氢电极1、夹设于镍电极3、氢电极1之间的隔膜2、电池盖帽7以及钢壳6,所述镍电极3、氢电极1及隔膜2卷绕并设置于所述钢壳6内,它还包括集流体5、集流盘4,所述氢电极1的下端部凸出所述隔膜2,且氢电极1下端部通过集流体5与钢壳6连接;所述镍电极3的上端部凸出所述隔膜2,且镍电极3的上端部通过集流盘4与电池盖帽7连接。所述集流盘4呈蝴蝶状;所述集流体5呈梅花状。另外,所述集流体5通过点焊方式与氢电极1下端部及钢壳6连接;所述集流盘4通过点焊方式与镍电极1上端部及电池盖帽7连接。所述隔膜2为经过磺化处理的聚烯烃隔膜。
通过集流盘4的应用可有效的降低电池的电极电阻及极化电阻,从而降低电池内阻;通过集流体5的应用可有效的增加氢电极1与钢壳6底部的接触面,从而降低电池内阻。上述镍氢电池可有效地实现镍氢电池在短时间内充电或放电的效果。
参照图1、图2、图3,生产上述动力高容量镍氢电池的工艺,其具体步骤的实施方式如下:
a镍电极3的制作:将氢氧化亚镍、催化剂、添加剂、导电剂及浓度为10%的PTFE混合后填充到含镍99.8%的发泡镍内,且距离发泡镍顶端 6mm 的部分不填充材料,上述填充材料及发泡镍共同形成镍电极3并控制镍电极3厚度为 0.42mm ,所述不填充材料的发泡镍部分为预留发泡镍部分9;
b氢电极1的制作:以铜网为载体,将储氢合金粉通过机械碾压于铜网作为电极片,并控制电极片厚度为 0.22mm ,所述电极片再浸泡于浓度为5%的PTFE内,从而可有效防止电极片被电解液腐蚀,上述经过PTFE浸泡的电极片作为氢电极1;
c卷绕:经过磺化处理的聚烯烃隔膜将镍电极3、氢电极1隔开,镍电极3的预留发泡镍部分9凸出于隔膜2上端,氢电极1凸出于隔膜2下端,所述镍电极3、氢电极1及隔膜2通过高精密机卷绕后用文具胶纸缠绕住,所述经文具胶纸缠绕后的镍电极3、氢电极1及隔膜2作为电芯8;
d焊接:将集流体5上表面焊接于凸出隔膜2下端的氢电极1,然后将电芯8装入钢壳6并使集流体5的下表面焊接于钢壳6内侧的底部;将镍电极3凸出隔膜2的预留发泡镍部分9收拢并将其敲平整,集流盘4下表面与整个凸出隔膜2的镍电极3全部接触并点焊牢固,集流盘4上表面点焊于电池盖帽7,且在集流盘4上端倒扣绝缘胶圈(图中未画出)以避免短路。
另外,上述PTFE为 聚四氟乙烯。
本发明的实施方式
参照图1、图2,动力高容量镍氢电池,包括镍电极3、氢电极1、夹设于镍电极3、氢电极1之间的隔膜2、电池盖帽7以及钢壳6,所述镍电极3、氢电极1及隔膜2卷绕并设置于所述钢壳6内,它还包括集流体5、集流盘4,所述氢电极1的下端部凸出所述隔膜2,且氢电极1下端部通过集流体5与钢壳6连接;所述镍电极3的上端部凸出所述隔膜2,且镍电极3的上端部通过集流盘4与电池盖帽7连接。所述集流盘4呈蝴蝶状;所述集流体5呈梅花状。另外,所述集流体5通过点焊方式与氢电极1下端部及钢壳6连接;所述集流盘4通过点焊方式与镍电极1上端部及电池盖帽7连接。所述隔膜2为经过磺化处理的聚烯烃隔膜。
通过集流盘4的应用可有效的降低电池的电极电阻及极化电阻,从而降低电池内阻;通过集流体5的应用可有效的增加氢电极1与钢壳6底部的接触面,从而降低电池内阻。上述镍氢电池可有效地实现镍氢电池在短时间内充电或放电的效果。
参照图1、图2、图3,生产上述动力高容量镍氢电池的工艺,其具体步骤的实施方式如下:
a镍电极3的制作:将氢氧化亚镍、催化剂、添加剂、导电剂及浓度为10%的PTFE混合后填充到含镍99%-99.8%的发泡镍内,且距离发泡镍顶端5.5 - 6.5mm 的部分不填充材料,上述填充材料及发泡镍共同形成镍电极3并控制镍电极3厚度为0.42± 0.02mm ,所述不填充材料的发泡镍部分为预留发泡镍部分9;
b氢电极1的制作:以铜网为载体,将储氢合金粉通过机械碾压于铜网作为电极片,并控制电极片厚度为0.22± 0.02mm ,所述电极片再浸泡于浓度为5%的PTFE内,从而可有效防止电极片被电解液腐蚀,上述经过PTFE浸泡的电极片作为氢电极1;
c卷绕:经过磺化处理的聚烯烃隔膜将镍电极3、氢电极1隔开,镍电极3预留发泡镍部分9凸出于隔膜2上端,氢电极1凸出于隔膜2下端,所述镍电极3、氢电极1及隔膜2通过高精密机卷绕后用文具胶纸缠绕住,所述经文具胶纸缠绕后的镍电极3、氢电极1及隔膜2作为电芯8;
d焊接:将集流体5上表面焊接于凸出隔膜2下端的氢电极1,然后将电芯8装入钢壳6并使集流体5的下表面焊接于钢壳6内侧的底部;将镍电极3凸出隔膜2的预留发泡镍部分9收拢并将其敲平整,集流盘4下表面与整个凸出隔膜2的镍电极3全部接触并点焊牢固,集流盘4上表面点焊于电池盖帽7,且在集流盘4上端倒扣绝缘胶圈(图中未画出)以避免短路。
工业实用性
本发明通过镍氢电池及其生产工艺的改进可有效地实现镍氢电池在短时间内充电或放电的效果,具有良好的工业实用性。
序列表自由内容

Claims (5)

1、动力高容量镍氢电池,包括镍电极、氢电极、夹设于镍电极和氢电极之间的隔膜、电池盖帽以及钢壳,所述镍电极、氢电极及隔膜卷绕并设置于所述钢壳内,其特征在于:它还包括集流体、集流盘,所述氢电极的下端部凸出所述隔膜,且氢电极下端部通过集流体与钢壳连接;所述镍电极的上端部凸出所述隔膜,且镍电极的上端部通过集流盘与电池盖帽连接。
2、如权利要求1所述的动力高容量镍氢电池,其特征在于:所述集流盘呈蝴蝶状;所述集流体呈梅花状。
3、如权利要求1所述的动力高容量镍氢电池,其特征在于:所述集流体通过点焊方式与氢电极下端部及钢壳连接;所述集流盘通过点焊方式与镍电极上端部及电池盖帽连接。
4、动力高容量镍氢电池的生产工艺,包括以下步骤:
a镍电极的制作:将活性物质、催化剂、添加剂、导电剂及浓度为10%的PTFE混合后填充到含镍99%-99.8%的发泡镍内,且距离发泡镍顶端5.5 - 6.5mm 的部分不填充材料,上述填充材料及发泡镍共同形成镍电极并控制镍电极厚度为0.42± 0.02mm ,所述不填充材料的发泡镍部分为预留发泡镍部分;
b氢电极的制作:以铜网为载体,将储氢合金粉通过机械碾压于铜网作为电极片,并控制电极片厚度为0.22± 0.02mm ,所述电极片再浸泡于浓度为5%的PTFE内,上述经过PTFE浸泡的电极片作为氢电极;
c卷绕:经过磺化处理的聚烯烃隔膜将镍电极、氢电极隔开,镍电极预留发泡镍部分凸出于隔膜上端,氢电极凸出于隔膜下端,所述镍电极、氢电极及隔膜通过高精密机卷绕后用文具胶纸缠绕住,所述经文具胶纸缠绕后的镍电极、氢电极及隔膜作为电芯;
d焊接:将集流体焊接于凸出隔膜下端的氢电极部分,然后将电芯装入钢壳并使集流体的下端焊接于钢壳;将镍电极凸出隔膜的预留发泡镍部分收拢并将其敲平整,集流盘下表面与整个凸出隔膜的镍电极部分全部接触并点焊牢固,集流盘上侧面点焊于电池盖帽,且在集流盘上端倒扣绝缘胶圈以避免短路。
5、如权利要求4所述的动力高容量镍氢电池的生产工艺,其特征在于:所述活性物质为氢氧化亚镍。
PCT/CN2010/070742 2009-11-13 2010-02-25 动力高容量镍氢电池及其生产工艺 WO2011057482A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910225295.1 2009-11-13
CN2009102252951A CN101719566B (zh) 2009-11-13 2009-11-13 动力高容量镍氢电池的生产工艺

Publications (1)

Publication Number Publication Date
WO2011057482A1 true WO2011057482A1 (zh) 2011-05-19

Family

ID=42434102

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/070742 WO2011057482A1 (zh) 2009-11-13 2010-02-25 动力高容量镍氢电池及其生产工艺

Country Status (2)

Country Link
CN (1) CN101719566B (zh)
WO (1) WO2011057482A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102315490A (zh) * 2011-08-01 2012-01-11 邹平铭波电源有限公司 超低容量镍氢电池及其制备方法
CN112054250A (zh) * 2020-09-25 2020-12-08 包头昊明稀土新电源科技有限公司 超大容量电容型镍氢电池及其制备方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102299388B (zh) * 2011-07-19 2013-07-24 泉州劲鑫电子有限公司 一种镍氢动力电池的生产工艺
CN104752072B (zh) * 2013-12-25 2018-02-06 中国电子科技集团公司第十八研究所 全密封镍碳超级电容器的制备方法
CN104362390B (zh) * 2014-10-14 2016-06-29 安徽亿诺新能源有限责任公司 低自放电镍氢电池的制备方法
CN110148798A (zh) * 2019-03-11 2019-08-20 浙江凯恩电池有限公司 镍氢sc高容量电池及高功率放电平台的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000030699A (ja) * 1998-07-10 2000-01-28 Toshiba Battery Co Ltd ニッケル・水素二次電池
CN1602557A (zh) * 2001-12-12 2005-03-30 三洋电机株式会社 镍氢蓄电池
CN2770106Y (zh) * 2005-01-11 2006-04-05 深圳市格瑞普电池有限公司 新型镍氢动力电池
CN2859827Y (zh) * 2005-12-30 2007-01-17 深圳市海太阳实业有限公司 镍氢动力电池
CN101257112A (zh) * 2008-04-11 2008-09-03 郭道传 镍氢电池金属网负极制作方法
CN201142347Y (zh) * 2007-09-29 2008-10-29 陈端典 一种高功率镍氢电池
CN201142346Y (zh) * 2007-11-20 2008-10-29 浙江天能电子电器有限公司 功率型圆柱体双电极柱镍氢电池

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100362676C (zh) * 2005-07-26 2008-01-16 天津工业大学 一种镍氢电池隔膜的制备方法及其制品
CN201608250U (zh) * 2009-11-13 2010-10-13 泉州劲鑫电子有限公司 动力高容量镍氢电池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000030699A (ja) * 1998-07-10 2000-01-28 Toshiba Battery Co Ltd ニッケル・水素二次電池
CN1602557A (zh) * 2001-12-12 2005-03-30 三洋电机株式会社 镍氢蓄电池
CN2770106Y (zh) * 2005-01-11 2006-04-05 深圳市格瑞普电池有限公司 新型镍氢动力电池
CN2859827Y (zh) * 2005-12-30 2007-01-17 深圳市海太阳实业有限公司 镍氢动力电池
CN201142347Y (zh) * 2007-09-29 2008-10-29 陈端典 一种高功率镍氢电池
CN201142346Y (zh) * 2007-11-20 2008-10-29 浙江天能电子电器有限公司 功率型圆柱体双电极柱镍氢电池
CN101257112A (zh) * 2008-04-11 2008-09-03 郭道传 镍氢电池金属网负极制作方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102315490A (zh) * 2011-08-01 2012-01-11 邹平铭波电源有限公司 超低容量镍氢电池及其制备方法
CN112054250A (zh) * 2020-09-25 2020-12-08 包头昊明稀土新电源科技有限公司 超大容量电容型镍氢电池及其制备方法

Also Published As

Publication number Publication date
CN101719566A (zh) 2010-06-02
CN101719566B (zh) 2011-10-05

Similar Documents

Publication Publication Date Title
JP3097347B2 (ja) ニッケル・水素蓄電池
WO2011057482A1 (zh) 动力高容量镍氢电池及其生产工艺
JP2012527733A (ja) 充電式亜鉛電池用のペースト状亜鉛電極
CN104218264A (zh) 一种镍氢电池及其制作方法
CN108767233B (zh) 一种大容量长寿命双袋式氢镍电池
JP2011249269A (ja) ラミネート電池
JP2008529224A (ja) 亜鉛−ニッケル二次電池用亜鉛陰極、その製造方法及び該亜鉛陰極を含む亜鉛−ニッケル二次電池
CN204216174U (zh) 高低温超高倍率镍氢动力电池
CN201608250U (zh) 动力高容量镍氢电池
CN101651209B (zh) 一种镍氢二次电池正极的制作方法
CN203071176U (zh) 一种助听器用可充电电池
CN203134918U (zh) 一种高功率镍氢电池
JP2013206674A (ja) 円筒形アルカリ蓄電池
CN207765567U (zh) 一种锂离子电芯
CN207637940U (zh) 一种大电流镍氢电池
CN207834425U (zh) 一种高温快充镍氢动力电池
CN201142347Y (zh) 一种高功率镍氢电池
CN202019033U (zh) 高功率镍氢电池
CN203631664U (zh) 一种高功率镍氢电池
KR100790563B1 (ko) 대용량 니켈/수소저장합금 이차전지의 극판군 구조
CN111146408B (zh) 一种铁镍电池负极的制备方法
CN207719337U (zh) 一种高容量的石墨烯锂离子电池
CN214123979U (zh) 一种双铆钉锂离子电芯
CN202977577U (zh) 一种提高二次电池高倍率放电性能的二次电池
CN208078033U (zh) 一种大容量动力电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10829446

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 21/08/2012).

122 Ep: pct application non-entry in european phase

Ref document number: 10829446

Country of ref document: EP

Kind code of ref document: A1