WO2011054646A1 - Wheel sensor - Google Patents

Wheel sensor Download PDF

Info

Publication number
WO2011054646A1
WO2011054646A1 PCT/EP2010/065425 EP2010065425W WO2011054646A1 WO 2011054646 A1 WO2011054646 A1 WO 2011054646A1 EP 2010065425 W EP2010065425 W EP 2010065425W WO 2011054646 A1 WO2011054646 A1 WO 2011054646A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
wheel
receiving coil
receiving
wheel sensor
Prior art date
Application number
PCT/EP2010/065425
Other languages
German (de)
French (fr)
Inventor
Rainer Freise
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to EP10765628.2A priority Critical patent/EP2496459B1/en
Publication of WO2011054646A1 publication Critical patent/WO2011054646A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L1/00Devices along the route controlled by interaction with the vehicle or train
    • B61L1/16Devices for counting axles; Devices for counting vehicles
    • B61L1/163Detection devices
    • B61L1/165Electrical

Definitions

  • the invention relates to a wheel sensor, in particular for a train detection system, having at least one trackside in ⁇ inductive sensor device for detecting a change in magnetic field due to the track overcoming iron wheels of a
  • the sensor device comprises coils for compensating interfering magnetic fields.
  • wheel sensors operating on the principle of the inductive proximity switch is widespread in the field of railway monitoring systems, in particular track-free signaling systems.
  • Such wheel sensors have at least one coil, which is preferably arranged in an electrical resonant circuit and fed with alternating current.
  • the egg ⁇ mass of a mecanicrollenden wheel or a mecanicrollenden axis leads to a damping of the magnetic field of the coil, so that a drive through a wheel based on a change caused by the properties, such as the vibration amplitude or the quality of the electrical resonant circuit is detectable.
  • inductively operating wheel sensors are SENS ⁇ tive to inductively coupled voltages on the working frequency as may be caused for example by rail flows. So z. B. the return current of a locomotive through the rail or the harmonic content of this return current cause an interference signal in the form of a Schwe ⁇ advertising.
  • Such beating is difficult to distinguish in inductive wheel sensors from a signal that is caused by a ride through a wheel.
  • ar- beitore wheel sensors are disturbed in practice, for example, by arranged in their vicinity further wheel sensors with the same operating frequency.
  • disturbances can also be caused or induced by pulse-like high commutation current edges of the rail current or by lines and transformers of passing trains.
  • a Radsen- sor in particular for a track-free signaling system, with Minim ⁇ least one trackside inductive sensor means for detecting a magnetic field change as a result of the track over propelled iron wheels of a rail vehicle, wherein the sensor ⁇ device coils to compensate for disturbing magnetic fields and wherein an AC-powered transmitting coil and a receiving coil system are provided with a first receiving coil and a second receiving coil connected thereto for the suppression of external interference fields in a counter circuit, wherein the first receiving coil above and the second receiving coil are arranged below the transmitting coil.
  • the transmission coil of the wheel sensor is thus arranged below the first receiver coil and above the second receiver coil.
  • the term “above” or “below” refers to the orientation of a properly mounted in the rail area wheel sensor.
  • the magnetic field of the transmitter coil, both receiver coils penetrates the Empfangsspu ⁇ cell system alike.
  • the two receiving coils are connected in phase opposition in series, so that the receiving voltage induced by the transmitting coil largely eliminates them without any influence of the wheel. In magnitude, both partial clamping ⁇ voltages of the receiving coils are thus similarly high.
  • the transmitting coil is arranged in the vertical direction between the two receiving coils will reinforcege ⁇ assumed that the second receiving coil is a compensation coil, with respect to their function is essentially ie mainly the compensation of interference fields, in particular of rail streams used.
  • the second Reception coil has a greater distance to a wheel to be detected or wheel flange of a wheel than the first receiving coil and thus their magnetic field is not or only slightly influenced by the congressrol ⁇ ing iron mass.
  • the wheel sensor according to the invention has the advantage that the superimposed arrangement of the coils causes the housing length of the wheel sensor in the rail longitudinal direction can be fully utilized for each of the coils, ie both for the transmission ⁇ coil and for the two receiver coils. This allows a particularly large Einwirkcross the scholarrollenden wheel, whereby a particularly high sensitivity of the wheel sensor is achieved. This is especially true in the case of a caused by under ⁇ to different degrees worn rims lateral offset of the detected mass of iron.
  • the two receiving coils have the same Geo ⁇ geometry, the same number of turns and the same distance from the transmitter coil to compensate for the field completely, wherein the transmitting coil is concentrically and centrally disposed between the Empfangsspu ⁇ len.
  • the first receiver coil with respect to their geometry and / or their number of turns and / or their distance from the transmitting coil and / or their rail spacing from the second Emp catch coil is different.
  • the transmitter coil can be placed next to the receiver coils, for example. It is also possible to generate a defined quiescent reception voltage level by an intended asymmetry with regard to the shape or spacing of the two receiver coils from the transmitter coil.
  • At least one coil, in particular the transmitting coil, of the sensor device has a core.
  • the wheel sensor according to the invention is embodied such that the first receiver coil and / or the transmitter coil and / or the second receiver coil is / are designed as an air coil.
  • the transmitting coil and the two receiving coils can be designed as pure coils or inductive.
  • the transmitting coil and the receiving coil system are incorporated each in an oscillating circuit.
  • At least two sensor devices spaced apart in the track longitudinal direction are provided. This offers the advantage of having a determination of the direction of travel the passing wheel is made possible.
  • the two sensor devices or sensor channels when traveling through a wheel of a rail vehicle successively generate time-shifted signals that can be used in a subsequent evaluation for detecting the direction of travel of the rail vehicle.
  • Figure 1 is a schematic sectional view of a first
  • Embodiment of a wheel sensor and Figure 2 is a side perspective view of a second
  • Embodiment of a wheel sensor Embodiment of a wheel sensor.
  • a wheel sensor 1 shows a schematic sectional view of a ers ⁇ th embodiment of a wheel sensor of this invention.
  • a wheel sensor 1 which has a transmitting coil 2 and two receiving coils 3 and 4, is shown in a section perpendicular to the rail longitudinal direction.
  • the transmitter coil 2 and the at ⁇ the receiving coils 3 and 4 are arranged in a housing 5 of the wheel sensor 1, wherein the wheel sensor 1 and the housing of which is fastened to a rail 6. 5
  • the transmitting coil 2 is supplied with an alternating current and in ⁇ thus induced in both receiving coils 3 and 4 substantially equal voltages.
  • the two receiving coils 3 and 4 are part of a sensitive to an inductive Senwir ⁇ kung of the receiving coils 3 and 4 with facultyrollenden wheels resonant circuit.
  • the above the transmitting coil 2 disposed first receiver coil 3 to the lower ⁇ suppression of interference fields with the below the transmitter coil 2 arranged second receiving coil 4 connected in a counter circuit.
  • FIG. 1 omits not only the illustration of the aforementioned electrical components or connections, but also a reproduction of further components of the wheel sensor 1 which are known per se. This concerns for example an optionally present in the wheel sensor 1 monitoring or evaluation circuit ⁇ and cable guides to and from the wheel sensor 1.
  • the wheel sensor 1 in its position on the
  • FIG. 1 Rail 6 when crossing a wheel 7, which has a flange 8, shown.
  • the receiving coils 3 and 4 of the wheel sensor 1 are such be ⁇ réelle the rail 6 positioned such that the magnetic field change passes through the flange 8 of the wheel 7 to a receiving voltage change in the series-connected receiving coils 3 and 4.
  • FIG. 1 the receiving coils 3 and 4 of the wheel sensor 1 are such be ⁇ réelle the rail 6 positioned such that the magnetic field change passes through the flange 8 of the wheel 7 to a receiving voltage change in the series-connected receiving coils 3 and 4.
  • the first receiver coil 3 is arranged with respect to a mounted on the rail 6 wheel sensor 1 above the transmitting coil 2, while the second Emp ⁇ fishing reel 4 is located below the transmitter coil. 2
  • by ensuring that the influence of the second Emp ⁇ fishing reel 4 is in relation to a wheel detection sufficient overall ring, so that an otherwise caused due to the back scarf ⁇ processing of the two receiver coils 3 and 4 reduction in the sensitivity or the functioning of the Wheel ⁇ sensor 1 with respect to wheels to be detected 7 or flanges 8 of wheels 7 is avoided.
  • the second receiver coil 4 essentially does not contribute to the wheel detection, but at least mainly serves the compensation of interference fields, in particular the rail current compensation.
  • the two receiving coils 3 and 4 are arranged such that their longitudinal axes coincide with that of the transmitting coil 2.
  • the receiving coils 3 and 4 with respect to their nature, ie in particular their Geo ⁇ metry and / or their number of turns differ from each other. This can be advantageously used to generate a rest reception ⁇ voltage to thus monitor the functionality of the wheel sensor between the wheel detectors.
  • the diversity of the receiving coils 3 and 4 can advantageously also be used to achieve an optimal Stör ⁇ field compensation in Abhot ⁇ gessor of the respective rail profile.
  • FIG. 2 shows a perspective side view of a second exemplary embodiment of a wheel sensor 1 according to the invention which is attached to the rail 6 and has two sensor devices.
  • those components which are identical or substantially functionally identical to components shown in FIG. 1 are designated by the same reference sign.
  • the illustrated wheel sensor 1 has two transmitting coils 2 and 9 and two first receiving coils 3 and 10 and two second receiving coils 4 and 11, which are un ⁇ tercolon in the housing 5 of the wheel sensor 1.
  • the coils 2, 3 and 4 and the coils 9, 10 and 11 are part of a Sensorein- direction, ie the illustrated wheel sensor 1 has two sensor devices.
  • the first receiving coil 3 or 10 of the respective sensor device is connected to the second receiving coil 4 or 11 of the respective sensor device in a counter circuit, so that interference fields are compensated.
  • the wheel sensor 1 Due to the fact that the wheel sensor 1 has two sensor devices, due to a temporal correlation of the signals detected by the sensor devices, it is possible to determine the direction of travel of a passing wheel 7 or of a rail vehicle rolling past it. As a result, the wheel sensor 1 shown is particularly suitable for application in the context Ver ⁇ train detection systems.
  • the wheel sensor 1 is advantageous in that externally induced disturbing influences are largely suppressed since these affect both the first receiving coil 3 and 10 and the second receiving coil 4 and 11 substantially equally. These include in particular rail currents, since the symmetry of the coupling is particularly high here. However, disturbances of other sources can be compensated advantageously.
  • the arrangement of the coils of a sensor device arranged one above the other advantageously makes it possible, in the case of an embodiment with only one sensor device for each of the coils, ie for example for both the transmit coil 2 and the two receiver coils 3 and 4, to adjust the length of the housing 5 in FIG Rail longitudinal direction can be fully utilized.
  • the wheel sensor 1 advantageously allows, however Also, a particularly compact design, ie a particularly small housing length in the rail longitudinal direction, to realisie ⁇ ren. This is especially in situations where the space is limited to the track, advantage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Train Traffic Observation, Control, And Security (AREA)

Abstract

The invention relates to a wheel sensor, in particular for a track vacancy detection system, comprising at least one track-side inductive sensor device for detecting a magnetic field change as a result of the wheels (7) of a rail vehicle traveling over the track, wherein the sensor device comprises coils (3, 4; 10, 11) for compensating for interfering magnetic fields. In order to achieve particularly effective interference field suppression, according to the invention a transmitting coil (2, 9) supplied with alternating current and a receiving coil system are provided, which has a first receiving coil (3, 10) and a second receiving coil (4, 11) connected thereto in a duplex connection for suppressing external interference fields, wherein the first receiving coil (3, 10) is arranged above and the second receiving coil (4, 11) is arranged below the transmitting coil (2, 9).

Description

Beschreibung Radsensor Die Erfindung betrifft einen Radsensor, insbesondere für eine Gleisfreimeldeanlage, mit mindestens einer gleisseitigen in¬ duktiven Sensoreinrichtung zur Erfassung einer Magnetfeldänderung infolge das Gleis überfahrender Eisenräder eines The invention relates to a wheel sensor, in particular for a train detection system, having at least one trackside in ¬ inductive sensor device for detecting a change in magnetic field due to the track overcoming iron wheels of a
Schienenfahrzeuges, wobei die Sensoreinrichtung Spulen zur Kompensation störender Magnetfelder aufweist. Rail vehicle, wherein the sensor device comprises coils for compensating interfering magnetic fields.
Der Einsatz von nach dem Prinzip des induktiven Näherungsschalters arbeitenden Radsensoren ist im Bereich der Eisenbahnüberwachungsanlagen, insbesondere der Gleisfreimeldeanla- gen, weit verbreitet. Derartige Radsensoren weisen zumindest eine Spule auf, die bevorzugt in einem elektrischen Schwingkreis angeordnet und mit Wechselstrom gespeist ist. Die Ei¬ senmasse eines vorbeirollenden Rades bzw. einer vorbeirollenden Achse führt zu einer Bedämpfung des Magnetfeldes der Spule, so dass eine Befahrung durch ein Rad anhand einer hierdurch verursachten Änderung der Eigenschaften, beispielsweise der Schwingamplitude oder der Güte, des elektrischen Schwingkreises nachweisbar ist. Allerdings sind induktiv arbeitende Radsensoren auch empfind¬ lich gegenüber induktiv eingekoppelten Störspannungen auf der Arbeitsfrequenz, wie sie beispielsweise durch Schienenströme verursacht werden können. So kann z. B. der Rückleiterstrom einer Lokomotive durch die Schiene bzw. der Oberwellenanteil dieses Rückleiterstromes ein Störsignal in Form einer Schwe¬ bung verursachen. Eine solche Schwebung lässt sich bei induktiven Radsensoren nur schwer von einem Signal unterscheiden, das durch eine Befahrung durch ein Rad verursacht ist. The use of wheel sensors operating on the principle of the inductive proximity switch is widespread in the field of railway monitoring systems, in particular track-free signaling systems. Such wheel sensors have at least one coil, which is preferably arranged in an electrical resonant circuit and fed with alternating current. The egg ¬ mass of a vorbeirollenden wheel or a vorbeirollenden axis leads to a damping of the magnetic field of the coil, so that a drive through a wheel based on a change caused by the properties, such as the vibration amplitude or the quality of the electrical resonant circuit is detectable. However inductively operating wheel sensors are SENS ¬ tive to inductively coupled voltages on the working frequency as may be caused for example by rail flows. So z. B. the return current of a locomotive through the rail or the harmonic content of this return current cause an interference signal in the form of a Schwe ¬ advertising. Such beating is difficult to distinguish in inductive wheel sensors from a signal that is caused by a ride through a wheel.
Darüber hinaus können nach einem induktiven Wirkprinzip ar- beitende Radsensoren in der Praxis beispielsweise auch durch in ihrer Nähe angeordnete weitere Radsensoren mit gleicher Arbeitsfrequenz gestört werden. Weiterhin können Störungen auch durch impulsartig auftretende hohe Kommutie- rungsstromflanken des Schienenstromes oder durch Leitungen und Transformatoren von vorbeifahrenden Zügen verursacht bzw. induziert werden. In addition, according to an inductive mode of action, ar- beitore wheel sensors are disturbed in practice, for example, by arranged in their vicinity further wheel sensors with the same operating frequency. Furthermore, disturbances can also be caused or induced by pulse-like high commutation current edges of the rail current or by lines and transformers of passing trains.
Ein aus der veröffentlichten deutschen Patentanmeldung One from the published German patent application
DE 101 73 519 AI bekannter Radsensor weist zur Kompensation störender Magnetfelder zwei Spulen mit im Wesentlichen gleicher Geometrie und gleichen Windungszahlen auf, wobei die Spulen bezogen auf einen an der Schiene angebrachten Radsensor in Schienenlängsrichtung überlappen und in einer Gegen- Schaltung verbunden sind. Dies bedeutet, dass die beiden Spu¬ len bei gemeinsamer Bestromung gegensinnige Magnetfelder erzeugen und somit auch gegensinnige Spannungen induzieren. Aufgrund ihrer Anordnung sind beide Spulen an der Raddetek- tion beteiligt und werden im Falle eines etwa durch einen Schienenstrom verursachten Störfeldes im Wesentlichen von gleich starken magnetischen Wechselfeldern durchsetzt, die somit aufgrund der Gegenschaltung der Spulen kompensiert werden . Der vorliegenden Erfindung liegt die Aufgabe zugrunde, einen alternativen bzw. weiteren Radsensor der zuvor genannten Art mit besonders guter Störunterdrückung anzugeben. DE 101 73 519 AI known wheel sensor has to compensate for interfering magnetic fields two coils with substantially the same geometry and same number of turns, the coils overlap relative to a mounted on the rail wheel sensor in the rail longitudinal direction and are connected in a counter circuit. This means that the two Spu ¬ len produce oppositely directed magnetic fields of common current supply and thus also induce opposing tensions. Due to their arrangement, both coils are involved in the wheel detection and, in the case of an interference field caused by a rail current, for example, essentially are penetrated by equally strong alternating magnetic fields, which are thus compensated due to the counter-switching of the coils. The present invention has for its object to provide an alternative or further wheel sensor of the aforementioned type with particularly good interference suppression.
Diese Aufgabe wird erfindungsgemäß gelöst durch einen Radsen- sor, insbesondere für eine Gleisfreimeldeanlage, mit mindes¬ tens einer gleisseitigen induktiven Sensoreinrichtung zur Erfassung einer Magnetfeldänderung infolge das Gleis überfahrender Eisenräder eines Schienenfahrzeuges, wobei die Sensor¬ einrichtung Spulen zur Kompensation störender Magnetfelder aufweist und wobei eine Wechselstrom gespeiste Sendespule und ein Empfangsspulensystem mit einer ersten Empfangsspule und einer mit dieser zur Unterdrückung von äußeren Störfeldern in einer Gegenschaltung verbundenen zweiten Empfangsspule vorge- sehen sind, wobei die erste Empfangsspule oberhalb und die zweite Empfangsspule unterhalb der Sendespule angeordnet sind . This object is inventively achieved by a Radsen- sor, in particular for a track-free signaling system, with Minim ¬ least one trackside inductive sensor means for detecting a magnetic field change as a result of the track over propelled iron wheels of a rail vehicle, wherein the sensor ¬ device coils to compensate for disturbing magnetic fields and wherein an AC-powered transmitting coil and a receiving coil system are provided with a first receiving coil and a second receiving coil connected thereto for the suppression of external interference fields in a counter circuit, wherein the first receiving coil above and the second receiving coil are arranged below the transmitting coil.
Erfindungsgemäß ist die Sendespule des Radsensors somit un- terhalb der ersten Empfangsspule und oberhalb der zweiten Empfangsspule angeordnet. Dabei bezieht sich die Angabe „oberhalb" bzw. „unterhalb" auf die Ausrichtung eines im Schienenbereich ordnungsgemäß angebrachten Radsensors. Dies bedeutet, dass die Längsachse der Sendespule im Wesentlichen senkrecht zur Schienenlängsrichtung steht. Das Magnetfeld der Sendespule durchdringt beide Empfangsspulen des Empfangsspu¬ lensystems gleichermaßen. Die beiden Empfangsspulen sind ge- genphasig in Reihe verschaltet, so dass sich die durch die Sendespule in sie induzierte Empfangsspannung ohne Radeinwir- kung weitgehend aufhebt. Vom Betrag her sind beide Teilspan¬ nungen der Empfangsspulen also ähnlich hoch. Bei einer Radüberfahrt wird das Magnetfeld der Sendespule in der Art ver¬ zerrt, dass die Spannungen der Empfangsspulen sich nicht mehr gegenseitig aufheben. Die Teilspannungen der Empfangsspulen sind unterschiedlich. Folglich kann die Spannungsänderung der in Reihe geschalteten Empfangsspulen zur Raddetektion genutzt werden . According to the invention, the transmission coil of the wheel sensor is thus arranged below the first receiver coil and above the second receiver coil. The term "above" or "below" refers to the orientation of a properly mounted in the rail area wheel sensor. This means that the longitudinal axis of the transmitting coil is substantially perpendicular to the rail longitudinal direction. The magnetic field of the transmitter coil, both receiver coils penetrates the Empfangsspu ¬ cell system alike. The two receiving coils are connected in phase opposition in series, so that the receiving voltage induced by the transmitting coil largely eliminates them without any influence of the wheel. In magnitude, both partial clamping ¬ voltages of the receiving coils are thus similarly high. In a Radüberfahrt the magnetic field of the transmitter coil in style is ver ¬ drags that the voltages of the receiving coils no longer cancel each other out. The partial voltages of the receiver coils are different. Consequently, the voltage change of the series-connected receiving coils can be used for wheel detection.
Dadurch, dass die Sendespule in vertikaler Richtung zwischen den beiden Empfangsspulen angeordnet ist, wird sicherge¬ stellt, dass die zweite Empfangsspule hinsichtlich ihrer Funktion im Wesentlichen eine Kompensationsspule ist, d. h. überwiegend der Kompensation der Störfelder, insbesondere von Schienenströmen, dient. Ursache hierfür ist, dass die zweite Empfangsspule einen größeren Abstand zu einem zu detektieren- den Rad bzw. Spurkranz eines Rades aufweist als die erste Empfangsspule und somit ihr Magnetfeld durch die vorbeirol¬ lende Eisenmasse nicht oder nur vergleichsweise geringfügig beeinflusst wird. Hingegen durchströmt das die Schiene umlau¬ fende magnetische Feld eines Schienenstromes beide Empfangs¬ spulen gegensinnig und in ähnlicher Höhe und wird somit zumindest weitgehend kompensiert. Darüber hinaus werden vor¬ teilhafterweise auch Störungen aus anderen Quellen durch die Anordnung der Spulen in dem Radsensor kompensiert. Dies betrifft beispielsweise durch in der Nähe des Radsensors ver¬ laufende Stromkabel verursachte Störungen oder mögliche Stör¬ einwirkungen benachbarter Radsensoren. Des Weiteren weist der erfindungsgemäße Radsensor den Vorteil auf, dass die übereinanderliegende Anordnung der Spulen dazu führt, dass für jede der Spulen, d. h. sowohl für die Sende¬ spule als auch für die beiden Empfangsspulen, die Gehäuselänge des Radsensors in Schienenlängsrichtung vollständig ausgenutzt werden kann. Hierdurch wird eine besonders große Einwirklänge des vorbeirollenden Rades ermöglicht, wodurch eine besonders hohe Empfindlichkeit des Radsensors erreicht wird. Dies gilt insbesondere auch im Falle eines durch unter¬ schiedlich stark abgefahrene Radkränze bewirkten seitlichen Versatzes der zu detektierenden Eisenmasse. Characterized in that the transmitting coil is arranged in the vertical direction between the two receiving coils will sicherge ¬ assumed that the second receiving coil is a compensation coil, with respect to their function is essentially ie mainly the compensation of interference fields, in particular of rail streams used. Cause of this is that the second Reception coil has a greater distance to a wheel to be detected or wheel flange of a wheel than the first receiving coil and thus their magnetic field is not or only slightly influenced by the vorbeirol ¬ ing iron mass. On the other hand passes through the rail umlau ¬ Fende magnetic field of a current rail both reception ¬ coil in opposite directions and in similar amounts and thus at least largely compensated. Moreover, part way enough, including interference from other sources compensated in the wheel sensor by the arrangement of the coils before ¬. This applies for example by near the wheel sensor ver ¬ current power cable interference caused or possible interference influences of neighboring ¬ wheel sensors. Furthermore, the wheel sensor according to the invention has the advantage that the superimposed arrangement of the coils causes the housing length of the wheel sensor in the rail longitudinal direction can be fully utilized for each of the coils, ie both for the transmission ¬ coil and for the two receiver coils. This allows a particularly large Einwirklänge the vorbeirollenden wheel, whereby a particularly high sensitivity of the wheel sensor is achieved. This is especially true in the case of a caused by under ¬ to different degrees worn rims lateral offset of the detected mass of iron.
Vorzugsweise haben die beiden Empfangsspulen die gleiche Geo¬ metrie, die gleiche Windungszahl und den gleichen Abstand zur Sendespule, um deren Feld vollständig zu kompensieren, wobei die Sendespule zentrisch und mittig zwischen den Empfangsspu¬ len angeordnet ist. Gemäß Anspruch 2 ist vorgesehen, dass sich die erste Empfangsspule bezüglich ihrer Geometrie und/oder ihrer Windungszahl und/oder ihres Abstandes zur Sendespule und/oder ihres Schienenabstandes von der zweiten Emp- fangsspule unterscheidet. Die Sendespule kann beispielsweise neben den Empfangsspulen platziert werden. Auch ist es möglich, durch eine beabsichtigte Unsymmetrie bezüglich Form oder Abstand der beiden Empfangsspulen von der Sendespule einen definierten Ruheempfangsspannungspegel zu erzeugen. Preferably, the two receiving coils have the same Geo ¬ geometry, the same number of turns and the same distance from the transmitter coil to compensate for the field completely, wherein the transmitting coil is concentrically and centrally disposed between the Empfangsspu ¬ len. According to claim 2 it is provided that the first receiver coil with respect to their geometry and / or their number of turns and / or their distance from the transmitting coil and / or their rail spacing from the second Emp catch coil is different. The transmitter coil can be placed next to the receiver coils, for example. It is also possible to generate a defined quiescent reception voltage level by an intended asymmetry with regard to the shape or spacing of the two receiver coils from the transmitter coil.
Ein durch Schienenstrom entstehendes magnetisches Störfeld ist aufgrund der Schienengeometrie höhenabhängig. Die Emp¬ fangsspulen können sich daher in Form, Windungszahl und Due to the rail geometry, a magnetic interference field resulting from rail current is height-dependent. The Emp ¬ catch coils can therefore in shape, number of turns and
Schienenabstand unterscheiden. Auf diese Weise kann auch bei unterschiedlichen Schienenprofilen eine optimale Kompensation der Störeinflüsse erreicht werden. Distinguish rail distance. In this way, an optimal compensation of the interference can be achieved even with different rail profiles.
Grundsätzlich ist es denkbar, dass mindestens eine Spule, insbesondere die Sendespule, der Sensoreinrichtung einen Kern aufweist. Um jedoch Störungen aufgrund magnetischer Sättigungseffekte zu vermeiden, ist es vorteilhaft, wenn der er¬ findungsgemäße Radsensor gemäß Anspruch 3 derart ausgestaltet ist, dass die erste Empfangsspule und/oder die Sendespule und/oder die zweite Empfangsspule als Luftspule ausgebildet ist/sind . In principle, it is conceivable that at least one coil, in particular the transmitting coil, of the sensor device has a core. However, in order to avoid interference due to magnetic saturation effects, it is advantageous if the wheel sensor according to the invention is embodied such that the first receiver coil and / or the transmitter coil and / or the second receiver coil is / are designed as an air coil.
Die Sendespule und die beiden Empfangsspulen können als reine Spulen bzw. Induktiven ausgebildet sein. Um die jeweiligen Amplituden zu erhöhen und die Frequenzselektivität zu stei¬ gern, ist gemäß Anspruch 4 vorgesehen, dass die Sendespule und das Empfangsspulensystem jeweils in einer Schwingkreisschaltung eingebunden sind. Hierzu dient jeweils eine Konden¬ satorvorschaltung, wobei die beiden Empfangsspulen in Reihe geschaltet sind. The transmitting coil and the two receiving coils can be designed as pure coils or inductive. To increase the respective amplitudes and the frequency selectivity to stei ¬ like is provided according to claim 4, that the transmitting coil and the receiving coil system are incorporated each in an oscillating circuit. For this purpose, each one Konden ¬ satorvorschaltung, wherein the two receiving coils are connected in series.
Gemäß Anspruch 5 sind zumindest zwei in Gleislängsrichtung voneinander beabstandete Sensoreinrichtungen vorgesehen. Dies bietet den Vorteil, dass eine Bestimmung der Fahrtrichtung des vorbeirollenden Rades ermöglicht wird. Bei einem solchen üblicherweise zweikanaligen Radsensor, der somit zwei Sensoreinrichtungen aufweist, erzeugen die beiden Sensoreinrichtungen bzw. Sensorkanäle bei einer Befahrung durch ein Rad eines Schienenfahrzeuges nacheinander zeitlich versetzte Signale, die in einer nachfolgenden Auswerteeinrichtung zur Fahrtrichtungserkennung des Schienenfahrzeuges genutzt werden können. According to claim 5, at least two sensor devices spaced apart in the track longitudinal direction are provided. This offers the advantage of having a determination of the direction of travel the passing wheel is made possible. In such a usually two-channel wheel sensor, which thus has two sensor devices, the two sensor devices or sensor channels when traveling through a wheel of a rail vehicle successively generate time-shifted signals that can be used in a subsequent evaluation for detecting the direction of travel of the rail vehicle.
Nachfolgend wird die Erfindung anhand figürlicher Ausfüh- rungsbeispiele näher erläutert. Es zeigen: The invention will be explained in more detail below with reference to figurative embodiments. Show it:
Figur 1 eine schematische Schnittdarstellung eines ersten Figure 1 is a schematic sectional view of a first
Ausführungsbeispiels eines Radsensors und Figur 2 eine perspektivische Seitenansicht eines zweiten  Embodiment of a wheel sensor and Figure 2 is a side perspective view of a second
Ausführungsbeispiels eines Radsensors.  Embodiment of a wheel sensor.
Figur 1 zeigt eine schematische Schnittdarstellung eines ers¬ ten Ausführungsbeispiels eines erfindungsgemäßen Radsensors. Dargestellt ist in einem Schnitt senkrecht zur Schienenlängs¬ richtung ein Radsensor 1, der eine Sendespule 2 und zwei Empfangsspulen 3 und 4 aufweist. Die Sendespule 2 sowie die bei¬ den Empfangsspulen 3 und 4 sind in einem Gehäuse 5 des Radsensors 1 angeordnet, wobei der Radsensor 1 bzw. dessen Ge- häuse 5 an einer Schiene 6 befestigt ist. 1 shows a schematic sectional view of a ers ¬ th embodiment of a wheel sensor of this invention. A wheel sensor 1, which has a transmitting coil 2 and two receiving coils 3 and 4, is shown in a section perpendicular to the rail longitudinal direction. The transmitter coil 2 and the at ¬ the receiving coils 3 and 4 are arranged in a housing 5 of the wheel sensor 1, wherein the wheel sensor 1 and the housing of which is fastened to a rail 6. 5
Die Sendespule 2 wird mit einem Wechselstrom gespeist und in¬ duziert damit in beiden Empfangsspulen 3 und 4 im Wesentlichen gleich hohe Spannungen. Die beiden Empfangsspulen 3 und 4 sind Bestandteil eines auf eine induktive Wechselwir¬ kung der Empfangsspulen 3 und 4 mit vorbeirollenden Rädern empfindlichen Schwingkreises. Darüber hinaus ist die oberhalb der Sendespule 2 angeordnete erste Empfangsspule 3 zur Unter¬ drückung von Störfeldern mit der unterhalb der Sendespule 2 angeordneten zweiten Empfangsspule 4 in einer Gegenschaltung verbunden. Aus Gründen der Übersichtlichkeit wurde in Figur 1 nicht nur auf die Darstellung der zuvor genannten elektrischen Komponenten bzw. Verbindungen, sondern auch auf eine Wiedergabe weiterer für sich bekannter Komponenten des Radsensors 1 verzichtet. Dies betrifft beispielsweise eine ggf. in dem Radsensor 1 vorhandene Überwachungs- bzw. Auswerte¬ schaltung sowie Kabelführungen von und zu dem Radsensor 1. In Figur 1 ist der Radsensor 1 in seiner Position an derThe transmitting coil 2 is supplied with an alternating current and in ¬ thus induced in both receiving coils 3 and 4 substantially equal voltages. The two receiving coils 3 and 4 are part of a sensitive to an inductive Wechselwir ¬ kung of the receiving coils 3 and 4 with vorbeirollenden wheels resonant circuit. In addition, the above the transmitting coil 2 disposed first receiver coil 3 to the lower ¬ suppression of interference fields with the below the transmitter coil 2 arranged second receiving coil 4 connected in a counter circuit. For the sake of clarity, FIG. 1 omits not only the illustration of the aforementioned electrical components or connections, but also a reproduction of further components of the wheel sensor 1 which are known per se. This concerns for example an optionally present in the wheel sensor 1 monitoring or evaluation circuit ¬ and cable guides to and from the wheel sensor 1. In Figure 1, the wheel sensor 1 in its position on the
Schiene 6 bei Überfahrt eines Rades 7, das einen Spurkranz 8 aufweist, dargestellt. Entsprechend der Darstellung in Figur 1 sind die Empfangsspulen 3 und 4 des Radsensors 1 derart be¬ züglich der Schiene 6 positioniert, dass die magnetische Feldänderung durch den Spurkranz 8 des Rades 7 zu einer Empfangsspannungsänderung in den in Reihe geschalteten Empfangsspulen 3 und 4 führt. Rail 6 when crossing a wheel 7, which has a flange 8, shown. As shown in Figure 1, the receiving coils 3 and 4 of the wheel sensor 1 are such be ¬ züglich the rail 6 positioned such that the magnetic field change passes through the flange 8 of the wheel 7 to a receiving voltage change in the series-connected receiving coils 3 and 4. FIG.
Wie aus Figur 1 ersichtlich, ist die erste Empfangsspule 3 in Bezug auf einen an der Schiene 6 angebrachten Radsensor 1 oberhalb der Sendespule 2 angeordnet, während die zweite Emp¬ fangsspule 4 unterhalb der Sendespule 2 angeordnet ist. Hier¬ durch wird sichergestellt, dass der Einfluss der zweiten Emp¬ fangsspule 4 in Bezug auf eine Raddetektion ausreichend ge- ring ist, so dass eine andernfalls aufgrund der Gegenschal¬ tung der beiden Empfangsspulen 3 und 4 verursachte Verminderung der Empfindlichkeit bzw. der Funktionsfähigkeit des Rad¬ sensors 1 bezüglich zu detektierender Räder 7 bzw. Spurkränze 8 von Rädern 7 vermieden wird. Dies bedeutet, dass die zweite Empfangsspule 4 im Wesentlichen keinen Beitrag zur Raddetektion liefert, sondern zumindest hauptsächlich der Kompensation von Störfeldern, insbesondere der Schienenstromkompensa- tion, dient. In dem Ausführungsbeispiel der Figur 1 ist erkennbar, dass die beiden Empfangsspulen 3 und 4 derart angeordnet sind, dass ihre Längsachsen mit derjenigen der Sendespule 2 zusammenfallen. Abweichend von der Darstellung in Figur 1 ist auch eine Ausführung denkbar, bei der sich die Empfangsspulen 3 und 4 hinsichtlich ihrer Art, d. h. insbesondere ihrer Geo¬ metrie und/oder ihrer Windungszahl, voneinander unterscheiden. Dies kann vorteilhaft zur Erzeugung einer Ruheempfangs¬ spannung benutzt werden, um damit zwischen den Raddetektionen die Funktionsfähigkeit des Radsensors zu überwachen. Darüber hinaus kann die Unterschiedlichkeit der Empfangsspulen 3 und 4 vorteilhafterweise auch dazu benutzt werden, um in Abhän¬ gigkeit von dem jeweiligen Schienenprofil eine optimale Stör¬ feldkompensation zu erreichen. Hintergrund hierbei ist, dass beispielsweise das durch einen Schienenstrom verursachte mag¬ netische Feld aufgrund der Schienengeometrie in der Regel nicht höhenunabhängig ist, so dass die in der ersten Empfangsspule 3 induzierte Störspannung bei Verwendung gleichartiger Empfangsspulen 3 und 4 von der in der zweiten Empfangs- spule 4 induzierten Störspannung abweichen wird. As seen in Figure 1, the first receiver coil 3 is arranged with respect to a mounted on the rail 6 wheel sensor 1 above the transmitting coil 2, while the second Emp ¬ fishing reel 4 is located below the transmitter coil. 2 Here ¬ by ensuring that the influence of the second Emp ¬ fishing reel 4 is in relation to a wheel detection sufficient overall ring, so that an otherwise caused due to the back scarf ¬ processing of the two receiver coils 3 and 4 reduction in the sensitivity or the functioning of the Wheel ¬ sensor 1 with respect to wheels to be detected 7 or flanges 8 of wheels 7 is avoided. This means that the second receiver coil 4 essentially does not contribute to the wheel detection, but at least mainly serves the compensation of interference fields, in particular the rail current compensation. In the embodiment of Figure 1 it can be seen that the two receiving coils 3 and 4 are arranged such that their longitudinal axes coincide with that of the transmitting coil 2. Deviating from the illustration in Figure 1, an embodiment is also conceivable in which the receiving coils 3 and 4 with respect to their nature, ie in particular their Geo ¬ metry and / or their number of turns differ from each other. This can be advantageously used to generate a rest reception ¬ voltage to thus monitor the functionality of the wheel sensor between the wheel detectors. In addition, the diversity of the receiving coils 3 and 4 can advantageously also be used to achieve an optimal Stör ¬ field compensation in Abhän ¬ gigkeit of the respective rail profile. Background of this is that for example the like caused by a rail current ¬ netic field is not independent of altitude due to the rail geometry in general, so that the voltage induced in the first receiver coil 3 voltage in case of using similar receiving coils 3 and 4 from that in the second receiving coil 4 induced noise voltage will differ.
Figur 2 zeigte eine perspektivische Seitenansicht eines an der Schiene 6 angebrachten zweiten Ausführungsbeispiels eines erfindungsgemäßen Radsensors 1, der zwei Sensoreinrichtungen aufweist. Dabei sind solche Komponenten, die mit in Figur 1 dargestellten Komponenten identisch bzw. im Wesentlichen funktionsgleich sind, mit demselben Bezugszeichen bezeichnet. FIG. 2 shows a perspective side view of a second exemplary embodiment of a wheel sensor 1 according to the invention which is attached to the rail 6 and has two sensor devices. In this case, those components which are identical or substantially functionally identical to components shown in FIG. 1 are designated by the same reference sign.
In der seitlichen Ansicht der Figur 2 ist erkennbar, dass der dargestellte Radsensor 1 zwei Sendespulen 2 und 9 sowie zwei erste Empfangsspulen 3 und 10 und zwei zweite Empfangsspulen 4 und 11 aufweist, die in dem Gehäuse 5 des Radsensors 1 un¬ tergebracht sind. Dabei sind jeweils die Spulen 2, 3 und 4 sowie die Spulen 9, 10 und 11 Bestandteil einer Sensorein- richtung, d. h. der dargestellte Radsensor 1 weist zwei Sensoreinrichtungen auf. Jeweils die erste Empfangsspule 3 bzw. 10 der jeweiligen Sensoreinrichtung ist mit der zweiten Empfangsspule 4 bzw. 11 der jeweiligen Sensoreinrichtung in einer Gegenschaltung verbunden, so dass Störfelder kompensiert werden. In the side view of Figure 2 it can be seen that the illustrated wheel sensor 1 has two transmitting coils 2 and 9 and two first receiving coils 3 and 10 and two second receiving coils 4 and 11, which are un ¬ tergebracht in the housing 5 of the wheel sensor 1. In each case, the coils 2, 3 and 4 and the coils 9, 10 and 11 are part of a Sensorein- direction, ie the illustrated wheel sensor 1 has two sensor devices. In each case, the first receiving coil 3 or 10 of the respective sensor device is connected to the second receiving coil 4 or 11 of the respective sensor device in a counter circuit, so that interference fields are compensated.
Dadurch, dass der Radsensor 1 zwei Sensoreinrichtungen aufweist, wird es aufgrund einer zeitlichen Korrelation der durch die Sensoreinrichtungen erfassten Signale möglich, die Fahrtrichtung eines vorbeirollenden Rades 7 bzw. eines vorbeirollenden Schienenfahrzeuges zu bestimmen. Infolge dessen ist der dargestellte Radsensor 1 insbesondere für eine Ver¬ wendung im Rahmen von Gleisfreimeldeanlagen geeignet. Due to the fact that the wheel sensor 1 has two sensor devices, due to a temporal correlation of the signals detected by the sensor devices, it is possible to determine the direction of travel of a passing wheel 7 or of a rail vehicle rolling past it. As a result, the wheel sensor 1 shown is particularly suitable for application in the context Ver ¬ train detection systems.
Entsprechend den zuvor beschriebenen Ausführungsbeispielen ist der Radsensor 1 dahingehend vorteilhaft, dass von außen induzierte Störeinflüsse weitgehend unterdrückt werden, da diese sowohl die erste Empfangsspule 3 bzw. 10 als auch die zweite Empfangsspule 4 bzw. 11 im Wesentlichen gleichermaßen beeinflussen. Hierzu gehören insbesondere Schienenströme, da hier die Symmetrie der Einkopplung besonders hoch ist. Jedoch können auch Störgrößen anderer Quellen vorteilhafterweise kompensiert werden. Dabei ermöglicht es die übereinanderlie- gende Anordnung der Spulen einer Sensoreinrichtung vorteilhafterweise, dass bei einer Ausführung mit nur einer Sensoreinrichtung für jede der Spulen, d. h. beispielsweise sowohl für die Sendespule 2 als auch für die beiden Empfangsspulen 3 und 4, die Länge des Gehäuses 5 in Schienenlängsrichtung vollständig ausgenutzt werden kann. Hierdurch wird eine be¬ sonders hohe Einwirklänge verbunden mit einer hohen Empfind¬ lichkeit sowohl in Schienenlängsrichtung als auch senkrecht zur Schienenlängsrichtung erreicht. Umgekehrt ermöglicht es der erfindungsgemäße Radsensor 1 vorteilhafterweise jedoch auch, eine besonders kompakte Bauform, d. h. eine besonders geringe Gehäuselänge in Schienenlängsrichtung, zu realisie¬ ren. Dies ist insbesondere in Situationen, in denen das Platzangebot am Gleis beschränkt ist, von Vorteil. According to the embodiments described above, the wheel sensor 1 is advantageous in that externally induced disturbing influences are largely suppressed since these affect both the first receiving coil 3 and 10 and the second receiving coil 4 and 11 substantially equally. These include in particular rail currents, since the symmetry of the coupling is particularly high here. However, disturbances of other sources can be compensated advantageously. In this case, the arrangement of the coils of a sensor device arranged one above the other advantageously makes it possible, in the case of an embodiment with only one sensor device for each of the coils, ie for example for both the transmit coil 2 and the two receiver coils 3 and 4, to adjust the length of the housing 5 in FIG Rail longitudinal direction can be fully utilized. This results in a high Einwirklänge be ¬ Sonders is associated with a high SENS ¬ friendliness both in the rail longitudinal direction than achieved perpendicular to the rail longitudinal direction. Conversely, the wheel sensor 1 according to the invention advantageously allows, however Also, a particularly compact design, ie a particularly small housing length in the rail longitudinal direction, to realisie ¬ ren. This is especially in situations where the space is limited to the track, advantage.

Claims

Patentansprüche claims
1. Radsensor, insbesondere für eine Gleisfreimeldeanlage, mit mindestens einer gleisseitigen induktiven Sensoreinrichtung zur Erfassung einer Magnetfeldänderung infolge das Gleis überfahrender Räder (7) eines Schienenfahrzeuges, wobei die Sensoreinrichtung Spulen (3, 4; 10, 11) zur Kompensation störender Magnetfelder aufweist, A wheel sensor, in particular for a train detection system, having at least one track-side inductive sensor device for detecting a magnetic field change due to the track of wheels (7) of a rail vehicle, the sensor device having coils (3, 4, 10, 11) for compensating interfering magnetic fields,
d a d u r c h g e k e n n z e i c h n e t , dass d a d u r c h e c e n c i n e s that
eine Weselstrom gespeiste Sendespule (2, 9) und ein Empfangs¬ spulensystem mit einer ersten Empfangsspule (3, 10) und einer mit dieser zur Unterdrückung von äußeren Störfeldern in einer Gegenschaltung verbundenen zweiten Empfangsspule (4, 11) vorgesehen sind, wobei die erste Empfangsspule (3, 10) oberhalb und die zweite Empfangsspule (4, 11) unterhalb der Sendespule (2, 9) angeordnet sind. a Weselstrom-powered transmitting coil (2, 9) and a receiving ¬ coil system having a first receiving coil (3, 10) and a second receiving coil connected thereto (4) for suppression of external interference fields in a counter-circuit (4, 11) are provided, wherein the first receiving coil (3, 10) above and the second receiving coil (4, 11) below the transmitting coil (2, 9) are arranged.
2. Radsensor nach Anspruch 1, 2. Wheel sensor according to claim 1,
d a d u r c h g e k e n n z e i c h n e t , dass d a d u r c h e c e n c i n e s that
sich die erste Empfangsspule (3, 10) bezüglich ihrer Geo¬ metrie und/oder ihrer Windungszahl und/oder ihres Abstandes zur Sendespule (2, 9) und/oder ihres Schienenabstandes von der zweiten Empfangsspule (4, 11) unterscheidet. the first receiver coil (3, 10) with respect to their Geo ¬ geometry and / or its number of turns and / or its distance from the transmitter coil (2, 9) and / or their track distance of the second receiving coil (4, 11) is different.
3. Radsensor nach einem der vorangehenden Ansprüche, 3. Wheel sensor according to one of the preceding claims,
d a d u r c h g e k e n n z e i c h n e t , dass d a d u r c h e c e n c i n e s that
die erste Empfangsspule (3, 10) und/oder die Sendespule (2,9) und/oder die zweite Empfangsspule (4, 11) als Luftspule aus¬ gebildet ist/sind. the first receiver coil (3, 10) and / or the transmitter coil (2.9) and / or the second receiving coil (4, 11) is formed as an air coil from ¬ / are.
4. Radsensor nach einem der vorangehenden Ansprüche, 4. Wheel sensor according to one of the preceding claims,
d a d u r c h g e k e n n z e i c h n e t , dass d a d u r c h e c e n c i n e s that
die Sendespule (2, 9) und das Empfangsspulensystem jeweils in einer Schwingkreisschaltung eingebunden sind. the transmitting coil (2, 9) and the receiving coil system are each incorporated in a resonant circuit circuit.
5. Radsensor nach einem der vorangehenden Ansprüche, g e k e n n z e i c h n e t d u r c h 5. Wheel sensor according to one of the preceding claims, g e n e c e n e d d e r c h
zumindest zwei in Schienenlängsrichtung voneinander beabstan deten Sensoreinrichtungen. at least two in the rail longitudinal direction beabstan Deten sensor devices.
PCT/EP2010/065425 2009-11-05 2010-10-14 Wheel sensor WO2011054646A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP10765628.2A EP2496459B1 (en) 2009-11-05 2010-10-14 Wheel sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009053257.9 2009-11-05
DE200910053257 DE102009053257B4 (en) 2009-11-05 2009-11-05 wheel sensor

Publications (1)

Publication Number Publication Date
WO2011054646A1 true WO2011054646A1 (en) 2011-05-12

Family

ID=43384777

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/065425 WO2011054646A1 (en) 2009-11-05 2010-10-14 Wheel sensor

Country Status (3)

Country Link
EP (1) EP2496459B1 (en)
DE (1) DE102009053257B4 (en)
WO (1) WO2011054646A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103552581A (en) * 2013-11-12 2014-02-05 哈尔滨理工大学 Wheel sensor
CN109733438A (en) * 2019-02-01 2019-05-10 深圳科安达电子科技股份有限公司 Wheel detector
US10875554B2 (en) 2016-04-28 2020-12-29 Bombardier Transportation (Zwus) Polska Sp. Z O. O. Wheel detector for detecting a wheel of a rail vehicle

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012212939A1 (en) * 2012-07-24 2014-01-30 Siemens Aktiengesellschaft Wheel sensor, particularly for train detection system, has inductive sensor for detecting magnetic field change as result of iron wheels of rail vehicle, where inductive sensor is arranged at side of rail of track
NO2710153T3 (en) * 2014-04-17 2018-07-28
CN105539508B (en) * 2015-12-24 2017-04-26 北京安润通电子技术开发有限公司 Sensor used for identifying motion direction of vehicle wheels and application method of sensor
DE102016201896A1 (en) * 2016-02-09 2017-08-10 Siemens Aktiengesellschaft Sensor device for detecting a magnetic field change and method for adjusting such a sensor device
DE102017220281A1 (en) * 2017-11-14 2019-05-16 Siemens Aktiengesellschaft sensor device
DE102018111454A1 (en) 2018-05-14 2019-11-14 PINTSCH TIEFENBACH GmbH Sensor for detecting metal parts, and method for attenuating a magnetic field
DE102018111448A1 (en) * 2018-05-14 2019-11-14 PINTSCH TIEFENBACH GmbH Sensor for detecting metal parts, and method for attenuating a magnetic field
EP4197878A1 (en) * 2021-12-20 2023-06-21 GTS Deutschland GmbH Frequency generator for generating a working frequency for a rail contact of an axle counter, axle counter and method for generating a working frequency for a rail contact of an axle counter

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB924869A (en) * 1959-03-06 1963-05-01 Silec Liaisons Elec Apparatus for detecting displacement of a metallic part
DE3302883A1 (en) * 1983-01-28 1984-08-02 Siemens AG, 1000 Berlin und 8000 München Circuit arrangement for generating axle counting pulses for axle counting systems
DE19915597A1 (en) * 1998-04-08 1999-12-30 Josef Frauscher Wheel sensor for railway monitoring installations
DE10137519A1 (en) 2001-07-30 2003-02-13 Siemens Ag Wheel sensor for a unit signaling a clear railway line has an inductive sensor on a railway line to detect a change in a magnetic field as the iron wheels of a railway vehicle pass over a rail
EP1362759A1 (en) * 2002-05-08 2003-11-19 Siemens Aktiengesellschaft Magnetic wheel sensor
WO2010052081A1 (en) * 2008-11-05 2010-05-14 Siemens Aktiengesellschaft Wheel sensor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB924869A (en) * 1959-03-06 1963-05-01 Silec Liaisons Elec Apparatus for detecting displacement of a metallic part
DE3302883A1 (en) * 1983-01-28 1984-08-02 Siemens AG, 1000 Berlin und 8000 München Circuit arrangement for generating axle counting pulses for axle counting systems
DE19915597A1 (en) * 1998-04-08 1999-12-30 Josef Frauscher Wheel sensor for railway monitoring installations
DE10137519A1 (en) 2001-07-30 2003-02-13 Siemens Ag Wheel sensor for a unit signaling a clear railway line has an inductive sensor on a railway line to detect a change in a magnetic field as the iron wheels of a railway vehicle pass over a rail
EP1362759A1 (en) * 2002-05-08 2003-11-19 Siemens Aktiengesellschaft Magnetic wheel sensor
WO2010052081A1 (en) * 2008-11-05 2010-05-14 Siemens Aktiengesellschaft Wheel sensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103552581A (en) * 2013-11-12 2014-02-05 哈尔滨理工大学 Wheel sensor
US10875554B2 (en) 2016-04-28 2020-12-29 Bombardier Transportation (Zwus) Polska Sp. Z O. O. Wheel detector for detecting a wheel of a rail vehicle
CN109733438A (en) * 2019-02-01 2019-05-10 深圳科安达电子科技股份有限公司 Wheel detector

Also Published As

Publication number Publication date
EP2496459A1 (en) 2012-09-12
EP2496459B1 (en) 2014-02-26
DE102009053257B4 (en) 2013-10-02
DE102009053257A1 (en) 2011-05-12

Similar Documents

Publication Publication Date Title
EP2496459B1 (en) Wheel sensor
EP2349810B1 (en) Wheel sensor
EP3107791B1 (en) Sensor device for detecting a change in a magnetic field and track-bound transportation system having at least one such sensor device
EP2591316A1 (en) Inductive sensor device and inductive proximity sensor with an inductive sensor device
DE102012212939A1 (en) Wheel sensor, particularly for train detection system, has inductive sensor for detecting magnetic field change as result of iron wheels of rail vehicle, where inductive sensor is arranged at side of rail of track
DE102013219763A1 (en) Device for detecting rail break in rail vehicle e.g. traction vehicle, has evaluation unit that is attached to rail sections, and adapted to detect rail break using received alternating current signal to evaluate interruption point
EP2146886B1 (en) Wheel sensor
DE4102812C2 (en)
EP2797802B1 (en) Sensor device for detecting a wheel which moves along a travel rail
DE102007023476B4 (en) wheel sensor
EP3294608B1 (en) Sensor device for detecting a wheel moving along a rail
DE102007038819B4 (en) Device for vehicle-side track vacancy and / or track occupancy message
DE2201769C3 (en) Vehicle-operated track contact to generate presence and / or direction criteria
EP2382120A1 (en) Wheel sensor
DE102021209644A1 (en) Sensor device, arrangement and method for detecting a change in a magnetic field
DE102007031139A1 (en) Method for increasing the interference immunity of a wheel sensor and wheel sensor for carrying out the method
DE3107604A1 (en) Arrangement for rail contacts which can be influenced inductively
DE1947088B2 (en) Device for signal transmission for rail vehicles
WO2007101356A1 (en) System for signal transmission to a moving object
CH467689A (en) Arrangement of line cables laid on rails that are not isolated from each other for the exchange of information between rail vehicles and the route
EP2240357A1 (en) Method for increasing the interference resistance of a wheel sensor and wheel sensor for carrying out the method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10765628

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010765628

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE