JP2006191860A - Method for producing soymilk - Google Patents

Method for producing soymilk Download PDF

Info

Publication number
JP2006191860A
JP2006191860A JP2005007070A JP2005007070A JP2006191860A JP 2006191860 A JP2006191860 A JP 2006191860A JP 2005007070 A JP2005007070 A JP 2005007070A JP 2005007070 A JP2005007070 A JP 2005007070A JP 2006191860 A JP2006191860 A JP 2006191860A
Authority
JP
Japan
Prior art keywords
soymilk
soy milk
scaling
temperature
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005007070A
Other languages
Japanese (ja)
Other versions
JP4483590B2 (en
Inventor
Takashi Nishimura
隆司 西村
Hitoshi Yokoyama
等 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Oil Co Ltd
Original Assignee
Fuji Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Oil Co Ltd filed Critical Fuji Oil Co Ltd
Priority to JP2005007070A priority Critical patent/JP4483590B2/en
Publication of JP2006191860A publication Critical patent/JP2006191860A/en
Application granted granted Critical
Publication of JP4483590B2 publication Critical patent/JP4483590B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing soymilk to stably produce the soymilk for a long period of time by reducing scaling when subjecting soymilk and a product obtained by using soymilk to indirect heating. <P>SOLUTION: The method for producing soymilk comprises controlling soaking temperature and settling volume so as to reduce scaling during heat sterilization of the soymilk and stably produce the soymilk. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は豆乳の製造法および豆乳や豆乳製品を加熱処理する際のスケーリング防止方法に関する。   The present invention relates to a method for producing soymilk and a method for preventing scaling when heat-treating soymilk or soymilk products.

近年、大豆蛋白質のコレステロールを低下させる効果が明らかにされ、これに伴い伝統的な豆乳、豆腐、湯葉や調製豆乳、豆乳飲料その他各種豆乳製品への関心が急速に高まっている。なお、豆乳、調製豆乳及び豆乳飲料の規格は日本農林規格により定められている(非特許文献1)。   In recent years, the effect of soy protein to lower cholesterol has been clarified, and accordingly, interest in traditional soy milk, tofu, yuba, prepared soy milk, soy milk drinks and other various soy milk products has rapidly increased. The standards for soy milk, prepared soy milk, and soy milk drinks are determined by Japanese Agricultural Standards (Non-Patent Document 1).

同時に、豆乳は近年風味や食感が改善されたものが開発されている。例えば特許文献1では豆乳臭を改善し、すっきりした食感の豆乳を得る方法が開示されている。さらに甘味や香料、ココア、コーヒー、麦芽、果汁等を加えたりして、より飲みやすくした調製豆乳や豆乳飲料、その他各種豆乳製品も増えている。   At the same time, soybean milk with improved flavor and texture has been developed in recent years. For example, Patent Document 1 discloses a method for improving soymilk odor and obtaining a soymilk with a clean texture. In addition, soy milk, soy milk drinks, and other various soy milk products that are made easier to drink by adding sweetness, flavor, cocoa, coffee, malt, fruit juice, etc. are also increasing.

しかし従来の豆乳の製法では、豆乳を用いた飲料等の豆乳製品製造時の加熱殺菌処理において間接加熱殺菌機であるプレート式殺菌機やチューブラー式殺菌機を使用した場合、スケーリング(殺菌機の配管内に凝集物が付着する現象)が多くなり、これにより配管内の焦げ付きや加熱効率の低下等が発生し、長時間連続運転することが困難であった。
このため一般的には同様の殺菌ラインを複数系列用意し、配管内を洗浄しながら順次切替えていくという、作業効率が悪くコストのかかる方式が採られている。特に大豆固形分8%以上にもなる豆乳製品においては殺菌ラインの切替えが頻繁となって製造効率が相当悪く、製造上困難を伴っていた。
またスケーリングが比較的少ないとされる直接蒸気注入式等の直接加熱殺菌を用いても長時間の安定的な運転は難しいものであった。
However, in the conventional soymilk manufacturing method, if a plate-type sterilizer or tubular sterilizer, which is an indirect heat sterilizer, is used in the heat sterilization process when producing soymilk products such as beverages using soymilk, The phenomenon that agglomerates adhere to the inside of the pipe increases), which causes burning in the pipe and a decrease in heating efficiency, making it difficult to operate continuously for a long time.
For this reason, generally, a plurality of similar sterilization lines are prepared and sequentially switched while cleaning the inside of the pipe, so that the work efficiency is low and the cost is high. In particular, soy milk products with a soy solid content of 8% or more often have a significant deterioration in production efficiency due to frequent switching of the sterilization line, which is difficult to manufacture.
In addition, even when direct heat sterilization such as direct steam injection, which is said to have relatively little scaling, is used, stable operation for a long time is difficult.

(参考文献)
平成12年12月19日農林水産省告示第1684号 特許第3440749号公報
(References)
December 19, 2000 Ministry of Agriculture, Forestry and Fisheries Notification No. 1684 Japanese Patent No. 3440749

本発明の目的は、上記のような問題が生ずることなく豆乳や豆乳製品の加熱処理の際に生ずるスケーリングを防止し、長時間の連続運転を安定的に行うことができ、豆乳の品質も安定させることのできる豆乳の製造法を提供することである。   The object of the present invention is to prevent scaling that occurs during the heat treatment of soymilk and soymilk products without causing the above-mentioned problems, and can stably carry out continuous operation for a long time, and the quality of soymilk is also stable. It is providing the manufacturing method of the soymilk which can be made to do.

本発明者らは上記課題に鑑み鋭意研究を行った結果、大豆の浸漬温度を一定温度以上に保持すること、および豆乳中のオカラ残渣を極力減少させることを組み合わせることにより、さらには浸漬大豆の湿式粉砕時の温度を一定温度以上に保持することを組み合わせることにより、上記課題を解決できる知見を得た。   As a result of intensive studies in view of the above problems, the present inventors have combined the combination of maintaining the soaking temperature of soybean at a certain temperature or more and reducing okara residue in soy milk as much as possible, and The knowledge which can solve the said subject was acquired by combining maintaining the temperature at the time of wet-grinding more than fixed temperature.

以上得られた知見から、本発明は下記に記載の通り、
1.大豆を浸漬後、湿式粉砕し、得られたスラリーを豆乳とオカラに分離する豆乳の製造工程において、大豆の浸漬工程を80℃以上に保持すること、かつ、得られた豆乳を1400Gで10分間遠心分離した際の沈殿量が豆乳の1.0容量%以下となるまでオカラを分離することを特徴とする豆乳の製造法、
2.湿式粉砕時の温度を50℃以上に保持する前記1.記載の製造法、
3.前記1.記載の製造法で得た豆乳を配合し、加熱処理を行うことを特徴とする豆乳製品の製造法、
4.前記1.記載の製造法を用いることを特徴とする、豆乳を加熱処理する際のスケーリング防止方法、
5.前記1.記載の製造法で得た豆乳を配合することを特徴とする、豆乳製品を加熱処理する際のスケーリング防止方法、
を提供するものである。
From the knowledge obtained above, the present invention is as described below,
1. In the soymilk manufacturing process in which soybean is soaked and then wet pulverized, and the resulting slurry is separated into soymilk and okara, the soybean soaking process is maintained at 80 ° C. or higher, and the obtained soymilk is kept at 1400 G for 10 minutes A method for producing soymilk, characterized in that the okara is separated until the amount of sediment upon centrifugation is 1.0 vol% or less of the soymilk,
2. The temperature during wet pulverization is maintained at 50 ° C. or higher. Described manufacturing method,
3. 1 above. A method for producing a soymilk product, comprising combining the soymilk obtained by the production method described above and performing a heat treatment,
4). 1 above. A method for preventing scaling when heat-treating soymilk, characterized by using the production method described above,
5. 1 above. A method for preventing scaling when heat-treating soymilk products, comprising blending soymilk obtained by the production method described above,
Is to provide.

本発明は、大豆の浸漬温度、豆乳の沈殿物量を制御することによって、従来の豆乳では解消し得なかった加熱殺菌時、特に間接殺菌機による加熱時のスケーリングの発生量を著しく低下させ、その発生を防止することが可能となったものである。これにより、長時間の連続運転で加熱工程を安定的に行うことができ、豆乳の品質も安定させることができる。   The present invention controls the soaking temperature of soybeans and the amount of precipitate of soy milk to significantly reduce the amount of scaling that occurs during heat sterilization, particularly when heated by an indirect sterilizer, that could not be resolved with conventional soy milk. It is possible to prevent the occurrence. Thereby, a heating process can be stably performed by continuous operation for a long time, and the quality of soymilk can also be stabilized.

本発明は、豆乳の製造工程において、大豆の浸漬工程を80℃以上に保持すること、かつ、得られた豆乳を1400Gで10分間遠心分離した際の沈殿量(スピッツ量)が豆乳の1.0容量%以下となるまでオカラを分離することを特徴とする豆乳の製造法、並びに豆乳製品を加熱処理する際のスケーリング防止方法である。
以下に本発明について詳細に説明する。
According to the present invention, in the soymilk production process, the soybean soaking step is maintained at 80 ° C. or higher, and the amount of precipitate (spitz amount) obtained when the obtained soymilk is centrifuged at 1400 G for 10 minutes is 1. A method for producing soymilk characterized by separating okara until it becomes 0% by volume or less, and a method for preventing scaling when heat treating a soymilk product.
The present invention is described in detail below.

(原料大豆)
本発明の豆乳は白大豆、黄大豆、緑豆、黒大豆等の大豆種子を原料とすることが適当である。大豆は雑味を除去するために種皮、胚軸部を予め除去した脱皮脱胚軸大豆が適当である。
(Raw soybean)
The soybean milk of the present invention is suitably made from soybean seeds such as white soybean, yellow soybean, green soybean and black soybean. In order to remove the miscellaneous taste, soy-dehulled soybean with the seed coat and hypocotyl removed in advance is suitable.

(浸漬工程)
本発明の豆乳を得るためには、まず大豆を水に浸漬し、吸水させる。浸漬する水の温度は80℃以上とし、80〜95℃が望ましい。浸漬温度が低すぎると、仮にオカラの固形分を十分に分離しても、加熱工程におけるスケーリングの発生を防止することが困難である。また浸漬温度が高すぎると、豆乳の抽出率が低下し、歩留まりが下がる傾向となる。
スケーリングを防止するに足る浸漬時間は浸漬温度によって変動し、適宜調整しつつ設定すればよいが、目安として80℃ならば15分以上、好ましくは25分以上の浸漬が望ましく、浸漬温度が高いほど浸漬時間は短くすることができる。
大豆はほぼ同重量の水を吸水するため、浸漬水量は2倍以上は必要であり、通常2〜10倍量の浸漬水を用いる。また、大豆の吸水を良くするため、あるいは豆乳の風味を良くするために重曹等のpH調整剤を適宜浸漬水に添加することができる。
(Immersion process)
In order to obtain the soymilk of the present invention, soybeans are first immersed in water and absorbed. The temperature of the water to immerse shall be 80 degreeC or more, and 80-95 degreeC is desirable. If the immersion temperature is too low, it is difficult to prevent the occurrence of scaling in the heating process even if the solid content of okara is sufficiently separated. On the other hand, if the immersion temperature is too high, the extraction rate of soy milk tends to decrease and the yield tends to decrease.
The soaking time that is sufficient to prevent scaling varies depending on the soaking temperature, and may be set while adjusting as appropriate. As a guideline, soaking at 80 ° C. is preferably 15 minutes or longer, preferably 25 minutes or longer. The immersion time can be shortened.
Since soybeans absorb almost the same weight of water, the amount of immersion water needs to be twice or more, and usually 2 to 10 times the amount of immersion water is used. Moreover, in order to improve the water absorption of soybean or to improve the flavor of soy milk, a pH adjusting agent such as sodium bicarbonate can be appropriately added to the immersion water.

(湿式粉砕工程)
次に、浸漬した大豆をそのまま、又は浸漬水を廃棄して新たに水、好ましくは熱水を加え、湿式粉砕工程に入る。
粉砕は湿式粉砕機を使用することができ、粉砕後の懸濁液(以下、「スラリー」と称する。)を得る。湿式粉砕機としては、グラインダー、コロイドミル、回転刃型剪断力を作用させる粉砕装置等の公知のものを用いることができる。
特に磨砕方式の粉砕装置では豆乳固形分の抽出率を向上させるため、特許文献1に記載されるように、回転刃型剪断力を作用させる粉砕装置、例えば「COMITROL」(URSCHEL社製)等の使用が好ましい。
本発明においては、粉砕温度が50℃未満であっても高温浸漬によりスケーリングの発生を通常よりも十分抑制することは可能であるが、さらに長時間に渡って加熱装置の配管内にスケーリングがさらに生じにくい豆乳を得たい場合、前記大豆の浸漬工程と共に、湿式粉砕工程を50℃以上の温度で処理することが好ましい。さらに70℃以上がより好ましく、浸漬温度と同じ80℃以上が特に好ましい。これにより加熱時にスケーリングが生ずる核となる物質をさらに多く熱変性させ、除去することができる。
粉砕により得られたスラリーは必要によりさらに上記温度範囲に所定の時間(例えば、30秒〜1時間)加熱保持し、スケーリングの発生の抑制効果を高めることができる。
また、スラリーをさらにホモゲナイザー等の摩擦剪断力を作用させる装置により均質化し、微粒子化することにより、豆乳固形分の抽出率をさらに向上させることができる。この場合、かかる工程も上記温度範囲に保持すると、さらにスケーリング発生の抑制効果を高めることができる。
(Wet grinding process)
Next, the soaked soybean is used as it is, or the soaking water is discarded and fresh water, preferably hot water is added, and the wet grinding process is started.
For the pulverization, a wet pulverizer can be used to obtain a pulverized suspension (hereinafter referred to as “slurry”). As the wet pulverizer, a known pulverizer such as a grinder, a colloid mill, or a rotating blade type shearing force can be used.
In particular, a grinding-type grinding device improves the extraction rate of soymilk solids, and as described in Patent Document 1, a grinding device that applies a rotating blade type shearing force, such as “COMITROL” (manufactured by URSCHEL), etc. Is preferred.
In the present invention, even if the pulverization temperature is less than 50 ° C., it is possible to sufficiently suppress the occurrence of scaling by high temperature immersion, but the scaling is further performed in the piping of the heating device for a longer time. When it is desired to obtain soy milk that is unlikely to be produced, it is preferable to perform the wet pulverization step at a temperature of 50 ° C. or more together with the soybean dipping step. Furthermore, 70 degreeC or more is more preferable, and 80 degreeC or more which is the same as immersion temperature is especially preferable. As a result, a substance that becomes a nucleus that causes scaling during heating can be further thermally denatured and removed.
If necessary, the slurry obtained by pulverization can be heated and held in the above temperature range for a predetermined time (for example, 30 seconds to 1 hour) to enhance the effect of suppressing the occurrence of scaling.
Furthermore, the extraction rate of soymilk solids can be further improved by homogenizing the slurry with a device that applies a frictional shearing force such as a homogenizer and making it into fine particles. In this case, if this process is also maintained in the above temperature range, the effect of suppressing the occurrence of scaling can be further enhanced.

(オカラの分離工程)
次に、上記スラリーからオカラに相当する不溶性残渣を固液分離により除去して豆乳を得る。本発明においては、この分離工程も上記温度範囲に保持すると、さらにスケーリングを生じにくい豆乳を得ることができるのでより好ましい。
本発明における固液分離の方法は、得られた豆乳を1400Gで10分間遠心分離した際の沈殿量(以下、「スピッツ量」と称する。)が豆乳の1.0容量%以下、すなわち豆乳100mlあたり1.0ml以下となるまで分離する方法によることが重要である。スピッツ量がこの範囲を超えると、いくら豆乳の製造を上記の通り高温域において行っても、加熱殺菌工程において加熱装置の配管内にスケーリングを生じやすくなり、加熱装置の連続運転が困難となり製造効率の悪いものとなってしまう。
豆乳のスピッツ量を上記範囲内にするためには、例えば遠心分離機を使用することが好ましい。圧搾濾過等による方法では不溶性残渣を十分に除去できないためスピッツ量が上記上限値を超え、加熱時にスケーリングが生じやすくなる。遠心分離機は、デカンター型、ディスク型等のいずれを使用しても良い。より高度に不溶性残渣を除去したい場合にはこれら複数の遠心分離機を組合せることが好ましい。遠心分離機の運転条件は、豆乳のスピッツ量が上記範囲に入るように流量、遠心力、遠心時間を適宜設定することができる。
(Okara separation process)
Next, the insoluble residue corresponding to okara is removed from the slurry by solid-liquid separation to obtain soy milk. In the present invention, it is more preferable to keep this separation step in the above temperature range, since it is possible to obtain soy milk that hardly causes scaling.
In the method of solid-liquid separation in the present invention, the amount of precipitate (hereinafter referred to as “spitz amount”) when the obtained soymilk is centrifuged at 1400 G for 10 minutes is 1.0 vol% or less of soymilk, that is, 100 ml of soymilk. It is important to use a method that separates until 1.0 ml or less. If the amount of Spitz exceeds this range, no matter how much soy milk is produced in the high temperature range as described above, it becomes easy to cause scaling in the piping of the heating device in the heat sterilization process, making it difficult to operate the heating device continuously and producing efficiency. Will be bad.
In order to make the amount of Spitz of soy milk within the above range, for example, a centrifuge is preferably used. Since the insoluble residue cannot be sufficiently removed by a method such as squeezing filtration, the amount of Spitz exceeds the upper limit, and scaling is likely to occur during heating. Any of a decanter type, a disk type, etc. may be used for the centrifuge. In order to remove the insoluble residue to a higher degree, it is preferable to combine these centrifuges. The operating conditions of the centrifuge can appropriately set the flow rate, centrifugal force, and centrifugal time so that the amount of Spitz of soy milk falls within the above range.

(豆乳の大豆固形分)
以上により得られる豆乳の固形分(大豆固形分)は、豆乳に換算した場合に7〜15重量%、好ましくは8〜14重量%、より好ましくは9〜12重量%の固形分とすることが適当である。大豆固形分が8重量%未満になると規格上豆乳とは呼び難く、また豆乳の製品の原料として配合しにくいためである。
(Soybean solid content of soy milk)
The solid content (soybean solid content) of the soy milk obtained as described above is 7 to 15% by weight, preferably 8 to 14% by weight, more preferably 9 to 12% by weight when converted to soy milk. Is appropriate. This is because if the soy solid content is less than 8% by weight, it is difficult to call it soymilk in terms of specifications, and it is difficult to blend it as a raw material for soymilk products.

(加熱処理)
次に、本豆乳は製造工程中において80℃以上の高温下で処理されているが、大豆中の耐熱菌はかかる温度では死滅しないため、上記の豆乳を豆乳製品用原料として流通させる場合、そのまま冷蔵又は冷凍して流通するか、加熱処理装置にて加熱殺菌後、常温以下で流通することが好ましい。当該加熱処理装置としてはプレート式熱交換装置や掻き取り式熱交換装置等の間接加熱装置、又は直接加熱装置のいずれをも用いることができる。またUHT装置とは異なるがレトルト装置によっても加熱処理が可能である。加熱処理時のスケーリングの発生は本発明の豆乳の場合有効に防止されるが、一般的には直接加熱装置を使用する方がスケーリングの発生が少なくなるので好ましい。特に、蒸気吹込み式の直接加熱装置が豆乳製品製造時のスケーリング防止においてより好ましい。これは、高温高圧の蒸気と豆乳が直接接触するので大豆蛋白質をさらに熱変性させることができ、そして常圧に戻される際の減圧により剪断力が生じ、豆乳中の固形分粒子がさらに微細化されるためである。
本発明の豆乳のスケーリング防止効果は、第一に、本豆乳を原料用豆乳として流通させるため加熱処理する際に発揮される。すなわち、豆乳中の耐熱菌を滅菌する場合には、牛乳等の乳製品に比べて厳しい加熱条件が必要であり、少なくともF値が4(分)相当、好ましくは6(分)相当以上の加熱処理が施されることが好ましいが、このように加熱条件が厳しいほど加熱装置の配管内にスケーリングの発生が生じやすくなるため、本発明の製造法を用いることによるスケーリング防止効果が極めて有益なのである。
上記F値の条件を満足するために、加熱温度は120〜160℃、好ましくは135〜160℃、さらに好ましくは140〜150℃とすることが適当である。で行うことが適当である。120℃より低いと大豆中の耐熱菌の滅菌が困難か、又は滅菌に長時間を要する。また160℃を超えると風味の劣化等が生じやすい。滅菌のための加熱時間は上記温度帯においてF値が4相当以上となる時間を設定すればよいが、通常2秒〜30秒、好ましくは4秒〜10秒で行うことが適当である。2秒より短時間であると滅菌が十分でなく、30秒を超えると風味の劣化や焦げ、着色等の問題が生じる可能性がある。
(Heat treatment)
Next, although this soymilk is processed at a high temperature of 80 ° C. or higher during the production process, since the heat-resistant bacteria in soybean do not die at such a temperature, when the above-mentioned soymilk is distributed as a raw material for soymilk products, it remains as it is. It is preferable to distribute it refrigerated or frozen, or distribute it at room temperature or lower after heat sterilization in a heat treatment apparatus. As the heat treatment apparatus, any of an indirect heating apparatus such as a plate type heat exchange apparatus and a scraping type heat exchange apparatus, or a direct heating apparatus can be used. Moreover, although it is different from the UHT apparatus, heat treatment can also be performed by a retort apparatus. The occurrence of scaling during the heat treatment is effectively prevented in the case of the soy milk of the present invention, but in general, the use of a direct heating device is preferred because the occurrence of scaling is reduced. In particular, a steam-blowing direct heating device is more preferable for preventing scaling during production of soy milk products. This is because the soy protein can be further heat-denatured because the high-temperature and high-pressure steam and soy milk are in direct contact with each other, and the shearing force is generated by the reduced pressure when returning to normal pressure, and the solid particles in the soy milk are further refined. It is to be done.
The soymilk antiscaling effect of the present invention is first demonstrated when heat treatment is performed to distribute the soymilk as raw material soymilk. That is, when sterilizing heat-resistant bacteria in soy milk, severer heating conditions are required compared to dairy products such as milk, and at least the F value is equivalent to 4 (min), preferably 6 (min) or more. The treatment is preferably performed, but the more severe the heating conditions are, the more easily scaling occurs in the piping of the heating apparatus. Therefore, the scaling prevention effect by using the manufacturing method of the present invention is extremely beneficial. .
In order to satisfy the above F value condition, the heating temperature is suitably 120 to 160 ° C, preferably 135 to 160 ° C, more preferably 140 to 150 ° C. Is suitable. If it is lower than 120 ° C., it is difficult to sterilize heat-resistant bacteria in soybean, or it takes a long time for sterilization. Moreover, when it exceeds 160 degreeC, deterioration of a flavor etc. will arise easily. The heating time for sterilization may be set so that the F value is 4 or more in the above temperature range, but it is usually 2 seconds to 30 seconds, preferably 4 seconds to 10 seconds. If it is shorter than 2 seconds, sterilization is not sufficient, and if it exceeds 30 seconds, problems such as deterioration of flavor, scorching, and coloring may occur.

(各種豆乳製品の製造)
本豆乳を通常の製造法で得た豆乳と同様に、製造原料として配合し、各種豆乳製品や豆腐製品を製造することができる。例えば調製豆乳、豆乳飲料、清涼飲料、乳酸発酵豆乳、プリン、スープ、ゼリー、冷菓、焼菓子、和菓子、スナック、パン、ケーキ、ヨーグルト、チーズ、クリーム、フィリング、チョコレート、スプレッド、マヨネーズ、ソース、フライ食品、水産練製品、畜肉製品等に配合することができ、かかる例示に限定されるものでもない。
各種豆乳製品の製造に際しては、本豆乳の他に製造に必要な食品原料(果汁、果肉、野菜、糖類、油脂、乳製品、穀粉類、カカオマス、鳥獣魚介肉等)や食品添加剤(ミネラル、ビタミン、増粘安定剤、乳化剤、酸味料、香料等)を適宜使用することができる。
(Manufacture of various soy milk products)
Like the soymilk obtained by the usual production method, this soymilk can be blended as a production raw material to produce various soymilk products and tofu products. For example, prepared soy milk, soy milk drink, soft drink, lactic acid fermented soy milk, pudding, soup, jelly, frozen confectionery, baked confectionery, Japanese confectionery, snack, bread, cake, yogurt, cheese, cream, filling, chocolate, spread, mayonnaise, sauce, fry It can mix | blend with foodstuffs, fishery paste products, livestock meat products, etc., and is not limited to this illustration.
In the production of various soymilk products, in addition to this soymilk, food raw materials (fruit juice, pulp, vegetables, sugars, fats and oils, dairy products, flours, cacao trout, seafood, etc.) and food additives (minerals, Vitamins, thickening stabilizers, emulsifiers, acidulants, fragrances, etc.) can be used as appropriate.

本発明のスケーリング防止効果は、第二に、上記豆乳製品製造時の加熱処理時にも大きく発揮される。
通常の豆乳製品の場合、加熱処理されると加熱装置内にスケール(不溶性固形分の付着物)が発生し、長時間の連続運転中に焦げが生じたり、それらが成長することで加熱効率が悪くなり、最後にはラインが閉塞してしまう。その傾向は飲料等の製造ラインで普及しているプレート式等の間接加熱装置において顕著である。一方、本豆乳の場合は同じような処理を行ってもスケーリングが発生しにくい。そのため運転時間も長時間の連続運転が可能となる。
したがって、上記豆乳製品の内、特に加熱殺菌を行う液状豆乳製品(調製豆乳、豆乳飲料、清涼飲料、乳酸発酵豆乳、スープ、ソース、クリーム)や、固形状豆乳製品であって中間製造物が液状のもの(プリン、ゼリー、冷菓、ヨーグルト、フィリング、チョコレート、スプレッド、マヨネーズ等)の製造において有効である。
また、豆乳製品に栄養強化剤としてカルシウムのような蛋白質との反応性が高いアルカリ土類金属イオンを添加すると蛋白質の凝集が促進され、加熱殺菌時のスケーリングの問題がさらに甚大となるが、本発明の豆乳はカルシウムとの反応性が低くなっているため、スケーリングの発生を有効に抑制することができる。そのためアルカリ土類金属イオンを添加する豆乳製品への使用は特に有効である。
Secondly, the anti-scaling effect of the present invention is greatly exhibited during the heat treatment during the production of the soy milk product.
In the case of normal soymilk products, scales (insoluble solid matter deposits) are generated in the heating device when heat-treated, and scorching occurs during continuous operation for a long time, and they grow to increase the heating efficiency. It gets worse and eventually the line is blocked. This tendency is remarkable in an indirect heating apparatus such as a plate type that is widely used in production lines for beverages. On the other hand, in the case of genuine soymilk, scaling does not easily occur even if the same processing is performed. Therefore, continuous operation with a long operation time is possible.
Therefore, among the above-mentioned soy milk products, liquid soy milk products (prepared soy milk, soy milk drinks, soft drinks, lactic acid fermented soy milk, soup, sauce, cream) and solid soy milk products that are heat-sterilized, and intermediate soy products are liquid. It is effective in the production of foods (pudding, jelly, frozen dessert, yogurt, filling, chocolate, spread, mayonnaise, etc.).
In addition, adding alkaline earth metal ions that are highly reactive with proteins such as calcium as a nutritional enhancer to soy milk products promotes protein aggregation, further exacerbating scaling problems during heat sterilization. Since the soymilk of the invention has low reactivity with calcium, the occurrence of scaling can be effectively suppressed. Therefore, the use for soy milk products to which alkaline earth metal ions are added is particularly effective.

なお本発明の豆乳を用いた豆乳製品の製造に際しては、本豆乳を原料豆乳として購入し、各種豆乳製品を製造してもよいし、上記各種豆乳製品を製造する工程中において本発明の豆乳を製造する工程が含まれていても良く、いずれにしてもスケーリング発生の防止効果により、効率的に各種豆乳製品を製造することが可能である。   In the production of the soy milk product using the soy milk of the present invention, the soy milk may be purchased as a raw soy milk to produce various soy milk products, or the soy milk of the present invention may be produced during the process of producing the various soy milk products. The manufacturing process may be included, and in any case, various soymilk products can be efficiently manufactured by the effect of preventing the occurrence of scaling.

以下に本発明の豆乳の実施例を記載するが、かかる記載により本発明の技術的思想が限定されないことはいうまでもない。なお、以下「%」、「部」と記載するときは、特に記載のない限り重量単位を指すものとする。   Although the Example of the soymilk of this invention is described below, it cannot be overemphasized that the technical idea of this invention is not limited by this description. In the following description, “%” and “parts” refer to weight units unless otherwise specified.

<実施例1>
脱皮脱胚軸大豆1部に水10部を加え、85℃で30分間浸漬し、吸水して重量が2倍になった脱皮脱胚軸大豆(水分含量40〜55%)1部に対し、熱水(90℃)3部を加えたものをCOMITROL(URSCHEL社製)で湿式粉砕し、得られたスラリーをホモゲナイザー(APV社製)に供給し、15MPaで均質化処理した。均質化したスラリーを遠心分離機(3000G、5分間)に供給してオカラを分離し、本発明の豆乳を得た。なお、浸漬、湿式粉砕、均質化、および分離工程における温度は全て80℃以上に保持した。得られた豆乳は固形分9.0%、蛋白質4.5%でpHは6.7であり、この豆乳を10mlのスピッツ管に入れて1400Gで10分間遠心分離した時の沈殿量(スピッツ量)は、豆乳10mlあたり0.07mlであり、すなわち豆乳の0.7容量%あった。
<Example 1>
10 parts of water is added to 1 part of molting and dehiscence axis soybeans, and then immersed in water at 85 ° C. for 30 minutes, water absorption is doubled and 1 part of molting and dehiking axis soybeans (water content 40-55%) What added 3 parts of hot water (90 degreeC) was wet-ground with COMITROL (made by URSCHEL), the obtained slurry was supplied to the homogenizer (made by APV), and it homogenized at 15 MPa. The homogenized slurry was supplied to a centrifuge (3000 G, 5 minutes) to separate okara, and soymilk of the present invention was obtained. The temperatures in the dipping, wet pulverization, homogenization, and separation steps were all maintained at 80 ° C. or higher. The obtained soymilk has a solid content of 9.0%, protein of 4.5% and pH of 6.7, and when this soymilk is placed in a 10 ml Spitz tube and centrifuged at 1400 G for 10 minutes, the amount of precipitation (spitz amount) is The amount was 0.07 ml per 10 ml of soy milk, that is, 0.7% by volume of soy milk.

<比較例1>
脱皮脱胚軸大豆を20℃で240分間浸漬すること、並びに、浸漬、湿式粉砕、均質化、および分離工程における温度を全て20℃±3℃に保持すること以外は、実施例1と同様にして豆乳を得た。得られた豆乳は固形分9.0重量%、蛋白質4.5重量%でpHは6.7であり、スピッツ量は豆乳の0.7容量%であった。
<Comparative Example 1>
Example 1 Except that the molting and dehiking shaft soybeans were soaked at 20 ° C for 240 minutes, and that the temperatures in the soaking, wet grinding, homogenization, and separation steps were all kept at 20 ° C ± 3 ° C. Soy milk. The obtained soymilk had a solid content of 9.0% by weight, a protein of 4.5% by weight and a pH of 6.7, and the amount of spitz was 0.7% by volume of the soymilk.

<実施例2‐(a)、2-(b)、2-(c)>(オカラの分離条件の検討)
実施例1と同様の方法で、均質化したスラリーから遠心分離機によってオカラを分離する際に、遠心分離の遠心力のみを2500G(a)、2000G(b)、1500G(c)に変更し、スピッツ量の異なる豆乳を得た。得られた原料豆乳はいずれも固形分9.0重量%に調整した。蛋白質含量は4.5重量%でpHは6.7であった。また豆乳の容量当たりのスピッツ量は実施例2-(a)で1.0容量%、実施例2-(b)で1.5容量%、実施例2-(c)で2.0容量%であった。
<Example 2- (a), 2- (b), 2- (c)> (Examination of Okara Separation Conditions)
In the same manner as in Example 1, when separating okara from the homogenized slurry by a centrifuge, only the centrifugal force of the centrifuge is changed to 2500G (a), 2000G (b), 1500G (c), Soy milk with different amounts of Spitz was obtained. All of the obtained raw material soymilk were adjusted to a solid content of 9.0% by weight. The protein content was 4.5% by weight and the pH was 6.7. Further, the amount of spitz per volume of soymilk was 1.0% by volume in Example 2- (a), 1.5% by volume in Example 2- (b), and 2.0% by volume in Example 2- (c).

<実施例3-(a)、3-(b)、3-(c)>
85℃で浸漬後の吸水した脱皮脱胚軸大豆に対し、水(20℃-(a)、40℃-(b)、60℃-(c))をそれぞれ加え、同加水温度±3℃に保持しつつ、湿式粉砕、均質化、及び分離を行う以外は、実施例1と同様の製法を用い、湿式粉砕、均質化及び分離を低温から中温域で行った豆乳を得た。得られた3種類の豆乳はいずれも固形分9.0重量%、蛋白質4.5重量%でpHは6.7であり、スピッツ量は豆乳の0.7容量%であった。
<Example 3- (a), 3- (b), 3- (c)>
Water (20 ° C- (a), 40 ° C- (b), 60 ° C- (c)) was added to the soaked and dehulled soybeans that had absorbed water after immersion at 85 ° C, respectively, and the water temperature was adjusted to ± 3 ° C. The soymilk which performed wet grinding, homogenization, and isolation | separation in the low temperature to intermediate temperature range was obtained using the manufacturing method similar to Example 1 except performing wet grinding, homogenization, and isolation | separation, hold | maintaining. All of the obtained three types of soymilk had a solid content of 9.0% by weight, a protein of 4.5% by weight, a pH of 6.7, and a spitz content of 0.7% by volume of the soymilk.

<比較例2-(a)、2-(b)、2-(c)>
浸漬温度を20℃-(a)、40℃-(b)、60℃-(c)の3種類の温度に変更する以外は、実施例1と同様の製法を用い、浸漬を低温から中温域で行った豆乳を得た。なお、浸漬工程以降の湿式粉砕、均質化、分離工程における温度は実施例1と同様80℃以上に保持した。得られた3種類の豆乳はいずれも固形分9.0重量%、蛋白質4.5重量%でpHは6.7であり、スピッツ量は豆乳の0.7容量%であった。
<Comparative Example 2- (a), 2- (b), 2- (c)>
Except for changing the immersion temperature to three temperatures of 20 ° C- (a), 40 ° C- (b), and 60 ° C- (c), the same manufacturing method as in Example 1 was used. Soy milk was obtained. In addition, the temperature in the wet pulverization, homogenization, and separation processes after the dipping process was maintained at 80 ° C. or higher as in Example 1. All of the obtained three types of soymilk had a solid content of 9.0% by weight, a protein of 4.5% by weight, a pH of 6.7, and a spitz content of 0.7% by volume of the soymilk.

<実施例4>
浸漬時間を20分とする以外は、実施例1と同様にして豆乳を得た。得られた豆乳は固形分9.0重量%、蛋白質4.5重量%でpHは6.7であり、スピッツ量は豆乳の0.7容量%であった。
<Example 4>
Soy milk was obtained in the same manner as in Example 1 except that the immersion time was 20 minutes. The obtained soymilk had a solid content of 9.0% by weight, a protein of 4.5% by weight and a pH of 6.7, and the amount of spitz was 0.7% by volume of the soymilk.

(試験例)
実施例1〜4、および比較例1、2で得られた豆乳をそれぞれ60℃に予備加熱し、プレート式UHT加熱装置(パワーポイント社製)で第一加熱で110℃、続いて第二加熱で140℃に昇温し、ホールディングチューブで30秒間保持した。流量は20L/時間で行った。加熱プレートの面積は0.0095m2で行った。
スケーリングの状態の判断は、プレート式UHT加熱装置の熱源温度と背圧の上昇の有無、および加熱終了後にプレートを分解した際のプレートへの固形分の付着量を確認した。結果を表1に示した。
なお、一般的に加熱装置内にスケーリングが生じると、熱源からの熱伝導性が悪くなり、それにつれて豆乳の温度を設定殺菌温度に維持するため熱源温度が上昇する。またスケーリングにより豆乳がラインを流れにくくなると、それにつれて流量を一定に維持するため背圧が上昇する。よって熱源温度と背圧の上昇をスケーリング発生の指標とすることができる。
(Test example)
Each of the soy milk obtained in Examples 1 to 4 and Comparative Examples 1 and 2 was preheated to 60 ° C., 110 ° C. at the first heating with a plate type UHT heating device (manufactured by Powerpoint), and then at the second heating. The temperature was raised to 140 ° C. and held for 30 seconds with a holding tube. The flow rate was 20 L / hour. The area of the heating plate was 0.0095 m 2 .
Judgment of the state of scaling confirmed the presence or absence of the rise of the heat source temperature and back pressure of the plate type UHT heating device, and the amount of solids adhering to the plate when the plate was disassembled after the heating. The results are shown in Table 1.
In general, when scaling occurs in the heating device, the heat conductivity from the heat source is deteriorated, and accordingly, the temperature of the soy milk is maintained at the set sterilization temperature, and the heat source temperature is increased. If soy milk becomes difficult to flow through the line due to scaling, the back pressure increases to keep the flow rate constant. Therefore, the increase in the heat source temperature and the back pressure can be used as an index for occurrence of scaling.

(表1)
(Table 1)

実施例1、実施例2-(a)の豆乳は5時間連続で流したが、熱源温度と背圧の上昇はほとんどなく、終始問題なく加熱処理することができた。プレート分解時のスケーリングもほとんどなく、加熱装置を長時間安定的に連続運転させることができた。   Although the soy milk of Example 1 and Example 2- (a) was allowed to flow continuously for 5 hours, the heat source temperature and the back pressure hardly increased, and the heat treatment could be performed without any problems. There was almost no scaling when disassembling the plate, and the heating device could be operated stably for a long time.

実施例2-(b)、(c)の豆乳はそれぞれ加熱開始40分、70分以降から、熱源温度と背圧の上昇が認められた。この時点で運転を中断して装置を分解すると、プレート全体に薄くスケーリングが認められ、さらに連続運転することは困難と判断された。   In the soymilk of Example 2- (b) and (c), the heat source temperature and the back pressure were increased from 40 minutes after starting heating and after 70 minutes, respectively. When the operation was interrupted at this point and the device was disassembled, thin scaling was observed on the entire plate, and it was determined that continuous operation was difficult.

実施例3-(a)〜(c)の豆乳は実施例1に比べ湿式粉砕時の温度が低かったためか、加熱開始100分以降から熱源温度と背圧の上昇が認められ、スケーリングも発生した。しかし、比較例1と比べると明らかに熱源温度と背圧の上昇が起こるまでの時間が延長され、スケーリングが抑制された。そして湿式粉砕時の温度が高いほどスケーリング防止効果が高くなった。   The soy milk of Example 3- (a) to (c) was found to have increased heat source temperature and back pressure from 100 minutes after the start of heating because of the lower temperature during wet grinding compared to Example 1, and scaling also occurred. . However, as compared with Comparative Example 1, the time until the heat source temperature and the back pressure rose clearly was extended, and scaling was suppressed. And the higher the temperature during wet grinding, the higher the anti-scaling effect.

比較例1,2の豆乳はいずれも加熱開始60分以降から、熱源温度と背圧の上昇が認められた。この時点で運転を中断して装置を分解すると、プレート全体に薄くスケーリングが認められ、さらに連続運転することは困難と判断された。ちなみに比較例1については、熱源温度と背圧の上昇後も、さらに加熱処理を続けたが、開始2時間後で流量が低下し、処理液に焦げの混入が認められたため、運転を停止した。装置分解後のプレートを観察すると、全面にびっしりとスケーリングが認められ、ラインが閉塞寸前であった。   In both the soy milks of Comparative Examples 1 and 2, the heat source temperature and the back pressure were increased from 60 minutes after the start of heating. When the operation was interrupted at this point and the device was disassembled, thin scaling was observed on the entire plate, and it was determined that continuous operation was difficult. By the way, in Comparative Example 1, the heat treatment was continued even after the heat source temperature and the back pressure were increased, but the operation was stopped because the flow rate decreased after 2 hours from start and scorching was mixed in the treatment liquid. . When the plate after disassembling the apparatus was observed, scaling was observed on the entire surface, and the line was on the verge of closing.

実施例4の豆乳は浸漬時間を短くしたためか、加熱開始120分以降から熱源温度と背圧の上昇が認められた。この時点で運転を中断して装置を分解すると、プレート全体に薄くスケーリングが認められ、さらに連続運転することは困難と判断された。しかし比較例1と比べると連続運転可能な時間が延長され、スケーリングの抑制効果は見られた。   The soymilk of Example 4 was found to have increased heat source temperature and back pressure from 120 minutes after the start of heating, probably because the soaking time was shortened. When the operation was interrupted at this point and the device was disassembled, thin scaling was observed on the entire plate, and it was determined that continuous operation was difficult. However, compared with the comparative example 1, the time which can be continuously operated was extended and the suppression effect of scaling was seen.

<実施例5> 調製豆乳での検討1
実施例1で得られた豆乳を使用して調製豆乳を以下の通り調製した。
豆乳70部に、砂糖1.5部、乳酸カルシウム0.3部、食塩0.1部、グリセリン脂肪酸エステル0.1部、水18部を加え、60℃で混合し、15MPaで均質化後、プレート式UHT加熱装置(パワーポイント社製)で第一加熱で110℃、続いて第二加熱で140℃に昇温し、ホールディングチューブで30秒間保持した。流量は20L/時間で行った。加熱プレートの面積は0.0095m2で行った。スケーリングの状態の判断は試験例と同様にして確認した。
<Example 5> Examination 1 with prepared soymilk
Using the soy milk obtained in Example 1, prepared soy milk was prepared as follows.
Add 70 parts of soy milk, 1.5 parts of sugar, 0.3 part of calcium lactate, 0.1 part of salt, 0.1 part of glycerin fatty acid ester and 18 parts of water, mix at 60 ° C, homogenize at 15 MPa, and then plate-type UHT heating device (Powerpoint) Manufactured), the temperature was raised to 110 ° C. by the first heating and then to 140 ° C. by the second heating, and was held in the holding tube for 30 seconds. The flow rate was 20 L / hour. The area of the heating plate was 0.0095 m 2 . The determination of the scaling state was confirmed in the same manner as in the test example.

<比較例3> 調製豆乳での検討2
比較例1で得られた豆乳を使用し、実施例5と同様にして調製豆乳を調製した。スケーリングの状態の判断は試験例と同様にして確認した。
<Comparative Example 3> Study 2 with prepared soymilk
Prepared soymilk was prepared in the same manner as in Example 5 using the soymilk obtained in Comparative Example 1. The determination of the scaling state was confirmed in the same manner as in the test example.

<実施例6> 調製豆乳での検討3
実施例3-(c)で得られた豆乳を使用し、実施例5と同様にして調製豆乳を調製した。スケーリングの状態の判断は試験例と同様にして確認した。
実施例5,6、及び比較例3におけるスケーリングの評価結果は表2に示した。
<Example 6> Study 3 with prepared soymilk
Using the soymilk obtained in Example 3- (c), a prepared soymilk was prepared in the same manner as in Example 5. The determination of the scaling state was confirmed in the same manner as in the test example.
The scaling evaluation results in Examples 5 and 6 and Comparative Example 3 are shown in Table 2.

(表2)
(Table 2)

実施例5の調製豆乳は加熱開始300分後に、熱源の温度、背圧の上昇がわずかに認められ始めたが、その後の上昇はおだやかで、連続で5時間処理しても分解後のプレートには薄いスケーリングが認められただけであった。本調製豆乳はカルシウムイオンが添加されているため、通常は加熱処理により蛋白質との凝集が著しく起こり、スケーリングを助長するはずであるが、かかる懸念をよそに、ほとんど問題なく連続での加熱処理が可能であった。
比較例3の調製豆乳は加熱開始40分くらいから、熱源の温度、背圧の上昇が認められ、70分で流量が低下し、処理液に焦げの混入が認められた。急遽停止し、装置分解後のプレートを観察すると、全面にびっしりとスケーリングが認められ、閉塞寸前であった。
実施例6の調製豆乳も連続で加熱できた時間は実施例5よりは短かったものの、比較例3よりも長くなり、スケーリング抑制効果が見られた。
In the prepared soymilk of Example 5, the heat source temperature and the back pressure began to increase slightly after 300 minutes from the start of heating. However, the subsequent increase was mild, and even if treated continuously for 5 hours, Only thin scaling was observed. Since this prepared soymilk is supplemented with calcium ions, it will normally cause significant aggregation with proteins due to heat treatment, which should encourage scaling, but despite this concern, continuous heat treatment can be performed with little problem. It was possible.
In the prepared soy milk of Comparative Example 3, the temperature of the heat source and the back pressure increased from about 40 minutes after the start of heating, the flow rate decreased in 70 minutes, and scorching contamination was recognized in the treatment liquid. When the plate was suddenly stopped and the device was disassembled, the entire surface was tightly scaled and was on the verge of closing.
Although the time which the preparation soymilk of Example 6 could also be heated continuously was shorter than Example 5, it became longer than the comparative example 3, and the scaling inhibitory effect was seen.

<実施例7>調製豆乳での検討4
実施例1で得られた豆乳を蒸気吹込み式の直接加熱装置で温度144℃、4秒間処理した豆乳を使用し、実施例5と同様にして調製豆乳を調製した。
実施例7の調製豆乳は加熱開始300分を過ぎても、熱源の温度、背圧の上昇が認められず、実施例5の調製豆乳よりもさらにスケーリングの防止効果が確認できた。連続で5時間処理しても分解後のプレートにもほとんどスケーリングは認められなかった。
<Example 7> Study 4 with prepared soymilk
Prepared soymilk was prepared in the same manner as in Example 5 using soymilk obtained by treating the soymilk obtained in Example 1 with a steam blowing direct heating device at a temperature of 144 ° C. for 4 seconds.
In the prepared soymilk of Example 7, even after 300 minutes from the start of heating, the temperature of the heat source and the back pressure were not increased, and the antiscaling effect was further confirmed as compared with the prepared soymilk of Example 5. Even after 5 hours of continuous treatment, almost no scaling was observed in the decomposed plate.

従来の豆乳や豆乳製品の製造においてはプレート式加熱殺菌機などの加熱装置内に発生するスケーリングが長時間連続運転する際の障害となっていた。本発明の豆乳の製法を用いれば加熱処理時のスケーリングの発生が顕著に防止されるため、製造途中において中断し、装置の洗浄を余儀なくされることなく、長時間に渡り連続的かつ安定的に豆乳とそれを配合した豆乳製品を製造できる。したがって豆乳産業の発達に大いに貢献しうる。
In conventional production of soymilk and soymilk products, scaling generated in a heating device such as a plate-type heat sterilizer has been an obstacle to continuous operation for a long time. By using the soymilk manufacturing method of the present invention, the occurrence of scaling during the heat treatment is remarkably prevented, so that it is interrupted in the middle of production and the apparatus must be washed continuously and stably over time. Soymilk and soymilk products containing it can be manufactured. Therefore, it can greatly contribute to the development of the soy milk industry.

Claims (5)

大豆を浸漬後、湿式粉砕し、得られたスラリーを豆乳とオカラに分離する豆乳の製造工程において、大豆の浸漬工程を80℃以上に保持すること、かつ、得られた豆乳を1400Gで10分間遠心分離した際の沈殿量が豆乳の1.0容量%以下となるまでオカラを分離することを特徴とする豆乳の製造法。 In the soymilk manufacturing process in which soybean is soaked and then wet pulverized, and the resulting slurry is separated into soymilk and okara, the soybean soaking process is maintained at 80 ° C. or higher, and the obtained soymilk is kept at 1400 G for 10 minutes A method for producing soymilk, characterized in that okara is separated until the amount of sediment upon centrifugation is 1.0 vol% or less of soymilk. 湿式粉砕時の温度を50℃以上に保持する請求項1記載の製造法。 The production method according to claim 1, wherein the temperature during wet grinding is maintained at 50 ° C. or higher. 請求項1記載の製造法で得た豆乳を配合し、加熱処理を行うことを特徴とする豆乳製品の製造法。 A method for producing a soymilk product, wherein the soymilk obtained by the production method according to claim 1 is blended and heat-treated. 請求項1記載の製造法を用いることを特徴とする、豆乳を加熱処理する際のスケーリング防止方法。 A method for preventing scaling when heat-treating soymilk, wherein the production method according to claim 1 is used. 請求項1記載の製造法で得た豆乳を配合することを特徴とする、豆乳製品を加熱処理する際のスケーリング防止方法。
A method for preventing scaling when heat-treating a soymilk product, comprising blending soymilk obtained by the production method according to claim 1.
JP2005007070A 2005-01-14 2005-01-14 Soymilk production method Active JP4483590B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005007070A JP4483590B2 (en) 2005-01-14 2005-01-14 Soymilk production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005007070A JP4483590B2 (en) 2005-01-14 2005-01-14 Soymilk production method

Publications (2)

Publication Number Publication Date
JP2006191860A true JP2006191860A (en) 2006-07-27
JP4483590B2 JP4483590B2 (en) 2010-06-16

Family

ID=36798398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005007070A Active JP4483590B2 (en) 2005-01-14 2005-01-14 Soymilk production method

Country Status (1)

Country Link
JP (1) JP4483590B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008010273A1 (en) * 2006-07-19 2008-01-24 Fuji Oil Company, Limited Process for producing soymilk
JP2010515462A (en) * 2007-01-11 2010-05-13 クラフト・フーヅ・グローバル・ブランヅ リミテッド ライアビリティ カンパニー Method for forming heat-stable concentrated soymilk
JP2014103884A (en) * 2012-11-27 2014-06-09 Q P Corp Welsh onion family vegetable sauce
JP7466583B2 (en) 2016-01-15 2024-04-12 ザ コカ・コーラ カンパニー Continuous high pressure processing of food and beverage products

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008010273A1 (en) * 2006-07-19 2008-01-24 Fuji Oil Company, Limited Process for producing soymilk
JP2010515462A (en) * 2007-01-11 2010-05-13 クラフト・フーヅ・グローバル・ブランヅ リミテッド ライアビリティ カンパニー Method for forming heat-stable concentrated soymilk
JP2014103884A (en) * 2012-11-27 2014-06-09 Q P Corp Welsh onion family vegetable sauce
JP7466583B2 (en) 2016-01-15 2024-04-12 ザ コカ・コーラ カンパニー Continuous high pressure processing of food and beverage products

Also Published As

Publication number Publication date
JP4483590B2 (en) 2010-06-16

Similar Documents

Publication Publication Date Title
EP1528068B1 (en) Process for producing soy protein
WO2004091314A2 (en) Soya or grain fiber particulates and methods of preparation
CN1111262A (en) Pectin process and composition
EP1120047B1 (en) Method for processing soybean by using enzyme, processed soybean thus obtained and foods containing the thus processed soybean
WO2000008943A1 (en) Process for producing soy milk
WO2005027648A1 (en) Oil-in-water emulsified composition
JP4483590B2 (en) Soymilk production method
JP2020507337A (en) Perilla butter produced using perilla and method for producing the same
JPH028694B2 (en)
KR101457333B1 (en) Preparation method of non-additive and non-adjustive soya milk using fine powder of raw soybean and non-additive soya milk prepared by the same
RU2341093C2 (en) Method of hemp milk manufacturing
JPH09154533A (en) Production of extract containing functional nutrient ingredient and production of candy cake using hte same extract
JP4498308B2 (en) Method for producing cottage cheese-like food
JP2006204208A (en) Method for manufacturing frozen soymilk
JP2008022824A (en) Soybean cream-like food, and method for producing the same
KR20070019265A (en) High-fiber soybean products comprising soybean hull and bean curd, and process for the preparation thereof
US6770309B2 (en) Method of processing soybean by use of an enzyme, processed soybean obtained by the same method, and food containing the processed soybean
WO2008010273A1 (en) Process for producing soymilk
JPH09182569A (en) Production of rice flour and ground rice emulsion
JP4755625B2 (en) Method for producing cottage cheese-like food
JP4498307B2 (en) Method for producing cottage cheese-like food
JP2007325503A (en) Soybean peptide paste and method for producing the same
JP4906061B2 (en) Method for producing soy bean juice and soy bean juice obtained by the method
JP2006296331A (en) Magnesium composition and method for producing the same
JPS6127034B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070730

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100302

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100315

R150 Certificate of patent or registration of utility model

Ref document number: 4483590

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350