WO2011052793A1 - Method for producing soy milk and method for producing tofu - Google Patents

Method for producing soy milk and method for producing tofu Download PDF

Info

Publication number
WO2011052793A1
WO2011052793A1 PCT/JP2010/069543 JP2010069543W WO2011052793A1 WO 2011052793 A1 WO2011052793 A1 WO 2011052793A1 JP 2010069543 W JP2010069543 W JP 2010069543W WO 2011052793 A1 WO2011052793 A1 WO 2011052793A1
Authority
WO
WIPO (PCT)
Prior art keywords
soy milk
soybean
soymilk
tofu
raw
Prior art date
Application number
PCT/JP2010/069543
Other languages
French (fr)
Japanese (ja)
Inventor
詩織 糸野
政信 下山
靖 岩元
健介 伊藤
Original Assignee
太子食品工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2009248276A external-priority patent/JP2011092069A/en
Priority claimed from JP2010011701A external-priority patent/JP2011147394A/en
Priority claimed from JP2010020827A external-priority patent/JP5385809B2/en
Application filed by 太子食品工業株式会社 filed Critical 太子食品工業株式会社
Priority to CN2010800480992A priority Critical patent/CN102573504A/en
Publication of WO2011052793A1 publication Critical patent/WO2011052793A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C11/00Milk substitutes, e.g. coffee whitener compositions
    • A23C11/02Milk substitutes, e.g. coffee whitener compositions containing at least one non-milk component as source of fats or proteins
    • A23C11/10Milk substitutes, e.g. coffee whitener compositions containing at least one non-milk component as source of fats or proteins containing or not lactose but no other milk components as source of fats, carbohydrates or proteins
    • A23C11/103Milk substitutes, e.g. coffee whitener compositions containing at least one non-milk component as source of fats or proteins containing or not lactose but no other milk components as source of fats, carbohydrates or proteins containing only proteins from pulses, oilseeds or nuts, e.g. nut milk
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L11/00Pulses, i.e. fruits of leguminous plants, for production of food; Products from legumes; Preparation or treatment thereof
    • A23L11/05Mashed or comminuted pulses or legumes; Products made therefrom
    • A23L11/07Soya beans, e.g. oil-extracted soya bean flakes
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L11/00Pulses, i.e. fruits of leguminous plants, for production of food; Products from legumes; Preparation or treatment thereof
    • A23L11/30Removing undesirable substances, e.g. bitter substances
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L11/00Pulses, i.e. fruits of leguminous plants, for production of food; Products from legumes; Preparation or treatment thereof
    • A23L11/40Pulse curds
    • A23L11/45Soy bean curds, e.g. tofu
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L11/00Pulses, i.e. fruits of leguminous plants, for production of food; Products from legumes; Preparation or treatment thereof
    • A23L11/60Drinks from legumes, e.g. lupine drinks
    • A23L11/65Soy drinks
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2200/00Function of food ingredients
    • A23V2200/20Ingredients acting on or related to the structure
    • A23V2200/218Coagulant
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2300/00Processes
    • A23V2300/24Heat, thermal treatment
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2300/00Processes
    • A23V2300/31Mechanical treatment

Definitions

  • the “unpleasant taste component” generated when producing soy milk from soybean raw material is separated and removed from the soy milk by a high-speed centrifuge, thereby reducing the unpleasant taste component and improving the taste.
  • the present invention relates to a method for producing soymilk and processed foods produced using the soymilk.
  • the second aspect of the present invention is a raw koji obtained by grinding or crushing soybeans after adding water, a boiled koji obtained by heating the soybeans, a raw powdered soymilk obtained by dissolving soybean powder in water, and a heated powdered soymilk obtained by heating the soymilk.
  • the present invention relates to a method for producing soy milk in which soy milk with reduced fat is efficiently obtained.
  • the third invention relates to a method for producing tofu by adding a tofu coagulant mainly composed of bittern (magnesium chloride) to soy milk, and more specifically, it is easy to disperse and mix in soy milk, and
  • the present invention relates to a method for producing tofu that continuously obtains tofu that has excellent elasticity and good flavor by developing a coagulant solution that can exhibit a sufficient delayed action effect (slow effect) on the coagulation reaction.
  • soy milk produced by processing soybeans and processed soybean foods such as tofu made using soy milk are recognized as traditional health foods.
  • these products contain an unpleasant odor and unpleasant taste peculiar to soybeans, they tend to be avoided from the younger generation, and their consumption tends to reach a peak.
  • soy milk processed foods such as soy milk and tofu that does not have such “unpleasant odor” and “unpleasant taste” is required.
  • a typical “unpleasant odor” unique to soybeans is “blue odor”.
  • the causative substance of this blue odor is hexanal, which is a kind of aldehyde produced by lipid peroxidation involving enzymes such as lipoxygenase.
  • aldehydes and alcohol-based “unpleasant odor components” produced by enzyme oxidation and auto-oxidation.
  • unpleasant taste components include saponins and isoflavones having astringent taste.
  • these substance groups usually exist as glycosides, and the astringent taste becomes stronger when the sugar portion of the glycoside is separated by ⁇ -glucosidase to become an aglycon.
  • Patent Document 1 a method of grinding soybeans while deactivating enzymes with hot water
  • Patent Document 2 a method of grinding soybeans in an oxygen-free environment
  • Patent Document 3 a method of performing immersion and grinding in a low temperature environment
  • Patent Document 4 Method of Fermenting Soy Milk
  • Patent Document 5 Method of Treating Soy Milk with Ultra High Pressure
  • Patent Document 6 Method of Treating Ultra High Temperature
  • Patent Document 7 Various techniques are disclosed.
  • soybeans lacking lipoxygenase have been developed for the purpose of suppressing the generation of hexanal.
  • the following prior art documents can be cited.
  • JP-A-53-047553 JP 52-154545 A Japanese Patent Laid-Open No. 11-243895 JP 2001-57858 A JP-A-5-244866 JP 2006-288253 A JP 2009-34060
  • An object of the first invention is to provide a method for producing soymilk with improved taste and a processed food produced by using the soymilk, while maintaining an appropriate flavor and reducing "unpleasant taste” such as astringency. It is to provide.
  • the background art of the second invention will be described. Recently, consumer interest in food functionality has increased, and various health functions of soybean have become widely known.
  • soybean protein contains polyunsaturated fatty acids such as linoleic acid and linolenic acid, and does not contain cholesterol. Therefore, the evaluation has been established as an oil that is healthier than animal oil.
  • soy milk and tofu have the image of diet food, but if you eat more of them, the calorie intake will increase accordingly.
  • the energy of ordinary milk is 67 kcal per 100 g and the lipid content is 3.8 g per 100 g, whereas in the case of tofu, the filling tofu has an energy of 59 kcal and a lipid content.
  • the energy is 72 kcal and the lipid content is 4.2 g. Therefore, when trying to consume a large amount of soy protein with soy milk or tofu, naturally, a large amount of lipid is also consumed, and as a result, a large amount of energy (so-called calories) is consumed.
  • calorie-off products have been developed in various food fields, and they are gaining popularity.
  • Patent Document 11 uses a centrifugal separation method as a means for fractionating and measuring a protein
  • Patent Document 12 uses a centrifugal separation method as a means for separating an oil body in soy milk.
  • soy milk in soy milk, the emulsified state is very stable, and thus strong centrifugal conditions are required to separate fat (cream layer). Therefore, in Patent Documents 11 and 12, soy milk is centrifuged under strong centrifugal conditions based on such knowledge to separate necessary components for separation.
  • soy milk can also be separated by centrifugal separation in the same manner as milk.
  • An object of the second invention is to provide a method for producing soy milk that can improve the separation efficiency for separating fat and efficiently produce soy milk with reduced fat.
  • the background art of the third invention will be explained.
  • a so-called slow-acting coagulant having a slow coagulation reaction with soy milk such as calcium sulfate or glucono delta lactone (GDL) has been used. There were many.
  • coagulant preparations have been proposed in which an oil or fat or an emulsifier is mixed with an inorganic salt-based coagulant such as magnesium chloride to ensure the slow action of the coagulation reaction (Patent Documents 13 to 23, etc.).
  • These coagulants are so-called emulsifying coagulants in which the coagulation reaction is delayed by coating magnesium chloride or the like with an emulsifier or oil.
  • emulsifying coagulants have already been put into practical use, and contribute to mass production of tofu using bittern as a coagulant.
  • Patent Document 24 a method that uses not only an emulsifying coagulant using a food additive but also tofu or soy milk with bittern added at a high concentration as a coagulant solution.
  • Patent Document 24 Japanese Patent Laid-Open No. 11-98970 JP 2000-32942 A JP 2005-176551 A JP 2006-204184 A JP 2008-154526 A JP 2008-193999 A JP 2006-101848 A JP 2008-295381 A JP 2002-112728 A
  • the object of the third invention is to develop a coagulant liquid that can be easily dispersed and mixed in soy milk and that can achieve a slow-acting coagulation reaction, and this coagulant liquid has excellent elasticity and good flavor. Is to be able to be manufactured continuously.
  • the invention according to claim 1 relating to the first invention is a method in which soy milk produced from a soybean raw material is subjected to a high-speed centrifuge, the suspended components in the upper layer separated after the centrifugal action are removed, and left in the lower layer A method for producing soymilk with improved taste, wherein only soymilk is fractionated.
  • the invention according to claim 2 is a method in which soy milk produced from soybean raw material is subjected to a high-speed centrifuge, suspended components in the upper layer separated after the centrifugal action are removed, and only the soy milk remaining in the lower layer is separated. It is the processed food manufactured using the soymilk obtained.
  • soymilk with improved taste According to the method for producing soymilk with improved taste according to the first invention (inventions 1 and 2), there is an effect that soymilk with reduced unpleasant taste can be obtained only through a simple centrifugation step.
  • Processed foods such as traditional soymilk and processed tofu made from it have an unpleasant taste mainly due to the astringency remaining in the taste afterwards, so there is a tendency to avoid eating to young people in particular, and demand has peaked.
  • the soy milk and its processed food improved in taste by reducing the aftertaste astringency is obtained, it is also accepted by consumers who have avoided astringency, The effect of leading to an increase in demand for soybean food as a health food can also be achieved.
  • the present inventors have intensively studied a method capable of efficiently producing soy milk with reduced fat.
  • the raw koji obtained by grinding or crushing soybeans after adding water Boiled cucumber that has been heat-treated, raw soymilk in which soybean powder is dissolved in water, and soy raw material liquid before removing insoluble components such as okara ingredients such as heated powdered soymilk that has been heated By applying the centrifuge, fat can be easily separated as a floating component, and the separation efficiency of fat is significantly improved compared to the conventional method of removing soy milk after removal of insoluble components such as okara components. As a result, the second invention was completed.
  • the soybean raw material liquid before removing insoluble components such as okara components is subjected to a high-speed centrifuge to efficiently separate fat as a floating component, and the rest A method for producing soymilk, wherein the soymilk is separated and collected as fat-reduced soymilk.
  • the soybean raw material liquid is raw koji obtained by pulverizing or crushing soybeans after being added, boiled koji obtained by heat-treating the raw koji, or soy powder is dispersed and dissolved in water. 4.
  • soymilk is either raw powder soymilk or heated powdered soymilk obtained by heat-treating the raw powdered soymilk.
  • the invention according to claim 5 is characterized in that the soybean powder is either a powder obtained by pulverizing soybean or a pulverized processed powder of soybean treated so as to be easily dispersed and dissolved in water. It is a manufacturing method of the soymilk of Claim 3 or Claim 4. According to the method for producing soymilk of the second invention (claims 3 to 5), the fat can be efficiently separated and the soymilk with reduced fat can be obtained efficiently only through a simple centrifugation step. The effect is achieved.
  • the invention according to claim 6 relating to the third invention is to produce a coagulant liquid by mixing a coagulant for tofu with a floating layer liquid obtained by subjecting soy milk to a high-speed centrifuge.
  • a method for producing tofu characterized by being added to soy milk to cause a coagulation reaction.
  • the invention according to claim 7 is characterized in that a coagulant for tofu is mixed with a floating layer solution obtained by subjecting a soy material solution before removing insoluble components such as okara components to a high-speed centrifuge, and a coagulant solution. And the coagulant solution is added to soy milk to cause a coagulation reaction.
  • the invention according to claim 8 is that the soybean raw material liquid is raw cucumber obtained by pulverizing or crushing soybeans, or boiled cucumber obtained by heat-treating the raw cucumber, or by dispersing and dissolving soybean powder in water.
  • the method for producing tofu according to claim 7, wherein the raw material is either raw powder soymilk or heated powdered soymilk obtained by heat-treating the raw powdered soymilk.
  • the invention according to claim 9 is characterized in that the soybean powder is either a powder obtained by pulverizing soybean or a pulverized processed powder of soybean treated so as to be easily dispersed and dissolved in water.
  • the method for producing tofu according to claim 8. According to the method for producing tofu of the third invention (Inventions 6 to 9), it is possible to obtain a coagulant liquid that is easy to disperse and mix in soy milk and that can exhibit a sufficient slow-acting effect on the coagulation reaction, By using the coagulant, the effect of producing tofu with excellent elasticity and good flavor can be achieved.
  • the soybean raw material used in the first invention is not particularly limited as long as it is a raw material capable of producing soy milk, such as whole soybeans, molted soybeans, molted and dehulled soybeans, and powdered soybeans. Moreover, it can use arbitrarily regardless of domestic soybean and foreign soybean, and these mixtures may be sufficient.
  • the soy milk used in the first invention may be obtained by a conventional method. For example, the raw koji obtained by pulverizing the soy raw material soaked in water is heated to obtain boiled koji, which is separated into solid and liquid. And soy milk.
  • soy milk powder soy milk obtained by dissolving powdered soybeans in water or hot water
  • soy milk production apparatus and production conditions can be selected.
  • the high-speed centrifuge may be a batch type or a continuous type. In the case of mass production, a continuous centrifuge is preferable, and for example, a cream separator used in the dairy industry can be used.
  • the conditions under which the soymilk is centrifuged can vary depending on the desired soymilk quality after centrifugation.
  • the soy milk obtained after centrifugation is a soy milk with a refreshing aftertaste and enhanced sweetness, particularly since the astringency component remaining as an aftertaste is removed.
  • astringency component remaining as an aftertaste is removed.
  • this astringent taste is a major factor of unpleasant taste over isoflavones and saponins, and it is considered that soy milk and its processed food are the main cause of avoidance.
  • the lipid content of soybean floats as a cream, so that the centrifugal force at the time of centrifugation is applied strongly. Therefore, soy milk with reduced lipid can be obtained according to the strength of centrifugal force.
  • the astringent component remaining in the aftertaste which is a major cause of unpleasant taste, moves to the upper layer if there is a certain amount of centrifugal force, the taste is improved regardless of the residual amount of lipid in the soy milk obtained by separation.
  • a centrifugal force of 2000 ⁇ g or more at centrifugal acceleration, or a centrifugal force of 3500 ⁇ g or more may be applied for efficient separation.
  • the temperature of the soymilk at the time of centrifugation is not particularly limited as long as the soymilk can be kept in a liquid state, but it is not necessary to make the temperature so low. Good temperature range. However, since the lipid content is easily separated as the soy milk temperature is higher, it is more efficient to increase the soy milk temperature for the purpose of obtaining soy milk with reduced lipids. According to the first invention, the soy milk in which the centrifugal force is increased and the lipid is reduced becomes clean and sweet with no unpleasant taste, and if it is made tofu, it can be made a delicious calorie-reduced tofu. Examples of the First Invention Hereinafter, the first invention will be specifically described with reference to Examples 1 and 2, but the first invention is not limited to Examples 1 and 2.
  • the soy milk manufactured based on the conventional method in the tofu factory manufacturing field was used for the test.
  • This soy milk is a soy milk obtained by using Canadian soybeans, soaking overnight and then grinding with a grinder while adding water, heating in an indirect steamer, and separating okara with a screw press.
  • This soy milk was dispensed into a centrifuge tube for a high-speed centrifuge (Hitachi Koki Co., Ltd. 18PR-52) in a laboratory, and centrifuged at 8000 rpm (centrifugal acceleration of the tube center: about 6000 ⁇ g) for 15 minutes. .
  • the temperature immediately before centrifugation of the soymilk was 40 ° C.
  • Isoflavones were extracted from accurately weighed soymilk with 70% ethanol and analyzed by high-performance liquid chromatography in accordance with the soy isoflavone test method of the “Health Food Standards Collection” of the Japan Health and Nutrition Food Association. .
  • the results are shown in Table 2.
  • SPME solid phase microextraction
  • FIG. 1 shows the graph (radar chart).
  • the soy milk after separation was clearly evaluated to have a reduced astringency and enhanced sweetness compared to the soy milk before separation.
  • This astringent component is considered to be a component different from isoflavones, flavor components, and lipid components, but is for further study.
  • Filled tofu was prepared as follows using each soymilk. That is, a coagulant (magnesium chloride) was added to each soymilk cooled to 5 ° C. so as to be 0.3% by weight with respect to the weight of the soymilk, and filled into filled tofu containers.
  • the package film was covered and sealed, and heated and solidified in a constant temperature water bath at 85 ° C. for 45 minutes. After solidification, the sample was cooled in cold water and then subjected to a sensory evaluation test. The sensory evaluation test was conducted by 15 panelists, and the five items of sweetness, body, astringency, astringency and blue odor were evaluated by a 5-point method.
  • soybean is immersed in water overnight, and after adding water, it is ground or crushed to obtain “Ikugo”.
  • a method is also employed in which soybean is moulted and hydrated without being immersed in water and ground or crushed.
  • This raw kure is heated to 80 ° C. to 120 ° C. to obtain “boiled kure”, and further solid-liquid separation (generally referred to as “squeezed”) is removed to obtain soy milk.
  • squeezed solid-liquid separation
  • this method is called the “heating squeezing method”.
  • the method of obtaining soy milk from which components have been removed after solid-liquid separation of raw kure as it is and then heating it is called the “raw squeezing method”.
  • the former “heating squeezing method” is used by paying attention to the rapid deactivation of endogenous enzymes involved in oxidation such as lipoxygenase which leads to generation of unpleasant odor.
  • soy milk, tofu, etc. are partially produced using soybean powder as a raw material.
  • soybean powder mainly made from molted soybeans is used, and soy milk, tofu, etc. can be produced without separation from okara.
  • the soybean raw material used in the second invention is not particularly limited as long as it is a raw material capable of producing soy milk, such as whole grain soybeans, molted soybeans, and molted dehulled soybeans. Moreover, it can use arbitrarily regardless of domestic soybean and foreign soybean, and these mixtures may be sufficient.
  • the “soybean raw material liquid” is raw koji obtained by pulverizing or crushing soybeans, further boiled koji obtained by heating the soybeans, or soybean powder obtained by pulverizing soybeans.
  • “soybean powder” refers to a powder obtained by finely pulverizing soybeans or a finely pulverized processed powder of soybeans that has been treated so as to be easily dispersed and dissolved in water. Specifically, in addition to powder obtained by simply pulverizing soybeans, powder pulverized so as to have a particle size of several tens of ⁇ m or less, or powder produced by minimizing leaching of fats and oils during pulverization, frozen It refers to pulverized powder, powder containing other food materials and food additives to enhance solubility.
  • the soybean powder used in the second invention may be a commercially available soybean powder, or may be a soybean powder that has been home-grown using a pulverizer, reducing the burden on the centrifuge as much as possible.
  • a soy powder devised so as to be finely dispersed and easily dissolved is preferable.
  • the high-speed centrifuge used in the second invention may be a batch type or a continuous type, but in the case of mass production, a continuous centrifuge is preferable.
  • a continuous centrifuge called a screw decanter may be used for okara separation, but the current separation machine cannot separate and collect fat from the viewpoint of a two-phase separation type device structure and centrifugal capacity.
  • the centrifugal acceleration is preferably 3500 ⁇ g or more, and the higher the centrifugal acceleration, the higher the fat separation efficiency.
  • the temperature of the soybean raw material liquid is not particularly limited as long as the raw material liquid can be kept in a liquid state, but it is not necessary to lower the temperature. In the case of soy milk after okara separation, the higher the temperature during centrifugation, the easier it is to separate fat, but in the case of the soybean raw material liquid in the present invention, the difference in the separation efficiency of fat due to temperature is not large.
  • the optimum conditions are selected and adjusted in the balance between the fat separation efficiency and the energy efficiency.
  • solubilized state of soymilk is insufficient at the stage before removing insoluble components such as okara components, and so-called homogenization effect occurs in the squeezing step for separating okara, which further stabilizes the emulsified state. Therefore, the separation efficiency of fat is reduced after okara separation.
  • raw koji before removing insoluble components such as okara, boiled koji obtained by heat-treating it, or raw powdered soymilk, or heated powdered soymilk, if applied to a centrifuge, okara components, etc.
  • a larger amount of fat can be separated than when the soymilk after removing insoluble components is centrifuged under the same centrifugal conditions.
  • soy milk separated from the raw koji, boiled kew, and okara was collected from the line that was continuously produced according to a conventional method, and used for the test.
  • soy milk was produced using Canadian soybeans, immersed in water overnight and then ground with a grinder while adding water, heated in a continuous heating kettle, and separated from okara with a screw press. From the process of continuous flow, “Ikugo” immediately after grinding with a grinder, “Nigure Kure” immediately after heating in a continuous heating kettle, and “Soymilk” immediately after separating okara with a screw press device were collected. Is.
  • Each raw material solution is dispensed into a centrifuge tube for a high-speed centrifuge (Hitachi Koki Co., Ltd. 18PR-52) in a laboratory, and centrifuged at 8000 rpm (centrifugal acceleration at the center of the tube is about 6000 ⁇ g) for 30 minutes. went.
  • the temperature of each raw material liquid was 40 ° C.
  • the temperature condition of the centrifuge was 40 ° C.
  • Each raw material liquid is separated into three layers, that is, a fat (cream) layer, a soy milk layer, and a precipitation layer by centrifugation. From this, the cream layer on the upper layer of the tube was removed, and soy milk layers other than the precipitated layer were collected.
  • the ingredients were compared with the soy milk from which the fat from each raw material liquid was separated.
  • the solid content, lipid, protein, and ash content of each soymilk were analyzed based on a conventional method, and the remainder obtained by subtracting the lipid, protein, and ash content from the soymilk solid content was expressed as a carbohydrate content. That is, the solid content was measured as the weight after drying at 105 ° C. for 24 hours and indicated as the dry solid content. Lipid content was measured by extracting lipids by the hexane-isopropanol method.
  • the protein content was measured using a Kjeldahl analyzer (Keltech system manufactured by Foss Japan Co., Ltd.) and calculated using a nitrogen conversion factor of 5.71.
  • the ash content was measured by ashing using a muffle furnace (manufactured by Carbolite Furnaces). The analysis results are shown in Table 7. As shown in Table 7, regarding the lipid content, the ratio to the solid content was also described.
  • This heated powdered soymilk was subjected to a centrifugal dehydrator (H-112 manufactured by Kokusan Co., Ltd.) equipped with a filter cloth to remove insoluble components (okara components), soymilk was obtained, and “filtered soymilk” was obtained.
  • a centrifugal dehydrator H-112 manufactured by Kokusan Co., Ltd.
  • a filter cloth to remove insoluble components (okara components)
  • filtered soymilk” was obtained.
  • Each soymilk was used as a raw material solution and subjected to a high-speed centrifuge in the same manner as in Example 1.
  • the centrifugation conditions were the same as in Example 1, 40 ° C., 8000 rpm, 30 minutes. After centrifugation, the upper cream layer was removed, and the soymilk layer other than the precipitated layer was separated and collected.
  • the soybean raw material liquid in the third invention is raw koji obtained by grinding or crushing soy after adding water, boiled koji obtained by heat-treating the raw kyu, or raw powder soymilk in which soybean powder is dispersed and dissolved in water. It means any raw material liquid of heated powdered soymilk obtained by heat-treating the raw powdered soymilk.
  • soy milk means a product obtained by removing insoluble components by subjecting the soybean raw material liquid to various solid-liquid separation operations including filtration.
  • the tofu coagulant used in the third invention is a coagulant mainly composed of magnesium chloride (nigari) and means a combination of sodium chloride, calcium chloride, calcium sulfate, glucono delta lactone (GDL) and the like.
  • the high-speed centrifuge used in the third invention may be a batch type or a continuous type, but a continuous type centrifuge is preferable for mass production.
  • a continuous centrifuge called a screw decanter may be used for okara separation.
  • the present separator does not use the floating layer liquid of the present invention in view of the structure of the two-phase separation type and the centrifugal capacity. I can't get it.
  • a continuous high-speed centrifuge such as a “cream separator” used in the dairy industry can be used.
  • soybean raw material liquid utilization of a three-phase separation type high-speed centrifuge or its improved machine is conceivable.
  • the floating layer liquid obtained by applying the soymilk or soybean raw material liquid used in the third invention to the high-speed centrifuge is obtained by applying a continuous high-speed centrifuge as an "upper layer liquid” as a result of applying the soymilk or soybean raw material liquid to the high-speed centrifuge. When used, it is obtained as a “light liquid”.
  • soy milk or soybean raw material liquid When soy milk or soybean raw material liquid is selected and subjected to a high-speed centrifuge under appropriate conditions, it is separated into three layers: a floating layer mainly composed of a cream component, a soy milk layer reduced in fat, and a precipitated layer of insoluble components. If a continuous high-speed centrifuge is used, the floating layer is obtained by separating it on the “light liquid” side and the soy milk layer on the “heavy liquid” side.
  • the conditions for applying the soymilk or soybean raw material liquid to the centrifuge are not particularly limited as long as the floating layer is separated as described above, but considering the efficiency, the centrifugal acceleration is preferably 3500 ⁇ g or more,
  • the temperature at the time of the centrifugal separation is not particularly limited as long as the raw material liquid can be kept in a liquid state, but it is not necessary to lower the temperature.
  • the resulting floating layer liquid is composed of water, protein, lipids, and carbohydrates, and is characterized by a high lipid content, but it can also be used to make tofu. It can be said that the soy milk is concentrated in fat.
  • Patent Document 24 discloses a coagulant liquid obtained by mixing tofu or soymilk with magnesium chloride (bittery).
  • soymilk floating layer liquid
  • soymilk floating layer liquid
  • the mixing ratio of the floating layer liquid and the coagulant in the coagulant liquid of the third invention is adjusted according to the desired degree of delayed action and the final coagulant concentration, but the mixing ratio of the coagulant is increased. If it is too high, it will be difficult to dissolve in the floating layer solution, and if it is too low, the concentration of the coagulant in the coagulant solution will be diminished, resulting in an excessive amount of coagulant solution required to produce tofu.
  • the ratio is preferably 1: 1 to 20: 1.
  • Mixing of the floating layer liquid and the coagulant may be performed manually using a stirring device, or may be performed using a stirring device such as a general propeller stirrer.
  • soymilk has the property of causing a coagulation reaction to become tofu when an appropriate amount of coagulant is added and mixed, and does not cause a coagulation reaction if the amount of coagulant added is too small or too large.
  • the floating layer liquid of the present invention is composed of water, protein, lipid, and carbohydrate, and thus tofu can be produced by adding an appropriate amount of a coagulant thereto.
  • the temperature of the soy milk at the time of mixing the coagulant liquid is not particularly limited, but in order to effectively utilize the delayed action of the coagulant liquid which is the object of the third invention, it is set to 60 to 90 ° C. desirable.
  • the common emulsification coagulant marketed has a W / O type emulsified state, and exhibits delayed action by dispersing it in soy milk to obtain a W / O / W type emulsified state.
  • the coagulant liquid in the third invention is considered to be rather an O / W type, it is presumed that it exerts a delayed action effect by a mechanism different from that of a general emulsion coagulant.
  • a coagulant liquid prepared by mixing an appropriate amount of bittern into this is prepared, and once again returned to the remaining soy milk to produce tofu, It is possible to produce tofu with the exact same composition as when simply adding bittern.
  • Example of Third Invention The third invention will be described more specifically based on Example 5 below, but the third invention is not limited to these.
  • Soy milk was collected from a line that was continuously produced at a tofu factory production site based on a conventional method, and was subjected to a test.
  • This production line is made from Canadian soybeans, soaked in water overnight, ground with a grinder while adding water, heated in a continuous steamer and separated from okara with a screw press to produce soy milk.
  • the soymilk collected immediately after separating the okara with a screw press is separated into a centrifuge tube for a high-speed centrifuge (Hitachi Koki Co., Ltd. 18PR-52) in the laboratory. Then, centrifugation was performed at 8000 rpm (centrifugal acceleration at the center of the tube of about 6000 ⁇ g) for 30 minutes.
  • the temperature of the soymilk was 40 ° C., and the temperature condition of the centrifuge was 40 ° C.
  • the soy milk was separated into three layers by a centrifugal separation operation: a floating layer (a liquid layer mainly composed of a cream component), a soy milk layer (a soy milk layer with reduced fat), and a precipitation layer. From this, the floating layer was separated to prepare a coagulant solution. Magnesium chloride was used as a coagulant. Table 9 shows the composition of the composition of the floating layer liquid and the coagulant. The above coagulant solution was mixed with soy milk to produce tofu.
  • Comparative Example 3 Tofu was produced under the same conditions as in Example 1 using the coagulant solution as a commercially available emulsion coagulant. The dispersion and mixing of the emulsifying coagulant in soymilk was performed using a homogenizer (D-7801 manufactured by Ystral GmbH). The physical property value measurement of the tofu produced in Example 5, Comparative Example 1, Comparative Example 2, and Comparative Example 3 and a sensory evaluation test by 10 professional panelists were performed.
  • a homogenizer D-7801 manufactured by Ystral GmbH
  • flocculant liquid by 3rd invention is close to the tofu (comparative example 3) manufactured using the commercially available emulsifying coagulant physically. In the sensory evaluation of flavor, an evaluation exceeding that was obtained.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Agronomy & Crop Science (AREA)
  • Botany (AREA)
  • Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Beans For Foods Or Fodder (AREA)
  • Dairy Products (AREA)

Abstract

Provided are a method for producing a soy milk having an improved taste which comprises separating and removing offensive taste components from soy milk with the use of a high-speed centrifugal machine, and processed foods produced by using said soy milk. Also provided is a method for producing a soy milk having a reduced fat content which comprises, before removing insoluble components such as okara (bean curd refuse) components, treating a starting soybean solution with a high-speed centrifugal machine to thereby efficiently separate fat as floats and then separating and collecting the residual soy milk. Also provided is a method for continuously producing a tofu having an excellent elasticity and a good flavor, comprising using a liquid coagulating agent which is prepared by mixing a liquid tofu-coagulating agent containing nigari (magnesium chloride) as the main component with the liquid float layer obtained by the aforesaid high-speed centrifugation, can be easily mixed with soy milk and dispersed therein and can exert a sufficiently delayed effect on solidification.

Description

豆乳の製造方法及び豆腐の製造方法Method for producing soy milk and method for producing tofu
 第1の発明は、大豆原料から豆乳を製造する際に生ずる「不快味成分」を、高速遠心分離機により豆乳から分離除去することにより、その不快味成分を低減させてなる、呈味改善された豆乳の製造方法及びその豆乳を用いて製造された加工食品に関する。
 第2の発明は、大豆を加水後に磨砕又は破砕して得た生呉、それを加熱処理した煮呉、さらには大豆粉末を水に溶解した生粉末豆乳、それを加熱した加熱粉末豆乳のような、おから成分等の不溶成分を除去する前の大豆原料液を高速遠心分離機にかけ、これにより脂肪を浮上成分として効率よく分離し、その段階で残りの豆乳を分離採取することで、脂肪を低減した豆乳を効率的に得るようにした豆乳の製造方法に関する。
 第3の発明は、ニガリ(塩化マグネシウム)を主体とした豆腐用凝固剤を豆乳に添加して豆腐を製造する方法に関するものであり、さらに詳しくは豆乳への分散混合が容易であって、かつ凝固反応に対して十分な遅効作用効果(遅効性)を発揮できる凝固剤液を開発することで、弾力性に優れ、風味も良好となる豆腐を連続的に得られる豆腐の製造方法に関する。
According to the first aspect of the present invention, the “unpleasant taste component” generated when producing soy milk from soybean raw material is separated and removed from the soy milk by a high-speed centrifuge, thereby reducing the unpleasant taste component and improving the taste. The present invention relates to a method for producing soymilk and processed foods produced using the soymilk.
The second aspect of the present invention is a raw koji obtained by grinding or crushing soybeans after adding water, a boiled koji obtained by heating the soybeans, a raw powdered soymilk obtained by dissolving soybean powder in water, and a heated powdered soymilk obtained by heating the soymilk. By applying the soybean raw material liquid before removing insoluble components such as okara components to a high-speed centrifuge, the fat is efficiently separated as a floating component, and the remaining soy milk is separated and collected at that stage, The present invention relates to a method for producing soy milk in which soy milk with reduced fat is efficiently obtained.
The third invention relates to a method for producing tofu by adding a tofu coagulant mainly composed of bittern (magnesium chloride) to soy milk, and more specifically, it is easy to disperse and mix in soy milk, and The present invention relates to a method for producing tofu that continuously obtains tofu that has excellent elasticity and good flavor by developing a coagulant solution that can exhibit a sufficient delayed action effect (slow effect) on the coagulation reaction.
 第1の発明の背景技術を説明すると、大豆を加工して製造される豆乳や豆乳を用いて作られる豆腐等の豆乳加工食品は、伝統的健康食品として認知されている。しかし、これらの製品には大豆特有の不快臭や不快味が含まれるために、特に若年層から敬遠される傾向があり、その消費は頭打ちの傾向となっている。
 大豆食品を若年層にも広く食してもらうためにも、このような「不快臭」や「不快味」のない豆乳や豆腐等の豆乳加工食品の出現が求められている。
 大豆特有の「不快臭」として代表的なものに「青臭み」がある。
 この青臭みの原因物質は、リポキシゲナーゼ等の酵素が関与し脂質の過酸化反応によって生じるアルデヒドの一種であるヘキサナールである。それ以外にも、酵素酸化や自動酸化によって生じるアルデヒド、アルコール系の「不快臭成分」が存在する。
 また「不快味成分」としては、収斂味を有するサポニンやイソフラボン等があるとされている。ただし、これら物質群は通常配糖体として存在し、β−グルコシダーゼにより配糖体の糖部分が分離してアグリコンとなると収斂味が強くなる。
 これ以外にも渋味や苦味などの不快味成分が存在するが、その成分や生成メカニズムなどの詳細は明確になっていない。
 このように、不快臭、不快味が生じる(消費者が感ずる)主な要因として、酵素の関与による酸化反応や分解反応及び酵素が関与しない自動酸化反応が考えられるため、それらの要因を抑制し不快臭、不快味をできる限り低減させた豆乳を製造する方法が種々提案されている。
 そのうち、「不快臭」の発生を抑制、低減する方法として、いわゆる豆乳の加熱絞り法においては、大豆を磨砕後リポキシゲナーゼが失活する温度にまで速やかに加熱する方法が取られている他、豆乳製造工程の後半に脱気装置にかけ不快臭を低減させることはよく行われている。
 また、熱水で酵素を失活させながら大豆を磨砕する方法(特許文献1)、無酸素環境で大豆を磨砕する方法(特許文献2)、浸漬、磨砕を低温環境で行う方法(特許文献3)、豆乳を発酵させる方法(特許文献4)、豆乳を超高圧処理する方法(特許文献5)や超高温処理する方法(特許文献6)、豆乳を活性炭処理する方法(特許文献7)など多種の技術が開示されている。また、ヘキサナールの発生を抑える目的で、リポキシゲナーゼが欠失した大豆も開発されている。
 第1の発明の背景技術については、下記の先行技術文献を挙げることができる。
特開昭53−047553号公報 特開昭52−154545号公報 特開平11−243895号公報 特開2001−57858号公報 特開平5−244866号公報 特開2006−288253号公報 特開2009−34060号公報 特開昭62−232349号公報 特公昭56−050818号公報 WO2008/081948号公報 日本食品科学工学会誌 第45巻第2号、122~128頁(1998年) 日本食品科学工学会誌 第48巻第4号、253~262頁(2001年)
Describing the background art of the first invention, soy milk produced by processing soybeans and processed soybean foods such as tofu made using soy milk are recognized as traditional health foods. However, since these products contain an unpleasant odor and unpleasant taste peculiar to soybeans, they tend to be avoided from the younger generation, and their consumption tends to reach a peak.
In order for young people to eat soy food widely, the appearance of soy milk processed foods such as soy milk and tofu that does not have such “unpleasant odor” and “unpleasant taste” is required.
A typical “unpleasant odor” unique to soybeans is “blue odor”.
The causative substance of this blue odor is hexanal, which is a kind of aldehyde produced by lipid peroxidation involving enzymes such as lipoxygenase. In addition, there are aldehydes and alcohol-based “unpleasant odor components” produced by enzyme oxidation and auto-oxidation.
In addition, “unpleasant taste components” include saponins and isoflavones having astringent taste. However, these substance groups usually exist as glycosides, and the astringent taste becomes stronger when the sugar portion of the glycoside is separated by β-glucosidase to become an aglycon.
There are other unpleasant taste components such as astringency and bitterness, but details such as the components and generation mechanism are not clear.
In this way, the main causes of unpleasant odor and unpleasant taste (consumed by consumers) are the oxidation reaction and decomposition reaction involving the enzyme and the auto-oxidation reaction not involving the enzyme. Various methods for producing soy milk in which unpleasant odor and unpleasant taste are reduced as much as possible have been proposed.
Among them, as a method for suppressing and reducing the occurrence of “unpleasant odor”, in the so-called heat milk squeezing method, a method of quickly heating soybeans to a temperature at which lipoxygenase is deactivated after grinding is taken, It is a common practice to reduce the unpleasant odor by applying a deaeration device in the latter half of the soymilk production process.
In addition, a method of grinding soybeans while deactivating enzymes with hot water (Patent Document 1), a method of grinding soybeans in an oxygen-free environment (Patent Document 2), a method of performing immersion and grinding in a low temperature environment ( Patent Document 3), Method of Fermenting Soy Milk (Patent Document 4), Method of Treating Soy Milk with Ultra High Pressure (Patent Document 5), Method of Treating Ultra High Temperature (Patent Document 6), Method of Treating Soy Milk with Activated Carbon (Patent Document 7) Various techniques are disclosed. In addition, soybeans lacking lipoxygenase have been developed for the purpose of suppressing the generation of hexanal.
As the background art of the first invention, the following prior art documents can be cited.
JP-A-53-047553 JP 52-154545 A Japanese Patent Laid-Open No. 11-243895 JP 2001-57858 A JP-A-5-244866 JP 2006-288253 A JP 2009-34060 A Japanese Patent Laid-Open No. 62-232349 Japanese Patent Publication No. 56-050818 WO2008 / 081948 Journal of Japanese Society for Food Science and Technology, Vol. 45, No. 2, 122-128 (1998) Journal of Japan Society for Food Science and Technology, Vol. 48, No. 4, pages 253-262 (2001)
 一方、「不快味」の発生を抑制、低減する方法としては、大豆の磨砕前に脱皮、脱胚軸処理を行いサポニンやイソフラボン、及び酸化関連酵素の持込みを低減する方法(上記の特許文献8)、浸漬水にグルコノデルタラクトンを含有させβ−グルコシダーゼを抑制する方法(上記の特許文献9)などが開示されている。
 上記のように、特に「不快臭」に関しては原因成分が比較的明確になっており、それらの生成を抑制したり、低減したりする技術が従来から広く開発されてきた。
 なお、前述のリポキシゲナーゼ欠失大豆を用いて作った豆腐は一般的に淡白な味になることが知られている。リポキシゲナーゼによる脂質酸化生成物が豆腐のこく味等良い方の食味に影響するとの知見(上記の非特許文献1、2)もあり、豆乳製造中の過度の酸化抑制は不快臭が低減できる反面、味の淡白化につながると考えられる。
 このような知見を考慮して、豆乳製造工程において酸化抑制工程と適度な酸化を起こさせる工程を併せ持った豆乳製造装置の提案もなされている。(上記の特許文献10)
 一方、「不快味」に関しては、原因成分がさほど明確になっていないため、サポニンやイソフラボンを対象にした技術対応がなされているのみであり、特に「渋味」の抑制技術は不十分であった。
 第1の発明の目的は、適度な風味を保ちつつ、渋味などの「不快味」を低減させてなる、呈味改善された豆乳の製造方法及びその豆乳を用いて製造された加工食品を提供することにある。
 つぎに第2の発明の背景技術を説明すると、昨今、食品の機能性に対する消費者の関心が高まり、大豆の持つさまざまな健康機能性についても広く知られるようになってきた。大豆の主な機能性成分としては、大豆タンパク、イソフラボン、レシチン、サポニン、大豆油などがあるが、そのうち大豆油はリノール酸やリノレン酸等の多価不飽和脂肪酸を含み、またコレステロールを含まないため、動物油と比較して対照的に健康に良い油として評価が定着している。
 また、豆乳や豆腐はダイエット食品というイメージもあるが、それでもこれを多く食べると、それなりに摂取カロリーも増えることになる。
 例えば五訂増補日本食品標準成分表によると、普通牛乳のエネルギーは100g当たり67kcalで脂質含量は100g当たり3.8gであるが、これに対し豆腐の場合には、充てん豆腐がエネルギー59kcal、脂質含量3.1g、木綿豆腐では、エネルギー72kcal、脂質含量4.2gとなる。
 したがって、豆乳や豆腐で大豆タンパクを多く摂取しようとすると、当然のことながら脂質も多く摂ることになり、結果的に多くのエネルギー(いわゆるカロリー)を摂取してしまう。
 最近は、さまざまな食品分野でカロリーオフの商品が開発され、それが人気を博しており、豆乳や豆腐の分野でも、消費者の摂取カロリー低減志向に対応した商品の開発が求められるようになってきた。
 一般的に、カロリーを低減した食品を開発するためには、エネルギーの素となる炭水化物、タンパク質、脂質のいずれかの成分を低減する必要がある。
 さまざまな食品素材を組み合わせて作る加工食品の場合でも、従来のレシピから糖分や油の配合割合を減らしたり、砂糖をカロリーの低いオリゴ糖や他のカロリーのない甘味成分に置き換えたりする方法が採用されている。
 しかし、例えば牛乳のような天然の産物においては、もともとそこに含まれる成分中、脂肪分を分離・低減してカロリーを低減する方法は実際に行われており、もちろん、脱脂粉乳や分離乳タンパク等を活用して脂肪を低減した乳製品の製造も行われてはいるが、そのようにして得られた乳製品は、一般的に製造された牛乳とは品質的にかけ離れた乳製品となっている現実があった。
 豆乳においても、大豆に水のみを加えて抽出して製造する豆乳の場合には、天然に近い産物であり、大豆に本来含まれている脂肪分がそのまま残るという結果になっていた。
 その豆乳からカロリーを低減させようとすれば、牛乳と同様の手法で脂肪を低減させる方法が最も実用的である。また牛乳と同様に、脱脂大豆や分離大豆タンパクを活用する方法も考えられるが、いずれにしても得られる豆乳は、品質上の格差が大きいため世の中に普及していないのが実情であった。
 第2の発明の背景技術については、下記の先行技術文献を挙げることができる。
特開平7−274885号公報 WO2002/026788号公報 日本食品工業学会誌 第19巻第12号、580~584頁(1972)
On the other hand, as a method of suppressing or reducing the occurrence of “unpleasant taste”, a method of reducing the carry-on of saponins, isoflavones, and oxidation-related enzymes by performing molting and de-embryonic axis treatment before grinding of soybean (the above-mentioned patent document) 8) A method for inhibiting β-glucosidase by containing gluconodeltalactone in immersion water (the above-mentioned Patent Document 9) is disclosed.
As described above, the causal components have become relatively clear particularly with respect to “unpleasant odors”, and techniques for suppressing or reducing their generation have been widely developed.
It is known that tofu made using the aforementioned lipoxygenase-deficient soybean generally has a pale taste. There is also a finding that the lipid oxidation product by lipoxygenase affects the taste of the better side of tofu (non-patent documents 1 and 2 above), while excessive oxidation inhibition during soymilk production can reduce unpleasant odors, It is thought to lead to lighter taste.
In view of such knowledge, a soymilk production apparatus having both an oxidation suppression process and a process of causing appropriate oxidation in the soymilk production process has been proposed. (Patent Document 10 above)
On the other hand, regarding “unpleasant taste”, the causal component has not been clarified so much, and only technical measures for saponins and isoflavones have been made. In particular, the technology for suppressing “astringency” is insufficient. It was.
An object of the first invention is to provide a method for producing soymilk with improved taste and a processed food produced by using the soymilk, while maintaining an appropriate flavor and reducing "unpleasant taste" such as astringency. It is to provide.
Next, the background art of the second invention will be described. Recently, consumer interest in food functionality has increased, and various health functions of soybean have become widely known. The main functional components of soybean include soybean protein, isoflavone, lecithin, saponin, soybean oil, etc. Of which soybean oil contains polyunsaturated fatty acids such as linoleic acid and linolenic acid, and does not contain cholesterol. Therefore, the evaluation has been established as an oil that is healthier than animal oil.
In addition, soy milk and tofu have the image of diet food, but if you eat more of them, the calorie intake will increase accordingly.
For example, according to the 5th amendment Japanese food standard ingredient table, the energy of ordinary milk is 67 kcal per 100 g and the lipid content is 3.8 g per 100 g, whereas in the case of tofu, the filling tofu has an energy of 59 kcal and a lipid content. In 3.1 g of cotton tofu, the energy is 72 kcal and the lipid content is 4.2 g.
Therefore, when trying to consume a large amount of soy protein with soy milk or tofu, naturally, a large amount of lipid is also consumed, and as a result, a large amount of energy (so-called calories) is consumed.
Recently, calorie-off products have been developed in various food fields, and they are gaining popularity. In the field of soy milk and tofu, it is necessary to develop products that respond to consumers' desire to reduce calorie intake. It has become.
In general, in order to develop foods with reduced calories, it is necessary to reduce any of the carbohydrate, protein, and lipid components that are the source of energy.
Even in the case of processed foods made by combining various food ingredients, methods such as reducing the proportion of sugar and oil from conventional recipes or replacing sugar with low-calorie oligosaccharides or other non-calorie sweet ingredients are adopted. Has been.
However, for natural products such as milk, the method of reducing the calories by separating and reducing the fat content in the components contained therein is actually used. Of course, skim milk powder and separated milk protein are of course used. Although dairy products with reduced fats have been manufactured by utilizing the dairy products, the dairy products obtained in this way are dairy products that are qualitatively different from the general manufactured milk. There was a reality.
In the case of soymilk, soymilk produced by adding only water to soybean is a product close to nature, and the result is that the fat originally contained in soybean remains as it is.
In order to reduce calories from the soymilk, the most practical method is to reduce fat by the same method as milk. In addition, as with milk, a method using defatted soybeans or separated soybean protein is also conceivable, but in any case, the actual situation is that soy milk obtained is not widely used in the world due to the large quality gap.
As the background art of the second invention, the following prior art documents can be cited.
JP-A-7-27485 WO2002 / 026788 Journal of Japanese Society of Food Industry Vol.19, No.12, 580-584 (1972)
 牛乳の場合には、一般的にはクリームセパレーターのような専用の遠心分離機を用いて脂肪分をクリーム層としていわゆる軽液側に分離し、重液側に低脂肪乳を分離する。このように牛乳においては、比較的弱い遠心条件で軽液側(クリーム)と重液側(低脂肪乳)が分離するため、低脂肪乳の分離採取は比較的容易である。
 一方、豆乳の場合においても、豆乳を高速遠心分離機または超遠心分離機にかけてタンパク質、脂肪などの成分を分画する方法は以前より行われていた(特許文献11、12及び非特許文献3)。例えば、特許文献11は、タンパク質を分画、測定する手段として遠心分離法を用いており、特許文献12は、豆乳中のオイルボディーを分離する手段として遠心分離法を用いている。
 ただ非特許文献3にあるように、豆乳においては、乳化状態が非常に安定であるため、脂肪(クリーム層)を分離するには強い遠心条件が必要である。そのため特許文献11及び12は、そのような知見に基づき豆乳を強い遠心条件で遠心分離機にかけて、分離目的の必要成分を分離している。このように、豆乳においても牛乳と同様に遠心分離法で脂肪を分離できることはわかっているが、牛乳と比較して豆乳の乳化状態が安定であるために、脂肪を分離するための分離効率が悪いということが、豆乳、豆腐業界における脂肪低減商品を開発する際の課題となっていた。第2の発明の目的は、脂肪を分離するための分離効率を向上させて、脂肪を低減した豆乳を効率よく製造できるようにした豆乳の製造方法を提供することにある。
 第3の発明の背景技術を説明すると、豆腐の製造においては、以前は硫酸カルシウムあるいはグルコノデルタラクトン(GDL)といった豆乳との凝固反応が緩やかな、いわゆる遅効性のある凝固剤が用いられることが多かった。
 これらの遅効性のある凝固剤は、豆腐製造の作業性や歩留りが良いため、豆腐を大量生産する場合に好んで用いられてきた。
 しかし最近では、風味の面で昔ながらのニガリ(塩化マグネシウム)を使用した豆腐に消費者の嗜好が移ったため、ニガリを用いた豆腐製造が主流となっている。
 しかし元来、ニガリは速効性(すなわち凝固反応が著しく速い)のある凝固剤であるため、このニガリを用いて豆腐を製造すると、安定した品質の豆腐を作るために熟練した技を必要とし、そのことで豆腐の大量生産を行うには問題があった。
 この問題に対処するために、ニガリ溶液を高温の豆乳に添加して即座に均一に溶解できるように攪拌装置を工夫したり、あるいは熱い豆乳を一旦冷却し、その状態下でニガリを添加して凝固反応を制御するようにするなどの方法が採用されてきた。
 しかしながら、前者は豆腐の品質を安定させることが難しく、また生産能力の面で不十分であり、後者は豆乳を冷却するための設備を必要としたり、エネルギーコストが高騰するなどの難点があった。
 そこで上記の問題を解決するために、ニガリの凝固反応を遅効化するための研究が進められ、さまざまな方法が提案されてきた。
 例えば、塩化マグネシウム等の無機塩系凝固剤に油脂や乳化剤を混合することで、凝固反応の遅効性を確保した種々の凝固剤製剤が提案されている(特許文献13~23など)。これらの凝固剤は、塩化マグネシウム等を乳化剤や油脂でコーティングすることによって凝固反応を遅効化した、いわゆる乳化凝固剤である。このような乳化凝固剤のいくつかのタイプのものは、すでに実用に供されており、ニガリを凝固剤に使用した豆腐の大量生産に貢献している。
 一方、食品添加物を用いた乳化凝固剤ではなく、豆腐又は豆乳にニガリを高濃度に添加したものを、凝固剤液として使用する方法(特許文献24)も提案されている。
 第3の発明の背景技術については、下記の先行技術文献を挙げることができる。
特開平5−304923号公報 特開平10−57002号公報 特開平10−179072号公報 特開平11−98970号公報 特開2000−32942号公報 特開2005−176751号公報 特開2006−204184号公報 特開2008−154526号公報 特開2008−193999号公報 特開2006−101848号公報 特開2008−295381号公報 特開2002−112728号公報
In the case of milk, generally, using a dedicated centrifuge such as a cream separator, fat content is separated into a so-called light liquid side as a cream layer, and low fat milk is separated into a heavy liquid side. Thus, in milk, since the light liquid side (cream) and the heavy liquid side (low fat milk) are separated under relatively weak centrifugal conditions, it is relatively easy to separate and collect the low fat milk.
On the other hand, even in the case of soymilk, methods for fractionating components such as proteins and fats by applying soymilk to a high-speed centrifuge or ultracentrifuge have been performed (Patent Documents 11 and 12 and Non-Patent Document 3). . For example, Patent Document 11 uses a centrifugal separation method as a means for fractionating and measuring a protein, and Patent Document 12 uses a centrifugal separation method as a means for separating an oil body in soy milk.
However, as described in Non-Patent Document 3, in soy milk, the emulsified state is very stable, and thus strong centrifugal conditions are required to separate fat (cream layer). Therefore, in Patent Documents 11 and 12, soy milk is centrifuged under strong centrifugal conditions based on such knowledge to separate necessary components for separation. As described above, it is known that soy milk can also be separated by centrifugal separation in the same manner as milk. However, since the emulsified state of soy milk is more stable than milk, the separation efficiency for separating fat is high. Poorness has been a challenge in developing fat reduction products in the soy milk and tofu industries. An object of the second invention is to provide a method for producing soy milk that can improve the separation efficiency for separating fat and efficiently produce soy milk with reduced fat.
The background art of the third invention will be explained. In the production of tofu, a so-called slow-acting coagulant having a slow coagulation reaction with soy milk such as calcium sulfate or glucono delta lactone (GDL) has been used. There were many.
These slow-acting coagulants have been favorably used for mass production of tofu because of good workability and yield of tofu production.
Recently, however, consumer preference has shifted to tofu using traditional bittern (magnesium chloride) in terms of flavor, and tofu production using bittern has become the mainstream.
But originally, bittern is a fast-acting (that is, the coagulation reaction is remarkably fast) coagulant, so when tofu is made using this bittern, it requires skill to produce stable quality tofu, Therefore, there was a problem in mass production of tofu.
In order to deal with this problem, add a bittern solution to hot soymilk and devise a stirring device so that it can be dissolved immediately and uniformly, or once cool the hot soymilk and add bittern under that condition Methods such as controlling the coagulation reaction have been employed.
However, the former is difficult to stabilize the quality of tofu and is insufficient in terms of production capacity, and the latter has the difficulty of requiring equipment for cooling soy milk and increasing energy costs. .
Therefore, in order to solve the above problem, research for slowing the coagulation reaction of bittern has been advanced and various methods have been proposed.
For example, various coagulant preparations have been proposed in which an oil or fat or an emulsifier is mixed with an inorganic salt-based coagulant such as magnesium chloride to ensure the slow action of the coagulation reaction (Patent Documents 13 to 23, etc.). These coagulants are so-called emulsifying coagulants in which the coagulation reaction is delayed by coating magnesium chloride or the like with an emulsifier or oil. Several types of such emulsifying coagulants have already been put into practical use, and contribute to mass production of tofu using bittern as a coagulant.
On the other hand, there is also proposed a method (Patent Document 24) that uses not only an emulsifying coagulant using a food additive but also tofu or soy milk with bittern added at a high concentration as a coagulant solution.
As for the background art of the third invention, the following prior art documents can be cited.
JP-A-5-304923 JP-A-10-57002 JP-A-10-179072 Japanese Patent Laid-Open No. 11-98970 JP 2000-32942 A JP 2005-176551 A JP 2006-204184 A JP 2008-154526 A JP 2008-193999 A JP 2006-101848 A JP 2008-295381 A JP 2002-112728 A
 前述した従来の乳化凝固剤においては、凝固剤の乳化物を豆乳中に細かく分散混合するために、大きな分散剪断力を必要としていた。またグリセリン脂肪酸エステル等合成系の乳化剤を使用した場合には、豆腐の風味に敏感な人からは、合成系乳化剤特有の風味の影響で、豆腐の風味が損なわれるとの指摘もあり、品質面での改善が望まれていた。
 また特許文献24の技術の場合には、豆乳の持つ天然の乳化作用を活用した方法と考えられるが、凝固反応を制御する方法としてはその効果が不十分であるという課題があった。
 第3の発明の目的は、豆乳への分散混合が容易となり、かつ遅効性のある凝固反応を達成できる凝固剤液を開発し、この凝固剤液により弾力性に優れ、風味も良好となる豆腐を連続的に製造できるようにするという点にある。
In the conventional emulsion coagulant described above, a large dispersion shear force is required in order to finely disperse and mix the emulsion of the coagulant in soy milk. In addition, when synthetic emulsifiers such as glycerin fatty acid esters are used, some people who are sensitive to the flavor of tofu have pointed out that the flavor of tofu is impaired due to the flavor of the synthetic emulsifier. Improvement was desired.
In the case of the technique of Patent Document 24, it is considered that the natural emulsification action of soy milk is utilized, but there is a problem that the effect is insufficient as a method for controlling the coagulation reaction.
The object of the third invention is to develop a coagulant liquid that can be easily dispersed and mixed in soy milk and that can achieve a slow-acting coagulation reaction, and this coagulant liquid has excellent elasticity and good flavor. Is to be able to be manufactured continuously.
 本発明者らは第1の発明(請求項1及び2)として、上記の課題を解決すべく、大豆原料から豆乳を製造するにあたり、過度の酸化抑制をすることなく適度な風味を保ったまま、渋味などの「不快味」を低減する方法について鋭意検討した結果、豆乳を高速遠心分離機にかけて、上層の浮遊成分を取り除き下層の豆乳を分取することにより、適度な風味を保ち渋味などの不快味が低減した豆乳が得られることを見出し、第1の発明を完成するに至った。
 すなわち第1の発明に関する、請求項1記載の発明は、大豆原料から製造した豆乳を高速遠心分離機にかけ、遠心分離作用後に二層に分離したものの上層の浮遊成分を除去し、下層に残った豆乳のみを分取することを特徴とする呈味改善された豆乳の製造方法である。
 また、請求項2記載の発明は、大豆原料から製造した豆乳を高速遠心分離機にかけ、遠心分離作用後に二層に分離したものの上層の浮遊成分を除去し、下層に残った豆乳のみを分取して得られた豆乳を用いて製造される加工食品である。
 この第1の発明(請求項1及び2)の呈味改善された豆乳の製造方法によれば、簡単な遠心分離工程を経るだけで、不快味が低減した豆乳が得られるという効果がある。
 従来の豆乳やそれを加工した豆腐等の加工食品は、その後味に残る渋味を主原因にした不快味があるために、特に若年層に食するのを敬遠される傾向があり需要が頭打ちになっていたが、本発明によれば、後味の渋味が低減することにより呈味改善された豆乳やその加工食品が得られるため、渋味を敬遠していた消費者にも受入れられ、健康食品としての大豆食品の需要の伸びにつながるという効果も達成できる。
 また本発明者らは第2の発明(請求項3乃至5)として、脂肪を低減した豆乳を効率よく製造できる方法を鋭意検討した結果、大豆を加水後に磨砕又は破砕して得た生呉、それを加熱処理した煮呉、さらには大豆粉末を水に溶解した生粉末豆乳、それを加熱した加熱粉末豆乳のような、おから成分等の不溶成分を除去する前の大豆原料液を高速遠心分離機にかけることにより、脂肪を浮上成分として楽に分離でき、しかも従来の方法であるおから成分等不溶成分除去後の豆乳を遠心分離機にかける場合より脂肪の分離効率が格段に良くなることを見出し、第2の発明を完成するに至った。
 すなわち、第2の発明に関する請求項3記載の発明は、おから成分等の不溶成分を除去する前の大豆原料液を高速遠心分離機にかけ、脂肪を浮上成分として効率的に分離し、残りの豆乳を脂肪低減豆乳として分離採取することを特徴とする豆乳の製造方法である。
 また、請求項4記載の発明は、大豆原料液が、大豆を加水後に磨砕又は破砕して得た生呉か、その生呉を加熱処理した煮呉か、大豆粉末を水に分散溶解した生粉末豆乳か、その生粉末豆乳を加熱処理した加熱粉末豆乳のいずれかの大豆原料液であることを特徴とする請求項3記載の豆乳の製造方法である。
 さらに、請求項5記載の発明は、大豆粉末が、大豆を微粉砕して得た粉末又は水に分散、溶解しやすいように処理された大豆の微粉砕加工粉末のいずれかであることを特徴とする請求項3又は請求項4記載の豆乳の製造方法である。
 第2の発明(請求項3乃至5)の豆乳の製造方法は、簡単な遠心分離工程を経るだけで、脂肪を効率よく分離して、脂肪を低減した豆乳を効率的に得ることができるという効果が達成される。
 従来の豆乳技術では、脂肪の分離効率が悪いために実用化されていなかった脂肪低減豆乳が、本発明により効率よく製造できるようになるため、豆乳、豆腐製品分野において、低カロリー製品を待ち望む消費者の期待に応えることができるという効果も達成される。
 さらに本発明者らは第3の発明(請求項6乃至9)として、上記課題を解決すべく、豆乳もしくは大豆原料液を高速遠心分離機にかけて得られる浮上層液に、ニガリなどの凝固剤を混合溶解した豆腐用凝固剤液を得て、当該凝固剤液を豆乳に添加することにより豆乳の凝固反応を遅効化して、弾力性に富み、風味も良好となる豆腐を製造する方法を見出し、第3の発明を完成するに至った。
 すなわち、第3の発明に関する請求項6記載の発明は、豆乳を高速遠心分離機にかけて得られる浮上層液に、豆腐用の凝固剤を混合して凝固剤液を製造し、その凝固剤液を豆乳に添加して凝固反応させるようにしたことを特徴とする豆腐の製造方法である。
 また、請求項7記載の発明は、おから成分等の不溶成分を除去する前の大豆原料液を高速遠心分離機にかけて得られる浮上層液に、豆腐用の凝固剤を混合して凝固剤液を製造し、その凝固剤液を豆乳に添加して凝固反応させるようにしたことを特徴とする豆腐の製造方法である。
 ついで、請求項8記載の発明は、大豆原料液が、大豆を加水後に磨砕又は破砕して得た生呉か、その生呉を加熱処理した煮呉か、大豆粉末を水に分散溶解した生粉末豆乳か、その生粉末豆乳を加熱処理した加熱粉末豆乳のいずれかの大豆原料液であることを特徴とする請求項7記載の豆腐の製造方法である。
 さらに、請求項9記載の発明は、大豆粉末が、大豆を微粉砕して得た粉末又は水に分散、溶解しやすいように処理された大豆の微粉砕加工粉末のいずれかであることを特徴とする請求項8記載の豆腐の製造方法である。
 第3の発明(請求項6乃至9)の豆腐の製造方法によれば、豆乳への分散混合が容易で、かつ凝固反応への十分な遅効作用を発揮できる凝固剤液を得ることができ、当該凝固剤を使用することで、弾力性に優れ、風味も良好な豆腐を製造できるという効果が達成される。
As a first invention (Claims 1 and 2), the present inventors have maintained a proper flavor without excessive oxidation suppression in producing soy milk from soybean raw materials in order to solve the above-mentioned problems. As a result of diligent research on methods to reduce "unpleasant taste" such as astringency, the soymilk is subjected to a high-speed centrifuge to remove the upper-floating components and fractionate the lower-layer soymilk to maintain an appropriate flavor. The inventors have found that soy milk with reduced unpleasant taste such as can be obtained, and have completed the first invention.
That is, the invention according to claim 1 relating to the first invention is a method in which soy milk produced from a soybean raw material is subjected to a high-speed centrifuge, the suspended components in the upper layer separated after the centrifugal action are removed, and left in the lower layer A method for producing soymilk with improved taste, wherein only soymilk is fractionated.
The invention according to claim 2 is a method in which soy milk produced from soybean raw material is subjected to a high-speed centrifuge, suspended components in the upper layer separated after the centrifugal action are removed, and only the soy milk remaining in the lower layer is separated. It is the processed food manufactured using the soymilk obtained.
According to the method for producing soymilk with improved taste according to the first invention (inventions 1 and 2), there is an effect that soymilk with reduced unpleasant taste can be obtained only through a simple centrifugation step.
Processed foods such as traditional soymilk and processed tofu made from it have an unpleasant taste mainly due to the astringency remaining in the taste afterwards, so there is a tendency to avoid eating to young people in particular, and demand has peaked. However, according to the present invention, since the soy milk and its processed food improved in taste by reducing the aftertaste astringency is obtained, it is also accepted by consumers who have avoided astringency, The effect of leading to an increase in demand for soybean food as a health food can also be achieved.
In addition, as a second invention (claims 3 to 5), the present inventors have intensively studied a method capable of efficiently producing soy milk with reduced fat. As a result, the raw koji obtained by grinding or crushing soybeans after adding water Boiled cucumber that has been heat-treated, raw soymilk in which soybean powder is dissolved in water, and soy raw material liquid before removing insoluble components such as okara ingredients such as heated powdered soymilk that has been heated By applying the centrifuge, fat can be easily separated as a floating component, and the separation efficiency of fat is significantly improved compared to the conventional method of removing soy milk after removal of insoluble components such as okara components. As a result, the second invention was completed.
That is, in the invention according to claim 3 relating to the second invention, the soybean raw material liquid before removing insoluble components such as okara components is subjected to a high-speed centrifuge to efficiently separate fat as a floating component, and the rest A method for producing soymilk, wherein the soymilk is separated and collected as fat-reduced soymilk.
In the invention of claim 4, the soybean raw material liquid is raw koji obtained by pulverizing or crushing soybeans after being added, boiled koji obtained by heat-treating the raw koji, or soy powder is dispersed and dissolved in water. 4. The method for producing soymilk according to claim 3, wherein the soymilk is either raw powder soymilk or heated powdered soymilk obtained by heat-treating the raw powdered soymilk.
Further, the invention according to claim 5 is characterized in that the soybean powder is either a powder obtained by pulverizing soybean or a pulverized processed powder of soybean treated so as to be easily dispersed and dissolved in water. It is a manufacturing method of the soymilk of Claim 3 or Claim 4.
According to the method for producing soymilk of the second invention (claims 3 to 5), the fat can be efficiently separated and the soymilk with reduced fat can be obtained efficiently only through a simple centrifugation step. The effect is achieved.
In conventional soymilk technology, fat-reduced soymilk, which has not been put into practical use due to poor fat separation efficiency, can be produced efficiently according to the present invention. The effect of being able to meet the expectations of the person is also achieved.
Furthermore, as a third invention (Claims 6 to 9), the present inventors added a coagulant such as bittern to the floating layer liquid obtained by applying soy milk or soybean raw material liquid to a high-speed centrifuge to solve the above-mentioned problems. Obtaining a coagulant solution for tofu that has been mixed and dissolved, adding a coagulant solution to soy milk, delaying the coagulation reaction of soy milk, finding a method for producing tofu that is rich in elasticity and good in flavor, The third invention has been completed.
That is, the invention according to claim 6 relating to the third invention is to produce a coagulant liquid by mixing a coagulant for tofu with a floating layer liquid obtained by subjecting soy milk to a high-speed centrifuge. A method for producing tofu characterized by being added to soy milk to cause a coagulation reaction.
The invention according to claim 7 is characterized in that a coagulant for tofu is mixed with a floating layer solution obtained by subjecting a soy material solution before removing insoluble components such as okara components to a high-speed centrifuge, and a coagulant solution. And the coagulant solution is added to soy milk to cause a coagulation reaction.
Next, the invention according to claim 8 is that the soybean raw material liquid is raw cucumber obtained by pulverizing or crushing soybeans, or boiled cucumber obtained by heat-treating the raw cucumber, or by dispersing and dissolving soybean powder in water. The method for producing tofu according to claim 7, wherein the raw material is either raw powder soymilk or heated powdered soymilk obtained by heat-treating the raw powdered soymilk.
Further, the invention according to claim 9 is characterized in that the soybean powder is either a powder obtained by pulverizing soybean or a pulverized processed powder of soybean treated so as to be easily dispersed and dissolved in water. The method for producing tofu according to claim 8.
According to the method for producing tofu of the third invention (Inventions 6 to 9), it is possible to obtain a coagulant liquid that is easy to disperse and mix in soy milk and that can exhibit a sufficient slow-acting effect on the coagulation reaction, By using the coagulant, the effect of producing tofu with excellent elasticity and good flavor can be achieved.
表4の官能評価試験結果の、グラフ(レーダーチャート)である。It is a graph (radar chart) of the sensory evaluation test result of Table 4. 表6の官能評価試験結果の、グラフ(レーダーチャート)である。It is a graph (radar chart) of the sensory evaluation test result of Table 6.
 以下に第1の発明の実施の形態を説明するが、これらは例示的に示されるもので、本発明の技術思想から逸脱しない限り種々の変形が可能なことはいうまでもない。
 第1の発明で使用する大豆原料は、丸大豆、脱皮大豆、脱皮脱胚軸大豆、粉末大豆等豆乳を作れる原料であれば特に制限はない。また、国産大豆、外国産大豆を問わず任意に使用でき、これらの混合物であっても良い。
 第1の発明で用いる豆乳は、常法により得られるもので良く、例えば水浸漬した大豆原料を加水しながら磨砕して得た生呉を加熱して煮呉を得、それを固液分離して得た豆乳などである。また粉末大豆を水または熱水に溶解して得た豆乳(粉末大豆豆乳)を用いても良い。
 前述したように、豆乳を製造するにあたり、過度に酸化を抑制する製法を用いる場合、不快臭が低減される半面、風味が淡白になる傾向があることを考慮し、どの程度の風味を残すかにより豆乳製造装置や製造条件を選べば良い。
 高速遠心分離機は、バッチ式のものでも連続式のものでも良い。大量生産する場合には連続式の遠心分離機が好ましく、例えば乳業業界で用いられているクリームセパレーターを使用することができる。
 豆乳を遠心分離機にかける条件は、遠心分離後所望する豆乳の品質に応じて変えることができる。本発明によれば、遠心分離後得られる豆乳は、特に後味として残る渋味成分が除去されるため、後味がすっきりして甘さが増強された豆乳となる。残念ながらこの後味として残る渋味がどのような成分によるものかは現在のところ学術的に明確になっていない。
 しかし、イソフラボンやサポニン以上にこの渋味が不快味の大きな要因であり、豆乳やその加工食品が敬遠される主原因となっていると考えられる。実験によれば、遠心分離前の豆乳と遠心分離後の豆乳のイソフラボン組成と含量を比較した結果、両者にほとんど変化は見られなかった。このような現状にもかかわらず、後味として感じる渋味については官能評価試験で明らかな差があった。
 一方、不快臭成分の比較を同様に行ったが、ヘキサナールを始め、1−ペンタノール、1−ヘキサノール、1−オクテン−3−オール、1−ペンテン−3−オール、2−ペンチルフランなど不快臭成分と言われる成分は、遠心分離前後において同等か、遠心分離後にわずかに減少したのみであった。よって渋味の明らかな低減は従来の不快臭成分の変化とも異なると考えられる。
 第1の発明においては、遠心分離する際の遠心力を強くかけるほど大豆の脂質分がクリームとなって浮いてくる。そのため、遠心力の強さに応じて脂質の低減した豆乳が得られる。しかし、不快味の大きな原因である後味に残る渋味成分は、ある程度以上の遠心力があれば上層に移行するので、分離して得た豆乳における脂質の残存量に関わらず呈味改善がなされる。
 具体的には、遠心加速度で2000×g以上、効率的に分離するには3500×g以上の遠心力をかければ良い。
 遠心分離する際の豆乳の温度については、豆乳が液体状態を保てる温度であれば良いが、ことさら低温にする必要も無く、高温にしすぎると湯葉が生じやすいため、好ましくは4℃~85℃の温度範囲が良い。
 ただし、脂質分は、豆乳温度が高いほど分離されやすいので、脂質を低減した豆乳を得る目的であれば豆乳温度を高めた方が効率的である。
 第1の発明によれば、遠心力を高めて脂質を低減した豆乳も不快味がなくすっきりとして甘いものとなり、これを豆腐にすれば、おいしいカロリー低減豆腐にすることができる。
第1の発明の実施例
 以下、第1の発明について実施例1及び2を挙げて具体的に説明するが、第1の発明はこれら実施例1及び2に限定されるものではない。
Embodiments of the first invention will be described below, but these are exemplarily shown, and it goes without saying that various modifications are possible without departing from the technical idea of the present invention.
The soybean raw material used in the first invention is not particularly limited as long as it is a raw material capable of producing soy milk, such as whole soybeans, molted soybeans, molted and dehulled soybeans, and powdered soybeans. Moreover, it can use arbitrarily regardless of domestic soybean and foreign soybean, and these mixtures may be sufficient.
The soy milk used in the first invention may be obtained by a conventional method. For example, the raw koji obtained by pulverizing the soy raw material soaked in water is heated to obtain boiled koji, which is separated into solid and liquid. And soy milk. Alternatively, soy milk (powder soy milk) obtained by dissolving powdered soybeans in water or hot water may be used.
As mentioned above, when using soy milk to produce an excessively low-oxidation process, how much flavor is left in consideration of the fact that unpleasant odors are reduced, while the flavor tends to be pale. The soymilk production apparatus and production conditions can be selected.
The high-speed centrifuge may be a batch type or a continuous type. In the case of mass production, a continuous centrifuge is preferable, and for example, a cream separator used in the dairy industry can be used.
The conditions under which the soymilk is centrifuged can vary depending on the desired soymilk quality after centrifugation. According to the present invention, the soy milk obtained after centrifugation is a soy milk with a refreshing aftertaste and enhanced sweetness, particularly since the astringency component remaining as an aftertaste is removed. Unfortunately, at present, it has not been clarified academically what kind of component the astringency remaining as the aftertaste is due to.
However, this astringent taste is a major factor of unpleasant taste over isoflavones and saponins, and it is considered that soy milk and its processed food are the main cause of avoidance. According to experiments, as a result of comparing the isoflavone composition and content of soymilk before centrifugation and soymilk after centrifugation, there was almost no change in both. Despite the current situation, there was a clear difference in the sensory evaluation test for the astringency that was felt as a aftertaste.
On the other hand, uncomfortable odor components were compared in the same manner, but unpleasant odors such as hexanal, 1-pentanol, 1-hexanol, 1-octen-3-ol, 1-penten-3-ol, 2-pentylfuran, etc. The component referred to as the component was the same before and after centrifugation, or only slightly decreased after centrifugation. Therefore, it is considered that the clear reduction in astringency is different from the change in the conventional unpleasant odor component.
In 1st invention, the lipid content of soybean floats as a cream, so that the centrifugal force at the time of centrifugation is applied strongly. Therefore, soy milk with reduced lipid can be obtained according to the strength of centrifugal force. However, since the astringent component remaining in the aftertaste, which is a major cause of unpleasant taste, moves to the upper layer if there is a certain amount of centrifugal force, the taste is improved regardless of the residual amount of lipid in the soy milk obtained by separation. The
Specifically, a centrifugal force of 2000 × g or more at centrifugal acceleration, or a centrifugal force of 3500 × g or more may be applied for efficient separation.
The temperature of the soymilk at the time of centrifugation is not particularly limited as long as the soymilk can be kept in a liquid state, but it is not necessary to make the temperature so low. Good temperature range.
However, since the lipid content is easily separated as the soy milk temperature is higher, it is more efficient to increase the soy milk temperature for the purpose of obtaining soy milk with reduced lipids.
According to the first invention, the soy milk in which the centrifugal force is increased and the lipid is reduced becomes clean and sweet with no unpleasant taste, and if it is made tofu, it can be made a delicious calorie-reduced tofu.
Examples of the First Invention Hereinafter, the first invention will be specifically described with reference to Examples 1 and 2, but the first invention is not limited to Examples 1 and 2.
 豆腐工場製造現場において常法に基づき製造した豆乳を試験に供した。本豆乳は、カナダ産大豆を用いて、一晩浸漬後加水しながらグラインダーで磨砕し、間接蒸煮釜において加熱、スクリュープレス装置でおからを分離して得た豆乳である。本豆乳を、ラボにおいて高速遠心分離機(日立工機(株)18PR−52)用遠心チューブに分注し、8000rpm(チューブ中心の遠心加速度約6000×g)、15分間の遠心分離を行った。
 本豆乳の遠心分離直前の温度は40℃であった。遠心分離後チューブ上層の浮遊物を取り除き、下層の豆乳液を分取して豆乳を得た。遠心分離に供した対照すべき豆乳を分離前豆乳、遠心分離後分取した豆乳を分離後豆乳として、成分分析と官能評価試験の比較を行った。
<栄養成分分析>
 各豆乳の固形分、タンパク質、脂質、灰分の含量を常法に基づき分析し、豆乳の固形分量からタンパク質、脂質、灰分の含量を差し引いた残りを炭水化物含量として表した。すなわち、固形分は、105℃、24時間乾燥後の重量を測定し乾燥固形分として示した。タンパク質含量は、ケルダール分析装置(フォス・ジャパン(株)製ケルテックシステム)により測定し、窒素換算係数5.71を用いて算出した。
 脂質含量は、ヘキサン−イソプロパノール法により脂質を抽出し測定した。また灰分はマッフル炉(Carbolite Furnaces社製)を用いて灰化し測定した。その分析結果を、表1に示した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-I000002
<イソフラボン分析>
各豆乳のイソフラボンの分析を以下のようにして行った。正確に秤量した豆乳から70%エタノールでイソフラボンを抽出し、(財)日本健康・栄養食品協会の「健康食品規格基準集」の大豆イソフラボンの試験方法に準拠して、高速液体クロマトグラフィーで分析した。その結果を表2に示した。
Figure JPOXMLDOC01-appb-T000003
<ガスクロマトグラフィーによるフレーバー成分分析>
各豆乳中の揮発性フレーバー成分の分析をガスクロマトグラフィー(GC−MS)により行った。すなわち、20mlの密閉ビン中で5mM EDTA、1ppmシクロヘキサノール(内部標準)を加えた豆乳を封入し、固相マイクロ抽出(SPME)法により40℃、30分間の条件で豆乳の揮発性成分を吸着させ、GC−MS分析(島津製作所GCMS−QP2010)に供した。
分析結果を表3に示した。
Figure JPOXMLDOC01-appb-T000004
 以上のように、分離後豆乳では分離前豆乳より脂質が約1割減少していたが、イソフラボン組成には差がほとんどなく、また不快臭成分については、両者で同等または分離後豆乳で1割前後減少している程度であった。
 次に各豆乳の官能評価試験を実施した。
 官能評価試験は15名のパネラーで行い、甘味、こく、渋味、収斂味、青臭みの5項目について5点法で評価した。3点を標準として、それぞれの味、風味を強く感じるほど高く、弱く感じるほど低い数値を付けることとした。表4に結果の平均値を示し、図1にそのグラフ(レーダーチャート)を示した。
Figure JPOXMLDOC01-appb-T000005
 以上のように、分離前豆乳に比べ分離後豆乳は渋味が明確に低減し、甘味が増強された評価となった。特に、通常後味として残る渋味が激減したとの意見が多く、そのため甘味を感じやすくなったと推定された。
 この渋味に関わる成分については、イソフラボン類、フレーバー成分、脂質成分とは異なる成分と考えられるが、今後の研究課題である。
The soy milk manufactured based on the conventional method in the tofu factory manufacturing field was used for the test. This soy milk is a soy milk obtained by using Canadian soybeans, soaking overnight and then grinding with a grinder while adding water, heating in an indirect steamer, and separating okara with a screw press. This soy milk was dispensed into a centrifuge tube for a high-speed centrifuge (Hitachi Koki Co., Ltd. 18PR-52) in a laboratory, and centrifuged at 8000 rpm (centrifugal acceleration of the tube center: about 6000 × g) for 15 minutes. .
The temperature immediately before centrifugation of the soymilk was 40 ° C. After centrifuging, the suspended matter in the upper layer of the tube was removed, and the lower layer of soymilk was collected to obtain soymilk. The component analysis and the sensory evaluation test were compared using the soy milk to be controlled subjected to centrifugation as the pre-separation soy milk and the soy milk separated after the centrifugation as the soy milk after separation.
<Nutrition analysis>
The solid content, protein, lipid, and ash content of each soymilk were analyzed based on a conventional method, and the remainder obtained by subtracting the protein, lipid, and ash content from the soymilk solid content was expressed as a carbohydrate content. That is, the solid content was shown as a dry solid content by measuring the weight after drying at 105 ° C. for 24 hours. The protein content was measured using a Kjeldahl analyzer (Keltech system manufactured by Foss Japan Co., Ltd.) and calculated using a nitrogen conversion factor of 5.71.
Lipid content was measured by extracting lipids by the hexane-isopropanol method. Ash content was measured by ashing using a muffle furnace (Carbolite Furnaces). The analysis results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-I000002
<Isoflavone analysis>
The analysis of isoflavones in each soymilk was performed as follows. Isoflavones were extracted from accurately weighed soymilk with 70% ethanol and analyzed by high-performance liquid chromatography in accordance with the soy isoflavone test method of the “Health Food Standards Collection” of the Japan Health and Nutrition Food Association. . The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000003
<Flavor component analysis by gas chromatography>
Analysis of volatile flavor components in each soymilk was performed by gas chromatography (GC-MS). In other words, soy milk with 5 mM EDTA and 1 ppm cyclohexanol (internal standard) added is sealed in a 20 ml sealed bottle, and volatile components of soy milk are adsorbed by solid phase microextraction (SPME) method at 40 ° C. for 30 minutes. And subjected to GC-MS analysis (Shimadzu Corporation GCMS-QP2010).
The analysis results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000004
As described above, the soy milk after separation had about 10% less lipid than the pre-separated soy milk, but there was almost no difference in isoflavone composition, and the unpleasant odor components were the same for both or 10% for the soy milk after separation. It was about to decrease around.
Next, a sensory evaluation test of each soymilk was performed.
The sensory evaluation test was conducted by 15 panelists, and the five items of sweetness, body, astringency, astringency and blue odor were evaluated by a 5-point method. With 3 points as standard, the higher the value, the lower the value, the stronger the taste and the flavor of each. Table 4 shows the average value of the results, and FIG. 1 shows the graph (radar chart).
Figure JPOXMLDOC01-appb-T000005
As described above, the soy milk after separation was clearly evaluated to have a reduced astringency and enhanced sweetness compared to the soy milk before separation. In particular, there were many opinions that the astringency remaining as a normal aftertaste was drastically reduced, and it was estimated that the sweetness was easily felt.
This astringent component is considered to be a component different from isoflavones, flavor components, and lipid components, but is for further study.
 実施例1で用いた同様の豆乳を使用し、以下の条件で遠心分離を行った。すなわち、大豆を磨砕、蒸煮後スクリュープレス装置でおからを分離した直後の豆乳を製造現場から採取し、高速遠心分離機にかけた。遠心分離直前の豆乳温度は65℃であった。遠心加速度6000×Gで20分間の遠心分離を行い、上層の浮遊成分を取り除き下層の豆乳液を分取して豆乳を得た。表5に分離前豆乳と分離後豆乳の成分分析値を示した。
Figure JPOXMLDOC01-appb-T000006
 分離後豆乳は、脂質が分離前豆乳の半分になっていた。よってこの豆乳を用いて豆腐を作ればカロリーが低減した豆腐となる。
 各豆乳を用いて、以下のようにして充填豆腐を作製した。すなわち、5℃に冷却した各豆乳に豆乳重量に対して0.3重量%となるよう凝固剤(塩化マグネシウム)を添加し、充填豆腐用容器に満注した。パッケージフィルムをかぶせてシールし、85℃の恒温水槽中で45分間加熱、凝固させた。凝固後冷水中で冷却した後、官能評価試験に供した。
 官能評価試験は15名のパネラーで行い、甘味、こく、渋味、収斂味、青臭みの5項目について5点法で評価した。3点を標準として、それぞれの味、風味を強く感じるほど高く、弱く感じるほど低い数値を付けることとした。表6に結果の平均値を示し、図2にそのグラフ(レーダーチャート)を示した。
Figure JPOXMLDOC01-appb-T000007
 分離後豆乳を用いて作製した豆腐は、脂質含量が2分の1となりカロリーが低減した豆腐となっている。その分こくのわずかな低下はあったが、渋味が激減し甘味のある豆腐という評価になった。よって本発明により、遠心分離条件を調整すれば、おいしいカロリー低減豆腐を作製することができる。
 つぎに第2の発明の実施の形態を説明するが、これらは例示的に示されるもので、第2の発明の技術思想から逸脱しない限り種々の変形が可能なことはいうまでもない。
 一般的に豆乳の製造は、以下に述べるようにして行われる。すなわち、原料となる大豆を一晩水に浸漬し、加水後に磨砕又は破砕して「生呉」を得る。場合によっては、大豆を脱皮して水に浸漬せずに加水して磨砕又は破砕する方法も採られる。
 この生呉を80℃~120℃に加熱して「煮呉」を得て、さらに固液分離(一般的に「絞り」という)しておからを取り除き豆乳を得る。このように加熱後の煮呉を絞って豆乳を得るため、この方法を「加熱絞り法」と呼んでいる。
 一方、生呉をそのまま固液分離しておから成分を除去した豆乳を得て、後に加熱する方法を「生絞り法」と呼んでいる。
 一般的には、不快臭発生につながるリポキシゲナーゼ等の酸化に関わる内在性酵素等を速やかに失活させる点に着目して、前者の「加熱絞り法」が用いられている。
 さらに最近の大豆粉末化技術の進歩に伴い、大豆粉末を原料にして、豆乳、豆腐等の製造も一部で行われている。そこでは、主として脱皮大豆を原料にした大豆粉末が使用され、おから分離を行うことなく、豆乳、豆腐等を製造することができるようになった。特に微粉砕装置の発達等により、粉末を使用する場合でも、従来からの課題となっていたザラザラ感などの違和感の問題は著しく改善されてきた。
 第2の発明で用いる大豆原料は、全粒大豆、脱皮大豆、脱皮脱胚軸大豆等豆乳を作れる原料であれば特に制限はない。また、国産大豆、外国産大豆を問わず任意に使用でき、これらの混合物であっても良い。
 第2の発明において「大豆原料液」とは、大豆を加水後に磨砕又は破砕して得た生呉、さらにはそれを加熱処理した煮呉、あるいは大豆を微粉砕して得た大豆粉末を水に分散溶解した生粉末豆乳、さらにはそれを加熱処理した加熱粉末豆乳のいずれかのことを言う。
 また第2の発明において「大豆粉末」とは、大豆を微粉砕して得た粉末又は水に分散・溶解しやすいように処理された大豆の微粉砕加工粉末のことを言う。具体的には、大豆を単に微粉砕した粉末の他、粒径が数十μm以下になるよう超微粉砕された粉末、あるいは微粉砕時に油脂分の浸出を極力抑えて製造された粉末、凍結粉砕された粉末、溶解性を高めるために他の食品素材や食品添加物を含有する粉末などを言う。
 第2の発明で用いる大豆粉末は、市販されている粉末大豆を使用しても、微粉砕装置を用いて自家製粉した大豆粉末を使用しても良く、遠心分離機への負担をなるべく小さくするためには、粒度が細かく分散、溶解しやすいように工夫された大豆粉末が好ましい。
 第2の発明で用いる高速遠心分離機は、バッチ式のものでも連続式のものでも良いが、大量生産する場合には連続式の遠心分離機が好ましい。
 おから分離用にスクリューデカンターと呼ばれる連続型の遠心分離機が使用される場合があるが、二相分離型の装置構造および遠心能力の点から現状の当分離機では脂肪の分離回収はできない。従って、三相分離型の高速遠心分離機又はその改良機の活用等が考えられる。
 大豆原料液を作製する条件としては、遠心分離の際おからの量がなるべく少ない方が遠心分離機への負担が少ないことを考慮すれば、例えば脱皮大豆を原料に用いること、また磨砕/破砕の程度をなるべく細かくするなどの工夫が考えられる。
 また大豆粉末を水に分散、溶解する際には、若干pHを上げるなどの方法により溶解度を高める工夫をしても良い。
 大豆原料液を遠心分離機にかける条件は、分離後に所望する脂肪低減豆乳の品質に応じて変えることになる。すなわち、遠心加速度は、3500×g以上が好ましく、遠心加速度が高いほど脂肪の分離効率も高くなる。
 また大豆原料液の温度については、当該原料液が液状を保てる温度であれば良いが、ことさら低温にする必要も無く、高温にしすぎると湯葉が生じやすいため、4℃~85℃が好ましい。
 おから分離後の豆乳の場合、遠心時の温度が高いほど脂肪分離がしやすい傾向があるが、本発明における大豆原料液の場合、温度による脂肪の分離効率の差は大きくない。用いる大豆原料液の種類、所望する脂肪低減豆乳の品質に応じて、脂肪の分離効率とエネルギー効率のバランスの中で最適条件を選択、調整することになる。ただし、生呉等加熱前の大豆原料液を用いる場合は、リポキシゲナーゼ等の酸化関連酵素が失活していないため、その制御に注意が必要である。
 前述のとおり、牛乳の場合比較的弱い遠心条件で脂肪(クリーム)と低脂肪牛乳を分離できるが、豆乳から脂肪(クリーム)と脂肪低減豆乳を分離する場合には、強い遠心条件が必要となる。その理由は、豆乳の方が牛乳より非常に安定な乳化状態にあるためと考えられる。
 第2の発明においては、大豆原料液として、おから成分等不溶成分を除去する前の段階の豆乳を用いるので、脂肪の分離効率が良くなる。その理由は、おから成分等不溶成分を除去する前の段階では豆乳の乳化状態が不十分であり、おからを分離する絞り工程において、いわゆるホモジネーション効果が生じて乳化状態がより安定化するため、おから分離後には脂肪の分離効率が低下するからである。
 第2の発明によれば、おから等不溶成分を除去する前の生呉、それを加熱処理した煮呉、あるいは生粉末豆乳、又は加熱粉末豆乳を遠心分離機にかければ、おから成分等不溶成分を除去した後の豆乳を同じ遠心条件で遠心分離機にかけた場合より、多くの脂肪を分離することができる。しかも同時におから成分等不溶成分の分離もできるため、大豆原料液に不溶成分が存在していてもいなくても、一つの遠心分離工程で効率よく脂肪低減した豆乳を得ることができる。
第2の発明の実施例
 以下、第2の発明について実施例3及び4を挙げて具体的に説明するが、第2の発明はこれらの実施例に限定されるものではない。
The same soymilk used in Example 1 was used and centrifuged under the following conditions. That is, soybean milk was ground and steamed, and the soy milk immediately after separating okara with a screw press was collected from the production site and subjected to a high-speed centrifuge. The soymilk temperature immediately before centrifugation was 65 ° C. Centrifugation was carried out at a centrifugal acceleration of 6000 × G for 20 minutes to remove the upper layer floating components and to separate the lower layer soymilk to obtain soymilk. Table 5 shows component analysis values of soy milk before separation and soy milk after separation.
Figure JPOXMLDOC01-appb-T000006
The soymilk after separation had half of the lipid before separation. Therefore, if tofu is made using this soy milk, it becomes tofu with reduced calories.
Filled tofu was prepared as follows using each soymilk. That is, a coagulant (magnesium chloride) was added to each soymilk cooled to 5 ° C. so as to be 0.3% by weight with respect to the weight of the soymilk, and filled into filled tofu containers. The package film was covered and sealed, and heated and solidified in a constant temperature water bath at 85 ° C. for 45 minutes. After solidification, the sample was cooled in cold water and then subjected to a sensory evaluation test.
The sensory evaluation test was conducted by 15 panelists, and the five items of sweetness, body, astringency, astringency and blue odor were evaluated by a 5-point method. With 3 points as standard, the higher the value, the lower the value, the stronger the taste and the flavor of each. Table 6 shows the average value of the results, and FIG. 2 shows the graph (radar chart).
Figure JPOXMLDOC01-appb-T000007
The tofu produced using the soy milk after separation is a tofu with a lipid content of 1/2 and reduced calories. Although there was a slight decrease in the body, the astringency was drastically reduced and it was evaluated as sweet tofu. Therefore, delicious calorie-reduced tofu can be produced by adjusting the centrifugation conditions according to the present invention.
Next, embodiments of the second invention will be described. These are exemplarily shown, and it goes without saying that various modifications are possible without departing from the technical idea of the second invention.
In general, soymilk is produced as described below. That is, the raw material soybean is immersed in water overnight, and after adding water, it is ground or crushed to obtain “Ikugo”. In some cases, a method is also employed in which soybean is moulted and hydrated without being immersed in water and ground or crushed.
This raw kure is heated to 80 ° C. to 120 ° C. to obtain “boiled kure”, and further solid-liquid separation (generally referred to as “squeezed”) is removed to obtain soy milk. In order to obtain soy milk by squeezing the boiled rice after heating in this way, this method is called the “heating squeezing method”.
On the other hand, the method of obtaining soy milk from which components have been removed after solid-liquid separation of raw kure as it is and then heating it is called the “raw squeezing method”.
In general, the former “heating squeezing method” is used by paying attention to the rapid deactivation of endogenous enzymes involved in oxidation such as lipoxygenase which leads to generation of unpleasant odor.
Furthermore, with the recent progress in soybean powdering technology, soy milk, tofu, etc. are partially produced using soybean powder as a raw material. In this case, soybean powder mainly made from molted soybeans is used, and soy milk, tofu, etc. can be produced without separation from okara. In particular, due to the development of a fine pulverizer and the like, even when powder is used, problems of discomfort such as a rough feeling, which has been a problem in the past, have been remarkably improved.
The soybean raw material used in the second invention is not particularly limited as long as it is a raw material capable of producing soy milk, such as whole grain soybeans, molted soybeans, and molted dehulled soybeans. Moreover, it can use arbitrarily regardless of domestic soybean and foreign soybean, and these mixtures may be sufficient.
In the second invention, the “soybean raw material liquid” is raw koji obtained by pulverizing or crushing soybeans, further boiled koji obtained by heating the soybeans, or soybean powder obtained by pulverizing soybeans. It means either raw powder soymilk dispersed and dissolved in water, or heated powder soymilk that has been heat-treated.
In the second invention, “soybean powder” refers to a powder obtained by finely pulverizing soybeans or a finely pulverized processed powder of soybeans that has been treated so as to be easily dispersed and dissolved in water. Specifically, in addition to powder obtained by simply pulverizing soybeans, powder pulverized so as to have a particle size of several tens of μm or less, or powder produced by minimizing leaching of fats and oils during pulverization, frozen It refers to pulverized powder, powder containing other food materials and food additives to enhance solubility.
The soybean powder used in the second invention may be a commercially available soybean powder, or may be a soybean powder that has been home-grown using a pulverizer, reducing the burden on the centrifuge as much as possible. For this purpose, a soy powder devised so as to be finely dispersed and easily dissolved is preferable.
The high-speed centrifuge used in the second invention may be a batch type or a continuous type, but in the case of mass production, a continuous centrifuge is preferable.
A continuous centrifuge called a screw decanter may be used for okara separation, but the current separation machine cannot separate and collect fat from the viewpoint of a two-phase separation type device structure and centrifugal capacity. Therefore, utilization of a three-phase separation type high-speed centrifuge or its improved machine can be considered.
As a condition for preparing the soybean raw material liquid, considering that the burden on the centrifuge is less when the amount from the side of the centrifuge is as small as possible, for example, the use of moulted soybean as a raw material, and grinding / It is conceivable to make the degree of crushing as fine as possible.
In addition, when dispersing and dissolving soybean powder in water, it may be devised to increase the solubility by a method such as slightly raising the pH.
The conditions for subjecting the soy material solution to the centrifuge will vary depending on the desired quality of the reduced-fat soy milk after separation. That is, the centrifugal acceleration is preferably 3500 × g or more, and the higher the centrifugal acceleration, the higher the fat separation efficiency.
The temperature of the soybean raw material liquid is not particularly limited as long as the raw material liquid can be kept in a liquid state, but it is not necessary to lower the temperature.
In the case of soy milk after okara separation, the higher the temperature during centrifugation, the easier it is to separate fat, but in the case of the soybean raw material liquid in the present invention, the difference in the separation efficiency of fat due to temperature is not large. Depending on the type of soy raw material liquid to be used and the desired quality of the reduced-fat soy milk, the optimum conditions are selected and adjusted in the balance between the fat separation efficiency and the energy efficiency. However, when using a soybean raw material solution prior to heating, such as uncooked rice, the oxidation-related enzymes such as lipoxygenase are not inactivated, and thus control thereof is necessary.
As described above, in the case of milk, fat (cream) and low-fat milk can be separated under relatively weak centrifugal conditions. However, when separating fat (cream) and fat-reduced soy milk from soy milk, strong centrifugal conditions are required. . The reason is considered that soy milk is in a more stable emulsified state than milk.
In the second invention, since the soy milk before the removal of insoluble components such as okara components is used as the soybean raw material liquid, the separation efficiency of fat is improved. The reason for this is that the solubilized state of soymilk is insufficient at the stage before removing insoluble components such as okara components, and so-called homogenization effect occurs in the squeezing step for separating okara, which further stabilizes the emulsified state. Therefore, the separation efficiency of fat is reduced after okara separation.
According to the second invention, raw koji before removing insoluble components such as okara, boiled koji obtained by heat-treating it, or raw powdered soymilk, or heated powdered soymilk, if applied to a centrifuge, okara components, etc. A larger amount of fat can be separated than when the soymilk after removing insoluble components is centrifuged under the same centrifugal conditions. Moreover, since insoluble components such as okara components can be separated at the same time, it is possible to obtain soy milk with reduced fat efficiently in one centrifugation step even if insoluble components are not present in the soybean raw material liquid.
Examples of the Second Invention Hereinafter, the second invention will be specifically described with reference to Examples 3 and 4, but the second invention is not limited to these Examples.
 豆腐工場の製造現場において、常法に基づき連続的に製造しているラインから、生呉、煮呉およびおから分離後の豆乳を採取し、試験に供した。
 当製造ラインでは、カナダ産大豆を用いて、一晩水に浸漬後に加水しながらグラインダーで磨砕し、連続加熱釜において加熱、スクリュープレス装置でおからを分離して豆乳を製造した。
 連続的に流れている工程中より、グラインダー磨砕直後の「生呉」、連続加熱釜において加熱直後の「煮呉」、スクリュープレス装置でおからを分離した直後の「豆乳」をそれぞれ採取したものである。
 それぞれの原料液を、ラボにおいて高速遠心分離機(日立工機(株)18PR−52)用遠心チューブに分注し、8000rpm(チューブ中心の遠心加速度約6000×g)、30分間の遠心分離を行った。
 それぞれの原料液の温度は40℃、遠心分離機の温度条件も40℃とした。
 遠心分離操作によってそれぞれの原料液は、脂肪(クリーム)層、豆乳層、沈殿層の3層に分離する。これよりチューブ上層のクリーム層を取り除き、沈殿層以外の豆乳層を採取した。遠心分離機にかける前の豆乳を対照として、それぞれの原料液からの脂肪を分離した豆乳との成分比較を行った。
 成分分析は、各豆乳の固形分、脂質、タンパク質、灰分の含量を常法に基づき分析し、豆乳の固形分量から脂質、タンパク質、灰分の含量を差し引いた残りを炭水化物含量として表した。すなわち、固形分は、105℃、24時間乾燥後の重量を測定し、乾燥固形分として示した。
 脂質含量は、ヘキサン−イソプロパノール法により脂質を抽出し測定した。
 タンパク質含量は、ケルダール分析装置(フォス・ジャパン(株)製ケルテックシステム)により測定し、窒素換算係数5.71を用いて算出した。
 また灰分含量は、マッフル炉(Carbolite Furnaces社製)を用いて灰化し測定した。
 その分析結果を、表7に示した。
Figure JPOXMLDOC01-appb-T000008
 表7に示すように、脂質含量に関しては固形分量に対する割合も記載した。
 生呉、煮呉、豆乳を原料液にした場合の、各脂肪分離豆乳の脂質含量を固形分量に対する割合(%)で比較すれば、それぞれ8%、5%、11%(対照豆乳は29%)となり、豆乳を原料液にした場合より、生呉、煮呉を原料液にした場合の方が、格段に脂肪の分離効率が向上することがわかった。
At the production site of the tofu factory, the soy milk separated from the raw koji, boiled kew, and okara was collected from the line that was continuously produced according to a conventional method, and used for the test.
In this production line, soy milk was produced using Canadian soybeans, immersed in water overnight and then ground with a grinder while adding water, heated in a continuous heating kettle, and separated from okara with a screw press.
From the process of continuous flow, “Ikugo” immediately after grinding with a grinder, “Nigure Kure” immediately after heating in a continuous heating kettle, and “Soymilk” immediately after separating okara with a screw press device were collected. Is.
Each raw material solution is dispensed into a centrifuge tube for a high-speed centrifuge (Hitachi Koki Co., Ltd. 18PR-52) in a laboratory, and centrifuged at 8000 rpm (centrifugal acceleration at the center of the tube is about 6000 × g) for 30 minutes. went.
The temperature of each raw material liquid was 40 ° C., and the temperature condition of the centrifuge was 40 ° C.
Each raw material liquid is separated into three layers, that is, a fat (cream) layer, a soy milk layer, and a precipitation layer by centrifugation. From this, the cream layer on the upper layer of the tube was removed, and soy milk layers other than the precipitated layer were collected. Using the soy milk before being centrifuged as a control, the ingredients were compared with the soy milk from which the fat from each raw material liquid was separated.
In the component analysis, the solid content, lipid, protein, and ash content of each soymilk were analyzed based on a conventional method, and the remainder obtained by subtracting the lipid, protein, and ash content from the soymilk solid content was expressed as a carbohydrate content. That is, the solid content was measured as the weight after drying at 105 ° C. for 24 hours and indicated as the dry solid content.
Lipid content was measured by extracting lipids by the hexane-isopropanol method.
The protein content was measured using a Kjeldahl analyzer (Keltech system manufactured by Foss Japan Co., Ltd.) and calculated using a nitrogen conversion factor of 5.71.
The ash content was measured by ashing using a muffle furnace (manufactured by Carbolite Furnaces).
The analysis results are shown in Table 7.
Figure JPOXMLDOC01-appb-T000008
As shown in Table 7, regarding the lipid content, the ratio to the solid content was also described.
8%, 5%, and 11% of the fat-separated soymilk in the case of raw kyu, boiled kyu, and soymilk as a raw material solution, respectively, as a percentage (%) of the solid content (29% for the control soymilk) Thus, it was found that the separation efficiency of fat was significantly improved when raw koji and boiled kure were used as raw material solutions than when soy milk was used as raw material solutions.
 市販の国産大豆粉末を原料にして、以下の試験を実施した。
 まず大豆粉末重量の5倍量の水を加え、ホモジナイザーを用いて分散溶解して「生粉末豆乳」とした。この生粉末豆乳を、平底の丸型フラスコに入れ、沸騰水浴中で蒸気を吹込みながら加温し、95℃に達した時点で蒸気吹込みを止め、さらに2分間沸騰水浴中で加熱した。こうして得た豆乳を「加熱粉末豆乳」とした。
 この加熱粉末豆乳を、ろ布を装着した遠心脱水機((株)コクサン製H−112)にかけて不溶成分(おから成分)を除去し、豆乳を得て「ろ過豆乳」とした。
 それぞれの豆乳を原料液として、実施例1と同様に高速遠心分離機にかけた。
 遠心分離の条件は、実施例1と同様に、40℃、8000rpm、30分間とした。
 遠心分離後、上層のクリーム層を取り除き、沈殿層以外の豆乳層を分離採取した。
 遠心分離機にかける前のろ過豆乳を対照として、それぞれの原料液からの脂肪分離豆乳との成分比較を行った。
 成分分析は、実施例3と同様に実施した。
 その分析結果を、表8に示した。
Figure JPOXMLDOC01-appb-T000009
 表8に示すように、脂質含量に関しては固形分量に対する割合も記載した。
 生粉末豆乳、加熱粉末豆乳、ろ過豆乳を原料液にした場合の各脂肪分離豆乳の脂質含量を固形分量に対する割合(%)で比較すれば、それぞれ15%、14%、17%(対照豆乳は22%)となり、ろ過豆乳を原料液にした場合より、生粉末豆乳、加熱粉末豆乳を原料液にした方が脂肪の分離効率が良かった。
 ただ、実施例3で示した生呉、煮呉の例と比較すると、粉末豆乳の脂肪の分離効率の差は顕著ではなかった。これは、粉末製造時やその後の成分変性の影響、粉末を水に溶解する時にホモジナイザーを用いて分散を均質化するため乳化状態がより安定化した影響などが理由として考えられる。しかし、これに関して補足すれば、実施例では示していないが、遠心分離時の原料液の温度を上げるなどの条件調整により、さらに脂肪の分離効率を上げることが可能となる。
 以下に第3の発明の実施の形態を説明するが、これらは例示的に示されるもので、第3の発明の技術思想から逸脱しない限り種々の変形が可能なことはいうまでもない。
 第3の発明における大豆原料液とは、大豆を加水後に磨砕又は破砕して得た生呉か、その生呉を加熱処理した煮呉か、大豆粉末を水に分散溶解した生粉末豆乳か、その生粉末豆乳を加熱処理した加熱粉末豆乳のいずれかの原料液のことを意味する。一方豆乳とは、大豆原料液をろ過を始めとするさまざまな固液分離操作にかけて、不溶成分を除去したものを意味する。
 第3の発明において用いる豆腐用凝固剤は、塩化マグネシウム(ニガリ)を主体とした凝固剤で、塩化ナトリウム、塩化カルシウム、硫酸カルシウム、グルコノデルタラクトン(GDL)などを併用したものを意味する。
 第3の発明で用いる高速遠心分離機は、バッチ式のものでも連続式のものでも良いが、大量生産する場合には連続式の遠心分離機が好ましい。
 おから分離用にスクリューデカンターと呼ばれる連続型の遠心分離機が使用される場合があるが、二相分離型の装置構造および遠心能力の点から現状の当分離機では本発明の浮上層液を得ることはできない。
 ついで豆乳を用いる場合は、乳業業界で使用されている「クリームセパレーター」のような連続高速遠心分離機が使用できる。大豆原料液を用いる場合は、三相分離型の高速遠心分離機又はその改良機の活用等が考えられる。
 第3の発明で用いる豆乳もしくは大豆原料液を高速遠心分離機にかけて得られる浮上層液は、豆乳もしくは大豆原料液を高速遠心分離機にかけた結果「上層液」として、連続式高速遠心分離機を用いた場合は「軽液」として得られるものである。
 豆乳もしくは大豆原料液を、適度な条件を選んで高速遠心分離機にかけると、クリーム成分を主体とする浮上層、脂肪が低減した豆乳層、不溶成分の沈殿層の3層に分離する。連続式の高速遠心機を用いれば、上記浮上層は「軽液」側に、豆乳層は「重液」側に分離して得られる。
 豆乳もしくは大豆原料液を遠心分離機にかける条件は、前記のように浮上層が分離する条件であれば特に制限はないが、効率性を考慮すれば、遠心加速度は3500×g以上が好ましく、また遠心分離操作時の温度については、当該原料液が液状を保てる温度であれば良いが、ことさら低温にする必要も無く、高温にしすぎると湯葉が生じやすいため、4℃~85℃が好ましい。
 こうして得られる浮上層液は、豆乳と同様に水、タンパク質、脂質、炭水化物より成り、脂質含有率が高いのが特徴であるが、この浮上層液を用いて豆腐を作ることもできるので、いわば脂肪が濃縮された豆乳と言える。
 前記の特許文献24には、豆腐又は豆乳に塩化マグネシウム(ニガリ)を混合した凝固剤液が開示されているが、本発明のごとく遠心分離法により脂肪を濃縮した豆乳(浮上層液)を用いることについては何ら記載がない。
 第3の発明の凝固剤液における浮上層液と凝固剤との混合割合は、所望する遅効性の程度や最終の凝固剤濃度に応じて調整することになるが、凝固剤の混合割合を高めすぎると浮上層液への溶解が困難となり、低めすぎると凝固剤液の凝固剤の濃度が薄まり、その結果、豆腐を製造する際の凝固剤液の添加必要量が過大となるため、重量比で1:1~20:1とするのが好ましい。
 浮上層液と凝固剤の混合は、攪拌器具を用いて手動で行っても良く、一般的なプロペラ式攪拌機等の攪拌装置を用いて行っても良い。
 なお、豆乳は適量の凝固剤を添加混合した時に凝固反応を起こし豆腐となる性質があり、凝固剤の添加量が少なすぎても、多すぎても、凝固反応を起さない。
 前述のとおり本発明の浮上層液は、水、タンパク質、脂質、炭水化物から成るので、そこに適量の凝固剤を添加することで豆腐を製造することができる。
 しかしながら、第3の発明の凝固剤液を調製するために上記の浮上層液に凝固剤を添加する場面においては、前述のような混合割合をとることになり、結果的に、浮上層液に対して過剰の凝固剤を添加混合することになるため、その場面では凝固反応を起すことはない。
 第3の発明に用いる凝固剤液の豆乳への混合には、特に大きな分散力を必要とせず比較的容易に分散するので、特別に高性能の乳化装置等を用いる必要はなく一般的な攪拌装置を使用することができる。
 また凝固剤液混合時の豆乳の温度は、特に制限はないが、第3の発明の目的である凝固剤液の遅効性を効果的に活用するためには、60~90℃とすることが望ましい。
 なお、市販されている一般的な乳化凝固剤は、W/O型の乳化状態を持ち、これを豆乳に分散させてW/O/W型の乳化状態にすることで遅効性を発揮する。しかし、第3の発明における凝固剤液は、むしろO/W型となっていると考えられるため、一般的な乳化凝固剤とは異なるメカニズムで遅効作用効果を発揮していると推定される。
 さらに第3の発明によれば、豆乳より一旦浮上層液を分離し、これに適当量のニガリを混合した凝固剤液を調製し、ふたたび残りの豆乳に戻して豆腐を製造すれば、豆乳に単にニガリを加えた場合と全く同じ組成の豆腐を製造することができる。
第3の発明の実施例
 以下に第3の発明を実施例5に基づいてより具体的に説明するが、第3の発明はこれらに限定されるものではない。
The following tests were carried out using commercially available domestic soybean powder as a raw material.
First, water 5 times the weight of soybean powder was added and dispersed and dissolved using a homogenizer to obtain “raw powder soymilk”. This raw powder soymilk was placed in a round bottom round flask and heated while blowing steam in a boiling water bath. When reaching 95 ° C., the steam blowing was stopped, and the mixture was further heated in a boiling water bath for 2 minutes. The soy milk thus obtained was designated as “heated powdered soy milk”.
This heated powdered soymilk was subjected to a centrifugal dehydrator (H-112 manufactured by Kokusan Co., Ltd.) equipped with a filter cloth to remove insoluble components (okara components), soymilk was obtained, and “filtered soymilk” was obtained.
Each soymilk was used as a raw material solution and subjected to a high-speed centrifuge in the same manner as in Example 1.
The centrifugation conditions were the same as in Example 1, 40 ° C., 8000 rpm, 30 minutes.
After centrifugation, the upper cream layer was removed, and the soymilk layer other than the precipitated layer was separated and collected.
Using the filtered soymilk before being subjected to the centrifuge as a control, the components were compared with the fat-separated soymilk from each raw material liquid.
Component analysis was performed in the same manner as in Example 3.
The analysis results are shown in Table 8.
Figure JPOXMLDOC01-appb-T000009
As shown in Table 8, regarding the lipid content, the ratio to the solid content was also described.
When the fat content of each fat-separated soymilk using raw powdered soymilk, heated powdered soymilk, and filtered soymilk as a raw material liquid is compared with the ratio (%) to the solid content, 15%, 14%, and 17% respectively (the control soymilk is 22%), and the separation efficiency of fat was better when raw powdered soymilk and heated powdered soymilk were used as raw material solutions than when filtered soymilk was used as the raw material solution.
However, when compared with the examples of raw and boiled cucumbers shown in Example 3, the difference in fat separation efficiency of the powdered soymilk was not significant. This is considered to be due to the influence of component modification during powder production and subsequent, and the effect of stabilizing the emulsified state because the dispersion is homogenized using a homogenizer when the powder is dissolved in water. However, if it supplements about this, although it does not show in the Example, it will become possible to raise the separation efficiency of fat further by adjusting conditions, such as raising the temperature of the raw material liquid at the time of centrifugation.
Embodiments of the third invention will be described below, but these are exemplarily shown, and it goes without saying that various modifications are possible without departing from the technical idea of the third invention.
The soybean raw material liquid in the third invention is raw koji obtained by grinding or crushing soy after adding water, boiled koji obtained by heat-treating the raw kyu, or raw powder soymilk in which soybean powder is dispersed and dissolved in water. It means any raw material liquid of heated powdered soymilk obtained by heat-treating the raw powdered soymilk. On the other hand, soy milk means a product obtained by removing insoluble components by subjecting the soybean raw material liquid to various solid-liquid separation operations including filtration.
The tofu coagulant used in the third invention is a coagulant mainly composed of magnesium chloride (nigari) and means a combination of sodium chloride, calcium chloride, calcium sulfate, glucono delta lactone (GDL) and the like.
The high-speed centrifuge used in the third invention may be a batch type or a continuous type, but a continuous type centrifuge is preferable for mass production.
A continuous centrifuge called a screw decanter may be used for okara separation. However, the present separator does not use the floating layer liquid of the present invention in view of the structure of the two-phase separation type and the centrifugal capacity. I can't get it.
Then, when using soy milk, a continuous high-speed centrifuge such as a “cream separator” used in the dairy industry can be used. In the case of using the soybean raw material liquid, utilization of a three-phase separation type high-speed centrifuge or its improved machine is conceivable.
The floating layer liquid obtained by applying the soymilk or soybean raw material liquid used in the third invention to the high-speed centrifuge is obtained by applying a continuous high-speed centrifuge as an "upper layer liquid" as a result of applying the soymilk or soybean raw material liquid to the high-speed centrifuge. When used, it is obtained as a “light liquid”.
When soy milk or soybean raw material liquid is selected and subjected to a high-speed centrifuge under appropriate conditions, it is separated into three layers: a floating layer mainly composed of a cream component, a soy milk layer reduced in fat, and a precipitated layer of insoluble components. If a continuous high-speed centrifuge is used, the floating layer is obtained by separating it on the “light liquid” side and the soy milk layer on the “heavy liquid” side.
The conditions for applying the soymilk or soybean raw material liquid to the centrifuge are not particularly limited as long as the floating layer is separated as described above, but considering the efficiency, the centrifugal acceleration is preferably 3500 × g or more, The temperature at the time of the centrifugal separation is not particularly limited as long as the raw material liquid can be kept in a liquid state, but it is not necessary to lower the temperature.
Like the soy milk, the resulting floating layer liquid is composed of water, protein, lipids, and carbohydrates, and is characterized by a high lipid content, but it can also be used to make tofu. It can be said that the soy milk is concentrated in fat.
Patent Document 24 discloses a coagulant liquid obtained by mixing tofu or soymilk with magnesium chloride (bittery). As in the present invention, soymilk (floating layer liquid) in which fat is concentrated by a centrifugal separation method is used. There is no mention about that.
The mixing ratio of the floating layer liquid and the coagulant in the coagulant liquid of the third invention is adjusted according to the desired degree of delayed action and the final coagulant concentration, but the mixing ratio of the coagulant is increased. If it is too high, it will be difficult to dissolve in the floating layer solution, and if it is too low, the concentration of the coagulant in the coagulant solution will be diminished, resulting in an excessive amount of coagulant solution required to produce tofu. The ratio is preferably 1: 1 to 20: 1.
Mixing of the floating layer liquid and the coagulant may be performed manually using a stirring device, or may be performed using a stirring device such as a general propeller stirrer.
In addition, soymilk has the property of causing a coagulation reaction to become tofu when an appropriate amount of coagulant is added and mixed, and does not cause a coagulation reaction if the amount of coagulant added is too small or too large.
As described above, the floating layer liquid of the present invention is composed of water, protein, lipid, and carbohydrate, and thus tofu can be produced by adding an appropriate amount of a coagulant thereto.
However, in the scene where the coagulant is added to the above floating layer solution in order to prepare the coagulant solution of the third invention, the mixing ratio as described above is taken, and as a result, the floating layer solution On the other hand, since an excessive coagulant is added and mixed, the coagulation reaction does not occur in that scene.
The mixing of the coagulant liquid used in the third invention with soy milk disperses relatively easily without requiring a particularly large dispersion force, so there is no need to use a special high-performance emulsifier or the like, and general stirring The device can be used.
Further, the temperature of the soy milk at the time of mixing the coagulant liquid is not particularly limited, but in order to effectively utilize the delayed action of the coagulant liquid which is the object of the third invention, it is set to 60 to 90 ° C. desirable.
In addition, the common emulsification coagulant marketed has a W / O type emulsified state, and exhibits delayed action by dispersing it in soy milk to obtain a W / O / W type emulsified state. However, since the coagulant liquid in the third invention is considered to be rather an O / W type, it is presumed that it exerts a delayed action effect by a mechanism different from that of a general emulsion coagulant.
Furthermore, according to the third invention, once the floating layer liquid is separated from the soy milk, a coagulant liquid prepared by mixing an appropriate amount of bittern into this is prepared, and once again returned to the remaining soy milk to produce tofu, It is possible to produce tofu with the exact same composition as when simply adding bittern.
Example of Third Invention The third invention will be described more specifically based on Example 5 below, but the third invention is not limited to these.
 豆腐工場製造現場において常法に基づき連続的に製造しているラインから、豆乳を採取し試験に供した。当製造ラインは、カナダ産大豆を用いて、一晩水に浸漬後加水しながらグラインダーで磨砕し、連続蒸煮釜において加熱、スクリュープレス装置でおからを分離して豆乳を製造している。
 連続的に流れている工程中より、スクリュープレス装置でおからを分離した直後の豆乳を採取したものを、ラボにおいて高速遠心分離機(日立工機(株)18PR−52)用遠心チューブに分注し、8000rpm(チューブ中心の遠心加速度約6000×g)、30分間の遠心分離を行った。
 豆乳の温度は40℃、遠心分離機の温度条件も40℃とした。
 遠心分離操作によって豆乳は、浮上層(クリーム成分を主体とする液状層)、豆乳層(脂肪が低減した豆乳層)および沈殿層の3層に分離した。これより浮上層を分取し凝固剤液を調製した。凝固剤には塩化マグネシウムを使用した。この時の浮上層液の成分組成と凝固剤との配合組成を表9に示した。
Figure JPOXMLDOC01-appb-T000010
 上記の凝固剤液を豆乳に混合して豆腐を製造した。豆乳の温度は65℃、凝固剤液の添加量は、塩化マグネシウム濃度が0.28重量%となるように調整した。その後、80℃で30分間保温した。
 比較例1
 凝固剤液を塩化マグネシウム水溶液とし、実施例1と同様の条件で豆腐を製造した。
 比較例2
 豆乳:塩化マグネシウム・6水塩=3:1(重量比)の割合で混合したものを凝固剤液とし、実施例1と同様の条件で豆腐を製造した。なお用いた豆乳は、実施例1に記載した遠心分離機にかける前の豆乳である。
 比較例3
 凝固剤液を市販の乳化凝固剤とし、実施例1と同様の条件で豆腐を製造した。なお、乳化凝固剤の豆乳への分散混合は、ホモジナイザー(Ystral GmbH社製、D−7801)を用いて行った。
 上記、実施例5、比較例1、比較例2、比較例3で製造した豆腐の物性値測定と専門パネラー10名による官能評価試験を行った。
 豆腐の物性値測定は、レオメーター(サン科学社製、CR−500DX−SII)を用いて、貫入試験(直径10mmの円盤型プランジャー使用)による破断強度及び圧縮試験(直径50mmの円盤型プランジャー使用)による破断歪の2指標について行った。破断強度は硬さ、破断歪は弾力の目安となり、数値が高いほどそれぞれの度合いが大きいことを示す。
 官能評価は、なめらかさと風味について5段階評価を行い、平均点が3.0以上は○、2.0以上3.0未満は△、2.0未満は×で表した。
その結果を表10にまとめて示した。
Figure JPOXMLDOC01-appb-T000011
 上記表10に示す結果のように、第3の発明による凝固剤液で作成した豆腐(実施例5)は、物性的には市販乳化凝固剤を用いて製造した豆腐(比較例3)に近く、風味の官能評価ではそれを上回る評価が得られた。
Soy milk was collected from a line that was continuously produced at a tofu factory production site based on a conventional method, and was subjected to a test. This production line is made from Canadian soybeans, soaked in water overnight, ground with a grinder while adding water, heated in a continuous steamer and separated from okara with a screw press to produce soy milk.
From the continuous flow process, the soymilk collected immediately after separating the okara with a screw press is separated into a centrifuge tube for a high-speed centrifuge (Hitachi Koki Co., Ltd. 18PR-52) in the laboratory. Then, centrifugation was performed at 8000 rpm (centrifugal acceleration at the center of the tube of about 6000 × g) for 30 minutes.
The temperature of the soymilk was 40 ° C., and the temperature condition of the centrifuge was 40 ° C.
The soy milk was separated into three layers by a centrifugal separation operation: a floating layer (a liquid layer mainly composed of a cream component), a soy milk layer (a soy milk layer with reduced fat), and a precipitation layer. From this, the floating layer was separated to prepare a coagulant solution. Magnesium chloride was used as a coagulant. Table 9 shows the composition of the composition of the floating layer liquid and the coagulant.
Figure JPOXMLDOC01-appb-T000010
The above coagulant solution was mixed with soy milk to produce tofu. The temperature of soymilk was 65 ° C., and the amount of coagulant solution was adjusted so that the magnesium chloride concentration was 0.28% by weight. Then, it kept warm at 80 degreeC for 30 minutes.
Comparative Example 1
Tofu was produced under the same conditions as in Example 1 using a coagulant solution as an aqueous magnesium chloride solution.
Comparative Example 2
Tofu was produced under the same conditions as in Example 1 using a mixture of soymilk: magnesium chloride.hexahydrate = 3: 1 (weight ratio) as a coagulant solution. The soy milk used was soy milk before being subjected to the centrifuge described in Example 1.
Comparative Example 3
Tofu was produced under the same conditions as in Example 1 using the coagulant solution as a commercially available emulsion coagulant. The dispersion and mixing of the emulsifying coagulant in soymilk was performed using a homogenizer (D-7801 manufactured by Ystral GmbH).
The physical property value measurement of the tofu produced in Example 5, Comparative Example 1, Comparative Example 2, and Comparative Example 3 and a sensory evaluation test by 10 professional panelists were performed.
Measurement of physical properties of tofu was performed using a rheometer (CR-500DX-SII, manufactured by Sun Kagaku Co., Ltd.), breaking strength by compression test (using a disk type plunger with a diameter of 10 mm) and compression test (a disk type plan with a diameter of 50 mm). 2 index of breaking strain by using a jar). The breaking strength is hardness and the breaking strain is a measure of elasticity. The higher the value, the greater the degree.
The sensory evaluation was performed on a five-point scale for smoothness and flavor, with an average score of 3.0 or more represented by ◯, 2.0 or more and less than 3.0 by Δ, and less than 2.0 by x.
The results are summarized in Table 10.
Figure JPOXMLDOC01-appb-T000011
Like the result shown in the said Table 10, the tofu (Example 5) created with the coagulant | flocculant liquid by 3rd invention is close to the tofu (comparative example 3) manufactured using the commercially available emulsifying coagulant physically. In the sensory evaluation of flavor, an evaluation exceeding that was obtained.
 本発明は、豆乳、豆腐やその加工食品を製造する産業において利用される。 The present invention is used in the industry for producing soy milk, tofu and processed foods thereof.

Claims (9)

  1. 大豆原料から製造した豆乳を高速遠心分離機にかけ、遠心分離作用後に二層に分離したものの上層の浮遊成分を除去し、下層に残った豆乳のみを分取することを特徴とする呈味改善された豆乳の製造方法。 The soy milk produced from soybean raw material is subjected to a high-speed centrifuge, the floating component in the upper layer separated after the centrifugal separation action is removed, and only the remaining soy milk in the lower layer is separated. A method for producing soy milk.
  2. 大豆原料から製造した豆乳を高速遠心分離機にかけ、遠心分離作用後に二層に分離したものの上層の浮遊成分を除去し、下層に残った豆乳のみを分取して得られた豆乳を用いて製造される加工食品。 Manufactured from soy milk produced from soy raw material by using a high-speed centrifuge, removing suspended components in the upper layer separated by two layers after centrifugation, and separating only the soy milk remaining in the lower layer Processed food.
  3. おから成分等の不溶成分を除去する前の大豆原料液を高速遠心分離機にかけ、脂肪を浮上成分として効率的に分離し、残りの豆乳を脂肪低減豆乳として分離採取することを特徴とする豆乳の製造方法。 The soybean raw material liquid before removing insoluble components such as okara components is subjected to a high-speed centrifuge, so that fat is efficiently separated as a floating component, and the remaining soy milk is separated and collected as fat-reduced soy milk. Manufacturing method.
  4. 大豆原料液が、大豆を加水後に磨砕又は破砕して得た生呉が、その生呉を加熱処理した煮呉か、大豆粉末を水に分散溶解した生粉末豆乳か、その生粉末豆乳を加熱処理した加熱粉末豆乳のいずれかの大豆原料液であることを特徴とする請求項3記載の豆乳の製造方法。 The raw raw soy bean obtained by grinding or crushing the soy raw material after the soy raw material is hydrated is either the boiled cucumber obtained by heat-treating the raw cucumber, the raw powdered soymilk in which the soybean powder is dispersed and dissolved in water, or the raw powdered soymilk The method for producing soymilk according to claim 3, wherein the soybean raw material liquid is any one of heat-treated heated powdered soymilk.
  5. 大豆粉末が、大豆を微粉砕して得た粉末又は水に分散、溶解しやすいように処理された大豆の微粉砕加工粉末のいずれかであることを特徴とする請求項3又は請求項4記載の豆乳の製造方法。 5. The soybean powder according to claim 3 or 4, wherein the soybean powder is either a powder obtained by finely pulverizing soybean or a finely pulverized processed powder of soybean treated so as to be easily dispersed and dissolved in water. Of manufacturing soy milk.
  6. 豆乳を高速遠心分離機にかけて得られる浮上層液に、豆腐用の凝固剤を混合して凝固剤液を製造し、その凝固剤液を豆乳に添加して凝固反応させるようにしたことを特徴とする豆腐の製造方法。 It is characterized in that the coagulant for tofu is mixed with the floating layer liquid obtained by subjecting soy milk to a high-speed centrifuge to produce a coagulant liquid, and the coagulant liquid is added to the soy milk to cause a coagulation reaction. Tofu production method.
  7. おから成分等の不溶成分を除去する前の大豆原料液を高速遠心分離機にかけて得られる浮上層液に、豆腐用の凝固剤を混合して凝固剤液を製造し、その凝固剤液を豆乳に添加して凝固反応させるようにしたことを特徴とする豆腐の製造方法。 A coagulant solution is prepared by mixing the soy raw material liquid before removing insoluble components such as okara ingredients with a high-speed centrifuge and the coagulant for tofu to produce a coagulant liquid. A method for producing tofu, characterized in that it is added to a coagulation reaction.
  8. 大豆原料液が、大豆を加水後に磨砕又は破砕して得た生呉か、その生呉を加熱処理した煮呉か、大豆粉末を水に分散溶解した生粉末豆乳か、その生粉末豆乳を加熱処理した加熱粉末豆乳のいずれかの大豆原料液であることを特徴とする請求項7記載の豆腐の製造方法。 The raw soybean liquid is raw koji obtained by grinding or crushing soy after adding water, boiled koji made by heat-treating the raw kyu, or raw powder soy milk in which soybean powder is dispersed and dissolved in water, or the raw powder soy milk. The method for producing tofu according to claim 7, wherein the soybean raw material liquid is any one of heat-treated heated powdered soymilk.
  9. 大豆粉末が、大豆を微粉砕して得た粉末又は水に分散、溶解しやすいように処理された大豆の微粉砕加工粉末のいずれかであることを特徴とする請求項8記載の豆腐の製造方法。 9. The tofu production according to claim 8, wherein the soybean powder is either a powder obtained by finely pulverizing soybean or a finely pulverized processed powder of soybean treated so as to be easily dispersed and dissolved in water. Method.
PCT/JP2010/069543 2009-10-28 2010-10-27 Method for producing soy milk and method for producing tofu WO2011052793A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010800480992A CN102573504A (en) 2009-10-28 2010-10-27 Method for producing soy milk and method for producing tofu

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2009-248276 2009-10-28
JP2009248276A JP2011092069A (en) 2009-10-28 2009-10-28 Method for producing soy milk having improved taste and processed foods produced by using the soy milk
JP2010011701A JP2011147394A (en) 2010-01-22 2010-01-22 Method for producing soymilk
JP2010-011701 2010-01-22
JP2010020827A JP5385809B2 (en) 2010-02-02 2010-02-02 Tofu production method
JP2010-020827 2010-02-02

Publications (1)

Publication Number Publication Date
WO2011052793A1 true WO2011052793A1 (en) 2011-05-05

Family

ID=43922214

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/069543 WO2011052793A1 (en) 2009-10-28 2010-10-27 Method for producing soy milk and method for producing tofu

Country Status (3)

Country Link
KR (1) KR20120104194A (en)
CN (3) CN103444901A (en)
WO (1) WO2011052793A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012169348A1 (en) * 2011-06-07 2012-12-13 不二製油株式会社 Novel application of reduced-fat soybean protein material to soybean-derived raw material-containing food or beverage
JP2013013395A (en) * 2011-06-07 2013-01-24 Fuji Oil Co Ltd Milk-substitute composition and milk-substitute food/drink using the same
WO2013089281A1 (en) * 2011-12-16 2013-06-20 太子食品工業株式会社 Tofu and method for producing tofu
WO2014207625A3 (en) * 2013-06-28 2015-05-14 Koninklijke Philips N.V. Method and device for making soy milk and soy milk derivative
US9101150B2 (en) 2011-06-07 2015-08-11 Fuji Oil Company Limited Application of reduced-fat soybean protein material to soybean-derived raw material-containing food or beverage

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101435785B1 (en) * 2013-04-08 2014-08-29 주식회사 풀무원 Soybean curd using high concentration soymilk with enhanced hardness and elasticity and the preparation method thereof
JP2016146802A (en) * 2015-02-13 2016-08-18 ミナミ産業株式会社 Production method of soybean milk and soybean curd
CN107183200A (en) * 2017-07-24 2017-09-22 山东禹王生态食业有限公司 A kind of soya-bean milk, preparation method and method for preparing tender bean curd for being used to make tender bean curd
CN107242301A (en) * 2017-07-26 2017-10-13 云南省石屏县花腰豆制品工贸有限公司 Stone screen bean curd orders halogen equipment
KR101881562B1 (en) * 2017-08-28 2018-07-25 주식회사 유웰바이오 Isoflavone formulation from soybean with effect of preventing osteoporosis, and manufacturing method thereof
CN107865106A (en) * 2017-12-13 2018-04-03 深圳市猎优鲜网络科技有限公司 A kind of former mill soya-bean milk and preparation method thereof
KR102210749B1 (en) * 2018-10-31 2021-02-02 박민정 Method for producing soymilk powder capable of producing tofu

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05304923A (en) * 1992-04-30 1993-11-19 Kao Corp Coagulant for bean curd
JPH07236449A (en) * 1994-03-03 1995-09-12 Arerugen Furii Technol Kenkyusho:Kk Method for fractionating allergen in soybean milk
JPH07236444A (en) * 1994-02-25 1995-09-12 Arerugen Furii Technol Kenkyusho:Kk Production of soybean milk reduced in allergen
JPH0923838A (en) * 1995-07-14 1997-01-28 Kao Corp Soybean milk composition
JPH104905A (en) * 1996-06-27 1998-01-13 Allergen Furii Technol Kenkyusho:Kk Processied soybean food
JPH10295308A (en) * 1997-05-01 1998-11-10 Fuji Oil Co Ltd Production of soybean milk
JPH1189532A (en) * 1997-09-19 1999-04-06 Fuji Oil Co Ltd Production of soybean food raw material
JPH11169123A (en) * 1997-12-11 1999-06-29 Shikoku Kakoki Co Ltd Sterilization method for soybean milk and production of sterile bean curd
JP2000217533A (en) * 1999-01-28 2000-08-08 Kao Corp Coagulant for tofu
EP1031284A1 (en) * 1998-08-12 2000-08-30 Fuji Oil Company, Ltd. Process for producing soy milk
WO2002017733A1 (en) * 2000-09-01 2002-03-07 Fuji Oil Company, Limited Process for producing tofu
JP2008295381A (en) * 2007-05-31 2008-12-11 Riken Vitamin Co Ltd Coagulant composition for bean curd

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6030659A (en) * 1983-07-27 1985-02-16 森屋 功夫 Preparation of tofu with bittern
WO2002026788A1 (en) * 2000-09-28 2002-04-04 Ajinomoto Co., Inc. Oleosin/phospholipid complex and process for producing the same
JP2002112728A (en) * 2000-10-06 2002-04-16 Asahi Food Processing Co Ltd Soybean-curd coagulant liquid and method for producing soybean-curd
JP4391332B2 (en) * 2004-06-25 2009-12-24 花王株式会社 Water-in-oil emulsified tofu coagulant
JP2009528847A (en) * 2006-03-03 2009-08-13 スペシャルティ プロテイン プロデューサーズ インコーポレイテッド Method for separating fat from soy material and composition produced by the method

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05304923A (en) * 1992-04-30 1993-11-19 Kao Corp Coagulant for bean curd
JPH07236444A (en) * 1994-02-25 1995-09-12 Arerugen Furii Technol Kenkyusho:Kk Production of soybean milk reduced in allergen
JPH07236449A (en) * 1994-03-03 1995-09-12 Arerugen Furii Technol Kenkyusho:Kk Method for fractionating allergen in soybean milk
JPH0923838A (en) * 1995-07-14 1997-01-28 Kao Corp Soybean milk composition
JPH104905A (en) * 1996-06-27 1998-01-13 Allergen Furii Technol Kenkyusho:Kk Processied soybean food
JPH10295308A (en) * 1997-05-01 1998-11-10 Fuji Oil Co Ltd Production of soybean milk
JPH1189532A (en) * 1997-09-19 1999-04-06 Fuji Oil Co Ltd Production of soybean food raw material
JPH11169123A (en) * 1997-12-11 1999-06-29 Shikoku Kakoki Co Ltd Sterilization method for soybean milk and production of sterile bean curd
EP1031284A1 (en) * 1998-08-12 2000-08-30 Fuji Oil Company, Ltd. Process for producing soy milk
JP2000217533A (en) * 1999-01-28 2000-08-08 Kao Corp Coagulant for tofu
WO2002017733A1 (en) * 2000-09-01 2002-03-07 Fuji Oil Company, Limited Process for producing tofu
JP2008295381A (en) * 2007-05-31 2008-12-11 Riken Vitamin Co Ltd Coagulant composition for bean curd

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012169348A1 (en) * 2011-06-07 2012-12-13 不二製油株式会社 Novel application of reduced-fat soybean protein material to soybean-derived raw material-containing food or beverage
JP2013013395A (en) * 2011-06-07 2013-01-24 Fuji Oil Co Ltd Milk-substitute composition and milk-substitute food/drink using the same
US9101150B2 (en) 2011-06-07 2015-08-11 Fuji Oil Company Limited Application of reduced-fat soybean protein material to soybean-derived raw material-containing food or beverage
KR101564985B1 (en) 2011-06-07 2015-11-02 후지세유 그룹 혼샤 가부시키가이샤 Novel application of reduced-fat soybean protein material to soybean-derived raw material-containing food or beverage
WO2013089281A1 (en) * 2011-12-16 2013-06-20 太子食品工業株式会社 Tofu and method for producing tofu
JP2013123425A (en) * 2011-12-16 2013-06-24 Taishi Food Inc Bean curd and method for producing the same
WO2014207625A3 (en) * 2013-06-28 2015-05-14 Koninklijke Philips N.V. Method and device for making soy milk and soy milk derivative

Also Published As

Publication number Publication date
CN103444875A (en) 2013-12-18
CN102573504A (en) 2012-07-11
KR20120104194A (en) 2012-09-20
CN103444901A (en) 2013-12-18

Similar Documents

Publication Publication Date Title
WO2011052793A1 (en) Method for producing soy milk and method for producing tofu
JP3177947B2 (en) Method for producing DHA-containing tofu, drinking soy milk and dry powder thereof
WO2011155328A1 (en) Fat-reduced soybean protein material and soybean emulsion composition, and processes for production thereof
CN1494836A (en) Soymilk composition and production method
MX2012002837A (en) Method and system for manufacturing whole soy milk.
JP2007259784A (en) Frozen dessert containing bean curd puree
WO2011071108A1 (en) Soy milk containing fibrous material and tofu-like food, processes for production of those products, and dehulled soybean powdery material
JP5970029B2 (en) Soymilk material manufacturing method, soymilk secondary material manufacturing method, and soymilk processed product manufacturing method
JP6390071B2 (en) Method for producing soymilk for forming and soymilk for forming
WO2005027648A1 (en) Oil-in-water emulsified composition
AU2022235509A1 (en) Method for manufacturing butter-like food derived from vegetable milk and butter-like food derived from vegetable milk
JP5385809B2 (en) Tofu production method
JPH028694B2 (en)
US20080026126A1 (en) Whipping cream comprising tofu puree
JP4331747B2 (en) Soymilk with high soy hypocotyl and its tofu
JP6898102B2 (en) Emulsion containing lupine protein
JP2011147394A (en) Method for producing soymilk
TWI514972B (en) Soybean mud manufacturing method and soybean mud
JP2011092069A (en) Method for producing soy milk having improved taste and processed foods produced by using the soy milk
JP2008022824A (en) Soybean cream-like food, and method for producing the same
JP2006191860A (en) Method for producing soymilk
JPWO2008068931A1 (en) Soy-containing food material and food containing the same
WO2018181829A1 (en) Method for producing cheese-like tofu
JP2013223439A (en) Method for producing bean curd
JPS6050426B2 (en) Manufacturing method for soybean dessert food

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080048099.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10826923

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127011205

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10826923

Country of ref document: EP

Kind code of ref document: A1