WO2011052582A1 - Method for manufacturing organic thin-film solar battery module - Google Patents

Method for manufacturing organic thin-film solar battery module Download PDF

Info

Publication number
WO2011052582A1
WO2011052582A1 PCT/JP2010/068959 JP2010068959W WO2011052582A1 WO 2011052582 A1 WO2011052582 A1 WO 2011052582A1 JP 2010068959 W JP2010068959 W JP 2010068959W WO 2011052582 A1 WO2011052582 A1 WO 2011052582A1
Authority
WO
WIPO (PCT)
Prior art keywords
forming
liquid repellent
electrode
substrate
pattern
Prior art date
Application number
PCT/JP2010/068959
Other languages
French (fr)
Japanese (ja)
Inventor
崇広 清家
大西 敏博
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to US13/504,018 priority Critical patent/US20120211083A1/en
Priority to CN2010800476215A priority patent/CN102598335A/en
Publication of WO2011052582A1 publication Critical patent/WO2011052582A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • H10K39/10Organic photovoltaic [PV] modules; Arrays of single organic PV cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/103Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/20Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising organic-organic junctions, e.g. donor-acceptor junctions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/621Providing a shape to conductive layers, e.g. patterning or selective deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for producing an organic thin film solar cell module in which a plurality of organic photoelectric conversion elements are integrated on the same substrate.
  • the organic thin-film solar cell module usually has (1) a step of preparing a substrate, (2) a step of forming a first electrode on the substrate, and (3) a first charge transport layer formed on the first electrode. A step, (4) a step of forming an active layer on the first charge transport layer, (5) a step of forming a second charge transport layer on the active layer, and (6) a second layer on the second charge transport layer. And a step of forming two electrodes.
  • the organic thin film solar cell module is manufactured by sequentially forming a plurality of functional layers such as a charge transport layer and an active layer. Each functional layer is patterned into a desired shape by any suitable patterning process according to the material.
  • a direct patterning process such as a printing method is performed, or (ii) an unnecessary portion is removed after a film forming process and patterned into an intended shape.
  • the wet etching process, the dry etching process, the laser patterning process, and the mechanical patterning process are performed separately from the film forming process.
  • Non-Patent Document 2 As a laser patterning process in the manufacturing process of an organic thin film solar cell, an example in which an active layer (MDMO-PPV: PCBM layer) is separated using an Nd: YAG laser having a wavelength of 532 nm is known (see Non-Patent Document 2). ).
  • the applied coating liquid oozes out to an undesired region, and as a result, adjacent organic photoelectric conversion elements are electrically short-circuited to operate. It may cause defects.
  • a wet etching process, a dry etching process, or a laser patterning process not only the number of processes is increased, but also a large-scale and expensive facility such as a vacuum system is required.
  • the inventors of the present invention have made extensive studies on an organic thin film solar cell module and a method for producing the same, and found that the above-mentioned problems can be solved by providing a liquid repellent pattern, thereby completing the present invention.
  • this invention provides the manufacturing method and organic thin-film solar cell module of the following organic thin-film solar cell module.
  • a plurality of organic photoelectric conversion elements including a pair of electrodes including a first electrode and a second electrode and an active layer sandwiched between the pair of electrodes are arranged on a substrate.
  • a method for producing an organic thin-film solar cell module comprising: forming a plurality of first electrodes on a substrate; and forming a liquid repellent pattern on a part of each of the plurality of first electrodes.
  • a method for producing an organic thin-film solar cell module comprising: a step of forming a plurality of first electrodes on a substrate; and a step of forming a liquid repellent pattern on a substrate outside the plurality of first electrodes.
  • the step of forming the liquid repellent pattern covers the step of forming the liquid repellent portion on the entire surface of the substrate on which the plurality of first electrodes are formed, and a portion on the substrate on which the first electrode is formed.
  • a first charge transport layer having a first exposed portion that exposes the liquid repellent pattern by applying a coating liquid that is repelled by the liquid repellent pattern over the entire surface of the substrate on which the pattern has been formed.
  • An active layer covering the transport layer a step of forming a second charge transport layer covering the active layer, and penetrating the second charge transport layer, the active layer and the first charge transport layer, outside the liquid repellent pattern Forming a second exposed portion where a portion of a certain first electrode is exposed, and a second charge Forming a second electrode that covers the transport layer, embeds the second exposed portion, and uncovers the liquid-repellent pattern by applying a coating liquid; a second electrode; a second charge transport layer; Forming a third exposed portion that penetrates the active layer and exposes a portion of the first charge transport layer outside the liquid repellent pattern, and separating the device into a plurality of organic photoelectric conversion elements. Manufacturing method of battery module.
  • the step of forming the liquid repellent pattern includes the bonding strength between the material included in the substrate and the material included in the liquid repellent part, the material included in the first electrode, and the material included in the liquid repellent part.
  • the lyophobic treatment is performed on the entire surface of the substrate by removing the liquid repellent portion from the surface of the first electrode by utilizing the difference between the bonding strength and the region of the substrate surface where the first electrode is not formed.
  • the step of forming the liquid repellent pattern is a step of forming the liquid repellent pattern using a coupling agent containing one kind of metal selected from the group consisting of silicon, aluminum, and titanium.
  • the manufacturing method of the organic thin-film solar cell module as described in any one of-[5].
  • the organic thin-film solar cell according to any one of [1] to [5], wherein the step of forming the liquid-repellent pattern is a step of forming the liquid-repellent pattern using a material containing fluorine. Module manufacturing method.
  • the step of forming the liquid repellent pattern is a step of forming a liquid repellent pattern by steam treatment using one or more selected from the group consisting of CF 4 , NF 3 , and a mixture of CF 4 and methanol.
  • the method for producing an organic thin-film solar cell module according to [8].
  • An organic thin film solar cell module that can be produced by the production method according to any one of [1] to [9].
  • FIG. 1 is a schematic cross-sectional view (1) showing the manufacturing method of the first embodiment.
  • FIG. 2 is a schematic cross-sectional view (2) illustrating the manufacturing method of the first embodiment.
  • FIG. 3 is a schematic cross-sectional view (3) showing the manufacturing method of the first embodiment.
  • FIG. 4 is a schematic cross-sectional view (4) showing the manufacturing method of the first embodiment.
  • FIG. 5 is a schematic cross-sectional view (5) showing the manufacturing method of the first embodiment.
  • FIG. 6 is a schematic cross-sectional view (6) showing the manufacturing method of the first embodiment.
  • FIG. 7 is a schematic cross-sectional view (7) showing the manufacturing method of the first embodiment.
  • FIG. 8 is a schematic cross-sectional view (8) showing the manufacturing method of the first embodiment.
  • FIG. 1 is a schematic cross-sectional view (1) showing the manufacturing method of the first embodiment.
  • FIG. 2 is a schematic cross-sectional view (2) illustrating the manufacturing method of the first embodiment.
  • FIG. 3 is a schematic
  • FIG. 9 is a schematic cross-sectional view (9) showing the manufacturing method of the first embodiment.
  • FIG. 10 is a schematic cross-sectional view (1) showing the manufacturing method of the second embodiment.
  • FIG. 11 is a schematic cross-sectional view (2) showing the manufacturing method of the second embodiment.
  • FIG. 12 is a schematic cross-sectional view (3) showing the manufacturing method of the second embodiment.
  • FIG. 13 is a schematic cross-sectional view (4) showing the manufacturing method of the second embodiment.
  • FIG. 14 is a schematic cross-sectional view (5) showing the manufacturing method of the second embodiment.
  • FIG. 15 is a schematic cross-sectional view (6) showing the manufacturing method of the second embodiment.
  • FIG. 16 is a schematic cross-sectional view (7) showing the manufacturing method of the second embodiment.
  • FIG. 17 is a schematic cross-sectional view (8) showing the manufacturing method of the second embodiment.
  • FIG. 18 is a schematic cross-sectional view (9) illustrating the manufacturing method of the second embodiment.
  • Substrate 10A Electrode forming region 10B: Non-electrode forming region 20: First electrode 30: Liquid repellent portion 30a: Liquid repellent pattern 40: First charge transport layer 50: Active layer 60: Second charge transport layer 70 : Second electrode 70a: contact 100A1: first element 100A2: second element 100B: inter-element part R: lyophilic treatment X: first exposed part Y: second exposed part Z: third exposed part
  • the organic thin film solar cell module of the present invention can basically have the same module structure as a conventional solar cell module.
  • an organic thin-film solar cell module includes a plurality of organic photoelectric conversion elements (cells) formed on a metal (ceramic) substrate (supporting substrate), and the organic photoelectric conversion elements are covered with a filling resin, protective glass, or the like.
  • a structure is adopted in which light is taken in from the opposite side of the substrate.
  • a transparent material such as tempered glass may be used for the substrate, and an organic photoelectric conversion element may be formed thereon to take in light from the transparent substrate side.
  • the structure of the organic thin film solar cell module include module structures called super straight type, substrate type, and potting type, and substrate integrated module structures used in amorphous silicon solar cells and the like.
  • the structure of the organic thin-film solar cell module of the present invention may be appropriately selected from these module structures depending on the purpose of use, the place of use, and the environment.
  • organic photoelectric conversion elements are arranged at regular intervals between substrates that are transparent on one side or both sides and subjected to antireflection treatment, and adjacent organic photoelectric conversion elements are They are connected by contact electrodes (embedded electrodes), metal leads, flexible wirings, etc., and current collecting electrodes are arranged on the outer edges, so that the generated power is taken out to the outside.
  • contact electrodes embedded electrodes
  • metal leads metal leads
  • flexible wirings etc.
  • current collecting electrodes are arranged on the outer edges, so that the generated power is taken out to the outside.
  • the substrate and the organic photoelectric conversion element various types of plastic materials such as ethylene vinyl acetate (EVA) can be used in the form of a film or filled resin depending on the purpose in order to protect the organic photoelectric conversion element and improve the current collection efficiency. It may be used. Also, when used in places where there is no need to cover the surface with a hard material, such as where there is little impact from the outside, the surface protective layer is made of a transparent plastic film, and a protective function is given by curing the above filling resin However, the substrate on one side may be eliminated. The periphery of the substrate is sandwiched and fixed by a metal frame in order to secure internal sealing and module rigidity, and the substrate and the frame are hermetically sealed with a sealing material. In addition, if a flexible material is used for the organic photoelectric conversion element itself, the substrate, the filling material, and the sealing material, the organic photoelectric conversion element can be formed on the curved surface.
  • EVA ethylene vinyl acetate
  • the solar cell module sequentially forms photoelectric conversion elements on the support while feeding out the roll-shaped support, and cuts it to a desired size. Then, the peripheral portion may be produced by sealing with a flexible and moisture-proof material.
  • the solar cell module using the flexible support is preferably used by being bonded and fixed to curved glass or the like.
  • the exterior members such as the frame and the protective member are not the gist of the present invention, so the description thereof will be omitted, and the explanation will focus on the organic photoelectric conversion element and the manufacturing method thereof. To do.
  • each figure only schematically shows the shape, size, and arrangement of components to the extent that the invention can be understood, and the present invention is not particularly limited thereby. Moreover, in each figure, about the same component, it attaches
  • an organic photoelectric conversion element including a pair of electrodes including a first electrode and a second electrode and an active layer sandwiched between the pair of electrodes is a substrate.
  • the method of manufacturing the organic thin-film solar cell module according to the first embodiment includes a step of forming a plurality of first electrodes on a substrate, and a liquid repellent property on the entire surface of the substrate on which the first electrodes are formed. Forming a conductive portion, forming a mask pattern covering a portion of the substrate on which the first electrode is provided, lyophilicizing the entire surface of the substrate on which the first electrode is formed using the mask pattern as a mask, Removing the liquid-repellent pattern, and applying a liquid-repellent coating liquid on the entire surface of the substrate on which the liquid-repellent pattern is formed to expose the liquid-repellent pattern.
  • first charge transport layer having a first exposed portion, an active layer covering the first charge transport layer, a second charge transport layer covering the active layer, the second charge transport layer, the active layer, and the first layer
  • the first that penetrates the charge transport layer and is outside the liquid repellent pattern A step of forming a second exposed portion in which a part of the electrode is exposed; and a second electrode that covers the second charge transport layer, embeds the second exposed portion, and uncovers the liquid repellent pattern. And forming a third exposed portion that exposes a portion of the first charge transport layer outside the liquid repellent pattern, penetrating the second electrode, the second charge transport layer, and the active layer. And a step of element separation into a plurality of organic photoelectric conversion elements.
  • FIG. 1 is a schematic cross-sectional view (1) showing the manufacturing method of the first embodiment.
  • FIG. 2 is a schematic cross-sectional view (2) illustrating the manufacturing method of the first embodiment.
  • FIG. 3 is a schematic cross-sectional view (3) showing the manufacturing method of the first embodiment.
  • FIG. 4 is a schematic cross-sectional view (4) showing the manufacturing method of the first embodiment.
  • FIG. 5 is a schematic cross-sectional view (5) showing the manufacturing method of the first embodiment.
  • FIG. 6 is a schematic cross-sectional view (6) showing the manufacturing method of the first embodiment.
  • FIG. 7 is a schematic cross-sectional view (7) showing the manufacturing method of the first embodiment.
  • FIG. 8 is a schematic cross-sectional view (8) showing the manufacturing method of the first embodiment.
  • FIG. 9 is a schematic cross-sectional view (9) showing the manufacturing method of the first embodiment.
  • a substrate 10 is prepared.
  • the substrate 10 is a flat substrate having two principal surfaces facing each other.
  • a substrate on which one main surface of the substrate 10 is previously provided with a thin film of a conductive material that can be an electrode material such as indium tin oxide (sometimes referred to as ITO) is provided. You may prepare.
  • a thin film of conductive material is formed on one main surface of the substrate 10 by any suitable method.
  • the conductive material thin film is then patterned.
  • an electrode forming region 10A and a non-electrode forming region 10B outside the electrode forming region 10A are set in advance.
  • the thin film of the conductive material is patterned by any suitable method such as a photolithography process and an etching process to form the first electrode 20 having a plurality of patterns electrically separated from each other in the electrode formation region 10A.
  • a part of the main surface of the substrate 10 is exposed in the non-electrode forming region 10B where the first electrode 20 is not formed.
  • a liquid repellent portion 30 that is liquid repellent is formed on the entire surface of the substrate 10 on which the first electrode 20 is formed, including the surface 20a of the first electrode 20.
  • a mask pattern (not shown) is formed to cover a portion of the substrate 10 provided with the first electrode 20 (not shown), and the substrate 10 on which the first electrode 20 is formed using this mask pattern as a mask.
  • the entire surface is made lyophilic by lyophilic treatment R.
  • lyophilic treatment R preferably, plasma treatment, UV ozone treatment, and corona discharge treatment according to a conventional method are used.
  • the mask pattern is removed to form a liquid repellent pattern 30a.
  • a step of first forming the liquid repellent portion 30 using a coupling agent and subsequently forming the liquid repellent pattern 30a, or a material containing a thiol compound is used.
  • the step of forming the liquid-repellent portion 30 and subsequently forming the liquid-repellent pattern 30a can be mentioned.
  • Examples of coupling agents with metal Si are vinyltrichlorosilane, vinyltrimethoxysilane, vinyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxy.
  • Examples of coupling agents with metal Al are aluminum isopropylate, mono sec-butoxyaluminum diisopropylate, aluminum sec-butyrate, aluminum ethylate, ethyl acetoacetate aluminum diisopropylate, aluminum tris (ethyl acetoacetate) , Alkyl acetoacetate aluminum diisopropylate, aluminum monoacetylacetonate bis (ethylacetoacetate), aluminum tris (acetylacetonate), aluminum monoisopropoxymonooroxyethyl acetoacetate, cyclic aluminum oxide isopropylate, cyclic aluminum oxide octyl Rate, cyclic aluminum oxide stearate, and the like.
  • Examples of coupling agents in which the metal is Ti include tetraisopropyl titanate, tetranormal butyl titanate, butyl titanate dimer, tetra (2-ethylhexyl) titanate, tetramethyl titanate, titanium acetylacetonate, titanium tetraacetylacetonate, titanium Examples thereof include ethyl acetoacetate, titanium octanediolate, titanium lactate, titanium triethanolamate, and polyhydroxytitanium stearate.
  • thiol compounds include octadecanethiol, azophenoxide decanethiol, perfluorooctylpentanethiol, butanethiol, hexanethiol, octanethiol, dodecanethiol and the like.
  • a coupling agent is preferably used.
  • the liquid repellent portion 30 first fluorinated by vapor treatment using one or more selected from the group consisting of CF 4 , NF 3 , and a mixture of CF 4 and methanol. And subsequently patterning the liquid repellent portion 30.
  • the liquid repellent pattern 30a may be directly formed on the substrate on which the first electrode 20 is provided by, for example, an ink jet method.
  • the liquid repellent part 30 forming step and the liquid repellent part 30 patterning step are not required.
  • a coating liquid that is repelled by the liquid repellent pattern 30a is then applied to the entire surface of the substrate 10 on which the liquid repellent pattern 30a is formed to expose the liquid repellent pattern 30a.
  • a first charge transport layer 40 having a first exposed portion X is formed.
  • the active layer 50 that covers the first charge transport layer 40 is subsequently formed. Also in the step of forming the active layer 50, a coating liquid repelled by the liquid repellent pattern 30a is applied to the entire surface of the substrate 10 on which the liquid repellent pattern 30a is formed.
  • a second charge transport layer 60 covering the active layer 50 is further formed. Also in the formation process of the second charge transport layer 60, a coating liquid repelled by the liquid repellent pattern 30a is applied to the entire surface of the substrate 10 on which the liquid repellent pattern 30a is formed.
  • the island-shaped stacked structure of the first charge transport layer 40, the active layer 50, and the second charge transport layer 60 is formed in a region outside the liquid repellent pattern 30a in a self-aligned manner, and the liquid repellent property A first exposed portion X that exposes the pattern 30a is formed.
  • the second exposure is such that a part of the first electrode 20 outside the liquid repellent pattern 30a is exposed through the first charge transport layer 40, the active layer 50, and the second charge transport layer 60. Part Y is formed.
  • the second electrode 70 that covers the second charge transport layer 60, fills the second exposed portion Y, contacts the first electrode 20, and uncovers the liquid repellent pattern 30a.
  • This process is also formed by applying a coating liquid repelled by the liquid repellent pattern 30a. By this step, a gap is generated between the liquid repellent pattern 30 a and the second electrode 70.
  • a portion of the second electrode that embeds the second exposed portion Y functions as a contact (electrode) 70 a that makes the first electrode 20 and the second electrode 70 conductive.
  • the second electrode 70 is formed by a method such as a vapor deposition method instead of the coating method, the material of the second electrode 70 is deposited also on the liquid repellent pattern 30a. Needless to say, a contact is formed immediately above the liquid repellent pattern 30a. Therefore, in this case, the second exposed portion Y need not be formed.
  • the second exposed portion Y is a contact groove or a contact hole for conducting the first electrode 20 and the second electrode 70
  • the shape thereof is not particularly limited. It can be formed as a columnar shape.
  • the contact 70a By forming the contact 70a in this way, adjacent organic photoelectric conversion elements are electrically connected, and an organic thin film solar cell module in which a plurality of organic photoelectric conversion elements are connected to each other is manufactured.
  • the first charge transport layer 40, the active layer 50, the second charge transport layer 60, and the second electrode 70 are coated with a coating liquid, that is, a solution, and the formed layer is applied in a nitrogen gas atmosphere. It is formed by a film forming method that is dried under conditions suitable for the material and the solvent under any suitable atmosphere.
  • Film formation methods include spin coating, casting, micro gravure coating, gravure coating, bar coating, roll coating, wire bar coating, dip coating, spray coating, screen printing, and gravure printing.
  • Flexographic printing methods, offset printing methods, inkjet printing methods, dispenser printing methods, nozzle coating methods, capillary coating methods, and other coating methods may be used, such as spin coating methods, flexographic printing methods, gravure printing methods, inkjet printing methods, Dispenser printing is preferred.
  • the solvent used in the film forming method using these solutions is not particularly limited as long as it dissolves the material of each layer and is repelled by the liquid repellent pattern so as not to wet and spread on the liquid repellent pattern.
  • solvents examples include toluene, xylene, mesitylene, tetralin, decalin, bicyclohexyl, unsaturated hydrocarbon solvents such as butylbenzene, sec-butylbenzene, tert-butylbenzene, carbon tetrachloride, chloroform, dichloromethane , Halogenated saturated hydrocarbon solvents such as dichloroethane, chlorobutane, bromobutane, chloropentane, bromopentane, chlorohexane, bromohexane, chlorocyclohexane, bromocyclohexane, and halogenated unsaturated hydrocarbons such as chlorobenzene, dichlorobenzene, and trichlorobenzene
  • the solvent include ether solvents such as tetrahydrofuran and tetrahydropyran.
  • the third exposed portion Z can be formed by a conventionally known patterning process such as a photolithography process, an etching process subsequent thereto, and a cutting process using a rotary blade.
  • the third exposed portion Z is a configuration for electrically separating the first organic photoelectric conversion element 100A1 and the second organic photoelectric conversion element 100A2 by the inter-element portion 100B.
  • a plurality of organic photoelectric conversion elements are formed by element isolation.
  • the inter-element portion 100B has a linear groove shape, and in this example, adjacent elements are separated in the vicinity of the peripheral edge portion of the first electrode along the peripheral edge shape (in this example, a straight line shape). Since the inter-element portion 100B is an area that does not function as a photoelectric conversion element, it is preferable to make the area as small as possible.
  • the third exposed portion Z is preferably formed as a shape and an arrangement position that can reduce the size of the inter-element portion 100B as much as possible.
  • it may be configured as a linear groove as close as possible to the peripheral edge of the first electrode and as narrow as possible.
  • an organic photoelectric conversion element including a pair of electrodes including a first electrode and a second electrode and an active layer sandwiched between the pair of electrodes is a substrate.
  • a step of forming a plurality of first electrodes on the substrate and a plurality of first electrodes provided on the substrate Forming a liquid repellent pattern on an outer substrate.
  • the step of forming the liquid repellent pattern includes the bond strength between the material included in the substrate and the material included in the liquid repellent part, and the material included in the first electrode and the liquid repellent part.
  • the lyophobic treatment is performed on the entire surface of the substrate by utilizing the difference in bonding strength with the material to be removed, and the liquid repellent portion is removed from the surface of the first electrode, and the first electrode is not formed on the surface of the substrate.
  • FIG. 10 is a schematic cross-sectional view (1) showing the manufacturing method of the second embodiment.
  • FIG. 11 is a schematic cross-sectional view (2) showing the manufacturing method of the second embodiment.
  • FIG. 12 is a schematic cross-sectional view (3) showing the manufacturing method of the second embodiment.
  • FIG. 13 is a schematic cross-sectional view (4) showing the manufacturing method of the second embodiment.
  • FIG. 14 is a schematic cross-sectional view (5) showing the manufacturing method of the second embodiment.
  • FIG. 15 is a schematic cross-sectional view (6) showing the manufacturing method of the second embodiment.
  • FIG. 16 is a schematic cross-sectional view (7) showing the manufacturing method of the second embodiment.
  • FIG. 17 is a schematic cross-sectional view (8) showing the manufacturing method of the second embodiment.
  • FIG. 18 is a schematic cross-sectional view (9) illustrating the manufacturing method of the second embodiment.
  • a substrate 10 is prepared. If the substrate 10 is not provided with a thin film of conductive material, the conductive material film is formed by any suitable method. The conductive material thin film is then patterned. In this patterning, an electrode forming region 10A and a non-electrode forming region 10B outside the electrode forming region 10A are set in advance. The thin film of the conductive material is patterned to form the first electrode 20 having a plurality of patterns electrically separated from each other in the electrode formation region 10A. By this step, a part of the main surface of the substrate 10 is exposed in the non-electrode formation region 10B.
  • a liquid repellent portion 30 that is liquid repellent is formed on the entire surface of the substrate 10 on which the first electrode 20 is formed, including the surface 20 a of the first electrode 20.
  • the step of forming the liquid repellent portion 30 may be performed in the same manner as in the first embodiment.
  • the liquid repellent part 30 may be formed using a coupling agent containing one kind of metal selected from the group consisting of silicon, aluminum and titanium.
  • the step of forming the liquid repellent part 30 includes the step of forming the liquid repellent part 30 fluorinated by steam treatment using one or more selected from the group consisting of CF 4 , NF 3 , and a mixture of CF 4 and methanol. What is necessary is just to make it the process of forming.
  • the entire surface of the substrate 10 on which the first electrode 20 is formed is made lyophilic by lyophilic treatment R.
  • the lyophilic process may be performed in the same manner as in the first embodiment.
  • the lyophilic treatment R preferably includes plasma treatment, UV ozone treatment, corona discharge treatment, and water washing treatment according to a conventional method.
  • the exposed surface of the first electrode 20, that is, the electrode formation region 10 ⁇ / b> A is made lyophilic, and the liquid repellent pattern 30 a remains only in the non-electrode formation region 10 ⁇ / b> B exposed from the first electrode 20.
  • the property of the surface of the first electrode 20 (the property of the material included in the first electrode 20) and the property of the surface of the substrate 10 exposed from the first electrode 20 (on the substrate 10).
  • Property of the material contained that is, the parent of the material of the liquid repellent part 30 formed on both the surface of the first electrode 20 and a part (region) of the surface of the substrate 10 on which the first electrode 20 is not formed. It can be implemented by utilizing the difference in the removal rate due to the liquefaction treatment R.
  • the lyophobic portion 30 that has been fluorinated by CF 4 plasma treatment is washed with water to a suitable degree, only the fluoride that is the fluorine component on the first electrode 20 can be selectively removed, and the first The liquid repellent pattern 30 a can be formed (remaining) only in the region outside the electrode 20.
  • the liquid repellent pattern 30a may be formed by using a mask pattern or by an inkjet method.
  • a coating liquid that is repelled by the liquid repellent pattern 30a is then applied to the entire surface of the substrate 10 on which the liquid repellent pattern 30a is formed to expose the liquid repellent pattern 30a.
  • a first charge transport layer 40 having a first exposed portion X is formed.
  • the active layer 50 that covers the first charge transport layer 40 is subsequently formed. Also in the step of forming the active layer 50, a coating liquid repelled by the liquid repellent pattern 30a is applied to the entire surface of the substrate 10 on which the liquid repellent pattern 30a is formed.
  • a second charge transport layer 60 covering the active layer 50 is further formed. Also in the formation process of the second charge transport layer 60, a coating liquid repelled by the liquid repellent pattern 30a is applied to the entire surface of the substrate 10 on which the liquid repellent pattern 30a is formed.
  • the island-shaped stacked structure of the first charge transport layer 40, the active layer 50, and the second charge transport layer 60 is formed in a region outside the liquid repellent pattern 30a in a self-aligned manner, and the liquid repellent property A first exposed portion X that exposes the pattern 30a is formed.
  • the second exposure is such that a part of the first electrode 20 outside the liquid repellent pattern 30a is exposed through the first charge transport layer 40, the active layer 50, and the second charge transport layer 60. Part Y is formed.
  • the second electrode 70 that covers the second charge transport layer 60, fills the second exposed portion Y, contacts the first electrode 20, and uncovers the liquid repellent pattern 30a is formed. Form. This process is also formed by applying a coating liquid repelled by the liquid repellent pattern 30a.
  • a part of the second electrode that embeds the second exposed portion Y functions as a contact 70 a that connects the first electrode 20 and the second electrode 70.
  • the second electrode 70 is formed by a method such as a vapor deposition method instead of the coating method, the material of the second electrode 70 is deposited also on the liquid repellent pattern 30a. Needless to say, a contact is formed immediately above the liquid repellent pattern 30a. Therefore, in this case, the second exposed portion Y need not be formed.
  • the second exposed portion Y is a contact groove for conducting the first electrode 20 and the second electrode 70
  • the shape thereof is not particularly limited.
  • the second exposed portion Y may be formed as a groove shape or a hole shape. Good.
  • the organic photoelectric conversion element includes a pair of electrodes composed of an anode and a cathode, and an active layer sandwiched between the pair of electrodes.
  • At least one of the electrodes on which light is incident that is, at least one of the electrodes is a transparent or translucent electrode capable of transmitting incident light (sunlight) having a wavelength necessary for power generation.
  • the organic photoelectric conversion elements include, for example, a pair of electrodes including a first electrode 20 that is an anode and a second electrode 70 that is a cathode, for example. Active layer 50 sandwiched between the electrodes.
  • the polarities of the first electrode 20 and the second electrode 70 may be any suitable polarity corresponding to the element structure, and the first electrode 20 may be a cathode and the second electrode 70 may be an anode.
  • Examples of transparent or translucent electrodes include conductive metal oxide films and translucent metal thin films.
  • the electrode indium oxide, zinc oxide, tin oxide, and a film made using a conductive material such as indium tin oxide or indium zinc oxide (IZO) that is a composite thereof, A film made of gold, platinum, silver, copper or the like such as NESA is used, and a film made of ITO, indium zinc oxide, or tin oxide is preferable.
  • Examples of the electrode manufacturing method include a vacuum deposition method, a sputtering method, an ion plating method, a plating method, and the like.
  • electrode material for the opaque electrode a metal, a conductive polymer, or the like can be used.
  • electrode materials for opaque electrodes include lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, strontium, barium, aluminum, scandium, vanadium, zinc, yttrium, indium, cerium, samarium, europium, terbium Selected from the group consisting of gold, silver, platinum, copper, manganese, titanium, cobalt, nickel, tungsten and tin, and a metal such as ytterbium and two or more alloys thereof, or one or more metals Examples include alloys with one or more metals, graphite, graphite intercalation compounds, polyaniline and its derivatives, polythiophene and its derivatives.
  • Examples of the alloy include magnesium-silver alloy, magnesium-indium alloy, magnesium-aluminum alloy, indium-silver alloy, lithium-aluminum alloy, lithium-magnesium alloy, lithium-indium alloy, calcium-aluminum alloy and the like.
  • the organic photoelectric conversion element is usually formed on a substrate. That is, the first element 100A1 and the second element 100A2 are provided on the main surface of the substrate 10.
  • the material of the substrate 10 may be any material that does not change chemically when forming an electrode and forming a layer containing an organic substance.
  • Examples of the material of the substrate 10 include glass, plastic, polymer film, silicon and the like.
  • the second electrode 70 (that is, the electrode far from the substrate 10) provided on the side opposite to the substrate side facing the first electrode 20 is transparent. Or a translucent material capable of transmitting required incident light.
  • the active layer 50 is sandwiched between the first electrode 20 and the second electrode 70.
  • the active layer 50 of the second embodiment is a bulk hetero type organic layer containing a mixture of an electron-accepting compound (n-type semiconductor) and an electron-donating compound (p-type semiconductor). It is a layer having a function essential to the photoelectric conversion function, which can generate electric charges (holes and electrons) using the energy of.
  • the active layer included in the organic photoelectric conversion element includes an electron donating compound and an electron accepting compound as described above. Note that the electron-donating compound and the electron-accepting compound are determined relatively from the energy levels of these compounds, and one compound can be either an electron-donating compound or an electron-accepting compound.
  • electron donating compounds include pyrazoline derivatives, arylamine derivatives, stilbene derivatives, triphenyldiamine derivatives, oligothiophene and derivatives thereof, polyvinylcarbazole and derivatives thereof, polysilane and derivatives thereof, aromatic amines in the side chain or main chain And polysiloxane derivatives, polyaniline and derivatives thereof, polythiophene and derivatives thereof, polypyrrole and derivatives thereof, polyphenylene vinylene and derivatives thereof, polythienylene vinylene and derivatives thereof, and the like.
  • electron accepting compounds include oxadiazole derivatives, anthraquinodimethane and its derivatives, benzoquinone and its derivatives, naphthoquinone and its derivatives, anthraquinone and its derivatives, tetracyanoanthraquinodimethane and its derivatives, fluorenone derivatives, diphenyldicyanoethylene and derivatives thereof, diphenoquinone derivatives, 8-hydroxyquinoline and metal complexes of derivatives thereof, polyquinoline and derivatives thereof, polyquinoxaline and derivatives thereof, polyfluorene and derivatives thereof, fullerenes and derivatives thereof such as C 60 fullerene, bathocuproine And phenanthrene derivatives such as titanium oxide, metal oxides such as titanium oxide, and carbon nanotubes.
  • titanium oxide, carbon nanotubes, fullerenes, and fullerene derivatives are preferable, and fullerenes and fullerene derivatives are particularly prefer
  • fullerene examples include C 60 fullerene, C 70 fullerene, C 76 fullerene, C 78 fullerene, such as C 84 fullerene, and the like.
  • Examples of the fullerene derivatives C 60 fullerene, C 70 fullerene, C 76 fullerene, C 78 fullerene include C 84 fullerene derivatives of each. Examples of the specific structure of the fullerene derivative include the following structures.
  • fullerene derivatives include [6,6] phenyl-C 61 butyric acid methyl ester (C 60 PCBM, [6,6] -Phenyl C 61 butyric acid methyl ester), and [6,6] phenyl-C 71.
  • Butyric acid methyl ester (C 70 PCBM, [6,6] -Phenyl C 71 butyric acid methyl ester), [6,6] Phenyl-C 85 butyric acid methyl ester (C 84 PCBM, [6,6] -Phenyl C 85 butyric acid methyl ester), and the like [6,6] thienyl -C 61 butyric acid methyl ester ([6,6] -Thienyl C 61 butyric acid methyl ester).
  • the ratio of the fullerene derivative is preferably 10 parts by weight to 1000 parts by weight with respect to 100 parts by weight of the electron donating compound, and 20 parts by weight to 500 parts by weight. It is more preferable that The ratio of the electron accepting compound in the bulk hetero type active layer containing the electron accepting compound and the electron donating compound is preferably 10 parts by weight to 1000 parts by weight with respect to 100 parts by weight of the electron donating compound. More preferred is 50 to 500 parts by weight.
  • the thickness of the active layer is usually preferably 1 nm to 100 ⁇ m, more preferably 2 nm to 1000 nm, still more preferably 5 nm to 500 nm, and particularly preferably 20 nm to 200 nm.
  • the energy of incident light that has passed through the transparent or translucent electrode and entered the active layer is absorbed by the electron-accepting compound and / or the electron-donating compound to generate excitons in which electrons and holes are combined.
  • the generated excitons move and reach the heterojunction interface where the electron-accepting compound and the electron-donating compound are bonded, the difference between the HOMO energy and the LUMO energy at the interface causes the electrons and holes to be separated.
  • Charges (electrons and holes) are generated that can separate and move independently. The generated charges move to the electrodes (cathode and anode), respectively, and can be taken out as electric energy (current) outside the device.
  • an additional layer (intermediate layer) other than the active layer is provided as a means for improving photoelectric conversion efficiency between at least one of the first electrode and the second electrode and the active layer.
  • the additional intermediate layer include alkali metal and alkaline earth metal halides such as lithium fluoride, alkali metal and alkaline earth metal oxides, and the like.
  • the material used as the additional intermediate layer include fine particles of inorganic semiconductor such as titanium oxide, PEDOT (poly-3,4-ethylenedioxythiophene), and the like.
  • Examples of the additional layer include a charge transport layer (hole transport layer, electron transport layer) that transports holes or electrons.
  • any suitable material can be used as the material constituting the charge transport layer.
  • the charge transport layer is an electron transport layer
  • an example of the material is 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP).
  • BCP 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline
  • PEDOT PEDOT
  • the additional intermediate layer that may be provided between the first electrode and the second electrode and the active layer may be a buffer layer.
  • the material used as the buffer layer may be an alkali metal such as lithium fluoride. And alkaline earth metal halides and oxides such as titanium oxide. When an inorganic semiconductor is used, it can be used in the form of fine particles.
  • a first electrode 20 is provided on the main surface of the substrate 10.
  • a first charge transport layer 40 is provided on the first electrode 20.
  • the first charge transport layer 40 is a hole transport layer when the first electrode 20 is an anode, and is an electron transport layer when the first electrode 20 is a cathode.
  • the active layer 50 is provided on the first charge transport layer 40.
  • a second charge transport layer 60 is provided on the active layer 50.
  • the second charge transport layer 60 is an electron transport layer when the first electrode 20 is an anode, and is a hole transport layer when the first electrode 20 is a cathode.
  • the second electrode 70 is provided on the second charge transport layer 60.
  • the active layer 50 is described as a single-layer active layer in which a bulk hetero type in which an electron accepting compound and an electron donating compound are mixed.
  • the active layer 50 includes a plurality of layers.
  • a heterojunction type in which an electron-accepting layer containing an electron-accepting compound such as a fullerene derivative and an electron-donating layer containing an electron-donating compound such as P3HT may be joined. .
  • an example of the layer structure which an organic photoelectric conversion element can take is shown below.
  • a) Anode / active layer / cathode b) Anode / hole transport layer / active layer / cathode c) Anode / active layer / electron transport layer / cathode d) Anode / hole transport layer / active layer / electron transport layer / cathode e) Anode / electron supply layer / electron acceptor layer / cathode f) Anode / hole transport layer / electron supply layer / electron acceptor layer / cathode g) Anode / electron supply layer / electron acceptor layer / electron Transport layer / cathode h) anode / hole transport layer / electron supply layer / electron-accepting layer / electron transport layer / cathode (where the symbol “/” is adjacent to the layer sandwiching the symbol “/”) Indicates that they are stacked.)
  • the layer configuration may be any of a form in which the anode is provided on the side closer to the substrate and a form in which the cathode is provided on the side closer to the substrate.
  • Each of the above layers may be formed as a single layer or a laminate of two or more layers.
  • Example 1 (Liquid-repellent treatment in electrode) Polyethylene naphthoate with ITO film (sometimes called PEN) Film substrate (trade name: OTEC, manufactured by Tobi Co., Ltd.) After protecting the surface on which the electrode is formed with Kapton tape, HNO with a concentration of 1 mol / L 3 was immersed in 3 minutes, and the ITO film was patterned into a pattern in which a plurality of electrodes (first electrodes) are arranged and the main surface of the PEN film substrate is exposed outside these electrodes.
  • PEN Polyethylene naphthoate with ITO film (sometimes called PEN) Film substrate (trade name: OTEC, manufactured by Tobi Co., Ltd.)
  • the substrate on which the electrodes were patterned was washed with acetone, and then subjected to UV ozone cleaning treatment for 15 minutes using an ultraviolet ozone irradiation apparatus (Technovision, model: UV-312) equipped with a low-pressure mercury lamp.
  • An ultraviolet ozone irradiation apparatus (Technovision, model: UV-312) equipped with a low-pressure mercury lamp.
  • a first electrode with a clean surface was made on the PEN substrate.
  • the substrate on which the first electrode was formed was immersed in a solution obtained by dissolving 0.5% by weight of octadecyltrichlorosilane in an octane solvent, followed by heat treatment at 120 ° C. for 30 minutes.
  • PEDOT (trade name Baytron P AI4083, lot. HCD07O109, manufactured by Starck Co., Ltd.), which is a hole transporting material, was applied on the substrate 1 by a spin coating method. By this coating process, a patterned PEDOT layer was formed outside the liquid repellent pattern. Thereafter, drying was performed in air at 150 ° C. for 30 minutes.
  • P3HT poly (3-hexylthiophene) (trade name licicon SP001, lot. EF431002) as a conjugated polymer compound as an electron donating material and PCBM (frontier as a fullerene derivative as an electron accepting material).
  • Example 2 Liquid repellent treatment in a region outside the electrode
  • the surface on which the first electrode of the PEN film substrate with ITO film (trade name: OTEC, manufactured by Tobi) is protected with Kapton tape, and then immersed in 1 mol / L HNO 3 for 3 minutes.
  • the film was patterned to a pattern including a plurality of first electrodes. After cleaning the patterned substrate with acetone, the substrate was cleaned by UV ozone cleaning for 15 minutes using an ultraviolet ozone irradiation device (Technovision, model: UV-312) equipped with a low-pressure mercury lamp.
  • a first electrode having a surface was formed on a PEN substrate.
  • the substrate was introduced into an atmospheric pressure plasma apparatus, and plasma treatment was performed in a CF 4 atmosphere. Thereafter, the Kapton tape is peeled off to obtain the second substrate 2. Thereafter, a laminated structure was produced using the second substrate 2 by the same method as in Example 1.
  • the present invention is useful for manufacturing an organic thin film solar cell module.

Abstract

Disclosed is a method for manufacturing an organic thin-film solar battery module wherein manufacturing can be carried out in simple steps. A method for manufacturing an organic thin-film solar battery module in which a plurality of organic photovoltaic conversion elements (100A1) and (100A2), which are provided with a pair of electrodes comprising a first electrode (20) and a second electrode (70), and an active layer (50) held between the pair of electrodes, are arranged on a substrate (10), includes: a step for forming a plurality of first electrodes on the substrate; and a step for forming a liquid-repellent pattern (30a) on part of each of the plurality of first electrodes.

Description

有機薄膜太陽電池モジュールの製造方法Manufacturing method of organic thin film solar cell module
 本発明は、有機光電変換素子を同一基板上に複数個集積した有機薄膜太陽電池モジュールの製造方法に関する。 The present invention relates to a method for producing an organic thin film solar cell module in which a plurality of organic photoelectric conversion elements are integrated on the same substrate.
 有機薄膜太陽電池モジュールは、通常、(1)基板を準備する工程と、(2)基板上に第1電極を形成する工程と、(3)第1電極上に第1電荷輸送層を形成する工程と、(4)第1電荷輸送層上に活性層を形成する工程と、(5)活性層上に第2電荷輸送層を形成する工程と、(6)第2電荷輸送層上に第2電極を形成する工程とを含む製造方法により製造される。 The organic thin-film solar cell module usually has (1) a step of preparing a substrate, (2) a step of forming a first electrode on the substrate, and (3) a first charge transport layer formed on the first electrode. A step, (4) a step of forming an active layer on the first charge transport layer, (5) a step of forming a second charge transport layer on the active layer, and (6) a second layer on the second charge transport layer. And a step of forming two electrodes.
 すなわち有機薄膜太陽電池モジュールは、電荷輸送層、活性層などの複数層の機能層を順次に成膜することにより製造される。各機能層は、その材料などに応じた任意好適なパターニング工程により所期の形状にパターニングされる。 That is, the organic thin film solar cell module is manufactured by sequentially forming a plurality of functional layers such as a charge transport layer and an active layer. Each functional layer is patterned into a desired shape by any suitable patterning process according to the material.
 従来、活性層を所期の形状とするには、(i)印刷法などのダイレクトパターニング工程が実施されるか、又は(ii)成膜工程後に不要部分を除去して所期の形状にパターニングする、ウェットエッチング工程、ドライエッチング工程、レーザパターニング工程、メカニカルパターニング工程が、成膜工程とは別に実施されている。 Conventionally, in order to make an active layer into an intended shape, (i) a direct patterning process such as a printing method is performed, or (ii) an unnecessary portion is removed after a film forming process and patterned into an intended shape. The wet etching process, the dry etching process, the laser patterning process, and the mechanical patterning process are performed separately from the film forming process.
 有機薄膜太陽電池(有機光電変換素子)の薄膜形成プロセスに用いられているダイレクトパターニング工程としては、グラビア印刷法、スクリーン印刷法、インクジェット印刷法等を含む印刷法が知られている(非特許文献1参照)。 As direct patterning processes used in the thin film formation process of organic thin film solar cells (organic photoelectric conversion elements), printing methods including gravure printing method, screen printing method, ink jet printing method and the like are known (non-patent literature). 1).
 有機薄膜太陽電池の製造工程におけるレーザパターニング工程としては、波長532nmのNd:YAGレーザを用いて活性層(MDMO-PPV:PCBM層)を層分離する例が知られている(非特許文献2参照)。 As a laser patterning process in the manufacturing process of an organic thin film solar cell, an example in which an active layer (MDMO-PPV: PCBM layer) is separated using an Nd: YAG laser having a wavelength of 532 nm is known (see Non-Patent Document 2). ).
 しかしながら、ダイレクトパターニング工程として例えば塗布法を用いる場合には、塗布された塗工液が滲んで不所望な領域にまではみ出して、結果として隣り合う有機光電変換素子同士が電気的に短絡し、動作不良を起こす場合がある。またウェットエッチング工程、ドライエッチング工程、レーザパターニング工程を用いる場合には、工程数が増加してしまうばかりでなく、真空系のような大規模かつ高価な設備が必要である。 However, when, for example, a coating method is used as the direct patterning process, the applied coating liquid oozes out to an undesired region, and as a result, adjacent organic photoelectric conversion elements are electrically short-circuited to operate. It may cause defects. In addition, when using a wet etching process, a dry etching process, or a laser patterning process, not only the number of processes is increased, but also a large-scale and expensive facility such as a vacuum system is required.
 本発明者らは、有機薄膜太陽電池モジュール及びその製造方法について鋭意研究を進めたところ、撥液性パターンを設けることにより、上記課題を解決できることを見出し、本発明を完成させるに至った。 The inventors of the present invention have made extensive studies on an organic thin film solar cell module and a method for producing the same, and found that the above-mentioned problems can be solved by providing a liquid repellent pattern, thereby completing the present invention.
 すなわち本発明は、下記の有機薄膜太陽電池モジュールの製造方法及び有機薄膜太陽電池モジュールを提供する。
〔1〕 第1電極及び第2電極からなる一対の電極、及び前記一対の電極間に挟持される活性層を備える有機光電変換素子が、基板上に複数配置された有機薄膜太陽電池モジュールの製造方法において、基板上に複数の第1電極を形成する工程と、複数の第1電極それぞれの一部分に撥液性パターンを形成する工程とを含む、有機薄膜太陽電池モジュールの製造方法。
〔2〕 第1電極及び第2電極からなる一対の電極、及び前記一対の電極間に挟持される活性層を備える有機光電変換素子が、基板上に複数配置された有機薄膜太陽電池モジュールの製造方法において、基板上に複数の第1電極を形成する工程と、複数の第1電極外の基板上に撥液性パターンを形成する工程とを含む、有機薄膜太陽電池モジュールの製造方法。
〔3〕 撥液性パターンを形成する工程が、複数の第1電極が形成された基板上全面に、撥液性部を形成する工程と、第1電極が形成された基板上の一部分を覆うマスクパターンを形成し、該マスクパターンをマスクとして第1電極が形成された基板全面を親液性処理し、該マスクパターンを除去して撥液性パターンを形成する工程と、を含む〔1〕又は〔2〕に記載の有機薄膜太陽電池モジュールの製造方法。
〔4〕 複数の第1電極を基板上に形成する工程と、第1電極が形成された基板上全面に、撥液性部を形成する工程と、第1電極が設けられた基板上の一部分を覆うマスクパターンを形成し、該マスクパターンをマスクとして第1電極が形成された基板全面を親液化処理し、該マスクパターンを除去して撥液性パターンを形成する工程と、該撥液性パターンが形成された基板上全面に、撥液性パターンにより撥液される塗工液を塗布して、撥液性パターンを露出する第1露出部を有する第1電荷輸送層、該第1電荷輸送層上を覆う活性層、該活性層上を覆う第2電荷輸送層を形成する工程と、第2電荷輸送層、活性層及び第1電荷輸送層を貫通して、撥液性パターン外である第1電極の一部分が露出する第2露出部を形成する工程と、第2電荷輸送層上を覆い、第2露出部を埋め込み、かつ撥液性パターンを非被覆とする第2電極を、塗工液を塗布して形成する工程と、第2電極、第2電荷輸送層及び活性層を貫通して、撥液性パターン外である第1電荷輸送層の一部分を露出させる第3露出部を形成して、複数の有機光電変換素子に素子分離する工程とを備える有機薄膜太陽電池モジュールの製造方法。
〔5〕 撥液性パターンを形成する工程が、基板に含まれる材料と撥液性部に含まれる材料との結合強度と、第1電極に含まれる材料と撥液性部に含まれる材料との結合強度との差を利用して、基板全面に対する親液化処理により、第1電極の表面から撥液性部を除去し、かつ基板の表面のうち第1電極が非形成とされた領域には撥液性部に含まれる材料を残存させることにより撥液性パターンを形成する工程である、〔4〕に記載の有機薄膜太陽電池モジュールの製造方法。
〔6〕 撥液性パターンを形成する工程が、ケイ素、アルミニウム及びチタンからなる群から選ばれる1種の金属を含むカップリング剤を用いて撥液性パターンを形成する工程である、〔1〕~〔5〕のいずれか一項に記載の有機薄膜太陽電池モジュールの製造方法。
〔7〕 撥液性パターンを形成する工程が、チオール化合物を含む材料を用いて撥液性パターンを形成する工程である、〔1〕~〔5〕のいずれか一項に記載の有機薄膜太陽電池モジュールの製造方法。
〔8〕 撥液性パターンを形成する工程が、フッ素を含む材料を用いて撥液性パターンを形成する工程である、〔1〕~〔5〕のいずれか一項に記載の有機薄膜太陽電池モジュールの製造方法。
〔9〕 撥液性パターンを形成する工程が、CF、NF、及びCFとメタノールとの混合物からなる群から選ばれる1種以上を用いて蒸気処理により撥液性パターンを形成する工程である、〔8〕に記載の有機薄膜太陽電池モジュールの製造方法。
〔10〕 〔1〕~〔9〕のいずれか一項に記載の製造方法により製造することができる、有機薄膜太陽電池モジュール。
That is, this invention provides the manufacturing method and organic thin-film solar cell module of the following organic thin-film solar cell module.
[1] Manufacture of an organic thin-film solar cell module in which a plurality of organic photoelectric conversion elements including a pair of electrodes including a first electrode and a second electrode and an active layer sandwiched between the pair of electrodes are arranged on a substrate A method for producing an organic thin-film solar cell module, comprising: forming a plurality of first electrodes on a substrate; and forming a liquid repellent pattern on a part of each of the plurality of first electrodes.
[2] Manufacture of an organic thin-film solar cell module in which a plurality of organic photoelectric conversion elements including a pair of electrodes including a first electrode and a second electrode and an active layer sandwiched between the pair of electrodes are arranged on a substrate A method for producing an organic thin-film solar cell module, comprising: a step of forming a plurality of first electrodes on a substrate; and a step of forming a liquid repellent pattern on a substrate outside the plurality of first electrodes.
[3] The step of forming the liquid repellent pattern covers the step of forming the liquid repellent portion on the entire surface of the substrate on which the plurality of first electrodes are formed, and a portion on the substrate on which the first electrode is formed. Forming a mask pattern, lyophilically treating the entire surface of the substrate on which the first electrode is formed using the mask pattern as a mask, and removing the mask pattern to form a lyophobic pattern [1] Or the manufacturing method of the organic thin-film solar cell module as described in [2].
[4] A step of forming a plurality of first electrodes on the substrate, a step of forming a liquid repellent portion on the entire surface of the substrate on which the first electrodes are formed, and a part of the substrate on which the first electrodes are provided. Forming a mask pattern covering the substrate, lyophilicizing the entire surface of the substrate on which the first electrode is formed using the mask pattern as a mask, and removing the mask pattern to form a liquid repellent pattern; A first charge transport layer having a first exposed portion that exposes the liquid repellent pattern by applying a coating liquid that is repelled by the liquid repellent pattern over the entire surface of the substrate on which the pattern has been formed. An active layer covering the transport layer, a step of forming a second charge transport layer covering the active layer, and penetrating the second charge transport layer, the active layer and the first charge transport layer, outside the liquid repellent pattern Forming a second exposed portion where a portion of a certain first electrode is exposed, and a second charge Forming a second electrode that covers the transport layer, embeds the second exposed portion, and uncovers the liquid-repellent pattern by applying a coating liquid; a second electrode; a second charge transport layer; Forming a third exposed portion that penetrates the active layer and exposes a portion of the first charge transport layer outside the liquid repellent pattern, and separating the device into a plurality of organic photoelectric conversion elements. Manufacturing method of battery module.
[5] The step of forming the liquid repellent pattern includes the bonding strength between the material included in the substrate and the material included in the liquid repellent part, the material included in the first electrode, and the material included in the liquid repellent part. The lyophobic treatment is performed on the entire surface of the substrate by removing the liquid repellent portion from the surface of the first electrode by utilizing the difference between the bonding strength and the region of the substrate surface where the first electrode is not formed. Is a process for forming a liquid-repellent pattern by leaving the material contained in the liquid-repellent part, the method for producing an organic thin-film solar cell module according to [4].
[6] The step of forming the liquid repellent pattern is a step of forming the liquid repellent pattern using a coupling agent containing one kind of metal selected from the group consisting of silicon, aluminum, and titanium. The manufacturing method of the organic thin-film solar cell module as described in any one of-[5].
[7] The organic thin film solar cell according to any one of [1] to [5], wherein the step of forming the liquid repellent pattern is a step of forming a liquid repellent pattern using a material containing a thiol compound. Manufacturing method of battery module.
[8] The organic thin-film solar cell according to any one of [1] to [5], wherein the step of forming the liquid-repellent pattern is a step of forming the liquid-repellent pattern using a material containing fluorine. Module manufacturing method.
[9] The step of forming the liquid repellent pattern is a step of forming a liquid repellent pattern by steam treatment using one or more selected from the group consisting of CF 4 , NF 3 , and a mixture of CF 4 and methanol. The method for producing an organic thin-film solar cell module according to [8].
[10] An organic thin film solar cell module that can be produced by the production method according to any one of [1] to [9].
図1は、第1の実施形態の製造方法を示す概略的な断面図(1)である。FIG. 1 is a schematic cross-sectional view (1) showing the manufacturing method of the first embodiment. 図2は、第1の実施形態の製造方法を示す概略的な断面図(2)である。FIG. 2 is a schematic cross-sectional view (2) illustrating the manufacturing method of the first embodiment. 図3は、第1の実施形態の製造方法を示す概略的な断面図(3)である。FIG. 3 is a schematic cross-sectional view (3) showing the manufacturing method of the first embodiment. 図4は、第1の実施形態の製造方法を示す概略的な断面図(4)である。FIG. 4 is a schematic cross-sectional view (4) showing the manufacturing method of the first embodiment. 図5は、第1の実施形態の製造方法を示す概略的な断面図(5)である。FIG. 5 is a schematic cross-sectional view (5) showing the manufacturing method of the first embodiment. 図6は、第1の実施形態の製造方法を示す概略的な断面図(6)である。FIG. 6 is a schematic cross-sectional view (6) showing the manufacturing method of the first embodiment. 図7は、第1の実施形態の製造方法を示す概略的な断面図(7)である。FIG. 7 is a schematic cross-sectional view (7) showing the manufacturing method of the first embodiment. 図8は、第1の実施形態の製造方法を示す概略的な断面図(8)である。FIG. 8 is a schematic cross-sectional view (8) showing the manufacturing method of the first embodiment. 図9は、第1の実施形態の製造方法を示す概略的な断面図(9)である。FIG. 9 is a schematic cross-sectional view (9) showing the manufacturing method of the first embodiment. 図10は、第2の実施形態の製造方法を示す概略的な断面図(1)である。FIG. 10 is a schematic cross-sectional view (1) showing the manufacturing method of the second embodiment. 図11は、第2の実施形態の製造方法を示す概略的な断面図(2)である。FIG. 11 is a schematic cross-sectional view (2) showing the manufacturing method of the second embodiment. 図12は、第2の実施形態の製造方法を示す概略的な断面図(3)である。FIG. 12 is a schematic cross-sectional view (3) showing the manufacturing method of the second embodiment. 図13は、第2の実施形態の製造方法を示す概略的な断面図(4)である。FIG. 13 is a schematic cross-sectional view (4) showing the manufacturing method of the second embodiment. 図14は、第2の実施形態の製造方法を示す概略的な断面図(5)である。FIG. 14 is a schematic cross-sectional view (5) showing the manufacturing method of the second embodiment. 図15は、第2の実施形態の製造方法を示す概略的な断面図(6)である。FIG. 15 is a schematic cross-sectional view (6) showing the manufacturing method of the second embodiment. 図16は、第2の実施形態の製造方法を示す概略的な断面図(7)である。FIG. 16 is a schematic cross-sectional view (7) showing the manufacturing method of the second embodiment. 図17は、第2の実施形態の製造方法を示す概略的な断面図(8)である。FIG. 17 is a schematic cross-sectional view (8) showing the manufacturing method of the second embodiment. 図18は、第2の実施形態の製造方法を示す概略的な断面図(9)である。FIG. 18 is a schematic cross-sectional view (9) illustrating the manufacturing method of the second embodiment.
 10:基板
 10A:電極形成領域
 10B:非電極形成領域
 20:第1電極
 30:撥液性部
 30a:撥液性パターン
 40:第1電荷輸送層
 50:活性層
 60:第2電荷輸送層
 70:第2電極
 70a:コンタクト
 100A1:第1素子
 100A2:第2素子
 100B:素子間部
 R:親液化処理
 X:第1露出部
 Y:第2露出部
 Z:第3露出部
10: Substrate 10A: Electrode forming region 10B: Non-electrode forming region 20: First electrode 30: Liquid repellent portion 30a: Liquid repellent pattern 40: First charge transport layer 50: Active layer 60: Second charge transport layer 70 : Second electrode 70a: contact 100A1: first element 100A2: second element 100B: inter-element part R: lyophilic treatment X: first exposed part Y: second exposed part Z: third exposed part
<有機薄膜太陽電池モジュール>
 本発明の有機薄膜太陽電池モジュールは、従来の太陽電池モジュールと基本的には同様のモジュール構造をとりうる。有機薄膜太陽電池モジュールは、一般的には金属、セラミック等の基板(支持基板)の上に複数の有機光電変換素子(セル)が構成され、有機光電変換素子を充填樹脂や保護ガラス等で覆い、基板の反対側から光を取り込む構造をとるが、基板に強化ガラス等の透明材料を用い、その上に有機光電変換素子を構成してその透明の基板側から光を取り込む構造としてもよい。
<Organic thin film solar cell module>
The organic thin film solar cell module of the present invention can basically have the same module structure as a conventional solar cell module. In general, an organic thin-film solar cell module includes a plurality of organic photoelectric conversion elements (cells) formed on a metal (ceramic) substrate (supporting substrate), and the organic photoelectric conversion elements are covered with a filling resin, protective glass, or the like. A structure is adopted in which light is taken in from the opposite side of the substrate. However, a transparent material such as tempered glass may be used for the substrate, and an organic photoelectric conversion element may be formed thereon to take in light from the transparent substrate side.
 有機薄膜太陽電池モジュールの構造の例としては、具体的には、スーパーストレートタイプ、サブストレートタイプ、ポッティングタイプと呼ばれるモジュール構造、アモルファスシリコン太陽電池などで用いられる基板一体型モジュール構造等が知られている。 Specific examples of the structure of the organic thin film solar cell module include module structures called super straight type, substrate type, and potting type, and substrate integrated module structures used in amorphous silicon solar cells and the like.
 本発明の有機薄膜太陽電池モジュールの構造は、使用目的、使用場所および環境により、適宜これらのモジュール構造のうちから選択するのがよい。 The structure of the organic thin-film solar cell module of the present invention may be appropriately selected from these module structures depending on the purpose of use, the place of use, and the environment.
 代表的なスーパーストレートタイプあるいはサブストレートタイプのモジュール構造は、片側又は両側が透明で反射防止処理を施された基板の間に一定間隔に有機光電変換素子が配置され、隣り合う有機光電変換素子同士が、コンタクト電極(埋込み電極)、金属リード、フレキシブル配線等によって接続され、外縁部に集電電極が配置されており、発生した電力が外部に取り出される構造となっている。 In a typical super straight type or substrate type module structure, organic photoelectric conversion elements are arranged at regular intervals between substrates that are transparent on one side or both sides and subjected to antireflection treatment, and adjacent organic photoelectric conversion elements are They are connected by contact electrodes (embedded electrodes), metal leads, flexible wirings, etc., and current collecting electrodes are arranged on the outer edges, so that the generated power is taken out to the outside.
 基板と有機光電変換素子との間には、有機光電変換素子の保護、集電効率向上のため、目的に応じエチレンビニルアセテート(EVA)等様々な種類のプラスチック材料をフィルムまたは充填樹脂の形で用いてもよい。また外部からの衝撃が少ないところなど表面を硬い素材で覆う必要のない場所で使用する場合には、表面保護層を透明プラスチックフィルムで構成し、また上記充填樹脂を硬化させることによって保護機能を付与し、片側の基板をなくしてもよい。基板の周囲は、内部の密封およびモジュールの剛性を確保するため金属製のフレームで挟持して固定し、基板とフレームとの間は封止材料で密封シールする。また、有機光電変換素子自体、基板、充填材料及び封止材料に可撓性の素材を用いれば、曲面の上に有機光電変換素子を構成することもできる。 Between the substrate and the organic photoelectric conversion element, various types of plastic materials such as ethylene vinyl acetate (EVA) can be used in the form of a film or filled resin depending on the purpose in order to protect the organic photoelectric conversion element and improve the current collection efficiency. It may be used. Also, when used in places where there is no need to cover the surface with a hard material, such as where there is little impact from the outside, the surface protective layer is made of a transparent plastic film, and a protective function is given by curing the above filling resin However, the substrate on one side may be eliminated. The periphery of the substrate is sandwiched and fixed by a metal frame in order to secure internal sealing and module rigidity, and the substrate and the frame are hermetically sealed with a sealing material. In addition, if a flexible material is used for the organic photoelectric conversion element itself, the substrate, the filling material, and the sealing material, the organic photoelectric conversion element can be formed on the curved surface.
 ポリマーフィルム等のフレキシブル支持体を用いた太陽電池モジュールの場合には、太陽電池モジュールは、ロール状の支持体を送り出しながら順次に支持体上に光電変換素子を形成し、所望のサイズに切断した後、周縁部をフレキシブルで防湿性のある素材でシールすることにより作製すればよい。 In the case of a solar cell module using a flexible support such as a polymer film, the solar cell module sequentially forms photoelectric conversion elements on the support while feeding out the roll-shaped support, and cuts it to a desired size. Then, the peripheral portion may be produced by sealing with a flexible and moisture-proof material.
 またSolar Energy Materials and Solar Cells, 48, p383-391記載の「SCAF」とよばれるモジュール構造とすることもできる。さらに、フレキシブル支持体を用いた太陽電池モジュールは曲面ガラス等に接着固定して使用するのがよい。 It is also possible to adopt a module structure called “SCAF” described in Solar Energy Materials and Solar Cells, 48, p383-391. Furthermore, the solar cell module using the flexible support is preferably used by being bonded and fixed to curved glass or the like.
 以下、図面を参照して本発明を詳細に説明する。上述の構成を備える有機薄膜太陽電池モジュールのうち、フレーム、保護部材のような外装部材については本発明の要旨ではないのでこれらの説明を省略し、有機光電変換素子及びその製造方法を中心に説明する。 Hereinafter, the present invention will be described in detail with reference to the drawings. Among the organic thin-film solar cell modules having the above-described configuration, the exterior members such as the frame and the protective member are not the gist of the present invention, so the description thereof will be omitted, and the explanation will focus on the organic photoelectric conversion element and the manufacturing method thereof. To do.
 なお以下の説明において、各図は発明が理解できる程度に構成要素の形状、大きさ及び配置が概略的に示されているに過ぎず、これにより本発明が特に限定されるものではない。また各図において、同様の構成成分については同一の符号を付して示し、その重複する説明を省略する場合がある。 In the following description, each figure only schematically shows the shape, size, and arrangement of components to the extent that the invention can be understood, and the present invention is not particularly limited thereby. Moreover, in each figure, about the same component, it attaches | subjects and shows the same code | symbol, The duplicate description may be abbreviate | omitted.
(第1の実施形態)
 第1の実施形態の有機薄膜太陽電池モジュールの製造方法は、第1電極及び第2電極からなる一対の電極、及び前記一対の電極間に挟持される活性層を備える有機光電変換素子が、基板上に複数配列された有機薄膜太陽電池モジュールの製造方法であって、基板上に複数の第1電極を形成する工程と、複数の第1電極それぞれの一部分に撥液性パターンを形成する工程とを含む。
(First embodiment)
In the method for manufacturing an organic thin-film solar cell module according to the first embodiment, an organic photoelectric conversion element including a pair of electrodes including a first electrode and a second electrode and an active layer sandwiched between the pair of electrodes is a substrate. A method of manufacturing a plurality of organic thin-film solar cell modules arranged on a substrate, the step of forming a plurality of first electrodes on a substrate, and the step of forming a liquid repellent pattern on a part of each of the plurality of first electrodes, including.
 より具体的には、第1の実施形態の有機薄膜太陽電池モジュールの製造方法は、複数の第1電極を基板上に形成する工程と、第1電極が形成された基板上全面に、撥液性部を形成する工程と、第1電極が設けられた基板上の一部分を覆うマスクパターンを形成し、マスクパターンをマスクとして第1電極が形成された基板全面を親液化処理し、マスクパターンを除去して撥液性パターンを形成する工程と、撥液性パターンが形成された基板上全面に、撥液性パターンにより撥液される塗工液を塗布して、撥液性パターンを露出する第1露出部を有する第1電荷輸送層、第1電荷輸送層上を覆う活性層、活性層上を覆う第2電荷輸送層を形成する工程と、第2電荷輸送層、活性層及び第1電荷輸送層を貫通して、撥液性パターン外である第1電極の一部分が露出する第2露出部を形成する工程と、第2電荷輸送層上を覆い、第2露出部を埋め込み、かつ撥液性パターンを非被覆とする第2電極を、塗工液を塗布して形成する工程と、第2電極、第2電荷輸送層及び活性層を貫通して、撥液性パターン外である第1電荷輸送層の一部分を露出させる第3露出部を形成して、複数の有機光電変換素子に素子分離する工程とを備える。 More specifically, the method of manufacturing the organic thin-film solar cell module according to the first embodiment includes a step of forming a plurality of first electrodes on a substrate, and a liquid repellent property on the entire surface of the substrate on which the first electrodes are formed. Forming a conductive portion, forming a mask pattern covering a portion of the substrate on which the first electrode is provided, lyophilicizing the entire surface of the substrate on which the first electrode is formed using the mask pattern as a mask, Removing the liquid-repellent pattern, and applying a liquid-repellent coating liquid on the entire surface of the substrate on which the liquid-repellent pattern is formed to expose the liquid-repellent pattern. Forming a first charge transport layer having a first exposed portion, an active layer covering the first charge transport layer, a second charge transport layer covering the active layer, the second charge transport layer, the active layer, and the first layer The first that penetrates the charge transport layer and is outside the liquid repellent pattern A step of forming a second exposed portion in which a part of the electrode is exposed; and a second electrode that covers the second charge transport layer, embeds the second exposed portion, and uncovers the liquid repellent pattern. And forming a third exposed portion that exposes a portion of the first charge transport layer outside the liquid repellent pattern, penetrating the second electrode, the second charge transport layer, and the active layer. And a step of element separation into a plurality of organic photoelectric conversion elements.
 ここで図1から図9を参照して、第1の実施形態の有機薄膜太陽電池モジュールの製造方法について具体的に説明する。 Here, with reference to FIG. 1 to FIG. 9, the manufacturing method of the organic thin-film solar cell module of the first embodiment will be specifically described.
 図1は、第1の実施形態の製造方法を示す概略的な断面図(1)である。図2は、第1の実施形態の製造方法を示す概略的な断面図(2)である。図3は、第1の実施形態の製造方法を示す概略的な断面図(3)である。図4は、第1の実施形態の製造方法を示す概略的な断面図(4)である。図5は、第1の実施形態の製造方法を示す概略的な断面図(5)である。図6は、第1の実施形態の製造方法を示す概略的な断面図(6)である。図7は、第1の実施形態の製造方法を示す概略的な断面図(7)である。図8は、第1の実施形態の製造方法を示す概略的な断面図(8)である。図9は、第1の実施形態の製造方法を示す概略的な断面図(9)である。 FIG. 1 is a schematic cross-sectional view (1) showing the manufacturing method of the first embodiment. FIG. 2 is a schematic cross-sectional view (2) illustrating the manufacturing method of the first embodiment. FIG. 3 is a schematic cross-sectional view (3) showing the manufacturing method of the first embodiment. FIG. 4 is a schematic cross-sectional view (4) showing the manufacturing method of the first embodiment. FIG. 5 is a schematic cross-sectional view (5) showing the manufacturing method of the first embodiment. FIG. 6 is a schematic cross-sectional view (6) showing the manufacturing method of the first embodiment. FIG. 7 is a schematic cross-sectional view (7) showing the manufacturing method of the first embodiment. FIG. 8 is a schematic cross-sectional view (8) showing the manufacturing method of the first embodiment. FIG. 9 is a schematic cross-sectional view (9) showing the manufacturing method of the first embodiment.
 図1に示すように、まず基板10を準備する。基板10は対向する2面の主面を有する平板状の基板である。基板10を準備するにあたり、基板10の一方の主面には例えばインジウムスズ酸化物(ITOという場合がある。)のような電極の材料となり得る導電性材料の薄膜が予め設けられている基板を準備してもよい。 As shown in FIG. 1, first, a substrate 10 is prepared. The substrate 10 is a flat substrate having two principal surfaces facing each other. In preparing the substrate 10, a substrate on which one main surface of the substrate 10 is previously provided with a thin film of a conductive material that can be an electrode material such as indium tin oxide (sometimes referred to as ITO) is provided. You may prepare.
 基板10に導電性材料の薄膜が設けられていない場合には、基板10の一方の主面上に導電性材料の薄膜を任意好適な方法により形成する。次いで導電性材料の薄膜をパターニングする。このパターニングに際し、予め電極形成領域10A及びこの電極形成領域10A外である非電極形成領域10Bが設定される。導電性材料の薄膜をフォトリソグラフィ工程及びエッチング工程のような任意好適な方法によりパターニングして、電極形成領域10Aに、互いに電気的に分離された複数のパターンからなる第1電極20を形成する。この工程により、第1電極20が非形成とされた非電極形成領域10Bでは基板10の主面の一部分が露出する。 When a thin film of conductive material is not provided on the substrate 10, a thin film of conductive material is formed on one main surface of the substrate 10 by any suitable method. The conductive material thin film is then patterned. In this patterning, an electrode forming region 10A and a non-electrode forming region 10B outside the electrode forming region 10A are set in advance. The thin film of the conductive material is patterned by any suitable method such as a photolithography process and an etching process to form the first electrode 20 having a plurality of patterns electrically separated from each other in the electrode formation region 10A. By this step, a part of the main surface of the substrate 10 is exposed in the non-electrode forming region 10B where the first electrode 20 is not formed.
 図2に示すように、第1電極20の表面20aを含む、第1電極20が形成された基板10上全面に、撥液性である撥液性部30を形成する。 As shown in FIG. 2, a liquid repellent portion 30 that is liquid repellent is formed on the entire surface of the substrate 10 on which the first electrode 20 is formed, including the surface 20a of the first electrode 20.
 図3に示すように、第1電極20が設けられた基板10上の一部分を覆うマスクパターンを形成し(図示せず。)、このマスクパターンをマスクとして第1電極20が形成された基板10全面を親液化処理Rにより親液化する。
 親液化処理Rとしては、好ましくは常法に従うプラズマ処理、UVオゾン処理、コロナ放電処理が挙げられる。
As shown in FIG. 3, a mask pattern (not shown) is formed to cover a portion of the substrate 10 provided with the first electrode 20 (not shown), and the substrate 10 on which the first electrode 20 is formed using this mask pattern as a mask. The entire surface is made lyophilic by lyophilic treatment R.
As the lyophilic treatment R, preferably, plasma treatment, UV ozone treatment, and corona discharge treatment according to a conventional method are used.
 次いでマスクパターンを除去し、撥液性パターン30aを形成する。この撥液性パターン30aを形成する工程の例としては、カップリング剤を用いてまず撥液性部30を形成し、引き続き撥液性パターン30aを形成する工程、又はチオール化合物を含む材料を用いてまず撥液性部30を形成し、引き続き撥液性パターン30aを形成する工程が挙げられる。 Next, the mask pattern is removed to form a liquid repellent pattern 30a. As an example of the step of forming the liquid repellent pattern 30a, a step of first forming the liquid repellent portion 30 using a coupling agent and subsequently forming the liquid repellent pattern 30a, or a material containing a thiol compound is used. First, the step of forming the liquid-repellent portion 30 and subsequently forming the liquid-repellent pattern 30a can be mentioned.
 金属をSiとするカップリング剤の例としては、ビニルトリクロルシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、p-スチリルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-(ビニルベンジル)-2-アミノエチル-3-アミノプロピルトリメトキシシラン塩酸塩、3-ウレイドプロピルトリエトキシシラン、3-クロロプロピルトリメトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン、ビス(トリエトキシシリルプロピル)テトラスルフィド、3-イソシアネートプロピルトリエトキシシラン、テトラメトキシシラン、テトラエトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、ジメチルトリエトキシシラン、フェニルトリエトキシシラン、ヘキサメチルジシラザン、ヘキシルトリメトキシシラン、デシルトリメトキシシラン、ブチルトリクロロシラン、シクロヘキシルトリクロロシラン、デシルトリクロロシラン、ドデシルトリクロロシラン、オクチルトリクロロシラン、オクタデシルトリクロロシラン、テトラデシルトリクロロシラン等が挙げられる。 Examples of coupling agents with metal Si are vinyltrichlorosilane, vinyltrimethoxysilane, vinyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxy. Silane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, p-styryltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3- Methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- Aminoethyl) -3-aminopropyltrimethoxysilane, N-2- (aminoethyl) -3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-triethoxysilyl -N- (3-dimethyl-butylidene) propylamine, N-phenyl-3-aminopropyltrimethoxysilane, N- (vinylbenzyl) -2-aminoethyl-3-aminopropyltrimethoxysilane hydrochloride, 3-ureido Propyltriethoxysilane, 3-chloropropyltrimethoxysilane, 3-mercaptopropylmethyldimethoxysilane, 3-mercaptopropyltrimethoxysilane, bis (triethoxysilylpropyl) tetrasulfide, 3-isocyanatopropyltriethoxysila , Tetramethoxysilane, tetraethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, dimethyltriethoxysilane, phenyltriethoxysilane, hexamethyldisilazane, hexyltrimethoxysilane, decyltrimethoxysilane, butyltrichlorosilane, cyclohexyltri Examples include chlorosilane, decyltrichlorosilane, dodecyltrichlorosilane, octyltrichlorosilane, octadecyltrichlorosilane, and tetradecyltrichlorosilane.
 金属をAlとするカップリング剤の例としては、アルミニウムイソプロピレート、モノsec-ブトキシアルミニウムジイソプロピレート、アルミニウムsec-ブチレート、アルミニウムエチレート、エチルアセトアセテートアルミニウムジイソプロピレート、アルミニウムトリス(エチルアセトアセテート)、アルキルアセトアセテートアルミニウムジイソプロピレート、アルミニウムモノアセチルアセトネートビス(エチルアセトアセテート)、アルミニウムトリス(アセチルアセトネート)、アルミニウムモノイソプロポキシモノオレオキシエチルアセトアセテート、環状アルミニウムオキサイドイソプロピレート、環状アルミニウムオキサイドオクチレート、環状アルミニウムオキサイドステアレート等が挙げられる。 Examples of coupling agents with metal Al are aluminum isopropylate, mono sec-butoxyaluminum diisopropylate, aluminum sec-butyrate, aluminum ethylate, ethyl acetoacetate aluminum diisopropylate, aluminum tris (ethyl acetoacetate) , Alkyl acetoacetate aluminum diisopropylate, aluminum monoacetylacetonate bis (ethylacetoacetate), aluminum tris (acetylacetonate), aluminum monoisopropoxymonooroxyethyl acetoacetate, cyclic aluminum oxide isopropylate, cyclic aluminum oxide octyl Rate, cyclic aluminum oxide stearate, and the like.
 金属をTiとするカップリング剤の例としては、テトライソプロピルチタネート、テトラノルマルブチルチタネート、ブチルチタネートダイマー、テトラ(2-エチルヘキシル)チタネート、テトラメチルチタネート、チタンアセチルアセトネート、チタンテトラアセチルアセトネート、チタンエチルアセトアセテート、チタンオクタンジオレート、チタンラクテート、チタントリエタノールアミネート、ポリヒドロキシチタンステアレート等が挙げられる。 Examples of coupling agents in which the metal is Ti include tetraisopropyl titanate, tetranormal butyl titanate, butyl titanate dimer, tetra (2-ethylhexyl) titanate, tetramethyl titanate, titanium acetylacetonate, titanium tetraacetylacetonate, titanium Examples thereof include ethyl acetoacetate, titanium octanediolate, titanium lactate, titanium triethanolamate, and polyhydroxytitanium stearate.
 チオール化合物の例としては、オクタデカンチオール、アゾフェノキシドデカンチオール、ペルフルオロオクチルペンタンチオール、ブタンチオール、ヘキサンチオール、オクタンチオール、ドデカンチオール等が挙げられる。第1電極20がITO等の酸化物の場合には、カップリング剤を用いることが好ましい。 Examples of thiol compounds include octadecanethiol, azophenoxide decanethiol, perfluorooctylpentanethiol, butanethiol, hexanethiol, octanethiol, dodecanethiol and the like. When the first electrode 20 is an oxide such as ITO, a coupling agent is preferably used.
 さらに撥液性パターン30aを形成する工程は、CF、NF、及びCFとメタノールとの混合物からなる群から選ばれる1種以上を用いる蒸気処理によりまずフッ素化された撥液性部30を形成し、引き続き撥液性部30をパターニングする工程とすればよい。 Further, in the step of forming the liquid repellent pattern 30a, the liquid repellent portion 30 first fluorinated by vapor treatment using one or more selected from the group consisting of CF 4 , NF 3 , and a mixture of CF 4 and methanol. And subsequently patterning the liquid repellent portion 30.
 また例えばインクジェット法により、第1電極20が設けられた基板上に直接的に撥液性パターン30aを形成してもよい。この場合には撥液性部30の形成工程及び撥液性部30のパターニング工程が不要となる。 Alternatively, the liquid repellent pattern 30a may be directly formed on the substrate on which the first electrode 20 is provided by, for example, an ink jet method. In this case, the liquid repellent part 30 forming step and the liquid repellent part 30 patterning step are not required.
 図4に示すように、次に撥液性パターン30aが形成された基板10上全面に、撥液性パターン30aにより撥液される塗工液を塗布して、撥液性パターン30aを露出する第1露出部Xを有する第1電荷輸送層40を形成する。 As shown in FIG. 4, a coating liquid that is repelled by the liquid repellent pattern 30a is then applied to the entire surface of the substrate 10 on which the liquid repellent pattern 30a is formed to expose the liquid repellent pattern 30a. A first charge transport layer 40 having a first exposed portion X is formed.
 図5に示すように、引き続き第1電荷輸送層40上を覆う活性層50を形成する。
 この活性層50の形成工程についても、撥液性パターン30aが形成された基板10上全面に、撥液性パターン30aにより撥液される塗工液を塗布して形成する。
As shown in FIG. 5, the active layer 50 that covers the first charge transport layer 40 is subsequently formed.
Also in the step of forming the active layer 50, a coating liquid repelled by the liquid repellent pattern 30a is applied to the entire surface of the substrate 10 on which the liquid repellent pattern 30a is formed.
 図6に示すように、さらに活性層50上を覆う第2電荷輸送層60を形成する。この第2電荷輸送層60の形成工程についても、撥液性パターン30aが形成された基板10上全面に、撥液性パターン30aにより撥液される塗工液を塗布して形成する。 As shown in FIG. 6, a second charge transport layer 60 covering the active layer 50 is further formed. Also in the formation process of the second charge transport layer 60, a coating liquid repelled by the liquid repellent pattern 30a is applied to the entire surface of the substrate 10 on which the liquid repellent pattern 30a is formed.
 以上の工程により、撥液性パターン30a外の領域に、自己整合的に島状の第1電荷輸送層40、活性層50及び第2電荷輸送層60の積層構造が形成され、かつ撥液性パターン30aを露出する第1露出部Xが形成される。 Through the above steps, the island-shaped stacked structure of the first charge transport layer 40, the active layer 50, and the second charge transport layer 60 is formed in a region outside the liquid repellent pattern 30a in a self-aligned manner, and the liquid repellent property A first exposed portion X that exposes the pattern 30a is formed.
 図7に示すように、第1電荷輸送層40、活性層50及び第2電荷輸送層60を貫通して、撥液性パターン30a外である第1電極20の一部分が露出する、第2露出部Yを形成する。 As shown in FIG. 7, the second exposure is such that a part of the first electrode 20 outside the liquid repellent pattern 30a is exposed through the first charge transport layer 40, the active layer 50, and the second charge transport layer 60. Part Y is formed.
 図8に示すように、次いで第2電荷輸送層60上を覆い、第2露出部Yを埋め込んで第1電極20に接触し、かつ撥液性パターン30aを非被覆とする第2電極70を形成する。この工程も撥液性パターン30aにより撥液される塗工液を塗布することにより形成する。この工程により、撥液性パターン30aと第2電極70との間には、間隙が生じる。第2露出部Yを埋め込む第2電極の一部分は第1電極20と第2電極70とを導通させるコンタクト(電極)70aとして機能する。 As shown in FIG. 8, the second electrode 70 that covers the second charge transport layer 60, fills the second exposed portion Y, contacts the first electrode 20, and uncovers the liquid repellent pattern 30a. Form. This process is also formed by applying a coating liquid repelled by the liquid repellent pattern 30a. By this step, a gap is generated between the liquid repellent pattern 30 a and the second electrode 70. A portion of the second electrode that embeds the second exposed portion Y functions as a contact (electrode) 70 a that makes the first electrode 20 and the second electrode 70 conductive.
 なお、第2電極70を塗布法ではなく、例えば蒸着法のような方法により形成する場合には、撥液性パターン30a上にも第2電極70の材料が堆積するため、第2露出部Yを形成するまでもなく、撥液性パターン30aの直上にコンタクトが形成されることになる。よってこの場合には、第2露出部Yを形成しなくともよい。 When the second electrode 70 is formed by a method such as a vapor deposition method instead of the coating method, the material of the second electrode 70 is deposited also on the liquid repellent pattern 30a. Needless to say, a contact is formed immediately above the liquid repellent pattern 30a. Therefore, in this case, the second exposed portion Y need not be formed.
 上述したように、第2露出部Yは第1電極20と第2電極70とを導通させるコンタクト溝又はコンタクトホールであるため、その形状は特に限定されず、例えば溝状、円柱状のような柱状の形状として形成することができる。 As described above, since the second exposed portion Y is a contact groove or a contact hole for conducting the first electrode 20 and the second electrode 70, the shape thereof is not particularly limited. It can be formed as a columnar shape.
 このようにしてコンタクト70aを形成することにより、隣り合う有機光電変換素子同士が電気的に接続され、複数の有機光電変換素子が互いに接続された有機薄膜太陽電池モジュールが製造される。 By forming the contact 70a in this way, adjacent organic photoelectric conversion elements are electrically connected, and an organic thin film solar cell module in which a plurality of organic photoelectric conversion elements are connected to each other is manufactured.
 上述の通り、第1電荷輸送層40、活性層50、第2電荷輸送層60及び第2電極70は、塗工液、すなわち溶液を塗布し、塗布形成された層を窒素ガス雰囲気のような任意好適な雰囲気下において、材料及び溶媒に好適な条件で乾燥する成膜方法により形成される。 As described above, the first charge transport layer 40, the active layer 50, the second charge transport layer 60, and the second electrode 70 are coated with a coating liquid, that is, a solution, and the formed layer is applied in a nitrogen gas atmosphere. It is formed by a film forming method that is dried under conditions suitable for the material and the solvent under any suitable atmosphere.
 成膜方法としては、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、グラビア印刷法、フレキソ印刷法、オフセット印刷法、インクジェット印刷法、ディスペンサー印刷法、ノズルコート法、キャピラリーコート法等の塗布法を用いてもよく、スピンコート法、フレキソ印刷法、グラビア印刷法、インクジェット印刷法、ディスペンサー印刷法が好ましい。 Film formation methods include spin coating, casting, micro gravure coating, gravure coating, bar coating, roll coating, wire bar coating, dip coating, spray coating, screen printing, and gravure printing. , Flexographic printing methods, offset printing methods, inkjet printing methods, dispenser printing methods, nozzle coating methods, capillary coating methods, and other coating methods may be used, such as spin coating methods, flexographic printing methods, gravure printing methods, inkjet printing methods, Dispenser printing is preferred.
 これらの溶液を用いる成膜方法に用いられる溶媒は、各層の材料を溶解させ、かつ撥液性パターンによりはじかれて、撥液性パターン上に濡れ広がらないものであれば特に制限はない。 The solvent used in the film forming method using these solutions is not particularly limited as long as it dissolves the material of each layer and is repelled by the liquid repellent pattern so as not to wet and spread on the liquid repellent pattern.
 このような溶媒の例としては、トルエン、キシレン、メシチレン、テトラリン、デカリン、ビシクロヘキシル、ブチルベンゼン、sec-ブチルベンゼン、tert-ブチルベンゼン等の不飽和炭化水素系溶媒、四塩化炭素、クロロホルム、ジクロロメタン、ジクロロエタン、クロロブタン、ブロモブタン、クロロペンタン、ブロモペンタン、クロロヘキサン、ブロモヘキサン、クロロシクロヘキサン、ブロモシクロヘキサン等のハロゲン化飽和炭化水素系溶媒、クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン等のハロゲン化不飽和炭化水素系溶媒、テトラヒドロフラン、テトラヒドロピラン等のエーテル類系溶媒が挙げられる。 Examples of such solvents include toluene, xylene, mesitylene, tetralin, decalin, bicyclohexyl, unsaturated hydrocarbon solvents such as butylbenzene, sec-butylbenzene, tert-butylbenzene, carbon tetrachloride, chloroform, dichloromethane , Halogenated saturated hydrocarbon solvents such as dichloroethane, chlorobutane, bromobutane, chloropentane, bromopentane, chlorohexane, bromohexane, chlorocyclohexane, bromocyclohexane, and halogenated unsaturated hydrocarbons such as chlorobenzene, dichlorobenzene, and trichlorobenzene Examples of the solvent include ether solvents such as tetrahydrofuran and tetrahydropyran.
 図9に示すように、第2電極70、第2電荷輸送層60及び活性層50を貫通して、撥液性パターン30a外である第1電荷輸送層40の一部分を露出させる第3露出部Zを形成する。 As shown in FIG. 9, a third exposed portion that penetrates through the second electrode 70, the second charge transport layer 60, and the active layer 50 and exposes a portion of the first charge transport layer 40 outside the liquid repellent pattern 30a. Z is formed.
 この第3露出部Zは、フォトリソグラフィ工程及びこれに続くエッチング工程、回転刃を用いる切削工程のような従来公知のパターニング工程により形成することができる。 The third exposed portion Z can be formed by a conventionally known patterning process such as a photolithography process, an etching process subsequent thereto, and a cutting process using a rotary blade.
 第3露出部Zは、第1有機光電変換素子100A1と、第2有機光電変換素子100A2とを、素子間部100Bにより、電気的に分離するための構成である。第3露出部Zを形成することにより、複数の有機光電変換素子が素子分離されることにより形成される。素子間部100Bは線溝状であって、この例では第1電極の周縁部近傍で周縁部の形状(この例では直線状)に沿って隣り合う素子同士を分断している。素子間部100Bは、光電変換素子としては機能しない領域であるので、できる限り小さい領域とするのがよい。よって第3露出部Zは、素子間部100Bの大きさを可能な限り小さくすることができる形状及び配置位置として形成するのがよい。例えばこの例では可能な限り第1電極の周縁部に近く、かつ可能な限り細幅である直線状の溝として構成すればよい。 The third exposed portion Z is a configuration for electrically separating the first organic photoelectric conversion element 100A1 and the second organic photoelectric conversion element 100A2 by the inter-element portion 100B. By forming the third exposed portion Z, a plurality of organic photoelectric conversion elements are formed by element isolation. The inter-element portion 100B has a linear groove shape, and in this example, adjacent elements are separated in the vicinity of the peripheral edge portion of the first electrode along the peripheral edge shape (in this example, a straight line shape). Since the inter-element portion 100B is an area that does not function as a photoelectric conversion element, it is preferable to make the area as small as possible. Therefore, the third exposed portion Z is preferably formed as a shape and an arrangement position that can reduce the size of the inter-element portion 100B as much as possible. For example, in this example, it may be configured as a linear groove as close as possible to the peripheral edge of the first electrode and as narrow as possible.
(第2の実施形態)
 第2の実施の形態の有機薄膜太陽電池モジュールの製造方法は、第1電極及び第2電極からなる一対の電極、及び一対の電極間に挟持される活性層を備える有機光電変換素子が、基板上に複数配列された複数の有機光電変換素子を含む有機薄膜太陽電池モジュールの製造方法において、基板上に、複数の第1電極を形成する工程と、基板上に設けられた複数の第1電極外の基板上に撥液性パターンを形成する工程とを含む。
(Second Embodiment)
In the method for manufacturing an organic thin film solar cell module according to the second embodiment, an organic photoelectric conversion element including a pair of electrodes including a first electrode and a second electrode and an active layer sandwiched between the pair of electrodes is a substrate. In the method for manufacturing an organic thin-film solar cell module including a plurality of organic photoelectric conversion elements arranged on the substrate, a step of forming a plurality of first electrodes on the substrate and a plurality of first electrodes provided on the substrate Forming a liquid repellent pattern on an outer substrate.
 より具体的には、撥液性パターンを形成する工程が、基板に含まれる材料と撥液性部に含まれる材料との結合強度と、第1電極に含まれる材料と撥液性部に含まれる材料との結合強度との差を利用して、基板全面に対する親液化処理により、第1電極の表面から撥液性部を除去し、かつ基板の表面のうち第1電極が非形成とされた領域には撥液性部に含まれる材料を残存させることにより撥液性パターンを形成する工程である。 More specifically, the step of forming the liquid repellent pattern includes the bond strength between the material included in the substrate and the material included in the liquid repellent part, and the material included in the first electrode and the liquid repellent part. The lyophobic treatment is performed on the entire surface of the substrate by utilizing the difference in bonding strength with the material to be removed, and the liquid repellent portion is removed from the surface of the first electrode, and the first electrode is not formed on the surface of the substrate. This is a step of forming a liquid repellent pattern by leaving the material contained in the liquid repellent part in the region.
 図10から図18を参照して、第2の実施形態の有機薄膜太陽電池モジュールの製造方法について具体的に説明する。なお既に説明した第1の実施形態と共通する工程については条件等の詳細な説明を省略する場合がある。 10 to 18, a method for manufacturing the organic thin film solar cell module of the second embodiment will be specifically described. It should be noted that detailed description of conditions and the like may be omitted for the steps common to the already described first embodiment.
 図10は、第2の実施形態の製造方法を示す概略的な断面図(1)である。図11は、第2の実施形態の製造方法を示す概略的な断面図(2)である。図12は、第2の実施形態の製造方法を示す概略的な断面図(3)である。図13は、第2の実施形態の製造方法を示す概略的な断面図(4)である。図14は、第2の実施形態の製造方法を示す概略的な断面図(5)である。図15は、第2の実施形態の製造方法を示す概略的な断面図(6)である。図16は、第2の実施形態の製造方法を示す概略的な断面図(7)である。図17は、第2の実施形態の製造方法を示す概略的な断面図(8)である。図18は、第2の実施形態の製造方法を示す概略的な断面図(9)である。 FIG. 10 is a schematic cross-sectional view (1) showing the manufacturing method of the second embodiment. FIG. 11 is a schematic cross-sectional view (2) showing the manufacturing method of the second embodiment. FIG. 12 is a schematic cross-sectional view (3) showing the manufacturing method of the second embodiment. FIG. 13 is a schematic cross-sectional view (4) showing the manufacturing method of the second embodiment. FIG. 14 is a schematic cross-sectional view (5) showing the manufacturing method of the second embodiment. FIG. 15 is a schematic cross-sectional view (6) showing the manufacturing method of the second embodiment. FIG. 16 is a schematic cross-sectional view (7) showing the manufacturing method of the second embodiment. FIG. 17 is a schematic cross-sectional view (8) showing the manufacturing method of the second embodiment. FIG. 18 is a schematic cross-sectional view (9) illustrating the manufacturing method of the second embodiment.
 図10に示すように、まず、基板10を準備する。基板10に導電性材料の薄膜が設けられていない場合には、導電性材料の膜を任意好適な方法により形成する。次いで導電性材料の薄膜をパターニングする。このパターニングに際しては、予め電極形成領域10A及び該電極形成領域10A外である非電極形成領域10Bが設定される。導電性材料の薄膜をパターニングして、電極形成領域10Aに、互いに電気的に分離された複数のパターンからなる第1電極20を形成する。この工程により、非電極形成領域10Bでは基板10の主面の一部分が露出する。 As shown in FIG. 10, first, a substrate 10 is prepared. If the substrate 10 is not provided with a thin film of conductive material, the conductive material film is formed by any suitable method. The conductive material thin film is then patterned. In this patterning, an electrode forming region 10A and a non-electrode forming region 10B outside the electrode forming region 10A are set in advance. The thin film of the conductive material is patterned to form the first electrode 20 having a plurality of patterns electrically separated from each other in the electrode formation region 10A. By this step, a part of the main surface of the substrate 10 is exposed in the non-electrode formation region 10B.
 図11に示すように、第1電極20の表面20aを含む、第1電極20が形成された基板10上全面に、撥液性である撥液性部30を形成する。 As shown in FIG. 11, a liquid repellent portion 30 that is liquid repellent is formed on the entire surface of the substrate 10 on which the first electrode 20 is formed, including the surface 20 a of the first electrode 20.
 撥液性部30を形成する工程は、第1の実施形態と同様にして実施すればよい。好ましくはケイ素、アルミニウム及びチタンからなる群から選ばれる1種の金属を含むカップリング剤を用いて撥液性部30を形成すればよい。 The step of forming the liquid repellent portion 30 may be performed in the same manner as in the first embodiment. Preferably, the liquid repellent part 30 may be formed using a coupling agent containing one kind of metal selected from the group consisting of silicon, aluminum and titanium.
 また撥液性部30を形成する工程は、CF、NF、及びCFとメタノールとの混合物からなる群から選ばれる1種以上を用いる蒸気処理によりフッ素化された撥液性部30を形成する工程とすればよい。 The step of forming the liquid repellent part 30 includes the step of forming the liquid repellent part 30 fluorinated by steam treatment using one or more selected from the group consisting of CF 4 , NF 3 , and a mixture of CF 4 and methanol. What is necessary is just to make it the process of forming.
 図12に示すように、第1電極20が形成された基板10全面を親液化処理Rにより親液化する。親液化は、第1の実施形態と同様にして実施すればよい。親液化処理Rとしては、好ましくは常法に従うプラズマ処理、UVオゾン処理、コロナ放電処理、水洗処理が挙げられる。この工程により、第1電極20の露出面、すなわち電極形成領域10Aが親液化され、第1電極20から露出する非電極形成領域10Bのみに撥液性パターン30aが残存する。 As shown in FIG. 12, the entire surface of the substrate 10 on which the first electrode 20 is formed is made lyophilic by lyophilic treatment R. The lyophilic process may be performed in the same manner as in the first embodiment. The lyophilic treatment R preferably includes plasma treatment, UV ozone treatment, corona discharge treatment, and water washing treatment according to a conventional method. By this step, the exposed surface of the first electrode 20, that is, the electrode formation region 10 </ b> A is made lyophilic, and the liquid repellent pattern 30 a remains only in the non-electrode formation region 10 </ b> B exposed from the first electrode 20.
 このように第2の実施形態では、第1電極20の表面の性質(第1電極20に含まれる材料の性質)と、この第1電極20から露出した基板10の表面の性質(基板10に含まれる材料の性質)、すなわち第1電極20の表面と第1電極20が非形成とされた基板10の表面の一部分(領域)の両方とに形成された撥液性部30の材料の親液化処理Rによる除去速度の違いを利用することにより実施することができる。 Thus, in the second embodiment, the property of the surface of the first electrode 20 (the property of the material included in the first electrode 20) and the property of the surface of the substrate 10 exposed from the first electrode 20 (on the substrate 10). Property of the material contained), that is, the parent of the material of the liquid repellent part 30 formed on both the surface of the first electrode 20 and a part (region) of the surface of the substrate 10 on which the first electrode 20 is not formed. It can be implemented by utilizing the difference in the removal rate due to the liquefaction treatment R.
 例えば、CFプラズマ処理によりフッ素化処理された撥液性部30を好適な程度に水洗すると、第1電極20上のフッ素成分であるフッ化物のみを選択的に除去することができ、第1電極20外の領域のみに撥液性パターン30aを形成する(残存させる)ことができる。 For example, when the lyophobic portion 30 that has been fluorinated by CF 4 plasma treatment is washed with water to a suitable degree, only the fluoride that is the fluorine component on the first electrode 20 can be selectively removed, and the first The liquid repellent pattern 30 a can be formed (remaining) only in the region outside the electrode 20.
 このようにすれば、マスクパターンの形成工程、マスクパターンをマスクとして用いるパターニング工程、マスクパターンの除去工程が不要となる。 In this way, a mask pattern forming step, a patterning step using the mask pattern as a mask, and a mask pattern removing step are not required.
 なお、第1の実施形態で説明したように、マスクパターンを用いて形成するか、又はインクジェット法により撥液性パターン30aを形成してももちろんよい。 Of course, as described in the first embodiment, the liquid repellent pattern 30a may be formed by using a mask pattern or by an inkjet method.
 図13に示すように、次に撥液性パターン30aが形成された基板10上全面に、撥液性パターン30aにより撥液される塗工液を塗布して、撥液性パターン30aを露出する第1露出部Xを有する第1電荷輸送層40を形成する。 As shown in FIG. 13, a coating liquid that is repelled by the liquid repellent pattern 30a is then applied to the entire surface of the substrate 10 on which the liquid repellent pattern 30a is formed to expose the liquid repellent pattern 30a. A first charge transport layer 40 having a first exposed portion X is formed.
 図14に示すように、引き続き第1電荷輸送層40上を覆う活性層50を形成する。この活性層50の形成工程についても、撥液性パターン30aが形成された基板10上全面に、撥液性パターン30aにより撥液される塗工液を塗布して形成する。 As shown in FIG. 14, the active layer 50 that covers the first charge transport layer 40 is subsequently formed. Also in the step of forming the active layer 50, a coating liquid repelled by the liquid repellent pattern 30a is applied to the entire surface of the substrate 10 on which the liquid repellent pattern 30a is formed.
 図15に示すように、さらに活性層50上を覆う第2電荷輸送層60を形成する。この第2電荷輸送層60の形成工程についても、撥液性パターン30aが形成された基板10上全面に、撥液性パターン30aにより撥液される塗工液を塗布して形成する。 As shown in FIG. 15, a second charge transport layer 60 covering the active layer 50 is further formed. Also in the formation process of the second charge transport layer 60, a coating liquid repelled by the liquid repellent pattern 30a is applied to the entire surface of the substrate 10 on which the liquid repellent pattern 30a is formed.
 以上の工程により、撥液性パターン30a外の領域に、自己整合的に島状の第1電荷輸送層40、活性層50及び第2電荷輸送層60の積層構造が形成され、かつ撥液性パターン30aを露出する第1露出部Xが形成される。 Through the above steps, the island-shaped stacked structure of the first charge transport layer 40, the active layer 50, and the second charge transport layer 60 is formed in a region outside the liquid repellent pattern 30a in a self-aligned manner, and the liquid repellent property A first exposed portion X that exposes the pattern 30a is formed.
 図16に示すように、第1電荷輸送層40、活性層50及び第2電荷輸送層60を貫通して、撥液性パターン30a外である第1電極20の一部分が露出する、第2露出部Yを形成する。 As shown in FIG. 16, the second exposure is such that a part of the first electrode 20 outside the liquid repellent pattern 30a is exposed through the first charge transport layer 40, the active layer 50, and the second charge transport layer 60. Part Y is formed.
 図17に示すように、次いで第2電荷輸送層60上を覆い、第2露出部Yを埋め込んで第1電極20に接触し、かつ撥液性パターン30aを非被覆とする第2電極70を形成する。この工程も撥液性パターン30aにより撥液される塗工液を塗布することにより形成する。 As shown in FIG. 17, the second electrode 70 that covers the second charge transport layer 60, fills the second exposed portion Y, contacts the first electrode 20, and uncovers the liquid repellent pattern 30a is formed. Form. This process is also formed by applying a coating liquid repelled by the liquid repellent pattern 30a.
 第2露出部Yを埋め込む第2電極の一部分は第1電極20と第2電極70とを導通させるコンタクト70aとして機能する。 A part of the second electrode that embeds the second exposed portion Y functions as a contact 70 a that connects the first electrode 20 and the second electrode 70.
 なお、第2電極70を塗布法ではなく、例えば蒸着法のような方法により形成する場合には、撥液性パターン30a上にも第2電極70の材料が堆積するため、第2露出部Yを形成するまでもなく、撥液性パターン30aの直上にコンタクトが形成されることになる。よってこの場合には、第2露出部Yを形成しなくともよい。 When the second electrode 70 is formed by a method such as a vapor deposition method instead of the coating method, the material of the second electrode 70 is deposited also on the liquid repellent pattern 30a. Needless to say, a contact is formed immediately above the liquid repellent pattern 30a. Therefore, in this case, the second exposed portion Y need not be formed.
 上述したように、第2露出部Yは第1電極20と第2電極70とを導通させるコンタクト溝であるため、その形状は特に限定されず、例えば溝状、穴状の形状として形成すればよい。 As described above, since the second exposed portion Y is a contact groove for conducting the first electrode 20 and the second electrode 70, the shape thereof is not particularly limited. For example, the second exposed portion Y may be formed as a groove shape or a hole shape. Good.
 図18に示すように、第2電極70、第2電荷輸送層60及び活性層50を貫通して、撥液性パターン30a外である第1電荷輸送層40の一部分を露出させる第3露出部Zを形成する。 As shown in FIG. 18, a third exposed portion that penetrates through the second electrode 70, the second charge transport layer 60, and the active layer 50 and exposes a portion of the first charge transport layer 40 outside the liquid repellent pattern 30a. Z is formed.
<有機光電変換素子>
 ここで、本発明の製造方法により製造される有機薄膜太陽電池モジュールが備える有機光電変換素子について図9を参照して説明する。
<Organic photoelectric conversion element>
Here, the organic photoelectric conversion element with which the organic thin-film solar cell module manufactured by the manufacturing method of this invention is provided is demonstrated with reference to FIG.
 有機光電変換素子は、陽極及び陰極からなる一対の電極と、一対の電極間に挟持された活性層とを備える。 The organic photoelectric conversion element includes a pair of electrodes composed of an anode and a cathode, and an active layer sandwiched between the pair of electrodes.
 この一対の電極のうち、少なくとも光が入射する側の電極、すなわち少なくとも一方の電極は、発電に必要な波長の入射光(太陽光)を透過させことができる透明又は半透明の電極とされる。 Of the pair of electrodes, at least one of the electrodes on which light is incident, that is, at least one of the electrodes is a transparent or translucent electrode capable of transmitting incident light (sunlight) having a wavelength necessary for power generation. .
 図9に示すように、有機光電変換素子(第1素子100A1及び第2素子100A2)は、例えば陽極である第1電極20及び例えば陰極である第2電極70からなる一対の電極と、該一対の電極間に挟持された活性層50とを備えている。第1電極20及び第2電極70の極性は素子構造に対応した任意好適な極性とすればよく、第1電極20を陰極とし、かつ第2電極70を陽極とすることもできる。 As shown in FIG. 9, the organic photoelectric conversion elements (the first element 100A1 and the second element 100A2) include, for example, a pair of electrodes including a first electrode 20 that is an anode and a second electrode 70 that is a cathode, for example. Active layer 50 sandwiched between the electrodes. The polarities of the first electrode 20 and the second electrode 70 may be any suitable polarity corresponding to the element structure, and the first electrode 20 may be a cathode and the second electrode 70 may be an anode.
 透明又は半透明である電極の例としては、導電性の金属酸化物膜、半透明の金属薄膜等が挙げられる。電極としては、具体的には、酸化インジウム、酸化亜鉛、酸化スズ、及びそれらの複合体であるインジウムスズ酸化物、インジウム亜鉛酸化物(IZO)等の導電性材料を用いて作製された膜、NESA等、金、白金、銀、銅等の膜が用いられ、ITO、インジウム亜鉛酸化物、酸化スズの膜が好ましい。電極の作製方法の例としては、真空蒸着法、スパッタリング法、イオンプレーティング法、メッキ法等が挙げられる。また、電極として、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体等の有機の透明導電膜を用いてもよい。 Examples of transparent or translucent electrodes include conductive metal oxide films and translucent metal thin films. Specifically, as the electrode, indium oxide, zinc oxide, tin oxide, and a film made using a conductive material such as indium tin oxide or indium zinc oxide (IZO) that is a composite thereof, A film made of gold, platinum, silver, copper or the like such as NESA is used, and a film made of ITO, indium zinc oxide, or tin oxide is preferable. Examples of the electrode manufacturing method include a vacuum deposition method, a sputtering method, an ion plating method, a plating method, and the like. Moreover, you may use organic transparent conductive films, such as polyaniline and its derivative (s), polythiophene, and its derivative (s) as an electrode.
 不透明である電極の電極材料としては、金属、導電性高分子等を用いることができる。不透明である電極の電極材料の具体例としては、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、マグネシウム、カルシウム、ストロンチウム、バリウム、アルミニウム、スカンジウム、バナジウム、亜鉛、イットリウム、インジウム、セリウム、サマリウム、ユーロピウム、テルビウム、イッテルビウム等の金属、及びそれらのうち2つ以上の合金、又は、1種以上の金属と、金、銀、白金、銅、マンガン、チタン、コバルト、ニッケル、タングステン及び錫からなる群から選ばれる1種以上の金属との合金、グラファイト、グラファイト層間化合物、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体が挙げられる。合金の例としては、マグネシウム-銀合金、マグネシウム-インジウム合金、マグネシウム-アルミニウム合金、インジウム-銀合金、リチウム-アルミニウム合金、リチウム-マグネシウム合金、リチウム-インジウム合金、カルシウム-アルミニウム合金等が挙げられる。 As the electrode material for the opaque electrode, a metal, a conductive polymer, or the like can be used. Specific examples of electrode materials for opaque electrodes include lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, strontium, barium, aluminum, scandium, vanadium, zinc, yttrium, indium, cerium, samarium, europium, terbium Selected from the group consisting of gold, silver, platinum, copper, manganese, titanium, cobalt, nickel, tungsten and tin, and a metal such as ytterbium and two or more alloys thereof, or one or more metals Examples include alloys with one or more metals, graphite, graphite intercalation compounds, polyaniline and its derivatives, polythiophene and its derivatives. Examples of the alloy include magnesium-silver alloy, magnesium-indium alloy, magnesium-aluminum alloy, indium-silver alloy, lithium-aluminum alloy, lithium-magnesium alloy, lithium-indium alloy, calcium-aluminum alloy and the like.
 有機光電変換素子は、通常、基板上に形成される。すなわち第1素子100A1及び第2素子100A2は、基板10の主面上に設けられている。 The organic photoelectric conversion element is usually formed on a substrate. That is, the first element 100A1 and the second element 100A2 are provided on the main surface of the substrate 10.
 この基板10の材料は、電極を形成し、有機物を含有する層を形成する際に化学的に変化しないものであればよい。基板10の材料の例としては、ガラス、プラスチック、高分子フィルム、シリコン等が挙げられる。 The material of the substrate 10 may be any material that does not change chemically when forming an electrode and forming a layer containing an organic substance. Examples of the material of the substrate 10 include glass, plastic, polymer film, silicon and the like.
 基板10が入射光を不透過とする不透明である場合には、第1電極20と対向する、基板側とは反対側に設けられる第2電極70(すなわち基板10から遠い方の電極)が透明であるか、又は所要の入射光を透過できる半透明であることが好ましい。 When the substrate 10 is opaque and does not transmit incident light, the second electrode 70 (that is, the electrode far from the substrate 10) provided on the side opposite to the substrate side facing the first electrode 20 is transparent. Or a translucent material capable of transmitting required incident light.
 活性層50は、第1電極20と第2電極70とに挟持されている。第2の実施形態の活性層50は、電子受容性化合物(n型半導体)と電子供与性化合物(p型半導体)とが混合されて含有される、バルクヘテロ型の有機層であって、入射光のエネルギーを利用して電荷(正孔及び電子)を生成することができる、光電変換機能にとって本質的な機能を有する層である。 The active layer 50 is sandwiched between the first electrode 20 and the second electrode 70. The active layer 50 of the second embodiment is a bulk hetero type organic layer containing a mixture of an electron-accepting compound (n-type semiconductor) and an electron-donating compound (p-type semiconductor). It is a layer having a function essential to the photoelectric conversion function, which can generate electric charges (holes and electrons) using the energy of.
 有機光電変換素子に含まれる活性層は、上述のとおり、電子供与性化合物と電子受容性化合物とを含む。
 なお、電子供与性化合物と電子受容性化合物とは、これらの化合物のエネルギー準位のエネルギーレベルから相対的に決定され、1つの化合物が電子供与性化合物、電子受容性化合物のいずれともなり得る。
The active layer included in the organic photoelectric conversion element includes an electron donating compound and an electron accepting compound as described above.
Note that the electron-donating compound and the electron-accepting compound are determined relatively from the energy levels of these compounds, and one compound can be either an electron-donating compound or an electron-accepting compound.
 電子供与性化合物の例としては、ピラゾリン誘導体、アリールアミン誘導体、スチルベン誘導体、トリフェニルジアミン誘導体、オリゴチオフェン及びその誘導体、ポリビニルカルバゾール及びその誘導体、ポリシラン及びその誘導体、側鎖又は主鎖に芳香族アミンを有するポリシロキサン誘導体、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体、ポリピロール及びその誘導体、ポリフェニレンビニレン及びその誘導体、ポリチエニレンビニレン及びその誘導体等が挙げられる。 Examples of electron donating compounds include pyrazoline derivatives, arylamine derivatives, stilbene derivatives, triphenyldiamine derivatives, oligothiophene and derivatives thereof, polyvinylcarbazole and derivatives thereof, polysilane and derivatives thereof, aromatic amines in the side chain or main chain And polysiloxane derivatives, polyaniline and derivatives thereof, polythiophene and derivatives thereof, polypyrrole and derivatives thereof, polyphenylene vinylene and derivatives thereof, polythienylene vinylene and derivatives thereof, and the like.
 電子受容性化合物の例としては、オキサジアゾール誘導体、アントラキノジメタン及びその誘導体、ベンゾキノン及びその誘導体、ナフトキノン及びその誘導体、アントラキノン及びその誘導体、テトラシアノアントラキノジメタン及びその誘導体、フルオレノン誘導体、ジフェニルジシアノエチレン及びその誘導体、ジフェノキノン誘導体、8-ヒドロキシキノリン及びその誘導体の金属錯体、ポリキノリン及びその誘導体、ポリキノキサリン及びその誘導体、ポリフルオレン及びその誘導体、C60フラーレン等のフラーレン類及びその誘導体、バソクプロイン等のフェナントレン誘導体、酸化チタンなどの金属酸化物、カーボンナノチューブ等が挙げられる。電子受容性化合物としては、好ましくは酸化チタン、カーボンナノチューブ、フラーレン、フラーレン誘導体であり、特に好ましくはフラーレン、フラーレン誘導体である。 Examples of electron accepting compounds include oxadiazole derivatives, anthraquinodimethane and its derivatives, benzoquinone and its derivatives, naphthoquinone and its derivatives, anthraquinone and its derivatives, tetracyanoanthraquinodimethane and its derivatives, fluorenone derivatives, diphenyldicyanoethylene and derivatives thereof, diphenoquinone derivatives, 8-hydroxyquinoline and metal complexes of derivatives thereof, polyquinoline and derivatives thereof, polyquinoxaline and derivatives thereof, polyfluorene and derivatives thereof, fullerenes and derivatives thereof such as C 60 fullerene, bathocuproine And phenanthrene derivatives such as titanium oxide, metal oxides such as titanium oxide, and carbon nanotubes. As the electron-accepting compound, titanium oxide, carbon nanotubes, fullerenes, and fullerene derivatives are preferable, and fullerenes and fullerene derivatives are particularly preferable.
 フラーレンの例としては、C60フラーレン、C70フラーレン、C76フラーレン、C78フラーレン、C84フラーレンなどが挙げられる。 Examples of fullerene, C 60 fullerene, C 70 fullerene, C 76 fullerene, C 78 fullerene, such as C 84 fullerene, and the like.
 フラーレン誘導体の例としてはC60フラーレン、C70フラーレン、C76フラーレン、C78フラーレン、C84フラーレンそれぞれの誘導体が挙げられる。フラーレン誘導体の具体的構造の例としては、下記のような構造が挙げられる。 Examples of the fullerene derivatives C 60 fullerene, C 70 fullerene, C 76 fullerene, C 78 fullerene include C 84 fullerene derivatives of each. Examples of the specific structure of the fullerene derivative include the following structures.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 また、フラーレン誘導体の例としては、[6,6]フェニル-C61酪酸メチルエステル(C60PCBM、[6,6]-Phenyl C61 butyric acid methyl ester)、[6,6]フェニル-C71酪酸メチルエステル(C70PCBM、[6,6]-Phenyl C71 butyric acid methyl ester)、[6,6]フェニル-C85酪酸メチルエステル(C84PCBM、[6,6]-Phenyl C85 butyric acid methyl ester)、[6,6]チエニル-C61酪酸メチルエステル([6,6]-Thienyl C61 butyric acid methyl ester)などが挙げられる。 Examples of fullerene derivatives include [6,6] phenyl-C 61 butyric acid methyl ester (C 60 PCBM, [6,6] -Phenyl C 61 butyric acid methyl ester), and [6,6] phenyl-C 71. Butyric acid methyl ester (C 70 PCBM, [6,6] -Phenyl C 71 butyric acid methyl ester), [6,6] Phenyl-C 85 butyric acid methyl ester (C 84 PCBM, [6,6] -Phenyl C 85 butyric acid methyl ester), and the like [6,6] thienyl -C 61 butyric acid methyl ester ([6,6] -Thienyl C 61 butyric acid methyl ester).
 電子受容性化合物としてフラーレン誘導体を用いる場合には、フラーレン誘導体の割合が、電子供与性化合物100重量部に対して、10重量部~1000重量部であることが好ましく、20重量部~500重量部であることがより好ましい。
 電子受容性化合物及び電子供与性化合物を含有するバルクヘテロ型の活性層における電子受容性化合物の割合は、電子供与性化合物100重量部に対して、10重量部~1000重量部とすることが好ましく、50重量部~500重量部とすることがより好ましい。
When a fullerene derivative is used as the electron accepting compound, the ratio of the fullerene derivative is preferably 10 parts by weight to 1000 parts by weight with respect to 100 parts by weight of the electron donating compound, and 20 parts by weight to 500 parts by weight. It is more preferable that
The ratio of the electron accepting compound in the bulk hetero type active layer containing the electron accepting compound and the electron donating compound is preferably 10 parts by weight to 1000 parts by weight with respect to 100 parts by weight of the electron donating compound. More preferred is 50 to 500 parts by weight.
 活性層の厚さは、通常、1nm~100μmが好ましく、より好ましくは2nm~1000nmであり、さらに好ましくは5nm~500nmであり、特に好ましくは20nm~200nmである。 The thickness of the active layer is usually preferably 1 nm to 100 μm, more preferably 2 nm to 1000 nm, still more preferably 5 nm to 500 nm, and particularly preferably 20 nm to 200 nm.
 ここで有機光電変換素子の動作機構を簡単に説明する。透明又は半透明の電極を透過して活性層に入射した入射光のエネルギーが、電子受容性化合物及び/又は電子供与性化合物で吸収され、電子と正孔とが結合した励起子を生成する。生成した励起子が移動して、電子受容性化合物と電子供与性化合物とが接合しているヘテロ接合界面に達すると、界面でのそれぞれのHOMOエネルギー及びLUMOエネルギーの違いにより電子と正孔とが分離し、独立に動くことができる電荷(電子及び正孔)が発生する。発生した電荷がそれぞれ電極(陰極、陽極)に移動することにより素子外部へ電気エネルギー(電流)として取り出すことができる。 Here, the operation mechanism of the organic photoelectric conversion element will be briefly described. The energy of incident light that has passed through the transparent or translucent electrode and entered the active layer is absorbed by the electron-accepting compound and / or the electron-donating compound to generate excitons in which electrons and holes are combined. When the generated excitons move and reach the heterojunction interface where the electron-accepting compound and the electron-donating compound are bonded, the difference between the HOMO energy and the LUMO energy at the interface causes the electrons and holes to be separated. Charges (electrons and holes) are generated that can separate and move independently. The generated charges move to the electrodes (cathode and anode), respectively, and can be taken out as electric energy (current) outside the device.
 有機光電変換素子には、第1電極及び第2電極のうちの少なくとも一方の電極と活性層との間に光電変換効率を向上させるための手段として活性層以外の付加的な層(中間層)を設けてもよい。付加的な中間層として用いられる材料の例としては、フッ化リチウム等のアルカリ金属及びアルカリ土類金属のハロゲン化物、アルカリ金属及びアルカリ土類金属の酸化物等を用いることができる。また、付加的な中間層として用いられる材料の例としては、酸化チタン等無機半導体の微粒子、PEDOT(ポリ-3,4-エチレンジオキシチオフェン)などが挙げられる。 In the organic photoelectric conversion element, an additional layer (intermediate layer) other than the active layer is provided as a means for improving photoelectric conversion efficiency between at least one of the first electrode and the second electrode and the active layer. May be provided. Examples of the material used for the additional intermediate layer include alkali metal and alkaline earth metal halides such as lithium fluoride, alkali metal and alkaline earth metal oxides, and the like. Examples of the material used as the additional intermediate layer include fine particles of inorganic semiconductor such as titanium oxide, PEDOT (poly-3,4-ethylenedioxythiophene), and the like.
 付加的な層の例としては、正孔又は電子を輸送する電荷輸送層(正孔輸送層、電子輸送層)が挙げられる。 Examples of the additional layer include a charge transport layer (hole transport layer, electron transport layer) that transports holes or electrons.
 上述の電荷輸送層を構成する材料としては、任意好適な材料を用いることができる。電荷輸送層が電子輸送層である場合には、材料の例として2,9-ジメチル-4,7-ジフェニル-1,10-フェナンスロリン(BCP)が挙げられる。電荷輸送層が正孔輸送層である場合には、材料の例としてはPEDOTが挙げられる。 Any suitable material can be used as the material constituting the charge transport layer. When the charge transport layer is an electron transport layer, an example of the material is 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP). When the charge transport layer is a hole transport layer, an example of the material is PEDOT.
 第1電極及び第2電極と、活性層との間に設けてもよい付加的な中間層は、バッファ層であってもよく、バッファ層として用いられる材料としては、フッ化リチウム等のアルカリ金属、アルカリ土類金属のハロゲン化物、酸化チタン等の酸化物等が挙げられる。また、無機半導体を用いる場合には、微粒子の形態で用いることもできる。 The additional intermediate layer that may be provided between the first electrode and the second electrode and the active layer may be a buffer layer. The material used as the buffer layer may be an alkali metal such as lithium fluoride. And alkaline earth metal halides and oxides such as titanium oxide. When an inorganic semiconductor is used, it can be used in the form of fine particles.
 有機光電変換素子の構成をより具体的に説明する。基板10の主面上には、第1電極20が設けられている。第1電極20上には、第1電荷輸送層40が設けられている。第1電荷輸送層40は、第1電極20が陽極である場合には正孔輸送層であり、第1電極20が陰極である場合には電子輸送層である。 The configuration of the organic photoelectric conversion element will be described more specifically. A first electrode 20 is provided on the main surface of the substrate 10. A first charge transport layer 40 is provided on the first electrode 20. The first charge transport layer 40 is a hole transport layer when the first electrode 20 is an anode, and is an electron transport layer when the first electrode 20 is a cathode.
 活性層50は、第1電荷輸送層40上に設けられている。活性層50上には、第2電荷輸送層60が設けられている。第2電荷輸送層60は、第1電極20が陽極である場合には電子輸送層であり、第1電極20が陰極である場合には正孔輸送層である。第2電極70は、第2電荷輸送層60上に設けられている。 The active layer 50 is provided on the first charge transport layer 40. A second charge transport layer 60 is provided on the active layer 50. The second charge transport layer 60 is an electron transport layer when the first electrode 20 is an anode, and is a hole transport layer when the first electrode 20 is a cathode. The second electrode 70 is provided on the second charge transport layer 60.
 上記構成の有機光電変換素子では、活性層50を電子受容性化合物と電子供与性化合物とが混合されたバルクヘテロ型とする単層の活性層について説明したが、活性層50は複数層により構成されていてもよく、例えばフラーレン誘導体のような電子受容性化合物を含有する電子受容性層と、P3HTのような電子供与性化合物を含有する電子供与性層とが接合されたヘテロジャンクション型としてもよい。 In the organic photoelectric conversion device having the above configuration, the active layer 50 is described as a single-layer active layer in which a bulk hetero type in which an electron accepting compound and an electron donating compound are mixed. However, the active layer 50 includes a plurality of layers. For example, a heterojunction type in which an electron-accepting layer containing an electron-accepting compound such as a fullerene derivative and an electron-donating layer containing an electron-donating compound such as P3HT may be joined. .
 ここで有機光電変換素子のとりうる層構成の一例を以下に示す。
a)陽極/活性層/陰極
b)陽極/正孔輸送層/活性層/陰極
c)陽極/活性層/電子輸送層/陰極
d)陽極/正孔輸送層/活性層/電子輸送層/陰極
e)陽極/電子供給性層/電子受容性層/陰極
f)陽極/正孔輸送層/電子供給性層/電子受容性層/陰極
g)陽極/電子供給性層/電子受容性層/電子輸送層/陰極
h)陽極/正孔輸送層/電子供給性層/電子受容性層/電子輸送層/陰極
(ここで、記号「/」は、記号「/」を挟む層同士が隣接して積層されていることを示す。)
Here, an example of the layer structure which an organic photoelectric conversion element can take is shown below.
a) Anode / active layer / cathode b) Anode / hole transport layer / active layer / cathode c) Anode / active layer / electron transport layer / cathode d) Anode / hole transport layer / active layer / electron transport layer / cathode e) Anode / electron supply layer / electron acceptor layer / cathode f) Anode / hole transport layer / electron supply layer / electron acceptor layer / cathode g) Anode / electron supply layer / electron acceptor layer / electron Transport layer / cathode h) anode / hole transport layer / electron supply layer / electron-accepting layer / electron transport layer / cathode (where the symbol “/” is adjacent to the layer sandwiching the symbol “/”) Indicates that they are stacked.)
 上記層構成は、陽極が基板により近い側に設けられる形態、及び陰極が基板により近い側に設けられる形態のいずれであってもよい。
 上記各層は、単層で構成されるのみならず、2層以上の積層体として構成されていてもよい。
The layer configuration may be any of a form in which the anode is provided on the side closer to the substrate and a form in which the cathode is provided on the side closer to the substrate.
Each of the above layers may be formed as a single layer or a laminate of two or more layers.
<実施例1>(電極における撥液処理)
 ITO膜付きポリエチレンナフトレート(PENという場合がある。)フィルム基板(トービ社製、商品名:OTEC)の電極が形成される側の面をカプトンテープで保護した後、1mol/Lの濃度のHNO中に3分間浸漬し、ITO膜を、複数の電極(第1電極)が配列され、かつこれら電極外にPENフィルム基板の主面が露出するパターンにパターニングした。電極がパターニングされた基板を、アセトンにて洗浄した後、低圧水銀ランプを備えた紫外線オゾン照射装置(テクノビジョン社製、型式:UV-312)を用いて、UVオゾン洗浄処理を15分間施し、清浄な表面をもつ第1電極をPEN基板上に作成した。次いで、0.5重量%濃度のオクタデシルトリクロロシランをオクタン溶媒中に溶解させた溶液に、第1電極が形成された基板を浸漬した後、120℃で30分間加熱処理した。その後、撥液性パターンとなる第1電極上の部分領域をカプトンテープで保護した後、15分間UVオゾン処理し、第1電極及び撥液性パターンを備える第1基板1を作製した。
<Example 1> (Liquid-repellent treatment in electrode)
Polyethylene naphthoate with ITO film (sometimes called PEN) Film substrate (trade name: OTEC, manufactured by Tobi Co., Ltd.) After protecting the surface on which the electrode is formed with Kapton tape, HNO with a concentration of 1 mol / L 3 was immersed in 3 minutes, and the ITO film was patterned into a pattern in which a plurality of electrodes (first electrodes) are arranged and the main surface of the PEN film substrate is exposed outside these electrodes. The substrate on which the electrodes were patterned was washed with acetone, and then subjected to UV ozone cleaning treatment for 15 minutes using an ultraviolet ozone irradiation apparatus (Technovision, model: UV-312) equipped with a low-pressure mercury lamp. A first electrode with a clean surface was made on the PEN substrate. Next, the substrate on which the first electrode was formed was immersed in a solution obtained by dissolving 0.5% by weight of octadecyltrichlorosilane in an octane solvent, followed by heat treatment at 120 ° C. for 30 minutes. Then, after protecting the partial area | region on the 1st electrode used as a liquid repellent pattern with a Kapton tape, it processed by UV ozone for 15 minutes, and produced the 1st board | substrate 1 provided with a 1st electrode and a liquid repellent pattern.
 次いで、基板1上に、正孔輸送性材料であるPEDOT(スタルク社製、商品名Baytron P AI4083、lot.HCD07O109)をスピンコート法により塗布した。この塗布工程により撥液性パターン外に、パターニングされたPEDOT層が形成された。その後、大気中、150℃で30分間乾燥を行なった。次いで電子供与性材料である共役高分子化合物としてポリ(3-ヘキシルチオフェン)(P3HT)(メルク社製、商品名lisicon SP001、lot.EF431002)と、電子受容性材料であるフラーレン誘導体としてPCBM(フロンティアカーボン社製、商品名E100、lot.7B0168-A)とを、オルトジクロロベンゼン溶媒中に、P3HTが1.5重量%、PCBMが1.2重量%となるよう添加し、70℃で2時間撹拌を行なった後、孔径0.2μmのフィルタにてろ過を行い、塗工液を調製する。次にPEDOT層上に、塗工液をスピンコート法により塗布して活性層を成膜した。この塗布工程により撥液性パターン外に、パターニングされた活性層が形成された。 Next, PEDOT (trade name Baytron P AI4083, lot. HCD07O109, manufactured by Starck Co., Ltd.), which is a hole transporting material, was applied on the substrate 1 by a spin coating method. By this coating process, a patterned PEDOT layer was formed outside the liquid repellent pattern. Thereafter, drying was performed in air at 150 ° C. for 30 minutes. Next, poly (3-hexylthiophene) (P3HT) (trade name licicon SP001, lot. EF431002) as a conjugated polymer compound as an electron donating material and PCBM (frontier as a fullerene derivative as an electron accepting material). Carbon, trade name E100, lot.7B0168-A) was added to the orthodichlorobenzene solvent so that P3HT was 1.5 wt% and PCBM was 1.2 wt%, and 70 ° C. for 2 hours. After stirring, the mixture is filtered with a filter having a pore size of 0.2 μm to prepare a coating solution. Next, an active layer was formed on the PEDOT layer by applying the coating solution by spin coating. By this coating step, a patterned active layer was formed outside the liquid repellent pattern.
<実施例2>(電極外の領域における撥液処理)
 ITO膜付きPENフィルム基板(トービ社製、商品名:OTEC)の第1電極が形成される側の面をカプトンテープで保護した後、1mol/L濃度のHNO中に3分間浸漬し、ITO膜を複数の第1電極を含むパターンにパターニング形成した。パターニングされた基板を、アセトンにて洗浄した後、低圧水銀ランプを備えた紫外線オゾン照射装置(テクノビジョン社製、型式:UV-312)を用いて、15分間UVオゾン洗浄処理して、清浄な表面をもつ第1電極をPEN基板上に形成した。
<Example 2> (Liquid repellent treatment in a region outside the electrode)
The surface on which the first electrode of the PEN film substrate with ITO film (trade name: OTEC, manufactured by Tobi) is protected with Kapton tape, and then immersed in 1 mol / L HNO 3 for 3 minutes. The film was patterned to a pattern including a plurality of first electrodes. After cleaning the patterned substrate with acetone, the substrate was cleaned by UV ozone cleaning for 15 minutes using an ultraviolet ozone irradiation device (Technovision, model: UV-312) equipped with a low-pressure mercury lamp. A first electrode having a surface was formed on a PEN substrate.
 次いで第1電極をカプトンテープにて保護した後、大気圧プラズマ装置に基板を導入し、CF雰囲気下でプラズマ処理した。その後、カプトンテープを剥ぎ取り、第2基板2を得る。
 その後、第2基板2を用い、実施例1と同じ方法で積層構造を作製した。
Next, after protecting the first electrode with Kapton tape, the substrate was introduced into an atmospheric pressure plasma apparatus, and plasma treatment was performed in a CF 4 atmosphere. Thereafter, the Kapton tape is peeled off to obtain the second substrate 2.
Thereafter, a laminated structure was produced using the second substrate 2 by the same method as in Example 1.
 本発明は、有機薄膜太陽電池モジュールの製造に有用である。 The present invention is useful for manufacturing an organic thin film solar cell module.

Claims (15)

  1.  第1電極及び第2電極からなる一対の電極、及び前記一対の電極間に挟持される活性層を備える有機光電変換素子が、基板上に複数配置された有機薄膜太陽電池モジュールの製造方法において、
     基板上に、複数の第1電極を形成する工程と、
     複数の第1電極それぞれの一部分に撥液性パターンを形成する工程と
    を含む、有機薄膜太陽電池モジュールの製造方法。
    In the method of manufacturing an organic thin-film solar cell module in which a plurality of organic photoelectric conversion elements each including an active layer sandwiched between a pair of electrodes composed of a first electrode and a second electrode and the pair of electrodes are disposed on a substrate,
    Forming a plurality of first electrodes on a substrate;
    Forming a liquid repellent pattern on a part of each of the plurality of first electrodes.
  2.  第1電極及び第2電極からなる一対の電極、及び前記一対の電極間に挟持される活性層を備える有機光電変換素子が、基板上に複数配置された有機薄膜太陽電池モジュールの製造方法において、
     基板上に、複数の第1電極を形成する工程と、
     複数の第1電極外の基板上に撥液性パターンを形成する工程と
    を含む、有機薄膜太陽電池モジュールの製造方法。
    In the method of manufacturing an organic thin-film solar cell module in which a plurality of organic photoelectric conversion elements each including an active layer sandwiched between a pair of electrodes composed of a first electrode and a second electrode and the pair of electrodes are disposed on a substrate,
    Forming a plurality of first electrodes on a substrate;
    Forming a liquid repellent pattern on a plurality of substrates outside the first electrodes. A method for manufacturing an organic thin film solar cell module.
  3.  撥液性パターンを形成する工程が、複数の第1電極が形成された基板上全面に、撥液性部を形成する工程と、第1電極が形成された基板上の一部分を覆うマスクパターンを形成し、該マスクパターンをマスクとして第1電極が形成された基板全面を親液性処理し、該マスクパターンを除去して撥液性パターンを形成する工程と、を含む請求項1に記載の有機薄膜太陽電池モジュールの製造方法。 The step of forming the liquid repellent pattern includes a step of forming a liquid repellent portion on the entire surface of the substrate on which the plurality of first electrodes are formed, and a mask pattern that covers a part of the substrate on which the first electrode is formed. And forming a lyophobic pattern by removing the mask pattern and lyophilically treating the entire surface of the substrate on which the first electrode is formed using the mask pattern as a mask. Manufacturing method of organic thin film solar cell module.
  4.  複数の第1電極を基板上に形成する工程と、
     第1電極が形成された基板上全面に、撥液性部を形成する工程と、
     第1電極が形成された基板上の一部分を覆うマスクパターンを形成し、該マスクパターンをマスクとして第1電極が形成された基板全面を親液化処理し、該マスクパターンを除去して撥液性パターンを形成する工程と、
     該撥液性パターンが形成された基板上全面に、撥液性パターンにより撥液される塗工液を塗布して、撥液性パターンを露出する第1露出部を有する第1電荷輸送層、該第1電荷輸送層上を覆う活性層、該活性層上を覆う第2電荷輸送層を形成する工程と、
     第2電荷輸送層、活性層及び第1電荷輸送層を貫通して、撥液性パターン外である第1電極の一部分が露出する第2露出部を形成する工程と、
     第2電荷輸送層上を覆い、第2露出部を埋め込み、かつ撥液性パターンを非被覆とする第2電極を、塗工液を塗布して形成する工程と、
     第2電極、第2電荷輸送層及び活性層を貫通して、撥液性パターン外である第1電荷輸送層の一部分を露出させる第3露出部を形成して、複数の有機光電変換素子に素子分離する工程と
    を備える有機薄膜太陽電池モジュールの製造方法。
    Forming a plurality of first electrodes on a substrate;
    Forming a liquid repellent portion on the entire surface of the substrate on which the first electrode is formed;
    A mask pattern is formed to cover a portion of the substrate on which the first electrode is formed, and the entire surface of the substrate on which the first electrode is formed is made lyophilic using the mask pattern as a mask, and the mask pattern is removed to make liquid repellent Forming a pattern;
    A first charge transport layer having a first exposed portion that exposes the liquid repellent pattern by applying a coating liquid repelled by the liquid repellent pattern on the entire surface of the substrate on which the liquid repellent pattern is formed; Forming an active layer covering the first charge transport layer, a second charge transport layer covering the active layer;
    Forming a second exposed portion that penetrates the second charge transport layer, the active layer, and the first charge transport layer and exposes a portion of the first electrode outside the liquid repellent pattern;
    Forming a second electrode covering the second charge transport layer, embedding the second exposed portion, and uncovering the liquid repellent pattern by applying a coating liquid;
    A third exposed portion is formed through the second electrode, the second charge transport layer, and the active layer to expose a portion of the first charge transport layer outside the liquid repellent pattern, thereby forming a plurality of organic photoelectric conversion elements. The manufacturing method of an organic thin-film solar cell module provided with the process of element isolation.
  5.  撥液性パターンを形成する工程が、基板に含まれる材料と撥液性部に含まれる材料との結合強度と、第1電極に含まれる材料と撥液性部に含まれる材料との結合強度との差を利用して、基板全面に対する親液化処理により、第1電極の表面から撥液性部を除去し、かつ基板の表面のうち第1電極が非形成とされた領域には撥液性部に含まれる材料を残存させることにより撥液性パターンを形成する工程である、請求項4に記載の有機薄膜太陽電池モジュールの製造方法。 The step of forming the liquid repellent pattern includes the bonding strength between the material included in the substrate and the material included in the liquid repellent portion, and the bonding strength between the material included in the first electrode and the material included in the liquid repellent portion. The lyophobic treatment is performed on the entire surface of the substrate to remove the lyophobic portion from the surface of the first electrode, and the region of the substrate surface where the first electrode is not formed is lyophobic. The manufacturing method of the organic thin-film solar cell module of Claim 4 which is a process of forming a liquid repellent pattern by leaving the material contained in a property part.
  6.  撥液性パターンを形成する工程が、ケイ素、アルミニウム及びチタンからなる群から選ばれる1種の金属を含むカップリング剤を用いて撥液性パターンを形成する工程である、請求項1に記載の有機薄膜太陽電池モジュールの製造方法。 The step of forming a liquid repellent pattern is a step of forming a liquid repellent pattern using a coupling agent containing one metal selected from the group consisting of silicon, aluminum, and titanium. Manufacturing method of organic thin film solar cell module.
  7.  撥液性パターンを形成する工程が、チオール化合物を含む材料を用いて撥液性パターンを形成する工程である、請求項1に記載の有機薄膜太陽電池モジュールの製造方法。 The method for producing an organic thin film solar cell module according to claim 1, wherein the step of forming the liquid repellent pattern is a step of forming the liquid repellent pattern using a material containing a thiol compound.
  8.  撥液性パターンを形成する工程が、フッ素を含む材料を用いて撥液性パターンを形成する工程である、請求項1に記載の有機薄膜太陽電池モジュールの製造方法。 The method for producing an organic thin film solar cell module according to claim 1, wherein the step of forming the liquid repellent pattern is a step of forming the liquid repellent pattern using a material containing fluorine.
  9.  撥液性パターンを形成する工程が、CF、NF、及びCFとメタノールとの混合物からなる群から選ばれる1種以上を用いて蒸気処理により撥液性パターンを形成する工程である、請求項8に記載の有機薄膜太陽電池モジュールの製造方法。 The step of forming the liquid repellent pattern is a step of forming the liquid repellent pattern by steam treatment using one or more selected from the group consisting of CF 4 , NF 3 , and a mixture of CF 4 and methanol. The manufacturing method of the organic thin-film solar cell module of Claim 8.
  10.  請求項1に記載の製造方法により製造することができる、有機薄膜太陽電池モジュール。 An organic thin-film solar cell module that can be manufactured by the manufacturing method according to claim 1.
  11.  撥液性パターンを形成する工程が、ケイ素、アルミニウム及びチタンからなる群から選ばれる1種の金属を含むカップリング剤を用いて撥液性パターンを形成する工程である、請求項4に記載の有機薄膜太陽電池モジュールの製造方法。 The step of forming a liquid repellent pattern is a step of forming a liquid repellent pattern using a coupling agent containing one kind of metal selected from the group consisting of silicon, aluminum, and titanium. Manufacturing method of organic thin film solar cell module.
  12.  撥液性パターンを形成する工程が、チオール化合物を含む材料を用いて撥液性パターンを形成する工程である、請求項4に記載の有機薄膜太陽電池モジュールの製造方法。 The method for producing an organic thin film solar cell module according to claim 4, wherein the step of forming the liquid repellent pattern is a step of forming the liquid repellent pattern using a material containing a thiol compound.
  13.  撥液性パターンを形成する工程が、フッ素を含む材料を用いて撥液性パターンを形成する工程である、請求項4に記載の有機薄膜太陽電池モジュールの製造方法。 The method for producing an organic thin film solar cell module according to claim 4, wherein the step of forming the liquid repellent pattern is a step of forming the liquid repellent pattern using a material containing fluorine.
  14.  撥液性パターンを形成する工程が、CF、NF、及びCFとメタノールとの混合物からなる群から選ばれる1種以上を用いて蒸気処理により撥液性パターンを形成する工程である、請求項13に記載の有機薄膜太陽電池モジュールの製造方法。 The step of forming the liquid repellent pattern is a step of forming the liquid repellent pattern by steam treatment using one or more selected from the group consisting of CF 4 , NF 3 , and a mixture of CF 4 and methanol. The manufacturing method of the organic thin-film solar cell module of Claim 13.
  15.  請求項4に記載の製造方法により製造することができる、有機薄膜太陽電池モジュール。 An organic thin-film solar cell module that can be manufactured by the manufacturing method according to claim 4.
PCT/JP2010/068959 2009-10-29 2010-10-26 Method for manufacturing organic thin-film solar battery module WO2011052582A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/504,018 US20120211083A1 (en) 2009-10-29 2010-10-26 Method for manufacturing organic thin film solar cell module
CN2010800476215A CN102598335A (en) 2009-10-29 2010-10-26 Method for manufacturing organic thin-film solar battery module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-249059 2009-10-29
JP2009249059 2009-10-29

Publications (1)

Publication Number Publication Date
WO2011052582A1 true WO2011052582A1 (en) 2011-05-05

Family

ID=43922006

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/068959 WO2011052582A1 (en) 2009-10-29 2010-10-26 Method for manufacturing organic thin-film solar battery module

Country Status (4)

Country Link
US (1) US20120211083A1 (en)
JP (1) JP5663264B2 (en)
CN (1) CN102598335A (en)
WO (1) WO2011052582A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130263916A1 (en) * 2010-09-30 2013-10-10 University Of South Florida All spray see-through organic solar array with encapsulation

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102790179A (en) * 2012-07-20 2012-11-21 中国科学院长春应用化学研究所 Manufacturing method of donor material crystal oriented arranged standard ordered heterojunction organic solar battery
CN102903853A (en) * 2012-10-24 2013-01-30 中国科学院长春应用化学研究所 Ink-jet printing preparation method of organic solar battery optical active layer film
US9537031B2 (en) * 2013-06-28 2017-01-03 Taiwan Semiconductor Manufacturing Co., Ltd. Nozzle assembly and method for fabricating a solar cell
JP6076392B2 (en) * 2015-03-09 2017-02-08 株式会社東芝 Solar cell module and manufacturing method thereof
WO2018043644A1 (en) * 2016-08-31 2018-03-08 京セラ株式会社 Solar cell and method of manufacturing solar cell
EP3599642A1 (en) * 2018-07-25 2020-01-29 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO Photovoltaic device and method of manufacturing the same
WO2020188751A1 (en) * 2019-03-19 2020-09-24 株式会社 東芝 Photoelectric conversion element and method for producing photoelectric conversion element
JP7185067B2 (en) * 2019-09-27 2022-12-06 富士フイルム株式会社 Image recording method
WO2021117291A1 (en) * 2019-12-12 2021-06-17 株式会社エネコートテクノロジーズ Element manufacturing method
CN115057741B (en) * 2022-07-04 2023-06-20 西南交通大学 Preparation method of calcium alginate-chitosan microsphere slow-release fertilizer not easy to swell

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004071473A (en) * 2002-08-08 2004-03-04 Dainippon Printing Co Ltd Forming method of pattern
JP2005004091A (en) * 2003-06-13 2005-01-06 Seiko Epson Corp Method for forming optical waveguide, optical waveguide device, electro-optic apparatus and electronic appliance

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4581368B2 (en) * 2003-10-07 2010-11-17 セイコーエプソン株式会社 ORGANIC ELECTROLUMINESCENCE DEVICE, ITS MANUFACTURING METHOD, AND ELECTRONIC DEVICE
JP4379278B2 (en) * 2004-09-21 2009-12-09 カシオ計算機株式会社 Transistor array substrate and display panel
JP2006269599A (en) * 2005-03-23 2006-10-05 Sony Corp Pattern forming method, method of manufacturing organic field effect transistor, and method of manufacturing flexible printed circuit board
JP4345064B2 (en) * 2005-03-25 2009-10-14 セイコーエプソン株式会社 Method for manufacturing photoelectric conversion element and electronic device
JP2007059559A (en) * 2005-08-23 2007-03-08 Matsushita Electric Ind Co Ltd Mounting method, manufacturing method for electronic device, and display device
JP2007088127A (en) * 2005-09-21 2007-04-05 Seiko Epson Corp Manufacturing method and substrate for organic semiconductor device
JP5343330B2 (en) * 2007-06-28 2013-11-13 住友化学株式会社 Thin film forming method, organic electroluminescence element manufacturing method, semiconductor element manufacturing method, and optical element manufacturing method
JP5417732B2 (en) * 2008-03-31 2014-02-19 住友化学株式会社 Method for forming lyophilic liquid repellent pattern and method for producing organic electroluminescent element
JP5287136B2 (en) * 2008-10-22 2013-09-11 コニカミノルタ株式会社 Organic photoelectric conversion device and solar cell using the same
JP2011023443A (en) * 2009-07-14 2011-02-03 Seiko Epson Corp Solar cell and method for manufacturing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004071473A (en) * 2002-08-08 2004-03-04 Dainippon Printing Co Ltd Forming method of pattern
JP2005004091A (en) * 2003-06-13 2005-01-06 Seiko Epson Corp Method for forming optical waveguide, optical waveguide device, electro-optic apparatus and electronic appliance

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF MATERIALS RESEARCH, vol. 20, no. 12, December 2005 (2005-12-01), pages 3224 - 3233 *
SOLAR ENERGY MATERIALS & SOLAR CELLS, vol. 91, no. 5, 6 March 2007 (2007-03-06), pages 379 - 384 *
SOLAR ENERGY MATERIALS & SOLAR CELLS, vol. 93, no. 4, April 2009 (2009-04-01), pages 422 - 441 *
THIN SOLID FILMS, vol. 516, no. 20, 30 August 2008 (2008-08-30), pages 7181 - 7187 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130263916A1 (en) * 2010-09-30 2013-10-10 University Of South Florida All spray see-through organic solar array with encapsulation

Also Published As

Publication number Publication date
CN102598335A (en) 2012-07-18
JP2011119677A (en) 2011-06-16
JP5663264B2 (en) 2015-02-04
US20120211083A1 (en) 2012-08-23

Similar Documents

Publication Publication Date Title
JP5663264B2 (en) Manufacturing method of organic thin film solar cell module
JP5715795B2 (en) Manufacturing method of organic thin film solar cell module
JP5553727B2 (en) Organic photoelectric conversion device and manufacturing method thereof
JP5577850B2 (en) Organic photoelectric conversion element
US20170309408A1 (en) Solar cell
WO2011052510A1 (en) Organic thin film solar cell and method for manufacturing same
WO2011052509A1 (en) Method for production of organic photoelectric conversion element
WO2011052583A1 (en) Organic photoelectric conversion element
WO2011052569A1 (en) Organic photoelectric conversion element
WO2010024157A1 (en) Organic photoelectric conversion element and fabrication method therefor
JP2016082242A (en) Organic photoelectric conversion element and method for manufacturing the same
WO2011052580A1 (en) Organic photoelectric conversion element and production method therefor
WO2011052546A1 (en) Organic photoelectric conversion element and manufacturing method thereof
KR101098792B1 (en) Organic Solar Cells with biphenyl compounds
JP5051147B2 (en) Solar cell module and solar power generation device
KR20150002055A (en) Inverted organic solar cell with IGZO and method for fabricating thereof
JP5715796B2 (en) Manufacturing method of organic photoelectric conversion element
JP5608040B2 (en) Organic photoelectric conversion element
WO2011052579A1 (en) Organic photoelectric conversion element and production method therefor
WO2011052578A1 (en) Process for production of organic photoelectric conversion element
JP2016111153A (en) Solar cell module and method of manufacturing the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080047621.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10826714

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13504018

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10826714

Country of ref document: EP

Kind code of ref document: A1