WO2011055692A1 - 超砥粒固定式ワイヤソー、及び超砥粒固定式ワイヤソーの製造方法 - Google Patents

超砥粒固定式ワイヤソー、及び超砥粒固定式ワイヤソーの製造方法 Download PDF

Info

Publication number
WO2011055692A1
WO2011055692A1 PCT/JP2010/069294 JP2010069294W WO2011055692A1 WO 2011055692 A1 WO2011055692 A1 WO 2011055692A1 JP 2010069294 W JP2010069294 W JP 2010069294W WO 2011055692 A1 WO2011055692 A1 WO 2011055692A1
Authority
WO
WIPO (PCT)
Prior art keywords
wire
superabrasive
grains
layer
super
Prior art date
Application number
PCT/JP2010/069294
Other languages
English (en)
French (fr)
Inventor
靖彦 大谷
努 冨吉
康仁 萩原
憲司 久保
絋章 井上
俊秀 高木
英明 島田
聖士 福元
一裕 霜野
Original Assignee
株式会社中村超硬
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2009254310A external-priority patent/JP5515646B2/ja
Priority claimed from JP2010226829A external-priority patent/JP2012081525A/ja
Application filed by 株式会社中村超硬 filed Critical 株式会社中村超硬
Priority to CN2010800503570A priority Critical patent/CN102770240A/zh
Priority to EP10828252A priority patent/EP2497602A1/en
Priority to US13/505,810 priority patent/US20130032129A1/en
Publication of WO2011055692A1 publication Critical patent/WO2011055692A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B27/00Other grinding machines or devices
    • B24B27/06Grinders for cutting-off
    • B24B27/0633Grinders for cutting-off using a cutting wire
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D61/00Tools for sawing machines or sawing devices; Clamping devices for these tools
    • B23D61/18Sawing tools of special type, e.g. wire saw strands, saw blades or saw wire equipped with diamonds or other abrasive particles in selected individual positions
    • B23D61/185Saw wires; Saw cables; Twisted saw strips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D65/00Making tools for sawing machines or sawing devices for use in cutting any kind of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D99/00Subject matter not provided for in other groups of this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D1/00Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor
    • B28D1/02Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor by sawing
    • B28D1/08Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor by sawing with saw-blades of endless cutter-type, e.g. chain saws, i.e. saw chains, strap saws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • B28D5/0058Accessories specially adapted for use with machines for fine working of gems, jewels, crystals, e.g. of semiconductor material
    • B28D5/007Use, recovery or regeneration of abrasive mediums
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • B28D5/04Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by tools other than rotary type, e.g. reciprocating tools
    • B28D5/045Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by tools other than rotary type, e.g. reciprocating tools by cutting with wires or closed-loop blades
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67092Apparatus for mechanical treatment

Definitions

  • the present invention relates to a superabrasive fixed wire saw suitable as a cutting tool for hard materials such as silicon, ceramic and sapphire.
  • diamond wire tools with diamond abrasive grains fixed on the wire surface are becoming common in slicing processing using a multi-wire saw of hard materials such as silicon, ceramic, and sapphire.
  • these diamond wire tools there are currently three types of methods for fixing diamond abrasive grains to a wire. There are three methods: a method using a resin bond, a method using electrodeposition, and a method using brazing.
  • a surface of a wire that is a piano wire is coated with a mixture of a phenol resin and diamond and baked, and the diamond is fixed to the wire by curing of the phenol resin.
  • This method is highly productive, can adjust the amount of superabrasive grains, and can produce a long and thin wire saw.
  • the holding power by the resin is weak, diamonds fall off one after another during use. For this reason, the sharpness is reduced, the wire diameter is reduced, and the life is short.
  • a wire saw in which a metal layer is formed on the surface by plating is shown (see Patent Document 1).
  • the bond strength between the surface of the wire and the resin basically affects the holding power of the superabrasive grains
  • the metal layer is also basically formed on the surface of the resin, so the peel strength between the metal layer and the resin layer
  • the holding force suitable for cutting hard materials cannot be secured sufficiently.
  • the method of electrodeposition is to fix diamond by nickel plating.
  • diamond is filled in a cloth bag and submerged in a nickel plating solution. Energize between the nickel anodes. The wire gradually thickens after nickel is deposited in the diamond and plating solution. At this time, diamond is taken into the nickel film and lightly fixed to the surface of the wire. This plating is performed continuously while winding the wire slowly. The wire coming out of the cloth bag is continuously plated in the plating solution until the deposited nickel has a predetermined thickness.
  • the holding power of diamond fixed by this electrodeposition method is relatively strong. However, in this method, since diamond fixation is determined by the deposition rate of plating, production is very slow, productivity is poor, and cost is high. Moreover, adjustment is difficult, such as increasing the adhesion amount of superabrasive grains.
  • Patent Document 2 a soldering metal bonding material is used, and an appropriate amount of diamond powder is mixed with solder composition metal (96% Sn / 4% Ag powder 99 g and Cu powder 1 g).
  • solder composition metal 96% Sn / 4% Ag powder 99 g and Cu powder 1 g.
  • a 250 ⁇ m diameter Inconel 718 wire was pulled through a 350 ° C. tubular furnace to obtain a diamond-coated wire, but the holding power of diamond abrasive grains was basically increased to Sn strength. It is affected and does not reach nickel electrodeposition.
  • Patent Document 3 a method by brazing is proposed to solve the disadvantages and problems of the resin bond method and the electrodeposition method, and in this case as well, fixing with a brazing material is adopted to ensure the fixing strength.
  • a brazing material For example, it is desirable to use a Cu—Ag—Ti alloy (melting temperature of 700 ° C. or higher) as a brazing material.
  • a tungsten wire as a wire that does not decrease in strength even when exposed to high temperatures. Yes.
  • the inability to use piano wire and high carbon steel, which are widely used as wire rods, is a cause of reduced cost advantage.
  • JP 2007-253268 A Japanese Patent No. 40008660 JP 2006-123024 A JP 2008-221406 A JP 2002-205272 A
  • the present invention is to solve the problem that the life that is a problem in the resin bond method is short, the productivity that is a problem in the electrodeposition method is poor, and the cost is high.
  • high carbon steel which is regarded as a problem in the brazing method, cannot be used and the cost is not superior, and internal stress is generated in the superabrasive grains after brazing, and the superabrasive grains are easily cracked or chipped. It is possible to solve all of them, and to provide a superabrasive fixed wire saw having a long life, high productivity, and excellent cutting ability.
  • the present invention is a wire saw in which superabrasive grains are dispersed and fixed on the surface of a wire, a brazing material layer for temporarily fixing superabrasive grains, and a metal for holding the superabrasive grains
  • a superabrasive-fixed wire saw comprising two plating layers, wherein the brazing material layer has a thickness of 10% or less of the average grain size of the superabrasive grains.
  • the average particle diameter is measured by a general laser diffraction / scattering method.
  • the superabrasive layer is formed by forming the brazing filler metal layer on the surface of the wire, dispersing and adhering the superabrasive grains on the brazing filler metal layer, and then melting and solidifying the surface of the brazing filler metal layer. It is preferable that the superabrasive grains are held on the wire surface by temporarily fixing the grains to the adhesion surface and further performing a plating treatment to form the metal plating layer.
  • the thickness of the brazing material layer is 1% or more and less than 5% of the average particle diameter of the superabrasive grains.
  • the metal plating layer is preferably a nickel plating layer or a nickel alloy plating layer.
  • the brazing material layer is preferably made of Sn, Sn—Cu alloy, Sn—Ag alloy or Sn—Sb alloy.
  • the present invention is also a wire saw in which superabrasive grains are dispersed and fixed on the surface of a wire, wherein a brazing material layer is formed on the surface of the wire, and the superabrasive grains are dispersed and adhered to the brazing material layer in a single layer.
  • the surface of the brazing material layer is melted and solidified to form a superabrasive temporary bonding wire in which superabrasive grains are bonded on the adhesion surface, and the superabrasive temporary mounting wire is further plated to form a metal plating layer.
  • the superabrasive fixed type wire saw comprised from the said brazing material layer which temporarily fixes superabrasive grain, and the said metal plating layer for hold
  • the present invention also relates to a method of manufacturing a wire saw in which superabrasive grains are dispersed and fixed on the surface of a wire, wherein a brazing material layer is previously formed on the surface of the wire, and the superabrasive grains are dispersed in a single layer on the brazing material layer. After adhering, the surface of the brazing material layer is melted and solidified to form a superabrasive temporary bonding wire in which the superabrasive grains are bonded on the adhesion surface, and the superabrasive temporary fixing wire is metal-plated.
  • the manufacturing method of the superabrasive fixed wire saw which adheres the superabrasive grain to the surface of the wire is also provided.
  • the first aspect of the present invention there are provided two layers of a brazing material layer for temporarily fixing superabrasive grains and a metal plating layer for holding the superabrasive grains, and the superabrasive grains such as diamond are wired by the brazing material layer. Since the superabrasive grains are fixed by metal plating on the wire with the superabrasive grains temporarily attached thereto, the force for holding the superabrasive grains is extremely strong as compared with the resin bond method. . Compared with the electrodeposition method, the superabrasive grains are temporarily fixed by the brazing material layer, so that the production rate can be increased and the number of superabrasive grains can be easily adjusted.
  • the thickness of the brazing material layer is 10% or less of the average grain size of the superabrasive grains, internal stress is generated in the superabrasive grains after brazing due to the difference in thermal expansion coefficient between the superabrasive grains and the brazing filler metal.
  • the abrasive grains are easily broken or chipped, the discharge of chips is good and excellent machining accuracy can be maintained, and it is also possible to avoid that the super abrasive grains sink into the brazing material layer during machining, The cutting ability of superabrasive grains can be maintained to maintain the cutting ability.
  • the brazing filler metal layer when the superabrasive grains are temporarily fixed by the brazing filler metal layer, a fillet is formed between the brazing filler metal layer and the superabrasive grains, and the brazing filler metal and the metal plating do not have a strong joint.
  • the brazing filler metal and the metal plating do not have a strong joint. Therefore, it is possible to prevent stress concentration on the adhered portion of the superabrasive grains. Therefore, even if the thickness of the brazing material layer is 10% or less of the average grain size of the superabrasive grains, the brazing filler metal layer is buried between the superabrasive grains by about 35% and is stronger than the metal plating.
  • It has an excellent abrasive grain holding power, and does not require a complicated operation such as filling a brazing filler metal powder between diamond abrasive grains, and is excellent in productivity. Furthermore, it is possible to provide a wire saw that is more durable (abrasive retention) than the electrodeposition method. In addition, it is possible to avoid the adverse effect that the fillet is too large and the discharge of chips becomes worse.
  • the thickness of the brazing material layer is 1% or more and less than 5% of the average grain size of the superabrasive grains, the processing accuracy is further improved, and the thickness of the workpiece during slicing The variation of can also be suppressed small.
  • the metal plating layer is a nickel plating layer or a nickel alloy plating layer, it has a strong abrasive grain holding force.
  • the fifth invention compared to the brazing method, since solder is used, it is possible to manufacture at a temperature of not more than two hundred and ten degrees, and in addition to tungsten and stainless steel wires, inexpensive such as piano wires. A high-carbon steel wire can be used, and a complicated apparatus using a vacuum furnace is not required, and the cost can be reduced.
  • superabrasive grains such as diamond are temporarily attached to the wire by a brazing material layer such as solder, and the wire on which the superabrasive grains are temporarily attached is plated with a metal such as nickel.
  • the superabrasive grains are fixed, so that the abrasive grain holding power is extremely strong as compared with the resin bond method.
  • the superabrasive grains are temporarily fixed by the brazing material layer, so that the production rate can be increased and the number of superabrasive grains can be easily adjusted.
  • a fillet is formed between a brazing filler metal layer such as solder and superabrasive grains, and then metal plating is performed thereon. Therefore, a strong fillet made of brazing material and metal plating provides a strong joint with no gaps, and prevents stress concentration on the superabrasive adhesion part, and therefore more durable than the electrodeposition method (abrasive holding power) ) Can be provided.
  • (A)-(d) is explanatory drawing which shows the procedure which manufactures a wire saw similarly.
  • (A) is sectional drawing which shows the modification of a wire saw
  • (b) is an A section expanded sectional view. The enlarged photograph of the wire saw of Example 1 and Comparative Example 1.
  • (A) is the photograph of the wire saw of Example 2 before a process
  • (b) is the enlarged photograph.
  • FIG. 6 is a graph showing the results of a processing test using the wire saw of Example 3.
  • FIG. 1 is a sectional view showing a superabrasive fixed wire saw according to the present invention
  • FIG. 2 is an explanatory view showing the manufacturing process.
  • reference numeral 1 denotes a wire saw
  • 10 denotes a wire
  • 13 denotes a brazing material layer
  • 14 denotes superabrasive grains
  • 16 denotes a metal plating layer.
  • the wire saw 1 of the present invention is obtained by dispersing and fixing superabrasive grains 14 on the surface of a wire 10, and a brazing filler metal layer 13 is formed on the surface of the wire 10.
  • the superabrasive grains 14 are temporarily fixed to a single layer on the top, and the superabrasive grains 14 are fixedly held on the wire surface by metal plating from above.
  • the metal plating layer 16 is also coated on the superabrasive grains 14, but the present invention is not limited to this, and the surface is not limited to this.
  • Superabrasive grains having no electrical conductivity can also be used. In that case, as shown in FIGS.
  • a metal plating layer 16 is formed on the brazing filler metal layer 13 between the superabrasive grains 14. It grows, fills the gaps between the superabrasive grains 14 without any gaps, and surrounds each superabrasive grain 14, and as a result, the superabrasive grains 14 are firmly fixed.
  • the wire 10 various metal wires whose strength does not deteriorate due to the melting temperature of the solder can be used, and the wire 10 is made of iron, nickel, cobalt, chromium, tungsten, molybdenum, copper, titanium, aluminum, or an alloy thereof. Are preferably used. In particular, those made of high carbon steel including piano wire are preferable in that they can be obtained inexpensively and stably, and the cost can be reduced.
  • the brazing material layer 13 is preferably made of Sn, Sn—Cu alloy, Sn—Ag alloy or Sn—Sb alloy.
  • solder a metal bonding material of 450 ° C. or lower is generally referred to as solder
  • the aim in the present invention is to fix superabrasive grains on a wire made of high carbon steel including a piano wire having a high strength and a relatively low cost.
  • the provision of wire saws Since high carbon steel such as piano wire loses its strength when exposed to a thermal environment exceeding 300 ° C. for a certain period of time, the solder to be applied to the present invention has a melting point of 300 ° C. or lower, preferably 270 ° C. or lower.
  • the thickness of the brazing material layer 13 is 10% or less of the average particle diameter of the superabrasive grains 14. More preferably, it is 1% or more and less than 5% of the average particle diameter of the superabrasive grains.
  • superabrasive grain 14 various superabrasive grains used in conventional wire saws can be used. However, superabrasive grains are used for cutting high-hardness silicon, ceramics, sapphire and the like, which is the aim of the present invention. It is preferable to use any one of diamond, CBN, SiC, or a mixture thereof having high hardness.
  • the superabrasive grains 14 are coated with a metal such as nickel, copper, or titanium in order to improve the bondability to the solder. In particular, superabrasive grains coated with nickel or copper are preferable in terms of ensuring the smoothness of the brazing material and maintaining the adhesion strength.
  • the metal plating layer 16 is preferably a plating made of the same kind of metal as the superabrasive grains 14 or the coating metal thereof in that mutual adhesion can be improved.
  • the nickel plating layer or nickel is coated on the nickel-coated diamond abrasive grains 14.
  • the alloy plating layer is preferably formed by electroplating.
  • the first step is a step of providing a brazing filler metal layer 13 on the surface of the wire 10 as shown in FIG.
  • the brazing material layer 13 is formed, for example, by melting the solder in a crucible and passing the wire through the molten solder.
  • FIG. 3 is a schematic diagram showing the manufacturing process of the first step. In this process, the wire 10 fed from the wire feeding reel 20 passes through the flux application device 21 and passes through the molten solder tank 22 to form a brazing material layer (solder layer) on the surface thereof, and the cooling zone 23. In this process, the brazing filler metal layer is solidified and wound on the take-up reel 24 as the pre-coated wire 11.
  • the flux applying device 21 includes a method of spraying flux from a nozzle and a method of passing a flux storage tank. It is assumed that the molten solder tank 22 is provided with a heating device sufficient to melt the solder. Further, a guide device is provided so that the wire can pass through the molten solder tank, and the wire 10 passes through the molten solder. At the same time, a brazing filler metal layer 13 (solder layer) is formed on the surface of the wire 10. Although the molten solder is almost solidified when leaving the molten solder bath 22, a cooling zone 23 is provided before being taken up by the take-up reel 24 in order to make the solidification more reliable. As described above, FIG. 2A shows a cross section of the wire manufactured after the first step, and shows a state in which the brazing filler metal layer 13 is formed on the surface of the wire 10. This is referred to as pre-coated wire 11.
  • the thickness of the brazing filler metal layer 13 (solder layer) formed in the first step varies depending on the viscosity and surface tension at the time of melting of the solder and the traveling speed of the wire.
  • the preferred thickness is 10% or less of the average particle diameter, more preferably 1% or more and less than 5%. Specific thickness values are preferably 2 ⁇ m or less when the average grain size of superabrasive grains is 40 to 60 ⁇ m and 1 ⁇ m or less when the average grain diameter of superabrasive grains is 10 to 20 ⁇ m.
  • hot-dip plating is used, but it is needless to say that a metal plating layer can be formed by electroplating of tin, for example.
  • the second step is a step of dispersing and adhering superabrasive grains 14 in a single layer to the brazing filler metal layer 13 formed in the first step, as shown in FIG.
  • the surface of the pre-coated wire 11 manufactured in the first step is wetted with a liquid that decomposes or evaporates below the temperature at which the solder melts, and the wet wire is allowed to pass through a container containing superabrasive grains.
  • the superabrasive grains are adhered by the wetting.
  • the superabrasive grains are put on the superabrasive grains due to the cohesive force between the superabrasive grains.
  • the surface of the precoat wire 11 fed from the feed reel 30 is wetted by the liquid application device 31. Then, when the precoated wire 11 having a wet surface passes through the superabrasive spraying device 32a in the superabrasive grain adhesion zone 32, the superabrasive grains 14 adhere to the surface. This is the second step. As a result, a liquid layer 15 is formed on the surface of the brazing filler metal layer 13 of the precoat wire 11 as shown in FIG. 2B, and the superabrasive grains 14 stick to the surface of the precoat wire 11 due to the wetness of the liquid. .
  • the method of performing the second step can be considered other than this example.
  • a precoated wire whose surface is similarly wetted can be passed through a superabrasive powder storage tank, or superabrasive particles can be attached to the precoated wire using the principle of electrostatic coating.
  • it is also possible to adhere by simple van der Waals force or charging. All of them are also characterized in that the amount of superabrasive particles attached can be controlled by controlling the running speed of the wire and the amount of spraying.
  • the wire brazing filler metal layer 13 temporarily attached with the superabrasive grains 14 in the second step is heated and melted, and then cooled and solidified to bond the superabrasive grains 14 to the surface of the brazing filler metal layer 13. It is a process of attaching (temporarily fixing). Specifically, as shown in the schematic diagram of FIG. 4, the superabrasive-adhered pre-coated wire wire that has been passed through the superabrasive spraying device 32 is introduced to the heating furnace 33. Heated. The heating furnace 33 can be heated to a temperature sufficient to melt the precoat brazing filler metal layer 13.
  • the adhering liquid layer 15 liquid evaporates, and at the same time, the brazing filler metal.
  • the solder of the layer 13 is melted, and the superabrasive grains 14 are wetted on the wire by the brazing material layer 13 instead of the evaporated liquid layer 15.
  • the brazing filler metal layer 13 is solidified and the superabrasive grains 14 are bonded to the wire.
  • FIG. 2 (c) is a cross section of the wire after this process, and shows a state in which the solder of the molten brazing filler metal layer 13 is attracted around the superabrasive grains 14 by surface tension to form a solid fillet 13a. Show. That is, the feature of this method is that the fillet 13a is formed around the bonding surface of the superabrasive grains 14, and the superabrasive grains 14 are joined in a stable form.
  • the metal plating in the subsequent process also smoothly surrounds the superabrasive grains 14, and unlike a bonded state of superabrasive grains by electrodeposition in which the fillet 13a is not formed, a wire saw having a large abrasive grain holding power is formed. It is obtained.
  • the superabrasive particles excessively adhering to the superabrasive particles 14 due to the cohesive force between the superabrasive particles are not in contact with the brazing filler metal layer 13 and are therefore bonded to the wire also in the third step. Rather, for example, the superabrasive grains 14 on the wire are removed by applying an air flow in the cooling zone 34 to form a single layer.
  • the wire produced in the third step is referred to as a superabrasive temporary wire 12.
  • the adhesive strength of the superabrasive grains to the wire is determined by the solder and superabrasive grains of the brazing material layer 13 and the adhesive strength of the solder and wires. Is not enough to become a wire saw. Therefore, when used for a wire saw, it is necessary to fix the superabrasive grains to the wire more firmly by a fourth step described later.
  • the fourth step is a step of applying metal plating to the superabrasive temporary wire 12 and firmly attaching the superabrasive grain 14 to the wire as shown in FIG.
  • FIG. 5 is a schematic diagram showing the manufacturing process of the fourth step.
  • the superabrasive temporary wire 12 manufactured in the third step is fed out from the feeding reel 40, and passes through a degreasing tank 42, a pickling tank 43, a water washing tank 44, a plating tank 45, and a water washing tank 46. It is taken up on a take-up reel 47.
  • an anode 45c and a power supply roll 45b for using a wire as a cathode are installed, and a DC power supply 45a is installed.
  • a metal plating layer is formed on the surface of the superabrasive temporary wire 12.
  • the superabrasive surface is conductive, a metal plating layer is formed not only on the brazing filler metal layer of the wire but also on the superabrasive grain, and the superabrasive grain is extremely firmly fixed to the wire.
  • a superabrasive fixing wire having the cross section shown in FIGS. 2D and 1 is obtained. The thickness of the metal plating is controlled by the traveling speed of the wire and the plating current.
  • the thickness of the metal plating formed in the fourth step is too thick because the metal plating is placed on the surface of the superabrasive grains 14 as well. And it takes time to dress before using the wire, and the efficiency drops. Therefore, it is preferably 3 to 10 ⁇ m, more preferably 3 to 5 ⁇ m.
  • this invention is not limited to such a form at all, and of course, it can implement with a various form in the range which does not deviate from the summary of this invention.
  • the wire saw of Example 1 was manufactured using the processes shown in FIGS. Using a brass-plated piano wire with a diameter of 180 ⁇ m as the wire and using a Sn—Ag alloy solder having a melting temperature of 220 ° C., a solder plating layer having a thickness of 2 to 2.5 ⁇ m was formed to prepare a pre-coated wire.
  • the precoated wire was wetted with a liquid, and nickel coated diamond abrasive grains having a size of 30 to 40 ⁇ m were dispersed and adhered at a wire traveling speed of 20 m / min, and melted and solidified to produce a superabrasive temporary wire.
  • FIG. 7A is an enlarged photograph of this superabrasive temporary wire. Solder is drawn to the periphery of the superabrasive grains to form a fillet. For this reason, it seems that the thickness of the solder plating layer around the wire is at a submicron level.
  • FIG. 7B is an enlarged photograph of the completed wire saw after metal plating. It can be seen that the metal plating layer is coated so as to cover the fillet, and the superabrasive grains are completely fixed.
  • the wire saw of Comparative Example 1 has diamond abrasive grains fixed to a wire by electrodeposition.
  • the wire diameter is 180 microns
  • the superabrasive grains are diamond abrasive grains (average particle diameter 30 to 40 microns)
  • the electrodeposition material is nickel.
  • FIG. 7C is an enlarged photograph of the wire saw of Comparative Example 1.
  • the periphery of the adhesion surface of the superabrasive grains coated with metal plating looks like a black shadow, this is because there is no fillet of the solder plating layer as the base of metal plating as in Example 1, so that the metal plating is It does not adhere sufficiently to the gap around the adhesion surface, indicating that the metal plating on the surface of the wire and the metal plating on the surface of the superabrasive grain are not sufficiently combined.
  • Wire material Brass plated piano wire Wire diameter: 179 ⁇ m Brazing material composition: Sn-0.7Cu-0.05Ni-Ge Diamond average particle diameter: about 50 ⁇ m Metal plating composition: Nickel Metal plating thickness: 7 ⁇ m Brazing material layer thickness: about 1 ⁇ m Brazing material layer thickness ratio (ratio to diamond average particle size): approx. 2%
  • Wire material Brass plated piano wire Wire diameter: 179 ⁇ m Brazing material composition: Sn-0.7Cu-0.05Ni-Ge Diamond average particle diameter: about 50 ⁇ m Metal plating composition: Nickel Metal plating thickness: 7 ⁇ m Brazing material layer thickness: about 2.5 ⁇ m Brazing material layer thickness ratio: about 5%
  • FIG. 8A is a photograph of the wire saw of Example 2 before processing, and FIG. 8B is an enlarged photograph thereof.
  • FIG. 9A is a photograph of the wire saw of Example 3 before processing, and FIG. 9B is an enlarged photograph thereof.
  • the thickness of the brazing material layer is suppressed to about 2% as in Example 2, as can be seen from FIG. 8, the R of the metal plating surface at the base of the diamond is small.
  • the thickness of the brazing filler metal layer is about 5% as in Example 3
  • R is larger than that of the wire saw of Example 2 as can be seen from FIG. This is because the fillet when the diamond is temporarily fixed to the brazing material layer becomes larger as the brazing material layer is thicker, and therefore the R of the surface of the metal plating laminated thereon becomes larger accordingly.
  • Example 2 (Processing conditions) In both Example 2 and Example 3, a wire traveling speed (linear speed) was set to 500 m / min, and a sapphire ingot having a length of 49 mm was sliced to produce a wafer.
  • linear speed linear speed
  • the surface roughness was measured using a surface roughness measuring instrument “SURFCOM-1500-SD3” manufactured by Tokyo Seimitsu.
  • FIG. 10 and FIG. 11 show graphs of the results of the processing test using the wire saws of Example 2 and Example 3 (sledge and TTV), respectively.
  • the average value of the warp of each wafer produced by slicing is 8.178 ⁇ m, which is a very small value, stable with little variation, and has excellent processing accuracy.
  • TTV is the thickness variation ( ⁇ m) within one wafer, and is obtained by the difference between the maximum and minimum values of the thickness at three locations. It can be seen that the average TTV is as small as 9.529 ⁇ m, and it can be processed to a uniform thickness.
  • the average value of warpage of each of the 50 wafers is 12.999 ⁇ m, which is excellent in processing accuracy although inferior in processing accuracy compared to Example 2.
  • the reason for being inferior to Example 2 is that the R of the metal plating surface at the base of the diamond becomes relatively large, the diamond does not fall off, the discharge of chips is poor, the line is thin, the sharpness is poor. The sled is thought to have grown. It can be seen that the average TTV is as small as 9.020 ⁇ m and can be processed to a uniform thickness.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Polishing Bodies And Polishing Tools (AREA)

Abstract

【課題】レジンボンド法で問題とされている寿命が短い点、電着法で問題とされている生産性が悪くコスト高であるという点、ろう付け法で問題とされている高炭素鋼が使えずコスト的に優位でないという点、ろう付け後に超砥粒に内部応力が発生して超砥粒が割れたり欠けやすくなるという点をいずれも解決でき、長寿命で生産性が高く、切断加工能力に優れた超砥粒固定式ワイヤソーを提供せんとする。 【解決手段】超砥粒14を仮固定するろう材層13、及び超砥粒14を保持するための金属めっき層16の二層を備え、ろう材層13の厚みを超砥粒14の平均粒径の10%以下とした。予めワイヤ10表面にろう材層13を形成し、その上に超砥粒14を単層に分散・付着させた後、表面を溶融・固化することにより超砥粒14がその付着面で接合した超砥粒仮付けワイヤ12となし、該超砥粒仮付けワイヤ12を金属めっきする。

Description

超砥粒固定式ワイヤソー、及び超砥粒固定式ワイヤソーの製造方法
 本発明は、シリコンやセラミック、サファイヤなどの硬質材料の切断工具として好適な超砥粒固定式ワイヤソーに関する。
 現在、シリコンやセラミック、サファイヤなどの硬質材料のマルチワイヤソーによるスライス加工において、ワイヤ表面にダイヤモンド砥粒を固着させたダイヤモンドワイヤ工具が一般化している。これらのダイヤモンドワイヤ工具において、ダイヤモンド砥粒をワイヤに固着する方法には現在、大きく分けて3種類の方法が存在している。レジンボンドによる方法、電着による方法、ろう付けによる方法の3つである。
 レジンボンドによる方法は、例えばフェノール樹脂とダイヤモンドの混合物をピアノ線であるワイヤの表面にコーティングして焼付け、ダイヤモンドがフェノール樹脂の硬化によってワイヤに固着される。この方法は生産性がよく、超砥粒の量の多寡の調整はでき、安価で長尺のワイヤソーを製作することができる。しかしながら、レジンによる保持力は弱いため、使用中にダイヤモンドが次々脱落する。このため切れ味の低下やワイヤ径の細りなどが生じ、寿命が短いという欠点がある。これに対し、レジンボンドワイヤソーの砥粒保持力を高めるために、表面に金属層をめっきによって形成したワイヤソーが示されている(特許文献1参照)。しかしながら、基本的にワイヤの表面とレジンの接合力が超砥粒の保持力に影響すること、更に金属層も基本的にはレジンの表面に形成されるので、金属層とレジン層の剥離強度にも限界があり,硬質物質の切断に適した保持力を十分に確保することはできない。
 電着による方法は、ダイヤモンドの固定をニッケルめっき法により行うものであり、たとえばダイヤモンドを布袋に満たしてニッケルめっき液中に沈め、ピアノ線であるワイヤをこの布袋に貫通させ陰極とし、めっき液中に設けたニッケル陽極間に通電する。ワイヤはダイヤモンドとめっき液中でニッケルを析出し次第に太る。このときダイヤモンドはニッケル膜中に取り込まれて、ワイヤの表面に軽く固着される。このめっきはワイヤをゆっくり巻き取りながら連続で行う。前記の布袋から出たワイヤは、析出したニッケルの厚みが所定の厚みになるまで引き続きめっき液中でめっきされる。この電着法で固着されたダイヤモンドの保持力は比較的強い。しかし、この方法においては、ダイヤモンドの固着がめっきの析出速度で決まるため生産が非常に遅く、生産性が悪くコスト高である。また、超砥粒の付着量を多くすることなど調整が難しい。
 ろう付け法による方法としては、金属ワイヤとろう付け金属接合材或いははんだ付け金属接合材により超砥粒をワイヤに固着したワイヤソーが提案されている(例えば、特許文献2、3参照。)。特許文献2記載のろう付け法においてろう付け金属接合材を使った場合、800~950℃の熱処理が必要であり、安価な高強度炭素鋼などのワイヤでは強度が大きく劣化するためワイヤソーとして使えない。実施例ではワイヤに高炭素鋼を使いつつ880℃、30分間の真空下でろう付けした例が示されているが、強度面で実用に耐えるとは思われない。また、同じく特許文献2の他の実施例には、はんだ付け金属接合材を使ったものとして、はんだ組成の金属(96%Sn/4%Ag粉末99gとCu粉末1g)にダイヤモンド粉末が適量混合されたペーストを通って250μm径のInconel 718ワイヤが350℃の管状炉を引っ張られ、ダイヤモンド被覆ワイヤを得た例が示されているが、ダイヤモンド砥粒の保持力は基本的にSnの強度に影響され、ニッケル電着に及ばない。
 また特許文献3では、レジンボンド法と電着法の欠点・課題を解決するためとしてろう付けによる方法が提案され、この場合も固着強度を確保するためにろう材による固着を採用している。ろう材としてたとえば、Cu-Ag-Ti合金(溶融温度700℃以上)の採用が望ましいとあり、そのために高温下にさらされても強度が低下しないタングステンワイヤを線材に使うことが望ましいとされている。線材として広く使われているピアノ線、高炭素鋼が使えないことはコスト面で優位性を減じる原因になっている。また高温下でのろう付けのために真空中或いは不活性ガス雰囲気でのろう付けが必要であり、設備面或いは操業面で煩雑になるという面も課題となっている。この課題を克服するために、500~600℃で溶融するろう材を採用し、熱処理時に20%以上の強度低下をきたさないステンレス鋼材のワイヤを採用することも提案されているが(特許文献4参照)、ピアノ線や高炭素鋼よりなるワイヤには強度面、コスト的には及ばず、依然として課題が残っている。つまりろう付け法においては、超砥粒の多寡の調整ができるが、砥粒保持力を電着並みに高めようとすると、高温ろう材が必要となり、タングステンなどの耐熱芯線が必要となり、コスト的に高くなる。
 また、超砥粒とろう材との熱膨張率の差から、ろう付け後に超砥粒に内部応力が発生し、超砥粒が割れたり欠けやすくなるという問題がある。これを解決するものとしてワイヤ表面に超砥粒をロウ付けにより固定した後、さらに超砥粒をめっきで埋め込んだものが提案されている(特許文献5参照)。より具体的にはワイヤ表面にダイヤモンド砥粒を接着剤で仮固定し、これら仮固定されたダイヤモンド砥粒の間にろう材粉末を充填して真空炉中で溶融・固化することによりダイヤモンド砥粒を平均粒径の35%ほど埋め込んだ状態で保持させ、更にその上からニッケルめっきにより平均粒径の70%まで埋め込んだものである。しかしながら、特許文献5のようにダイヤモンド砥粒がろう材層によって平均粒径の35%まで埋まってしまうと、切粉の排出が悪くなり、これにより加工精度が悪くなる。また、加工中、超砥粒がろう材層に入り込んで沈んでしまい、ダイヤモンド砥粒の突き出し量が小さくなって切断加工能力が低下する原因となる。また、ワイヤ上に仮固定されたダイヤモンド砥粒の間にろう材粉末を充填して溶融・固化する方法では、このような作業は非常に煩雑で手間やコストがかかるうえ、ダイヤモンド砥粒とろう材層の間に空隙が生じることが避けられず、加工中にダイヤモンド砥粒が動いてしまい加工能力の低下や超砥粒の脱落の原因となる。また、ニッケルめっきについてもダイヤモンド砥粒とろう材層と金属めっき層の境界付近に空隙が形成されやすく、同じく加工能力の低下や超砥粒脱落の原因となる。
特開2007-253268号公報 特許第4008660号公報 特開2006-123024号公報 特開2008-221406号公報 特開2002-205272号公報
 そこで、本発明が前述の状況に鑑み、解決しようとするところは、レジンボンド法で問題とされている寿命が短い点、電着法で問題とされている生産性が悪くコスト高であるという点、ろう付け法で問題とされている高炭素鋼が使えずコスト的に優位でないという点、ろう付け後に超砥粒に内部応力が発生して超砥粒が割れたり欠けやすくなるという点をいずれも解決でき、長寿命で生産性が高く、切断加工能力に優れた超砥粒固定式ワイヤソーを提供する点にある。
 本発明は、前述の課題解決のために、ワイヤの表面に超砥粒を分散固定したワイヤソーであって、超砥粒を仮固定するろう材層、及び前記超砥粒を保持するための金属めっき層の二層を備え、前記ろう材層の厚みを前記超砥粒の平均粒径の10%以下としたことを特徴とする超砥粒固定式ワイヤソーを提供する。ここに平均粒径とは一般的なレーザー回折・散乱法により測定したものとする。
 ここで、ワイヤの表面に前記ろう材層を形成し、該ろう材層上に前記超砥粒を分散・付着させたうえで、該ろう材層の表面を溶融・固化することにより前記超砥粒がその付着面に仮固定され、更にめっき処理して前記金属めっき層を形成することにより超砥粒がワイヤ表面に保持されるものが好ましい。
 また、前記ろう材層の厚みを、前記超砥粒の平均粒径の1%以上5%未満としたものが好ましい。
 さらに、前記金属めっき層が、ニッケルめっき層又はニッケル合金めっき層であるものが好ましい。
 また、前記ろう材層が、Sn系、Sn-Cu合金系、Sn-Ag合金系又はSn-Sb合金系のはんだよりなるものが好ましい。
 また本発明は、ワイヤの表面に超砥粒を分散固定したワイヤソーであって、ワイヤの表面にろう材層を形成し、該ろう材層上に超砥粒を単層に分散・付着させたうえ、該ろう材層の表面を溶融・固化して超砥粒がその付着面で接合した超砥粒仮付けワイヤとし、更に該超砥粒仮付けワイヤをめっき処理して金属めっき層を形成することにより、超砥粒を仮固定する前記ろう材層、及び超砥粒を保持するための前記金属めっき層の二層より構成してなる超砥粒固定式ワイヤソーをも提供する。
 また本発明は、ワイヤの表面に超砥粒を分散固定したワイヤソーの製造方法であって、予めワイヤ表面にろう材層を形成し、該ろう材層上に超砥粒を単層に分散・付着させた後、該ろう材層の表面を溶融・固化することにより、超砥粒がその付着面で接合した超砥粒仮付けワイヤとなし、該超砥粒仮付けワイヤを金属めっきすることにより、前記超砥粒をワイヤの表面に固着させる超砥粒固定式ワイヤソーの製造方法をも提供する。
 第1の発明によれば、超砥粒を仮固定するろう材層、及び前記超砥粒を保持するための金属めっき層の二層を備え、ダイヤモンド等の超砥粒がろう材層によりワイヤに仮付けされ、更にその超砥粒が仮付けされたワイヤを金属めっきして該超砥粒を固着するので、レジンボンド法によるものに比べて超砥粒を保持する力がきわめて強固である。また電着法と比較して、超砥粒がろう材層により仮固定されるので、生産速度を高くすることができ、超砥粒の多寡の調整も容易である。特に、ろう材層の厚みを超砥粒の平均粒径の10%以下としたので、超砥粒とろう材との熱膨張率の差からろう付け後に超砥粒に内部応力が発生し超砥粒が割れたり欠けやすくなるという問題も生じなく、切粉の排出も良好で優れた加工精度を維持できるとともに、加工中に超砥粒がろう材層に沈んでしまうといったことも回避でき、超砥粒の突き出し量を維持して切断加工能力も維持できる。
 第2の発明によれば、超砥粒をろう材層により仮固定した際にろう材層と超砥粒との間にフィレットが形成され、ろう材及び金属めっきによる隙間のない強固な接合となって超砥粒の付着部への応力集中を防止することができる。したがって、ろう材層の厚みが超砥粒の平均粒径の10%以下であっても、超砥粒の間にろう材層を35%ほど埋め込んだうえで金属めっきしたものに比べてより強固な砥粒保持力を有し、またダイヤモンド砥粒の間にろう材粉末を充填するといった煩雑な作業が不要であり生産性に優れる。更に、電着法よりも耐久性(砥粒保持力)に優れたワイヤソーを提供できる。また、上記フィレットが大きすぎて切粉の排出が悪くなるといった弊害も回避できる。
 第3の発明によれば、ろう材層の厚みを、前記超砥粒の平均粒径の1%以上5%未満としたので、加工精度がさらに向上し、スライス加工時の被加工物の厚みのばらつきも小さく抑えることができる。
 第4の発明によれば、金属めっき層が、ニッケルめっき層又はニッケル合金めっき層であるので、強固な砥粒保持力を有する。
 第5の発明によれば、ろう付け法と比較して、はんだを用いていることから二百数十度以下の温度での製造が可能となり、タングステンやステンレスのワイヤ以外にピアノ線などの安価な高炭素鋼のワイヤを用いることができ、しかも真空炉を用いた煩雑な装置も不要であり、低コスト化を図ることができる。
 第6、第7の発明によれば、ダイヤモンド等の超砥粒がはんだ等のろう材層によりワイヤに仮付けされ、更にその超砥粒が仮付けされたワイヤをニッケルなどの金属でめっきして該超砥粒を固着するので、レジンボンド法によるものに比べて砥粒保持力がきわめて強固である。また電着法と比較して、超砥粒がろう材層により仮固定されるので、生産速度を高くすることができ、超砥粒の多寡の調整も容易である。また、この仮付けの際には、はんだ等のろう材層と超砥粒との間にフィレットが形成されたうえで、その上から金属めっきがされることとなる。したがって、ろう材及び金属めっきによる強固なフィレットによって隙間のない強固な接合となり、超砥粒付着部への応力集中を防止することができ、したがって電着法よりも更に耐久性(砥粒保持力)に優れたワイヤソーを提供できる。
本発明の代表的実施形態に係るワイヤソーを示す断面図。 (a)~(d)は同じくワイヤソーを製造する手順を示す説明図。 第1の工程の製造プロセスを示す模式図。 第2ないし第3の工程の製造プロセスを示す模式図。 第4の工程の製造プロセスを示す模式図。 (a)はワイヤソーの変形例を示す断面図、(b)はA部拡大断面図。 実施例1、比較例1のワイヤソーの拡大写真。 (a)は加工前の実施例2のワイヤソーの写真、(b)はその拡大写真。 (a)は加工前の実施例3のワイヤソーの写真、(b)はその拡大写真。 実施例2のワイヤソーによる加工試験の結果を示すグラフ。 実施例3のワイヤソーによる加工試験の結果を示すグラフ。
 1 ワイヤソー
 10 ワイヤ
 11 プリコートワイヤ
 12 超砥粒仮付けワイヤ
 13   ろう材層
 13a フィレット
 14 超砥粒
 15 液体層
 16 金属めっき層
 20 繰り出しリール
 21 フラックス塗布装置
 22 溶融はんだ槽
 23 冷却ゾーン
 24 巻取りリール
 30 繰り出しリール
 31 液体塗布装置
 32 超砥粒付着ゾーン
 32a 超砥粒散布装置
 33 加熱炉
 34 冷却ゾーン
 40 繰り出しリール
 42 脱脂槽
 43 酸洗い槽
 44 水洗い槽
 45 めっき槽
 45a 直流電源
 45b 給電ロール
 45c アノード
 46 水洗い槽
 47 巻取りリール
 次に、本発明の実施形態を添付図面に基づき詳細に説明する。図1は、本発明に係る超砥粒固定式ワイヤソーを示す断面図であり、図2はその製造工程を示す説明図である。図中符号1はワイヤソー、10はワイヤ、13はろう材層、14は超砥粒、16は金属めっき層をそれぞれ示している。
 本発明のワイヤソー1は、図1に示すように、ワイヤ10の表面に超砥粒14を分散固定したものであり、ワイヤ10の表面にろう材層13が形成され、該ろう材層13の上に超砥粒14が単層に仮固定されるとともに、その上から金属めっきすることにより超砥粒14をワイヤ表面に固着保持させた構造である。尚、本例では表面が導電性を有する超砥粒14を用いたことから金属めっき層16が超砥粒14の上にも被覆されているが、本発明はこれに限定されず、表面が導電性を有さない超砥粒を用いることもでき、その場合、図6(a),(b)に示すように、超砥粒14間のろう材層13の上に金属めっき層16が成長し、超砥粒14の間隙を隙間なく埋めて各超砥粒14を囲い込み、結果として超砥粒14が強固に固着されるのである。
 ワイヤ10は、はんだの溶融温度により強度が劣化しない種々の金属ワイヤを用いることができ、鉄、ニッケル、コバルト、クロム、タングステン、モリブデン、銅、チタン、アルミニウム及びそれらの合金のいずれかからなるものが好適に用いられる。特に、ピアノ線を含む高炭素鋼からなるものが安価且つ安定して入手でき、コスト低減できる点で好ましい。
 ろう材層13は、Sn系、Sn-Cu合金系、Sn-Ag合金系又はSn-Sb合金系のはんだを用いることが好ましい。これらのはんだ成分が好ましい理由は、次のとおりである。すなわち、450℃以下の金属接合材を一般的にはんだと称するが、本発明における狙いは、比較的安価で、かつ高強度のピアノ線を含む高炭素鋼からなるワイヤに超砥粒を固定したワイヤソーの提供である。ピアノ線などの高炭素鋼は300℃近辺を超える熱環境に一定時間以上さらされると強度が低下するため、本発明に適用すべきはんだは、300℃以下、望ましくは270℃以下の融点を持つはんだが望ましく、上述のはんだの成分により、300℃以下の融点のはんだが設計・製造できるからである。ろう材層13の厚みは、超砥粒14の平均粒径の10%以下とされる。より好ましくは、超砥粒の平均粒径の1%以上5%未満とされる。
 超砥粒14は、従来からのワイヤソーに用いられている種々の超砥粒を用いることができるが、本発明の狙いである高硬質のシリコン、セラミック、サファイヤなどを切断するには超砥粒で硬度の高いダイヤモンド、CBN、SiCのいずれか、或いはこれらの混合物を用いることが好ましい。
 超砥粒14には、はんだへの接合性を良好とするべく、ニッケル、銅、又はチタンの金属で被覆されている。特にニッケルや銅をコーティングした超砥粒はろう材とのヌレ性を確保でき、付着強度を維持できる点で好ましい。
 金属めっき層16は、好ましくは相互付着性を高められる点で超砥粒14又はその被覆金属と同種の金属からなるめっきが好ましく、例えばニッケルコートしたダイヤモンド砥粒14に対してニッケルめっき層又はニッケル合金めっき層を電気めっきで形成することが好ましい。
 以下、製造手順に沿ってワイヤソー1の詳細を説明する。ワイヤソー1の製造は、大きく分けて4つの工程からなる。
(第1の工程)
 第1の工程は、図2(a)に示すようにワイヤ10の表面にろう材層13を設ける工程である。ろう材層13は、例えばるつぼ内ではんだを溶融し、ワイヤを溶融したはんだの中を通して形成される。図3は、第1の工程の製造プロセスを示す模式図である。本プロセスは、ワイヤの繰り出しリール20から繰り出されたワイヤ10が、フラックス塗布装置21を経て、溶融はんだ槽22を通過して、その表面にろう材層(はんだ層)を形成し、冷却ゾーン23を通ってろう材層を固化し、プリコートワイヤ11として巻取りリール24に巻き取られるようにしたプロセスである。
 フラックス塗布装置21は、フラックスをノズルから吹き付ける方法のものや、フラックスの貯槽を通過させる方法のものなどがある。溶融はんだ槽22には、はんだを溶融させるに十分な加熱装置が設けられているものとする。また、溶融はんだ槽にワイヤが通せるように案内装置が設けられていて、ワイヤ10が溶融はんだ内を通過する。同時にワイヤ10の表面にろう材層13(はんだ層)が形成される。溶融はんだ槽22を離れたときにほとんど溶融はんだは固化しているが、固化をより確実にするため、巻取りリール24に巻き取られる前に冷却ゾーン23を設けてある。前述したように、図2(a)がこの第1の工程を終えて製造されたワイヤの断面を示すもので、ワイヤ10の表面にろう材層13が形成されている様子を示している。これをプリコートワイヤ11と称す。
 この第1の工程で形成されるろう材層13(はんだ層)の厚さは、はんだの溶融時の粘性・表面張力及び線の走行速度により変化するが、上述のとおり、超砥粒14の平均粒径の10%以下、より好ましくは1%以上5%未満が好ましい厚さとなる。具体的な厚さの数値は、超砥粒の平均粒径が40~60μmのとき2μm以下、超砥粒の平均粒径が10~20μmのとき1μm以下が好ましい。本例では溶融めっきとしているが、例えばスズの電気めっきによって金属めっき層を形成することもできるのは勿論である。
(第2の工程)
 第2の工程は、図2(b)に示すように、第1の工程で形成されたろう材層13に超砥粒14を単層に分散・付着させる工程である。例えば、はんだの溶融する温度以下で分解或いは蒸発する液体で第1の工程で製作したプリコートワイヤ11の表面を濡らし、その濡れたワイヤを超砥粒の入った容器内を通過せしめ、ワイヤ表面にその濡れにより超砥粒を付着させる。この場合、図2(b)には示していないが実際には、超砥粒相互の凝集力で、超砥粒の上に超砥粒が乗った状態がみられる。
 より具体的には、図4の模式図に示すように、繰り出しリール30から繰り出されたプリコートワイヤ11が液体塗布装置31にて表面が濡らされる。そして表面がぬれたプリコートワイヤ11が、超砥粒付着ゾーン32内の超砥粒散布装置32aを通過するときに表面に超砥粒14が付着する。ここまでが第2の工程である。これにより図2(b)に示すようにプリコートワイヤ11のろう材層13表面に液体層15が形成され、その液体の濡れにより超砥粒14がプリコートワイヤ11の表面に張り付いた状況となる。ここで、ワイヤの走行スピード等を調整することで超砥粒の付着密度をコントロールする機能を備えることが好ましい。
 尚、第2の工程を実施する方法は本例以外にも考えられる。例えば、表面を同じように濡らしたプリコートワイヤを超砥粒粉末の貯槽を通過させることでも行うことができるし、静電塗装の原理を使って超砥粒をプリコートワイヤに付着させることもできる。また、単なるファンデルワールス力や帯電により付着させることも可能である。いずれもワイヤの走行スピードや吹きつけ量のコントロールにより、超砥粒の付着量をコントロールできるのも特徴である。
(第3の工程)
 第3の工程は、第2の工程で超砥粒14を仮付着したワイヤのろう材層13を加熱溶融した後、冷却固化して超砥粒14をろう材層13表面に接合させ、仮付け(仮固定)する工程である。具体的には、図4の模式図に示すように、第2の工程に連続して行なわれ、超砥粒散布装置32を通過した超砥粒付着プリコートワイヤワイヤは加熱炉33に導かれて加熱される。この加熱炉33は、プリコートのろう材層13を溶融させるに十分な温度に加熱できるようになっており、加熱炉33内では、付着している液体層15の液体が蒸発し、同時にろう材層13のはんだが溶融し、蒸発した液体層15の液体に代わってろう材層13により超砥粒14がその接触面でワイヤに濡れた状況になる。このワイヤが加熱炉33を出て冷却ゾーン34を通ると、ろう材層13が固化され、超砥粒14はワイヤに接合されることとなる。
 図2(c)は、この工程を終えたワイヤの断面で、溶融したろう材層13のはんだが超砥粒14の周囲に表面張力で引き寄せられた後に固まりフィレット13aを形成している様子を示している。すなわち、この方法の特長は、超砥粒14の接着面の周辺にフィレット13aが形成された形となり、超砥粒14が安定した形で接合されることである。このフィレット13aが存在することにより、後工程の金属めっきも滑らかに超砥粒14を囲うこととなり、フィレット13aが形成されない電着による超砥粒の接合状態と異なり砥粒保持力の大きなワイヤソーが得られるのである。
 第2の工程で超砥粒相互の凝集力により超砥粒14上に余分に付着した超砥粒は、ろう材層13と接触していないので第3の工程においてもワイヤに接合されることはなく、たとえば冷却ゾーン34で空気の流れを当てることにより除去されてワイヤ上の超砥粒14は単層をなすこととなる。以下、第3の工程で作製されたワイヤを超砥粒仮付けワイヤ12という。この超砥粒のワイヤに対する接着力は、ろう材層13のはんだと超砥粒、はんだとワイヤの接着力により決まってくるが、ほとんど超砥粒の一面だけで接着される状況なので、接着力が不十分で、このままワイヤソーになるものではない。したがって、ワイヤソーに使う場合は、後述の第4の工程により超砥粒を更に強固にワイヤに固着させる必要がある。
(第4の工程)
 第4の工程は、図2(d)に示すように超砥粒仮付けワイヤ12に金属めっきを施し、超砥粒14をワイヤに強固に固着する工程である。図5は、第4の工程の製造プロセスを示す模式図である。本装置において、第3の工程で製作された超砥粒仮付けワイヤ12が繰り出しリール40から繰り出され、、脱脂槽42、酸洗い槽43、水洗い槽44、めっき槽45、水洗い槽46を経て巻取りリール47に巻き取られる。
 めっき槽45には、アノード45cとワイヤをカソードとするための給電ロール45bが設置され、直流電源45aが設置されている。このめっき槽45を通過する間に超砥粒仮付けワイヤ12の表面に金属めっき層が形成される。超砥粒表面が導電性である場合、ワイヤのろう材層の上のみならず超砥粒上にも金属めっき層が形成され、超砥粒はきわめて強固にワイヤに固着される。図2(d)及び図1の断面の超砥粒固定ワイヤが得られる。金属めっきの厚さは、ワイヤの走行速度、めっき電流によってコントロールされる。この第4の工程で形成される金属めっきの厚さは、本例のように導電性の被覆をした超砥粒14の場合、この超砥粒14表面にも金属めっきが乗るため、厚すぎるとワイヤ使用前のドレッシング(めだて)に時間がかかり効率が落ちる。したがって、好ましくは3~10μm、より好ましくは3~5μmである。
 以上、本発明の実施形態について説明したが、本発明はこうした形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲において種々なる形態で実施し得ることは勿論である。
 次に、本発明の製造方法で作製した実施例1のワイヤソーと、電着方法により作製した比較例1のワイヤソーを図7の写真に基づき説明する。
 実施例1のワイヤソーは、上述した図3~5のプロセスを用いて作製した。ワイヤとして直径180μmの真鍮めっきピアノ線を用い、溶融温度220℃のSn-Ag合金系はんだを用いて2~2.5μm厚のはんだめっき層を形成してプリコートワイヤを作製した。このプリコートワイヤを液体で濡らしたうえ、サイズ30~40μmのニッケルコートダイヤモンド砥粒をワイヤ走行速度20m/分で分散・付着させ、溶融固化して超砥粒仮付けワイヤを作製した。図7(a)はこの超砥粒仮付けワイヤの拡大写真である。はんだが超砥粒の周辺に引き寄せられてフィレットを形成している。このためワイヤ周辺のはんだめっき層の厚さはサブミクロンレベルになっているとみられる。
 次に、この超砥粒仮付けワイヤに対し、ワイヤ走行速度10m/分、電流20アンペアでニッケルめっきを10μmの厚さまで行った。図7(b)は金属めっき後の完成したワイヤソーの拡大写真である。金属めっき層はフィレット上をもカバーする形で被覆され、超砥粒が完全に被覆された形で固着されているのが分かる。
 比較例1のワイヤソーは、ダイヤモンド砥粒を電着でワイヤに固定したものである。ワイヤ径は180ミクロン、超砥粒はダイヤモンド砥粒(平均粒子径30~40ミクロン)、電着素材はニッケルである。
 図7(c)は比較例1のワイヤソーの拡大写真である。金属めっきで被覆されている超砥粒の付着面の周囲が黒い影のように見えるが、これは実施例1のように金属めっきの下地としてはんだめっき層のフィレットが存在しないため、金属めっきが当該付着面の周囲の隙間に十分に付着せず、ワイヤ表面の金属めっきと超砥粒表面の金属めっきとが十分に結合できていないことを示している。
 ワイヤソーを使用する際には超砥粒にワイヤの走行方向と逆に力がかかり、超砥粒とワイヤの間には超砥粒を引き剥がそうという力がかかるが、この力が比較例1のような電着による場合の形状では、金属めっきがのっていない超砥粒付着面に応力集中が生じ、超砥粒が脱落しやすい。これに対し、実施例1でははんだめっき層のフィレットが当該付着面の周囲に形成され、そのうえに金属めっきが確実に載って前記した応力集中を避けることができ、これが電着法よりも更に耐久性(砥粒保持力)に優れたワイヤソーが実現できた理由になっていることが分かる。
 次に、本発明の実施例として2種類のワイヤソー(実施例2及び実施例3)を作製し、加工試験を行なった結果について説明する。
(実施例2)
 ワイヤ素材:真鍮めっきピアノ線
 ワイヤ径:179μm
 ろう材組成:Sn-0.7Cu-0.05Ni-Ge
 ダイヤ平均粒径:約50μm
 金属めっき組成:ニッケル
 金属めっき厚:7μm
 ろう材層の厚み:約1μm
 ろう材層の厚みの割合(ダイヤ平均粒径に対する割合):約2%
(実施例3)
 ワイヤ素材:真鍮めっきピアノ線
 ワイヤ径:179μm
 ろう材組成:Sn-0.7Cu-0.05Ni-Ge
 ダイヤ平均粒径:約50μm
 金属めっき組成:ニッケル
 金属めっき厚:7μm
 ろう材層の厚み:約2.5μm
 ろう材層の厚みの割合:約5%
 図8(a)は実施例2のワイヤソーの加工前の写真、(b)はその拡大写真である。図9(a)は実施例3のワイヤソーの加工前の写真、(b)はその拡大写真である。実施例2のようにろう材層の厚みを約2%に抑えた場合、図8からわかるように、ダイヤの根元部の金属めっき表面のRが小さくなっている。これに対し、実施例3のようにろう材層の厚みが約5%の場合、図9からわかるように実施例2のワイヤソーよりもRが大きくなっている。これは、ダイヤをろう材層に仮固定した際のフィレットがろう材層が厚いほど大きくなり、したがってこれに積層される金属めっきの表面のRもその分大きくなるためである。
(加工条件)
 実施例2、実施例3とも、ワイヤーの走行速度(線速)を500m/minとし、長さ49mmサファイアインゴットをスライス加工してウェハを作製した。
(ソリ測定)
 東京精密製表面粗さ測定器「SURFCOM-1500-SD3」を用いて測定した。
 図10及び図11に、それぞれ実施例2、実施例3のワイヤソーによる加工試験の結果(ソリとTTV)のグラフを示す。実施例2のワイヤソーではスライス加工により34枚作製した各ウエハのソリの平均値が8.178μmとなり、非常に小さな値であり、且つばらつきが少なく安定しており、加工精度が非常に優れていることが分かる。TTVは、一枚のウエハ内での厚みのばらつき量(μm)であり、3箇所の厚みの最大と最小の値の差で求めたものである。TTVの平均も9.529μmと小さく、均一な厚みに加工できていることがわかる。実施例3のワイヤソーでは、50枚の各ウエハのソリの平均値が12.099μmであり、実施例2と比べて加工精度が劣るものの優れた加工精度である。実施例2に劣った理由としては、ダイヤの根元部の金属めっき表面のRが比較的大きくなり、ダイヤの脱落もなく切粉の排出が悪くなり、線の細りも少なく、切れ味が悪くなってソリが大きくなったと考えられる。TTVの平均は9.020μmと小さく、均一な厚みに加工できていることがわかる。

Claims (7)

  1.  ワイヤの表面に超砥粒を分散固定したワイヤソーであって、超砥粒を仮固定するろう材層、及び前記超砥粒を保持するための金属めっき層の二層を備え、前記ろう材層の厚みを前記超砥粒の平均粒径の10%以下としたことを特徴とする超砥粒固定式ワイヤソー。
  2.  ワイヤの表面に前記ろう材層を形成し、該ろう材層上に前記超砥粒を分散・付着させたうえで、該ろう材層の表面を溶融・固化することにより前記超砥粒がその付着面に仮固定され、更にめっき処理して前記金属めっき層を形成することにより超砥粒がワイヤ表面に保持された請求項1記載の超砥粒固定式ワイヤソー。
  3.  前記ろう材層の厚みを、前記超砥粒の平均粒径の1%以上5%未満とした請求項1又は2記載の超砥粒固定式ワイヤソー。
  4.  前記金属めっき層が、ニッケルめっき層又はニッケル合金めっき層である請求項1~3の何れか1項に記載の超砥粒固定式ワイヤソー。
  5.  前記ろう材層が、Sn系、Sn-Cu合金系、Sn-Ag合金系又はSn-Sb合金系のはんだよりなる請求項1~4の何れか1項に記載の超砥粒固定式ワイヤソー。
  6.  ワイヤの表面に超砥粒を分散固定したワイヤソーであって、ワイヤの表面にろう材層を形成し、該ろう材層上に超砥粒を単層に分散・付着させたうえ、該ろう材層の表面を溶融・固化して超砥粒がその付着面で接合した超砥粒仮付けワイヤとし、更に該超砥粒仮付けワイヤをめっき処理して金属めっき層を形成することにより、超砥粒を仮固定する前記ろう材層、及び超砥粒を保持するための前記金属めっき層の二層より構成してなる超砥粒固定式ワイヤソー。
  7.  ワイヤの表面に超砥粒を分散固定したワイヤソーの製造方法であって、
     予めワイヤ表面にろう材層を形成し、
     該ろう材層上に超砥粒を単層に分散・付着させた後、
     該ろう材層の表面を溶融・固化することにより、超砥粒がその付着面で接合した超砥粒仮付けワイヤとなし、
     該超砥粒仮付けワイヤを金属めっきすることにより、前記超砥粒をワイヤの表面に固着させる超砥粒固定式ワイヤソーの製造方法。
PCT/JP2010/069294 2009-11-05 2010-10-29 超砥粒固定式ワイヤソー、及び超砥粒固定式ワイヤソーの製造方法 WO2011055692A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2010800503570A CN102770240A (zh) 2009-11-05 2010-10-29 超磨粒固定式线状锯和超磨粒固定式线状锯的制造方法
EP10828252A EP2497602A1 (en) 2009-11-05 2010-10-29 Super-abrasive grain fixed type wire saw, and method of manufacturing super-abrasive grain fixed type wire saw
US13/505,810 US20130032129A1 (en) 2009-11-05 2010-10-29 Super-abrasive grain fixed type wire saw, and method of manufacturing super-abrasive grain fixed type wire saw

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009254310A JP5515646B2 (ja) 2009-11-05 2009-11-05 ワイヤソー及びワイヤソーの製造方法
JP2009-254310 2009-11-05
JP2010-226829 2010-10-06
JP2010226829A JP2012081525A (ja) 2010-10-06 2010-10-06 超砥粒固定式ワイヤソー

Publications (1)

Publication Number Publication Date
WO2011055692A1 true WO2011055692A1 (ja) 2011-05-12

Family

ID=43969932

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/069294 WO2011055692A1 (ja) 2009-11-05 2010-10-29 超砥粒固定式ワイヤソー、及び超砥粒固定式ワイヤソーの製造方法

Country Status (5)

Country Link
US (1) US20130032129A1 (ja)
EP (1) EP2497602A1 (ja)
KR (1) KR20120102679A (ja)
CN (1) CN102770240A (ja)
WO (1) WO2011055692A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8425640B2 (en) 2009-08-14 2013-04-23 Saint-Gobain Abrasives, Inc. Abrasive articles including abrasive particles bonded to an elongated body
JP2015030071A (ja) * 2013-08-05 2015-02-16 新日鐵住金株式会社 ソーワイヤ及びコアワイヤ
US9028948B2 (en) 2009-08-14 2015-05-12 Saint-Gobain Abrasives, Inc. Abrasive articles including abrasive particles bonded to an elongated body, and methods of forming thereof
US9186816B2 (en) 2010-12-30 2015-11-17 Saint-Gobain Abrasives, Inc. Abrasive article and method of forming
US9211634B2 (en) 2011-09-29 2015-12-15 Saint-Gobain Abrasives, Inc. Abrasive articles including abrasive particles bonded to an elongated substrate body having a barrier layer, and methods of forming thereof
US9254552B2 (en) 2012-06-29 2016-02-09 Saint-Gobain Abrasives, Inc. Abrasive article and method of forming
US9375826B2 (en) 2011-09-16 2016-06-28 Saint-Gobain Abrasives, Inc. Abrasive article and method of forming

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8291895B2 (en) * 2007-09-05 2012-10-23 University Of South Carolina Methods, wires, and apparatus for slicing hard materials
TWI461249B (zh) * 2010-04-27 2014-11-21 Kinik Co 線鋸及其製作方法
TW201402274A (zh) * 2012-06-29 2014-01-16 Saint Gobain Abrasives Inc 研磨物品及形成方法
TWI474889B (zh) 2012-06-29 2015-03-01 Saint Gobain Abrasives Inc 研磨物品及形成方法
TWI477343B (zh) 2012-06-29 2015-03-21 Saint Gobain Abrasives Inc 研磨物品及形成方法
TW201441355A (zh) * 2013-04-19 2014-11-01 Saint Gobain Abrasives Inc 研磨製品及其形成方法
US10119368B2 (en) 2013-07-05 2018-11-06 Bruce A. Tunget Apparatus and method for cultivating a downhole surface
JP6698682B2 (ja) 2015-03-13 2020-05-27 べカルト ビンジャン スチール コード カンパニー.,リミテッドBekaert Binjiang Steel Cord Co.,Ltd 金属合金固定層を有する固定砥粒ソーワイヤーの製造方法及びそれにより得られるワイヤー
TWI621505B (zh) 2015-06-29 2018-04-21 聖高拜磨料有限公司 研磨物品及形成方法
GB2540385B (en) * 2015-07-15 2017-10-11 C4 Carbides Ltd Improvements in or relating to tool blades and their manufacture
JP7113365B2 (ja) * 2017-05-10 2022-08-05 パナソニックIpマネジメント株式会社 ソーワイヤー及び切断装置
JP7241294B2 (ja) * 2017-05-10 2023-03-17 パナソニックIpマネジメント株式会社 ソーワイヤー及び切断装置
US11358232B2 (en) * 2017-10-16 2022-06-14 Stewart-Macdonald Manufacturing Company Rounded nut files for stringed instruments
JP2021003806A (ja) * 2018-01-29 2021-01-14 スリーエム イノベイティブ プロパティズ カンパニー 糸状部材への印刷方法、及び糸状のこぎり
CN116900406B (zh) * 2023-09-12 2023-12-05 江苏聚成金刚石科技股份有限公司 一种超细直径金刚石线锯及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0379264A (ja) * 1989-08-18 1991-04-04 Tone Boring Co カツティングワイヤー工具
JPH048660B2 (ja) 1981-09-30 1992-02-17
JPH10118938A (ja) * 1996-10-17 1998-05-12 Osaka Diamond Ind Co Ltd 超砥粒砥石
JP2002205272A (ja) 2001-01-09 2002-07-23 Asahi Diamond Industrial Co Ltd 超砥粒工具及びその製造方法
JP2004174680A (ja) * 2002-11-28 2004-06-24 Kanai Hiroaki 固定砥粒式ソーワイヤ及び砥粒固着方法
JP2006123024A (ja) 2004-10-26 2006-05-18 Nakamura Choko:Kk 固定砥粒式ワイヤーソーとその製造方法
JP2007253268A (ja) 2006-03-22 2007-10-04 Noritake Super Abrasive:Kk レジンボンドワイヤソー
JP2008221406A (ja) 2007-03-13 2008-09-25 Nakamura Choko:Kk 固定砥粒式ワイヤーソー及びその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW394723B (en) * 1997-04-04 2000-06-21 Sung Chien Min Abrasive tools with patterned grit distribution and method of manufacture
US6065462A (en) * 1997-11-28 2000-05-23 Laser Technology West Limited Continuous wire saw loop and method of manufacture thereof
CN1238253A (zh) * 1998-06-04 1999-12-15 林心正 具不连续切割面的线锯
DE10022994A1 (de) * 2000-05-11 2001-12-20 Wacker Chemie Gmbh Nickel-Diamant beschichteter Sägedraht mit verbesserter Verankerung der Diamantpartikel
CN102712080B (zh) * 2010-06-15 2014-03-05 新日铁住金株式会社 锯线
TW201507812A (zh) * 2010-12-30 2015-03-01 Saint Gobain Abrasives Inc 磨料物品及形成方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH048660B2 (ja) 1981-09-30 1992-02-17
JPH0379264A (ja) * 1989-08-18 1991-04-04 Tone Boring Co カツティングワイヤー工具
JPH10118938A (ja) * 1996-10-17 1998-05-12 Osaka Diamond Ind Co Ltd 超砥粒砥石
JP2002205272A (ja) 2001-01-09 2002-07-23 Asahi Diamond Industrial Co Ltd 超砥粒工具及びその製造方法
JP2004174680A (ja) * 2002-11-28 2004-06-24 Kanai Hiroaki 固定砥粒式ソーワイヤ及び砥粒固着方法
JP2006123024A (ja) 2004-10-26 2006-05-18 Nakamura Choko:Kk 固定砥粒式ワイヤーソーとその製造方法
JP2007253268A (ja) 2006-03-22 2007-10-04 Noritake Super Abrasive:Kk レジンボンドワイヤソー
JP2008221406A (ja) 2007-03-13 2008-09-25 Nakamura Choko:Kk 固定砥粒式ワイヤーソー及びその製造方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8425640B2 (en) 2009-08-14 2013-04-23 Saint-Gobain Abrasives, Inc. Abrasive articles including abrasive particles bonded to an elongated body
US9028948B2 (en) 2009-08-14 2015-05-12 Saint-Gobain Abrasives, Inc. Abrasive articles including abrasive particles bonded to an elongated body, and methods of forming thereof
US9186816B2 (en) 2010-12-30 2015-11-17 Saint-Gobain Abrasives, Inc. Abrasive article and method of forming
US9248583B2 (en) 2010-12-30 2016-02-02 Saint-Gobain Abrasives, Inc. Abrasive article and method of forming
US9375826B2 (en) 2011-09-16 2016-06-28 Saint-Gobain Abrasives, Inc. Abrasive article and method of forming
US9211634B2 (en) 2011-09-29 2015-12-15 Saint-Gobain Abrasives, Inc. Abrasive articles including abrasive particles bonded to an elongated substrate body having a barrier layer, and methods of forming thereof
US9254552B2 (en) 2012-06-29 2016-02-09 Saint-Gobain Abrasives, Inc. Abrasive article and method of forming
JP2015030071A (ja) * 2013-08-05 2015-02-16 新日鐵住金株式会社 ソーワイヤ及びコアワイヤ

Also Published As

Publication number Publication date
US20130032129A1 (en) 2013-02-07
CN102770240A (zh) 2012-11-07
EP2497602A1 (en) 2012-09-12
KR20120102679A (ko) 2012-09-18

Similar Documents

Publication Publication Date Title
WO2011055692A1 (ja) 超砥粒固定式ワイヤソー、及び超砥粒固定式ワイヤソーの製造方法
JP5515646B2 (ja) ワイヤソー及びワイヤソーの製造方法
TWI466990B (zh) 磨料物品及形成方法
KR100430175B1 (ko) 초연마성 와이어 톱 및 이의 제조방법
US2562587A (en) Bonded abrasive
JP5516420B2 (ja) ソーワイヤー及びソーワイヤーの製造方法
TWI477356B (zh) 磨料物品及形成方法
JP6564474B2 (ja) 砥粒品および形成方法
US9533397B2 (en) Abrasive article and method of forming
JP5789077B2 (ja) 固定砥粒式ワイヤーソー及びその製造方法
JP4427531B2 (ja) ワイヤーソーの断線検出方法および品質検査方法ならびに切断物の製造方法
JP5256878B2 (ja) ワイヤーソーの製造方法
JP2006123024A (ja) 固定砥粒式ワイヤーソーとその製造方法
JP2007152485A (ja) ソーワイヤの製造方法
KR20150032717A (ko) 연마물품 및 형성방법
CN102166792B (zh) 金刚石线锯及其制备方法
CN101596749A (zh) 钎焊钻石线锯的制作方法
JP2004174680A (ja) 固定砥粒式ソーワイヤ及び砥粒固着方法
WO2014033188A1 (en) Method for making tools and constructions for tools
JP2000246654A (ja) 金属被覆超砥粒を用いたレジンボンドワイヤーソー
JP2012081525A (ja) 超砥粒固定式ワイヤソー
TWM449059U (zh) 單晶鑽石工具
JP2012213843A (ja) ダイヤモンドソーワイヤの製造方法及びその製造装置
KR101541128B1 (ko) 초 연마성의 절삭 공구 및 이의 제조 방법
TWI472416B (zh) 具有硬質薄膜之固定磨粒電鍍切割線

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080050357.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10828252

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010828252

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127014451

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13505810

Country of ref document: US