WO2011055420A1 - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
WO2011055420A1
WO2011055420A1 PCT/JP2009/068802 JP2009068802W WO2011055420A1 WO 2011055420 A1 WO2011055420 A1 WO 2011055420A1 JP 2009068802 W JP2009068802 W JP 2009068802W WO 2011055420 A1 WO2011055420 A1 WO 2011055420A1
Authority
WO
WIPO (PCT)
Prior art keywords
memory cell
lines
cell array
digit
normal
Prior art date
Application number
PCT/JP2009/068802
Other languages
French (fr)
Japanese (ja)
Inventor
高晴 辻
Original Assignee
ルネサスエレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ルネサスエレクトロニクス株式会社 filed Critical ルネサスエレクトロニクス株式会社
Priority to PCT/JP2009/068802 priority Critical patent/WO2011055420A1/en
Priority to TW099137597A priority patent/TW201126533A/en
Publication of WO2011055420A1 publication Critical patent/WO2011055420A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/14Dummy cell management; Sense reference voltage generators
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1653Address circuits or decoders
    • G11C11/1657Word-line or row circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1659Cell access
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1673Reading or sensing circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1675Writing or programming circuits or methods
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • H10B61/20Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors
    • H10B61/22Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors of the field-effect transistor [FET] type

Definitions

  • the present invention relates to a semiconductor device in which thin-film magnetic memory elements utilizing the magnetoresistance effect are integrated on a substrate.
  • a magnetic random access storage device is a storage device using a memory cell as an element (TMR element) having a tunneling magneto-resistive (TMR) effect.
  • TMR element an element having a tunneling magneto-resistive effect.
  • Each memory cell of the MRAM device is provided at an intersection of a bit line and a digit line, and data is written by a current magnetic field generated when a current is passed through both the bit line and the digit line.
  • the memory cell in the same row or column as the memory cell to be written is in a state where a current is passed through one of the bit line and the digit line, that is, a half-selected state.
  • the amount of current at the time of writing is adjusted so that magnetic data is not inverted, but there is a possibility that erroneous data inversion occurs. Since the reliability as a memory device is impaired when erroneous data inversion occurs due to the disturb magnetic field in such a half-selected state, a technique for suppressing the disturb magnetic field has been developed.
  • the MRAM device described in Japanese Patent Application Laid-Open No. 2004-192727 includes a current source for supplying a compensation current to the bit line.
  • the compensation magnetic field generated by the compensation current prevents the data stored in the adjacent TMR element from being destroyed when data is written to the TMR element.
  • the current source for generating the compensation magnetic field is composed of the same number of current source units as that of the bit lines, and one current source unit is connected to one bit line.
  • a plurality of write word lines are arranged so as to intersect with the plurality of write word lines and correspond to write data.
  • a large number of memory cells are arranged in a checker pattern with respect to a plurality of data lines (bit lines) through which a current flows.
  • the MRAM device is provided with a reference memory cell (reference memory cell) for use as a reference resistor at the time of data reading.
  • a reference memory cell reference memory cell
  • one of the two reference memory cells is set to a high resistance state, and the other is set to a low resistance state.
  • an intermediate resistance value is created and used as a reference resistance.
  • the reference memory cell Since the electrical characteristics of the reference memory cell must be substantially the same as the electrical characteristics of a normal memory cell (normal memory cell), the reference memory cell has a continuous element arrangement with respect to a memory array composed of normal memory cells. Arranged to keep sex. In such a case, a normal memory cell and a reference memory cell may be arranged along the same digit line. As a result, at the time of data writing, there is a possibility that the reference memory cell provided corresponding to the digit line common to the normal memory cell to be written is in a deselected state and erroneously inverted. If the reference memory cell is erroneously inverted, the reference resistance is changed, and the MRAM device malfunctions.
  • An object of the present invention is to provide a semiconductor device including an MRAM device capable of preventing erroneous reversal of a reference memory cell due to a disturb magnetic field in a counter-selected state.
  • a semiconductor device includes a normal memory cell array, a reference memory cell array, a plurality of first digit lines, a plurality of second digit lines, a first digit line drive circuit, 2 digit line drive circuits.
  • a normal memory cell array a plurality of normal memory cells having a magnetoresistive effect element whose electric resistance changes according to magnetic data are arranged in a matrix.
  • the reference memory cell array includes a plurality of reference memory cells that have a magnetoresistive effect element and are used as a reference resistor by writing magnetic data in advance.
  • the plurality of first digit lines correspond to the rows of the normal memory cell array, respectively. Each first digit line is provided along a corresponding row.
  • a terminal portion of each first digit line in the first direction which is one of the row directions of the normal memory cell array is connected to the first power supply node.
  • the plurality of second digit lines individually correspond to at least some of the plurality of first digit lines.
  • Each second digit line extends along a first direction in connection with the end of the corresponding first digit line.
  • Each row of the reference memory cell array individually corresponds to each of the plurality of second digit lines, and is provided along the corresponding second digit line.
  • the second digit line drive circuit is connected to the first power supply node via the second digit line corresponding to the row including the reference memory cell to be written.
  • a second write current necessary for writing magnetic data is passed between the two.
  • the first write current that flows when data is written to the normal memory cell array flows through the first digit line corresponding to the row including the normal memory cell to be written. None flow through the digit line. Therefore, erroneous inversion of the reference memory cell due to the disturb magnetic field at the time of writing can be prevented.
  • FIG. 1 is a block diagram schematically showing an example of a configuration of a semiconductor device 1 according to an embodiment of the present invention. It is a block diagram which shows the whole structure of the MRAM apparatus 4 of FIG.
  • FIG. 3 is a circuit diagram schematically showing a configuration of each memory cell MC configuring the memory array 10 of FIG. 2. It is a figure which shows the relationship between a data write current and the magnetization reversal of a free magnetic layer.
  • FIG. 3 is a plan view schematically showing a layout of each part of the MRAM device 4 of FIG. 2.
  • FIG. 6 is a plan view showing details of a sub memory array region 6 in FIG. 5.
  • FIG. 7 is a plan view showing in detail the memory cell arrays 10N and 10R of FIG. FIG.
  • FIG. 8 is a circuit diagram showing configurations of a BL selection circuit 20 and a readout circuit 30 in FIG. 7.
  • FIG. 8 is a circuit diagram showing a configuration of DL drive circuits 60N and 60R in FIGS. 6 and 7;
  • FIG. 8 is a circuit diagram showing a configuration of WL drive circuits 50N and 50R in FIGS. 6 and 7;
  • FIG. 3 is a block diagram showing a configuration of a row decoding circuit 40 in FIG. 2. It is a top view which shows the specific example of the layout of each part of basic unit BU0 of FIG.
  • FIG. 13 is a cross-sectional view taken along a cutting line XIII-XIII in FIG.
  • FIG. 14 is a cross-sectional view taken along a cutting line XIV-XIV in FIG. 12.
  • FIG. 10 is a plan view illustrating an example of a configuration of a MOS transistor 61 in FIG. 9.
  • FIG. 10 is a plan view illustrating an example of a configuration of
  • FIG. 1 is a block diagram schematically showing an example of the configuration of a semiconductor device 1 according to an embodiment of the present invention.
  • a semiconductor device 1 is a microcomputer including a CPU (Central Processing Unit) and a memory controller 2, a clock generation circuit 3, and an MRAM device 4.
  • the microcomputer of FIG. 1 is shown as an example of an integrated circuit on which the MRAM device 4 is mounted.
  • many kinds of memories such as flash memory and DRAM (Dynamic Random Access Memory) are mixedly mounted in microcomputers for memories such as ROM (Read Only Memory) and RAM.
  • ROM Read Only Memory
  • RAM Random Access Memory
  • the MRAM device 4 receives a command and an address signal from the CPU and the memory controller 2 and receives a clock from the clock generation circuit 3.
  • the MRAM device 4 writes and reads data based on commands and address signals received from the CPU and the memory controller 2, and exchanges data signals with the CPU and the memory controller 2.
  • FIG. 2 is a block diagram showing the overall configuration of the MRAM device 4 of FIG.
  • MRAM device 4 performs random access to memory array 10 in response to command CMD, clock CLK and address signal ADD, thereby writing write data Din and reading read data Dout. And do.
  • MRAM device 4 includes a control circuit 140, a memory array 10, and an input / output circuit 150 for inputting / outputting address signal ADD, write data Din, and read data Dout.
  • the control circuit 140 controls the overall operation of the MRAM device 4 in response to the command CMD and the clock CLK.
  • the memory array 10 includes a plurality of normal memory cells MC (normal memory cell array 10N) and a plurality of reference memory cells MCR (reference memory cell array 10R) arranged in a matrix, as will be described with reference to FIGS. .
  • the normal memory cell MC is a memory cell for normal data storage.
  • the reference memory cell MCR is provided as a reference resistance when reading magnetic data stored in the normal memory cell MC, and generates a reference value for data determination of the normal memory cell MC.
  • Each memory cell MC, MCR includes a TMR element and an access transistor ATR.
  • a plurality of word lines WL, digit lines DL, and bit lines BL are arranged in memory array 10 in order to perform data reading and data writing to normal memory cells MC.
  • Word lines WL and digit lines DL are arranged in the row direction corresponding to the memory cell rows, and bit lines BL are arranged in the column direction corresponding to the memory cell columns.
  • a plurality of word lines WLR, digit lines DLR, and bit lines BLR are also provided for a plurality of reference memory cells MCR.
  • Input / output circuit 150 includes an address signal latch circuit 153, a write data latch circuit 151, and a read data latch circuit 152 that temporarily hold address signal ADD, write data Din, and read data Dout, respectively. .
  • the MRAM device 4 further includes a bit line (BL) selection circuit 20, a read circuit 30, a row decode circuit 40, a word line (WL) drive circuit 50, a digit line (DL) drive circuit 60, a column decode circuit 70, and a bit.
  • a line (BL) drive circuit 80 is included.
  • the BL selection circuit 20 selects a bit line BL corresponding to a normal memory cell MC to be read and a bit line BLR corresponding to a reference memory cell MCR used as a reference resistance at the time of data reading.
  • the read circuit 30 detects and amplifies the difference between the passing current of the normal memory cell MC selected at the time of data reading and the passing current of the reference memory cell MCR. Read circuit 30 outputs the detected and amplified signal to read data latch circuit 152.
  • the row decode circuit 40 receives the address signal ADD from the address signal latch circuit 153 and decodes the row address signal RA indicated by the address signal ADD.
  • the row decoding circuit 40 outputs a row selection signal as a decoding result in response to the command CMD and the clock CLK from the control circuit 140.
  • the row selection signal is used for performing row selection of the memory array 10.
  • the WL drive circuit 50 receives the row selection signal from the row decoding circuit 40 and activates the corresponding word lines WL and WLR when reading data from the normal memory cell MC.
  • the DL drive circuit 60 receives a row selection signal from the row decode circuit 40 and writes a data write current to the corresponding digit line DL or DLR during data writing.
  • the column decode circuit 70 receives the address signal ADD supplied from the address signal latch circuit 153 and decodes the column address signal CA indicated by the address signal ADD.
  • the column decode circuit 70 outputs a column selection signal as a decoding result in accordance with the command CMD and the clock CLK supplied from the control circuit 140.
  • the column selection signal is used for performing column selection in the memory array 10.
  • the BL drive circuit 80 receives a column selection signal from the column decode circuit 70, and writes data to the corresponding bit line BL or BLR in the direction corresponding to the write data Din from the write data latch circuit 151 at the time of data writing. Apply data write current.
  • the MRAM device 4 further supplies various reference voltages to be supplied to the read circuit 30, the row decode circuit 40, the word line drive circuit 50, the digit line drive circuit 60, the column decode circuit 70, the bit line drive circuit 80, and the like.
  • a reference power supply 160 to be generated is included.
  • FIG. 3 is a circuit diagram schematically showing the configuration of each memory cell MC, MCR constituting the memory array 10 of FIG. Since the configuration of the normal memory cell MC and the configuration of the reference memory cell MCR are the same, the normal memory cell MC will be described below as a representative.
  • memory cell MC includes a TMR element whose electrical resistance changes according to magnetic data, and an access transistor ATR.
  • the TMR element is a magnetoresistive element having a tunnel junction structure in which a thin insulating layer is sandwiched between a fixed magnetic layer and a free magnetic layer made of a ferromagnetic thin film.
  • the TMR element is in a low resistance state when the magnetization directions of the two layers are parallel, and is in a high resistance state when the magnetization directions are antiparallel, and stores information of “1” and “0” depending on the magnetization direction of the free magnetic layer. be able to.
  • a MOS Metal Oxide Semiconductor
  • Digit line DL, word line WL, bit line BL, and source line SL are arranged for memory cell MC. Digit lines DL and word lines WL extend in the row direction of the memory cell array, and bit lines BL extend in the column direction.
  • the source line SL extends in the column direction in the case of the normal memory cell MC, and extends in the row direction in the case of the reference memory cell MCR.
  • the row direction is also referred to as the X direction
  • the column direction is also referred to as the Y direction.
  • the direction along the X direction it is distinguished by attaching a sign such as + X direction or -X direction. The same applies to the Y direction.
  • the TMR element has one end connected to the bit line BL and the other end connected to the drain of the access transistor ATR.
  • the source of access transistor ATR is connected to ground node GND through source line SL.
  • the gate of the access transistor ATR is connected to the word line WL.
  • a digit line DL of a memory cell row (hereinafter also referred to as a selected row) corresponding to a selected memory cell to be data-written and a memory cell column (hereinafter referred to as a selected column) corresponding to the selected memory cell
  • the data write currents IDL and IBL are supplied to the bit line BL.
  • the direction of the current IBL flowing through the bit line BL can be switched according to the write data.
  • the direction of magnetization of the free magnetic layer is determined by the direction of the current IBL flowing through the bit line BL.
  • the word line WL corresponding to the selected memory cell is activated to a high voltage state, and the access transistor ATR becomes conductive.
  • a sense current flows from the bit line BL to the source line SL through the TMR element and the access transistor ATR.
  • the binary high voltage state and low voltage state such as signals, signal lines, and data are also referred to as “H level” and “L level”, respectively.
  • the above-described source line SL, bit line BL, and digit line DL are formed using a metal wiring layer.
  • the word line WL is integrated with the gate of the access transistor ATR in order to increase the degree of integration and simplify the manufacturing process. Therefore, the word line WL is formed using polysilicon, polycide, or the like.
  • FIG. 4 is a diagram showing the relationship between the data write current and the magnetization reversal of the free magnetic layer.
  • the horizontal axis shows the bit line current IBL flowing through the bit line BL.
  • the digit line current IDL flowing through the digit line DL is shown.
  • a combined magnetic field of a current magnetic field by the bit line current IBL and a current magnetic field by the digit line current IDL is applied to the TMR element.
  • a current I1 flows as the bit line current IBL
  • a current I2 flows as the digit line current IDL
  • a point I3 where the currents I1 and I2 intersect is shown.
  • Is a region outside the asteroid curve the magnetization direction of the free magnetic layer of the TMR element changes.
  • the intersection I3 is an area inside the asteroid curve, the data of the TMR element is not updated.
  • the inversion of magnetic data should not occur.
  • erroneous reversal occurs with a certain probability.
  • the probability of erroneous inversion increases in proportion to the magnitude of the disturb magnetic field received by the TMR element. That is, as the disturb margin amount ⁇ IBL of the bit line current shown in FIG. 4 decreases or the disturb margin amount ⁇ IDL of the digit line current decreases, the erroneous inversion probability of the TMR element increases. If the reference memory cell is erroneously inverted due to the disturb magnetic field in the half-selected state, the MRAM device malfunctions, so that the disturb magnetic field needs to be suppressed as much as possible.
  • FIG. 5 is a plan view schematically showing the layout of each part of the MRAM device 4 of FIG. 2 and 5, memory array regions 5A and 5B in which memory array 10 and drive circuits 50, 60 and 80 are provided are arranged side by side in the X direction on substrate SUB. Each memory array area 5A, 5B is further divided into sub memory array areas 6 of 4 rows and 2 columns.
  • the row decode circuit 40 is arranged between the memory array areas 5A and 5B.
  • a plurality of main word lines MWL are arranged from the row decode circuit 40 in the + X direction and the ⁇ X direction.
  • the main word line MWL is provided for transmitting a row selection signal from the row decode circuit 40 to the WL drive circuit 50 and the DL drive circuit 60.
  • Column decode circuits 70A and 70B are arranged in areas adjacent to the ⁇ Y direction of the memory array areas 5A and 5B, respectively.
  • Control circuit 140 and input / output circuit 150 are arranged in a region adjacent to the region where column decode circuits 70A and 70B are provided in the ⁇ Y direction.
  • FIG. 6 is a plan view showing details of the sub memory array region 6 of FIG.
  • normal memory cell array 10N is provided near the center of sub memory array region 6.
  • Word lines WL and digit lines DL are provided along the row direction of normal memory cell array 10N, and bit lines BL are provided along the column direction.
  • Each memory cell MC is arranged in the vicinity of an intersection between the word line WL (digit line DL) and the bit line BL.
  • the reference memory cell array 10R is provided in a region adjacent to the region in which the normal memory cell array 10N is provided in the + X direction.
  • a word line WLR and a digit line DLR are provided along the row direction of the reference memory cell array 10R, and bit lines BLR0 and BLR1 are provided along the column direction.
  • Digit line DLR is connected to corresponding digit line DL for normal memory cell array 10N.
  • a connection point ND between the two digit lines DL and DLR is connected to a power supply node VDD via a power supply line ISL.
  • two reference memory cells MCR are provided for each digit line DLR (word line WLR).
  • one of the two reference memory cells MCR is preliminarily written with magnetic data so that the fixed magnetic layer and the free magnetic layer are antiparallel (that is, in a high resistance state), and the other is Magnetic data is written in advance so that the fixed magnetic layer and the free magnetic layer are parallel (that is, in a low resistance state).
  • the DL drive circuit 60N for the normal memory cell MC and the DL drive circuit 60R for the reference memory cell MCR are provided independently of each other.
  • the DL drive circuit 60N for the normal memory cell MC is arranged in a region adjacent to the region in which the normal memory cell array 10N is provided in the ⁇ X direction.
  • the power supply node VDD is connected to the terminal portion in the + X direction of the digit line DLR for the reference memory cell MCR, and the DL drive circuit 60R for the reference memory cell MCR is not provided.
  • a write current is passed through the digit line DLR using the DL drive circuit 60N for the normal memory cell MC.
  • a write current flows through the digit line DLR for the reference memory cell MCR even when data is written to the normal memory cell MC.
  • the disturb magnetic field is applied to the cell MCR, and the reference memory cell MCR may be erroneously inverted by the disturb magnetic field.
  • the MRAM device 4 of this embodiment when data is written to the normal memory cell MC, a write current flows from the power supply node VDD to the DL drive circuit 60N through the power supply wiring ISL and the digit line DL. In this case, since the write current does not flow through the digit line DLR for the reference memory cell MCR, the reference memory cell MCR can be prevented from being affected by the disturb magnetic field during the write access to the normal memory cell MC. However, in the case of the MRAM device 4, the DL drive circuit 60R for the reference memory cell MCR is separated from the DL drive circuit 60N for the normal memory cell MC in order to be used when magnetic data is written in the reference memory cell MCR in advance. It is necessary to provide it. As described in detail in FIG.
  • the MRAM device 4 is configured such that the number of rows in the reference memory cell array 10R is smaller than the number of rows in the normal memory cell array 10N. Thereby, an empty space is created in the installation area of the reference memory cell array 10R, and the DL drive circuit 60R is arranged in this empty space.
  • the WL drive circuit 50N for the normal memory cell MC and the WL drive circuit 60R for the reference memory cell MCR are also provided independently of each other. There is a need.
  • the WL drive circuit 50N for the normal memory cell MC is provided in a region adjacent to the region in which the DL drive circuit 60N is provided in the ⁇ X direction.
  • the WL drive circuit 50R for the reference memory cell MCR is provided in an empty space in the area where the reference memory cell array 10R is provided.
  • the BL drive circuits 80A and 80B are arranged in a region adjacent to the + Y direction and a region adjacent to the ⁇ Y direction, respectively, with respect to the region where the memory cell arrays 10N and 10R are provided.
  • the bit line currents in both the + Y direction and the ⁇ Y direction are generated by the BL drive circuits 80A and 80B.
  • the BL selection circuit 20 and the readout circuit 30 are arranged in an area adjacent to the area where the BL drive circuit 80A is provided in the + Y direction.
  • FIG. 7 is a plan view showing in detail the memory cell arrays 10N and 10R of FIG.
  • normal memory cell array 10N includes normal memory cells MC in m rows and n columns (n is an integer of 2 or more and m is a multiple of 4).
  • the memory cells in the first row and the first column are described as MC ⁇ 0,0>, and the memory cells MC in the kth row and the lth column (1 ⁇ k ⁇ m, 1 ⁇ l ⁇ n) are described. It is described as MC ⁇ k-1, l-1>.
  • M digit lines DL0 to DLm-1 are provided corresponding to the first to mth rows of the normal memory cell array 10N, respectively.
  • the end portions in the ⁇ X direction of digit lines DL0 to DLm ⁇ 1 are connected to DL drive circuit 60N, and the end portions in the + X direction of digit lines DL0 to DLm ⁇ 1 are connected to power supply line ISL.
  • Power supply line ISL is provided extending in the column direction, and an end in the + Y direction is connected to power supply node VDD.
  • m word lines WL0 to WLm ⁇ 1 are also provided corresponding to the rows of the normal memory cell array 10N, respectively. Termination portions in the ⁇ X direction of the word lines WL0 to WLm ⁇ 1 are connected to the WL drive circuit 50N.
  • N bit lines BL0 to BLn ⁇ 1 are provided corresponding to the first to nth columns of the normal memory cell array 10N, respectively.
  • -Y direction end portions of the bit lines BL0 to BLn-1 are connected to the BL drive circuit 80B, and + Y direction end portions of the bit lines BL0 to BLn-1 are connected to the BL drive circuit 80A and the BL selection circuit 20. .
  • the reference memory cells MCR ⁇ 0,0> and MCR ⁇ 0,1> in the first row are normal memory cells MC ⁇ 0,0> to MC ⁇ 0, n ⁇ 1 in the first row of the normal memory cell array 10N. > (Corresponding to digit line DL0) is provided on an extension line in the row direction. Reference memory cells MCR ⁇ 0,0> and MCR ⁇ 0,1> are used as reference resistors when data is read from the first row to the fourth row of normal memory cell array 10N.
  • the reference memory cells MCR ⁇ i ⁇ 1,0> and MCR ⁇ i ⁇ 1,1> in the i-th row (1 ⁇ i ⁇ p) are the memories in the 4i-3th row of the normal memory cell array 10N.
  • Cells MC ⁇ 4i-4,0> to MC ⁇ 4i-4, n-1> are provided on extension lines in the row direction.
  • the reference memory cells MCR ⁇ i ⁇ 1,0> and MCR ⁇ i ⁇ 1,1> are used as reference resistors when data is read from the 4i-3rd row to the 4ith row of the normal memory cell array 10N.
  • a dummy cell DC is provided in a region where the reference memory cell MCR is not provided on the extension line in the + X direction of each row of the normal memory cell array 10N in order to suppress shape non-uniformity in the manufacturing process of the semiconductor device.
  • the dummy cell DC includes a shape dummy TMR element but does not include an access transistor. Therefore, the vicinity of the substrate surface in the area where the dummy cell DC is provided becomes an empty space, and the DL drive circuit 60R and the WL drive circuit 50R for the reference memory cell MCR are provided using this space.
  • the dummy cells DC are also provided in the upper layer of the power supply wiring ISL and around the memory cell arrays 10N and 10R.
  • the reference memory cell MCR is arranged while maintaining the continuity of the element arrangement with the normal memory cell MC, and is used as a reference resistance when data is read from the normal memory cell MC provided in the vicinity.
  • the electrical characteristics of the reference memory cell MCR can be made substantially the same as the electrical characteristics of the corresponding normal memory cell MC.
  • p digit lines DLR0 to DLRp-1 are provided corresponding to the first to pth rows of the reference memory cell array 10R, respectively. That is, one digit line DLR is provided for every four digit lines DL0 to DLm ⁇ 1 for normal memory cells MC.
  • the digit line DLRi-1 in the i-th row (1 ⁇ i ⁇ p) for the reference memory cell MCR is an extension wiring of the digit line DL4i-4 in the 4i-3th row for the normal memory cell MC in the + X direction. It arrange
  • the ⁇ X direction terminations of digit lines DLR0 to DLRp ⁇ 1 are connected to power supply node VDD via power supply line ISL.
  • the terminal portions in the + X direction of digit lines DLR0 to DLRp-1 are connected to DL drive circuit 60R described in FIG.
  • the digit lines DLR for the reference memory cells MCR and the corresponding digit lines DL for the normal memory cells MC do not necessarily have to be formed continuously.
  • Each digit line DLR is arranged on the extension of the corresponding digit line DL, and a slit is formed between the contact between each digit line DLR and the power supply line ISL and between the corresponding digit line DL and the power supply line ISL. It is also possible to form it.
  • the DL drive circuit 60R includes p DL driver units DLRDU0 to DLRDUp-1 corresponding to the digit lines DLR0 to DLRp-1, respectively.
  • Each DL driver unit DLRDU supplies a data write current IDLR from the power supply node VDD to the selected digit line DLR via the power supply line ISL when data is written to the reference memory cell MCR. Since power supply line ISL is used in common with the case where data is written to normal memory cell MC, the layout area can be reduced.
  • Each DL driver unit DLRDU is provided in a region adjacent to the region in which the corresponding digit line DLR is provided in the + Y direction. In other words, it is provided in the dummy cell region of the reference memory cell array 10R. Since this area is an empty space in which the reference memory cell MCR is not provided, the DL drive circuit 60R can be provided without an area penalty.
  • p word lines WLR0 to WLRp-1 are also provided corresponding to the rows of the reference memory cell array 10R, respectively. Termination portions in the + X direction of the word lines WLR0 to WLRp-1 are connected to the WL drive circuit 50R described with reference to FIG.
  • WL drive circuit 50R includes p WL driver units WLRDU0 to WLRDUp-1 corresponding to word lines WLR0 to WLRp-1, respectively.
  • Each WL driver unit WLRDU is also provided in a region adjacent to the region in which the corresponding word line WLR (digit line DLR) is provided in the + Y direction, that is, in a dummy cell region of the reference memory cell array 10R.
  • Bit lines BLR0 and BLR1 are provided corresponding to the first column and the second column of the reference memory cell array 10R, respectively.
  • the ⁇ Y direction end portions of the bit lines BLR0 and BLR1 are connected to the BL drive circuit 80B, and the + Y direction end portions are connected to the BL drive circuit 80A and the BL selection circuit 20.
  • One main word line MWL0 to MWLp-1 is provided for every four rows of the normal memory cell array 10N.
  • a row selection signal is transmitted from the row decode circuit 40 to the WL drive circuits 50N and 50R and the DL drive circuits 60N and 60R by the main word lines MWL0 to MWLp-1.
  • Basic units BU0 to BUp-1 shown in FIG. 7 are configured.
  • FIG. 8 is a circuit diagram showing a configuration of BL selection circuit 20 and readout circuit 30 in FIG.
  • BL selection circuit 20 includes an NMOS (N-channel Metal Oxide Semiconductor) transistor individually connected to each of bit lines BL0 to BLn-1, BLR0, and BLR1.
  • FIG. 8 shows NMOS transistors 21 and 22 connected to the bit lines BL0 and BL1 for the normal memory cell MC, and NMOS transistors 23 and 24 connected to the bit lines BLR0 and BLR1 for the reference memory cell MCR, respectively. Is shown.
  • the NMOS transistors 21 and 22 are turned on in response to the column selection signal CSL output from the column decoding circuit 70 of FIG. 2, thereby selecting the bit lines BL0 and BL1.
  • the NMOS transistors 23 and 24 are turned on by the column selection signal CSL_REF output from the column decoding circuit 70, and thereby the bit lines BLR0 and BLR1 are selected.
  • Read circuit 30 includes sense amplifiers SA0 and SA1 and internal data read lines LIO0 and LIO1.
  • First input terminals (non-inverting input terminals) of sense amplifiers SA0 and SA1 are connected to internal data read lines LIO0 and LIO1, respectively.
  • the odd-numbered bit lines BL0, BL2,... Are connected to the internal data read line LIO0 via corresponding NMOS transistors.
  • Bit lines BL1, BL3,... Of even-numbered rows are connected to internal data read line LIO1 through corresponding NMOS transistors.
  • the bit line BLR0 for the reference memory cell MCR is connected to the second input terminal (inverted input terminal) of the sense amplifier SA0 via the NMOS transistor 23.
  • a bit line BLR1 for the reference memory cell MCR is connected to the second input terminal (inverted input terminal) of the sense amplifier SA1 through the NMOS transistor 24.
  • the second input terminals of the sense amplifiers SA0 and SA1 are connected to each other via the wiring 31.
  • the WL drive circuit 50N of FIG. 7 activates the word line WL0 (not shown in FIG. 7) of FIG.
  • the BL selection circuit 20 shown in FIGS. 7 and 8 connects the selected bit lines BL0 and BL1 to the internal data read lines LIO0 and LIO1, respectively.
  • cell currents IC0 and IC1 flow through internal data read lines LIO0 and LIO1, respectively.
  • the WL driver unit WLRDU0 of FIG. 7 activates the word line WLR0 (not shown in FIG. 7) of FIG.
  • the BL selection circuit 20 shown in FIGS. 7 and 8 connects the selected bit lines BLR0 and BLR1 to the second input terminals of the sense amplifiers SA0 and SA1, respectively.
  • the reference memory cell MCR ⁇ 0,0> stores data “1” in advance
  • the reference memory cell MCR ⁇ 0,1> stores data “0” in advance.
  • the cell current ICR0 corresponding to the data “1” flows through the reference memory cell MCR ⁇ 0,0>
  • the cell current ICR1 corresponding to the data “0” flows through the reference memory cell MCR ⁇ 0,1>.
  • a current that is, a current having a magnitude of 1/2 (ICR0 + ICR1) flows.
  • FIG. 9 is a circuit diagram showing the configuration of the DL drive circuits 60N and 60R of FIGS.
  • FIG. 9 shows DL drive circuits 60N and 60R corresponding to the basic units BU0 and BU1 of FIG.
  • DL drive circuit 60N for normal memory cell MC includes DL driver units DLDU0 to DLDUm-1 corresponding to digit lines DL0 to DLm-1, respectively, and a current source 64 provided for adjusting the write current amount.
  • DL driver units DLDU0 to DLDU3 correspond to the basic unit BU0.
  • DL driver units DLDU4i-4 to DLDU4i-1 correspond to basic unit BUi-1 (1 ⁇ i ⁇ p).
  • the current source 64 is configured by, for example, an NMOS transistor in which a control voltage is applied to the gate electrode.
  • Each DL driver unit DLDU includes an NMOS transistor 61, an inverter 62, and a NAND circuit 63.
  • NMOS transistor 61 has its drain connected to corresponding digit line DL and its source connected to ground node GND via current source 64.
  • the inverter 62 and the NAND circuit 63 connected in series function as a gate drive unit 69N that drives the gate of the NMOS transistor 61.
  • Corresponding main word lines MWL are commonly connected to the first input nodes of the four NAND circuits 63 corresponding to each basic unit BU.
  • the main word signal MWS as a row selection signal is input to the first input node via the corresponding main word line MWL.
  • Subdecode signals SDW ⁇ 0> to SDW ⁇ 3> as row selection signals are individually input to the second input nodes of the four NAND circuits 63.
  • the input main word signal MWS and subdecode signal SDW are both at the H level, the NMOS transistor 61 of each DL driver unit DLDU becomes conductive.
  • the write current IDL flows through the digit line DL corresponding to each DL driver unit DLDU.
  • the DL drive circuit 60R for the reference memory cell MCR includes DL driver units DLRDU0 to DLRDUup-1 connected to the digit lines DLR0 to DLRp-1, respectively, and a current source provided for adjusting the write current amount. 68.
  • the DL driver unit DLRDU0 corresponds to the basic unit BU0.
  • the DL driver unit DLRDUi-1 corresponds to the basic unit BUi-1 (1 ⁇ i ⁇ p).
  • the current source 68 is configured by, for example, an NMOS transistor in which a control voltage is applied to the gate electrode.
  • Each DL driver unit DLRDU includes an NMOS transistor 65, an inverter 66, and a NAND circuit 67.
  • NMOS transistor 65 has a drain connected to corresponding digit line DLR and a source connected to ground node GND via current source 68.
  • the inverter 66 and the NAND circuit 67 connected in series function as a gate drive unit 69R that drives the gate of the NMOS transistor 65.
  • the corresponding main word line MWL is connected to the first input node of the NAND circuit 67 corresponding to each basic unit BU.
  • the main word signal MWS is input to the first input node via the corresponding main word line MWL.
  • a write enable signal REF_WE for the reference memory cell is commonly input to the second input node of each NAND circuit 67. Therefore, when both the input main word signal MWS and write enable signal REF_WE are at the H level, the NMOS transistor 65 of each DL driver unit DLRDU becomes conductive. As a result, the write current IDLR flows through the digit line DLR corresponding to each DL driver unit DLRDU.
  • the digit line DLR for the reference memory cell MCR is selected by the main word signals MWS ⁇ 0> to MWS ⁇ p ⁇ 1> when the write enable signal REF_WE is at the H level.
  • FIG. 10 is a circuit diagram showing the configuration of the WL drive circuits 50N and 50R shown in FIGS.
  • FIG. 10 shows WL drive circuits 50N and 50R corresponding to the basic units BU0 and BU1 in FIG.
  • WL drive circuit 50N for normal memory cell MC includes WL driver units WLDU0 to WLDUm-1 corresponding to word lines WL0 to WLm-1. As shown in FIG. 10, the WL unit WLDU0 to WLDU3 corresponds to the basic unit BU0. Similarly, the WL unit WLDU4i-4 to WLDU4i-1 corresponds to the basic unit BUi-1 (1 ⁇ i ⁇ p).
  • Each WL driver unit WLDU includes an inverter 51 and a NAND circuit 52 connected in series. The output node of each inverter 51 is connected to the corresponding word line WL.
  • Corresponding main word lines MWL are commonly connected to first input nodes of the four NAND circuits 52 corresponding to the basic units BU0 to BUp-1. As a result, the main word signal MWS is input to the first input node via the corresponding main word line MWL.
  • Sub-decode signals SDR ⁇ 0> to SDR ⁇ 3> are individually input to the second input nodes of the four NAND circuits 52.
  • word line WL corresponding to each WL driver unit WLDU is activated (H level). Signals necessary for selecting word line WL for normal memory cell MC by using main word signals MWS ⁇ 0> to MWS ⁇ p-1> and sub-decode signals SDR ⁇ 0> to SDR ⁇ 3> The number of lines can be reduced.
  • the WL drive circuit 50R for the reference memory cell MCR includes WL driver units WLRDU0 to WLRDUp-1 corresponding to the word lines WLR0 to WLRp-1, respectively.
  • the WL driver unit WLRDU0 corresponds to the basic unit BU0.
  • the WL driver unit WLRDUi-1 corresponds to the basic unit BUi-1 (1 ⁇ i ⁇ p).
  • Each WL driver unit WLRDU includes an inverter 53 and a NAND circuit 54 connected in series.
  • the output node of inverter 53 is connected to the corresponding word line WLR.
  • a first input node of each NAND circuit 54 is connected to a corresponding main word line MWL.
  • the main word signal MWS is input to the first input node via the corresponding main word line MWL.
  • a read permission signal REF_RE for the reference memory cell is commonly input to the second input node of each NAND circuit 54. Therefore, when input main word signal MWS and read permission signal REF_RE are both at the H level, word line WLR corresponding to each WL driver unit WLRDU is activated (H level). In this way, the word line WLR for the reference memory cell MCR is selected by the main word signals MWS ⁇ 0> to MWS ⁇ p ⁇ 1> when the read permission signal REF_RE is at the H level.
  • FIG. 11 is a block diagram showing a configuration of the row decoding circuit 40 of FIG. Referring to FIG. 11, row decode circuit 40 includes address decoders 41, 42, 44, a test mode decode circuit 43, and a waveform shaping buffer 45.
  • the address decoder 41 When the address decoder 41 receives the upper bits of the row address signal from the outside of the MRAM device 4, the address decoder 41 generates p-bit main word signals MWS ⁇ 0> to MWS ⁇ p as row selection signals based on the upper bits of the row address signal. -1> is generated. The generated main word signals MWS ⁇ 0> to MWS ⁇ p-1> are output to the main word lines MWL0 to MWLp-1, respectively.
  • the address decoder 42 When the address decoder 42 receives the low-order bit of the row address signal and the write command from the outside of the MRAM device 4, the address decoder 42 generates a 4-bit subdecode signal SDW ⁇ 0> as a row selection signal based on the low-order bit of the row address signal. Generate SDW ⁇ 3>. The generated subdecode signals SDW ⁇ 0> to SDW ⁇ 3> are output to the corresponding DL driver unit DLDU described in FIG.
  • the test mode decode circuit 43 generates the write enable signal REF_WE when receiving the upper bits of the row address signal and the test mode entry signal from the outside of the MRAM device 4.
  • the generated write enable signal REF_WE is output to each DL driver unit DLRDU for the reference memory cell MCR described in FIG.
  • the address decoder 44 uses a 4-bit sub-decode signal SDR ⁇ 0> as a row selection signal based on the lower bits of the row address signal.
  • SDR ⁇ 3> is generated.
  • the generated subdecode signals SDR ⁇ 0> to SDR ⁇ 3> are output to the corresponding WL driver unit WLDU described in FIG.
  • the buffer 45 When receiving a read command, the buffer 45 outputs a read permission signal REF_RE to each WL driver unit WLRDU for the reference memory cell MCR described with reference to FIG.
  • FIG. 12 is a plan view showing a specific example of the layout of each part of the basic unit BU0 of FIG. 12 shows bit lines BL0 to BLn-1, BLR0 and BLR1 formed in the uppermost fourth metal wiring layer, digit lines DL0 to DL3 and DLR0 formed in the third metal wiring layer, The power supply wiring ISL and the arrangement of the driver units DLDU0 to DLDU3, WLDU0 to WLDU3, DLRDU0, and WLRDU0 are shown.
  • the digit line DL0 for the normal memory cell MC and the digit line DLR0 for the reference memory cell MCR are integrally formed.
  • the integrally formed digit lines DL0 and DLR0 are connected to the DL driver portions DLDU0 and DLRDU0 at both ends via the contact CT, and to the power supply wiring ISL via the contact CT.
  • Each of the digit lines DL1 to DL3 is connected to the corresponding DL driver unit DLDU through the contact CT at the terminal end in the ⁇ Y direction, and connected to the power supply line ISL through the contact CT at the terminal end in the + Y direction.
  • FIG. 13 is a cross-sectional view taken along section line XIII-XIII in FIG.
  • FIG. 13 shows the cross-sectional structure of the reference memory cell MCR and the arrangement of the DL driver unit DLRDU for the reference memory cell MCR.
  • the MRAM device 4 uses a total of four metal wiring layers.
  • the first to fourth metal wiring layers M1 to M4 are stacked in this order from the substrate side via an interlayer insulating film.
  • an access transistor ATR is formed on the main surface of the p-type semiconductor substrate SUB.
  • Access transistor ATR has a source region 111 and a drain region 112 which are n-type regions, and a gate. The gate is formed integrally with the word line WLR.
  • Source region 111 of access transistor ATR is connected to source line SLR formed using first metal interconnection layer M1 via metal layer 113 (referred to as contact 113) formed in the contact hole. .
  • the main word line MWL is formed using the second metal wiring layer M3.
  • a digit line DLR is formed in the third metal wiring layer M3, which is an upper layer.
  • the TMR element is formed above the digit line DLR.
  • the TMR element includes a magnetic layer (fixed magnetization layer) PL having a fixed magnetization direction, a magnetic layer (free magnetization layer) FL that is magnetized in a direction according to a data write magnetic field generated by a data write current, Have A tunnel barrier ISO formed of an insulator film is formed between the fixed magnetic layer PL and the free magnetic layer FL.
  • the TMR element is connected to the drain region 112 of the access transistor ATR via the contact 114 and the barrier metal 115.
  • the barrier metal 115 is a buffer material provided to connect the TMR element and the contact 114.
  • the bit line BL is formed in the fourth metal wiring layer M4 above the TMR element and connected to the free magnetic layer FL of the TMR element.
  • a dummy TMR element DTMR and a barrier metal 116 are formed in a region where the reference memory cell MCR is not provided.
  • Transistors included in the DL driver unit DLRDU are formed in a space below the barrier metal 116.
  • FIG. 14 is a cross-sectional view taken along section line XIV-XIV in FIG.
  • FIG. 14 shows the cross-sectional structures of normal memory cell MC and reference memory cell MCR and the arrangement of power supply wiring ISL. Since the cross-sectional structure of reference memory cell MCR has been described with reference to FIG. 13, description thereof will not be repeated.
  • the cross-sectional structure of the normal memory cell MC is the same as the cross-sectional structure of the reference memory cell MCR, and will be briefly described below.
  • the source region 121 of the access transistor ATR for the normal memory cell MC is connected to the source line SL formed in the first metal wiring layer M1 via a contact 123.
  • the drain region (not shown) of access transistor ATR is connected to upper layer barrier metal 125 via a contact (not shown).
  • the main word line MWL is formed in the second metal wiring layer M2.
  • the digit line DL is formed in the third metal wiring layer M3.
  • the bit line BL is formed in the fourth metal wiring layer M4 and connected to the free magnetic layer of the TMR element.
  • the power supply wiring ISL is formed in the second metal wiring layer M2.
  • the power supply line ISL is connected to the digit lines DL and DLR formed in the third metal wiring layer M3 via a contact 133.
  • the main word line MWL is formed in the first metal wiring layer M1 in order to avoid the power supply wiring ISL.
  • the main word line MWL is connected to the main word line MWL formed in the second metal wiring layer M2 in the adjacent region via contacts 131 and 132.
  • a dummy bit line DBL, a dummy TMR element DTMR, and a dummy barrier metal 116 are formed in the upper layer of the power supply wiring ISL.
  • FIG. 15 is a plan view showing an example of the configuration of the MOS transistor 61 of FIG.
  • the DL driver unit DLDU including the MOS transistor 61 is formed so that the length in the X direction is substantially within the wiring pitch of the digit line DL.
  • the current capacity of the MOS transistor 61 needs to be sufficient to allow the write current IDL to flow. Therefore, as shown in FIG. 15, the source region 161, the drain region 162, and the gate electrode 163 constituting the MOS transistor 61 are formed such that the gate width direction is the Y direction.
  • the gate width W1 is set according to the amount of write current IDL. Drain region 162 is connected to digit line DL by wiring 164.
  • FIG. 16 is a plan view showing an example of the configuration of the MOS transistor 65 of FIG.
  • the length in the X direction of the DL driver unit DLRDU including the MOS transistor 65 is desirably formed within the same degree as the wiring pitch of the four digit lines DL. Therefore, as shown in FIG. 16, a comb-shaped electrode structure is adopted for the gate electrodes 173A, 173B, and 173C of the MOS transistor 65.
  • the source regions 171A and 171B, the drain regions 172A and 172B, and the gate electrodes 173A, 173B, and 173C are formed so that the gate width direction is the Y direction. Drain regions 172A and 172B are connected to digit line DLR by wiring 174.
  • the gate width of the MOS transistor 65 corresponds to three times (W2 ⁇ 3) the length W2 in the Y direction of the region where the transistor 65 is formed.
  • the gate width (W2 ⁇ 3) of the MOS transistor 65 may be shorter than the gate width W1 of the MOS transistor 61 shown in FIG. Since the length of the digit line DLR to which the MOS transistor 65 is connected is shorter than the length of the digit line DL to which the MOS transistor 61 is connected, the load impedance of the MOS transistor 65 is smaller than the load impedance of the MOS transistor 61. It is.
  • connecting portion ND between digit line DL for normal memory cell MC and digit line DLR for reference memory cell MCR is connected to power supply node VDD.
  • a DL drive circuit 60N for the normal memory cell MC and a DL drive circuit 60R for the reference memory cell MCR are provided separately.
  • the digit line current IDL flows from the power supply node VDD to the DL drive circuit 60N for the normal memory cell MC via the connecting portion ND and the corresponding digit line DL.
  • the digit line DLR for the cell MCR does not flow. Therefore, erroneous inversion of the reference memory cell MCR due to the disturb magnetic field at the time of writing can be prevented.
  • the number of rows of the reference memory cell array 10R is made smaller than the number of rows of the normal memory cell array 10N.
  • each row of the reference memory cell array 10R is formed for each of a plurality of rows (for example, 4 rows) of the normal memory cell array 10N.
  • each digit line DL for the reference memory cell MCR is also provided for each of the digit lines DL for the plurality of normal memory cells MC.
  • the word line WL for the normal memory cell MC and the word line WLR for the reference memory cell MCR are separated and the normal memory It is necessary to separately provide the word line drive circuit 50N for the cell MC and the word line drive circuit 50R for the reference memory cell MCR. Also in this case, it is possible to arrange the word line drive circuit 50R using the empty space where the reference memory cell MCR and the corresponding digit line DLR and word line WLR are not provided.
  • FIG. 7 shows an example in which one row of the reference memory cell array 10R is provided for every four rows of the normal memory cell array 10N, it is not necessarily limited to this. For example, it is of course possible to provide one reference memory cell array 10R for every 16 rows of the regular memory cell array 10N. Conversely, a configuration in which the row of the normal memory cell array 10N and the row of the reference memory cell array 10R have a one-to-one correspondence requires a new space for arranging the digit line driver unit DLRDU for the reference memory cell MCR. However, it is technically possible.
  • two reference memory cells MCR which are provided in a common sub-memory array region and are preset in one high resistance state and the other low resistance state are simultaneously selected by one word line WLR.
  • the selection of the reference memory cell MCR is not necessarily limited to such an example.
  • sense amplifiers SA0 and SA1 are provided in common with respect to the first and second sub memory array regions
  • the reference memory cell MCR provided in the first sub memory array region and the second sub memory array region There may be a case where the reference memory cells MCR provided in the sub memory array region are simultaneously selected by different word lines WLR. In this case, one of the selected reference memory cells MCR is preset in a high resistance state and the other is preset in a low resistance state.
  • the number of selected reference memory cells MCR is not necessarily two.
  • the electrical resistances of a large number of reference memory cells MCR exceeding two may be averaged, one reference memory cell MCR set to a low resistance state is selected, and a resistance element is added in addition to the reference memory cell
  • the reference current may be generated.
  • FIG. 7 shows an example in which the reference memory cell array 10R is composed of two columns of reference memory cells MCR and two bit lines BLR are provided corresponding to each column.
  • the configuration of is not necessarily limited to such an example.
  • Three or more reference memory cells MCR and three or more bit lines BLR corresponding to each column may be provided, and a necessary number of bit lines BLR may be selected at the time of data reading.
  • the power supply wiring ISL is connected to the power supply node VDD as the first power supply node, and the current sources 64 and 68 are connected to the ground node GND as the second power supply node.
  • power supply line ISL is connected to ground node GND as the first power supply node, and current sources 64 and 68 are connected to power supply node VDD as the second power supply node.
  • the write currents IDL and IDLR flow in the opposite direction to that in FIG.
  • FIG. 9 shows the case where one current source 64, 68 is provided in each sub memory array region, it is not necessarily limited to this.
  • the current sources 64 and 68 can be arranged for every two basic units BU.
  • the arrangement of the dummy cells DC is not limited to the position shown in FIG. As described in FIG. 7, the dummy cells are provided around the memory cell arrays 10N and 10R in order to suppress non-uniformity in the shape of the semiconductor device manufacturing process. For example, in FIG. 12, it may be arranged immediately above and on both sides of the power supply wiring ISL.
  • 1 semiconductor device (microcomputer), 4 MRAM device, 10 memory array, 10R reference memory cell array, 10N regular memory cell array, 20 BL selection circuit, 30 readout circuit, 40 row decode circuit, 50 word line drive circuit, 50N WL drive circuit (For regular memory cell), 50R WL drive circuit (for reference memory cell), 60 digit line drive circuit, 60N DL drive circuit (for regular memory cell), 60R DL drive circuit (for reference memory cell), 61 NMOS transistor, 65 NMOS transistor, 70, 70A, 70B column decode circuit, 80, 80A, 80B bit line drive circuit, ATR access transistor, BL bit line (for regular memory cells), BLR bit line (reference Memory cell), DL digit line (for regular memory cell), DLR digit line (for reference memory cell), DLDU DL driver part (for regular memory cell), DLRDU DL driver part (for reference memory cell), GND ground node , ISL power supply wiring, MC regular memory cell, MCR reference memory cell, MWL main word line, SL source line (

Abstract

An MRAM device (semiconductor device) comprises a normal memory cell array (10N) in which normal memory cells (MC) are arranged, and a reference memory cell array (10R) in which reference memory cells (MCR) used as reference resistances at the time of readout are arranged. Digit lines (DLR) for the reference memory cells (MCR) are connected to digit lines (DL) for the normal memory cells (MC) corresponding thereto, and connection points (ND) are connected to a power supply node (VDD) via a power supply line (ISL). A digit line drive circuit (60N) for the normal memory cells (MC) and a digit line drive circuit (60R) for the reference memory cells (MCR) are provided independently of each other. When data is written into the normal memory cell (MC), a write current flows into the digit line drive circuit (60N) from the power supply node (VDD) via the power supply line (ISL) and the digit line (DL) for the normal memory cell (MC).

Description

半導体装置Semiconductor device
 この発明は、磁気抵抗効果を利用した薄膜磁性体記憶素子を基板上に集積した半導体装置に関する。 The present invention relates to a semiconductor device in which thin-film magnetic memory elements utilizing the magnetoresistance effect are integrated on a substrate.
 磁気ランダムアクセス記憶装置(MRAM:Magnetic Random Access Memory)は、トンネル磁気抵抗(TMR:Tunneling Magneto-Resistive)効果を有する素子(TMR素子)をメモリセルとした記憶装置である。MRAM装置の各メモリセルは、ビット線およびディジット線の交差部分に設けられ、ビット線およびディジット線の両方に電流を流したときに生じる電流磁場によってデータが書込まれる。 A magnetic random access storage device (MRAM) is a storage device using a memory cell as an element (TMR element) having a tunneling magneto-resistive (TMR) effect. Each memory cell of the MRAM device is provided at an intersection of a bit line and a digit line, and data is written by a current magnetic field generated when a current is passed through both the bit line and the digit line.
 データ書込時に書込対象のメモリセルと同一行または同一列のメモリセルはビット線およびディジット線の一方に電流を流した状態、すなわち半選択状態となっている。半選択状態のメモリセルでは磁気デ-タの反転が生じないように書込時の電流量が調整されるが、データの誤反転を生じる可能性はある。このような半選択状態のディスターブ磁場によってデータ誤反転が生じるとメモリデバイスとしての信頼性を損なうので、ディスターブ磁場を抑制するための技術が開発されている。 When writing data, the memory cell in the same row or column as the memory cell to be written is in a state where a current is passed through one of the bit line and the digit line, that is, a half-selected state. In a half-selected memory cell, the amount of current at the time of writing is adjusted so that magnetic data is not inverted, but there is a possibility that erroneous data inversion occurs. Since the reliability as a memory device is impaired when erroneous data inversion occurs due to the disturb magnetic field in such a half-selected state, a technique for suppressing the disturb magnetic field has been developed.
 たとえば、特開2004-192727号公報(特許文献1)に記載のMRAM装置は、ビット線に補償電流を流す電流源を備える。補償電流によって生成された補償磁界によって、TMR素子へのデータ書込時に隣接したTMR素子に記憶されたデータが破壊されることを防止する。この補償磁界を生成するための電流源は、ビット線と同数の電流源ユニットから成り、1つの電流源ユニットは1本のビット線に接続される。 For example, the MRAM device described in Japanese Patent Application Laid-Open No. 2004-192727 (Patent Document 1) includes a current source for supplying a compensation current to the bit line. The compensation magnetic field generated by the compensation current prevents the data stored in the adjacent TMR element from being destroyed when data is written to the TMR element. The current source for generating the compensation magnetic field is composed of the same number of current source units as that of the bit lines, and one current source unit is connected to one bit line.
 WO2003/052828号公報(特許文献2)に開示された技術では、複数の書込ワード線(ディジット線)と、これらの複数の書込ワード線と交差して配置され、書込データに応じた電流を流す複数のデータ線(ビット線)とに対し、多数のメモリセルがチェッカーパターン状に配置される。これによって、書込時に選択セルに隣接するメモリセルへの漏れ磁界を小さくし、TMR素子の磁化状態への影響を小さくする。 In the technique disclosed in WO2003 / 052828 (Patent Document 2), a plurality of write word lines (digit lines) are arranged so as to intersect with the plurality of write word lines and correspond to write data. A large number of memory cells are arranged in a checker pattern with respect to a plurality of data lines (bit lines) through which a current flows. As a result, the leakage magnetic field to the memory cell adjacent to the selected cell during writing is reduced, and the influence on the magnetization state of the TMR element is reduced.
特開2004-192727号公報JP 2004-192727 A WO2003/052828号公報WO2003 / 052828
 ところで、MRAM装置には、データ読出時に参照抵抗として用いるための参照用のメモリセル(参照メモリセル)が設けられている。たとえば、2個の参照メモリセルを用いて参照抵抗を生成する場合は、2個の参照メモリセルのうち一方を高抵抗状態に設定し、他方を低抵抗状態に設定する。両者を平均化することによって中間の抵抗値を作り出して参照抵抗とする。 Incidentally, the MRAM device is provided with a reference memory cell (reference memory cell) for use as a reference resistor at the time of data reading. For example, when generating a reference resistance using two reference memory cells, one of the two reference memory cells is set to a high resistance state, and the other is set to a low resistance state. By averaging the two, an intermediate resistance value is created and used as a reference resistance.
 参照メモリセルの電気特性は通常のメモリセル(正規メモリセル)の電気特性とほぼ同じである必要があるので、参照メモリセルは、正規メモリセルから構成されるメモリアレイに対して素子配置の連続性を保つように配置される。そのようなとき、同じディジット線に沿って、正規メモリセルと参照メモリセルとが配置される場合がある。この結果、データ書込時には、書込対象の正規メモリセルと共通のディジット線に対応して設けられた参照メモリセルは、反選択状態になって誤反転を起こす可能性がある。参照メモリセルが誤反転すると参照抵抗が狂うことになるのでMRAM装置が誤動作する。 Since the electrical characteristics of the reference memory cell must be substantially the same as the electrical characteristics of a normal memory cell (normal memory cell), the reference memory cell has a continuous element arrangement with respect to a memory array composed of normal memory cells. Arranged to keep sex. In such a case, a normal memory cell and a reference memory cell may be arranged along the same digit line. As a result, at the time of data writing, there is a possibility that the reference memory cell provided corresponding to the digit line common to the normal memory cell to be written is in a deselected state and erroneously inverted. If the reference memory cell is erroneously inverted, the reference resistance is changed, and the MRAM device malfunctions.
 この発明の目的は、反選択状態でのディスターブ磁場による参照メモリセルの誤反転を防止することが可能なMRAM装置を備えた半導体装置を提供することである。 An object of the present invention is to provide a semiconductor device including an MRAM device capable of preventing erroneous reversal of a reference memory cell due to a disturb magnetic field in a counter-selected state.
 この発明の実施の一形態の半導体装置は、正規メモリセルアレイと、参照メモリセルアレイと、複数の第1のディジット線と、複数の第2のディジット線と、第1のディジット線ドライブ回路と、第2のディジット線ドライブ回路とを備える。正規メモリセルアレイには、磁気データに応じて電気抵抗が変化する磁気抵抗効果素子を有する正規メモリセルが行列状に複数配設される。参照メモリセルアレイには、磁気抵抗効果素子を有し、予め磁気データが書込まれることによって参照抵抗として用いられる参照メモリセルが行列状に複数配設される。複数の第1のディジット線は、正規メモリセルアレイの行にそれぞれ対応する。各第1のディジット線は、対応の行に沿って設けられる。正規メモリセルアレイの行方向の一方である第1の方向における各第1のディジット線の終端部は、第1の電源ノードと接続される。複数の第2のディジット線は、複数の第1のディジット線の少なくとも一部と個別に対応する。各第2のディジット線は、対応の第1のディジット線の上記終端部と連結して第1の方向に沿って延びる。参照メモリセルアレイの各行は、複数の第2のディジット線の各々と個別に対応し、対応の第2のディジット線に沿って設けられる。第1のディジット線ドライブ回路は、正規メモリセルアレイに磁気データを書込むときに、書込対象のメモリセルを含む行に対応した第1のディジット線を介して、第1の電源ノードとの間で磁気データの書込に必要な第1の書込電流を流す。第2のディジット線ドライブ回路は、参照メモリセルアレイに予め磁気データを書込むときに、書込対象の参照メモリセルを含む行に対応した第2のディジット線を介して、第1の電源ノードとの間で磁気データの書込に必要な第2の書込電流を流す。 A semiconductor device according to an embodiment of the present invention includes a normal memory cell array, a reference memory cell array, a plurality of first digit lines, a plurality of second digit lines, a first digit line drive circuit, 2 digit line drive circuits. In the normal memory cell array, a plurality of normal memory cells having a magnetoresistive effect element whose electric resistance changes according to magnetic data are arranged in a matrix. The reference memory cell array includes a plurality of reference memory cells that have a magnetoresistive effect element and are used as a reference resistor by writing magnetic data in advance. The plurality of first digit lines correspond to the rows of the normal memory cell array, respectively. Each first digit line is provided along a corresponding row. A terminal portion of each first digit line in the first direction which is one of the row directions of the normal memory cell array is connected to the first power supply node. The plurality of second digit lines individually correspond to at least some of the plurality of first digit lines. Each second digit line extends along a first direction in connection with the end of the corresponding first digit line. Each row of the reference memory cell array individually corresponds to each of the plurality of second digit lines, and is provided along the corresponding second digit line. When writing magnetic data to the normal memory cell array, the first digit line drive circuit is connected to the first power supply node via the first digit line corresponding to the row including the memory cell to be written. Then, a first write current necessary for writing magnetic data is supplied. When the magnetic data is written in the reference memory cell array in advance, the second digit line drive circuit is connected to the first power supply node via the second digit line corresponding to the row including the reference memory cell to be written. A second write current necessary for writing magnetic data is passed between the two.
 上記の実施の形態によれば、正規メモリセルアレイのデータ書込時に流れる第1の書込電流は、書込対象の正規メモリセルを含む行に対応した第1のディジット線を流れるが、第2のディジット線を流れることはない。したがって、書込時のディスターブ磁場による参照メモリセルの誤反転を防止することができる。 According to the above embodiment, the first write current that flows when data is written to the normal memory cell array flows through the first digit line corresponding to the row including the normal memory cell to be written. Never flow through the digit line. Therefore, erroneous inversion of the reference memory cell due to the disturb magnetic field at the time of writing can be prevented.
この発明の実施の一形態による半導体装置1の構成の一例を模式的に示すブロック図である。1 is a block diagram schematically showing an example of a configuration of a semiconductor device 1 according to an embodiment of the present invention. 図1のMRAM装置4の全体構成を示すブロック図である。It is a block diagram which shows the whole structure of the MRAM apparatus 4 of FIG. 図2のメモリアレイ10を構成する各メモリセルMCの構成を概略的に示す回路図である。FIG. 3 is a circuit diagram schematically showing a configuration of each memory cell MC configuring the memory array 10 of FIG. 2. データ書込電流と自由磁化層の磁化反転との関係を示す図である。It is a figure which shows the relationship between a data write current and the magnetization reversal of a free magnetic layer. 図2のMRAM装置4の各部のレイアウトを概略的に示す平面図である。FIG. 3 is a plan view schematically showing a layout of each part of the MRAM device 4 of FIG. 2. 図5のサブメモリアレイ領域6の詳細を示す平面図である。FIG. 6 is a plan view showing details of a sub memory array region 6 in FIG. 5. 図6のメモリセルアレイ10N,10Rを詳細に示す平面図である。FIG. 7 is a plan view showing in detail the memory cell arrays 10N and 10R of FIG. 図7のBL選択回路20および読出回路30の構成を示す回路図である。FIG. 8 is a circuit diagram showing configurations of a BL selection circuit 20 and a readout circuit 30 in FIG. 7. 図6、図7のDLドライブ回路60N,60Rの構成を示す回路図である。FIG. 8 is a circuit diagram showing a configuration of DL drive circuits 60N and 60R in FIGS. 6 and 7; 図6、図7のWLドライブ回路50N,50Rの構成を示す回路図である。FIG. 8 is a circuit diagram showing a configuration of WL drive circuits 50N and 50R in FIGS. 6 and 7; 図2の行デコード回路40の構成を示すブロック図である。FIG. 3 is a block diagram showing a configuration of a row decoding circuit 40 in FIG. 2. 図7の基本ユニットBU0の各部のレイアウトの具体例を示す平面図である。It is a top view which shows the specific example of the layout of each part of basic unit BU0 of FIG. 図12の切断線XIII-XIIIに沿う断面図である。FIG. 13 is a cross-sectional view taken along a cutting line XIII-XIII in FIG. 図12の切断線XIV-XIVに沿う断面図である。FIG. 14 is a cross-sectional view taken along a cutting line XIV-XIV in FIG. 12. 図9のMOSトランジスタ61の構成の一例を示す平面図である。FIG. 10 is a plan view illustrating an example of a configuration of a MOS transistor 61 in FIG. 9. 図9のMOSトランジスタ65の構成の一例を示す平面図である。FIG. 10 is a plan view illustrating an example of a configuration of a MOS transistor 65 in FIG. 9.
 以下、この発明の実施の形態について図面を参照して詳しく説明する。なお、同一または相当する部分には同一の参照符号を付して、その説明を繰返さない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The same or corresponding parts are denoted by the same reference numerals, and description thereof will not be repeated.
 [半導体装置の構成]
 図1は、この発明の実施の一形態による半導体装置1の構成の一例を模式的に示すブロック図である。
[Configuration of semiconductor device]
FIG. 1 is a block diagram schematically showing an example of the configuration of a semiconductor device 1 according to an embodiment of the present invention.
 図1を参照して、半導体装置1は、CPU(Central Processing Unit)およびメモリコントローラ2、クロック生成回路3、ならびにMRAM装置4を含むマイクロコンピュータである。図1のマイクロコンピュータは、MRAM装置4が搭載された集積回路の一例として示したものである。従来、マイクロコンピュータには、ROM(Read Only Memory)およびRAMなどのメモリ用として、フラッシュメモリやDRAM(Dynamic Random Access Memory)などの多種類のメモリが混載されていた。MRAMの有する高速、低消費電力、不揮発性、無制限の書換回数という特徴を生かして、半導体装置1では、これらの多種類のメモリデバイスがMRAMに置換えられている。図1に示すように、MRAM装置4は、CPUおよびメモリコントローラ2からコマンドおよびアドレス信号を受け、クロック生成回路3からクロックを受ける。MRAM装置4は、CPUおよびメモリコントローラ2から受けたコマンドおよびアドレス信号に基づいてデータの書込および読出を行ない、CPUおよびメモリコントローラ2との間でデータ信号をやりとりする。 Referring to FIG. 1, a semiconductor device 1 is a microcomputer including a CPU (Central Processing Unit) and a memory controller 2, a clock generation circuit 3, and an MRAM device 4. The microcomputer of FIG. 1 is shown as an example of an integrated circuit on which the MRAM device 4 is mounted. Conventionally, many kinds of memories such as flash memory and DRAM (Dynamic Random Access Memory) are mixedly mounted in microcomputers for memories such as ROM (Read Only Memory) and RAM. Taking advantage of the features of MRAM, such as high speed, low power consumption, non-volatility, and unlimited rewrites, in the semiconductor device 1, these various types of memory devices are replaced with MRAM. As shown in FIG. 1, the MRAM device 4 receives a command and an address signal from the CPU and the memory controller 2 and receives a clock from the clock generation circuit 3. The MRAM device 4 writes and reads data based on commands and address signals received from the CPU and the memory controller 2, and exchanges data signals with the CPU and the memory controller 2.
 [MARM装置の全体構成]
 図2は、図1のMRAM装置4の全体構成を示すブロック図である。
[Overall configuration of MARM device]
FIG. 2 is a block diagram showing the overall configuration of the MRAM device 4 of FIG.
 図2を参照して、MRAM装置4は、コマンドCMD、クロックCLKおよびアドレス信号ADDに応答して、メモリアレイ10のランダムアクセスを行なうことによって、書込データDinの書込と読出データDoutの読出とを行なう。MRAM装置4は、制御回路140と、メモリアレイ10と、アドレス信号ADD、書込データDin、および読出データDoutの入出力のための入出力回路150とを含む。 Referring to FIG. 2, MRAM device 4 performs random access to memory array 10 in response to command CMD, clock CLK and address signal ADD, thereby writing write data Din and reading read data Dout. And do. MRAM device 4 includes a control circuit 140, a memory array 10, and an input / output circuit 150 for inputting / outputting address signal ADD, write data Din, and read data Dout.
 制御回路140は、コマンドCMDおよびクロックCLKに応答してMRAM装置4の全体動作を制御する。 The control circuit 140 controls the overall operation of the MRAM device 4 in response to the command CMD and the clock CLK.
 メモリアレイ10は、図6、図7で説明するように、行列状に配置された複数の正規メモリセルMC(正規メモリセルアレイ10N)と複数の参照メモリセルMCR(参照メモリセルアレイ10R)とを有する。正規メモリセルMCは通常のデータ記憶のためのメモリセルである。参照メモリセルMCRは正規メモリセルMCに記憶された磁気データを読出すときの参照抵抗として設けられ、正規メモリセルMCのデータ判定の基準値を生成する。各メモリセルMC,MCRは、TMR素子およびアクセストランジスタATRを含む。 The memory array 10 includes a plurality of normal memory cells MC (normal memory cell array 10N) and a plurality of reference memory cells MCR (reference memory cell array 10R) arranged in a matrix, as will be described with reference to FIGS. . The normal memory cell MC is a memory cell for normal data storage. The reference memory cell MCR is provided as a reference resistance when reading magnetic data stored in the normal memory cell MC, and generates a reference value for data determination of the normal memory cell MC. Each memory cell MC, MCR includes a TMR element and an access transistor ATR.
 正規メモリセルMCに対してデータ読出およびデータ書込を行なうために、メモリアレイ10には、複数のワード線WL、ディジット線DL、およびビット線BLが配置される。ワード線WLおよびディジット線DLは、メモリセル行に対応して行方向に配置され、ビット線BLは、メモリセル列に対応して列方向に配置される。図7で説明するように、複数の参照メモリセルMCRに対しても、複数のワード線WLR、ディジット線DLR、およびビット線BLRが設けられる。 A plurality of word lines WL, digit lines DL, and bit lines BL are arranged in memory array 10 in order to perform data reading and data writing to normal memory cells MC. Word lines WL and digit lines DL are arranged in the row direction corresponding to the memory cell rows, and bit lines BL are arranged in the column direction corresponding to the memory cell columns. As will be described with reference to FIG. 7, a plurality of word lines WLR, digit lines DLR, and bit lines BLR are also provided for a plurality of reference memory cells MCR.
 入出力回路150は、アドレス信号ADD、書込データDin、および読出データDoutをそれぞれ一時的に保持するアドレス信号用ラッチ回路153、書込データ用ラッチ回路151、および読出データ用ラッチ回路152を含む。 Input / output circuit 150 includes an address signal latch circuit 153, a write data latch circuit 151, and a read data latch circuit 152 that temporarily hold address signal ADD, write data Din, and read data Dout, respectively. .
 MRAM装置4は、さらに、ビット線(BL)選択回路20、読出回路30、行デコード回路40、ワード線(WL)ドライブ回路50、ディジット線(DL)ドライブ回路60、列デコード回路70、およびビット線(BL)ドライブ回路80を含む。 The MRAM device 4 further includes a bit line (BL) selection circuit 20, a read circuit 30, a row decode circuit 40, a word line (WL) drive circuit 50, a digit line (DL) drive circuit 60, a column decode circuit 70, and a bit. A line (BL) drive circuit 80 is included.
 BL選択回路20は、データ読出時に読出対象の正規メモリセルMCに対応したビット線BLと参照抵抗として用いられる参照メモリセルMCRに対応したビット線BLRとを選択する。 The BL selection circuit 20 selects a bit line BL corresponding to a normal memory cell MC to be read and a bit line BLR corresponding to a reference memory cell MCR used as a reference resistance at the time of data reading.
 読出回路30は、データ読出時に選択された正規メモリセルMCの通過電流と参照メモリセルMCRの通過電流との差を検知増幅する。読出回路30は、検知増幅した信号を読出データ用ラッチ回路152に出力する。 The read circuit 30 detects and amplifies the difference between the passing current of the normal memory cell MC selected at the time of data reading and the passing current of the reference memory cell MCR. Read circuit 30 outputs the detected and amplified signal to read data latch circuit 152.
 行デコード回路40は、アドレス信号用ラッチ回路153からのアドレス信号ADDを受けて、アドレス信号ADDによって示された行アドレス信号RAをデコードする。行デコード回路40は、制御回路140からのコマンドCMDおよびクロックCLKに応じて、デコード結果である行選択信号を出力する。行選択信号は、メモリアレイ10の行選択を実行するために用いられる。 The row decode circuit 40 receives the address signal ADD from the address signal latch circuit 153 and decodes the row address signal RA indicated by the address signal ADD. The row decoding circuit 40 outputs a row selection signal as a decoding result in response to the command CMD and the clock CLK from the control circuit 140. The row selection signal is used for performing row selection of the memory array 10.
 WLドライブ回路50は、正規メモリセルMCのデータ読出時に、行デコード回路40からの行選択信号を受けて、対応するワード線WL,WLRを活性化する。 The WL drive circuit 50 receives the row selection signal from the row decoding circuit 40 and activates the corresponding word lines WL and WLR when reading data from the normal memory cell MC.
 DLドライブ回路60は、データ書込時に、行デコード回路40からの行選択信号を受けて、対応するディジット線DLまたはDLRにデータ書込電流を流す。 The DL drive circuit 60 receives a row selection signal from the row decode circuit 40 and writes a data write current to the corresponding digit line DL or DLR during data writing.
 列デコード回路70は、アドレス信号用ラッチ回路153から供給されるアドレス信号ADDを受けて、アドレス信号ADDによって示される列アドレス信号CAをデコードする。列デコード回路70は、制御回路140から供給されるコマンドCMDおよびクロックCLKに応じて、デコード結果である列選択信号を出力する。列選択信号は、メモリアレイ10における列選択を実行するために用いられる。 The column decode circuit 70 receives the address signal ADD supplied from the address signal latch circuit 153 and decodes the column address signal CA indicated by the address signal ADD. The column decode circuit 70 outputs a column selection signal as a decoding result in accordance with the command CMD and the clock CLK supplied from the control circuit 140. The column selection signal is used for performing column selection in the memory array 10.
 BLドライブ回路80は、列デコード回路70からの列選択信号を受けて、データ書込時に、対応するビット線BLまたはBLRに書込データ用ラッチ回路151からの書込データDinに応じた方向のデータ書込電流を流す。 The BL drive circuit 80 receives a column selection signal from the column decode circuit 70, and writes data to the corresponding bit line BL or BLR in the direction corresponding to the write data Din from the write data latch circuit 151 at the time of data writing. Apply data write current.
 MRAM装置4は、さらに、上述の読出回路30、行デコード回路40、ワード線ドライブ回路50、ディジット線ドライブ回路60、列デコード回路70、およびビット線ドライブ回路80などに供給する種々の参照電圧を生成する参照電源160を含む。 The MRAM device 4 further supplies various reference voltages to be supplied to the read circuit 30, the row decode circuit 40, the word line drive circuit 50, the digit line drive circuit 60, the column decode circuit 70, the bit line drive circuit 80, and the like. A reference power supply 160 to be generated is included.
 [メモリセルの構成と動作]
 図3は、図2のメモリアレイ10を構成する各メモリセルMC,MCRの構成を概略的に示す回路図である。正規メモリセルMCの構成と参照メモリセルMCRの構成とは同じなので、以下では正規メモリセルMCを代表として説明する。
[Configuration and operation of memory cell]
FIG. 3 is a circuit diagram schematically showing the configuration of each memory cell MC, MCR constituting the memory array 10 of FIG. Since the configuration of the normal memory cell MC and the configuration of the reference memory cell MCR are the same, the normal memory cell MC will be described below as a representative.
 図3を参照して、メモリセルMCは、磁気データに応じて電気抵抗が変化するTMR素子と、アクセストランジスタATRとを含む。ここで、TMR素子は、強磁性体薄膜からなる固定磁化層および自由磁化層で薄い絶縁層を挟んだトンネル接合構造を有する磁気抵抗素子である。TMR素子は、2つの層の磁化方向が平行の場合に低抵抗状態になり反平行の場合に高抵抗状態になるので、自由磁化層の磁化方向によって「1」「0」の情報を記憶することができる。通常、アクセストランジスタATRには、MOS(Metal Oxide Semiconductor)トランジスタが用いられる。 Referring to FIG. 3, memory cell MC includes a TMR element whose electrical resistance changes according to magnetic data, and an access transistor ATR. Here, the TMR element is a magnetoresistive element having a tunnel junction structure in which a thin insulating layer is sandwiched between a fixed magnetic layer and a free magnetic layer made of a ferromagnetic thin film. The TMR element is in a low resistance state when the magnetization directions of the two layers are parallel, and is in a high resistance state when the magnetization directions are antiparallel, and stores information of “1” and “0” depending on the magnetization direction of the free magnetic layer. be able to. Normally, a MOS (Metal Oxide Semiconductor) transistor is used as the access transistor ATR.
 メモリセルMCに対して、ディジット線DL、ワード線WL、ビット線BL、およびソース線SLが配置される。ディジット線DLおよびワード線WLはメモリセルアレイの行方向に沿って延在し、ビット線BLは列方向に延在する。ソース線SLは、正規メモリセルMCの場合は列方向に延在し、参照メモリセルMCRの場合は行方向に延在する。 Digit line DL, word line WL, bit line BL, and source line SL are arranged for memory cell MC. Digit lines DL and word lines WL extend in the row direction of the memory cell array, and bit lines BL extend in the column direction. The source line SL extends in the column direction in the case of the normal memory cell MC, and extends in the row direction in the case of the reference memory cell MCR.
 この明細書では、行方向をX方向とも称し、列方向をY方向とも称する。X方向に沿った向きを区別する場合には、+X方向または-X方向のように符号をつけて区別する。Y方向についても同様である。 In this specification, the row direction is also referred to as the X direction, and the column direction is also referred to as the Y direction. When distinguishing the direction along the X direction, it is distinguished by attaching a sign such as + X direction or -X direction. The same applies to the Y direction.
 図3に示すように、TMR素子は、その一端がビット線BLに接続され、他端がアクセストランジスタATRのドレインに接続される。アクセストランジスタATRのソースはソース線SLを介して接地ノードGNDに接続される。また、アクセストランジスタATRのゲートはワード線WLに接続される。 As shown in FIG. 3, the TMR element has one end connected to the bit line BL and the other end connected to the drain of the access transistor ATR. The source of access transistor ATR is connected to ground node GND through source line SL. The gate of the access transistor ATR is connected to the word line WL.
 データ書込時においては、データ書込対象となる選択メモリセルに対応するメモリセル行(以下、選択行とも称する)のディジット線DLと、選択メモリセルに対応するメモリセル列(以下、選択列とも称する)のビット線BLとに、それぞれデータ書込電流IDL,IBLが流される。ここで、ビット線BLを流れる電流IBLの方向は、書込データに応じて、切替え可能となっている。ビット線BLを流れる電流IBLの方向によって、自由磁化層の磁化の方向が決定される。 At the time of data writing, a digit line DL of a memory cell row (hereinafter also referred to as a selected row) corresponding to a selected memory cell to be data-written and a memory cell column (hereinafter referred to as a selected column) corresponding to the selected memory cell The data write currents IDL and IBL are supplied to the bit line BL. Here, the direction of the current IBL flowing through the bit line BL can be switched according to the write data. The direction of magnetization of the free magnetic layer is determined by the direction of the current IBL flowing through the bit line BL.
 一方、データ読出時においては、選択メモリセルに対応するワード線WLが高電圧状態に活性化されて、アクセストランジスタATRが導通状態になる。この結果、センス電流(セル電流)が、ビット線BLからTMR素子およびアクセストランジスタATRを経て、ソース線SLに流れる。なお、以下においては、信号、信号線およびデータなどの2値的な高電圧状態および低電圧状態を、それぞれ「Hレベル」および「Lレベル」とも称する。 On the other hand, at the time of data reading, the word line WL corresponding to the selected memory cell is activated to a high voltage state, and the access transistor ATR becomes conductive. As a result, a sense current (cell current) flows from the bit line BL to the source line SL through the TMR element and the access transistor ATR. In the following, the binary high voltage state and low voltage state such as signals, signal lines, and data are also referred to as “H level” and “L level”, respectively.
 上述のソース線SL、ビット線BL、およびディジット線DLは、金属配線層を用いて形成される。一方、ワード線WLは、集積度を高め、また、製造プロセスを簡略化するために、アクセストランジスタATRのゲートと一体化される。そのため、ワード線WLは、ポリシリコンやポリサイドなどを用いて形成される。 The above-described source line SL, bit line BL, and digit line DL are formed using a metal wiring layer. On the other hand, the word line WL is integrated with the gate of the access transistor ATR in order to increase the degree of integration and simplify the manufacturing process. Therefore, the word line WL is formed using polysilicon, polycide, or the like.
 図4は、データ書込電流と自由磁化層の磁化反転との関係を示す図である。図4を参照して、横軸にはビット線BLを流れるビット線電流IBLが示される。縦軸には、ディジット線DLを流れるディジット線電流IDLが示される。データ書込時には、ビット線電流IBLによる電流磁界とディジット線電流IDLによる電流磁界との合成磁界がTMR素子に印加される。たとえば、図4に示すように、ビット線電流IBLとしてI1の大きさの電流が流れ、ディジット線電流IDLとしてI2の大きさの電流が流れた場合には、電流I1,I2の交差した点I3がアステロイド曲線の外側の領域のときTMR素子の自由磁化層の磁化方向が変化する。交差点I3が、アステロイド曲線の内側の領域のときにはTMR素子のデータは更新されない。 FIG. 4 is a diagram showing the relationship between the data write current and the magnetization reversal of the free magnetic layer. Referring to FIG. 4, the horizontal axis shows the bit line current IBL flowing through the bit line BL. On the vertical axis, the digit line current IDL flowing through the digit line DL is shown. At the time of data writing, a combined magnetic field of a current magnetic field by the bit line current IBL and a current magnetic field by the digit line current IDL is applied to the TMR element. For example, as shown in FIG. 4, when a current I1 flows as the bit line current IBL and a current I2 flows as the digit line current IDL, a point I3 where the currents I1 and I2 intersect is shown. Is a region outside the asteroid curve, the magnetization direction of the free magnetic layer of the TMR element changes. When the intersection I3 is an area inside the asteroid curve, the data of the TMR element is not updated.
 したがって、ビット線電流I1またはディジット線電流I2の電流のみが流れた状態(反選択状態)では、磁気データの反転は生じないはずである。しかしながら、実際にはある確率で誤反転が生じる。誤反転の確率は、TMR素子が受けているディスターブ磁場の大きさに比例して大きくなる。すなわち、図4に示すビット線電流のディスターブマージン量ΔIBLが小さくなるほど、またはディジット線電流のディスターブマージン量ΔIDLが小さくなるほどTMR素子の誤反転確率が増加する。半選択状態でのディスターブ磁場によって参照メモリセルの誤反転が生じた場合にはMRAM装置が誤動作することになるので、ディスターブ磁場をできるだけ抑制する必要がある。 Therefore, in the state where only the bit line current I1 or the digit line current I2 flows (deselected state), the inversion of magnetic data should not occur. However, in actuality, erroneous reversal occurs with a certain probability. The probability of erroneous inversion increases in proportion to the magnitude of the disturb magnetic field received by the TMR element. That is, as the disturb margin amount ΔIBL of the bit line current shown in FIG. 4 decreases or the disturb margin amount ΔIDL of the digit line current decreases, the erroneous inversion probability of the TMR element increases. If the reference memory cell is erroneously inverted due to the disturb magnetic field in the half-selected state, the MRAM device malfunctions, so that the disturb magnetic field needs to be suppressed as much as possible.
 [MRAM装置の各部のレイアウトの概略]
 図5は、図2のMRAM装置4の各部のレイアウトを概略的に示す平面図である。図2、図5を参照して、メモリアレイ10および各ドライブ回路50,60,80が設けられるメモリアレイ領域5A,5Bは、基板SUB上でX方向に並んで配置される。各メモリアレイ領域5A,5Bはさらに4行2列のサブメモリアレイ領域6に分割される。
[Outline of Layout of Each Part of MRAM Device]
FIG. 5 is a plan view schematically showing the layout of each part of the MRAM device 4 of FIG. 2 and 5, memory array regions 5A and 5B in which memory array 10 and drive circuits 50, 60 and 80 are provided are arranged side by side in the X direction on substrate SUB. Each memory array area 5A, 5B is further divided into sub memory array areas 6 of 4 rows and 2 columns.
 行デコード回路40はメモリアレイ領域5A,5Bの間に配置される。行デコード回路40から+X方向および-X方向に複数のメインワード線MWLが配設される。メインワード線MWLは行デコード回路40から行選択信号をWLドライブ回路50およびDLドライブ回路60に伝送するために設けられている。メモリアレイ領域5A,5Bの-Y方向に隣接した領域には、列デコード回路70A,70Bがそれぞれ配置される。制御回路140および入出力回路150は、列デコード回路70A,70Bが設けられた領域に対して-Y方向に隣接した領域に配置される。 The row decode circuit 40 is arranged between the memory array areas 5A and 5B. A plurality of main word lines MWL are arranged from the row decode circuit 40 in the + X direction and the −X direction. The main word line MWL is provided for transmitting a row selection signal from the row decode circuit 40 to the WL drive circuit 50 and the DL drive circuit 60. Column decode circuits 70A and 70B are arranged in areas adjacent to the −Y direction of the memory array areas 5A and 5B, respectively. Control circuit 140 and input / output circuit 150 are arranged in a region adjacent to the region where column decode circuits 70A and 70B are provided in the −Y direction.
 図6は、図5のサブメモリアレイ領域6の詳細を示す平面図である。
 図6を参照して、正規メモリセルアレイ10Nは、サブメモリアレイ領域6の中央付近に設けられる。正規メモリセルアレイ10Nの行方向に沿ってワード線WLおよびディジット線DLが設けられ、列方向に沿ってビット線BLが設けられる。各メモリセルMCは、ワード線WL(ディジット線DL)とビット線BLとの交差点付近に配置される。
FIG. 6 is a plan view showing details of the sub memory array region 6 of FIG.
Referring to FIG. 6, normal memory cell array 10N is provided near the center of sub memory array region 6. Word lines WL and digit lines DL are provided along the row direction of normal memory cell array 10N, and bit lines BL are provided along the column direction. Each memory cell MC is arranged in the vicinity of an intersection between the word line WL (digit line DL) and the bit line BL.
 参照メモリセルアレイ10Rは、正規メモリセルアレイ10Nが設けられた領域に対して+X方向に隣接した領域に設けられる。参照メモリセルアレイ10Rの行方向に沿ってワード線WLRおよびディジット線DLRが設けられ、列方向に沿ってビット線BLR0,BLR1が設けられる。ディジット線DLRは、正規メモリセルアレイ10N用の対応するディジット線DLと連結される。両ディジット線DL,DLRの連結点NDは電源配線ISLを介して電源ノードVDDに接続される。 The reference memory cell array 10R is provided in a region adjacent to the region in which the normal memory cell array 10N is provided in the + X direction. A word line WLR and a digit line DLR are provided along the row direction of the reference memory cell array 10R, and bit lines BLR0 and BLR1 are provided along the column direction. Digit line DLR is connected to corresponding digit line DL for normal memory cell array 10N. A connection point ND between the two digit lines DL and DLR is connected to a power supply node VDD via a power supply line ISL.
 図6では、参照メモリセルMCRは、各ディジット線DLR(ワード線WLR)に2個ずつ設けられる。工場出荷時などに、2個の参照メモリセルMCRのうちの一方は、固定磁化層と自由磁化層が反平行(すなわち、高抵抗状態)になるように予め磁気データが書込まれ、他方は固定磁化層と自由磁化層が平行(すなわち、低抵抗状態)になるように予め磁気データが書込まれる。 In FIG. 6, two reference memory cells MCR are provided for each digit line DLR (word line WLR). At the time of factory shipment, for example, one of the two reference memory cells MCR is preliminarily written with magnetic data so that the fixed magnetic layer and the free magnetic layer are antiparallel (that is, in a high resistance state), and the other is Magnetic data is written in advance so that the fixed magnetic layer and the free magnetic layer are parallel (that is, in a low resistance state).
 正規メモリセルMC用のDLドライブ回路60Nと参照メモリセルMCR用のDLドライブ回路60Rとは、互いに独立に設けられる。正規メモリセルMC用のDLドライブ回路60Nは、正規メモリセルアレイ10Nが設けられた領域に対して-X方向に隣接した領域に配置される。 The DL drive circuit 60N for the normal memory cell MC and the DL drive circuit 60R for the reference memory cell MCR are provided independently of each other. The DL drive circuit 60N for the normal memory cell MC is arranged in a region adjacent to the region in which the normal memory cell array 10N is provided in the −X direction.
 従来の構成のMRAM装置では、電源ノードVDDが参照メモリセルMCR用のディジット線DLRの+X方向の終端部に接続され、参照メモリセルMCR用のDLドライブ回路60Rは設けられていなかった。この場合、工場出荷時などに参照メモリセルMCRに予め磁気データを書込むときには、正規メモリセルMC用のDLドライブ回路60Nを用いてディジット線DLRに書込電流を流していた。ところが、このような構成では、正規メモリセルMCにデータ書込を行なうときにも参照メモリセルMCR用のディジット線DLRに書込電流が流れるので、正規メモリへの書込アクセスの度に参照メモリセルMCRにディスターブ磁場がかかり、ディスターブ磁場によって参照メモリセルMCRが誤反転を起こす可能性があった。 In the conventional MRAM device, the power supply node VDD is connected to the terminal portion in the + X direction of the digit line DLR for the reference memory cell MCR, and the DL drive circuit 60R for the reference memory cell MCR is not provided. In this case, when magnetic data is previously written in the reference memory cell MCR at the time of factory shipment, a write current is passed through the digit line DLR using the DL drive circuit 60N for the normal memory cell MC. However, in such a configuration, a write current flows through the digit line DLR for the reference memory cell MCR even when data is written to the normal memory cell MC. The disturb magnetic field is applied to the cell MCR, and the reference memory cell MCR may be erroneously inverted by the disturb magnetic field.
 この実施の形態のMRAM装置4では、正規メモリセルMCへのデータ書込時には、電源ノードVDDから電源配線ISLおよびディジット線DLを介してDLドライブ回路60Nへ書込電流が流れる。この場合、参照メモリセルMCR用のディジット線DLRには書込電流が流れないので、参照メモリセルMCRは、正規メモリセルMCへの書込アクセス時にディスターブ磁場の影響を受けないようにできる。ただし、MRAM装置4の場合、参照メモリセルMCRに予め磁気データを書込むときに使用するために、参照メモリセルMCR用のDLドライブ回路60Rを正規メモリセルMC用のDLドライブ回路60Nと別個に設ける必要がある。図7で詳しく説明するように、MRAM装置4は、参照メモリセルアレイ10Rの行数が正規メモリセルアレイ10Nの行数よりも少なくなるように構成される。これによって、参照メモリセルアレイ10Rの設置領域に空きスペースを作り、この空きスペースにDLドライブ回路60Rが配置される。 In the MRAM device 4 of this embodiment, when data is written to the normal memory cell MC, a write current flows from the power supply node VDD to the DL drive circuit 60N through the power supply wiring ISL and the digit line DL. In this case, since the write current does not flow through the digit line DLR for the reference memory cell MCR, the reference memory cell MCR can be prevented from being affected by the disturb magnetic field during the write access to the normal memory cell MC. However, in the case of the MRAM device 4, the DL drive circuit 60R for the reference memory cell MCR is separated from the DL drive circuit 60N for the normal memory cell MC in order to be used when magnetic data is written in the reference memory cell MCR in advance. It is necessary to provide it. As described in detail in FIG. 7, the MRAM device 4 is configured such that the number of rows in the reference memory cell array 10R is smaller than the number of rows in the normal memory cell array 10N. Thereby, an empty space is created in the installation area of the reference memory cell array 10R, and the DL drive circuit 60R is arranged in this empty space.
 参照メモリセルアレイ10Rの行数が正規メモリセルアレイ10Nの行数よりも少なくなる場合には、正規メモリセルMC用のWLドライブ回路50Nと参照メモリセルMCR用のWLドライブ回路60Rも、互いに独立に設ける必要がある。正規メモリセルMC用のWLドライブ回路50Nは、DLドライブ回路60Nが設けられた領域に対して-X方向に隣接した領域に設けられる。参照メモリセルMCR用のWLドライブ回路50Rは、参照メモリセルアレイ10Rが設けられた領域の空きスペースに設けられる。 When the number of rows of the reference memory cell array 10R is smaller than the number of rows of the normal memory cell array 10N, the WL drive circuit 50N for the normal memory cell MC and the WL drive circuit 60R for the reference memory cell MCR are also provided independently of each other. There is a need. The WL drive circuit 50N for the normal memory cell MC is provided in a region adjacent to the region in which the DL drive circuit 60N is provided in the −X direction. The WL drive circuit 50R for the reference memory cell MCR is provided in an empty space in the area where the reference memory cell array 10R is provided.
 BLドライブ回路80A,80Bは、メモリセルアレイ10N,10Rが設けられた領域に対して+Y方向に隣接した領域と-Y方向に隣接した領域とにそれぞれ配置される。BLドライブ回路80A,80Bによって+Y方向と-Y方向の両方向のビット線電流が生成される。BL選択回路20および読出回路30は、BLドライブ回路80Aが設けられた領域に対して+Y方向に隣接した領域に配置される。 The BL drive circuits 80A and 80B are arranged in a region adjacent to the + Y direction and a region adjacent to the −Y direction, respectively, with respect to the region where the memory cell arrays 10N and 10R are provided. The bit line currents in both the + Y direction and the −Y direction are generated by the BL drive circuits 80A and 80B. The BL selection circuit 20 and the readout circuit 30 are arranged in an area adjacent to the area where the BL drive circuit 80A is provided in the + Y direction.
 [メモリセルアレイの構成の詳細]
 図7は、図6のメモリセルアレイ10N,10Rを詳細に示す平面図である。図7を参照して、正規メモリセルアレイ10Nはm行n列(nは2以上の整数、mは4の倍数)の正規メモリセルMCを含む。以下の説明では、第1行第1列のメモリセルをMC<0,0>と記載し、第k行、第l列(1≦k≦m,1≦l≦n)のメモリセルMCをMC<k-1,l-1>と記載する。
[Details of memory cell array configuration]
FIG. 7 is a plan view showing in detail the memory cell arrays 10N and 10R of FIG. Referring to FIG. 7, normal memory cell array 10N includes normal memory cells MC in m rows and n columns (n is an integer of 2 or more and m is a multiple of 4). In the following description, the memory cells in the first row and the first column are described as MC <0,0>, and the memory cells MC in the kth row and the lth column (1 ≦ k ≦ m, 1 ≦ l ≦ n) are described. It is described as MC <k-1, l-1>.
 正規メモリセルアレイ10Nの第1行~第m行にそれぞれ対応してm本のディジット線DL0~DLm-1が設けられる。ディジット線DL0~DLm-1の-X方向の終端部はDLドライブ回路60Nと接続され、ディジット線DL0~DLm-1の+X方向の終端部は電源配線ISLと接続される。電源配線ISLは列方向に延在して設けられ、+Y方向の端部が電源ノードVDDと接続される。正規メモリセルMCにデータを書込む場合、書込電流IDLは電源ノードVDDから電源配線ISLおよび選択されたディジット線DLを介してDLドライブ回路60Nに流れる。したがって、書込電流IDLは、参照メモリセルMCR用のディジット線DLR0~DLRp-1には流れないので、ディスターブ磁場による参照メモリセルMCRの誤反転を防止することができる。 M digit lines DL0 to DLm-1 are provided corresponding to the first to mth rows of the normal memory cell array 10N, respectively. The end portions in the −X direction of digit lines DL0 to DLm−1 are connected to DL drive circuit 60N, and the end portions in the + X direction of digit lines DL0 to DLm−1 are connected to power supply line ISL. Power supply line ISL is provided extending in the column direction, and an end in the + Y direction is connected to power supply node VDD. When data is written to normal memory cell MC, write current IDL flows from power supply node VDD to DL drive circuit 60N through power supply line ISL and selected digit line DL. Therefore, since the write current IDL does not flow through the digit lines DLR0 to DLRp-1 for the reference memory cell MCR, erroneous reversal of the reference memory cell MCR due to the disturb magnetic field can be prevented.
 図7では図示を省略しているが、m本のワード線WL0~WLm-1も、正規メモリセルアレイ10Nの行にそれぞれ対応して設けられる。ワード線WL0~WLm-1の-X方向の終端部はWLドライブ回路50Nと接続される。 Although not shown in FIG. 7, m word lines WL0 to WLm−1 are also provided corresponding to the rows of the normal memory cell array 10N, respectively. Termination portions in the −X direction of the word lines WL0 to WLm−1 are connected to the WL drive circuit 50N.
 正規メモリセルアレイ10Nの第1列~第n列にそれぞれ対応してn本のビット線BL0~BLn-1が設けられる。ビット線BL0~BLn-1の-Y方向の終端部がBLドライブ回路80Bと接続され、ビット線BL0~BLn-1の+Y方向の終端部がBLドライブ回路80AおよびBL選択回路20と接続される。 N bit lines BL0 to BLn−1 are provided corresponding to the first to nth columns of the normal memory cell array 10N, respectively. -Y direction end portions of the bit lines BL0 to BLn-1 are connected to the BL drive circuit 80B, and + Y direction end portions of the bit lines BL0 to BLn-1 are connected to the BL drive circuit 80A and the BL selection circuit 20. .
 一方、参照メモリセルアレイ10Rは、正規メモリセルアレイ10Nの4行ごとに1行ずつ設けられる。すなわち、m=4pとすると、参照メモリセルアレイ10Rはp行2列の参照メモリセルMCRによって構成される。 On the other hand, the reference memory cell array 10R is provided for every four rows of the regular memory cell array 10N. That is, when m = 4p, the reference memory cell array 10R is configured by p rows and 2 columns of reference memory cells MCR.
 第1行目の参照メモリセルMCR<0,0>,MCR<0,1>は、正規メモリセルアレイ10Nの第1行目の正規メモリセルMC<0,0>~MC<0,n-1>(ディジット線DL0に対応する)に対して行方向の延長線上に設けられる。参照メモリセルMCR<0,0>,MCR<0,1>は、正規メモリセルアレイ10Nの第1行目から第4行目のデータ読出時に参照抵抗として用いられる。 The reference memory cells MCR <0,0> and MCR <0,1> in the first row are normal memory cells MC <0,0> to MC <0, n−1 in the first row of the normal memory cell array 10N. > (Corresponding to digit line DL0) is provided on an extension line in the row direction. Reference memory cells MCR <0,0> and MCR <0,1> are used as reference resistors when data is read from the first row to the fourth row of normal memory cell array 10N.
 同様に、第i行目(1≦i≦p)の参照メモリセルMCR<i-1,0>,MCR<i-1,1>は、正規メモリセルアレイ10Nの第4i-3行目のメモリセルMC<4i-4,0>~MC<4i-4,n-1>(ディジット線DL4i-4に対応する)に対して行方向の延長線上に設けられる。参照メモリセルMCR<i-1,0>,MCR<i-1,1>は、正規メモリセルアレイ10Nの第4i-3行目から第4i行目のデータ読出時に参照抵抗として用いられる。 Similarly, the reference memory cells MCR <i−1,0> and MCR <i−1,1> in the i-th row (1 ≦ i ≦ p) are the memories in the 4i-3th row of the normal memory cell array 10N. Cells MC <4i-4,0> to MC <4i-4, n-1> (corresponding to digit line DL4i-4) are provided on extension lines in the row direction. The reference memory cells MCR <i−1,0> and MCR <i−1,1> are used as reference resistors when data is read from the 4i-3rd row to the 4ith row of the normal memory cell array 10N.
 正規メモリセルアレイ10Nの各行の+X方向の延長線上のうち参照メモリセルMCRが設けられない領域には、半導体装置の製造プロセスにおける形状不均一性を抑制するためにダミーセルDCが設けられる。ダミーセルDCは形状ダミーのTMR素子を含むがアクセストランジスタを含まない。したがって、ダミーセルDCが設けられた領域の基板面付近は空きスペースとなるので、このスペースを利用して参照メモリセルMCR用のDLドライブ回路60RおよびWLドライブ回路50Rが設けられる。なお、図7では図示を省略しているが、ダミーセルDCは、電源配線ISLの上層やメモリセルアレイ10N,10Rの周囲にも設けられる。 A dummy cell DC is provided in a region where the reference memory cell MCR is not provided on the extension line in the + X direction of each row of the normal memory cell array 10N in order to suppress shape non-uniformity in the manufacturing process of the semiconductor device. The dummy cell DC includes a shape dummy TMR element but does not include an access transistor. Therefore, the vicinity of the substrate surface in the area where the dummy cell DC is provided becomes an empty space, and the DL drive circuit 60R and the WL drive circuit 50R for the reference memory cell MCR are provided using this space. Although not shown in FIG. 7, the dummy cells DC are also provided in the upper layer of the power supply wiring ISL and around the memory cell arrays 10N and 10R.
 このように、参照メモリセルMCRは、正規メモリセルMCと素子配置の連続性を保って配置され、近接して設けられた正規メモリセルMCのデータ読出時に参照抵抗として用いられる。この結果、参照メモリセルMCRの電気特性を、対応する正規メモリセルMCの電気特性とほぼ同じ特性にすることができる。 As described above, the reference memory cell MCR is arranged while maintaining the continuity of the element arrangement with the normal memory cell MC, and is used as a reference resistance when data is read from the normal memory cell MC provided in the vicinity. As a result, the electrical characteristics of the reference memory cell MCR can be made substantially the same as the electrical characteristics of the corresponding normal memory cell MC.
 上記の構成の参照メモリセルアレイ10Rに対して、p本のディジット線DLR0~DLRp-1が参照メモリセルアレイ10Rの第1行~第p行にそれぞれ対応して設けられる。すなわち、各ディジット線DLRは、正規メモリセルMC用のディジット線DL0~DLm-1の4本ごとに1本ずつ設けられる。参照メモリセルMCR用の第i行目(1≦i≦p)のディジット線DLRi-1は、正規メモリセルMC用の第4i-3行目のディジット線DL4i-4の延長配線として+X方向の終端部と連結するように配置される。ディジット線DLR0~DLRp-1の-X方向の終端部は電源配線ISLを介して電源ノードVDDと接続される。ディジット線DLR0~DLRp-1の+X方向の終端部は、図6で説明したDLドライブ回路60Rと接続される。 For the reference memory cell array 10R configured as described above, p digit lines DLR0 to DLRp-1 are provided corresponding to the first to pth rows of the reference memory cell array 10R, respectively. That is, one digit line DLR is provided for every four digit lines DL0 to DLm−1 for normal memory cells MC. The digit line DLRi-1 in the i-th row (1 ≦ i ≦ p) for the reference memory cell MCR is an extension wiring of the digit line DL4i-4 in the 4i-3th row for the normal memory cell MC in the + X direction. It arrange | positions so that a termination | terminus part may be connected. The −X direction terminations of digit lines DLR0 to DLRp−1 are connected to power supply node VDD via power supply line ISL. The terminal portions in the + X direction of digit lines DLR0 to DLRp-1 are connected to DL drive circuit 60R described in FIG.
 ただし、参照メモリセルMCR用の各ディジット線DLRと、対応する正規メモリセルMC用のディジット線DLとの間は、必ずしも連続的に形成されていなくてもよい。各ディジット線DLRが対応のディジット線DLの延長上に配置され、各ディジット線DLRと電源配線ISLとのコンタクトと、対応のディジット線DLと電源配線ISLとのコンタクトとの間にスリットを入れるように形成することも可能である。 However, the digit lines DLR for the reference memory cells MCR and the corresponding digit lines DL for the normal memory cells MC do not necessarily have to be formed continuously. Each digit line DLR is arranged on the extension of the corresponding digit line DL, and a slit is formed between the contact between each digit line DLR and the power supply line ISL and between the corresponding digit line DL and the power supply line ISL. It is also possible to form it.
 DLドライブ回路60Rは、ディジット線DLR0~DLRp-1にそれぞれ対応するp個のDLドライバ部DLRDU0~DLRDUp-1を含む。各DLドライバ部DLRDUは、参照メモリセルMCRのデータ書込時に、電源ノードVDDから電源配線ISLを介して選択されたディジット線DLRにデータ書込電流IDLRを流す。電源配線ISLは、正規メモリセルMCにデータを書込む場合と共通に用いられるので、レイアウト面積を削減することができる。各DLドライバ部DLRDUは、対応のディジット線DLRが設けられた領域に対して+Y方向に隣接した領域に設けられる。言い換えれば、参照メモリセルアレイ10Rのダミーセル領域に設けられる。この領域は、参照メモリセルMCRが設けられていない空きスペースとなっているので、エリアペナルティ無しでDLドライブ回路60Rを設けることができる。 The DL drive circuit 60R includes p DL driver units DLRDU0 to DLRDUp-1 corresponding to the digit lines DLR0 to DLRp-1, respectively. Each DL driver unit DLRDU supplies a data write current IDLR from the power supply node VDD to the selected digit line DLR via the power supply line ISL when data is written to the reference memory cell MCR. Since power supply line ISL is used in common with the case where data is written to normal memory cell MC, the layout area can be reduced. Each DL driver unit DLRDU is provided in a region adjacent to the region in which the corresponding digit line DLR is provided in the + Y direction. In other words, it is provided in the dummy cell region of the reference memory cell array 10R. Since this area is an empty space in which the reference memory cell MCR is not provided, the DL drive circuit 60R can be provided without an area penalty.
 図7では図示を省略しているが、p本のワード線WLR0~WLRp-1も、参照メモリセルアレイ10Rの行にそれぞれ対応して設けられる。ワード線WLR0~WLRp-1の+X方向の終端部は、図6で説明したWLドライブ回路50Rと接続される。WLドライブ回路50Rは、ワード線WLR0~WLRp-1にそれぞれ対応するp個のWLドライバ部WLRDU0~WLRDUp-1を含む。各WLドライバ部WLRDUも、対応のワード線WLR(ディジット線DLR)が設けられた領域に対して+Y方向に隣接した領域、すなわち参照メモリセルアレイ10Rのダミーセル領域に設けられる。 Although not shown in FIG. 7, p word lines WLR0 to WLRp-1 are also provided corresponding to the rows of the reference memory cell array 10R, respectively. Termination portions in the + X direction of the word lines WLR0 to WLRp-1 are connected to the WL drive circuit 50R described with reference to FIG. WL drive circuit 50R includes p WL driver units WLRDU0 to WLRDUp-1 corresponding to word lines WLR0 to WLRp-1, respectively. Each WL driver unit WLRDU is also provided in a region adjacent to the region in which the corresponding word line WLR (digit line DLR) is provided in the + Y direction, that is, in a dummy cell region of the reference memory cell array 10R.
 ビット線BLR0,BLR1は、参照メモリセルアレイ10Rの第1列、第2列にそれぞれ対応して設けられる。ビット線BLR0,BLR1の-Y方向の終端部がBLドライブ回路80Bと接続され、+Y方向の終端部がBLドライブ回路80AおよびBL選択回路20と接続される。 Bit lines BLR0 and BLR1 are provided corresponding to the first column and the second column of the reference memory cell array 10R, respectively. The −Y direction end portions of the bit lines BLR0 and BLR1 are connected to the BL drive circuit 80B, and the + Y direction end portions are connected to the BL drive circuit 80A and the BL selection circuit 20.
 メインワード線MWL0~MWLp-1は、正規メモリセルアレイ10Nの4行ごとに1本ずつ設けられる。データ読出時およびデータ書込時には、メインワード線MWL0~MWLp-1によって行選択信号が行デコード回路40からWLドライブ回路50N,50RおよびDLドライブ回路60N,60Rに伝送される。 One main word line MWL0 to MWLp-1 is provided for every four rows of the normal memory cell array 10N. At the time of data reading and data writing, a row selection signal is transmitted from the row decode circuit 40 to the WL drive circuits 50N and 50R and the DL drive circuits 60N and 60R by the main word lines MWL0 to MWLp-1.
 各メインワード線に対応した4行の正規メモリセルMCおよび1行の参照メモリセルMCR、ならびにこれらのメモリセルMC,MCRに対応したディジット線、ワード線、DLドライバ部、およびWLドライバ部によって、図7に示す基本ユニットBU0~BUp-1が構成される。 By four rows of normal memory cells MC and one row of reference memory cells MCR corresponding to each main word line, and digit lines, word lines, DL driver portions, and WL driver portions corresponding to these memory cells MC and MCR, Basic units BU0 to BUp-1 shown in FIG. 7 are configured.
 [BL選択回路および読出回路の構成]
 図8は、図7のBL選択回路20および読出回路30の構成を示す回路図である。
[Configuration of BL selection circuit and readout circuit]
FIG. 8 is a circuit diagram showing a configuration of BL selection circuit 20 and readout circuit 30 in FIG.
 図8を参照して、BL選択回路20は、ビット線BL0~BLn-1,BLR0,BLR1の各々と個別に接続されたNMOS(N-channel Metal Oxide Semiconductor)トランジスタを含む。図8には、正規メモリセルMC用のビット線BL0,BL1にそれぞれ接続されたNMOSトランジスタ21,22と、参照メモリセルMCR用のビット線BLR0,BLR1にそれぞれ接続されたNMOSトランジスタ23,24とが示される。NMOSトランジスタ21,22は、図2の列デコード回路70から出力された列選択信号CSLに応答してオン状態に変化し、これによってビット線BL0,BL1が選択される。NMOSトランジスタ23,24は、列デコード回路70から出力された列選択信号CSL_REFによってオン状態に変化し、これによってビット線BLR0,BLR1が選択される。 Referring to FIG. 8, BL selection circuit 20 includes an NMOS (N-channel Metal Oxide Semiconductor) transistor individually connected to each of bit lines BL0 to BLn-1, BLR0, and BLR1. FIG. 8 shows NMOS transistors 21 and 22 connected to the bit lines BL0 and BL1 for the normal memory cell MC, and NMOS transistors 23 and 24 connected to the bit lines BLR0 and BLR1 for the reference memory cell MCR, respectively. Is shown. The NMOS transistors 21 and 22 are turned on in response to the column selection signal CSL output from the column decoding circuit 70 of FIG. 2, thereby selecting the bit lines BL0 and BL1. The NMOS transistors 23 and 24 are turned on by the column selection signal CSL_REF output from the column decoding circuit 70, and thereby the bit lines BLR0 and BLR1 are selected.
 読出回路30は、センスアンプSA0,SA1と、内部データ読出線LIO0,LIO1とを含む。センスアンプSA0,SA1の第1の入力端子(非反転入力端子)は、内部データ読出線LIO0,LIO1とそれぞれ接続される。内部データ読出線LIO0には、対応のNMOSトランジスタを介して奇数行目のビット線BL0,BL2,…が接続される。内部データ読出線LIO1には、対応のNMOSトランジスタを介して偶数行目のビット線BL1,BL3,…が接続される。センスアンプSA0の第2の入力端子(反転入力端子)には、NMOSトランジスタ23を介して参照メモリセルMCR用のビット線BLR0が接続される。センスアンプSA1の第2の入力端子(反転入力端子)には、NMOSトランジスタ24を介して参照メモリセルMCR用のビット線BLR1が接続される。センスアンプSA0,SA1の第2の入力端子は、配線31を介して互いに接続される。 Read circuit 30 includes sense amplifiers SA0 and SA1 and internal data read lines LIO0 and LIO1. First input terminals (non-inverting input terminals) of sense amplifiers SA0 and SA1 are connected to internal data read lines LIO0 and LIO1, respectively. The odd-numbered bit lines BL0, BL2,... Are connected to the internal data read line LIO0 via corresponding NMOS transistors. Bit lines BL1, BL3,... Of even-numbered rows are connected to internal data read line LIO1 through corresponding NMOS transistors. The bit line BLR0 for the reference memory cell MCR is connected to the second input terminal (inverted input terminal) of the sense amplifier SA0 via the NMOS transistor 23. A bit line BLR1 for the reference memory cell MCR is connected to the second input terminal (inverted input terminal) of the sense amplifier SA1 through the NMOS transistor 24. The second input terminals of the sense amplifiers SA0 and SA1 are connected to each other via the wiring 31.
 次に、図7、図8を参照しながら、正規メモリセルMCからのデータの読出方法を説明する。以下では、ワード線WL0に接続されるメモリセルMC<0,0>,MC<0,1>からデータを読出す場合について説明する。 Next, a method for reading data from the normal memory cell MC will be described with reference to FIGS. Hereinafter, a case where data is read from memory cells MC <0,0>, MC <0,1> connected to word line WL0 will be described.
 まず、図7のWLドライブ回路50Nが図8のワード線WL0(図7では図示省略)を活性化する。続いて、図7、図8に示すBL選択回路20が、選択されたビット線BL0,BL1を内部データ読出線LIO0,LIO1にそれぞれ接続する。このとき、内部データ読出線LIO0,LIO1にはセル電流IC0,IC1がそれぞれ流れる。 First, the WL drive circuit 50N of FIG. 7 activates the word line WL0 (not shown in FIG. 7) of FIG. Subsequently, the BL selection circuit 20 shown in FIGS. 7 and 8 connects the selected bit lines BL0 and BL1 to the internal data read lines LIO0 and LIO1, respectively. At this time, cell currents IC0 and IC1 flow through internal data read lines LIO0 and LIO1, respectively.
 一方、図7のWLドライバ部WLRDU0が図8のワード線WLR0(図7では図示省略)を活性化する。続いて、図7、図8に示すBL選択回路20が、選択されたビット線BLR0,BLR1をセンスアンプSA0,SA1の第2の入力端子にそれぞれ接続する。たとえば、参照メモリセルMCR<0,0>はデータ“1”を予め記憶し、参照メモリセルMCR<0,1>はデータ“0”を予め記憶していたとする。この場合、参照メモリセルMCR<0,0>にはデータ“1”に対応するセル電流ICR0が流れ、参照メモリセルMCR<0,1>にはデータ“0”に対応するセル電流ICR1が流れる。ここで、センスアンプSA0,SA1の第2の入力端子は互いに接続されているため、センスアンプSA0,SA1の第2の入力端子には参照電流としてセル電流ICR0とセル電流ICR1との正確な中間電流、すなわち1/2(ICR0+ICR1)の大きさの電流が流れる。 On the other hand, the WL driver unit WLRDU0 of FIG. 7 activates the word line WLR0 (not shown in FIG. 7) of FIG. Subsequently, the BL selection circuit 20 shown in FIGS. 7 and 8 connects the selected bit lines BLR0 and BLR1 to the second input terminals of the sense amplifiers SA0 and SA1, respectively. For example, it is assumed that the reference memory cell MCR <0,0> stores data “1” in advance, and the reference memory cell MCR <0,1> stores data “0” in advance. In this case, the cell current ICR0 corresponding to the data “1” flows through the reference memory cell MCR <0,0>, and the cell current ICR1 corresponding to the data “0” flows through the reference memory cell MCR <0,1>. . Here, since the second input terminals of the sense amplifiers SA0 and SA1 are connected to each other, an accurate intermediate between the cell current ICR0 and the cell current ICR1 is provided as a reference current to the second input terminals of the sense amplifiers SA0 and SA1. A current, that is, a current having a magnitude of 1/2 (ICR0 + ICR1) flows.
 センスアンプSA0(SA1)は、正規メモリセルMC<0,0>(MC<0,1>)のセル電流IC0(IC1)をこの参照電流と比較することによって、論理レベルがHレベルまたはLレベルのデータDout0(Dout1)を出力する
 [ディジット線ドライブ回路の構成]
 図9は、図6、図7のDLドライブ回路60N,60Rの構成を示す回路図である。図9には、図7の基本ユニットBU0,BU1に対応する部分のDLドライブ回路60N,60Rが示される。
The sense amplifier SA0 (SA1) compares the cell current IC0 (IC1) of the normal memory cell MC <0,0> (MC <0,1>) with this reference current, so that the logic level is H level or L level. Data Dout0 (Dout1) is output [Configuration of Digit Line Drive Circuit]
FIG. 9 is a circuit diagram showing the configuration of the DL drive circuits 60N and 60R of FIGS. FIG. 9 shows DL drive circuits 60N and 60R corresponding to the basic units BU0 and BU1 of FIG.
 正規メモリセルMC用のDLドライブ回路60Nは、ディジット線DL0~DLm-1にそれぞれ対応したDLドライバ部DLDU0~DLDUm-1と書込電流量の調整のために設けられた電流源64とを含む。図9に示すようにDLドライバ部DLDU0~DLDU3は基本ユニットBU0に対応する。同様に、基本ユニットBUi-1(1≦i≦p)には、DLドライバ部DLDU4i-4~DLDU4i-1が対応する。電流源64は、たとえば、ゲート電極に制御電圧が与えられたNMOSトランジスタによって構成される。 DL drive circuit 60N for normal memory cell MC includes DL driver units DLDU0 to DLDUm-1 corresponding to digit lines DL0 to DLm-1, respectively, and a current source 64 provided for adjusting the write current amount. . As shown in FIG. 9, DL driver units DLDU0 to DLDU3 correspond to the basic unit BU0. Similarly, DL driver units DLDU4i-4 to DLDU4i-1 correspond to basic unit BUi-1 (1 ≦ i ≦ p). The current source 64 is configured by, for example, an NMOS transistor in which a control voltage is applied to the gate electrode.
 各DLドライバ部DLDUは、NMOSトランジスタ61とインバータ62とNAND回路63とを含む。NMOSトランジスタ61のドレインは対応のディジット線DLに接続され、ソースは電流源64を介して接地ノードGNDと接続される。直列接続されたインバータ62およびNAND回路63は、NMOSトランジスタ61のゲートを駆動するゲート駆動部69Nとして機能する。 Each DL driver unit DLDU includes an NMOS transistor 61, an inverter 62, and a NAND circuit 63. NMOS transistor 61 has its drain connected to corresponding digit line DL and its source connected to ground node GND via current source 64. The inverter 62 and the NAND circuit 63 connected in series function as a gate drive unit 69N that drives the gate of the NMOS transistor 61.
 各基本ユニットBUに対応した4個のNAND回路63の第1の入力ノードには、対応のメインワード線MWLが共通に接続される。これによって、第1の入力ノードには対応のメインワード線MWLを介して行選択信号としてのメインワード信号MWSが入力される。4個のNAND回路63の第2の入力ノードには行選択信号としてのサブデコード信号SDW<0>~SDW<3>が個別に入力される。入力されたメインワード信号MWSおよびサブデコード信号SDWが共にHレベルのとき、各DLドライバ部DLDUのNMOSトランジスタ61が導通する。これによって各DLドライバ部DLDUに対応したディジット線DLに書込電流IDLが流れる。メインワード信号MWS<0>~MWS<p-1>とサブデコード信号SDW<0>~SDW<3>とを用いることによって、ディジット線DLを選択するのに必要な信号線の数を減らすことができる。 Corresponding main word lines MWL are commonly connected to the first input nodes of the four NAND circuits 63 corresponding to each basic unit BU. As a result, the main word signal MWS as a row selection signal is input to the first input node via the corresponding main word line MWL. Subdecode signals SDW <0> to SDW <3> as row selection signals are individually input to the second input nodes of the four NAND circuits 63. When the input main word signal MWS and subdecode signal SDW are both at the H level, the NMOS transistor 61 of each DL driver unit DLDU becomes conductive. As a result, the write current IDL flows through the digit line DL corresponding to each DL driver unit DLDU. By using main word signals MWS <0> to MWS <p-1> and subdecode signals SDW <0> to SDW <3>, the number of signal lines required to select digit line DL is reduced. Can do.
 次に、参照メモリセルMCR用のDLドライブ回路60Rは、ディジット線DLR0~DLRp-1にそれぞれ接続されたDLドライバ部DLRDU0~DLRDUp-1と書込電流量の調整のために設けられた電流源68とを含む。図9に示すように、基本ユニットBU0にはDLドライバ部DLRDU0が対応する。同様に、基本ユニットBUi-1(1≦i≦p)には、DLドライバ部DLRDUi-1が対応する。電流源68は、たとえば、ゲート電極に制御電圧が与えられたNMOSトランジスタによって構成される。 Next, the DL drive circuit 60R for the reference memory cell MCR includes DL driver units DLRDU0 to DLRDUup-1 connected to the digit lines DLR0 to DLRp-1, respectively, and a current source provided for adjusting the write current amount. 68. As shown in FIG. 9, the DL driver unit DLRDU0 corresponds to the basic unit BU0. Similarly, the DL driver unit DLRDUi-1 corresponds to the basic unit BUi-1 (1 ≦ i ≦ p). The current source 68 is configured by, for example, an NMOS transistor in which a control voltage is applied to the gate electrode.
 各DLドライバ部DLRDUは、NMOSトランジスタ65とインバータ66とNAND回路67とを含む。NMOSトランジスタ65のドレインは対応のディジット線DLRに接続され、ソースは電流源68を介して接地ノードGNDと接続される。直列接続されたインバータ66およびNAND回路67は、NMOSトランジスタ65のゲートを駆動するゲート駆動部69Rとして機能する。 Each DL driver unit DLRDU includes an NMOS transistor 65, an inverter 66, and a NAND circuit 67. NMOS transistor 65 has a drain connected to corresponding digit line DLR and a source connected to ground node GND via current source 68. The inverter 66 and the NAND circuit 67 connected in series function as a gate drive unit 69R that drives the gate of the NMOS transistor 65.
 各基本ユニットBUに対応したNAND回路67の第1の入力ノードには、対応のメインワード線MWLが接続される。これによって、第1の入力ノードには対応のメインワード線MWLを介してメインワード信号MWSが入力される。各NAND回路67の第2の入力ノードには、参照メモリセルの書込許可信号REF_WEが共通に入力される。したがって、入力されたメインワード信号MWSおよび書込許可信号REF_WEが共にHレベルのとき、各DLドライバ部DLRDUのNMOSトランジスタ65が導通する。これによって各DLドライバ部DLRDUに対応したディジット線DLRに書込電流IDLRが流れる。このように、参照メモリセルMCR用のディジット線DLRは、書込許可信号REF_WEがHレベルのとき、メインワード信号MWS<0>~MWS<p-1>によって選択される。 The corresponding main word line MWL is connected to the first input node of the NAND circuit 67 corresponding to each basic unit BU. As a result, the main word signal MWS is input to the first input node via the corresponding main word line MWL. A write enable signal REF_WE for the reference memory cell is commonly input to the second input node of each NAND circuit 67. Therefore, when both the input main word signal MWS and write enable signal REF_WE are at the H level, the NMOS transistor 65 of each DL driver unit DLRDU becomes conductive. As a result, the write current IDLR flows through the digit line DLR corresponding to each DL driver unit DLRDU. Thus, the digit line DLR for the reference memory cell MCR is selected by the main word signals MWS <0> to MWS <p−1> when the write enable signal REF_WE is at the H level.
 [ワード線ドライブ回路の構成]
 図10は、図6、図7のWLドライブ回路50N,50Rの構成を示す回路図である。図10には、図7の基本ユニットBU0,BU1に対応する部分のWLドライブ回路50N,50Rが示される。
[Configuration of word line drive circuit]
FIG. 10 is a circuit diagram showing the configuration of the WL drive circuits 50N and 50R shown in FIGS. FIG. 10 shows WL drive circuits 50N and 50R corresponding to the basic units BU0 and BU1 in FIG.
 正規メモリセルMC用のWLドライブ回路50Nは、ワード線WL0~WLm-1にそれぞれ対応するWLドライバ部WLDU0~WLDUm-1を含む。図10に示すように、基本ユニットBU0にはWLドライバ部WLDU0~WLDU3が対応する。同様に、基本ユニットBUi-1(1≦i≦p)には、WLドライバ部WLDU4i-4~WLDU4i-1が対応する。 WL drive circuit 50N for normal memory cell MC includes WL driver units WLDU0 to WLDUm-1 corresponding to word lines WL0 to WLm-1. As shown in FIG. 10, the WL unit WLDU0 to WLDU3 corresponds to the basic unit BU0. Similarly, the WL unit WLDU4i-4 to WLDU4i-1 corresponds to the basic unit BUi-1 (1 ≦ i ≦ p).
 各WLドライバ部WLDUは、直列接続されたインバータ51とNAND回路52とを含む。各インバータ51の出力ノードは対応のワード線WLに接続される。各基本ユニットBU0~BUp-1に対応した4個のNAND回路52の第1の入力ノードには、対応のメインワード線MWLが共通に接続される。これによって、第1の入力ノードには対応のメインワード線MWLを介してメインワード信号MWSが入力される。4個のNAND回路52の第2の入力ノードにはサブデコード信号SDR<0>~SDR<3>が個別に入力される。入力されたメインワード信号MWSおよびサブデコード信号SDRが共にHレベルのとき、各WLドライバ部WLDUに対応したワード線WLが活性状態(Hレベル)になる。メインワード信号MWS<0>~MWS<p-1>とサブデコード信号SDR<0>~SDR<3>とを用いることによって、正規メモリセルMC用のワード線WLを選択するのに必要な信号線の数を減らすことができる。 Each WL driver unit WLDU includes an inverter 51 and a NAND circuit 52 connected in series. The output node of each inverter 51 is connected to the corresponding word line WL. Corresponding main word lines MWL are commonly connected to first input nodes of the four NAND circuits 52 corresponding to the basic units BU0 to BUp-1. As a result, the main word signal MWS is input to the first input node via the corresponding main word line MWL. Sub-decode signals SDR <0> to SDR <3> are individually input to the second input nodes of the four NAND circuits 52. When input main word signal MWS and sub-decode signal SDR are both at H level, word line WL corresponding to each WL driver unit WLDU is activated (H level). Signals necessary for selecting word line WL for normal memory cell MC by using main word signals MWS <0> to MWS <p-1> and sub-decode signals SDR <0> to SDR <3> The number of lines can be reduced.
 次に、参照メモリセルMCR用のWLドライブ回路50Rは、ワード線WLR0~WLRp-1にそれぞれ対応するWLドライバ部WLRDU0~WLRDUp-1を含む。図10に示すように基本ユニットBU0にはWLドライバ部WLRDU0が対応する。同様に、基本ユニットBUi-1(1≦i≦p)には、WLドライバ部WLRDUi-1が対応する。 Next, the WL drive circuit 50R for the reference memory cell MCR includes WL driver units WLRDU0 to WLRDUp-1 corresponding to the word lines WLR0 to WLRp-1, respectively. As shown in FIG. 10, the WL driver unit WLRDU0 corresponds to the basic unit BU0. Similarly, the WL driver unit WLRDUi-1 corresponds to the basic unit BUi-1 (1 ≦ i ≦ p).
 各WLドライバ部WLRDUは、直列接続されたインバータ53とNAND回路54とを含む。インバータ53の出力ノードは対応のワード線WLRに接続される。各NAND回路54の第1の入力ノードは、対応のメインワード線MWLに接続される。これによって、第1の入力ノードには対応のメインワード線MWLを介してメインワード信号MWSが入力される。各NAND回路54の第2の入力ノードには、参照メモリセルの読出許可信号REF_REが共通に入力される。したがって、入力されたメインワード信号MWSおよび読出許可信号REF_REが共にHレベルのとき、各WLドライバ部WLRDUに対応したワード線WLRが活性状態(Hレベル)になる。このように、参照メモリセルMCR用のワード線WLRは、読出許可信号REF_REがHレベルのとき、メインワード信号MWS<0>~MWS<p-1>によって選択される。 Each WL driver unit WLRDU includes an inverter 53 and a NAND circuit 54 connected in series. The output node of inverter 53 is connected to the corresponding word line WLR. A first input node of each NAND circuit 54 is connected to a corresponding main word line MWL. As a result, the main word signal MWS is input to the first input node via the corresponding main word line MWL. A read permission signal REF_RE for the reference memory cell is commonly input to the second input node of each NAND circuit 54. Therefore, when input main word signal MWS and read permission signal REF_RE are both at the H level, word line WLR corresponding to each WL driver unit WLRDU is activated (H level). In this way, the word line WLR for the reference memory cell MCR is selected by the main word signals MWS <0> to MWS <p−1> when the read permission signal REF_RE is at the H level.
 [行デコード回路の構成]
 図11は、図2の行デコード回路40の構成を示すブロック図である。図11を参照して、行デコード回路40は、アドレスデコーダ41,42,44と、テストモードデコード回路43と、波形整形用のバッファ45とを含む。
[Configuration of row decode circuit]
FIG. 11 is a block diagram showing a configuration of the row decoding circuit 40 of FIG. Referring to FIG. 11, row decode circuit 40 includes address decoders 41, 42, 44, a test mode decode circuit 43, and a waveform shaping buffer 45.
 アドレスデコーダ41は、MRAM装置4の外部から行アドレス信号の上位ビットを受けたとき、行アドレス信号の上位ビットに基づいて行選択信号としてのpビットのメインワード信号MWS<0>~MWS<p-1>を生成する。生成されたメインワード信号MWS<0>~MWS<p-1>は、メインワード線MWL0~MWLp-1にそれぞれ出力される。 When the address decoder 41 receives the upper bits of the row address signal from the outside of the MRAM device 4, the address decoder 41 generates p-bit main word signals MWS <0> to MWS <p as row selection signals based on the upper bits of the row address signal. -1> is generated. The generated main word signals MWS <0> to MWS <p-1> are output to the main word lines MWL0 to MWLp-1, respectively.
 アドレスデコーダ42は、MRAM装置4の外部から行アドレス信号の下位ビットとライトコマンドとを受けたとき、行アドレス信号の下位ビットに基づいて行選択信号としての4ビットのサブデコード信号SDW<0>~SDW<3>を生成する。生成されたサブデコード信号SDW<0>~SDW<3>は、図9で説明した対応のDLドライバ部DLDUに出力される。 When the address decoder 42 receives the low-order bit of the row address signal and the write command from the outside of the MRAM device 4, the address decoder 42 generates a 4-bit subdecode signal SDW <0> as a row selection signal based on the low-order bit of the row address signal. Generate SDW <3>. The generated subdecode signals SDW <0> to SDW <3> are output to the corresponding DL driver unit DLDU described in FIG.
 テストモードデコード回路43は、MRAM装置4の外部から行アドレス信号の上位ビットとテストモードエントリ信号とを受けたとき、書込許可信号REF_WEを生成する。生成された書込許可信号REF_WEは、図9で説明した参照メモリセルMCR用の各DLドライバ部DLRDUに出力される。 The test mode decode circuit 43 generates the write enable signal REF_WE when receiving the upper bits of the row address signal and the test mode entry signal from the outside of the MRAM device 4. The generated write enable signal REF_WE is output to each DL driver unit DLRDU for the reference memory cell MCR described in FIG.
 アドレスデコーダ44は、MRAM装置4の外部から行アドレス信号の下位ビットとリードコマンドとを受けたとき、行アドレス信号の下位ビットに基づいて行選択信号としての4ビットのサブデコード信号SDR<0>~SDR<3>を生成する。生成されたサブデコード信号SDR<0>~SDR<3>は、図10で説明した対応のWLドライバ部WLDUに出力される。 When the address decoder 44 receives the lower bits of the row address signal and the read command from the outside of the MRAM device 4, the address decoder 44 uses a 4-bit sub-decode signal SDR <0> as a row selection signal based on the lower bits of the row address signal. ~ SDR <3> is generated. The generated subdecode signals SDR <0> to SDR <3> are output to the corresponding WL driver unit WLDU described in FIG.
 バッファ45は、リードコマンドを受けたとき、読出許可信号REF_REを、図10説明した参照メモリセルMCR用の各WLドライバ部WLRDUに出力する。 When receiving a read command, the buffer 45 outputs a read permission signal REF_RE to each WL driver unit WLRDU for the reference memory cell MCR described with reference to FIG.
 [MRAM装置の各部のレイアウトの具体例]
 図12は、図7の基本ユニットBU0の各部のレイアウトの具体例を示す平面図である。図12には、最上層の第4の金属配線層に形成されたビット線BL0~BLn-1,BLR0,BLR1と、第3の金属配線層に形成されたディジット線DL0~DL3,DLR0と、電源配線ISLと、各ドライバ部DLDU0~DLDU3,WLDU0~WLDU3,DLRDU0,WLRDU0の配置とが示される。
[Specific Example of Layout of Each Part of MRAM Device]
FIG. 12 is a plan view showing a specific example of the layout of each part of the basic unit BU0 of FIG. FIG. 12 shows bit lines BL0 to BLn-1, BLR0 and BLR1 formed in the uppermost fourth metal wiring layer, digit lines DL0 to DL3 and DLR0 formed in the third metal wiring layer, The power supply wiring ISL and the arrangement of the driver units DLDU0 to DLDU3, WLDU0 to WLDU3, DLRDU0, and WLRDU0 are shown.
 図12に示すように、正規メモリセルMC用のディジット線DL0と参照メモリセルMCR用のディジット線DLR0とは一体で形成される。一体形成されたディジット線DL0,DLR0は、両端部でDLドライバ部DLDU0,DLRDU0とコンタクトCTを介在して接続されるとともに、電源配線ISLとコンタクトCTを介して接続される。ディジット線DL1~DL3の各々は、-Y方向の終端部で対応のDLドライバ部DLDUとコンタクトCTを介して接続され、+Y方向の終端部で電源配線ISLとコンタクトCTを介して接続される。 As shown in FIG. 12, the digit line DL0 for the normal memory cell MC and the digit line DLR0 for the reference memory cell MCR are integrally formed. The integrally formed digit lines DL0 and DLR0 are connected to the DL driver portions DLDU0 and DLRDU0 at both ends via the contact CT, and to the power supply wiring ISL via the contact CT. Each of the digit lines DL1 to DL3 is connected to the corresponding DL driver unit DLDU through the contact CT at the terminal end in the −Y direction, and connected to the power supply line ISL through the contact CT at the terminal end in the + Y direction.
 図13は、図12の切断線XIII-XIIIに沿う断面図である。図13には、参照メモリセルMCRの断面構造と参照メモリセルMCR用のDLドライバ部DLRDUの配置とが示される。MRAM装置4には全4層の金属配線層が用いられる。第1~第4の金属配線層M1~M4は、基板側からこの順で互いに層間絶縁膜を介して積層される。 FIG. 13 is a cross-sectional view taken along section line XIII-XIII in FIG. FIG. 13 shows the cross-sectional structure of the reference memory cell MCR and the arrangement of the DL driver unit DLRDU for the reference memory cell MCR. The MRAM device 4 uses a total of four metal wiring layers. The first to fourth metal wiring layers M1 to M4 are stacked in this order from the substrate side via an interlayer insulating film.
 図13に示すように、p型の半導体基板SUBの主面上には、アクセストランジスタATRが形成される。アクセストランジスタATRは、n型領域であるソース領域111およびドレイン領域112と、ゲートとを有する。ゲートは、ワード線WLRと一体に形成される。アクセストランジスタATRのソース領域111は、第1の金属配線層M1を用いて形成されたソース線SLRと、コンタクトホールに形成された金属層113(コンタクト113と称する。)を介在して接続される。 As shown in FIG. 13, an access transistor ATR is formed on the main surface of the p-type semiconductor substrate SUB. Access transistor ATR has a source region 111 and a drain region 112 which are n-type regions, and a gate. The gate is formed integrally with the word line WLR. Source region 111 of access transistor ATR is connected to source line SLR formed using first metal interconnection layer M1 via metal layer 113 (referred to as contact 113) formed in the contact hole. .
 メインワード線MWLは、第2の金属配線層M3を用いて形成される。その上層の第3の金属配線層M3には、ディジット線DLRが形成される。 The main word line MWL is formed using the second metal wiring layer M3. A digit line DLR is formed in the third metal wiring layer M3, which is an upper layer.
 TMR素子は、ディジット線DLRの上層に形成される。TMR素子は、固定された磁化方向を有する磁性体層(固定磁化層)PLと、データ書込電流によって生じるデータ書込磁界に応じた方向に磁化される磁性体層(自由磁化層)FLとを有する。固定磁化層PLおよび自由磁化層FLの間には、絶縁体膜で形成されるトンネルバリアISOが形成される。 The TMR element is formed above the digit line DLR. The TMR element includes a magnetic layer (fixed magnetization layer) PL having a fixed magnetization direction, a magnetic layer (free magnetization layer) FL that is magnetized in a direction according to a data write magnetic field generated by a data write current, Have A tunnel barrier ISO formed of an insulator film is formed between the fixed magnetic layer PL and the free magnetic layer FL.
 TMR素子は、コンタクト114およびバリアメタル115を介して、アクセストランジスタATRのドレイン領域112と接続される。バリアメタル115は、TMR素子とコンタクト114とを接続するために設けられた緩衝材である。ビット線BLは、TMR素子の上層の第4の金属配線層M4に形成され、TMR素子の自由磁化層FLと接続される。 The TMR element is connected to the drain region 112 of the access transistor ATR via the contact 114 and the barrier metal 115. The barrier metal 115 is a buffer material provided to connect the TMR element and the contact 114. The bit line BL is formed in the fourth metal wiring layer M4 above the TMR element and connected to the free magnetic layer FL of the TMR element.
 参照メモリセルMCRが設けられていない領域にはダミーのTMR素子DTMRおよびバリアメタル116が形成される。バリアメタル116の下層のスペースに、DLドライバ部DLRDUに含まれるトランジスタが形成される。 A dummy TMR element DTMR and a barrier metal 116 are formed in a region where the reference memory cell MCR is not provided. Transistors included in the DL driver unit DLRDU are formed in a space below the barrier metal 116.
 図14は、図12の切断線XIV-XIVに沿う断面図である。図14には、正規メモリセルMCおよび参照メモリセルMCRの断面構造と電源配線ISLの配置とが示される。参照メモリセルMCRの断面構造は図13で説明したので説明を繰返さない。正規メモリセルMCの断面構造は、参照メモリセルMCRの断面構造と同様であるので、以下、簡単に説明する。 FIG. 14 is a cross-sectional view taken along section line XIV-XIV in FIG. FIG. 14 shows the cross-sectional structures of normal memory cell MC and reference memory cell MCR and the arrangement of power supply wiring ISL. Since the cross-sectional structure of reference memory cell MCR has been described with reference to FIG. 13, description thereof will not be repeated. The cross-sectional structure of the normal memory cell MC is the same as the cross-sectional structure of the reference memory cell MCR, and will be briefly described below.
 図14に示すように、正規メモリセルMC用のアクセストランジスタATRのソース領域121は、第1の金属配線層M1に形成されたソース線SLとコンタクト123を介在して接続される。アクセストランジスタATRのドレイン領域(図示省略)は、上層のバリアメタル125とコンタクト(図示省略)を介在して接続される。 As shown in FIG. 14, the source region 121 of the access transistor ATR for the normal memory cell MC is connected to the source line SL formed in the first metal wiring layer M1 via a contact 123. The drain region (not shown) of access transistor ATR is connected to upper layer barrier metal 125 via a contact (not shown).
 正規メモリセルMCが形成される領域では、メインワード線MWLは第2の金属配線層M2に形成される。ディジット線DLは第3の金属配線層M3に形成される。ビット線BLは第4の金属配線層M4に形成され、TMR素子の自由磁化層と接続される。 In the region where the normal memory cell MC is formed, the main word line MWL is formed in the second metal wiring layer M2. The digit line DL is formed in the third metal wiring layer M3. The bit line BL is formed in the fourth metal wiring layer M4 and connected to the free magnetic layer of the TMR element.
 電源配線ISLは第2の金属配線層M2に形成される。電源配線ISLは、第3の金属配線層M3に形成されたディジット線DL,DLRとコンタクト133を介在して接続される。電源配線ISLが形成された領域では、電源配線ISLを避けるためにメインワード線MWLが第1の金属配線層M1に形成される。このメインワード線MWLは、隣接した領域の第2の金属配線層M2に形成されたメインワード線MWLとコンタクト131,132を介在して接続される。 The power supply wiring ISL is formed in the second metal wiring layer M2. The power supply line ISL is connected to the digit lines DL and DLR formed in the third metal wiring layer M3 via a contact 133. In the region where the power supply wiring ISL is formed, the main word line MWL is formed in the first metal wiring layer M1 in order to avoid the power supply wiring ISL. The main word line MWL is connected to the main word line MWL formed in the second metal wiring layer M2 in the adjacent region via contacts 131 and 132.
 電源配線ISLの上層には、図12には示していないが、ダミーのビット線DBL、ダミーのTMR素子DTMR、およびダミーのバリアメタル116が形成される。 Although not shown in FIG. 12, a dummy bit line DBL, a dummy TMR element DTMR, and a dummy barrier metal 116 are formed in the upper layer of the power supply wiring ISL.
 図15は、図9のMOSトランジスタ61の構成の一例を示す平面図である。図12に示すように、MOSトランジスタ61を含むDLドライバ部DLDUは、X方向の長さがディジット線DLの配線ピッチと同程度内になるように形成されることが望ましい。また、MOSトランジスタ61の電流容量は、書込電流IDLを流すのに十分な電流容量が必要である。したがって、図15に示すように、MOSトランジスタ61を構成するソース領域161、ドレイン領域162、およびゲート電極163は、ゲート幅方向がY方向になるように形成される。ゲート幅W1は書込電流IDLの電流量に応じて設定される。ドレイン領域162は、ディジット線DLと配線164によって接続される。 FIG. 15 is a plan view showing an example of the configuration of the MOS transistor 61 of FIG. As shown in FIG. 12, it is desirable that the DL driver unit DLDU including the MOS transistor 61 is formed so that the length in the X direction is substantially within the wiring pitch of the digit line DL. Also, the current capacity of the MOS transistor 61 needs to be sufficient to allow the write current IDL to flow. Therefore, as shown in FIG. 15, the source region 161, the drain region 162, and the gate electrode 163 constituting the MOS transistor 61 are formed such that the gate width direction is the Y direction. The gate width W1 is set according to the amount of write current IDL. Drain region 162 is connected to digit line DL by wiring 164.
 図16は、図9のMOSトランジスタ65の構成の一例を示す平面図である。図12に示すように、MOSトランジスタ65を含むDLドライバ部DLRDUのX方向の長さは、ディジット線DLの4本分の配線ピッチと同程度内に形成することが望ましい。このため、図16に示すように、MOSトランジスタ65のゲート電極173A,173B,173Cには櫛型の電極構造が採用される。ソース領域171A,171B、ドレイン領域172A,172B、およびゲート電極173A,173B,173Cは、ゲート幅方向がY方向となるように形成される。ドレイン領域172A,172Bは、ディジット線DLRと配線174によって接続される。 FIG. 16 is a plan view showing an example of the configuration of the MOS transistor 65 of FIG. As shown in FIG. 12, the length in the X direction of the DL driver unit DLRDU including the MOS transistor 65 is desirably formed within the same degree as the wiring pitch of the four digit lines DL. Therefore, as shown in FIG. 16, a comb-shaped electrode structure is adopted for the gate electrodes 173A, 173B, and 173C of the MOS transistor 65. The source regions 171A and 171B, the drain regions 172A and 172B, and the gate electrodes 173A, 173B, and 173C are formed so that the gate width direction is the Y direction. Drain regions 172A and 172B are connected to digit line DLR by wiring 174.
 図16の場合、MOSトランジスタ65のゲート幅は、トランジスタ65が形成された領域のY方向の長さW2の3倍(W2×3)に相当する。このような構成を使用することで、レイアウト配置の効率が上がる。このMOSトランジスタ65のゲート幅(W2×3)は、図15に示したMOSトランジスタ61のゲート幅W1よりも短くてよい。MOSトランジスタ65が接続されたディジット線DLRの長さは、MOSトランジスタ61が接続されたディジット線DLの長さよりも短いので、MOSトランジスタ65の負荷インピーダンスは、MOSトランジスタ61の負荷インピーダンスより小さくなるからである。 In the case of FIG. 16, the gate width of the MOS transistor 65 corresponds to three times (W2 × 3) the length W2 in the Y direction of the region where the transistor 65 is formed. By using such a configuration, the efficiency of layout arrangement increases. The gate width (W2 × 3) of the MOS transistor 65 may be shorter than the gate width W1 of the MOS transistor 61 shown in FIG. Since the length of the digit line DLR to which the MOS transistor 65 is connected is shorter than the length of the digit line DL to which the MOS transistor 61 is connected, the load impedance of the MOS transistor 65 is smaller than the load impedance of the MOS transistor 61. It is.
 [まとめ]
 以上のように、この実施の形態に従うMRAM装置4では、正規メモリセルMC用のディジット線DLと参照メモリセルMCR用のディジット線DLRとの連結部NDが電源ノードVDDと接続される。そして、正規メモリセルMC用のDLドライブ回路60Nと参照メモリセルMCR用のDLドライブ回路60Rとが別個に設けられる。この結果、正規メモリセルMCのデータ書込時には、ディジット線電流IDLが、電源ノードVDDから連結部NDおよび対応のディジット線DLを介して正規メモリセルMC用のDLドライブ回路60Nに流れ、参照メモリセルMCR用のディジット線DLRを流れることはない。したがって、書込時のディスターブ磁場による参照メモリセルMCRの誤反転を防止することができる。
[Summary]
As described above, in MRAM device 4 according to the present embodiment, connecting portion ND between digit line DL for normal memory cell MC and digit line DLR for reference memory cell MCR is connected to power supply node VDD. A DL drive circuit 60N for the normal memory cell MC and a DL drive circuit 60R for the reference memory cell MCR are provided separately. As a result, at the time of data writing in the normal memory cell MC, the digit line current IDL flows from the power supply node VDD to the DL drive circuit 60N for the normal memory cell MC via the connecting portion ND and the corresponding digit line DL. The digit line DLR for the cell MCR does not flow. Therefore, erroneous inversion of the reference memory cell MCR due to the disturb magnetic field at the time of writing can be prevented.
 好ましくは、参照メモリセルアレイ10Rの行数を、正規メモリセルアレイ10Nの行数よりも少なくする。具体的には、正規メモリセルアレイ10Nの複数行(たとえば、4行)ごとに参照メモリセルアレイ10Rの各行が形成される。この場合、参照メモリセルMCR用の各ディジット線DLも、複数本の正規メモリセルMC用のディジット線DLごとに設けられる。この結果、参照メモリセルMCRおよびそれに対応したディジット線DLRが設けられていない空きスペースができるので、この空きスペースを利用して参照メモリセルMCR用DLドライブ回路60Rを面積ペナルティなく配置することができる。 Preferably, the number of rows of the reference memory cell array 10R is made smaller than the number of rows of the normal memory cell array 10N. Specifically, each row of the reference memory cell array 10R is formed for each of a plurality of rows (for example, 4 rows) of the normal memory cell array 10N. In this case, each digit line DL for the reference memory cell MCR is also provided for each of the digit lines DL for the plurality of normal memory cells MC. As a result, there is a free space in which the reference memory cell MCR and the digit line DLR corresponding thereto are not provided, and the DL drive circuit 60R for the reference memory cell MCR can be arranged without an area penalty using this free space. .
 参照メモリセルアレイ10Rの行数を正規メモリセルアレイ10Nの行数よりも少なくした場合には、正規メモリセルMC用のワード線WLと参照メモリセルMCR用のワード線WLRとを分離するとともに、正規メモリセルMC用のワード線ドライブ回路50Nと参照メモリセルMCR用のワード線ドライブ回路50Rとを別個に設ける必要がある。この場合も、参照メモリセルMCRおよびそれに対応したディジット線DLRやワード線WLRが設けられていない空きスペースを利用してワード線ドライブ回路50Rを配置することができる。 When the number of rows of the reference memory cell array 10R is smaller than the number of rows of the normal memory cell array 10N, the word line WL for the normal memory cell MC and the word line WLR for the reference memory cell MCR are separated and the normal memory It is necessary to separately provide the word line drive circuit 50N for the cell MC and the word line drive circuit 50R for the reference memory cell MCR. Also in this case, it is possible to arrange the word line drive circuit 50R using the empty space where the reference memory cell MCR and the corresponding digit line DLR and word line WLR are not provided.
 [変形例]
 図7では、正規メモリセルアレイ10Nの4行ごとに参照メモリセルアレイ10Rの1行が設けられる例を示したが、必ずしもこれに限る必要はない。たとえば、正規メモリセルアレイ10Nの16行ごとに参照メモリセルアレイ10Rを1行設けることも無論可能である。逆に、正規メモリセルアレイ10Nの行と参照メモリセルアレイ10Rの行とが1対1に対応するような構成も、参照メモリセルMCR用のディジット線ドライバ部DLRDUを配置するスペースが新たに必要になるが、技術的には可能である。
[Modification]
Although FIG. 7 shows an example in which one row of the reference memory cell array 10R is provided for every four rows of the normal memory cell array 10N, it is not necessarily limited to this. For example, it is of course possible to provide one reference memory cell array 10R for every 16 rows of the regular memory cell array 10N. Conversely, a configuration in which the row of the normal memory cell array 10N and the row of the reference memory cell array 10R have a one-to-one correspondence requires a new space for arranging the digit line driver unit DLRDU for the reference memory cell MCR. However, it is technically possible.
 図8では、共通のサブメモリアレイ領域に設けられ、一方が高抵抗状態、他方が低抵抗状態に予め設定された2個の参照メモリセルMCRが、1本のワード線WLRで同時に選択される例を示したが、参照メモリセルMCRの選択は必ずしもこのような例に限られない。たとえば、第1および第2のサブメモリアレイ領域に対してセンスアンプSA0,SA1が共通に設けられている場合には、第1のサブメモリアレイ領域に設けられた参照メモリセルMCRと第2のサブメモリアレイ領域に設けられた参照メモリセルMCRとが異なるワード線WLRで同時に選択される場合もあり得る。この場合、選択される参照メモリセルMCRの一方が高抵抗状態に予め設定され、他方が低抵抗状態に予め設定される。 In FIG. 8, two reference memory cells MCR which are provided in a common sub-memory array region and are preset in one high resistance state and the other low resistance state are simultaneously selected by one word line WLR. Although an example has been shown, the selection of the reference memory cell MCR is not necessarily limited to such an example. For example, when sense amplifiers SA0 and SA1 are provided in common with respect to the first and second sub memory array regions, the reference memory cell MCR provided in the first sub memory array region and the second sub memory array region There may be a case where the reference memory cells MCR provided in the sub memory array region are simultaneously selected by different word lines WLR. In this case, one of the selected reference memory cells MCR is preset in a high resistance state and the other is preset in a low resistance state.
 選択される参照メモリセルMCRは必ずしも2個には限られない。たとえば、2個を超える多数の参照メモリセルMCRの電気抵抗を平均化してもよいし、低抵抗状態に設定された参照メモリセルMCRを1個選択するとともに、参照メモリセル以外に抵抗素子を付加して基準電流を生成してもよい。このように、参照メモリセルを利用した基準電流の生成方法は多様である。 The number of selected reference memory cells MCR is not necessarily two. For example, the electrical resistances of a large number of reference memory cells MCR exceeding two may be averaged, one reference memory cell MCR set to a low resistance state is selected, and a resistance element is added in addition to the reference memory cell Thus, the reference current may be generated. As described above, there are various methods for generating the reference current using the reference memory cell.
 また、図7では、参照メモリセルアレイ10Rが2列の参照メモリセルMCRで構成されるとともに各列に対応して2本のビット線BLRが設けられている例を示したが、参照メモリセルアレイ10Rの構成は必ずしもこのような例に限られない。3列以上の参照メモリセルMCRと各列に対応した3本以上のビット線BLRとが設けられ、データ読出時に必要な数のビット線BLRが選択されるようにしてもよい。 FIG. 7 shows an example in which the reference memory cell array 10R is composed of two columns of reference memory cells MCR and two bit lines BLR are provided corresponding to each column. The configuration of is not necessarily limited to such an example. Three or more reference memory cells MCR and three or more bit lines BLR corresponding to each column may be provided, and a necessary number of bit lines BLR may be selected at the time of data reading.
 図9では、電源配線ISLが第1の電源ノードとしての電源ノードVDDに接続され、電流源64,68が第2の電源ノードとしての接地ノードGNDに接続されていた。この接続関係を逆にして、電源配線ISLが第1の電源ノードとしての接地ノードGNDに接続され、電流源64,68が第2の電源ノードとしての電源ノードVDDが接続されるようにしてもよい。この場合、書込電流IDL,IDLRは図9の場合と逆方向に流れる。 In FIG. 9, the power supply wiring ISL is connected to the power supply node VDD as the first power supply node, and the current sources 64 and 68 are connected to the ground node GND as the second power supply node. By reversing this connection relationship, power supply line ISL is connected to ground node GND as the first power supply node, and current sources 64 and 68 are connected to power supply node VDD as the second power supply node. Good. In this case, the write currents IDL and IDLR flow in the opposite direction to that in FIG.
 図9では、各サブメモリアレイ領域に電流源64,68が1個ずつ設けられる場合を示したが、必ずしもこれに限る必要はない。たとえば、2個の基本ユニットBUごとに電流源64,68を配置することもできる。 Although FIG. 9 shows the case where one current source 64, 68 is provided in each sub memory array region, it is not necessarily limited to this. For example, the current sources 64 and 68 can be arranged for every two basic units BU.
 ダミーセルDCの配置は、図7に図示された位置に限られるものでない。図7で述べたように、ダミーセルは、半導体装置の製造プロセスにおける形状不均一性を抑制するために、メモリセルアレイ10N,10Rの周囲に設けられる。たとえば、図12では、電源配線ISLの直上および両側に配置してもよい。 The arrangement of the dummy cells DC is not limited to the position shown in FIG. As described in FIG. 7, the dummy cells are provided around the memory cell arrays 10N and 10R in order to suppress non-uniformity in the shape of the semiconductor device manufacturing process. For example, in FIG. 12, it may be arranged immediately above and on both sides of the power supply wiring ISL.
 今回開示された実施の形態はすべての点で例示であって制限的なものでないと考えられるべきである。この発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 1 半導体装置(マイクロコンピュータ)、4 MRAM装置、10 メモリアレイ、10R 参照メモリセルアレイ、10N 正規メモリセルアレイ、20 BL選択回路、30 読出回路、40 行デコード回路、50 ワード線ドライブ回路、50N WLドライブ回路(正規メモリセル用)、50R WLドライブ回路(参照メモリセル用)、60 ディジット線ドライブ回路、60N DLドライブ回路(正規メモリセル用)、60R DLドライブ回路(参照メモリセル用)、61 NMOSトランジスタ、65 NMOSトランジスタ、70,70A,70B 列デコード回路、80,80A,80B ビット線ドライブ回路、ATR アクセストランジスタ、BL ビット線(正規メモリセル用)、BLR ビット線(参照メモリセル用)、DL ディジット線(正規メモリセル用)、DLR ディジット線(参照メモリセル用)、DLDU DLドライバ部(正規メモリセル用)、DLRDU DLドライバ部(参照メモリセル用)、GND 接地ノード、ISL 電源配線、MC 正規メモリセル、MCR 参照メモリセル、MWL メインワード線、SL ソース線(正規メモリセル用)、SLR ソース線(参照メモリセル用)、TMR TMR素子、VDD 電源ノード、WL ワード線(正規メモリセル用)、WLR ワード線(参照メモリセル用)、WLDU WLドライバ部(正規メモリセル用)、WLRDU WLドライバ部(参照メモリセル用)。 1 semiconductor device (microcomputer), 4 MRAM device, 10 memory array, 10R reference memory cell array, 10N regular memory cell array, 20 BL selection circuit, 30 readout circuit, 40 row decode circuit, 50 word line drive circuit, 50N WL drive circuit (For regular memory cell), 50R WL drive circuit (for reference memory cell), 60 digit line drive circuit, 60N DL drive circuit (for regular memory cell), 60R DL drive circuit (for reference memory cell), 61 NMOS transistor, 65 NMOS transistor, 70, 70A, 70B column decode circuit, 80, 80A, 80B bit line drive circuit, ATR access transistor, BL bit line (for regular memory cells), BLR bit line (reference Memory cell), DL digit line (for regular memory cell), DLR digit line (for reference memory cell), DLDU DL driver part (for regular memory cell), DLRDU DL driver part (for reference memory cell), GND ground node , ISL power supply wiring, MC regular memory cell, MCR reference memory cell, MWL main word line, SL source line (for regular memory cell), SLR source line (for reference memory cell), TMR TMR element, VDD power supply node, WL word Line (for regular memory cells), WLR word line (for reference memory cells), WLDU WL driver section (for regular memory cells), WLRDU WL driver section (for reference memory cells).

Claims (11)

  1.  磁気データに応じて電気抵抗が変化する磁気抵抗効果素子を有する正規メモリセルが行列状に複数配設された正規メモリセルアレイと、
     磁気抵抗効果素子を有し、予め磁気データが書込まれることによって参照抵抗として用いられる参照メモリセルが行列状に複数配設された参照メモリセルアレイと、
     前記正規メモリセルアレイの行にそれぞれ対応し、各々が、対応の行に沿って設けられた複数の第1のディジット線とを備え、前記正規メモリセルアレイの行方向の一方である第1の方向における前記複数の第1のディジット線の各々の終端部は、第1の電源ノードと接続され、
     前記複数の第1のディジット線の少なくとも一部と個別に対応し、各々が、対応の第1のディジット線の前記終端部と連結して前記第1の方向に沿って延びる複数の第2のディジット線をさらに備え、前記参照メモリセルアレイの各行は、前記複数の第2のディジット線の各々と個別に対応し、対応の第2のディジット線に沿って設けられ、
     前記正規メモリセルアレイに磁気データを書込むときに、書込対象の正規メモリセルを含む行に対応した第1のディジット線を介して、前記第1の電源ノードとの間で磁気データの書込に必要な第1の書込電流を流す第1のディジット線ドライブ回路と、
     前記参照メモリセルアレイに予め磁気データを書込むときに、書込対象の参照メモリセルを含む行に対応した第2のディジット線を介して、前記第1の電源ノードとの間で磁気データの書込に必要な第2の書込電流を流す第2のディジット線ドライブ回路とをさらに備える、半導体装置。
    A normal memory cell array in which a plurality of normal memory cells each having a magnetoresistive effect element whose electrical resistance changes according to magnetic data are arranged in a matrix;
    A reference memory cell array having a magnetoresistive effect element, in which a plurality of reference memory cells that are used as reference resistances by pre-writing magnetic data are arranged in a matrix;
    A plurality of first digit lines each corresponding to a row of the normal memory cell array, each having a plurality of first digit lines provided along the corresponding row, in a first direction which is one of the row directions of the normal memory cell array A terminal portion of each of the plurality of first digit lines is connected to a first power supply node,
    A plurality of second digit lines individually corresponding to at least a portion of the plurality of first digit lines, each extending along the first direction in connection with the terminal portion of the corresponding first digit line. Further comprising digit lines, each row of the reference memory cell array individually corresponding to each of the plurality of second digit lines and provided along a corresponding second digit line;
    When writing magnetic data to the normal memory cell array, writing magnetic data to and from the first power supply node via the first digit line corresponding to the row including the normal memory cell to be written A first digit line drive circuit for passing a first write current required for
    When magnetic data is written in the reference memory cell array in advance, the magnetic data is written to the first power supply node via the second digit line corresponding to the row including the reference memory cell to be written. And a second digit line drive circuit for supplying a second write current necessary for insertion.
  2.  前記複数の第2のディジット線の各々は、前記複数の第1のディジット線の複数本ごとに設けられる、請求の範囲第1項に記載の半導体装置。 2. The semiconductor device according to claim 1, wherein each of the plurality of second digit lines is provided for each of a plurality of the plurality of first digit lines.
  3.  前記第2のディジット線ドライブ回路は、前記複数の第2のディジット線にそれぞれ対応する複数のディジット線ドライバ部を含み、前記複数のディジット線ドライバ部の各々は、対応の第2のディジット線に前記第2の書込電流を流すために設けられ、前記複数のディジット線ドライバ部の各々は、対応の第2のディジット線に対して前記正規メモリセルアレイの列方向に隣接した領域に設けられる、請求の範囲第2項に記載の半導体装置。 The second digit line drive circuit includes a plurality of digit line driver units respectively corresponding to the plurality of second digit lines, and each of the plurality of digit line driver units is connected to a corresponding second digit line. Provided for flowing the second write current, and each of the plurality of digit line driver units is provided in a region adjacent to the corresponding second digit line in the column direction of the normal memory cell array; The semiconductor device according to claim 2.
  4.  前記複数の正規メモリセルおよび前記複数の参照メモリセルの各々は、前記磁気抵抗効果素子と直列に接続され、制御電極を有するスイッチ素子をさらに含み、
     前記半導体装置は、
     前記正規メモリセルアレイの行にそれぞれ対応して設けられ、対応の行に含まれる各正規メモリセルの前記制御電極と接続される複数の第1のワード線と、
     前記参照メモリセルアレイの行にそれぞれ対応して設けられ、対応の行に含まれる各参照メモリセルの前記制御電極と接続される複数の第2のワード線と、
     前記正規メモリセルアレイから磁気データを読出すときに、読出対象の正規メモリセルを含む行に対応した第1のワード線を活性化する第1のワード線ドライブ回路と、
     前記正規メモリセルアレイから磁気データを読出すときに、参照抵抗として用いられる参照メモリセルを含む行に対応した第2のワード線を活性化する第2のワード線ドライブ回路とを備える、請求の範囲第2項に記載の半導体装置。
    Each of the plurality of normal memory cells and the plurality of reference memory cells further includes a switch element connected in series with the magnetoresistive effect element and having a control electrode,
    The semiconductor device includes:
    A plurality of first word lines provided corresponding to the rows of the normal memory cell array and connected to the control electrode of each normal memory cell included in the corresponding row;
    A plurality of second word lines provided corresponding to the rows of the reference memory cell array and connected to the control electrode of each reference memory cell included in the corresponding row;
    A first word line drive circuit for activating a first word line corresponding to a row including a normal memory cell to be read when reading magnetic data from the normal memory cell array;
    And a second word line drive circuit for activating a second word line corresponding to a row including a reference memory cell used as a reference resistor when reading magnetic data from the normal memory cell array. The semiconductor device according to Item 2.
  5.  前記第2のワード線ドライブ回路は、前記複数の第2のワード線にそれぞれ対応する複数のワード線ドライバ部を含み、前記複数のワード線ドライバ部の各々は、対応の第2のワード線を活性化するために設けられ、前記複数のワード線ドライバ部の各々は、対応の第2のワード線に対して前記正規メモリセルアレイの列方向に隣接した領域に設けられる、請求の範囲第4項に記載の半導体装置。 The second word line drive circuit includes a plurality of word line driver units respectively corresponding to the plurality of second word lines, and each of the plurality of word line driver units includes a corresponding second word line. 5. The method according to claim 4, wherein each of the plurality of word line driver units is provided in an area adjacent to a corresponding second word line in a column direction of the normal memory cell array. A semiconductor device according to 1.
  6.  前記第1のディジット線ドライブ回路は、前記複数の第1のディジット線にそれぞれ対応する複数の第1のMOSトランジスタを含み、前記複数の第1のMOSトランジスタの各々は、対応の第1のディジット線と第2の電源ノードとの間に設けられ、オン状態のときに前記第1の書込電流を通過させ、
     前記第2のディジット線ドライブ回路は、前記複数の第2のディジット線にそれぞれ対応する複数の第2のMOSトランジスタを含み、前記複数の第2のMOSトランジスタの各々は、対応の第2のディジット線と前記第2の電源ノードとの間に設けられ、オン状態のときに前記第2の書込電流を通過させ、
     前記複数の第1のMOSトランジスタの各々のゲート幅は、前記複数の第2のMOSトランジスタの各々のゲート幅よりも長い、請求の範囲第1項に記載の半導体装置。
    The first digit line drive circuit includes a plurality of first MOS transistors respectively corresponding to the plurality of first digit lines, and each of the plurality of first MOS transistors includes a corresponding first digit. Provided between the line and the second power supply node, and allows the first write current to pass in an on state;
    The second digit line drive circuit includes a plurality of second MOS transistors respectively corresponding to the plurality of second digit lines, and each of the plurality of second MOS transistors includes a corresponding second digit. Provided between the second power supply node and the second power supply node, and allows the second write current to pass in an on state,
    2. The semiconductor device according to claim 1, wherein a gate width of each of the plurality of first MOS transistors is longer than a gate width of each of the plurality of second MOS transistors.
  7.  前記半導体装置は、前記複数の第1のディジット線の各々の前記終端部と接続され、前記正規メモリセルアレイの列方向に延在し、前記第1の電源ノードに接続される電源配線をさらに備える、請求の範囲第1項に記載の半導体装置。 The semiconductor device further includes a power supply line connected to the terminal portion of each of the plurality of first digit lines, extending in a column direction of the normal memory cell array, and connected to the first power supply node. The semiconductor device according to claim 1.
  8.  記憶データに応じて磁化方向が設定される自由層と、磁化方向が記憶データに関わらず固定的に設定される固定層とを含む積層構造を有する磁気抵抗素子を各々が含む複数の正規磁気メモリセルが行列状に配置される正規メモリセルアレイと、
     記憶データに応じて磁化方向が設定される自由層と磁化方向が記憶データに関らず固定的に設定される固定層を含む積層構造を有する磁気抵抗素子を各々が含み、前記正規磁気メモリセルからのデータ読み出し時にデータ判定の基準値を生成するための参照磁気メモリセルが行列状に配置される参照メモリセルアレイと、
     前記正規メモリセルアレイの正規磁気メモリセル行に対応して配置され、データ書き込み時に対応の正規磁気メモリセルに対して電流による誘起磁場を印加する複数の第1の書き込み電流線と、
     前記参照メモリセルアレイの参照磁気メモリセル行に対応して配置され、データ書き込み時に対応の参照磁気メモリセルに対して電流による誘起磁場を印加する複数の第2の書き込み電流線とを備え、前記複数の第2の書き込み電流線の各々は、前記複数の第1の書き込み電流線の所定数毎の1本の延長配線として前記所定数毎の1本と信号配線を共有し、
     さらに、前記正規メモリセルアレイと前記参照メモリセルアレイの境界領域に前記複数の第1の書き込み電流線および前記複数の第2の書き込み電流線と複数の交差部で平面的に交差して配線される電源配線を備え、前記複数の第1の書き込み電流線と前記複数の第2の書き込み電流線は前記電源配線と前記複数の交差部で電気的に接続され、
     さらに、前記正規メモリセルアレイを挟んで前記電源配線と対向して配置され、前記複数の第1の書き込み電流線に書き込み電流を流す複数の第1の書き込み電流線ドライブ回路と、
    前記参照メモリセルアレイを挟んで前記電源配線と対向して配置され、前記複数の第2の書き込み電流線に書き込み電流を流す複数の第2の書き込み電流ドライブ回路とを備える、半導体装置。
    A plurality of normal magnetic memories each including a magnetoresistive element having a laminated structure including a free layer whose magnetization direction is set according to stored data and a fixed layer whose magnetization direction is fixedly set regardless of stored data A regular memory cell array in which cells are arranged in a matrix;
    Each of the normal magnetic memory cells includes a magnetoresistive element having a laminated structure including a free layer whose magnetization direction is set according to stored data and a fixed layer whose magnetization direction is fixed regardless of stored data, A reference memory cell array in which reference magnetic memory cells for generating a reference value for data determination when reading data from are arranged in a matrix;
    A plurality of first write current lines arranged corresponding to the normal magnetic memory cell rows of the normal memory cell array and applying an induced magnetic field to the corresponding normal magnetic memory cells at the time of data writing;
    A plurality of second write current lines arranged corresponding to the reference magnetic memory cell rows of the reference memory cell array and applying an induced magnetic field to the corresponding reference magnetic memory cells at the time of data writing, Each of the second write current lines shares a signal wiring with one of the predetermined number as one extension wiring for the predetermined number of the plurality of first write current lines,
    Further, a power supply that is wired in a plane crossing the plurality of first write current lines and the plurality of second write current lines at a plurality of intersections in a boundary region between the normal memory cell array and the reference memory cell array. A plurality of first write current lines and the plurality of second write current lines are electrically connected to the power supply wiring at the plurality of intersections,
    A plurality of first write current line drive circuits arranged to face the power supply wiring with the normal memory cell array interposed therebetween, and supplying a write current to the plurality of first write current lines;
    A semiconductor device, comprising: a plurality of second write current drive circuits that are arranged to face the power supply wiring with the reference memory cell array interposed therebetween and allow a write current to flow through the plurality of second write current lines.
  9.  前記参照メモリセルアレイは、複数の形状ダミー磁気抵抗素子を含み、前記複数の参照磁気メモリセルと前記複数の形状ダミー磁気抵抗素子が行列状に配置され、前記複数の形状ダミー磁気抵抗素子の下層領域に前記複数の第2の書き込み電流ドライブ回路に含まれるトランジスタが配置される、請求の範囲第8項に記載の半導体装置。 The reference memory cell array includes a plurality of shape dummy magnetoresistive elements, the plurality of reference magnetic memory cells and the plurality of shape dummy magnetoresistive elements are arranged in a matrix, and a lower layer region of the plurality of shape dummy magnetoresistive elements 9. The semiconductor device according to claim 8, wherein transistors included in the plurality of second write current drive circuits are arranged.
  10.  前記複数の第1の書き込み電流線の前記所定数毎に対応して設けられ、前記所定数単位の行方向のアドレス選択を行う複数のメインワード線をさらに備え、前記複数の第2の書き込み電流線も前記複数のメインワード線の信号でアドレス選択される、請求の範囲第8項に記載の半導体装置。 A plurality of main word lines provided corresponding to the predetermined number of the plurality of first write current lines and performing address selection in the row direction by the predetermined number unit; 9. The semiconductor device according to claim 8, wherein a line is also address-selected by a signal of the plurality of main word lines.
  11.  前記半導体装置は、
     前記正規メモリセルアレイの正規磁気メモリセル列に対応して配置され、データ読み出し時に対応の正規磁気メモリセルに読み出し電流を流す複数の第1のビット線と、
     前記参照メモリセルアレイの参照磁気メモリセル列に対応して配置され、前記データ読み出し時に対応の参照磁気メモリセルに読み出し電流を流す複数の第2のビット線とをさらに備え、
     前記複数の正規磁気メモリセルおよび前記複数の参照磁気メモリセルの各々は、前記データ読み出し時に導通して対応の磁気抵抗素子に前記読み出し電流を流すアクセストランジスタを含み、
     前記半導体装置は、
     前記正規メモリセルアレイの正規磁気メモリセル行に対応して配置され、対応の正規磁気メモリセルのアクセストランジスタのゲート電極に接続される複数の第1の読み出しワード線と、
     前記参照メモリセルアレイの参照磁気メモリセル行に対応して配置され、対応の参照磁気メモリセルのアクセストランジスタのゲート電極に接続される複数の第2の読み出しワード線とをさらに備え、
     前記複数の第1の読み出しワード線と前記複数の第2の読み出しワード線は異なる配線で形成され、いずれも前記複数のメインワード線の信号でアドレス選択される、請求の範囲第10項に記載の半導体装置。
    The semiconductor device includes:
    A plurality of first bit lines arranged corresponding to the normal magnetic memory cell columns of the normal memory cell array and supplying a read current to the corresponding normal magnetic memory cells during data reading;
    A plurality of second bit lines that are arranged corresponding to reference magnetic memory cell columns of the reference memory cell array and allow a read current to flow to the corresponding reference magnetic memory cells during the data reading;
    Each of the plurality of normal magnetic memory cells and the plurality of reference magnetic memory cells includes an access transistor that conducts at the time of data reading and flows the read current to a corresponding magnetoresistive element;
    The semiconductor device includes:
    A plurality of first read word lines arranged corresponding to the normal magnetic memory cell rows of the normal memory cell array and connected to the gate electrodes of the access transistors of the corresponding normal magnetic memory cells;
    A plurality of second read word lines arranged corresponding to the reference magnetic memory cell row of the reference memory cell array and connected to the gate electrode of the access transistor of the corresponding reference magnetic memory cell;
    11. The plurality of first read word lines and the plurality of second read word lines are formed by different wirings, and all are address-selected by signals of the plurality of main word lines. Semiconductor device.
PCT/JP2009/068802 2009-11-04 2009-11-04 Semiconductor device WO2011055420A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2009/068802 WO2011055420A1 (en) 2009-11-04 2009-11-04 Semiconductor device
TW099137597A TW201126533A (en) 2009-11-04 2010-11-02 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/068802 WO2011055420A1 (en) 2009-11-04 2009-11-04 Semiconductor device

Publications (1)

Publication Number Publication Date
WO2011055420A1 true WO2011055420A1 (en) 2011-05-12

Family

ID=43969665

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/068802 WO2011055420A1 (en) 2009-11-04 2009-11-04 Semiconductor device

Country Status (2)

Country Link
TW (1) TW201126533A (en)
WO (1) WO2011055420A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111724838A (en) * 2019-03-20 2020-09-29 东芝存储器株式会社 Semiconductor memory device with a plurality of memory cells

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002222589A (en) * 2000-11-27 2002-08-09 Hitachi Ltd Semiconductor device
JP2003257176A (en) * 2001-12-26 2003-09-12 Mitsubishi Electric Corp Thin film magnetic memory device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002222589A (en) * 2000-11-27 2002-08-09 Hitachi Ltd Semiconductor device
JP2003257176A (en) * 2001-12-26 2003-09-12 Mitsubishi Electric Corp Thin film magnetic memory device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111724838A (en) * 2019-03-20 2020-09-29 东芝存储器株式会社 Semiconductor memory device with a plurality of memory cells
CN111724838B (en) * 2019-03-20 2023-11-10 铠侠股份有限公司 Semiconductor memory device with a memory cell having a memory cell with a memory cell having a memory cell

Also Published As

Publication number Publication date
TW201126533A (en) 2011-08-01

Similar Documents

Publication Publication Date Title
JP4242117B2 (en) Storage device
US7286431B2 (en) Memory device capable of performing high speed reading while realizing redundancy replacement
JP4726292B2 (en) Thin film magnetic memory device
JP4656720B2 (en) Thin film magnetic memory device
KR101604042B1 (en) Magnetic random access memory and method of operating the same
JP4712204B2 (en) Storage device
KR100735748B1 (en) Semiconductor devices including memory cells employing variable resistors as data storage elements, systems employing the same and methods of operating the same
US20030123281A1 (en) Magnetic random access memory
US8902644B2 (en) Semiconductor storage device and its manufacturing method
JP2003017665A (en) Thin film magnetic material storage device
US7773405B2 (en) Magnetic random access memory and operating method of magnetic random access memory
US6903965B2 (en) Thin film magnetic memory device permitting high precision data read
JP5045672B2 (en) MRAM using 2T2MTJ cell
JP2010040123A (en) Semiconductor device
US7471549B2 (en) Semiconductor memory device
JP2007317948A (en) Nonvolatile memory
JP5138056B2 (en) Thin film magnetic memory device
JP2007164837A (en) Nonvolatile storage device
US6842362B2 (en) Magnetic random access memory
WO2011055420A1 (en) Semiconductor device
JP5331998B2 (en) Nonvolatile semiconductor memory device
JP4749453B2 (en) Storage device
US6912174B2 (en) Thin film magnetic memory device suppressing influence of magnetic field noise from power supply wiring
JP5036854B2 (en) Semiconductor device
JP5140855B2 (en) Semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09851075

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09851075

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP