WO2011055755A1 - Method for writing in non-volatile semiconductor memory device and non-volatile semiconductor memory device - Google Patents

Method for writing in non-volatile semiconductor memory device and non-volatile semiconductor memory device Download PDF

Info

Publication number
WO2011055755A1
WO2011055755A1 PCT/JP2010/069622 JP2010069622W WO2011055755A1 WO 2011055755 A1 WO2011055755 A1 WO 2011055755A1 JP 2010069622 W JP2010069622 W JP 2010069622W WO 2011055755 A1 WO2011055755 A1 WO 2011055755A1
Authority
WO
WIPO (PCT)
Prior art keywords
well
voltage
memory device
semiconductor memory
nonvolatile semiconductor
Prior art date
Application number
PCT/JP2010/069622
Other languages
French (fr)
Japanese (ja)
Inventor
高 三井田
Original Assignee
Miida Takashi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miida Takashi filed Critical Miida Takashi
Publication of WO2011055755A1 publication Critical patent/WO2011055755A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/34Determination of programming status, e.g. threshold voltage, overprogramming or underprogramming, retention
    • G11C16/3418Disturbance prevention or evaluation; Refreshing of disturbed memory data
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/04Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
    • G11C16/0483Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells having several storage transistors connected in series
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/10Programming or data input circuits
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/30Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/30Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region
    • H10B41/35Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region with a cell select transistor, e.g. NAND

Definitions

  • the present invention relates to a writing method in a nonvolatile semiconductor memory device and the nonvolatile semiconductor memory device, and is particularly useful when applied to a NAND flash memory device.
  • a NAND flash memory device in which a memory cell has a floating gate as a nonvolatile semiconductor memory device, and a plurality of memory cells are arranged in series in a NAND bundle in which adjacent source / drain regions are connected in series It has been known.
  • writing and reading operations are simultaneously performed on all memory cells connected to one control gate line (word line).
  • This write / read unit is hereinafter referred to as a page.
  • the erase operation is performed for all NAND bundles selected by one row decoder. This erase unit is hereinafter referred to as a block.
  • the self-boost writing method is generally employed (for example, see Non-Patent Document 1).
  • VCC is applied to the gate of the select gate transistor on the drain side for selecting the NAND bundle
  • VPASS intermediate potential
  • 0V is applied to the gate of the select gate transistor to turn it off
  • a high voltage VPGM for writing of about 20V is applied to the control gate of the selected memory cell.
  • VPASS voltage
  • VPASS voltage is applied to these non-selected word lines
  • VPASS disturb erroneous writing
  • VPASS intermediate potential
  • the present invention provides a writing method in a non-volatile semiconductor memory device and a non-volatile semiconductor memory device capable of significantly increasing the number of additional writes (NOP) by suppressing write disturb. For the purpose.
  • the first aspect of the present invention for achieving the above object is as follows: A P well made of a P type semiconductor is formed in an N well made of an N type semiconductor, and a plurality of electrically rewritable nonvolatile memory cells are connected in series on the surface of the P well.
  • a writing method in a nonvolatile semiconductor memory device including a memory cell array in which NAND bundles are arranged in a matrix A first voltage is applied to the word lines of all the memory cells of the NAND bundle in a period before a write operation (period t3 ⁇ t4) by applying a program voltage in a write period (period t0 ⁇ t4) to the memory cell.
  • a second voltage higher than the first voltage is applied to the P well, and a voltage that reversely biases the bit line and the source line with respect to the P well is applied.
  • a reverse bias voltage is applied between the P well and the N well so that the N well is reverse biased with respect to the P well.
  • the second aspect of the present invention is: A writing method in the nonvolatile semiconductor memory device according to the first aspect, In the writing method in the nonvolatile semiconductor memory device, the reverse bias voltage is applied in a period before the writing operation.
  • the third aspect of the present invention is: A writing method in the nonvolatile semiconductor memory device according to the first aspect, In the writing method in the nonvolatile semiconductor memory device, the reverse bias voltage is applied during the writing operation.
  • the fourth aspect of the present invention is: A writing method in the nonvolatile semiconductor memory device according to the first aspect, In the writing method in the nonvolatile semiconductor memory device, the reverse bias voltage is applied in a period before the writing operation and a period of the writing operation.
  • a writing method in the nonvolatile semiconductor memory device is characterized in that the first voltage is a ground potential and the second voltage is a positive potential.
  • the sixth aspect of the present invention is: A writing method in the nonvolatile semiconductor memory device according to the second or fourth aspect, The writing method in the nonvolatile semiconductor memory device is characterized in that the first voltage is a ground potential and the second voltage is a positive potential.
  • the seventh aspect of the present invention is A writing method in the nonvolatile semiconductor memory device according to the sixth aspect, Due to capacitive coupling between the P well and the N well by applying a reverse bias voltage between the N well and the P well in a period before the write operation and then bringing the N well into a floating state.
  • the voltage generated in this manner is the reverse bias voltage.
  • the eighth aspect of the present invention is A writing method in a nonvolatile semiconductor memory device according to any one of the first to fourth aspects,
  • the writing method in the nonvolatile semiconductor memory device is characterized in that the first voltage is a negative potential and the second voltage is a ground potential.
  • the ninth aspect of the present invention provides A P well made of a P type semiconductor is formed in an N well made of an N type semiconductor, and a plurality of electrically rewritable nonvolatile memory cells are connected in series on the surface of the P well.
  • a nonvolatile semiconductor memory device comprising a memory cell array in which NAND bundles are arranged in a matrix, A word line voltage generating circuit for applying a first voltage to the word lines of the memory cell array via a word line driving circuit; A P well voltage generation circuit for applying a second voltage higher than the first voltage to the P well via a P well bias circuit; An N-well voltage generating circuit for applying a reverse bias voltage to the N-well via an N-well bias circuit so that the N-well is reverse-biased with respect to the P-well; A first voltage is applied to the word lines of all the memory cells of the NAND bundle through the word line voltage generation circuit and the word line driving circuit during a period before a write operation by applying a program voltage in the write period to the memory cell
  • a second voltage higher than the first voltage is applied to the P well, and a voltage at which the bit line and the source line are reverse-biased with respect to the P well is applied.
  • a write control circuit for controlling to apply the reverse bias voltage to the N well via the N well voltage generation circuit and the N well bias circuit.
  • the tenth aspect of the present invention provides In the nonvolatile semiconductor memory device according to the ninth aspect, In the nonvolatile semiconductor memory device, the write control circuit controls the reverse bias voltage to be applied during a period before the write operation.
  • the eleventh aspect of the present invention is In the nonvolatile semiconductor memory device according to the ninth aspect, In the nonvolatile semiconductor memory device, the write control circuit controls the reverse bias voltage to be applied during the write operation.
  • the twelfth aspect of the present invention provides In the nonvolatile semiconductor memory device according to the ninth aspect, In the nonvolatile semiconductor memory device, the write control circuit controls the reverse bias voltage to be applied in a period before the write operation and a period of the write operation.
  • the thirteenth aspect of the present invention provides In the nonvolatile semiconductor memory device according to the ninth or eleventh aspect, In the nonvolatile semiconductor memory device, the word line voltage generation circuit has the first voltage as a ground potential, and the P well voltage generation circuit has the second voltage as a positive potential. .
  • the fourteenth aspect of the present invention provides In the nonvolatile semiconductor memory device according to the tenth or twelfth aspect, In the nonvolatile semiconductor memory device, the word line voltage generation circuit has the first voltage as a ground potential, and the P well voltage generation circuit has the second voltage as a positive potential. .
  • the fifteenth aspect of the present invention provides In the nonvolatile semiconductor memory device according to the fourteenth aspect,
  • the write control circuit applies a reverse bias voltage between the N well and the P well in a period before the write operation, and then sets the N well to be in a floating state so that the P well and the N well
  • a nonvolatile semiconductor memory device is characterized in that a voltage generated due to capacitive coupling is controlled to be the reverse bias voltage.
  • the sixteenth aspect of the present invention provides in the nonvolatile semiconductor memory device according to any one of the ninth to twelfth aspects,
  • the word line voltage generation circuit has the first voltage as a negative potential
  • the P well voltage generation circuit has the second voltage as a ground potential.
  • the first voltage is applied to the word line of the memory cell and the second voltage higher than the first voltage is applied to the P well in the period before the write operation, and the bit line And a source line is applied with a voltage that is reverse-biased with respect to the P-well, and the N-well in which the P-well memory cell is formed so that the N-well is reverse-biased with respect to the P-well during the writing period Since a period in which a reverse bias voltage is applied between the P well and the P well is provided, it is possible to completely prevent residual electrons from remaining or flowing into the P well of the non-selected memory cell.
  • write disturb program disturb
  • NOP number of additional writes
  • FIG. 1 is a cross-sectional view showing a string structure of stacked gates of a NAND flash memory constituting a nonvolatile semiconductor memory device according to an embodiment of the present invention.
  • FIG. 2 is a configuration diagram illustrating a part of a memory cell array extracted from the NAND flash memory illustrated in FIG. 1.
  • 1 is a block diagram showing an entire NAND flash memory device which is a nonvolatile semiconductor memory device according to an embodiment of the present invention.
  • 3 is a timing chart according to the first embodiment showing, in time series, voltages applied to each part of the NAND flash memory.
  • FIG. 5 is a schematic diagram showing an electron state in a memory cell of an unselected bit line when a voltage shown in a period from t1 to t2 in FIG. 4 is applied.
  • FIG. 5 is a schematic diagram showing an electron state in a memory cell of an unselected bit line when a voltage shown in a period from t2 to t3 in FIG. 4 is applied.
  • FIG. 5 is a schematic diagram showing an electron state in a memory cell of an unselected bit line when a voltage shown in a period from t3 to t4 in FIG. 4 is applied.
  • It is a timing chart concerning the 2nd example which shows the voltage impressed to each part of NAND type flash memory in time series.
  • It is a timing chart concerning the 3rd example which shows the voltage impressed to each part of NAND type flash memory in time series.
  • 9A and 9B are diagrams demonstrating the effect of suppressing erroneous writing in the write operation according to the third embodiment shown in FIG. 9, in which FIG.
  • FIG. 9A is a characteristic diagram showing characteristics of threshold change with respect to VPASS
  • FIG. 9B is a normal distribution with respect to threshold voltage. It is a characteristic view which shows a cumulative frequency. It is a timing chart concerning the 4th example which shows the voltage impressed to each part of NAND type flash memory in time series. It is a timing chart concerning the 5th example which shows the voltage impressed to each part of NAND type flash memory in time series. It is a timing chart which concerns on the 6th Example which shows the voltage applied to each part of NAND type flash memory in time series. It is a timing chart which concerns on the 7th Example which shows the voltage applied to each part of NAND type flash memory in a time series.
  • FIG. 1 is a cross-sectional view showing a string structure of a stacked gate of a NAND flash memory constituting a nonvolatile semiconductor memory device according to an embodiment of the present invention.
  • the NAND flash memory I includes an N well 2 made of an N type semiconductor in a P type semiconductor substrate 1 and a P type semiconductor in the N well 2.
  • P well 3 is formed.
  • a plurality of memory cells 4 formed of electrically rewritable N-type non-volatile transistors are connected in series to form a NAND bundle 5.
  • the NAND bundle 5 is disposed between the drain side select gate 6 and the source side select gate 7.
  • the select gate 6 extends in the left-right direction in the figure and is connected to the bit line 8 connected to another NAND bundle adjacent in the same direction, and the select gate 7 is orthogonal to the bit line 8.
  • the source side of the source line 9 is connected to a source line 9 that is connected to another NAND bundle adjacent in the same direction.
  • Such a configuration itself is basically the same as a conventional NAND flash memory. That is, in such a NAND flash memory I, the memory cell 4 has a stacked gate type structure composed of a stacked structure of a floating gate and a control gate, and a tunnel oxide film between the surface of the semiconductor substrate and the floating gate is formed.
  • the threshold value of the memory cell is changed by injecting or emitting electrons to and from the floating gate, and stored data is written, read, and erased.
  • an operation of injecting electrons into the floating gate is referred to as a write operation, and a state where normal electrons are injected is referred to as a “0” state, and a state where electrons are emitted is referred to as a “1” state. Therefore, each memory cell 4 is in the “1” state in the erased state.
  • the well electrodes 10 and 11 are formed so that independent voltages can be applied to the N well 2 and the P well 3, respectively.
  • FIG. 2 is a configuration diagram showing a part of the memory cell array (two NAND bundles 5) extracted from the NAND flash memory I shown in FIG. 1, and the bit line selected to perform writing in the writing period.
  • the positional relationship between the VPASS disturb and the program disturb generation cells in the (NAND bundle) and the non-selected bit line (NAND bundle) is shown. That is, in the selected bit line 8A (NAND bundle 5A), adjacent memory cells 4B (rectangular) on both sides in the same NAND bundle 5A as the memory cell 4A selected for writing (the cell surrounded by an ellipse with a dotted line).
  • Program disturb may occur at 4C (cell surrounded by a rectangular solid line).
  • bit line 8A selected for writing in the writing period is grounded, and a predetermined voltage (for example, power supply voltage VCC) for prohibiting writing is applied to the non-selected bit line 8B.
  • a writing operation injection of electrons into the floating gate
  • VPROG program voltage
  • VPASS pass voltage
  • writing in this embodiment is performed by a so-called self-boosting writing method, but the time series relationship of voltages applied to each part of the NAND flash memory I will be described in detail later.
  • the non-selected bit line 8B, the select gate 7 and the source line 9 are basically held at a predetermined fixed potential (for example, a ground potential).
  • a predetermined fixed potential for example, a ground potential.
  • the bit line 8B and the source line 9 may be in a floating state for a specific period. This point will be described in detail later.
  • FIG. 3 is a block diagram showing an entire NAND flash memory device which is a nonvolatile semiconductor memory device according to an embodiment of the present invention.
  • the NAND flash memory device according to this embodiment has a feature in the write mode, and the read and erase operations are executed in the same manner as in the prior art. Therefore, the following description will mainly describe the write operation.
  • the NAND flash memory I has an N well 2 and a P well 3 formed in the N well 2, and a memory cell 4 on the surface of the P well 3 (see FIGS. 1 and 2). ) Are arranged in a matrix form.
  • predetermined predetermined processing in each operation of writing, reading and erasing is executed by control via the writing control circuit 22, the reading control circuit 23 and the erasing control circuit 24.
  • the control at this time is executed with the word line voltage generating circuit 25, the word line driving circuit 26, the N well voltage generating circuit 27, the N well bias circuit 28, the P well voltage generating circuit 29, and the P well bias circuit 30 being controlled. .
  • command data input via the interface circuit 31 is decoded by the command decoder 32 to generate command data related to writing, reading and erasing, and the write control circuit 22, the read control circuit 23 and the erase control circuit 24. It is configured to supply to either.
  • the read operation is performed simultaneously for all the memory cells 4 (see FIG. 1 and FIG. 2) connected to any one of the word lines WL0 to WLn + 3 at the same time as in the prior art.
  • the erase operation is performed on a block basis for all NAND bundles (see FIGS. 1 and 2) selected by one row decoder (not shown).
  • the word line voltage generation circuit 25 applies the first voltage to the word lines of the memory cell array 21 via the word line drive circuit 26.
  • the P well voltage generation circuit 29 applies a second voltage higher than the first voltage to the P well 3 through the P well bias circuit 30.
  • the N well voltage generation circuit 27 applies a reverse bias voltage to the N well 2 via the N well bias circuit 28 so that the N well 2 is reverse biased with respect to the P well 3.
  • the second voltage and the reverse bias voltage are applied to the P well 3 and the N well 2 via the well electrodes 11 and 10 shown in FIG.
  • the “writing period” used in this specification is a period from time t1 to time t4 in the timing chart shown in FIG. 4 and the like, and the “writing operation” is an application period of a program voltage (VPROG). It means the period from time t3 to time t4.
  • VPROG program voltage
  • the waveforms of the timing charts shown in each figure are, in order from the top, (a) gate voltage VG applied to the word line WLn (see FIG. 2) to which the memory cell 4A to be written (see FIG. 2) is connected, (B) Gate voltage VG applied to word lines WL0 to WLn + 3 (see FIG. 2) other than word line WLn, (c) Voltage SGD applied to drain side select gate 6 (see FIG. 2), (d) P well 3 (see FIGS. 1 to 3), and (e) a voltage CNW applied to the N well 2 (see FIGS. 1 to 3).
  • These voltages VPROG and the like are generated by the word line voltage generation circuit 25, the P well voltage generation circuit 29, and the N well voltage generation circuit 27 under the control of the write control circuit 22 shown in FIG. 26, and applied to predetermined word lines WL0 to WLn + 3, P well 3 and N well 2 through the P well bias circuit 30 and the N well bias circuit 28, respectively.
  • FIG. 4 is a timing chart according to the first embodiment. Each time-series operation will be described with reference to FIG. 1) Assuming that the floating gates of the memory cells 4 are in an erased state at the time of writing, the floating gates of the memory cells 4 have positive charges and the transistors constituting the memory cells 4 even if the word lines WL0 to WLn + 3 are grounded May be considered to be in an ON state, and in an equilibrium state, an inversion layer of electrons is always formed in the channel of the NAND bundle 5.
  • SGD is raised to 5V at t-1, and then is lowered to 1.5V at t0.
  • a predetermined voltage for example, power supply voltage VCC
  • VCC power supply voltage
  • this period is a preprocessing period preceding the writing period, and is not necessarily a necessary process. 2) During the period from t0 to t1 in the writing period, the state when the SGD falls is maintained. 3) During the period from t1 to t2, all the word lines WL0 to WLn + 3 are set to the ground voltage (first voltage), and a positive voltage higher than the ground voltage is applied to the P well 3 (in this example, 4 V (second voltage) )) Is applied.
  • a predetermined positive voltage (6 V (reverse bias voltage) in this example) is applied to the N well 2 so that a reverse bias is applied to the P well 3.
  • the non-selected bit line 8B and the source line 9 are precharged to the P well potential or higher, and then set in a floating state at the time of reverse bias. This is to prevent the junction with the N-type semiconductor from being forward when the P-well 3 has a positive potential.
  • the electrons accumulated on the surfaces of the memory cells 4 and 4C related to the non-selected bit line 8B so far are separated and moved in the direction of the semiconductor substrate 1. Further, since holes are induced near the surface, the electrons in the neutral region in the N-type diffusion layer forming the drain and source are also reduced by recombination with the holes. Thus, the surface of the memory cells 4 and 4C has a sufficient hole accumulation state, and the repelled electrons leave the channel surface and float in the P well.
  • VPASS for example, 6 V
  • the electrons existing in the P well 3 and the N type diffusion layer remain in the N well 2 without being absorbed. Things are neutralized by the accumulation of holes. As a result, it is possible to further assist the reduction of free electrons in the channel under the gate.
  • the voltage applied to the P well 3 at t2 is stepped down to the ground voltage, and the voltage applied to the N well 2 is stepped down to 2V, but the reverse bias voltage (2V in this example) continues between them. Is applied. 5)
  • VPROG (20 + V in this example) is applied to the word line WLn to which the gate of the memory cell 4A to be written is connected, and other word lines WN0 to WLn + 3 Is continuously applied with VPASS (6 V in this example).
  • a reverse bias voltage (2 V in this example) is continuously applied between the N well 2 and the P well 3.
  • the surface potential of the memory cell 4C increases greatly, but the depletion layer of the P well 3 is also significantly deeper. spread.
  • a reverse bias voltage (2 V in this example) is applied between the N well 2 and the P well 3 even during a program operation by applying VPROG.
  • VPROG a reverse bias voltage
  • FIG. 8 is a timing chart according to the second embodiment.
  • the voltage is different.
  • Others are the same as those of the first embodiment (see FIG. 4). That is, in the period from t1 to t2, the ground voltage (second voltage) is higher than the negative voltage in the P-well 3 in a state where all the word lines WL0 to WLn + 3 are set to a negative voltage (-4V (first voltage) in this example). Voltage).
  • a predetermined positive voltage in this example, 2 V (reverse bias voltage)
  • 2 V reverse bias voltage
  • the electrons accumulated on the surfaces of the memory cells 4 and 4C related to the non-selected bit line 8B so far move away in the direction of the semiconductor substrate 1. Be made. Further, since holes are induced in the vicinity of the surface, the neutral region in the N-type diffusion layer forming the drain and source is also regressed to reduce electrons. Thus, the surface of the memory cells 4 and 4C is in a sufficient hole accumulation state.
  • the depletion layer spreads at the junction of the reverse-biased N-well 2 and P-well 3, so that free electrons are swept out by the electric field at this time. . That is, electrons are absorbed from the P-well 3 to the end of the depletion layer of the P-well 3 as a minority carrier diffusion current. Thus, excess electrons can be removed.
  • a reverse bias voltage (2 V in this example) is applied between the N well 2 and the P well 3 even during the period of t3 ⁇ t4 (write operation) in this embodiment.
  • FIG. 9 is a timing chart according to the third embodiment. As shown in the figure, in this embodiment, the application of the reverse bias voltage from t3 to t4 in the first embodiment (see FIG. 4) is omitted. Others are the same as the first embodiment.
  • FIG. 10 is a diagram demonstrating the effect of suppressing erroneous writing in the write operation according to the present embodiment.
  • I is the characteristic of the present embodiment
  • II is the characteristic of the patent document (when a voltage higher than the applied voltage of the word line is applied to the well at t1 ⁇ t2)
  • III is the conventional technique (well at t1 ⁇ t2). In the case of the same voltage as that of the word line).
  • FIG. 10 (a) shows the dependence of the VPASS voltage applied to the non-selected cell on the threshold fluctuation due to the disturb of the selected cell whose write is prohibited.
  • the reverse bias voltage is applied at t1 ⁇ t2 and t3 ⁇ t4, the removal of electrons is promoted, and the case of this embodiment in which inflow prevention is taken is more prominent than the case of Patent Document 1. It can be seen that the program disturb in the low pressure range can be suppressed.
  • FIG. 10 (b) shows the result of 500 additional writes of the cell threshold cumulative distribution in the non-selected cells.
  • the characteristic I of the present embodiment shows the distribution in the initial state.
  • the threshold value fluctuates about 10 times, and the distribution greatly collapses at 500 times, which shows that severe program disturb occurs.
  • the characteristic I of the present embodiment in which a reverse bias voltage is also applied, has a distribution that overlaps the initial value even when 500 additional programs are given, no change in threshold is observed, and no program disturb occurs. It is shown that.
  • FIG. 11 is a timing chart according to the fourth embodiment.
  • the application of the reverse bias voltage from t1 to t2 in the first embodiment is omitted.
  • Others are the same as the first embodiment. That is, during the period from t1 to t2, a positive voltage (4 V (second voltage in this example) is applied to the P-well 3 in a state where all the word lines WL0 to WLn + 3 are set to the ground voltage (first voltage). )) Is applied.
  • the non-selected bit line 8B and the source line 9 are set in a floating state. This is to prevent the junction with the N-type semiconductor from being forward when the P-well 3 has a positive potential.
  • the neutral region in the N-type diffusion layer forming the drain and source is also reduced.
  • the surface of the memory cells 4 and 4C is in a sufficient hole accumulation state. That is, in this embodiment, the N well 2 and the P well 3 are not reverse-biased, but a certain excess electron removing function is exhibited.
  • a reverse bias voltage (4 V in this example) is applied between the N well 2 and the P well 3 during the period from t3 to t4 (write operation).
  • FIG. 12 is a timing chart according to the fifth embodiment.
  • the application of the reverse bias voltage from t3 to t4 in the second embodiment is omitted.
  • the rest is the same as in the second embodiment. That is, in the period from t1 to t2, the ground voltage (second voltage) is higher than the negative voltage in the P-well 3 in a state where all the word lines WL0 to WLn + 3 are set to a negative voltage (-4V (first voltage) in this example). Voltage).
  • a predetermined positive voltage (2 V (reverse bias voltage) in this example) is applied to the N well 2 so that the bias between the P well 3 and the P well 3 is reversed.
  • FIG. 13 is a timing chart according to the sixth embodiment. As shown in the figure, in this embodiment, the application of the reverse bias voltage from t1 to t2 in the second embodiment (see FIG. 8) is omitted. The rest is the same as in the second embodiment. That is, in the period from t1 to t2, the ground voltage (second voltage) is higher than the negative voltage in the P-well 3 in a state where all the word lines WL0 to WLn + 3 are set to a negative voltage (-4V (first voltage) in this example). Voltage).
  • a reverse bias voltage (2 V in this example) is applied between the N well 2 and the P well 3 in the period of t3 ⁇ t4 (write operation).
  • the thermal potential is lowered so that no reverse flow due to the diffusion current of electrons to the P-well 3 occurs. can do. This can prevent injection of electrons into the P-well 3 and contribute to prevention of erroneous writing (program disturb).
  • FIG. 14 is a timing chart according to the seventh embodiment.
  • a voltage in the same manner as in the first embodiment (see FIG. 4) is applied.
  • the reverse bias voltage from t1 to t2 is formed by bringing the N-well 2 into a floating state. More specifically, the P-well 3 is grounded (0 V) from t0 to t1, and at the same time, a reverse bias voltage (2 V in this example) is applied to the N-well 2 and between the P-well 3 and the N-well 2 The charge is precharged in the depletion layer capacitor formed in the first step.
  • the application of the reverse bias voltage (2 V) is stopped at t1, and immediately thereafter, a positive bias is applied to the P well.
  • the application of the P well bias boosts the N well through the coupling of the depletion layer capacitance, and this is superimposed on the P well bias application voltage when the application of the reverse bias voltage is stopped.
  • the N well 2 is maintained at a floating voltage higher than the precharge voltage during the period from t1 to t2.
  • the floating voltage is set to be higher than the second voltage (4 V in this example) applied to the P-well 3 from t1 to t2, and as a result, the N-well 2 and P are changed from t1 to t2.
  • a reverse bias voltage is applied to the well.
  • the element configuration of the N-well voltage generation circuit and the N-well bias circuit can be simplified, and the same operations and effects as those of the first embodiment (see FIG. 4) are exhibited. Similarly to the example, erroneous writing can be effectively prevented.
  • the non-selected bit line 8B and the source line 9 are in a floating state. This is to prevent the junction with the N-type semiconductor from being forward when the P-well 3 has a positive potential.
  • FIG. 15 is a timing chart according to the eighth embodiment. As shown in the figure, in this embodiment, in the seventh embodiment (see FIG. 14), the application of the reverse bias voltage from t3 to t4 is omitted. Therefore, the same operation and effect as in the third embodiment (see FIG. 9) can be achieved to prevent erroneous writing.
  • the non-selected bit line 8B and the source line 9 are in a floating state. This is to prevent the junction with the N-type semiconductor from being forward when the P-well 3 has a positive potential.
  • FIG. 16 is a timing chart according to the ninth embodiment. As shown in the figure, before t3 ⁇ t4 (write operation) in this embodiment, the P well 3 and the N well 2 are set to the same ground voltage as all the word lines WL0 to WLn + 3, and only the t3 ⁇ t4 has the N well 2 A reverse bias voltage is applied between the P well 3 and the P well 3.
  • the present invention can be effectively used in the industrial field of manufacturing and selling semiconductor memories.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Non-Volatile Memory (AREA)
  • Read Only Memory (AREA)
  • Semiconductor Memories (AREA)

Abstract

Disclosed is a method for writing in a non-volatile semiconductor memory device which has a P well made from a P-type semiconductor formed in an N well made from an N-type semiconductor, and which is provided with a memory cell array formed by arranging in matrix form on the surface of the P well NAND bundles wherein a plurality of electrically rewritable non-volatile memory cells are connected in series. A first voltage is applied to the word lines of all of the memory cells in the NAND bundles in a period prior to the writing operation (period t3 → t4) performed by applying program voltage in the writing period (period t0 → t4) with respect to the memory cells, and a second voltage (CPW) that is higher than the first voltage is applied to the P well. Further, a reverse bias voltage (CNW) is applied between the P well and the N well in such a way that the N well is reverse-biased with respect to the P well in the writing period.

Description

不揮発性半導体記憶装置における書き込み方法及び不揮発性半導体記憶装置WRITE METHOD IN NONVOLATILE SEMICONDUCTOR MEMORY DEVICE AND NONVOLATILE SEMICONDUCTOR MEMORY DEVICE
 本発明は不揮発性半導体記憶装置における書き込み方法及びその不揮発性半導体記憶装置に関し、特にNAND型フラッシュメモリ装置に適用して有用なものである。 The present invention relates to a writing method in a nonvolatile semiconductor memory device and the nonvolatile semiconductor memory device, and is particularly useful when applied to a NAND flash memory device.
 不揮発性半導体記憶装置としてメモリセルにフローティングゲートを備え、複数の前記メモリセルが隣り合うソース・ドレイン領域を共通にして直列に接続されたNAND束をアレイ状に配列してなるNAND型フラッシュメモリ装置が知られている。 A NAND flash memory device in which a memory cell has a floating gate as a nonvolatile semiconductor memory device, and a plurality of memory cells are arranged in series in a NAND bundle in which adjacent source / drain regions are connected in series It has been known.
 従来技術に係るNAND型フラッシュメモリ装置において、書き込みや読み出し動作は1つのコントロールゲート線(ワード線)に接続された全てのメモリセルに対して同時に行われる。この書き込み/読み出し単位を以下ページと呼称する。また、消去動作は一つのロウデコーダにより選択される全てのNAND束に対して行われる。この消去単位を以下ブロックと呼称する。 In the NAND flash memory device according to the prior art, writing and reading operations are simultaneously performed on all memory cells connected to one control gate line (word line). This write / read unit is hereinafter referred to as a page. The erase operation is performed for all NAND bundles selected by one row decoder. This erase unit is hereinafter referred to as a block.
 従来技術に係るNAND型フラッシュメモリに対する書き込みに際しては、セルフブースト書き込み法が一般に採用されている(例えば、非特許文献1参照)。この書き込み方法では、NAND束を選択するドレイン側のセレクトゲートトランジスタのゲートにVCC、NAND束内の非選択メモリセルのコントロールゲートに10V程度の中間電位(VPASS)を与え、NAND束のソース側のセレクトゲートトランジスタのゲートに0Vを与えてオフ状態とし、選択されたメモリセルのコントロールゲートに20V程度の書き込み用の高電圧VPGMを印加する。 In the writing to the NAND flash memory according to the prior art, the self-boost writing method is generally employed (for example, see Non-Patent Document 1). In this writing method, VCC is applied to the gate of the select gate transistor on the drain side for selecting the NAND bundle, and an intermediate potential (VPASS) of about 10 V is applied to the control gate of the non-selected memory cell in the NAND bundle, and the source side of the NAND bundle is selected. 0V is applied to the gate of the select gate transistor to turn it off, and a high voltage VPGM for writing of about 20V is applied to the control gate of the selected memory cell.
 ここで、“0”データを書き込む場合には、ドレイン側のセレクトゲートトランジスタと非選択メモリセルのチャンネル部を介して、ビット線の0V(接地電位)が選択されたメモリセルのチャンネル部まで伝達され、電子反転層が形成されるのでトンネル酸化膜に加わる高電界によりトンネル電流がトンネル酸化膜に流れ、電子がフローティングゲートに注入される。このためメモリセルの閾値が正の側に変化する。 Here, when “0” data is written, 0V (ground potential) of the bit line is transmitted to the channel portion of the selected memory cell via the drain-side select gate transistor and the channel portion of the non-selected memory cell. Since the electron inversion layer is formed, a tunneling current flows through the tunnel oxide film due to a high electric field applied to the tunnel oxide film, and electrons are injected into the floating gate. For this reason, the threshold value of the memory cell changes to the positive side.
 一方、“1”データの書込み及び書込み禁止のモードであるデータを書き込まない場合には、ビット線からメモリセルのチャンネル部を初期充電した後ドレイン側のセレクトゲートトランジスタをオフ状態にすることにより、チャネルへの電子の供給を断ち、チャンネル部の電位を非選択メモリセルのコントロールゲートとチャンネル部とのカップリングにより上昇させることでトンネル電流を阻止し、メモリセルの負の閾値を維持させる(消去状態を維持させる)。しかしながら、書込みをしないメモリセル下のチャネル領域内には残留した余剰電子が存在する。その結果トンネル酸化膜に電界ストレスを与え、本来書き込まないメモリセルに対し不要なトンネル電流による誤書き込みを生じる、いわゆるプログラムディスターブが起こる。 On the other hand, in the case of not writing data which is a write-inhibit mode and “1” data write mode, by initially charging the channel portion of the memory cell from the bit line, by turning off the select gate transistor on the drain side, By blocking the supply of electrons to the channel and raising the potential of the channel part by coupling the control gate of the non-selected memory cell and the channel part, the tunnel current is blocked and the negative threshold of the memory cell is maintained (erase) Maintain state). However, the remaining surplus electrons exist in the channel region under the memory cell where writing is not performed. As a result, electric field stress is applied to the tunnel oxide film, and so-called program disturb occurs in which erroneous writing due to unnecessary tunnel current occurs in a memory cell that is not originally written.
 したがって、非書き込み時において、消去状態のメモリセルの閾値を正の方向に変化させないため(プログラムディスターブ防止のため)には、これら非選択ワード線束にできるだけ高い電圧(VPASS)を印加することが望ましい。 Therefore, it is desirable to apply as high a voltage (VPASS) as possible to these unselected word line bundles in order not to change the threshold value of the erased memory cell in the positive direction during non-writing (to prevent program disturb). .
 しかし、これら非選択ワード線(VPASS)に高い電圧を印加するほど、逆に“0”データ書き込みのビット線に接続された非選択メモリセルに対しては、酸化膜電界が強まり、トンネル電流による誤書き込み(VPASSディスターブ)が発生し易くなるという問題がある。 However, the higher the voltage is applied to these non-selected word lines (VPASS), the more the oxide film electric field becomes stronger for the non-selected memory cells connected to the bit line for writing “0” data. There is a problem that erroneous writing (VPASS disturb) is likely to occur.
 このため、従来は非書き込み時の選択メモリセルの誤書き込み耐性と、“0”データ書き込み時の非選択メモリセルの誤書き込み耐性が同程度となるように、非選択メモリセルのゲート線に印加する中間電位(VPASS)を設定している。 For this reason, conventionally, it is applied to the gate line of the non-selected memory cell so that the erroneous writing resistance of the selected memory cell at the time of non-writing and the erroneous writing resistance of the non-selected memory cell at the time of writing “0” data are approximately the same. An intermediate potential (VPASS) is set.
 しかし、従来のNAND型不揮発性半導体記憶装置では、この制限によりページ単位での書き換えを行うと容易に非書き込み時の選択メモリセルにおいて誤書き込み(プログラムディスターブ)を生じるという問題があった。その為、同ページにたいする追加書込みについては厳しく回数制限されている(Number of Programming:NOP=1)。 However, the conventional NAND-type non-volatile semiconductor memory device has a problem in that, when rewriting in units of pages due to this limitation, erroneous writing (program disturb) easily occurs in the selected memory cell at the time of non-writing. Therefore, the number of additional writings on the page is strictly limited (Number of Programming: NOP = 1).
 かかる誤書き込み(プログラムディスターブ)を防止する方法としてメモリセルへの書き込み動作を行う前に、メモリセルが形成されているPウェルを正電位にバイアスするか、又はワード線を負電位にバイアスする方法(特許文献1参照)が提案されている。さらに詳言すると、書き込み動作の前に一旦全ワード線を一定期間接地し、P型ウェルを正電位にバイアスするか、又はP型ウェルを接地し全ワード線に一定期間負バイアス電圧を掛けるというものである。 As a method of preventing such erroneous writing (program disturb), a method of biasing a P well in which a memory cell is formed to a positive potential or biasing a word line to a negative potential before performing a write operation to the memory cell. (See Patent Document 1) has been proposed. More specifically, all word lines are temporarily grounded for a certain period before the write operation, and the P-type well is biased to a positive potential, or the P-type well is grounded and a negative bias voltage is applied to all the word lines for a certain period. Is.
特開2001-230391号公報JP 2001-230391 A
 しかしながら、特許文献1に開示するような、書き込み動作前のバイアス電圧印加だけでは、前記のような、書込みを禁止した選択メモリセルのチャネル表面電位を低下させ、トンネル酸化膜に電界ストレスをもたらす原因となるPウェル内余剰電子の除去が不十分なうえ、例えば多値化(MLC)動作に対応する為に必要な、高いプログラム電圧印加時にP型ウェル内の空乏層が深く伸張し、N型ウェル接合付近まで達して電子を空乏層に流入させてしまうので、書き込みディスターブを完全に防止することができない。 However, as described in Patent Document 1, only by applying a bias voltage before the write operation, the channel surface potential of the selected memory cell in which the write is prohibited as described above is lowered and the electric field stress is caused in the tunnel oxide film. The excess electrons in the P-well are insufficiently removed, and the depletion layer in the P-type well extends deeply when a high program voltage is applied, for example, to cope with multilevel (MLC) operation. Since the electrons reach the well junction and flow electrons into the depletion layer, the write disturb cannot be completely prevented.
 本発明は、上記従来技術の問題点に鑑み、書き込みディスターブを抑止して大幅な追加書き込み回数(NOP)増加を可能にする不揮発性半導体記憶装置における書き込み方法及びその不揮発性半導体記憶装置を提供することを目的とする。 In view of the above-described problems of the prior art, the present invention provides a writing method in a non-volatile semiconductor memory device and a non-volatile semiconductor memory device capable of significantly increasing the number of additional writes (NOP) by suppressing write disturb. For the purpose.
 上記目的を達成する本発明の第1の態様は、
 N型の半導体からなるNウェルの中にP型の半導体からなるPウェルを形成するとともに、前記Pウェルの表面上に、電気的に書き換え可能な複数の不揮発性のメモリセルを直列に接続したNAND束をマトリックス状に配列してなるメモリセルアレイを具備する不揮発性半導体記憶装置における書き込み方法であって、
 前記メモリセルに対する書き込み期間(t0→t4の期間)におけるプログラム電圧の印加による書き込み動作(t3→t4の期間)の前の期間に前記NAND束の全てのメモリセルのワード線に第1の電圧を、また前記Pウェルに前記第1の電圧よりも高い第2の電圧をそれぞれ印加するとともに、ビット線とソース線が前記Pウェルに対して逆バイアスされる電圧を印加し、さらに前記書き込み期間において前記Pウェルに対し前記Nウェルが逆バイアスされるように前記Pウェル及び前記Nウェル間に逆バイアス電圧を印加することを特徴とする不揮発性半導体記憶装置における書き込み方法にある。
The first aspect of the present invention for achieving the above object is as follows:
A P well made of a P type semiconductor is formed in an N well made of an N type semiconductor, and a plurality of electrically rewritable nonvolatile memory cells are connected in series on the surface of the P well. A writing method in a nonvolatile semiconductor memory device including a memory cell array in which NAND bundles are arranged in a matrix,
A first voltage is applied to the word lines of all the memory cells of the NAND bundle in a period before a write operation (period t3 → t4) by applying a program voltage in a write period (period t0 → t4) to the memory cell. In addition, a second voltage higher than the first voltage is applied to the P well, and a voltage that reversely biases the bit line and the source line with respect to the P well is applied. In the writing method in the nonvolatile semiconductor memory device, a reverse bias voltage is applied between the P well and the N well so that the N well is reverse biased with respect to the P well.
 本発明の第2の態様は、
 第1の態様に記載する不揮発性半導体記憶装置における書き込み方法であって、
 前記逆バイアス電圧を前記書き込み動作の前の期間に印加することを特徴とする不揮発性半導体記憶装置における書き込み方法にある。
The second aspect of the present invention is:
A writing method in the nonvolatile semiconductor memory device according to the first aspect,
In the writing method in the nonvolatile semiconductor memory device, the reverse bias voltage is applied in a period before the writing operation.
 本発明の第3の態様は、
 第1の態様に記載する不揮発性半導体記憶装置における書き込み方法であって、
 前記逆バイアス電圧を前記書き込み動作の期間に印加することを特徴とする不揮発性半導体記憶装置における書き込み方法にある。
The third aspect of the present invention is:
A writing method in the nonvolatile semiconductor memory device according to the first aspect,
In the writing method in the nonvolatile semiconductor memory device, the reverse bias voltage is applied during the writing operation.
 本発明の第4の態様は、
 第1の態様に記載する不揮発性半導体記憶装置における書き込み方法であって、
 前記逆バイアス電圧を、前記書き込み動作の前の期間及び前記書き込み動作の期間に印加することを特徴とする不揮発性半導体記憶装置における書き込み方法にある。
The fourth aspect of the present invention is:
A writing method in the nonvolatile semiconductor memory device according to the first aspect,
In the writing method in the nonvolatile semiconductor memory device, the reverse bias voltage is applied in a period before the writing operation and a period of the writing operation.
 本発明の第5の態様は、
 第1又は第3の態様に記載する不揮発性半導体記憶装置における書き込み方法であって、
 前記第1の電圧が接地電位で、且つ第2の電圧が正電位であることを特徴とする不揮発性半導体記憶装置における書き込み方法にある。
According to a fifth aspect of the present invention,
A writing method in the nonvolatile semiconductor memory device according to the first or third aspect,
The writing method in the nonvolatile semiconductor memory device is characterized in that the first voltage is a ground potential and the second voltage is a positive potential.
 本発明の第6の態様は、
 第2又は第4の態様に記載する不揮発性半導体記憶装置における書き込み方法であって、
 前記第1の電圧が接地電位で、且つ第2の電圧が正電位であることを特徴とする不揮発性半導体記憶装置における書き込み方法にある。
The sixth aspect of the present invention is:
A writing method in the nonvolatile semiconductor memory device according to the second or fourth aspect,
The writing method in the nonvolatile semiconductor memory device is characterized in that the first voltage is a ground potential and the second voltage is a positive potential.
 本発明の第7の態様は、
 第6の態様に記載する不揮発性半導体記憶装置における書き込み方法であって、
 前記書き込み動作の前の期間において、前記Nウェルと前記Pウェルとの間に逆バイアス電圧を印加し、その後前記Nウェルをフローティング状態とすることによりPウェルとNウェルとの容量結合に起因して発生する電圧を前記逆バイアス電圧とすることを特徴とする不揮発性半導体記憶装置における書き込み方法にある。
The seventh aspect of the present invention is
A writing method in the nonvolatile semiconductor memory device according to the sixth aspect,
Due to capacitive coupling between the P well and the N well by applying a reverse bias voltage between the N well and the P well in a period before the write operation and then bringing the N well into a floating state. The voltage generated in this manner is the reverse bias voltage.
 本発明の第8の態様は、
 第1乃至第4の態様の何れか一つに記載する不揮発性半導体記憶装置における書き込み方法であって、
 前記第1の電圧が負電位で、且つ前記第2の電圧が接地電位であることを特徴とする不揮発性半導体記憶装置における書き込み方法にある。
The eighth aspect of the present invention is
A writing method in a nonvolatile semiconductor memory device according to any one of the first to fourth aspects,
The writing method in the nonvolatile semiconductor memory device is characterized in that the first voltage is a negative potential and the second voltage is a ground potential.
 本発明の第9の態様は、
 N型の半導体からなるNウェルの中にP型の半導体からなるPウェルを形成するとともに、前記Pウェルの表面上に、電気的に書き換え可能な複数の不揮発性のメモリセルを直列に接続したNAND束をマトリックス状に配列してなるメモリセルアレイを具備する不揮発性半導体記憶装置であって、
 ワード線駆動回路を介して前記メモリセルアレイのワード線に第1の電圧を印加するワード線電圧発生回路と、
 Pウェルバイアス回路を介して前記Pウェルに前記第1の電圧よりも高い第2の電圧を印加するPウェル電圧発生回路と、
 Nウェルバイアス回路を介して前記Nウェルに、前記Pウェルに対し前記Nウェルが逆バイアスされるように逆バイアス電圧を印加するNウェル電圧発生回路と、
 前記メモリセルに対する書き込み期間におけるプログラム電圧の印加による書き込み動作の前の期間に、前記ワード線電圧発生回路及びワード線駆動回路を介して前記NAND束の全てのメモリセルのワード線に第1の電圧を、また前記Pウェルに前記第1の電圧よりも高い第2の電圧をそれぞれ印加するとともに、ビット線とソース線が前記Pウェルに対して逆バイアスされる電圧を印加し、さらに前記書き込み期間において、前記Nウェル電圧発生回路及びNウェルバイアス回路を介して前記Nウェルに前記逆バイアス電圧を印加するよう制御する書き込み制御回路とを有することを特徴とする不揮発性半導体記憶装置にある。
The ninth aspect of the present invention provides
A P well made of a P type semiconductor is formed in an N well made of an N type semiconductor, and a plurality of electrically rewritable nonvolatile memory cells are connected in series on the surface of the P well. A nonvolatile semiconductor memory device comprising a memory cell array in which NAND bundles are arranged in a matrix,
A word line voltage generating circuit for applying a first voltage to the word lines of the memory cell array via a word line driving circuit;
A P well voltage generation circuit for applying a second voltage higher than the first voltage to the P well via a P well bias circuit;
An N-well voltage generating circuit for applying a reverse bias voltage to the N-well via an N-well bias circuit so that the N-well is reverse-biased with respect to the P-well;
A first voltage is applied to the word lines of all the memory cells of the NAND bundle through the word line voltage generation circuit and the word line driving circuit during a period before a write operation by applying a program voltage in the write period to the memory cell. In addition, a second voltage higher than the first voltage is applied to the P well, and a voltage at which the bit line and the source line are reverse-biased with respect to the P well is applied. And a write control circuit for controlling to apply the reverse bias voltage to the N well via the N well voltage generation circuit and the N well bias circuit.
 本発明の第10の態様は、
 第9の態様に記載する不揮発性半導体記憶装置において、
 前記書き込み制御回路は前記逆バイアス電圧が前記書き込み動作の前の期間に印加されるように制御することを特徴とする不揮発性半導体記憶装置にある。
The tenth aspect of the present invention provides
In the nonvolatile semiconductor memory device according to the ninth aspect,
In the nonvolatile semiconductor memory device, the write control circuit controls the reverse bias voltage to be applied during a period before the write operation.
 本発明の第11の態様は、
 第9の態様に記載する不揮発性半導体記憶装置において、
 前記書き込み制御回路は前記逆バイアス電圧が前記書き込み動作の期間に印加されるように制御することを特徴とする不揮発性半導体記憶装置にある。
The eleventh aspect of the present invention is
In the nonvolatile semiconductor memory device according to the ninth aspect,
In the nonvolatile semiconductor memory device, the write control circuit controls the reverse bias voltage to be applied during the write operation.
 本発明の第12の態様は、
 第9の態様に記載する不揮発性半導体記憶装置において、
 前記書き込み制御回路は前記逆バイアス電圧が、前記書き込み動作の前の期間及び前記書き込み動作の期間に印加されるように制御することを特徴とする不揮発性半導体記憶装置にある。
The twelfth aspect of the present invention provides
In the nonvolatile semiconductor memory device according to the ninth aspect,
In the nonvolatile semiconductor memory device, the write control circuit controls the reverse bias voltage to be applied in a period before the write operation and a period of the write operation.
 本発明の第13の態様は、
 第9又は第11の態様に記載する不揮発性半導体記憶装置において、
 前記ワード線電圧発生回路は前記第1の電圧を接地電位とし、且つ前記Pウェル電圧発生回路は前記第2の電圧を正電位とするものであることを特徴とする不揮発性半導体記憶装置にある。
The thirteenth aspect of the present invention provides
In the nonvolatile semiconductor memory device according to the ninth or eleventh aspect,
In the nonvolatile semiconductor memory device, the word line voltage generation circuit has the first voltage as a ground potential, and the P well voltage generation circuit has the second voltage as a positive potential. .
 本発明の第14の態様は、
 第10又は第12の態様に記載する不揮発性半導体記憶装置において、
 前記ワード線電圧発生回路は前記第1の電圧を接地電位とし、且つ前記Pウェル電圧発生回路は前記第2の電圧を正電位とするものであることを特徴とする不揮発性半導体記憶装置にある。
The fourteenth aspect of the present invention provides
In the nonvolatile semiconductor memory device according to the tenth or twelfth aspect,
In the nonvolatile semiconductor memory device, the word line voltage generation circuit has the first voltage as a ground potential, and the P well voltage generation circuit has the second voltage as a positive potential. .
 本発明の第15の態様は、
 第14の態様に記載する不揮発性半導体記憶装置において、
 前記書き込み制御回路は前記書き込み動作の前の期間において、前記Nウェルと前記Pウェルとの間に逆バイアス電圧を印加し、その後前記Nウェルをフローティング状態とすることによりPウェルとNウェルとの容量結合に起因して発生する電圧を前記逆バイアス電圧とするように制御するものであることを特徴とする不揮発性半導体記憶装置にある。
The fifteenth aspect of the present invention provides
In the nonvolatile semiconductor memory device according to the fourteenth aspect,
The write control circuit applies a reverse bias voltage between the N well and the P well in a period before the write operation, and then sets the N well to be in a floating state so that the P well and the N well A nonvolatile semiconductor memory device is characterized in that a voltage generated due to capacitive coupling is controlled to be the reverse bias voltage.
 本発明の第16の態様は、
 第9乃至第12の態様の何れか一つに記載する不揮発性半導体記憶装置において、
 前記ワード線電圧発生回路は前記第1の電圧を負電位とし、且つ前記Pウェル電圧発生回路は前記第2の電圧を接地電位とするものであることを特徴とする不揮発性半導体記憶装置にある。
The sixteenth aspect of the present invention provides
In the nonvolatile semiconductor memory device according to any one of the ninth to twelfth aspects,
In the nonvolatile semiconductor memory device, the word line voltage generation circuit has the first voltage as a negative potential, and the P well voltage generation circuit has the second voltage as a ground potential. .
 本発明によれば、書き込み動作の前の期間に、メモリセルのワード線に第1の電圧を、またPウェルに前記第1の電圧よりも高い第2の電圧をそれぞれ印加するとともに、ビット線とソース線が前記Pウェルに対して逆バイアスされる電圧を印加し、さらに書き込み期間において、前記Pウェルに対しNウェルが逆バイアスされるように前記Pウェルメモリセルが形成されるNウェルとPウェルとの間に逆バイアス電圧を印加する期間を設けたので、非選択メモリセルのPウェル内における余剰な電子の残留や流入を完全に防止できる。 According to the present invention, the first voltage is applied to the word line of the memory cell and the second voltage higher than the first voltage is applied to the P well in the period before the write operation, and the bit line And a source line is applied with a voltage that is reverse-biased with respect to the P-well, and the N-well in which the P-well memory cell is formed so that the N-well is reverse-biased with respect to the P-well during the writing period Since a period in which a reverse bias voltage is applied between the P well and the P well is provided, it is possible to completely prevent residual electrons from remaining or flowing into the P well of the non-selected memory cell.
 この結果、書き込みディスターブ(プログラムディスターブ)を抑止でき、大幅な追加書き込み回数(NOP)の増加が可能になる。 As a result, write disturb (program disturb) can be suppressed, and the number of additional writes (NOP) can be significantly increased.
本発明の実施の形態に係る不揮発性半導体記憶装置を構成するNAND型フラッシュメモリの積層ゲートのストリング構造を示す断面図である。1 is a cross-sectional view showing a string structure of stacked gates of a NAND flash memory constituting a nonvolatile semiconductor memory device according to an embodiment of the present invention. 図1に示したNAND型フラッシュメモリの、メモリセルアレイの一部を抽出して示す構成図である。FIG. 2 is a configuration diagram illustrating a part of a memory cell array extracted from the NAND flash memory illustrated in FIG. 1. 本発明の実施の形態に係る不揮発性半導体記憶装置であるNAND型フラッシュメモリ装置の全体を示すブロック線図である。1 is a block diagram showing an entire NAND flash memory device which is a nonvolatile semiconductor memory device according to an embodiment of the present invention. NAND型フラッシュメモリの各部に印加される電圧を時系列で示す第1の実施例に係るタイミングチャートである。3 is a timing chart according to the first embodiment showing, in time series, voltages applied to each part of the NAND flash memory. 図4のt1→t2の期間に示す電圧を印加した場合における非選択ビット線のメモリセルにおける電子の状態を示す模式図である。FIG. 5 is a schematic diagram showing an electron state in a memory cell of an unselected bit line when a voltage shown in a period from t1 to t2 in FIG. 4 is applied. 図4のt2→t3の期間に示す電圧を印加した場合における非選択ビット線のメモリセルにおける電子の状態を示す模式図である。FIG. 5 is a schematic diagram showing an electron state in a memory cell of an unselected bit line when a voltage shown in a period from t2 to t3 in FIG. 4 is applied. 図4のt3→t4の期間に示す電圧を印加した場合における非選択ビット線のメモリセルにおける電子の状態を示す模式図である。FIG. 5 is a schematic diagram showing an electron state in a memory cell of an unselected bit line when a voltage shown in a period from t3 to t4 in FIG. 4 is applied. NAND型フラッシュメモリの各部に印加される電圧を時系列で示す第2の実施例に係るタイミングチャートである。It is a timing chart concerning the 2nd example which shows the voltage impressed to each part of NAND type flash memory in time series. NAND型フラッシュメモリの各部に印加される電圧を時系列で示す第3の実施例に係るタイミングチャートである。It is a timing chart concerning the 3rd example which shows the voltage impressed to each part of NAND type flash memory in time series. 図9に示す第3の実施例に係る書き込み動作における誤書き込みの抑制効果を実証した図で、(a)はVPASSに対する閾値の変化の特性を示す特性図、(b)は閾値電圧に対する正規分布累積度数を示す特性図である。9A and 9B are diagrams demonstrating the effect of suppressing erroneous writing in the write operation according to the third embodiment shown in FIG. 9, in which FIG. 9A is a characteristic diagram showing characteristics of threshold change with respect to VPASS, and FIG. 9B is a normal distribution with respect to threshold voltage. It is a characteristic view which shows a cumulative frequency. NAND型フラッシュメモリの各部に印加される電圧を時系列で示す第4の実施例に係るタイミングチャートである。It is a timing chart concerning the 4th example which shows the voltage impressed to each part of NAND type flash memory in time series. NAND型フラッシュメモリの各部に印加される電圧を時系列で示す第5の実施例に係るタイミングチャートである。It is a timing chart concerning the 5th example which shows the voltage impressed to each part of NAND type flash memory in time series. NAND型フラッシュメモリの各部に印加される電圧を時系列で示す第6の実施例に係るタイミングチャートである。It is a timing chart which concerns on the 6th Example which shows the voltage applied to each part of NAND type flash memory in time series. NAND型フラッシュメモリの各部に印加される電圧を時系列で示す第7の実施例に係るタイミングチャートである。It is a timing chart which concerns on the 7th Example which shows the voltage applied to each part of NAND type flash memory in a time series. NAND型フラッシュメモリの各部に印加される電圧を時系列で示す第8の実施例に係るタイミングチャートである。It is a timing chart which concerns on the 8th Example which shows the voltage applied to each part of NAND type flash memory in a time series. NAND型フラッシュメモリの各部に印加される電圧を時系列で示す第9の実施例に係るタイミングチャートである。It is a timing chart which concerns on the 9th Example which shows the voltage applied to each part of NAND type flash memory in a time series.
 以下、本発明の実施の形態を図面に基づき詳細に説明する。なお、各図面において同一部分には同一番号を付し、重複する説明は省略する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same parts are denoted by the same reference numerals, and redundant description is omitted.
 図1は本発明の実施の形態に係る不揮発性半導体記憶装置を構成するNAND型フラッシュメモリの積層ゲートのストリング構造を示す断面図である。同図に示すように、当該NAND型フラッシュメモリIは、P型の半導体基板1の中にN型の半導体からなるNウェル2を形成するとともに、このNウェル2の中にP型の半導体からなるPウェル3を形成したものである。Pウェル3の表面上には、電気的に書き換え可能なN型の不揮発性トランジスタで形成した複数のメモリセル4が直列に接続されてNAND束5を構成している。NAND束5はドレイン側のセレクトゲート6及びソース側のセレクトゲート7との間に配設されている。セレクトゲート6は、図の左右方向に伸びて同方向で隣接する他のNAND束に接続されているビット線8にそのドレイン側が接続され、セレクトゲート7は、ビット線8に対して直交する方向に伸びて同方向で隣接する他のNAND束に接続されているソース線9にそのソース側が接続されている。かくして、図1には明示されないが、メモリセル4をマトリックス状に配列してなるメモリセルアレイが形成されている。 FIG. 1 is a cross-sectional view showing a string structure of a stacked gate of a NAND flash memory constituting a nonvolatile semiconductor memory device according to an embodiment of the present invention. As shown in the figure, the NAND flash memory I includes an N well 2 made of an N type semiconductor in a P type semiconductor substrate 1 and a P type semiconductor in the N well 2. P well 3 is formed. On the surface of the P well 3, a plurality of memory cells 4 formed of electrically rewritable N-type non-volatile transistors are connected in series to form a NAND bundle 5. The NAND bundle 5 is disposed between the drain side select gate 6 and the source side select gate 7. The select gate 6 extends in the left-right direction in the figure and is connected to the bit line 8 connected to another NAND bundle adjacent in the same direction, and the select gate 7 is orthogonal to the bit line 8. The source side of the source line 9 is connected to a source line 9 that is connected to another NAND bundle adjacent in the same direction. Thus, although not clearly shown in FIG. 1, a memory cell array in which the memory cells 4 are arranged in a matrix is formed.
 かかる構成自体は、基本的に従来のNAND型フラッシュメモリと変わるところはない。すなわち、かかるNAND型フラッシュメモリIにおいて、メモリセル4はフローティングゲートとコントロールゲートの積層構造からなるスタックドゲート型の構造を有しており、半導体基板表面とフローティングゲートとの間のトンネル酸化膜を介してフローティングゲートに電子を注入又は放出することによりメモリセルの閾値を変化させ、記憶データの書き込み、読み出し及び消去動作を行う。ここでは、フローティングゲートに電子を注入する動作を書き込み動作と称し、通常電子が注入された状態を“0”状態、電子が放出された状態を“1”状態と称している。したがって、消去状態では各メモリセル4が“1”状態となっている。 Such a configuration itself is basically the same as a conventional NAND flash memory. That is, in such a NAND flash memory I, the memory cell 4 has a stacked gate type structure composed of a stacked structure of a floating gate and a control gate, and a tunnel oxide film between the surface of the semiconductor substrate and the floating gate is formed. The threshold value of the memory cell is changed by injecting or emitting electrons to and from the floating gate, and stored data is written, read, and erased. Here, an operation of injecting electrons into the floating gate is referred to as a write operation, and a state where normal electrons are injected is referred to as a “0” state, and a state where electrons are emitted is referred to as a “1” state. Therefore, each memory cell 4 is in the “1” state in the erased state.
 一方、本形態にかかるNAND型フラッシュメモリIにおいては、Nウェル2及びPウェル3にそれぞれ独立した電圧を印加し得るようウェル電極10,11が形成してある。 On the other hand, in the NAND flash memory I according to the present embodiment, the well electrodes 10 and 11 are formed so that independent voltages can be applied to the N well 2 and the P well 3, respectively.
 図2は図1に示したNAND型フラッシュメモリIの、メモリセルアレイの一部(2個のNAND束5)を抽出して示す構成図であり、書き込み期間において書き込みを行うよう選択されたビット線(NAND束)と非選択のビット線(NAND束)におけるVPASSディスターブとプログラムディスターブの発生セルの位置関係を示している。すなわち、選択されたビット線8A(NAND束5A)において、書き込みのために選択されたメモリセル4A(楕円で点線で囲んだセル)と同一のNAND束5Aにおいて両側で隣接するメモリセル4B(長方形の点線で囲んだセル)でVPASSディスターブが発生し、非選択のビット線8Bにおけるメモリセル4(NAND束5Bのセル)中、メモリセル4Aと同一のワード線WLnにゲートが接続されたメモリセル4C(長方形の実線で囲んだセル)においてプログラムディスターブが発生する可能性がある。 FIG. 2 is a configuration diagram showing a part of the memory cell array (two NAND bundles 5) extracted from the NAND flash memory I shown in FIG. 1, and the bit line selected to perform writing in the writing period. The positional relationship between the VPASS disturb and the program disturb generation cells in the (NAND bundle) and the non-selected bit line (NAND bundle) is shown. That is, in the selected bit line 8A (NAND bundle 5A), adjacent memory cells 4B (rectangular) on both sides in the same NAND bundle 5A as the memory cell 4A selected for writing (the cell surrounded by an ellipse with a dotted line). Memory cell in which a VPASS disturbance occurs in the non-selected bit line 8B and a gate is connected to the same word line WLn as the memory cell 4A in the memory cell 4 (cell of the NAND bundle 5B) in the unselected bit line 8B. Program disturb may occur at 4C (cell surrounded by a rectangular solid line).
 ここで、書き込み期間において書き込みのために選択されたビット線8Aは接地されており、非選択のビット線8Bには書き込みを禁止するための所定電圧(例えば電源電圧VCC)が印加される。さらに、この書き込み期間における書き込み動作(フローティングゲートに対する電子の注入)は所定の高電圧(例えば20V)であるプログラム電圧(VPROG)を印加することにより行う。すなわち、メモリセル4Aのゲートが接続されたワード線WLnにVPROGを印加する。このとき、それ以外のワード線WL0~WLn+3にはVPROGよりも低圧のパス電圧(VPASS)を印加しておく。 Here, the bit line 8A selected for writing in the writing period is grounded, and a predetermined voltage (for example, power supply voltage VCC) for prohibiting writing is applied to the non-selected bit line 8B. Further, a writing operation (injection of electrons into the floating gate) in this writing period is performed by applying a program voltage (VPROG) which is a predetermined high voltage (for example, 20 V). That is, VPROG is applied to the word line WLn to which the gate of the memory cell 4A is connected. At this time, a pass voltage (VPASS) lower than VPROG is applied to the other word lines WL0 to WLn + 3.
 このように本形態における書き込みは、いわゆるセルフブーストと呼称される書き込み方式により実行されるが、NAND型フラッシュメモリIの各部に印加される電圧の時系列な関係は後に詳説する。 As described above, writing in this embodiment is performed by a so-called self-boosting writing method, but the time series relationship of voltages applied to each part of the NAND flash memory I will be described in detail later.
 なお、書き込み期間において、非選択のビット線8B、セレクトゲート7及びソース線9は、基本的に所定の固定電位(例えば接地電位等)に保持されている。ただ、ビット線8B及びソース線9に関しては特定の期間フローティング状態とされる場合がある。この点に関しては後で詳説する。 In the writing period, the non-selected bit line 8B, the select gate 7 and the source line 9 are basically held at a predetermined fixed potential (for example, a ground potential). However, the bit line 8B and the source line 9 may be in a floating state for a specific period. This point will be described in detail later.
 図3は本発明の実施の形態に係る不揮発性半導体記憶装置であるNAND型フラッシュメモリ装置の全体を示すブロック線図である。なお、同図にはワード線WL0~WLn+3とNウェル2及びPウェル3とに所定の電圧を印加する部分のみを示しているが、その他の部分は従来技術に係るNAND型フラッシュメモリ装置と同様である。すなわち、本形態に係るNAND型フラッシュメモリ装置は、書き込みモードにおいて特徴を有するものであり、読み出し及び消去動作は従来と同様な態様で実行される。そこで、以下の説明では主に書き込み動作に関して記述する。 FIG. 3 is a block diagram showing an entire NAND flash memory device which is a nonvolatile semiconductor memory device according to an embodiment of the present invention. In the figure, only a portion for applying a predetermined voltage to the word lines WL0 to WLn + 3, the N well 2 and the P well 3 is shown, but other portions are the same as those of the NAND flash memory device according to the prior art. It is. That is, the NAND flash memory device according to this embodiment has a feature in the write mode, and the read and erase operations are executed in the same manner as in the prior art. Therefore, the following description will mainly describe the write operation.
 図3に示すように、当該NAND型フラッシュメモリIはNウェル2及びこのNウェル2の中に形成されたPウェル3とともに、Pウェル3の表面上にメモリセル4(図1及び図2参照)をマトリックス状に配列して形成されたメモリセルアレイ21を具備する。かかるNAND型フラッシュメモリIに対しては書き込み、読み出し及び消去の各動作における予め定められた所定の処理が書き込み制御回路22,読み出し制御回路23及び消去制御回路24を介した制御により実行される。このときの制御はワード線電圧発生回路25,ワード線駆動回路26,Nウェル電圧発生回路27,Nウェルバイアス回路28,Pウェル電圧発生回路29及びPウェルバイアス回路30を制御対象として実行される。 As shown in FIG. 3, the NAND flash memory I has an N well 2 and a P well 3 formed in the N well 2, and a memory cell 4 on the surface of the P well 3 (see FIGS. 1 and 2). ) Are arranged in a matrix form. For the NAND flash memory I, predetermined predetermined processing in each operation of writing, reading and erasing is executed by control via the writing control circuit 22, the reading control circuit 23 and the erasing control circuit 24. The control at this time is executed with the word line voltage generating circuit 25, the word line driving circuit 26, the N well voltage generating circuit 27, the N well bias circuit 28, the P well voltage generating circuit 29, and the P well bias circuit 30 being controlled. .
 このため、インターフェース回路31を介して入力されたコマンドデータをコマンドデコーダ32で解読して書き込み、読み出し及び消去に関するコマンドデータを生成させて、書き込み制御回路22,読み出し制御回路23及び消去制御回路24の何れかに供給するように構成してある。 For this reason, command data input via the interface circuit 31 is decoded by the command decoder 32 to generate command data related to writing, reading and erasing, and the write control circuit 22, the read control circuit 23 and the erase control circuit 24. It is configured to supply to either.
 ここで、読み出し動作は、従来と同様に、ワード線WL0~WLn+3のいずれか一つに接続された全てのメモリセル4(図1及び図2参照)に対してページ単位で同時に行われる。また、消去動作は一つのロウデコーダ(図示せず)により選択される全てのNAND束(図1及び図2参照)に対してブロック単位で行われる。 Here, the read operation is performed simultaneously for all the memory cells 4 (see FIG. 1 and FIG. 2) connected to any one of the word lines WL0 to WLn + 3 at the same time as in the prior art. In addition, the erase operation is performed on a block basis for all NAND bundles (see FIGS. 1 and 2) selected by one row decoder (not shown).
 一方、本形態における書き込みモードでは、ワード線電圧発生回路25,ワード線駆動回路26,Nウェル電圧発生回路27,Nウェルバイアス回路28,Pウェル電圧発生回路29及びPウェルバイアス回路30を介して次のような制御が実施される。すなわち、ワード線電圧発生回路25はワード線駆動回路26を介してメモリセルアレイ21のワード線に第1の電圧を印加する。Pウェル電圧発生回路29はPウェルバイアス回路30を介してPウェル3に前記第1の電圧よりも高い第2の電圧を印加する。Nウェル電圧発生回路27はPウェル3に対しNウェル2が逆バイアスされるよう、Nウェルバイアス回路28を介してNウェル2に逆バイアス電圧を印加する。ここで、第2の電圧及び逆バイアス電圧は、図1に示すウェル電極11、10を介してPウェル3及びNウェル2にそれぞれ印加する。 On the other hand, in the write mode in this embodiment, the word line voltage generation circuit 25, the word line drive circuit 26, the N well voltage generation circuit 27, the N well bias circuit 28, the P well voltage generation circuit 29 and the P well bias circuit 30 are used. The following control is performed. That is, the word line voltage generation circuit 25 applies the first voltage to the word lines of the memory cell array 21 via the word line drive circuit 26. The P well voltage generation circuit 29 applies a second voltage higher than the first voltage to the P well 3 through the P well bias circuit 30. The N well voltage generation circuit 27 applies a reverse bias voltage to the N well 2 via the N well bias circuit 28 so that the N well 2 is reverse biased with respect to the P well 3. Here, the second voltage and the reverse bias voltage are applied to the P well 3 and the N well 2 via the well electrodes 11 and 10 shown in FIG.
 また、図3には図示しないがセレクトゲート6,7及びソース線9(図1及び図2参照)に対する所定電圧の印加もワード線駆動回路26を介して行われる。 Although not shown in FIG. 3, application of a predetermined voltage to the select gates 6 and 7 and the source line 9 (see FIGS. 1 and 2) is also performed through the word line driving circuit 26.
 かかる本形態においてNAND型フラッシュメモリIに対する書き込み動作を、各部に印加される電圧のタイミングチャートに基づく各実施例についてさらに詳細に説明しておく。 In this embodiment, the write operation to the NAND flash memory I will be described in more detail for each embodiment based on the timing chart of the voltage applied to each part.
 なお、本明細書中で使用している「書き込み期間」とは図4等で示すタイミングチャートにおける時刻t1→時刻t4の期間を、「書き込み動作」とはプログラム電圧(VPROG)の印加期間である時刻t3→時刻t4の期間をそれぞれ意味している。 Note that the “writing period” used in this specification is a period from time t1 to time t4 in the timing chart shown in FIG. 4 and the like, and the “writing operation” is an application period of a program voltage (VPROG). It means the period from time t3 to time t4.
 また、各図に示すタイミングチャートの波形は、上から順に、(a)書き込み対象となるメモリセル4A(図2参照)が接続されたワード線WLn(図2参照)に印加するゲート電圧VG、(b)ワード線WLn以外のワード線WL0~WLn+3(図2参照)に印加するゲート電圧VG、(c)ドレイン側のセレクトゲート6(図2参照)に印加する電圧SGD、(d)Pウェル3(図1乃至図3参照)に印加する電圧CPW、(e)Nウェル2(図1乃至図3参照)に印加する電圧CNWである。これらの各電圧VPROG等は、図3に示す書き込み制御回路22の制御のもと、ワード線電圧発生回路25、Pウェル電圧発生回路29及びNウェル電圧発生回路27で生成され、ワード線駆動回路26,Pウェルバイアス回路30及びNウェルバイアス回路28を介して所定のワード線WL0~WLn+3、Pウェル3及びNウェル2等にそれぞれ印加される。 The waveforms of the timing charts shown in each figure are, in order from the top, (a) gate voltage VG applied to the word line WLn (see FIG. 2) to which the memory cell 4A to be written (see FIG. 2) is connected, (B) Gate voltage VG applied to word lines WL0 to WLn + 3 (see FIG. 2) other than word line WLn, (c) Voltage SGD applied to drain side select gate 6 (see FIG. 2), (d) P well 3 (see FIGS. 1 to 3), and (e) a voltage CNW applied to the N well 2 (see FIGS. 1 to 3). These voltages VPROG and the like are generated by the word line voltage generation circuit 25, the P well voltage generation circuit 29, and the N well voltage generation circuit 27 under the control of the write control circuit 22 shown in FIG. 26, and applied to predetermined word lines WL0 to WLn + 3, P well 3 and N well 2 through the P well bias circuit 30 and the N well bias circuit 28, respectively.
   <第1の実施例>
 図4は第1の実施例に係るタイミングチャートである。同図に基づき時系列的な各動作を説明する。
1) 書き込みに際して、メモリセル4のフローティングゲートが消去状態にあると想定すると、各メモリセル4のフローティングゲートは正電荷を持ちワード線WL0~WLn+3が接地されていてもメモリセル4を構成するトランジスタはON状態にあると考えて良く、平衡状態においてはNAND束5のチャネルには電子の反転層が常に形成されている。
<First embodiment>
FIG. 4 is a timing chart according to the first embodiment. Each time-series operation will be described with reference to FIG.
1) Assuming that the floating gates of the memory cells 4 are in an erased state at the time of writing, the floating gates of the memory cells 4 have positive charges and the transistors constituting the memory cells 4 even if the word lines WL0 to WLn + 3 are grounded May be considered to be in an ON state, and in an equilibrium state, an inversion layer of electrons is always formed in the channel of the NAND bundle 5.
 そこで、t-1→t0の期間に示すように、非選択のビット線8Bのセルストリングにおいては、t-1でSGDを5Vに立ち上げた後、t0で1.5Vに立ち下げることで非選択のビット線8Bを介して所定電圧(例えば電源電圧VCC)をセルストリングに印加した後セレクトゲート6を構成するトランジスタをカットオフ状態にし、電子の供給を遮断する。 Therefore, as shown in the period from t-1 to t0, in the cell string of the non-selected bit line 8B, SGD is raised to 5V at t-1, and then is lowered to 1.5V at t0. After a predetermined voltage (for example, power supply voltage VCC) is applied to the cell string via the selected bit line 8B, the transistor constituting the select gate 6 is cut off to cut off the supply of electrons.
 この結果、非選択のビット線8Bのメモリセル4のチャネルはビット線8Bの電位に上昇し、チャネル内の余剰電子を抑制することができる。ただし、チャネル内から完全に除去することはできない。なお、この期間は書き込み期間に先立つ前処理期間であり、必ずしも必要な処理ではない。
2) 書き込み期間におけるt0→t1の期間ではSGDが立ち下がった時の状態が維持される。
3) t1→t2の期間では、全ワード線WL0~WLn+3を接地電圧(第1の電圧)とした状態でPウェル3に接地電圧よりも高圧の正電圧(本例では4V(第2の電圧))を印加する。さらに本実施例ではPウェル3との間が逆バイアスされるようにNウェル2に所定の正電圧(本例では6V(逆バイアス電圧))を印加する。このとき、非選択のビット線8B及びソース線9はPウェル電位以上にプリチャージした後、逆バイアス時にはフローティング状態とする。Pウェル3が正電位となった場合にN型半導体との接合が順方向になるのを防止するためである。
As a result, the channel of the memory cell 4 of the unselected bit line 8B rises to the potential of the bit line 8B, and surplus electrons in the channel can be suppressed. However, it cannot be completely removed from within the channel. Note that this period is a preprocessing period preceding the writing period, and is not necessarily a necessary process.
2) During the period from t0 to t1 in the writing period, the state when the SGD falls is maintained.
3) During the period from t1 to t2, all the word lines WL0 to WLn + 3 are set to the ground voltage (first voltage), and a positive voltage higher than the ground voltage is applied to the P well 3 (in this example, 4 V (second voltage) )) Is applied. Further, in the present embodiment, a predetermined positive voltage (6 V (reverse bias voltage) in this example) is applied to the N well 2 so that a reverse bias is applied to the P well 3. At this time, the non-selected bit line 8B and the source line 9 are precharged to the P well potential or higher, and then set in a floating state at the time of reverse bias. This is to prevent the junction with the N-type semiconductor from being forward when the P-well 3 has a positive potential.
 この結果、図5に示すように、それまで非選択のビット線8Bに関するメモリセル4,4Cの表面に蓄積されていた電子が半導体基板1の方向に離脱して移動させられる。また、表面付近にホールが誘起されるのでドレイン及びソースを形成しているN型拡散層内の中性領域の電子もホールとの再結合により減少する。かくしてメモリセル4,4Cの表面が充分なホールの蓄積状態となり、反発された電子はチャネル表面から離脱しPウェル内で浮遊する。 As a result, as shown in FIG. 5, the electrons accumulated on the surfaces of the memory cells 4 and 4C related to the non-selected bit line 8B so far are separated and moved in the direction of the semiconductor substrate 1. Further, since holes are induced near the surface, the electrons in the neutral region in the N-type diffusion layer forming the drain and source are also reduced by recombination with the holes. Thus, the surface of the memory cells 4 and 4C has a sufficient hole accumulation state, and the repelled electrons leave the channel surface and float in the P well.
 本実施例では、さらに逆バイアスされたNウェル2とPウェル3との接合部で空乏層が広がっているので、このときの電界により前記Pウェル内電子がNウェルに掃き出される。すなわち、Pウェル3から電子がPウェル3の空乏層端に少数キャリア拡散電流として吸収されるので、PウェルとNウェルとを同電位として共通バイアス方式を採る特許文献1の場合よりもさらに効果的に余剰の電子を除去することができる。
4) t2→t3の期間では、全ワード線WL0~WLn+3にVPASS(例えば6V)が印加される。この結果、図6に示すように、非選択のビット線8Bに関するメモリセル4,4CではPウェル3及びN型拡散層に存在していた電子でNウェル2に吸収されずに残留していたものがホールの蓄積によって中性化される。この結果ゲート下チャネル内の自由電子の削減を更に補助することができる。
In this embodiment, since the depletion layer spreads at the junction between the N-well 2 and the P-well 3 that are further reverse-biased, the electrons in the P-well are swept out to the N-well by the electric field at this time. That is, electrons are absorbed from the P-well 3 to the end of the depletion layer of the P-well 3 as a minority carrier diffusion current. Thus, excess electrons can be removed.
4) In the period from t2 to t3, VPASS (for example, 6 V) is applied to all the word lines WL0 to WLn + 3. As a result, as shown in FIG. 6, in the memory cells 4 and 4C related to the non-selected bit line 8B, the electrons existing in the P well 3 and the N type diffusion layer remain in the N well 2 without being absorbed. Things are neutralized by the accumulation of holes. As a result, it is possible to further assist the reduction of free electrons in the channel under the gate.
 なお、本実施例においてt2でPウェル3に印加する電圧は接地電圧に、Nウェル2に印加する電圧は2Vにそれぞれ降圧されるが、両者間には引き続き逆バイアス電圧(本例では2V)が印加されている。
5) t3→t4(書き込み動作)の期間では、書き込み対象であるメモリセル4Aのゲートが接続されているワード線WLnにVPROG(本例では20+V)が印加され、それ以外のワード線WN0~WLn+3には継続してVPASS(本例では6V)が印加される。また、Nウェル2及びPウェル3間には逆バイアス電圧(本例では2V)が継続して印加されている。
In this embodiment, the voltage applied to the P well 3 at t2 is stepped down to the ground voltage, and the voltage applied to the N well 2 is stepped down to 2V, but the reverse bias voltage (2V in this example) continues between them. Is applied.
5) During the period from t3 to t4 (write operation), VPROG (20 + V in this example) is applied to the word line WLn to which the gate of the memory cell 4A to be written is connected, and other word lines WN0 to WLn + 3 Is continuously applied with VPASS (6 V in this example). A reverse bias voltage (2 V in this example) is continuously applied between the N well 2 and the P well 3.
 当該期間では、図7に示すように、非選択のビット線8Bに関するメモリセル4のチャネル内の電子が大幅に除去されている。t3→t4の期間に先立つt3迄の期間でチャネル内の電子が大幅に除去されているからである。 In this period, as shown in FIG. 7, electrons in the channel of the memory cell 4 related to the non-selected bit line 8B are largely removed. This is because the electrons in the channel are largely removed in the period up to t3 prior to the period from t3 to t4.
 この結果、一般的には、ワード線WLnに高電圧のVPROGを印加すると、このワード線WLnに接続されたメモリセル4Cのチャネル部分の電位は集中的に深くなり、その他のメモリセル領域に残留した電子は4Cのチャネル部分に集合するが、それら余剰電子はこれに先立つ期間の排出動作により大幅に削減されているので、メモリセル4Cの表面の電位降下は従来の方式の場合に比べ小さく、依然として高い電位を保持している。かくしてメモリセル4Cのトンネル酸化膜での電圧降下を低減し、電界を緩和させることができるので、トンネル電流を流さないようにすることができる。すなわち、メモリセル4Cに対する誤書き込み(プログラムディスターブ)を防止することができる。 As a result, generally, when a high voltage VPROG is applied to the word line WLn, the potential of the channel portion of the memory cell 4C connected to the word line WLn becomes intensively deep and remains in other memory cell regions. The collected electrons gather in the channel portion of 4C, but these surplus electrons are greatly reduced by the discharge operation in the period preceding this, so that the potential drop on the surface of the memory cell 4C is smaller than in the conventional method, It still holds a high potential. Thus, the voltage drop in the tunnel oxide film of the memory cell 4C can be reduced and the electric field can be relaxed, so that the tunnel current can be prevented from flowing. That is, erroneous writing (program disturb) to the memory cell 4C can be prevented.
 しかしながら、VPROGを高電圧にすればするほどPウェル3の空乏層も深く広がることになる。特に本実施例の如くプログラム動作に先立つ期間(特にt1→t2)で電子を大幅に除去した場合にはメモリセル4Cの表面電位が大きく上昇するが、Pウェル3の空乏層もより顕著に深く広がる。 However, the higher the voltage VPROG is, the deeper the depletion layer of the P well 3 is. In particular, when electrons are significantly removed during a period prior to the program operation (particularly t1 → t2) as in this embodiment, the surface potential of the memory cell 4C increases greatly, but the depletion layer of the P well 3 is also significantly deeper. spread.
 この結果、何れにしても、空乏層がNウェル2付近まで広がった場合には、Pウェル3との間でのPN接合の熱電位を下げ、N領域から電子がP領域に注入され、空乏層内で界面方向に加速される。かくして、高いエネルギー状態を持った電子が酸化膜のエネルギー障壁を乗り越えて、フローティングゲートに注入される虞がでてくる。すなわち誤書込み(プログラムディスターブ)を生起する可能性が高くなる。 As a result, in any case, when the depletion layer extends to the vicinity of the N well 2, the thermal potential of the PN junction with the P well 3 is lowered, and electrons are injected from the N region into the P region. Accelerated in the direction of the interface within the layer. Thus, there is a possibility that electrons having a high energy state will overcome the energy barrier of the oxide film and be injected into the floating gate. That is, there is a high possibility of erroneous writing (program disturb).
 そこで本実施例ではVPROGの印加によるプログラム動作時においても、Nウェル2及びPウェル3間に逆バイアス電圧(本例では2V)を印加している。このように、Nウェル2をPウェル3に対し逆バイアスすることでPウェル3の空乏層が接合付近に達しても熱電位が下がり、Pウェル3への電子の拡散電流による逆流が起こらないようにすることができる。かくして、図7に示すように、メモリセル4CにおいてはPウェル3に対する電子の注入を防止して誤書込み(プログラムディスターブ)をより確実に防止している。 Therefore, in this embodiment, a reverse bias voltage (2 V in this example) is applied between the N well 2 and the P well 3 even during a program operation by applying VPROG. Thus, by reverse-biasing the N-well 2 with respect to the P-well 3, even if the depletion layer of the P-well 3 reaches the vicinity of the junction, the thermal potential is lowered, and no reverse flow due to the diffusion current of electrons to the P-well 3 occurs. Can be. Thus, as shown in FIG. 7, in the memory cell 4C, injection of electrons into the P well 3 is prevented, thereby preventing erroneous writing (program disturb) more reliably.
   <第2の実施例>
 図8は第2の実施例に係るタイミングチャートである。同図に示すように、本実施例においては全ワード線WL0~WLn+3に印加する第1の電圧、Pウェル3に印加する第2の電圧及びNウェル2とPウェル3間に印加する逆バイアス電圧が異なる。他は第1の実施例(図4参照)と同様である。すなわち、t1→t2の期間では、全ワード線WL0~WLn+3を負電圧(本例では-4V(第1の電圧))とした状態でPウェル3を負電圧よりも高圧の接地電圧(第2の電圧)とする。さらに、本実施例ではPウェル3との間が逆バイアスされるようにNウェル2に所定の正電圧(本例では2V(逆バイアス電圧))を印加する。
<Second embodiment>
FIG. 8 is a timing chart according to the second embodiment. As shown in the figure, in this embodiment, the first voltage applied to all the word lines WL0 to WLn + 3, the second voltage applied to the P well 3, and the reverse bias applied between the N well 2 and the P well 3. The voltage is different. Others are the same as those of the first embodiment (see FIG. 4). That is, in the period from t1 to t2, the ground voltage (second voltage) is higher than the negative voltage in the P-well 3 in a state where all the word lines WL0 to WLn + 3 are set to a negative voltage (-4V (first voltage) in this example). Voltage). Further, in this embodiment, a predetermined positive voltage (in this example, 2 V (reverse bias voltage)) is applied to the N well 2 so that the gap with the P well 3 is reversely biased.
 この結果、第1の実施例の「3)」と同様に、それまで非選択のビット線8Bに関するメモリセル4,4Cの表面に蓄積されていた電子が半導体基板1の方向に離脱して移動させられる。また、表面付近にホールが誘起されるのでドレイン及びソースを形成しているN型拡散層内の中性領域も退行し電子を減少させる。かくしてメモリセル4,4Cの表面が充分なホールの蓄積状態となる。 As a result, as in “3)” of the first embodiment, the electrons accumulated on the surfaces of the memory cells 4 and 4C related to the non-selected bit line 8B so far move away in the direction of the semiconductor substrate 1. Be made. Further, since holes are induced in the vicinity of the surface, the neutral region in the N-type diffusion layer forming the drain and source is also regressed to reduce electrons. Thus, the surface of the memory cells 4 and 4C is in a sufficient hole accumulation state.
 また、本実施例でも第1の実施例と同様に、逆バイアスされたNウェル2とPウェル3との接合部で空乏層が広がっているので、このときの電界により自由電子が掃き出される。すなわち、Pウェル3から電子がPウェル3の空乏層端に少数キャリア拡散電流として吸収されるので、PウェルとNウェルとを同電位として共通バイアス方式を採る特許文献1の場合よりもさらに効果的に余剰の電子を除去することができる。 Also in this embodiment, as in the first embodiment, the depletion layer spreads at the junction of the reverse-biased N-well 2 and P-well 3, so that free electrons are swept out by the electric field at this time. . That is, electrons are absorbed from the P-well 3 to the end of the depletion layer of the P-well 3 as a minority carrier diffusion current. Thus, excess electrons can be removed.
 また、本実施例におけるt3→t4(書き込み動作)の期間でも、Nウェル2及びPウェル3間には逆バイアス電圧(本例では2V)が印加されている。 Also, a reverse bias voltage (2 V in this example) is applied between the N well 2 and the P well 3 even during the period of t3 → t4 (write operation) in this embodiment.
 この結果、第1の実施例の「5)」と同様に、Pウェル3の空乏層が接合付近に達しても熱電位が下がりPウェル3への電子の拡散電流による逆流が起こらないようにすることができる。このことでPウェル3に対する電子の注入を防止することができ、誤書込み(プログラムディスターブ)をより確実に防止することができる。 As a result, as in “5)” of the first embodiment, even if the depletion layer of the P-well 3 reaches the vicinity of the junction, the thermal potential is lowered so that no reverse flow due to the diffusion current of electrons to the P-well 3 occurs. can do. This can prevent injection of electrons into the P-well 3 and more reliably prevent erroneous writing (program disturb).
   <第3の実施例>
 図9は第3の実施例に係るタイミングチャートである。同図に示すように、本実施例は第1の実施例(図4参照)のt3→t4における逆バイアス電圧の印加を省略したものである。他は第1の実施例と同様である。
<Third embodiment>
FIG. 9 is a timing chart according to the third embodiment. As shown in the figure, in this embodiment, the application of the reverse bias voltage from t3 to t4 in the first embodiment (see FIG. 4) is omitted. Others are the same as the first embodiment.
 この結果、第1の実施例の「3)」と同様の作用・効果を得ることができ、この場合でも従来技術及び特許文献1に開示する技術よりもさらに良好な誤書き込み防止を図ることができる。 As a result, the same operation and effect as “3)” of the first embodiment can be obtained, and even in this case, it is possible to further prevent erroneous writing better than the technique disclosed in the prior art and Patent Document 1. it can.
 図10は本実施例に係る書き込み動作における誤書き込みの抑制効果を実証した図である。同図中、Iは本実施例の特性、IIは特許文献(t1→t2においてワード線の印加電圧よりも高い電圧をウェルに印加した場合)の特性、IIIは従来技術(t1→t2においてウェルの電圧がワード線の電圧と同一である場合)の特性をそれぞれ示している。 FIG. 10 is a diagram demonstrating the effect of suppressing erroneous writing in the write operation according to the present embodiment. In the figure, I is the characteristic of the present embodiment, II is the characteristic of the patent document (when a voltage higher than the applied voltage of the word line is applied to the well at t1 → t2), and III is the conventional technique (well at t1 → t2). In the case of the same voltage as that of the word line).
 図10(a)には書込み禁止した選択セルのディスターブによる閾値の変動の非選択セルに印加されるVPASS電圧の依存性を示している。同図を参照すれば、t1→t2において全ワード線WL0~WLn+3を接地してPウェル3に正電圧(本例では4V)を印加すると書き込み動作時にVPASSを下げてもプログラムディスターブは生起されず、VPASSディスターブに対する充分な余裕を持つVPASS電圧を設定することができる。この結果、誤書き込みを総合的に抑制することができる。 FIG. 10 (a) shows the dependence of the VPASS voltage applied to the non-selected cell on the threshold fluctuation due to the disturb of the selected cell whose write is prohibited. Referring to the figure, if all the word lines WL0 to WLn + 3 are grounded from t1 to t2 and a positive voltage (4 V in this example) is applied to the P-well 3, no program disturb occurs even if VPASS is lowered during the write operation. A VPASS voltage having a sufficient margin for VPASS disturbance can be set. As a result, erroneous writing can be comprehensively suppressed.
 ここで、t1→t2、及びt3→t4において逆バイアス電圧を印加し、電子除去を促し、且つ流入防止を講じている本実施例の場合が特許文献1の場合よりも、より顕著にVPASSの低圧域でのプログラムディスターブを抑制できていることが分かる。 Here, the reverse bias voltage is applied at t1 → t2 and t3 → t4, the removal of electrons is promoted, and the case of this embodiment in which inflow prevention is taken is more prominent than the case of Patent Document 1. It can be seen that the program disturb in the low pressure range can be suppressed.
 図10(b)は非選択セルにおけるセル閾値のチップ内累積分布について、500回の追加書き込みを行った結果を示している。同図を参照すれば本実施例の特性Iは初期状態の分布を示している。これに対し特性IIIで示す従来技術では10回程度で閾値が変動し、500回では分布が大きく崩れており、激しいプログラムディスターブが起こっていることが分かる。 FIG. 10 (b) shows the result of 500 additional writes of the cell threshold cumulative distribution in the non-selected cells. Referring to the figure, the characteristic I of the present embodiment shows the distribution in the initial state. On the other hand, in the conventional technique shown by the characteristic III, the threshold value fluctuates about 10 times, and the distribution greatly collapses at 500 times, which shows that severe program disturb occurs.
 一方、t1→t2においてワード線の印加電圧よりも高い電圧をウェルに印加しただけで、Nウェル及びPウェル間に逆バイアス電圧を印加しない特許文献1の場合の特性IIは、特性IIIに較べて分布の変化ははるかに小さくなるものの、分布にテイリングを生じてしまう。このことは、プログラムディスターブを完全には防止できていないことを示している。 On the other hand, the characteristic II in the case of Patent Document 1 in which a reverse bias voltage is not applied between the N well and the P well only by applying a voltage higher than the voltage applied to the word line from t1 to t2 is compared with the characteristic III. Although the change in distribution is much smaller, tailing occurs in the distribution. This indicates that program disturb cannot be completely prevented.
 これに対し、逆バイアス電圧も印加する本実施例の特性Iは500回の追加プログラムを与えても、分布が初期値と重なっており、閾値の変化がみられずプログラムディスターブが全く起こっていないことを示している。 On the other hand, the characteristic I of the present embodiment, in which a reverse bias voltage is also applied, has a distribution that overlaps the initial value even when 500 additional programs are given, no change in threshold is observed, and no program disturb occurs. It is shown that.
   <第4の実施例>
 図11は第4の実施例に係るタイミングチャートである。同図に示すように、本実施例は第1の実施例(図4参照)のt1→t2における逆バイアス電圧の印加を省略したものである。他は第1の実施例と同様である。すなわち、t1→t2の期間では、全ワード線WL0~WLn+3を接地電圧(第1の電圧)とした状態でPウェル3に接地電圧よりも高圧の正電圧(本例では4V(第2の電圧))を印加している。このとき、非選択のビット線8B及びソース線9はフローティング状態とする。Pウェル3が正電位となった場合にN型半導体との接合が順方向になるのを防止するためである。
<Fourth embodiment>
FIG. 11 is a timing chart according to the fourth embodiment. As shown in the figure, in this embodiment, the application of the reverse bias voltage from t1 to t2 in the first embodiment (see FIG. 4) is omitted. Others are the same as the first embodiment. That is, during the period from t1 to t2, a positive voltage (4 V (second voltage in this example) is applied to the P-well 3 in a state where all the word lines WL0 to WLn + 3 are set to the ground voltage (first voltage). )) Is applied. At this time, the non-selected bit line 8B and the source line 9 are set in a floating state. This is to prevent the junction with the N-type semiconductor from being forward when the P-well 3 has a positive potential.
 この結果、第1の実施例の「3)」と同様に、それまで非選択のビット線8Bに関するメモリセル4,4Cの表面に蓄積されていた電子が半導体基板1の方向に離脱して移動させられる。また、ドレイン及びソースを形成しているN型拡散層内の中性領域も減少する。かくしてメモリセル4,4Cの表面が充分なホールの蓄積状態となる。すなわち、本実施例ではNウェル2及びPウェル3間が逆バイアスはされていないが、一定の余剰電子の除去機能は発揮される。 As a result, as in “3)” of the first embodiment, the electrons accumulated on the surfaces of the memory cells 4 and 4C related to the non-selected bit line 8B so far move away in the direction of the semiconductor substrate 1. Be made. In addition, the neutral region in the N-type diffusion layer forming the drain and source is also reduced. Thus, the surface of the memory cells 4 and 4C is in a sufficient hole accumulation state. That is, in this embodiment, the N well 2 and the P well 3 are not reverse-biased, but a certain excess electron removing function is exhibited.
 一方、t3→t4(書き込み動作)の期間では、Nウェル2及びPウェル3間には逆バイアス電圧(本例では4V)が印加されている。 On the other hand, a reverse bias voltage (4 V in this example) is applied between the N well 2 and the P well 3 during the period from t3 to t4 (write operation).
 この結果、第1の実施例の「5)」と同様に、Pウェル3の空乏層が接合付近に達しても熱電位が下がりNウェル2からPウェル3への電子の拡散電流による逆流が起こらないようにすることができる。このことでPウェル3に対する電子の注入を防止することができ、誤書込み(プログラムディスターブ)防止に資することができる。 As a result, as in the case of “5)” of the first embodiment, even if the depletion layer of the P well 3 reaches the vicinity of the junction, the thermal potential decreases and a reverse flow due to the diffusion current of electrons from the N well 2 to the P well 3 occurs. It can be prevented from happening. This can prevent injection of electrons into the P-well 3 and contribute to prevention of erroneous writing (program disturb).
   <第5の実施例>
 図12は第5の実施例に係るタイミングチャートである。同図に示すように、本実施例は第2の実施例(図8参照)のt3→t4における逆バイアス電圧の印加を省略したものである。他は第2の実施例と同様である。すなわち、t1→t2の期間では、全ワード線WL0~WLn+3を負電圧(本例では-4V(第1の電圧))とした状態でPウェル3を負電圧よりも高圧の接地電圧(第2の電圧)とする。さらに、本実施例ではPウェル3との間が逆バイアスされるようにNウェル2に所定の正電圧(本例では2V(逆バイアス電圧))を印加している。
<Fifth embodiment>
FIG. 12 is a timing chart according to the fifth embodiment. As shown in the figure, in this embodiment, the application of the reverse bias voltage from t3 to t4 in the second embodiment (see FIG. 8) is omitted. The rest is the same as in the second embodiment. That is, in the period from t1 to t2, the ground voltage (second voltage) is higher than the negative voltage in the P-well 3 in a state where all the word lines WL0 to WLn + 3 are set to a negative voltage (-4V (first voltage) in this example). Voltage). Further, in this embodiment, a predetermined positive voltage (2 V (reverse bias voltage) in this example) is applied to the N well 2 so that the bias between the P well 3 and the P well 3 is reversed.
 この結果、第2の実施例のt1→t2におけるのと同様の作用・効果が発揮され、誤書き込みを良好に防止することができる。 As a result, the same operation and effect as in the case of t1 → t2 of the second embodiment are exhibited, and erroneous writing can be satisfactorily prevented.
   <第6の実施例>
 図13は第6の実施例に係るタイミングチャートである。同図に示すように、本実施例は第2の実施例(図8参照)のt1→t2における逆バイアス電圧の印加を省略したものである。他は第2の実施例と同様である。すなわち、t1→t2の期間では、全ワード線WL0~WLn+3を負電圧(本例では-4V(第1の電圧))とした状態でPウェル3を負電圧よりも高圧の接地電圧(第2の電圧)とする。
<Sixth embodiment>
FIG. 13 is a timing chart according to the sixth embodiment. As shown in the figure, in this embodiment, the application of the reverse bias voltage from t1 to t2 in the second embodiment (see FIG. 8) is omitted. The rest is the same as in the second embodiment. That is, in the period from t1 to t2, the ground voltage (second voltage) is higher than the negative voltage in the P-well 3 in a state where all the word lines WL0 to WLn + 3 are set to a negative voltage (-4V (first voltage) in this example). Voltage).
 この結果、第4の実施例(図11参照)と同様の作用・効果が発揮される。すなわち、本実施例ではNウェル2及びPウェル3間が逆バイアスはされていないが、一定の余剰電子の除去機能は発揮される。 As a result, the same operation and effect as in the fourth embodiment (see FIG. 11) are exhibited. That is, in this embodiment, the N well 2 and the P well 3 are not reverse-biased, but a certain excess electron removing function is exhibited.
 一方、t3→t4(書き込み動作)の期間では、Nウェル2及びPウェル3間には逆バイアス電圧(本例では2V)が印加されている。 On the other hand, a reverse bias voltage (2 V in this example) is applied between the N well 2 and the P well 3 in the period of t3 → t4 (write operation).
 この結果、第4の実施例(図11参照)と同様に、Pウェル3の空乏層が接合付近に達しても熱電位が下がりPウェル3への電子の拡散電流による逆流が起こらないようにすることができる。このことでPウェル3に対する電子の注入を防止することができ、誤書込み(プログラムディスターブ)防止に資することができる。 As a result, as in the fourth embodiment (see FIG. 11), even if the depletion layer of the P-well 3 reaches the vicinity of the junction, the thermal potential is lowered so that no reverse flow due to the diffusion current of electrons to the P-well 3 occurs. can do. This can prevent injection of electrons into the P-well 3 and contribute to prevention of erroneous writing (program disturb).
   <第7の実施例>
 図14は第7の実施例に係るタイミングチャートである。同図に示すように、本実施例では第1の実施例(図4参照)と同態様の電圧を印加している。ただ、t1→t2における逆バイアス電圧はNウェル2をフローティング状態とすることにより形成している。さらに具体的には、t0→t1においてPウェル3を接地(0V)し、同時にそれに対する逆バイアス電圧(本例では2V)をNウェル2に印加し、Pウェル3とNウェル2間の間に形成される空乏層容量に電荷をプリチャージする。その後t1で前記逆バイアス電圧(2V)の印加を停止させ、直後にPウェルに正バイアスを印加する。この結果、Pウェルバイアス印加は前記空乏層容量の結合を介してNウェルを昇圧し、これが逆バイアス電圧の印加の停止に伴いPウェルバイアス印加電圧に重畳される。この結果、Nウェル2はt1→t2の期間、プリチャージ電圧よりも高圧のフローティング電圧に維持される。ここで、フローティング電圧はt1→t2でPウェル3に印加される第2の電圧(本例では4V)よりも高圧になるように設定してあり,この結果t1→t2においてNウェル2とPウェルとの間には逆バイアス電圧が印加される。この際にNウェル2及びPウェル3間の容量を補う目的で、ウェル電極10,11間にチップ内部及び外部のデカップリングコンデンサーを並列に接続することも可能である。
<Seventh embodiment>
FIG. 14 is a timing chart according to the seventh embodiment. As shown in the figure, in this embodiment, a voltage in the same manner as in the first embodiment (see FIG. 4) is applied. However, the reverse bias voltage from t1 to t2 is formed by bringing the N-well 2 into a floating state. More specifically, the P-well 3 is grounded (0 V) from t0 to t1, and at the same time, a reverse bias voltage (2 V in this example) is applied to the N-well 2 and between the P-well 3 and the N-well 2 The charge is precharged in the depletion layer capacitor formed in the first step. Thereafter, the application of the reverse bias voltage (2 V) is stopped at t1, and immediately thereafter, a positive bias is applied to the P well. As a result, the application of the P well bias boosts the N well through the coupling of the depletion layer capacitance, and this is superimposed on the P well bias application voltage when the application of the reverse bias voltage is stopped. As a result, the N well 2 is maintained at a floating voltage higher than the precharge voltage during the period from t1 to t2. Here, the floating voltage is set to be higher than the second voltage (4 V in this example) applied to the P-well 3 from t1 to t2, and as a result, the N-well 2 and P are changed from t1 to t2. A reverse bias voltage is applied to the well. At this time, in order to supplement the capacitance between the N well 2 and the P well 3, it is possible to connect decoupling capacitors inside and outside the chip between the well electrodes 10 and 11 in parallel.
 この結果、本実施例では、Nウェル電圧発生回路やNウェルバイアス回路の素子構成を簡略化でき、第1の実施例(図4参照)と同様の作用・効果が発揮され、第1の実施例と同様に有効に誤書き込みを防止し得る。 As a result, in this embodiment, the element configuration of the N-well voltage generation circuit and the N-well bias circuit can be simplified, and the same operations and effects as those of the first embodiment (see FIG. 4) are exhibited. Similarly to the example, erroneous writing can be effectively prevented.
 なお、本実施例でも非選択のビット線8B及びソース線9はフローティング状態とする。Pウェル3が正電位となった場合にN型半導体との接合が順方向になるのを防止するためである。 In this embodiment, the non-selected bit line 8B and the source line 9 are in a floating state. This is to prevent the junction with the N-type semiconductor from being forward when the P-well 3 has a positive potential.
   <第8の実施例>
 図15は第8の実施例に係るタイミングチャートである。同図に示すように、本実施例では第7の実施例(図14参照)において、t3→t4における逆バイアス電圧の印加を省略したものである。したがって、第3の実施例(図9参照)と同様の作用・効果を奏して誤書き込みを防止する。
<Eighth embodiment>
FIG. 15 is a timing chart according to the eighth embodiment. As shown in the figure, in this embodiment, in the seventh embodiment (see FIG. 14), the application of the reverse bias voltage from t3 to t4 is omitted. Therefore, the same operation and effect as in the third embodiment (see FIG. 9) can be achieved to prevent erroneous writing.
 なお、本実施例でも非選択のビット線8B及びソース線9はフローティング状態とする。Pウェル3が正電位となった場合にN型半導体との接合が順方向になるのを防止するためである。 In this embodiment, the non-selected bit line 8B and the source line 9 are in a floating state. This is to prevent the junction with the N-type semiconductor from being forward when the P-well 3 has a positive potential.
   <第9の実施例>
 図16は第9の実施例に係るタイミングチャートである。同図に示すように、本実施例におけるt3→t4(書き込み動作)の前では、Pウェル3もNウェル2も全ワード線WL0~WLn+3と同じ接地電圧とし、t3→t4のみでNウェル2及びPウェル3間に逆バイアス電圧を印加している。
<Ninth embodiment>
FIG. 16 is a timing chart according to the ninth embodiment. As shown in the figure, before t3 → t4 (write operation) in this embodiment, the P well 3 and the N well 2 are set to the same ground voltage as all the word lines WL0 to WLn + 3, and only the t3 → t4 has the N well 2 A reverse bias voltage is applied between the P well 3 and the P well 3.
 このように、VPROGの印加による書き込み動作時(t3→t4)のみに逆バイアス電圧を印加した場合でもVPROGを高電圧にした場合の空乏層の拡大に伴う熱電位の上昇を抑制してPウェル3への電子の拡散電流による逆流を抑制することができる。この結果、Pウェル3に対する電子の注入を一定程度防止して誤書込み(プログラムディスターブ)の防止に資することができる。 In this way, even when a reverse bias voltage is applied only during a write operation by applying VPROG (t3 → t4), an increase in the thermal potential accompanying the expansion of the depletion layer when VPROG is set to a high voltage is suppressed. The backflow due to the diffusion current of electrons to 3 can be suppressed. As a result, the injection of electrons into the P-well 3 can be prevented to a certain extent, thereby contributing to prevention of erroneous writing (program disturb).
 本発明は半導体メモリを製造・販売する産業分野において有効に利用することができる。 The present invention can be effectively used in the industrial field of manufacturing and selling semiconductor memories.
 I                NAND型フラッシュメモリ
 2                Nウェル
 3                Pウェル
 4,4A,4B,4C       メモリセル
 5                NAND束
 8,8A,8B          ビット線
10,11             ウェル電極
21                メモリセルアレイ
22                書き込み制御回路
25                ワード線電圧発生回路
26                ワード線駆動回路
27                Nウェル電圧発生回路
28                Nウェルバイアス回路
29                Pウェル電圧発生回路
30                Pウェルバイアス回路
I NAND flash memory 2 N well 3 P well 4, 4A, 4B, 4C Memory cell 5 NAND bundle 8, 8A, 8B Bit line 10, 11 Well electrode 21 Memory cell array 22 Write control circuit 25 Word line voltage generation circuit 26 Word Line drive circuit 27 N well voltage generation circuit 28 N well bias circuit 29 P well voltage generation circuit 30 P well bias circuit

Claims (16)

  1.  N型の半導体からなるNウェルの中にP型の半導体からなるPウェルを形成するとともに、前記Pウェルの表面上に、電気的に書き換え可能な複数の不揮発性のメモリセルを直列に接続したNAND束をマトリックス状に配列してなるメモリセルアレイを具備する不揮発性半導体記憶装置における書き込み方法であって、
     前記メモリセルに対する書き込み期間(t0→t4の期間)におけるプログラム電圧の印加による書き込み動作(t3→t4の期間)の前の期間に前記NAND束の全てのメモリセルのワード線に第1の電圧を、また前記Pウェルに前記第1の電圧よりも高い第2の電圧をそれぞれ印加するとともに、ビット線とソース線が前記Pウェルに対して逆バイアスされる電圧を印加し、さらに前記書き込み期間において前記Pウェルに対し前記Nウェルが逆バイアスされるように前記Pウェル及び前記Nウェル間に逆バイアス電圧を印加することを特徴とする不揮発性半導体記憶装置における書き込み方法。
    A P well made of a P type semiconductor is formed in an N well made of an N type semiconductor, and a plurality of electrically rewritable nonvolatile memory cells are connected in series on the surface of the P well. A writing method in a nonvolatile semiconductor memory device comprising a memory cell array in which NAND bundles are arranged in a matrix,
    A first voltage is applied to the word lines of all the memory cells of the NAND bundle in a period before a write operation (period t3 → t4) by applying a program voltage in a write period (period t0 → t4) to the memory cell. In addition, a second voltage higher than the first voltage is applied to the P well, and a voltage that reversely biases the bit line and the source line with respect to the P well is applied. A writing method in a nonvolatile semiconductor memory device, wherein a reverse bias voltage is applied between the P well and the N well so that the N well is reverse biased with respect to the P well.
  2.  請求項1に記載する不揮発性半導体記憶装置における書き込み方法であって、
     前記逆バイアス電圧を前記書き込み動作の前の期間に印加することを特徴とする不揮発性半導体記憶装置における書き込み方法。
    A writing method in the nonvolatile semiconductor memory device according to claim 1,
    A writing method in a nonvolatile semiconductor memory device, wherein the reverse bias voltage is applied in a period before the writing operation.
  3.  請求項1に記載する不揮発性半導体記憶装置における書き込み方法であって、
     前記逆バイアス電圧を前記書き込み動作の期間に印加することを特徴とする不揮発性半導体記憶装置における書き込み方法。
    A writing method in the nonvolatile semiconductor memory device according to claim 1,
    A writing method in a nonvolatile semiconductor memory device, wherein the reverse bias voltage is applied during the writing operation.
  4.  請求項1に記載する不揮発性半導体記憶装置における書き込み方法であって、
     前記逆バイアス電圧を、前記書き込み動作の前の期間及び前記書き込み動作の期間に印加することを特徴とする不揮発性半導体記憶装置における書き込み方法。
    A writing method in the nonvolatile semiconductor memory device according to claim 1,
    A writing method in a nonvolatile semiconductor memory device, wherein the reverse bias voltage is applied in a period before the writing operation and a period of the writing operation.
  5.  請求項1又は請求項3に記載する不揮発性半導体記憶装置における書き込み方法であって、
     前記第1の電圧が接地電位で、且つ第2の電位が正電位であることを特徴とする不揮発性半導体記憶装置における書き込み方法。
    A writing method in the nonvolatile semiconductor memory device according to claim 1 or 3,
    A writing method in a nonvolatile semiconductor memory device, wherein the first voltage is a ground potential and the second potential is a positive potential.
  6.  請求項2又は請求項4に記載する不揮発性半導体記憶装置における書き込み方法であって、
     前記第1の電圧が接地電位で、且つ第2の電位が正電位であることを特徴とする不揮発性半導体記憶装置における書き込み方法。
    A writing method in the nonvolatile semiconductor memory device according to claim 2, wherein:
    A writing method in a nonvolatile semiconductor memory device, wherein the first voltage is a ground potential and the second potential is a positive potential.
  7.  請求項6に記載する不揮発性半導体記憶装置における書き込み方法であって、
     前記書き込み動作の前の期間において、前記Nウェルと前記Pウェルとの間に逆バイアス電圧を印加し、その後前記Nウェルをフローティング状態とすることによりPウェルとNウェルとの容量結合に起因して発生する電圧を前記逆バイアス電圧とすることを特徴とする不揮発性半導体記憶装置における書き込み方法。
    A writing method in the nonvolatile semiconductor memory device according to claim 6,
    Due to capacitive coupling between the P well and the N well by applying a reverse bias voltage between the N well and the P well in a period before the write operation and then bringing the N well into a floating state. A writing method in a nonvolatile semiconductor memory device, characterized in that a voltage generated in this manner is the reverse bias voltage.
  8.  請求項1乃至請求項4の何れか一つに記載する不揮発性半導体記憶装置における書き込み方法であって、
     前記第1の電圧が負電位で、且つ前記第2の電位が接地電位であることを特徴とする不揮発性半導体記憶装置における書き込み方法。
    A writing method in the nonvolatile semiconductor memory device according to claim 1, comprising:
    A writing method in a nonvolatile semiconductor memory device, wherein the first voltage is a negative potential and the second potential is a ground potential.
  9.  N型の半導体からなるNウェルの中にP型の半導体からなるPウェルを形成するとともに、前記Pウェルの表面上に、電気的に書き換え可能な複数の不揮発性のメモリセルを直列に接続したNAND束をマトリックス状に配列してなるメモリセルアレイを具備する不揮発性半導体記憶装置であって、
     ワード線駆動回路を介して前記メモリセルアレイのワード線に第1の電圧を印加するワード線電圧発生回路と、
     Pウェルバイアス回路を介して前記Pウェルに前記第1の電圧よりも高い第2の電圧を印加するPウェル電圧発生回路と、
     Nウェルバイアス回路を介して前記Nウェルに、前記Pウェルに対し前記Nウェルが逆バイアスされるように逆バイアス電圧を印加するNウェル電圧発生回路と、
     前記メモリセルに対する書き込み期間におけるプログラム電圧の印加による書き込み動作の前の期間に、前記ワード線電圧発生回路及びワード線駆動回路を介して前記NAND束の全てのメモリセルのワード線に第1の電圧を、また前記Pウェルに前記第1の電圧よりも高い第2の電圧をそれぞれ印加するとともに、ビット線とソース線が前記Pウェルに対して逆バイアスされる電圧を印加し、さらに前記書き込み期間において、前記Nウェル電圧発生回路及びNウェルバイアス回路を介して前記Nウェルに前記逆バイアス電圧を印加するよう制御する書き込み制御回路とを有することを特徴とする不揮発性半導体記憶装置。
    A P well made of a P type semiconductor is formed in an N well made of an N type semiconductor, and a plurality of electrically rewritable nonvolatile memory cells are connected in series on the surface of the P well. A nonvolatile semiconductor memory device comprising a memory cell array in which NAND bundles are arranged in a matrix,
    A word line voltage generating circuit for applying a first voltage to the word lines of the memory cell array via a word line driving circuit;
    A P well voltage generation circuit for applying a second voltage higher than the first voltage to the P well via a P well bias circuit;
    An N-well voltage generating circuit for applying a reverse bias voltage to the N-well via an N-well bias circuit so that the N-well is reverse-biased with respect to the P-well;
    A first voltage is applied to the word lines of all the memory cells of the NAND bundle through the word line voltage generation circuit and the word line driving circuit during a period before a write operation by applying a program voltage in the write period to the memory cell. In addition, a second voltage higher than the first voltage is applied to the P well, and a voltage at which the bit line and the source line are reverse-biased with respect to the P well is applied. And a write control circuit for controlling the reverse bias voltage to be applied to the N well via the N well voltage generation circuit and the N well bias circuit.
  10.  請求項9に記載する不揮発性半導体記憶装置において、
     前記書き込み制御回路は前記逆バイアス電圧が前記書き込み動作の前の期間に印加されるように制御することを特徴とする不揮発性半導体記憶装置。
    The nonvolatile semiconductor memory device according to claim 9,
    The nonvolatile semiconductor memory device, wherein the write control circuit controls the reverse bias voltage to be applied in a period before the write operation.
  11.  請求項9に記載する不揮発性半導体記憶装置において、
     前記書き込み制御回路は前記逆バイアス電圧が前記書き込み動作の期間に印加されるように制御することを特徴とする不揮発性半導体記憶装置。
    The nonvolatile semiconductor memory device according to claim 9,
    The non-volatile semiconductor memory device, wherein the write control circuit controls the reverse bias voltage to be applied during the write operation.
  12.  請求項9に記載する不揮発性半導体記憶装置において、
     前記書き込み制御回路は前記逆バイアス電圧が、前記書き込み動作の前の期間及び前記書き込み動作の期間に印加されるように制御することを特徴とする不揮発性半導体記憶装置。
    The nonvolatile semiconductor memory device according to claim 9,
    The non-volatile semiconductor memory device, wherein the write control circuit controls the reverse bias voltage to be applied in a period before the write operation and a period of the write operation.
  13.  請求項9又は請求項11に記載する不揮発性半導体記憶装置において、
     前記ワード線電圧発生回路は前記第1の電圧を接地電位とし、且つ前記Pウェル電圧発生回路は前記第2の電位を正電位とするものであることを特徴とする不揮発性半導体記憶装置。
    The nonvolatile semiconductor memory device according to claim 9 or 11,
    The nonvolatile semiconductor memory device, wherein the word line voltage generation circuit uses the first voltage as a ground potential, and the P well voltage generation circuit uses the second potential as a positive potential.
  14.  請求項10又は請求項12に記載する不揮発性半導体記憶装置において、
     前記ワード線電圧発生回路は前記第1の電圧を接地電位とし、且つ前記Pウェル電圧発生回路は前記第2の電位を正電位とするものであることを特徴とする不揮発性半導体記憶装置。
    The nonvolatile semiconductor memory device according to claim 10 or 12,
    The nonvolatile semiconductor memory device, wherein the word line voltage generation circuit uses the first voltage as a ground potential, and the P well voltage generation circuit uses the second potential as a positive potential.
  15.  請求項14に記載する不揮発性半導体記憶装置において、
     前記書き込み制御回路は前記書き込み動作の前の期間において、前記Nウェルと前記Pウェルとの間に逆バイアス電圧を印加し、その後前記Nウェルをフローティング状態とすることによりPウェルとNウェルとの容量結合に起因して発生する電圧を前記逆バイアス電圧とするように制御するものであることを特徴とする不揮発性半導体記憶装置。
    The nonvolatile semiconductor memory device according to claim 14,
    The write control circuit applies a reverse bias voltage between the N well and the P well in a period before the write operation, and then sets the N well to be in a floating state so that the P well and the N well A non-volatile semiconductor memory device, wherein a voltage generated due to capacitive coupling is controlled to be the reverse bias voltage.
  16.  請求項9乃至請求項12の何れか一つに記載する不揮発性半導体記憶装置において、
     前記ワード線電圧発生回路は前記第1の電圧を負電位とし、且つ前記Pウェル電圧発生回路は前記第2の電位を接地電位とするものであることを特徴とする不揮発性半導体記憶装置。
    The nonvolatile semiconductor memory device according to any one of claims 9 to 12,
    The non-volatile semiconductor memory device, wherein the word line voltage generation circuit uses the first voltage as a negative potential, and the P well voltage generation circuit uses the second potential as a ground potential.
PCT/JP2010/069622 2009-11-04 2010-11-04 Method for writing in non-volatile semiconductor memory device and non-volatile semiconductor memory device WO2011055755A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009253487A JP4511627B1 (en) 2009-11-04 2009-11-04 WRITE METHOD IN NONVOLATILE SEMICONDUCTOR MEMORY DEVICE AND NONVOLATILE SEMICONDUCTOR MEMORY DEVICE
JP2009-253487 2009-11-04

Publications (1)

Publication Number Publication Date
WO2011055755A1 true WO2011055755A1 (en) 2011-05-12

Family

ID=42582569

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/069622 WO2011055755A1 (en) 2009-11-04 2010-11-04 Method for writing in non-volatile semiconductor memory device and non-volatile semiconductor memory device

Country Status (2)

Country Link
JP (1) JP4511627B1 (en)
WO (1) WO2011055755A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102127105B1 (en) 2013-11-11 2020-06-29 삼성전자 주식회사 Driving method of the nonvolatile memory device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08279566A (en) * 1995-04-06 1996-10-22 Hitachi Ltd Parallel-connected type nonvolatile semiconductor storage device and use of said device
JP2001230391A (en) * 2000-02-17 2001-08-24 Toshiba Corp Non-volatile semiconductor memory device and writing method of it
JP2002245785A (en) * 2000-12-28 2002-08-30 Samsung Electronics Co Ltd Programming method for non-volatile semiconductor memory

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08279566A (en) * 1995-04-06 1996-10-22 Hitachi Ltd Parallel-connected type nonvolatile semiconductor storage device and use of said device
JP2001230391A (en) * 2000-02-17 2001-08-24 Toshiba Corp Non-volatile semiconductor memory device and writing method of it
JP2002245785A (en) * 2000-12-28 2002-08-30 Samsung Electronics Co Ltd Programming method for non-volatile semiconductor memory

Also Published As

Publication number Publication date
JP2011100507A (en) 2011-05-19
JP4511627B1 (en) 2010-07-28

Similar Documents

Publication Publication Date Title
KR100272037B1 (en) Non volatile simiconductor memory
CN102136293B (en) The programmed method of Nonvolatile semiconductor memory device
JP5524134B2 (en) Nonvolatile semiconductor memory device
US7751243B2 (en) Semiconductor memory device provided with MOS transistor having charge accumulation layer and control gate and data write method of NAND flash memory
KR100680485B1 (en) Non-volatile memory device
JP2009266356A (en) Nand type flash memory
JP5059437B2 (en) Nonvolatile semiconductor memory device
TWI462279B (en) Non-volatile memory cell
US7672169B2 (en) Nonvolatile semiconductor memory and driving method thereof
KR20090102262A (en) Operating method of memory device reducing lateral movement of charges
US8848446B2 (en) Nonvolatile semiconductor memory device
KR101213922B1 (en) Semiconductor memory device and the method of operating the same
KR20100030452A (en) Nand flash memory of using common p-well and method of operating the same
JP2010123186A (en) Nonvolatile semiconductor memory
JP2009205728A (en) Nand type nonvolatile semiconductor memory
US6970385B2 (en) Non-volatile semiconductor memory device suppressing write-back fault
JP2011076678A (en) Nonvolatile semiconductor memory
JP5657063B2 (en) Semiconductor memory device
KR20090019718A (en) Nand type nonvolatile semiconductor memory
JP5483826B2 (en) Nonvolatile semiconductor memory device and writing method thereof
KR100655944B1 (en) Method to provide a reduced constant e-field during erase of eeproms for reliability iprovement
JP5477483B2 (en) Nonvolatile semiconductor memory device and nonvolatile semiconductor memory device
JP4511627B1 (en) WRITE METHOD IN NONVOLATILE SEMICONDUCTOR MEMORY DEVICE AND NONVOLATILE SEMICONDUCTOR MEMORY DEVICE
TWI412040B (en) Method and system of low voltage programming of non-volatile memory cells
US6160740A (en) Method to provide a reduced constant E-field during erase of EEPROMs for reliability improvement

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10828315

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10828315

Country of ref document: EP

Kind code of ref document: A1