WO2011055670A1 - 電離放射線治療用スペーサー - Google Patents

電離放射線治療用スペーサー Download PDF

Info

Publication number
WO2011055670A1
WO2011055670A1 PCT/JP2010/069124 JP2010069124W WO2011055670A1 WO 2011055670 A1 WO2011055670 A1 WO 2011055670A1 JP 2010069124 W JP2010069124 W JP 2010069124W WO 2011055670 A1 WO2011055670 A1 WO 2011055670A1
Authority
WO
WIPO (PCT)
Prior art keywords
spacer
radiation therapy
ionizing radiation
synthetic polymer
polymer material
Prior art date
Application number
PCT/JP2010/069124
Other languages
English (en)
French (fr)
Inventor
巧 福本
勉 小畑
佳孝 田上
英一 上村
美智子 真鍋
Original Assignee
国立大学法人神戸大学
金井重要工業株式会社
アルフレッサファーマ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人神戸大学, 金井重要工業株式会社, アルフレッサファーマ株式会社 filed Critical 国立大学法人神戸大学
Priority to CN201080049365.3A priority Critical patent/CN102596317B/zh
Priority to KR1020187002684A priority patent/KR102070986B1/ko
Priority to JP2011539349A priority patent/JP5432281B2/ja
Priority to EP10828230.2A priority patent/EP2497534B1/en
Priority to US13/504,989 priority patent/US10525281B2/en
Publication of WO2011055670A1 publication Critical patent/WO2011055670A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F3/00Shielding characterised by its physical form, e.g. granules, or shape of the material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/04Protection of tissue around surgical sites against effects of non-mechanical surgery, e.g. laser surgery
    • A61B2090/0409Specification of type of protection measures
    • A61B2090/0436Shielding
    • A61B2090/0445Shielding by absorption
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/08Accessories or related features not otherwise provided for
    • A61B2090/0815Implantable devices for insertion in between organs or other soft tissues
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1092Details
    • A61N2005/1094Shielding, protecting against radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1092Details
    • A61N2005/1096Elements inserted into the radiation path placed on the patient, e.g. bags, bolus, compensators
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F1/00Shielding characterised by the composition of the materials
    • G21F1/02Selection of uniform shielding materials
    • G21F1/10Organic substances; Dispersions in organic carriers

Definitions

  • the present invention relates to a spacer for ionizing radiation therapy used for assisting ionizing radiation therapy.
  • Ionizing radiation therapy is a treatment that kills cells in the lesion by irradiating the lesion with radiation. In addition to being used for malignant tumors, this treatment is also used for some benign diseases such as keloid improvement and thyroid ophthalmopathy. Ionizing radiation therapy is one of the main treatments for malignant tumors, but the side effects of damage to normal organs and tissues around the lesion due to exposure are considered a problem. Efforts are being made to avoid organizational exposure. For example, by using a high energy electron beam that does not reach the deep part such as a particle beam and irradiating the lesion part closely, there is a method of irradiating the lesion part with a high dose that is impossible with external irradiation at once without side effects.
  • the treatment method by particle beam irradiation is superior to X-ray irradiation in terms of dose concentration, sharpness of dose distribution boundary, biological effect (killing effect), effect on hypoxic cancer, effect on radiation resistant cancer, etc. It can be said that. However, even in the case of particle beam irradiation, normal tissue exposure should be avoided as much as possible.
  • an artificial object that isolates a normal tissue at a position where there is no risk of exposure by being disposed between a lesion and an adjacent normal tissue.
  • an ionizing radiation treatment spacer (hereinafter sometimes simply referred to as “spacer”), a medical material made by combining a polytetrafluoroethylene stretched film and a polyurethane polymer, such as Gore-Tech, is used.
  • Gore-Tech Attempts have been made to use (R) (Non-Patent Documents 1 and 2).
  • Gore-Tex (R) is a medical material that is safe for use in living organisms, but has completed ionizing radiation therapy in order to eliminate problems that may occur when foreign objects are placed in the body. After that, another laparotomy was performed and the spacer was taken out.
  • Patent Documents 1 and 2 propose spacers that do not need to be removed after treatment.
  • the implant (spacer) disclosed in Patent Document 1 contains a biocompatible material that can be injected non-openly using a tube, hose, injection needle, or the like, and has a viscosity at 37 ° C. before injection. Is in the range of 20 to 3000 mPa ⁇ s, and the viscosity increases after injection compared to before injection.
  • the spacer contains a biocompatible material, no laparotomy is required to remove the implant after treatment. Furthermore, when a biodegradable material is used as the biocompatible material, the implant is not left in the body because it is naturally degraded in the living body.
  • the sponge (spacer) for radiation therapy disclosed in Patent Document 2 is composed of collagen having intermolecular crosslinking or a mixture of collagen and gelatin. Since this sponge has compression restoring properties, normal tissue is isolated by introducing the compressed sponge into the abdominal cavity with a tracker, etc., and restoring the sponge to its original shape using moisture in the abdominal cavity. be able to. In addition, although it is insoluble in water at the beginning of introduction into the abdominal cavity, it is absorbed into the body with the passage of time, so a laparotomy is not necessary because the sponge is removed after treatment.
  • JP 2005-287728 A Japanese Patent Laid-Open No. 11-253564
  • the implant disclosed in Patent Document 1 has a certain degree of viscosity, it is in a liquid state during or immediately after injection, so when injected into a portion where pressure is applied between organs or the like, As a result, there is a problem that the implant does not stay at the injection site and flows out to other parts. This problem is particularly noticeable when many implants are injected at one time, and in the worst case, due to the spilled implants, the normal tissue cannot be properly isolated and the risk of not being able to perform sufficient treatment. was there. In order to avoid this problem, when implants are injected little by little, the next implant cannot be injected until the previously injected implant is thickened, which requires a lot of work. It has occurred.
  • the radiation therapy sponge disclosed in Patent Document 2 is formed into a sponge shape by freeze-drying, but it is difficult to control the growth of ice crystals forming the pore portion of the sponge, so that the entire sponge has a uniform pore distribution. I can't. For this reason, since the radiotherapy sponge has a portion with poor flexibility, it has been difficult to arrange the radiotherapy sponge in close contact with an organ or the like without a gap. The gap formed between the radiation therapy sponge and the organ may become smaller with time due to intra-abdominal pressure, etc., but what was isolated at an appropriate interval immediately after spacer placement is isolated with time As a result, there was a risk of exposure to normal tissue.
  • collagen which is the main material of this sponge, is derived from animals produced mainly from cattle and pigs, so there is a risk of infection with BSE and endogenous retroviruses, which is also a problem in terms of safety. was there.
  • the present invention can reliably isolate the normal tissue adjacent to the lesion, and there is little change in the isolated state, and there is no risk of infection such as BSE, and the normal tissue is irradiated with ionizing radiation. It is an object of the present invention to provide a spacer for ionizing radiation therapy that can be effectively blocked.
  • the present inventors according to a spacer composed of a fiber assembly obtained by three-dimensionally entangled a fibrous material composed of a biocompatible synthetic polymer material, The inventors have found that the problems can be solved and completed the present invention.
  • this invention consists of the following.
  • a spacer for ionizing radiation therapy including a fiber assembly obtained by three-dimensionally intermingling a fibrous material made of a biocompatible synthetic polymer material.
  • 3. The ionizing radiation treatment spacer according to item 1 or 2, wherein the fiber aggregate has a thickness of 1 mm to 100 mm. 4).
  • a sheet comprising a fiber assembly for producing the ionizing radiation treatment spacer according to any one of items 1 to 3.
  • the spacer for ionizing radiation therapy of the present invention has high flexibility and rebound resilience, it can be easily placed in close contact with organs and the like without gaps between organs, etc. It can be reliably isolated.
  • the interfacial tension works between the organ and the spacer due to a large amount of moisture held on the spacer surface, and the spacer does not deviate from the position where it is attached to the organ, so there is little change in the posture of the part where the spacer is placed.
  • the spacer of the present invention avoids exposure due to the separation of normal tissue from the lesion, and at the same time, actively promotes radiation with moisture stored in innumerable voids formed in the fiber assembly. Shield.
  • the spacer of the present invention can be used for X-ray and gamma ray, heavy particle beam, and proton beam therapy.
  • Example 1 It is a perspective view solution figure which shows one Example of the spacer for radiotherapy concerning this invention.
  • Example 1 It is the illustration figure which expanded a part which shows the structure of the fibrous material of the Example shown in FIG. It is the photograph figure which expanded a part of surface of the Example shown in FIG.
  • the spacer for ionizing radiation therapy is characterized by comprising a fiber assembly obtained by three-dimensionally intermingling a fibrous material made of a biocompatible synthetic polymer material.
  • the ionizing radiation treatment spacer is not only a spacer having a size and shape that can actually be used for a subject during ionizing radiation treatment, but also before being cut into an appropriate size and shape.
  • a sheet containing fiber assemblies for making a state i.e., ionizing radiation treatment spacer.
  • the size and shape of the spacer are not particularly limited as long as the spacer has an appropriate thickness in order to have moisture content.
  • the thickness is not particularly limited as long as it can retain moisture, and may be, for example, 1 mm to 100 mm, preferably 2 mm to 20 mm, and more preferably 5 mm to 15 mm.
  • the biocompatible synthetic polymer material constituting the spacer for ionizing radiation therapy according to the present invention is a material that can be used for medical devices, is not toxic to living tissues / cells, and has no risk of infection. Specifically, it may be a polymer material that does not cause an inflammatory reaction, an immune reaction, or a thrombus formation reaction with respect to a living tissue or cell and is not derived from an animal but manufactured by chemical synthesis. Such a material may be a bioabsorbable synthetic polymer material or a non-bioabsorbable synthetic polymer material. Can be mentioned.
  • the bioabsorbable synthetic polymer material refers to a material that can be absorbed in the living body after a certain period of time after being placed in the living body.
  • Specific examples include poly (ester ether), poly (ester carbonate), poly (acid anhydride), polycarbonate, poly (amide-ester), polyacrylic acid ester and inorganic polymer.
  • poly (glycolic acid), poly (L-lactic acid), poly (DL-lactic acid), polyglactin (D / L 9/1), polydioxanone, glycolide / trimethylene carbonate (9/1) , Polycaprolactone, lactide (D, L, DL form), glycolide lactide (D, L, DL form) copolymer, glycolide- ⁇ -caprolactone copolymer, lactide (D, L, DL form) - ⁇ - Examples thereof include at least one selected from a caprolactone copolymer, poly (p-dioxanone), glycolide-lactide (D, L, DL form) - ⁇ -caprolactone lactide (D, L, DL form).
  • the spacer In the case of a spacer made of a bioabsorbable synthetic polymer material, the spacer only needs to stay while undergoing ionizing radiation therapy at a desired site after placement. Specifically, it is only necessary to stay for at least about two months after placement.
  • non-bioabsorbable synthetic polymer material examples include at least one selected from polyester, polyethylene, polypropylene, polybutester, polytetrafluoroethylene, polyamide, polyvinylidene fluoride, polyurethane, vinylidene fluoride / hexafluoropropylene.
  • the spacer of the present invention is composed of a fiber assembly obtained by three-dimensionally entanglement of a fibrous material made of the above-described biocompatible synthetic polymer material.
  • the fiber assembly is provided with a myriad of voids that are innumerably communicated with each other in a three-dimensional entanglement, and a large amount of water can be stored in the voids by utilizing capillary action or the like. Is.
  • the fiber assembly has high flexibility while having high rebound resilience because the fibrous objects are entangled three-dimensionally.
  • Such a fiber assembly can be a three-dimensional woven fabric, a three-dimensional knitted fabric, or a non-woven fabric.
  • Nonwoven fabrics are particularly preferable because they are easy to produce a fiber structure that is substantially uniform and has high flexibility, impact resilience, and water content at an arbitrary thickness and density.
  • a woven fabric or a knitted fabric as the fibrous material, a woven fabric or a knitted fabric can be produced using a monofilament yarn, a multifilament yarn, a twisted yarn, a braided yarn or the like, preferably a monofilament yarn.
  • the woven fabric or the knitted fabric can be produced by a method known per se.
  • non-woven fabrics fibers and monofilament yarns made of the above-described bioabsorbable synthetic polymer materials and non-bioabsorbable synthetic polymer materials, and multifilament yarns, twisted yarns and braids made from these are used for the fibrous material. be able to.
  • the nonwoven fabric can also be produced by a method known per se. Specifically, it can be produced by a production method such as a needle punch method, a chemical bond method, a thermal bond method, or a spunlace method.
  • fibers used for the fibrous material not only fibers having a circular cross section but also cross-section fibers such as chrysanthemums, stars, crosses, etc., and fibers having hollow cross sections provided with grooves on the fiber surface are used. May be. In this case, since the capillary phenomenon is more strongly expressed than when fibers having a circular cross section are used, a fiber assembly having high water absorption can be produced. Further, the crimping of the fibrous material is not particularly limited, but a fibrous material having a crimp in that a fiber aggregate having a high bulkiness and excellent resilience can be produced even with a small amount of fibrous material. Things are preferred.
  • the spacer of the present invention can be separated to a position where the normal tissue is not exposed to exposure by being disposed between the lesion (radiation irradiated portion) and the normal tissue adjacent to the lesion. Furthermore, the spacer contains moisture, so that the radiation can be shielded by the moisture and the normal tissue can be effectively prevented from being exposed.
  • the spacer of the present invention stores moisture in the voids in the fiber assembly using the capillary phenomenon due to the fibrous material, etc., but the ratio of the spacer containing moisture in terms of shielding radiation with moisture is:
  • the moisture content is based on weight, it is preferably at least 90% or more, preferably 95% or more, more preferably 99% or more.
  • the weight-based moisture content (A) can be expressed by the following equation with respect to the water weight (W) and the substance weight (V) when the radiation therapy spacer of the present invention is dried.
  • A [W / (W + V)] ⁇ 100
  • the spacer of the present invention does not need to be in a state of containing moisture before use, and may be in a state of containing water during ionizing radiation treatment. If it is in a water-containing state at the time of treatment, when the spacer is placed in the living body, the spacer may be placed in a pre-hydrated state, or a dry spacer may be placed, It may be absorbed by the spacer to contain moisture.
  • the moisture in the case of pre-hydration is not particularly limited as long as it is a liquid that can be used in a living body, but is preferably an isotonic solution, and specifically, a physiological saline solution can be used.
  • the spacer When placing a spacer in a dry state, after the spacer is placed at a desired site by surgical operation or the like and before receiving ionizing radiation treatment, the spacer is hydrated with in-vivo moisture, such as ascites. It should be. Usually, after the spacer is placed on the living body by surgical operation, ionizing radiation treatment is performed for about 2 weeks to 2 months, so that the spacer is in a water-containing state by the moisture in the living body before the treatment is started. When the spacer is in a water-containing state, interfacial tension acts between the organ and the like, and the spacer does not deviate from the position where the spacer is attached to the organ or the like, so that the posture change of the portion where the spacer is arranged is small.
  • the spacer or sheet of the present invention can be cut into a desired size and shape as required before being placed on a living body.
  • the size and shape of the spacer used for ionizing radiation therapy are the subject's age, weight, sex, the site to be subjected to ionizing radiation therapy, the size and shape of the object to be irradiated, the distance to be isolated, the isolation tissue and the residence time of the spacer It is set in consideration of various factors such as.
  • the thickness of the spacer can be appropriately determined in consideration of various factors in the same manner as described above. For example, if necessary, a plurality of spacers may be used in an overlapping manner. The thickness after stacking a plurality of the spacers is not particularly limited, and may be, for example, 100 mm or more.
  • the spacer of the present invention is used as an ionizing radiation treatment auxiliary tool for preventing other tissues from being exposed to the target tissue in ionizing radiation therapy. Accordingly, the part where the spacer is disposed is not particularly limited as long as it is a part according to the purpose of treatment.
  • ionizing radiation therapy may be performed for some benign diseases such as improvement of keloids and treatment of thyroid ophthalmopathy in addition to malignant tumors.
  • a malignant tumor it may be a solid cancer and is not particularly limited.
  • a head and neck tumor a skull base tumor, a non-small cell lung cancer, a mediastinal tumor, a hepatocellular carcinoma, a pancreas Cancer, stomach cancer, prostate cancer, rectal cancer, vaginal cancer, metastatic tumor (single), bone soft tissue tumor, and the like.
  • the spacer of the present invention can be used in ionizing radiation therapy for any of the malignant tumors listed here.
  • tissue or organs that are not the target of treatment are necessary for life support of the living body, for example, digestive organs such as the heart, stomach, large intestine, or small intestine, ionizing radiation therapy for tumors or the like found in the vicinity of these tissues or organs
  • digestive organs such as the heart, stomach, large intestine, or small intestine
  • ionizing radiation therapy for tumors or the like found in the vicinity of these tissues or organs
  • the type of radiation in ionizing radiation therapy in which the spacer of the present invention can be used can be appropriately selected depending on the purpose of treatment and other conditions.
  • any of proton rays and heavy particle rays may be used.
  • An appropriate marker can be attached to the spacer of the present invention.
  • the position and shape of the spacer can be easily monitored in vivo by X-ray fluoroscopy, X-ray CT, MRI, ultrasonic echo, radioisotope image, and the like.
  • Examples of the substance that can serve as a marker include metals and contrast agents, and examples of the contrast agent include iodine contrast agents and barium-containing contrast agents.
  • the spacer of the present invention is placed in the living body, it is preferable that the spacer is produced in a sterile room or sterilized after production.
  • a sterilization method known per se such as autoclave sterilization, EOG sterilization, ⁇ -ray sterilization, electron beam sterilization, plasma sterilization method can be applied, or a sterilization method developed in the future can also be applied.
  • FIG. 1 is a perspective view showing a spacer for ionizing radiation therapy according to the present invention.
  • Opepolix (R) Alfresa Pharma
  • This suture is a multifilament yarn produced by twisting three fibers drawn from a pellet. This yarn is a straight type yarn that is not crimped.
  • this yarn is made of polyglycolic acid, it is hydrolyzed when it is left in the living body, and the tensile strength of the yarn is reduced by half in about 3 weeks, and after about 3 months, the shape of the yarn disappears and is absorbed by the living body. Therefore, this thread has a bioabsorbable biocompatibility.
  • a number of these yarns cut to a length of about 50 mm were prepared, and a fiber web was produced from these yarns using a carding device. As shown in FIG.
  • the produced web was subjected to needle punch processing, and the yarn was entangled three-dimensionally to produce a nonwoven fabric having a basis weight of 0.0716 g / cm 2 and an apparent density of 0.0716 g / cm 3 and a thickness of 10 mm. . And this nonwoven fabric was cut out to the rectangular shape of 15 cm square, and was set as Example 1.
  • the spacer produced in this example is referred to as “nonwoven fabric spacer”.
  • the nonwoven fabric spacer of the present example is formed in a state where innumerable fine voids communicate with each other, and is formed in a state where voids are exposed on the surface.
  • Comparative Example 1 GORE-TEX (R) Spacer
  • a soft tissue patch product number 13150S: 150 mm ⁇ 200 mm ⁇ 2.0 mm
  • a tissue reinforcing material was used.
  • Example 1 for measuring the water content of the Gore-Tex ionizing radiation therapy compared to hydrous nonwoven spacers prepared in Test Example 1 of the spacer Example 1 (R) spacer was tested by the following procedure. Test method: 1. As a test sample, Example 1 and Comparative Example 1 were each cut into a rectangular shape of 5 cm square and placed on a petri dish. 2. Water was dropped on the edge of the test sample with a dropper, and the amount of water dropped when water oozed out to the bottom of the petri dish was measured to obtain the water retention amount. The results are shown in Table 1.
  • the moisture content is compared based on the weight-based moisture content.
  • the weight-based moisture content of the comparative example was 6.81%, whereas the example was confirmed to have a very high moisture content of 92.95%.
  • Example 2 Radiation blocking test with spacer for ionizing radiation therapy 1 Measurement of spacer water equivalent thickness
  • Two spacers of the present invention produced in Example 1 and Gore-Tex (R) as Comparative Example 1 Water with two spacers (thickness 4mm) obtained by CT imaging in the same way as normal particle radiotherapy, and by water measurement using a water equivalent thickness (measured value) obtained with a treatment planning device and a particle beam Comparison with equivalent thickness (measured value) was performed.
  • the water equivalent thickness is an index indicating the radiation stopping ability of the shield, and the thickness when the shielding ability of the shield is converted to water (the thickness of the aqueous medium contained in the shield). Equals).
  • the results are shown in Table 2.
  • the spacer of the present invention is a sheet formed by three-dimensionally interlacing yarns, and its water equivalent thickness is a value almost close to air. It was suggested that the beam of the particle beam cannot be stopped in the dry state for the spacer of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Radiology & Medical Imaging (AREA)
  • Pathology (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Radiation-Therapy Devices (AREA)
  • Surgical Instruments (AREA)
  • Materials For Medical Uses (AREA)

Abstract

 容易に生体に配置することができ、さらに放射線治療の後に、配置したスペーサーを取り出すための開腹手術の必要がなく、治療対象の組織からそれ以外の組織を効果的に隔離しうる放射線治療用のスペーサーを提供する。生体適合性の合成高分子材料からなる繊維状物を三次元的に交絡した繊維集合体を含む電離放射線治療用スペーサーによる。具体的には、厚みが1mm~100mmからなるスペーサーによる。

Description

電離放射線治療用スペーサー
 本発明は、電離放射線治療を補助するために用いられる電離放射線治療用スペーサーに関する。
 本出願は、参照によりここに援用されるところの日本出願特願2009-254145号優先権を請求する。
 電離放射線治療は、病巣部に放射線を照射することで病巣部の細胞を死滅させる治療法である。この治療は、悪性腫瘍に対して使用される他、ケロイドの改善、甲状腺眼症の治療など一部の良性疾患にも用いられる。電離放射線治療は、悪性腫瘍の主要な治療手段のひとつであるが、病巣部周囲の正常な器官や組織が被爆により損傷する副作用が問題とされており、このような副作用を低減するために正常組織の被爆を回避する努力がなされている。例えば、粒子線のような深部へは到達しない高エネルギー電子線を用いて病巣部に密着して照射することで、体外照射では不可能な高線量を一度に副作用なく病巣部に照射する方法が試みられている。粒子線照射による治療方法は、線量の集中性、線量分布境界の鋭さ、生物学的効果(殺傷効果)、低酸素がんに対する効果、放射線抵抗性がんに対する効果などX線照射に比べて優れているといえる。しかしながら、粒子線照射の場合でも、正常組織が被爆するのは極力回避すべきである。
 正常組織の被爆を回避する方法としては、病巣部に放射線を照射するときに、非常に正確に標的に対する位置決めを行い、そこに高エネルギー線を3次元的に高精度に集中させること(3次元照射法)などが挙げられる。さらに、照射部位を様々な機械的固定具及びプラスチックス製のシェルなどによって外部から固定し、標的の動きを少なくして正常組織の被爆を回避する方法もとられている。しかしながら、臓器の動きには呼吸運動や心拍といった生命活動に必要なものが含まれており、それらを完全に制御するわけにはいかない。
 上記の問題を解決するための手段として、病巣部と隣接する正常組織との間に配置することで正常組織を被爆の恐れのない位置に隔離する人工物(スペーサー)の提案がなされている。このような電離放射線治療用スペーサー(以下、単に「スペーサー」という場合もある。)としては、ポリテトラフルオロエチレンを延伸加工したフィルムとポリウレタンポリマーを複合化して作製された医療用の材料、例えばゴアテックス(R)等の使用が試みられている(非特許文献1、2)。ゴアテックス(R)は医療用の材料で生体に使用しても安全性は確保されているが、体内に異物を留置した場合に発生し得る問題を除去するために、電離放射線治療を終えた後は、再度の開腹手術を行って当該スペーサーを取り出していた。
 しかし、度重なる開腹手術は患者への負担とリスクを伴うものであり、スペーサーと正常組織が癒着していた場合には、癒着剥離などを行う必要があるため、さらに患者への負担とリスクが増大する。この問題を解決する手段として、治療後も取り出す必要のないスペーサーが特許文献1および特許文献2で提案されている。特許文献1で開示のインプラント(スペーサー)は、チューブ、ホース、注射針等を用いて非開放手術的に注入することができる生体適合性材料を含有してなり、注入前の37°Cにおける粘度が20~3000mPa・sの範囲にあり、注入後は注入前と比較して増粘するというものである。このスペーサーは、生体適合性材料を含有してなるので、治療後にインプラントを取り出すための開腹手術が必要ない。さらに生体適合性材料に生分解性材料を用いた場合には、自然に生体内で分解されるのでインプラントが体内に残ることがない。
 特許文献2で開示の放射線治療用スポンジ(スペーサー)は、分子間架橋を有するコラーゲン若しくはコラーゲンとゼラチンとの混合物で構成されているものである。このスポンジは圧縮復元性を有するので、圧縮状態のスポンジをトラッカー等によって腹腔内に導入し、腹腔内の水分等を利用してスポンジを元の形に復元させることで正常組織の隔離作業を行うことができる。また、腹腔内に導入当初は水には不溶であるが、時間の経過にしたがって体内に吸収されるので、治療後にスポンジを取り出すため開腹手術が必要ない。
特開2005-287728号公報 特開平11-253564号公報
第21回日本肝胆膵外科学会学術集会(2009、名古屋)MVS-8-11 日本外科学会雑誌第110巻 臨時増刊号(2) 155頁 WS-1-4 Biochem. Biophys. Res. Comm. 240: pp.793-797 (1997) Nature Med. 4: pp.321-327 (1998) Cancer Res. 53: pp.5841-5844 (1993)
 しかしながら、特許文献1で開示のインプラントは、ある程度の粘度を持っているとはいえ、注入中や注入直後は液状であるため、臓器間等の圧力がかかった部分に注入した場合には、圧力の影響でインプラントが注入箇所に滞留せずに他の部分に流出してしまう問題があった。特にこの問題は一度に多くのインプラントを注入した場合に顕著であり、最悪の場合には、流出したインプラントのせいで正常組織の適切な隔離が行えず、その結果十分な治療が行えなくなる危険性があった。この問題を避けるため、インプラントを少量ずつ注入した場合には、先に注入したインプラントが増粘するまでの間、次のインプラントを注入することができないため、作業に多くの時間を要するという問題が発生していた。
 また、特許文献2で開示の放射線治療用スポンジは、凍結乾燥によりスポンジ状にされるが、スポンジの細孔部分を形成する氷晶の成長制御が困難なため、スポンジ全体を均一な細孔分布にすることができない。このため放射線治療用スポンジには、柔軟性が乏しい部分があるので、放射線治療用スポンジを臓器等に空隙なく密着させて配置することが困難であった。放射線治療用スポンジと臓器等との間にできる空隙部分は、腹腔内圧等により時間経過とともに小さくなる場合があり、スペーサー配置直後は適切な間隔を以って隔離できていたものが時間経過とともに隔離が十分でなくなり、その結果、正常組織が被爆する危険性があった。また、放射線治療用スポンジを圧縮して使用した場合には、柔軟性の乏しい部分が体内で十分に復元せず、適切な隔離が行えない問題もあった。さらに、このスポンジの主材料であるコラーゲンは、主に牛や豚などから製造される動物由来のものであるため、BSEや内在性レトロウイルスに感染する危険性があり、安全性の面でも問題があった。
 そこで本発明は、病巣部と隣接する正常組織の隔離を確実に行え、且つその隔離した状態の変化も少なく、さらに、BSE等の感染症の危険性もなく、正常組織への電離放射線照射を効果的に遮断しうる電離放射線治療用スペーサーを提供することを課題とする。
 本発明者らは、上記課題を解決するために鋭意検討を重ねた結果、生体適合性の合成高分子材料からなる繊維状物を三次元的に交絡した繊維集合体からなるスペーサーによると、上記課題を解決しうることを見出し、本発明を完成した。
 すなわち本発明は、以下よりなる。
1.生体適合性の合成高分子材料からなる繊維状物を三次元的に交絡した繊維集合体を含む電離放射線治療用スペーサー。
2.生体適合性の合成高分子材料が、生体吸収性合成高分子材料又は生体非吸収性合成高分子材料である、前項1に記載の電離放射線治療用スペーサー。
3.繊維集合体の厚みが1mm~100mmである前項1又は2に記載の電離放射線治療用スペーサー。
4.前項1~3のいずれか1に記載の電離放射線治療用スペーサーを作製するための、繊維集合体を含むシート。
 本発明の電離放射線治療用スペーサーは、高い柔軟性と反発弾性を備えていることから、臓器間等に臓器等と空隙なく密着させた状態で配置することが容易で、病巣部から正常組織を確実に隔離することができる。また、スペーサー表面に多量に保持されている水分によって臓器等とスペーサーとの間に界面張力が働き、スペーサーが臓器等に張り付き配置した位置からずれないので、スペーサーを配置した部分の姿勢変化が少ない。さらに、本発明のスペーサーは、病巣部からの正常組織の離隔によって被爆を回避するのに併せて、繊維集合体に形成された無数の空隙中に蓄えられる水分で以って放射線を積極的に遮蔽する。これにより、従来より正常組織を被爆から確実に回避することが可能なので、照射線量を低く制限することなくがん細胞を死滅させるのに最適な放射線量を当て、より効果的に電離放射線治療を行うことができる。生体適合性合成高分子材料に生体吸収性材料を用いた場合は、電離放射線治療の間はスペーサーとして機能し、治療終了後は生体内に吸収される。そのため、電離放射線治療終了後、再度、開腹して当該スペーサーを取り出す必要がない点で、被験者に対して負担とリスクを軽減化することができる。本発明のスペーサーは、X線、ガンマ線のほか、重粒子線、陽子線治療時にも使用可能である。
本発明にかかる放射線治療用スペーサーの一実施例を示す斜視図解図である。(実施例1) 図1に示す実施例の繊維状物の構造を示す一部を拡大した図解図である。 図1に示す実施例の表面の一部を拡大した写真図である。
 本発明の電離放射線治療用スペーサーは、生体適合性の合成高分子材料からなる繊維状物を三次元的に交絡した繊維集合体からなることを特徴とする。本明細書において、電離放射線治療用スペーサーとは、電離放射線治療の際に、実際に被験者に対して使用されうる大きさ及び形状のスペーサーのみならず、適当な大きさ及び形状にカットする前の状態のもの、即ち、電離放射線治療用スペーサーを作製するための、繊維集合体を含むシートも含まれる。当該スペーサーの大きさや形状は、含水性を持たせるために適度な厚みを有するものであればよく、特に限定されない。厚みについては、水分を保持することが可能であればよく、例えば1mm~100mmとすることができ、好ましくは2mm~20mmであり、より好ましくは5mm~15mmとすることができる。
 本発明の電離放射線治療用スペーサーを構成する生体適合性の合成高分子材料は、医療用デバイスに使用可能であり、生体組織・細胞に対して毒性を持たず、感染症の恐れがない材料であり、具体的には生体組織や細胞に対して炎症反応・免疫反応・血栓形成反応を起こさない、動物由来ではなく化学合成によって製造された高分子材料であれば良い。このような材料であれば、生体吸収性合成高分子材料であってもよいし、あるいは生体非吸収性合成高分子材料であっても良いが、特に好適には生体吸収性合成高分子材料が挙げられる。
 生体吸収性合成高分子材料とは、生体内に留置して一定期間経過後に生体内に吸収されうる材料をいう。具体的にはポリ(エステルエーテル)、ポリ(エステルカーボネート)、ポリ(酸無水物)、ポリカーボネート、ポリ(アミド-エステル)、ポリアクリル酸エステル及び無機高分子等が挙げられる。より具体的には、ポリ(グリコール酸)、ポリ(L-乳酸)、ポリ(DL-乳酸)、ポリグラクチン(D/L=9/1)、ポリジオキサノン、グリコリド/トリメチレンカーボナート(9/1)、ポリカプロラクトン、ラクチド(D、L、DL体)、グリコリドーラクチド(D、L、DL体)共重合体、グリコリド-ε-カプロラクトン共重合体、ラクチド(D、L、DL体)-ε-カプロラクトン共重合体、ポリ(p-ジオキサノン)、グリコリド-ラクチド(D、L、DL体)-ε-カプロラクトンラクチド(D、L、DL体)から選択される少なくとも1種が挙げられる。生体吸収性合成高分子材料からなるスペーサーの場合は、当該スペーサーは、配置した後の所望の部位で電離放射線治療を受けている間滞留していればよい。具体的には、配置した後少なくとも2ヶ月程度滞留していれば良い。
 生体非吸収性合成高分子材料としてはポリエステル、ポリエチレン、ポリプロピレン、ポリブテステル、ポリテトラフルオロエチレン、ポリアミド、ポリビニリデンフルオライド、ポリウレタン、ビニリデンフルオロライド・ヘキサフルオロプロピレンから選択される少なくとも1種が挙げられる。
 本発明のスペーサーは、上記の生体適合性の合成高分子材料からなる繊維状物を三次元的に交絡した繊維集合体からなる。繊維集合体は、繊維同士が三次元的に交絡してなることで全体に無数の連通した空隙を略均一に備え、この空隙内に毛細管現象等を利用して多量の水分を蓄えることができるものである。また、繊維集合体は、繊維状物が三次元的に交絡していることにより、高い反発弾性を備えながらも、高い柔軟性を備えている。このような繊維集合体として、三次元織物、三次元編物、不織布のいずれかとすることができるが、その中でも、少ない量の繊維状物から嵩高なものが作製でき、スペーサー中の空隙の分布が略均一で、任意の厚み・密度で高い柔軟性・反発弾性・含水性を備えた繊維構造体を作製しやすい点で、特に不織布が好適である。例えば、織物又は編物とする場合、繊維状物としては、モノフィラメント糸、マルチフィラメント糸、撚糸、組み紐などの何れかに加工した糸、好ましくはモノフィラメント糸を用いて織物又は編物を作製することができる。織物又は編物は自体公知の方法で作製することができる。不織布の場合には、繊維状物に上述の生体吸収性合成高分子材料や生体非吸収性合成高分子材料からなる繊維やモノフィラメント糸、またこれらからつくられたマルチフィラメント糸、撚糸、組み紐を用いることができる。不織布についても自体公知の方法で作製することができる。具体的には、ニードルパンチ法、ケミカルボンド法、サーマルボンド法又はスパンレース法等の製法により作製することができる。なお、繊維状物に使用する繊維としては、断面円形の繊維だけでなく、断面が菊花状、星形、十字状形などの繊維表面に溝を備えた異形断面の繊維や中空繊維が用いられても良い。この場合には、断面円形の繊維を使用した場合より毛細管現象が強く発現するため、高い吸水力を備えた繊維集合体を作製することができる。また、繊維状物のクリンプ(捲縮)については、特に限定されるものではないが、少ない繊維状物でも嵩高く、反発弾性に優れた繊維集合体を作製できる点でクリンプを持った繊維状物が好適である。
 本発明のスペーサーは、病巣部(放射線照射部分)と病巣部と隣接する正常組織との間に配置することで、正常組織を被爆する恐れのない位置まで離隔することができる。さらに当該スペーサーは水分を含むことで、その水分を以って放射線を遮蔽し、正常組織が被爆するのを効果的に防御することができる。本発明のスペーサーは、繊維状物による毛細管現象等を利用して繊維集合体中の空隙に水分を蓄え含水するが、水分を以って放射線を遮蔽するという点でスペーサーが含水する割合は、重量基準含水率とした場合、少なくとも90%以上、好ましくは95%以上、より好ましくは99%以上とするのが好ましい。ここにおいて、重量基準含水率(A)とは、水重量(W)及び本発明の放射治療用スペーサーの乾燥時の物質重量(V)について、以下の式で表すことができる。
 A=〔W/(W+V)〕×100
 なお、本発明のスペーサーは、使用前から水分を含んだ状態にある必要はなく、電離放射線治療の際に含水している状態であれば良い。治療の際に、含水した状態となるのであれば、当該スペーサーを生体内に留置する際に、予め含水させて配置しても良いし、乾燥状態のスペーサーを配置し、生体内の水分を当該スペーサーに吸収させて水分を含ませても良い。予め含水させる場合の水分としては、生体に使用可能な液体であればよく、特に限定されないが、好ましくは等張液であり、具体的には生理食塩液を使用することができる。乾燥状態のスペーサーを配置する場合は、スペーサーを外科的手術等により所望の部位に配置した後、電離放射線治療を受けるまでの間に、当該スペーサーに生体内の水分、例えば腹水等により、含水されていれば良い。通常、スペーサーを外科的手術により生体に配置した後、約2週間~2ヶ月の間に電離放射線治療を受けるので、治療開始までに、生体内の水分により当該スペーサーが含水した状態となる。当該スペーサーは、含水した状態になることで臓器等との間に界面張力が働き、スペーサーが臓器等に張り付き配置した位置からずれないので、スペーサーを配置した部分の姿勢変化が少ない。
 本発明のスペーサー又はシートは、生体に配置させる前に、必要に応じて所望の大きさや形状にカットすることができる。電離放射線治療の際に使用するスペーサーの大きさや形状は、被験者の年齢、体重、性別、電離放射線治療を行なう部位、照射対象物の大きさや形状、隔離する距離、隔離する組織やスペーサーの滞留時間などの種々の要因を考慮して設定される。また、スペーサーの厚みについても、上記と同様に種々の要因を考慮して、適宜決定することができる。例えば必要に応じて、複数枚数のスペーサーを重ねて使用してもよい。複数枚数の当該スペーサーを重ねた後の厚さは特に限定されず、例えば100mm以上であってもよい。
 本発明のスペーサーは、電離放射線治療において、治療対象の組織からそれ以外の組織が被爆するのを防止する電離放射線治療用補助具として使用するものである。従って、当該スペーサーを配置する部位は、治療目的に応じた部位であればよく、特に限定されない。
 本発明において、電離放射線治療は悪性腫瘍に対する他、ケロイドの改善、甲状腺眼症の治療など一部の良性疾患に対して行なっても良い。電離放射線治療の対象が悪性腫瘍の場合は、固型がんであればよく、特に限定されないが、例えば頭頸部腫瘍、頭蓋底腫瘍、非小細胞肺がん、縦隔膜腫瘍、肝細胞がん、膵がん、胃がん、前立腺がん、直腸がん、膣がん、転移性腫瘍(単発)、骨軟部腫瘍等を挙げることができる。本発明のスペーサーは、これらに列挙するいずれの悪性腫瘍に対する電離放射線治療の際にも使用することができる。特に、治療対象でない組織や臓器が生体の生命維持にとって必要なもの、例えば心臓や、胃、大腸若しくは小腸等の消化器官の場合、これらの組織や臓器の近隣に見られる腫瘍等の電離放射線治療の際に本発明のスペーサーを使用することで、電離放射線治療による副作用を軽減することができ、有用である。
 本発明のスペーサーが使用可能な電離放射線治療における放射線の種類は、治療目的やその他の条件によって適宜選択することができる。例えば、X線やガンマ線のほか、陽子線や重粒子線の何れであってもよい。
 本発明のスペーサーには、適当なマーカーを付与することができる。当該スペーサーの位置、形状などは、X線透視、X線CT、MRI、超音波エコー、ラジオアイソトープ画像などによって、簡単に生体内におけるモニタすることができる。マーカーとなりうる物質としては、例えば金属、造影剤などが挙げられ、造影剤としては、例えばヨード造影剤、バリウム含有造影剤などが挙げられる。
 本発明のスペーサーは、生体内へ配置されることを考慮すると、無菌室で作製するか、または作製後滅菌されることが好ましい。滅菌方法としては、オートクレーブ滅菌、EOG滅菌、γ線滅菌、電子線滅菌、プラズマ滅菌法など自体公知の滅菌方法を適用することができ、又は今後開発される滅菌方法を適用することもできる。
 本発明の理解を深めるために、以下に実施例を示して具体的に説明するが、本発明は以下の実施例によってなんら限定されるものではない。
(実施例1)電離放射線治療用スペーサー
 図1は、本発明にかかる電離放射線治療用スペーサーを示す斜視図解図である。実施例1では、生体適合性の合成高分子材料からなる繊維状物として、合成吸収性縫合糸であるオペポリックス(R)(アルフレッサファーマ社製)を使用した。この縫合糸は、ペレットから引き出した繊維を3本撚り合わせて作製したマルチフィラメント糸である。この糸には、クリンプ加工は施されておらずストレートタイプの糸である。この糸はポリグリコール酸からなるので生体内に留置した場合には、加水分解されて糸の抗張力が約3週間で半減し、さらに約3ヶ月後には糸の形態が無くなり生体に吸収される。したがって、この糸は生体吸収型の生体適合性を有するものである。実施例1の電離放射線治療用スペーサーを作製するために、この糸を長さ約50mmにカットしたものを多数準備し、これら糸からカーディング装置を使って繊維ウェブを作製した。作製したウェブにニードルパンチ加工を施して図2に示すように糸を三次元的に交絡させ、目付け0.0716g/cm、見かけ密度0.0716g/cmで、厚み10mmの不織布を作製した。そして、この不織布を15cm角の矩形状に切り出して実施例1とした。以下、本実施例で作製したスペーサーを「不織布スペーサー」という。図3に示すように、本実施例の不織布スペーサーは無数の細かい空隙が連通した状態で形成されており、表面には空隙が露出した状態に形成されている。これにより、本実施例の不織布スペーサーは、毛細管現象の作用により生理食塩水や腹腔内の液体などと接触したとき、瞬時にそれらの液体を吸液し保液される。
(比較例1)ゴアテックス(R)スペーサー
 比較例として、組織補強材料として販売されているソフトティッシュパッチ(品番13150S:150mm×200mm×2.0mm)を用いた。
(実験例1)電離放射線治療用スペーサーの含水性試験
 実施例1で作製した不織布スペーサーと比較例1のゴアテックス(R)スペーサーの含水性を計測するため、以下の手順で試験を行った。
試験方法:
1.試験サンプルとして実施例1と比較例1とをそれぞれ5cm角の矩形状に切り出し、シャーレの上に静置した。
2.試験サンプルの縁にスポイトで水を滴下していき、シャーレの底に水が染み出てきたときの滴下水量を計量し、保水量とした。
 その結果を表1に示した。
Figure JPOXMLDOC01-appb-T000001
 表1に示したように、試験サンプルの厚みが異なるため重量基準含水率によって含水性の比較を行う。比較例の重量基準含水率が6.81%であるのに対し、実施例は92.95%と非常に高い含水性を備えていることを確認できた。
(実験例2)電離放射線治療用スペーサーによる放射線の遮断試験
1)スペーサー水等価厚の測定
 実施例1で作製した本発明のスペーサーを2枚重ねたもの及び比較例1としてのゴアテックス(R)スペーサーを2枚重ねたもの(厚み4mm)について、通常の粒子線治療と同様にCT撮影し、治療計画装置で求めた水等価厚(計測値)と粒子線ビームを使って実測より求めた水等価厚(実測値)との比較を行った。ここで、水等価厚とは、遮蔽体の放射線の阻止能を示す指標となるものであり、遮蔽体の遮蔽能力を水の場合に換算した場合の厚み(遮蔽体に含まれる水媒体の厚みに等しい)をいう。その結果を表2に示した。本発明のスペーサーは、糸を三次元的に交絡させて形成したシートであり、その水等価厚は、ほぼ空気に近い値であった。本発明のスペーサーについて、乾燥状態では粒子線のビームを止める事ができないことが示唆された。
Figure JPOXMLDOC01-appb-T000002
2)実施例1のスペーサーの吸水後の放射線の遮断試験
 ここでは、実施例1で作製した本発明のスペーサーについて、乾燥状態及び吸水した状態での水等価厚を測定した。その結果を表3に示した。乾燥状態では水等価厚が0.5mmであったが、吸水後水等価厚は11.6mmとなり、乾燥状態の約23倍であった。また、単位厚さあたりで計算した場合では、乾燥状態では0.05mm、吸水後は1.16mmであった。このことから、実施例1で作製した本発明のスペーサーは、吸水することで、高い遮蔽性能を発揮することが示されている。なお、吸水時にスペーサーの水等価厚が乾燥状態のスペーサーの厚みより厚い値となったのは、高い吸水力により吸水したことでスペーサーが膨張したことに起因すると考えられる。
Figure JPOXMLDOC01-appb-T000003

Claims (4)

  1. 生体適合性の合成高分子材料からなる繊維状物を三次元的に交絡した繊維集合体を含む電離放射線治療用スペーサー。
  2. 生体適合性の合成高分子材料が、生体吸収性合成高分子材料又は生体非吸収性合成高分子材料である、請求項1に記載の電離放射線治療用スペーサー。
  3. 繊維集合体の厚みが1mm~100mmである請求項1又は2に記載の電離放射線治療用スペーサー。
  4. 請求項1~3のいずれか1に記載の電離放射線治療用スペーサーを作製するための、繊維集合体を含むシート。
PCT/JP2010/069124 2009-11-05 2010-10-28 電離放射線治療用スペーサー WO2011055670A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201080049365.3A CN102596317B (zh) 2009-11-05 2010-10-28 电离放射线治疗用隔离体
KR1020187002684A KR102070986B1 (ko) 2009-11-05 2010-10-28 전리방사선 치료용 스페이서
JP2011539349A JP5432281B2 (ja) 2009-11-05 2010-10-28 電離放射線治療用スペーサー及びこれを作製するための、繊維集合体を含むシート
EP10828230.2A EP2497534B1 (en) 2009-11-05 2010-10-28 Spacer for ionized radiation therapy
US13/504,989 US10525281B2 (en) 2009-11-05 2010-10-28 Spacer for ionized radiation therapy

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009254145 2009-11-05
JP2009-254145 2009-11-05

Publications (1)

Publication Number Publication Date
WO2011055670A1 true WO2011055670A1 (ja) 2011-05-12

Family

ID=43969910

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/069124 WO2011055670A1 (ja) 2009-11-05 2010-10-28 電離放射線治療用スペーサー

Country Status (6)

Country Link
US (1) US10525281B2 (ja)
EP (1) EP2497534B1 (ja)
JP (2) JP5432281B2 (ja)
KR (2) KR20120095917A (ja)
CN (1) CN102596317B (ja)
WO (1) WO2011055670A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015098904A1 (ja) * 2013-12-25 2015-07-02 国立大学法人神戸大学 放射線治療用スペーサー
WO2015099089A1 (ja) 2013-12-27 2015-07-02 国立大学法人 群馬大学 体内埋込スペーサー
JP2017531487A (ja) * 2014-10-14 2017-10-26 アントニオ・サンブッセティAntonio SAMBUSSETI 骨再生のための吸収性デバイス
WO2018052059A1 (ja) * 2016-09-15 2018-03-22 国立大学法人神戸大学 放射線治療用スペーサー
US10589125B2 (en) 2016-03-14 2020-03-17 Ricoh Company, Ltd. Bolus and method for producing same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111569277B (zh) * 2020-05-13 2022-02-18 戴建荣 放疗靶区隔离体
CN116440428B (zh) * 2023-06-12 2023-08-22 北京普朗盾医疗科技有限公司 一种植入式可在体内反复充放的组织隔离装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11253564A (ja) 1998-03-09 1999-09-21 Koken Co Ltd 放射線治療用スポンジ
JP2005287728A (ja) 2004-03-31 2005-10-20 Kuraray Medical Inc 放射線治療補助用インプラント
JP2009512475A (ja) * 2005-10-22 2009-03-26 インヴィバイオ リミテッド 基準マーカ

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2423707A (en) * 1945-03-02 1947-07-08 Eastman Kodak Co Fabric or gauze of uniformly oxidized cellulose
GB954594A (en) * 1962-06-30 1964-04-08 Gentex Corp Flexible shield for ionizing radiations
US3961629A (en) * 1968-06-11 1976-06-08 American Cyanamid Company Using hydrophilic polyurethane laparotomy sponges
US4754745A (en) 1984-11-21 1988-07-05 Horowitz Bruce S Conformable sheet material for use in brachytherapy
US4714074A (en) * 1985-06-28 1987-12-22 Centre National De La Recherche Scientifique Method for protecting human or animal organs against radiation
US4706652A (en) * 1985-12-30 1987-11-17 Henry Ford Hospital Temporary radiation therapy
JPH0431071Y2 (ja) * 1986-12-26 1992-07-27
JPH0431071A (ja) 1990-05-29 1992-02-03 Nec Off Syst Ltd 印刷装置
US5045708A (en) * 1990-08-15 1991-09-03 Cooper William I Radiation shield for protecting internal body organs
AU666156B2 (en) * 1992-01-21 1996-02-01 Mcneil-Ppc, Inc. Debridement sponge
US7547302B2 (en) * 1999-07-19 2009-06-16 I-Flow Corporation Anti-microbial catheter
US6674087B2 (en) * 2001-01-31 2004-01-06 Worldwide Innovations & Technologies, Inc. Radiation attenuation system
US6875165B2 (en) * 2001-02-22 2005-04-05 Retinalabs, Inc. Method of radiation delivery to the eye
AU2003243755A1 (en) * 2002-06-24 2004-01-06 William R. Noyes Fillers and methods for displacing tissues to improve radiological outcomes
US7465847B2 (en) * 2003-08-29 2008-12-16 Fabian Carl E Radiopaque marker for a surgical sponge
US7754937B2 (en) * 2004-03-18 2010-07-13 Boehringer Technologies, L.P. Wound packing material for use with suction
EP1681077A1 (en) * 2005-01-12 2006-07-19 Acrostak Corp. A positioning device and a procedure for treating the walls of a resection cavity
WO2006078770A2 (en) * 2005-01-21 2006-07-27 Civco Medical Instruments Co., Inc. Creating temporary space between body tissues
US7726318B2 (en) * 2005-03-21 2010-06-01 Xoft, Inc. Radiation blocking patch for radio-therapy
US20060224034A1 (en) * 2005-04-05 2006-10-05 Kenneth Reever Radiation shield
EP2796544B1 (en) * 2005-09-09 2019-04-03 Duke University Tissue engineering methods and compositions
US20080039676A1 (en) * 2006-08-11 2008-02-14 Fischell Robert E Means and method for marking human tissue that may be malignant
US20080123810A1 (en) * 2006-11-03 2008-05-29 Kirkpatrick John P Bolus materials for radiation therapy and methods of making and using the same
CN101301496B (zh) 2007-05-08 2011-07-20 中国科学院化学研究所 放射性核素标记的可生物降解及吸收的高分子超细纤维膜及其制法和用途
US10081889B2 (en) * 2007-09-17 2018-09-25 Orfit Industries Hybrid fabric
US8721319B2 (en) * 2008-03-17 2014-05-13 Board of Regents of the University to Texas System Superfine fiber creating spinneret and uses thereof
CN101507843B (zh) * 2009-03-20 2012-11-21 中国人民解放军第三军医大学 多用途外科生物补片材料

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11253564A (ja) 1998-03-09 1999-09-21 Koken Co Ltd 放射線治療用スポンジ
JP2005287728A (ja) 2004-03-31 2005-10-20 Kuraray Medical Inc 放射線治療補助用インプラント
JP2009512475A (ja) * 2005-10-22 2009-03-26 インヴィバイオ リミテッド 基準マーカ

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
BIOCHEM. BIOPHYS. RES. COMM., vol. 240, 1997, pages 793 - 797
CANCER RES., vol. 53, 1993, pages 5841 - 5844
JOURNAL OF JAPAN SURGICAL SOCIETY, vol. 110, no. 2, pages 155 WS - 1,4
NATURE MED., vol. 4, 1998, pages 321 - 327
See also references of EP2497534A4 *
THE 21ST MEETING OF JAPANESE SOCIETY OF HEPATO-BILIARY-PANCREATIC SURGERY, 2009, pages MVS-8 - 11

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015098904A1 (ja) * 2013-12-25 2015-07-02 国立大学法人神戸大学 放射線治療用スペーサー
KR20160101955A (ko) 2013-12-25 2016-08-26 고쿠리츠다이가쿠호진 고베다이가쿠 방사선 치료용 스페이서
JPWO2015098904A1 (ja) * 2013-12-25 2017-03-23 国立大学法人神戸大学 放射線治療用スペーサー
EP3095483A4 (en) * 2013-12-25 2017-09-27 National University Corporation Kobe University Radiotherapy spacer
WO2015099089A1 (ja) 2013-12-27 2015-07-02 国立大学法人 群馬大学 体内埋込スペーサー
US10179248B2 (en) 2013-12-27 2019-01-15 National University Corporation Gunma University Implantable spacer
JP2017531487A (ja) * 2014-10-14 2017-10-26 アントニオ・サンブッセティAntonio SAMBUSSETI 骨再生のための吸収性デバイス
US10589125B2 (en) 2016-03-14 2020-03-17 Ricoh Company, Ltd. Bolus and method for producing same
WO2018052059A1 (ja) * 2016-09-15 2018-03-22 国立大学法人神戸大学 放射線治療用スペーサー
KR20190075062A (ko) 2016-09-15 2019-06-28 고쿠리츠다이가쿠호진 고베다이가쿠 방사선 치료용 스페이서
EP3513837A4 (en) * 2016-09-15 2020-05-13 National University Corporation Kobe University SPACER FOR RADIOTHERAPY

Also Published As

Publication number Publication date
KR20120095917A (ko) 2012-08-29
JPWO2011055670A1 (ja) 2013-03-28
CN102596317B (zh) 2014-12-03
US20120271093A1 (en) 2012-10-25
JP2014064940A (ja) 2014-04-17
US10525281B2 (en) 2020-01-07
EP2497534A4 (en) 2013-04-17
EP2497534A1 (en) 2012-09-12
JP5432281B2 (ja) 2014-03-05
EP2497534B1 (en) 2016-08-10
KR102070986B1 (ko) 2020-01-29
KR20180012346A (ko) 2018-02-05
CN102596317A (zh) 2012-07-18

Similar Documents

Publication Publication Date Title
JP5432281B2 (ja) 電離放射線治療用スペーサー及びこれを作製するための、繊維集合体を含むシート
US8454489B2 (en) Implant comprising radioactive seeds
US3739773A (en) Polyglycolic acid prosthetic devices
RU2569057C2 (ru) Армированный рассасывающийся многослойный материал для гемостатических применений
US20100228074A1 (en) Therapeutic and Directionally Dosed Implants
CH667586A5 (de) Verfahren zum modifizieren einer chirurgischen vorrichtung, die dazu bestimmt ist, im koerper eine stuetz-, halterungs- oder verstaerkungsfunktion auszuueben.
RU2422171C2 (ru) Имплантат для терапии внутренних стенок резекционной полости
US20100228300A1 (en) Radiosurgery Compatible Bone Anchor
US20230134658A1 (en) Auto contourable radiopaque fiducial marker without artifact
US8748508B2 (en) Method of forming and the resulting membrane composition for surgical site preservation
US20190110859A1 (en) Radiopaque tissue marker
Zhukovskii Problems and prospects for development and production of surgical suture materials
KR20160101955A (ko) 방사선 치료용 스페이서
NZ205863A (en) Absorbable haemostatic material containing lactide and glycolide homopolymers and copolymers
CN116763975A (zh) 一种用于组织定位的显影医用缝线及其制备方法
KR20190075062A (ko) 방사선 치료용 스페이서
Yohannes et al. Review on Biological Properties of Suture Materials. J of Clin Case Stu, Re-views & Reports 2 (3), 1-5
JPS5991962A (ja) 吸収性止血材料
CN117695451A (zh) 一种具有显影效果的可降解组织标记物及其制备方法和应用
CZ21682U1 (cs) Vlákno pro lékařské účely
TWM527310U (zh) 可於x-光下顯影之生物可吸收性骨釘
CZ2010721A3 (cs) Vlákno pro lékarské úcely a zpusob výroby vlákna
JP2016086753A (ja) 術後癒着モデル及びその作成方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080049365.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10828230

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011539349

Country of ref document: JP

REEP Request for entry into the european phase

Ref document number: 2010828230

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010828230

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127012524

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13504989

Country of ref document: US