WO2011052529A1 - Glass substrate for display and method for manufacturing the glass substrate - Google Patents

Glass substrate for display and method for manufacturing the glass substrate Download PDF

Info

Publication number
WO2011052529A1
WO2011052529A1 PCT/JP2010/068828 JP2010068828W WO2011052529A1 WO 2011052529 A1 WO2011052529 A1 WO 2011052529A1 JP 2010068828 W JP2010068828 W JP 2010068828W WO 2011052529 A1 WO2011052529 A1 WO 2011052529A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass substrate
display
polishing
color filter
glass
Prior art date
Application number
PCT/JP2010/068828
Other languages
French (fr)
Japanese (ja)
Inventor
泰伸 前野
直彦 石丸
栄治 市倉
康成 齋藤
哲史 横山
良介 酒井
辰彦 甲斐
翔太郎 渡邉
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to KR1020127010705A priority Critical patent/KR20120086704A/en
Priority to CN2010800485144A priority patent/CN102598094A/en
Publication of WO2011052529A1 publication Critical patent/WO2011052529A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C19/00Surface treatment of glass, not in the form of fibres or filaments, by mechanical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B13/00Machines or devices designed for grinding or polishing optical surfaces on lenses or surfaces of similar shape on other work; Accessories therefor
    • B24B13/015Machines or devices designed for grinding or polishing optical surfaces on lenses or surfaces of similar shape on other work; Accessories therefor of television picture tube viewing panels, headlight reflectors or the like
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133302Rigid substrates, e.g. inorganic substrates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a glass substrate for display and a manufacturing method thereof, and more particularly to a glass substrate for display used for a flat panel display and a manufacturing method thereof.
  • a polishing method and apparatus for manufacturing a glass substrate for liquid crystal display it has a carrier that sticks and supports a substrate on a film frame, and a polishing surface plate, and the carrier and the polishing surface plate are relatively
  • a technique for polishing a substrate by pressing the polishing surface of the substrate against a polishing surface plate is known (see, for example, Patent Document 1).
  • Patent Document 1 a glass substrate is attached to a film frame of a carrier, and after polishing is completed, the glass substrate is not removed from the film frame by a polishing stage provided near the polishing surface plate.
  • the glass substrate after polishing is removed from the film frame at the glass substrate removal stage away from the film.
  • the problem of carrying out a large glass substrate can be solved.
  • the polishing of the glass substrate itself is performed by general polishing, and the polishing slurry contains an aqueous cerium oxide solution.
  • the abrasive grains of cerium oxide contained in the polishing slurry using an aqueous cerium oxide solution generally have a particle size of about 1100 nm.
  • a polishing step is performed. There has been a problem that a dent shape of 15 nm or more may remain on the polished surface of the glass substrate without completely removing the dent shape generated before.
  • a certain degree of strength is required for a display panel.
  • a strength test may be performed by pressing or the like.
  • a black matrix made of a chromium film is formed as a light shielding film in addition to the color filter.
  • the strength of the liquid crystal display panel is deteriorated compared with the case where there is no dent shape on the surface of the chrome film.
  • it has been confirmed that such a dent shape of the chromium film may occur due to the dent shape existing in the glass substrate for the color filter under the chromium film.
  • a glass substrate is used, and a strength test by pressurization or the like may be similarly performed.
  • the glass substrate is not necessarily formed into a film, but the glass substrate is required to have a predetermined substrate strength even when the film is not formed.
  • the substrate strength is higher when the glass substrate has fewer concave shapes.
  • an object of the present invention is to provide a glass substrate for a display with high flatness that can reduce the occurrence of a dent shape on the surface of the substrate and ensure sufficient strength, and a method for manufacturing the same.
  • the glass substrate for display according to the first invention is a glass substrate on the display surface side of the flat panel display, and is 20% or more of the entire area of the surface facing the inside of the flat panel display. And the depth of the recessed shape is less than 10 nm.
  • an average breaking load when a load is applied from a surface facing the outside of the flat panel display is 600 when the plate thickness is tmm.
  • the third invention is the glass substrate for display according to the first or second invention, wherein the flat panel display is a liquid crystal display, and the display surface side is a color filter side.
  • the flat panel display is an organic EL display
  • the display surface side is a cap glass side.
  • the glass substrate is used in a top emission type organic EL display, it can be applied with sufficient strength against external stress.
  • the flat panel display is an organic EL display
  • the display surface side is a TFT glass substrate side.
  • the glass substrate is used in a bottom emission type organic EL display, it can be applied with sufficient strength against external stress.
  • a method for producing a glass substrate for display according to a sixth invention is a method for producing a glass substrate for display used in a flat panel display, wherein a step of forming a glass substrate and one surface of the glass substrate is polished.
  • a step of installing the glass substrate in a polishing apparatus that performs polish polishing using abrasive grains a step of polishing the polishing surface of the glass substrate using abrasive grains having an average particle size of 80 nm or less, It is characterized by including.
  • the seventh invention is characterized in that, in the method for producing a glass substrate for display according to the sixth invention, the abrasive grains contain colloidal silica.
  • an abrasive grain having a particle size much smaller than that of abrasive grains using cerium oxide having a grain size of about 1100 nm, which is generally used, and 80 nm or less, for example, 50 nm or 40 nm.
  • a glass substrate for display with high flatness can be manufactured using fine abrasive grains of 20 nm.
  • the eighth invention is characterized in that in the method for producing a glass substrate for display according to the seventh invention, the abrasive grains have an average particle diameter of 20 nm or less.
  • a ninth invention is a method for producing a glass substrate for display according to any one of the sixth to eighth inventions, The step of forming the glass substrate is characterized in that the glass substrate is formed by a float method.
  • a large glass substrate can be formed, and a large flat glass substrate for display can be manufactured.
  • a tenth invention is a method for producing a glass substrate for display according to any one of the sixth to ninth inventions,
  • the flat panel display is a liquid crystal display,
  • the film forming surface is a color filter forming surface of a color filter substrate.
  • An eleventh invention is the method for producing a glass substrate for display according to the tenth invention, wherein the color filter forming surface is a surface on which a black matrix composed of a chromium film is formed before the color filter is formed. It is characterized by.
  • a twelfth invention is a method for producing a glass substrate for display according to any one of the sixth to ninth inventions,
  • the flat panel display is an organic EL display, and the polishing surface is an inner surface of a cap glass.
  • a thirteenth invention is a method for producing a glass substrate for display according to any one of the sixth to ninth inventions,
  • the flat panel display is an organic EL display, and the polishing surface is an inner surface of a TFT glass substrate.
  • the flatness of the glass substrate for display can be increased and the strength of the display panel of the flat panel display can be increased.
  • FIG. 3 is a diagram illustrating an example of a color filter side glass substrate 15 of the liquid crystal panel according to Embodiment 1.
  • FIG. 1A is a plan view of the film forming surface 11a of the color filter side glass substrate 15 according to the first embodiment.
  • FIG. 1B is a cross-sectional view of the color filter side glass substrate 15 according to the first embodiment. It is the figure which showed an example of the intensity test of the liquid crystal panel 50 of a liquid crystal display. It is explanatory drawing of the crack generation mechanism of the color filter side glass substrate.
  • FIG. 3A is an example of a surface enlarged view of a chromium film formed on a conventional color filter side glass as a comparative example.
  • FIG. 3B is an enlarged view of the X-X ′ cross section of FIG.
  • FIG.3 (c) is an enlarged view of the hollow shape 21 of a chromium film
  • FIG. 3D is an enlarged view of the concave shape 22 of the chromium film. It is an example of the enlarged view of the film-forming surface 11a of the color filter side glass substrate 15. It is a figure for demonstrating an example of the glass substrate formation process of the manufacturing method of the glass substrate 10 for a display which concerns on Embodiment 1.
  • FIG. It is a figure for demonstrating an example of the grinding
  • FIG. 8A is an enlarged view of the film formation surface 11 of the display glass substrate 10 according to the first embodiment.
  • FIG. 8B is an enlarged cross-sectional view corresponding to FIG. It is a figure for demonstrating the method of an intensity
  • 6 is a diagram illustrating an example of a cross-sectional configuration of a top emission type organic EL panel 51 using a display glass substrate according to Embodiment 2.
  • FIG. 6 is a diagram illustrating an example of a cross-sectional configuration of a bottom emission type organic EL panel 52 using a display glass substrate according to Embodiment 3.
  • FIG. 1 is a view showing an example of a color filter side glass substrate 15 of a liquid crystal panel according to Embodiment 1 of the present invention.
  • 1A is a plan view of a film forming surface 11a of the color filter side glass substrate 15 of the liquid crystal panel according to the first embodiment
  • FIG. 1B is a color filter side of the liquid crystal panel according to the first embodiment.
  • 2 is a cross-sectional view of a glass substrate 15.
  • the film formation surface 11a of the color filter side glass substrate 15 is shown, but the central region 12 of the film formation surface 11a is shown to include the center of gravity of the film formation surface 11a.
  • the central region 12 is a region that is 20% or more of the entire area of the film formation surface 11a.
  • the central region 12 is a region where a crack such as a crack is likely to occur in the film formed on the color filter side glass substrate 15 when a strength test of a liquid crystal panel including the color filter side glass substrate 15 is performed. It is.
  • FIG. 2 is a diagram showing an example of a strength test of the liquid crystal panel 50 of the liquid crystal display.
  • the liquid crystal panel 50 includes a color filter side glass substrate 15 cut to a predetermined size from a color filter glass substrate, and a TFT side glass 16 cut to a predetermined size from a TFT (Thin Film Transistor) glass substrate. Is provided.
  • a spacer or the like is provided between the color filter side glass substrate 15 and the TFT side glass 16, and supports the color filter side glass substrate 15 and the TFT side glass 16, and the color filter side glass substrate 15 and the TFT side.
  • a liquid crystal layer is formed between the glass 16 and the liquid crystal layer is omitted in FIG.
  • a black matrix 20 and a color filter 30 are formed on a film forming surface 11 a which is a surface facing the TFT side glass 16. That is, the film formation surface 11 a of the color filter side glass substrate 15 is a color filter formation surface and is a surface facing the inside of the liquid crystal panel 50.
  • the color filter 30 is a filter for passing only light of a specific wavelength and displaying a color.
  • the color filter 30 is generally configured as a resin film containing a dye or a pigment, and the three primary color patterns of red, green, and blue are regularly arranged.
  • the black matrix 20 is a light shielding film and is formed between the colors of the color filter 30.
  • the black matrix 20 is often formed of a chromium (Cr) film.
  • an amorphous silicon film 40 is formed in order to form a thin film transistor on the film forming surface 11b which is the surface facing the color filter side glass substrate 15.
  • a backlight is disposed on the back surface of the TFT side glass 16, and light is irradiated from the back surface (below the TFT side glass 16 in FIG. 2). Then, the liquid crystal is driven by the thin film transistor, and an image of each color is displayed on the front surface of the color filter side glass substrate 15 (above the color filter side glass substrate 15 in FIG. 2) through the color filter 30. Become.
  • the strength test is performed, if the strength of the liquid crystal panel 50 is insufficient, the liquid crystal panel 50 is destroyed.
  • the destruction of the liquid crystal panel 50 may start from the color filter side glass substrate 15 instead of the TFT side glass 16.
  • FIG. 3 is a view for explaining a mechanism of generating cracks in the color filter side glass substrate 15.
  • FIG. 3A is a view showing an example of a surface enlarged view of a chromium film on which a black matrix 20 of a conventional color filter side glass is formed as a comparative example.
  • FIG. 3A shows a state in which the concave shapes 21 and 22 are formed to extend linearly on the surface of the black matrix 20.
  • XX ′ indicates a FIB (Focused Ion Beam) processing position, and the center arrow indicates an observation direction.
  • FIG. 3B is an enlarged view of the section XX ′ in FIG. In FIG.
  • the protective layer 70 is formed on the chromium film of the black matrix 20 to perform the FIB processing, and then cut by performing the FIB processing, and the cross section is enlarged. .
  • FIG.3 (b) the location of the recessed shapes 21 and 22 is shown.
  • FIG. 3C is a further partial enlarged view of the recess 21 of the chromium film shown in FIG.
  • a concave shape 13 is formed in the color filter side glass below the portion where the concave shape 21 is formed on the surface of the chromium film, similarly to the chromium film.
  • FIG. 3 (d) is a further enlarged view of the chrome film recess 22 shown in FIG. 3 (b).
  • the concave shape 14 is formed in the color filter side glass in the lower layer where the concave shape 22 is formed on the surface of the chromium film.
  • the concave shape of the film formation surface 11 a that is the inner surface of the liquid crystal display of the color filter side glass substrate 15 is reduced, cracks in the black matrix 20 made of a chromium film can be prevented or reduced. Can do. Therefore, if the concave shapes 13 and 14 can be reduced in the central region 12 of the color filter side glass substrate 15 shown in FIGS. 1A and 1B, the color filter side glass substrate 15 has sufficient strength. You can see that
  • FIG. 4 is a diagram showing an example of an enlarged view of the film forming surface 11a of the color filter side glass substrate 15 of the liquid crystal panel shown in FIG. 1 (b).
  • FIG. 4 when the film formation surface 11a of the color filter side glass substrate 15 is enlarged, it can be seen that minute unevenness exists instead of a complete flat surface.
  • two recessed shapes 13 and 14 are present on the film formation surface 11 a of the color filter side glass substrate 15.
  • the concave shapes 13 and 14 are disadvantages that can cause the concave shapes 21 and 22 on the surface of the black matrix 20 to occur.
  • the liquid crystal panel 50 can obtain good test results in the strength test if the concave shapes 13 and 14 have such a flatness as to be less than 10 nm. .
  • region where the concave shapes 13 and 14 of the color filter side glass substrate 15 are less than 10 nm is large, as demonstrated in FIG. 1, at least 20% or more of the whole area of the film-forming surface 11a is preferable. If the depth of the recessed shapes 13 and 14 is configured to be less than 10 nm in the central region of the area, sufficient strength improvement of the liquid crystal panel 50 can be obtained.
  • the central region 12 may be a region centered on at least the shape center of the outer diameter of the film formation surface 11.
  • the central region 12 is preferably at least 20% of the entire film formation surface 11.
  • the film formed on the color filter side glass substrate 15 is more susceptible to cracking, it is more preferably 30% or more, further preferably 40% or more, and more preferably 50% or more. Particularly preferred.
  • the color filter side glass substrate 15 of the liquid crystal panel has been described as an example, but the method for manufacturing the display glass substrate 10 according to Embodiment 1 is for other displays such as a plasma display panel. It can also be applied to other glass substrates. Therefore, in FIG.5 and FIG.6, the manufacturing method of the glass substrate 10 for a display applicable also to display panels other than a liquid crystal panel is demonstrated.
  • FIG. 5 is a view for explaining an example of the glass substrate forming step of the method for manufacturing the display glass substrate 10 according to the first embodiment.
  • FIG. 5 shows an example of the overall schematic configuration of a float glass manufacturing facility 80 that manufactures a glass substrate by the float process.
  • the float glass manufacturing facility 80 includes a melting kiln 81, a float bath 82, and a slow cooling kiln 87.
  • the float bath 82 includes a gas supply port 83 and a heater 84.
  • the slow cooling furnace 87 includes a heater 88. Further, a draw roll 86 is provided between the float bath 82 and the slow cooling furnace 87.
  • the maximum temperature of the melting furnace 81 reaches 1550 to 1600 ° C. due to heavy oil combustion.
  • the glass raw material 5 is supplied to the melting furnace 81 and melted in the melting furnace 81 to become the molten glass 6.
  • the molten glass 6 is supplied to the float bath 82 after being made into the homogeneous molten glass 6 without bubbles.
  • the float bath 82 is a shallow tin bath filled with molten tin 90.
  • a reducing gas composed of a mixed gas of hydrogen and nitrogen for preventing oxidation of tin is supplied to the space above the float bath 82.
  • the heater 84 adjusts the temperature as necessary so that the temperature of the molten glass 6 supplied to the float bath 82 is about 1050 ° C. upstream and about 600 ° C. downstream. In the vicinity of the outlet downstream of the float bath 82, the glass is solidified, but the solidified glass is transferred to the slow cooling kiln 87 by the drawing roll 86. In the slow cooling furnace 87, after the glass is cooled and strain is removed, the glass substrate is formed by inspection and cutting.
  • the glass substrate forming step may be performed using a float process.
  • the glass substrate forming step may be executed by other glass substrate manufacturing methods such as a fusion method.
  • various glass substrate manufacturing methods can be applied as long as a glass substrate as a material for manufacturing the display glass substrate 10 can be manufactured.
  • FIG. 6 is a diagram for explaining an example of a polishing process according to the first embodiment.
  • FIG. 6 shows an example of the overall configuration of the polishing apparatus 100 of the first embodiment.
  • the polishing apparatus 100 includes two polishing apparatuses 101 and 102, a first polishing apparatus 101 and a second polishing apparatus 102.
  • the first polishing apparatus 101 and the second polishing apparatus 102 are each provided with a polishing head 150. Since both have the same configuration, the same reference numerals are assigned to the same components. explain.
  • the polishing head 150 is configured such that a motor is built in a main body casing 151, and an output shaft of the motor is connected to a spindle 156 suspended in a vertical direction.
  • a carrier 152 is connected to the spindle 156.
  • the main body casing 151 is connected to a slider 258 via an elevating mechanism 256. As the main body casing 151 is moved up and down with respect to the slider 258 by the lifting mechanism 256, the carrier 152 is moved forward and backward with respect to the polishing pad 158 of the first polishing stage 118 and the polishing pad 160 of the second polishing stage 120.
  • the glass substrate 7 adhered to the film frame 114 can be pressed against the polishing pads 158 and 160 with a predetermined polishing pressure.
  • the polishing pad 158 is affixed to the upper surface of the polishing surface plate 162, and a rotating shaft 164 rotated by a motor (not shown) is connected to the lower portion of the polishing surface plate 162.
  • the polishing pad 160 is affixed to the upper surface of the polishing surface plate 166, and a rotating shaft 168 that is rotated by a motor (not shown) is connected to the lower portion of the polishing surface plate 166. Since the polishing pads 158 and 160 may not necessarily rotate, a motor is not necessarily required. Further, the polishing pads 158 and 160 may be swung.
  • the main body casing 151 may be connected to a revolution drive mechanism (not shown) and have a function of revolving at a predetermined revolution radius.
  • the revolution drive mechanism can be configured by, for example, incorporating a planetary gear mechanism in the main body casing 151 and connecting the output shaft of the planetary gear mechanism to the spindle 156.
  • the polishing apparatus 100 includes transfer apparatuses 250, 252, and 254.
  • Each of the transport devices 250, 252, and 254 includes a guide rail 270.
  • the transport device 250 includes a stage 116
  • the transport device 254 includes a stage 122.
  • the glass substrate 7 moves on the stages 116 and 122 by the guide rail 270.
  • the transfer devices 250, 252, and 254 include robot arms (not shown), and the stage 116 to the first polishing stage 118, the first polishing stage 118 to the second polishing stage 120, and the second polishing stage 120 to the stage.
  • the glass substrate 7 can be moved to 122.
  • the polishing platen 162 is provided with a slurry supply hole 130.
  • the polishing platen 166 is provided with a slurry supply hole 131. From the slurry supply holes 130 and 131, aqueous slurry containing abrasive grains is supplied.
  • slurry containing abrasive grains is supplied from the slurry supply holes 130, 131, and the polishing plates 162, 166 and the carrier 152 rotate while the carrier 52 moves the polishing surface of the glass substrate 7. This is done by holding it downward and pressing the polishing surface against polishing pads 158 and 160 on polishing surface plates 162 and 166. Further, the polishing pads 158 and 160 may be formed with grooves for flowing slurry.
  • the carrier 152 is formed with a plurality of ejection ports (not shown) through which compressed air is ejected. These injection ports communicate with an air supply path 202 indicated by a broken line in FIG.
  • the air supply path 202 extends to the outside of the polishing head 150 via a rotary joint (not shown) attached to the polishing head 150, and is connected to the air pump 206 via a valve 204. Therefore, when the valve 204 is opened, compressed air from the air pump 206 is supplied to the injection port in the carrier 152 via the air supply path 202. Thereby, the pressure of the compressed air is transmitted to the glass substrate 7, and the glass substrate 7 is pressed against the polishing pads 158 and 160 by this pressure and polished.
  • the polishing process of the glass substrate 7 may be performed by the polishing apparatus 100 having such a configuration. Specifically, the glass substrate 7 is moved from the stage 116 onto the first polishing stage 118 by the transfer device 250 and held by the carrier 152 with the polishing surface facing downward. That is, the glass substrate 7 is installed in the first polishing apparatus 101. Then, the carrier 152 and the polishing surface plate 162 rotate, and slurry containing abrasive grains is supplied from the slurry supply hole 130. The glass substrate 7 is polished by both mechanical polishing action by friction with the polishing pad 158 and the abrasive grains on the polishing platen 162 and chemical polishing action by chemical reaction with the slurry.
  • the polishing process is performed using a slurry containing abrasive grains of cerium oxide (CeO 2 ).
  • abrasive grains of colloidal silica are used.
  • a colloidal silica slurry in which spherical silica particles having an average particle diameter of 80 nm are dispersed is used.
  • a slurry containing fine abrasive grains having an average particle size of 80 nm or less can be obtained.
  • the concave shapes 13 and 14 of the film forming surface 11 of the display glass substrate 10 can be made to have an average depth of less than 10 nm in the polishing step. Further, by adjusting the rotational speed, polishing pressure, etc., the depth of the dent shape can be less than 8 nm on average and even less than 5 nm on average.
  • the film-forming surface 11 of the glass substrate 10 for displays is used for the whole area of the film-forming surface 11 by using a small grain size abrasive grain.
  • the depth of the recessed shapes 13 and 14 can be processed to be less than 10 nm. Thereby, sufficient strength can be achieved also in the strength test of the liquid crystal display panel.
  • the abrasive grain comprised from various materials will be used.
  • the present invention can be applied to the method for manufacturing the display glass substrate 10 according to the present embodiment.
  • the glass substrate 7 After completion of polishing by the first polishing apparatus 101, the glass substrate 7 is moved to the second polishing stage 120 by the transfer apparatus 252. Then, the glass substrate 7 is placed on the carrier 152, and the polishing platen 166 and the carrier 152 are rotated while the abrasive grains having the same particle diameter of 80 nm or less are supplied from the slurry supply hole 131 to polish the glass substrate 7. I do. Also in this case, for example, since small-diameter abrasive grains are used, polishing can be performed in the central region of the polishing surface of the glass substrate 7 so that the depth of the concave shape is less than 10 nm.
  • the glass substrate 7 is moved from the second polishing stage 120 to the stage 122 by the transfer apparatus 254, and the polishing process is ended. Thereafter, cleaning or the like may be performed as necessary.
  • the glass substrate 7 is first created, the created glass substrate 7 is installed in the polishing apparatus 100, and a slurry containing abrasive grains having a particle size of 80 nm or less is used.
  • a slurry containing abrasive grains having a particle size of 80 nm or less is used.
  • FIG. 7 is a plan view showing an example of a polishing apparatus 300 different from the polishing apparatus 100 according to FIG. 6
  • the polishing apparatus 300 polishes the glass substrate 7 using circular polishing tools 314 arranged in a staggered manner.
  • the glass substrate 7 for display having a size of 2200 mm (width) ⁇ 2600 mm (length) or more may be used for polishing.
  • the glass substrate 7 to be polished is held on the suction sheet 312 adhered to a table (not shown) by suction and holding the surface opposite to the surface to be polished, as shown by an arrow X in the drawing. It is continuously transported by the transport device. During polishing, the surface to be polished is polished to the flatness required for the glass substrate 10 for display by a plurality of circular polishing tools 314, 314,... Of a polishing machine installed above the transfer path.
  • the circular polishing tools 314, 314,... Have a diameter D smaller than the width W of the glass substrate 7, and are rotated around a predetermined rotation center by a rotation / revolution mechanism (not shown). At the same time, the glass substrate 7 is polished while being revolved around a predetermined revolution center.
  • circles indicated by solid lines indicate the current postures of the circular polishing tools 314, 314...
  • circles indicated by two-dot chain lines indicate that the glass substrate 7 has the polishing tools 314, 314.
  • the edge part of the part which contacted with is shown. As can be seen from these circles, the polishing tools 314, 314,... Are revolved around a predetermined revolution center.
  • the circular polishing tools 314, 314,... are arranged in pairs with the movement center line L of the glass substrate 7 as a reference, and are arranged in a staggered manner with their positions shifted in the movement direction. Are disposed so as to polish the glass substrate 7 beyond the moving center line L.
  • a plurality of small circular polishing tools 314 having a diameter D smaller than the width W of the glass substrate 7 are arranged. Are arranged in pairs on the left and right with respect to the movement center line L of the glass substrate 7, and the circular polishing tools 314, 314... Polish the glass substrate G beyond the center line L. As a result, the entire surface of the glass substrate 7 can be polished.
  • the width of the glass substrate 7 is 2200 mm
  • the size of the circular polishing tool 314 is ⁇ 1290 mm
  • the revolution radius is 75 mm
  • the revolution center is set at a position 600 mm away from the moving center line L in the right and left directions. it can.
  • the circular polishing tool 314 is reduced in size and diameter, problems such as securing the material of the circular polishing tool 314, maintaining processing and assembly accuracy, replacement work, and handling can be solved. Further, since the circular polishing tools 314, 314... Are arranged in at least two staggered patterns along the moving direction of the glass substrate 7, the plate-like body can be polished evenly and accurately.
  • the polishing step may be performed using a polishing apparatus 300 in which circular polishing tools 314 are arranged in a staggered manner as shown in FIG.
  • a polishing apparatus 300 in which circular polishing tools 314 are arranged in a staggered manner as shown in FIG.
  • the polishing apparatus 300 by supplying a slurry having an average particle size of 80 nm or less using the above-mentioned colloidal silica as abrasive grains, the depth of the concave shapes 13 and 14 on the surface can be reduced.
  • region less than 10 nm can be manufactured.
  • a slurry containing abrasive grains having an average particle size of 50 nm or less, 40 nm or less, or 20 nm or less may be used.
  • the other detailed contents are the same as those in FIG.
  • the polishing step can be performed by various polishing methods.
  • polishing surface is less than 10 nm is manufactured by grind
  • the display panel is arranged so that the polishing surface is the film formation surface 11 and the region where the depth of the recessed shapes 13 and 14 is less than 10 nm covers the central region 12 having an area of 20% or more of the entire area of the film formation surface 11. If comprised, it can be set as a display panel with high intensity
  • the manufacturing process can be applied to the glass substrate 7 before the liquid crystal panel 50 is manufactured.
  • abrasive grains having a particle size of 80 nm or less it is possible to manufacture the glass substrate 10 for display in which the depth of the recessed shapes 13 and 14 is less than 10 nm in most regions of the glass substrate 7.
  • the original large-sized glass substrate for display 10 has a depth of 10 nm.
  • Most of the portions include only the recessed shapes 13 and 14 having a depth less than 10 nm, and therefore, the central region 12 including only the recessed shapes 13 and 14 having a depth of less than 10 nm can be easily formed.
  • Example 1 the results of carrying out the method for manufacturing the display glass substrate 10 according to Embodiment 1 will be described.
  • FIG. 8 is a view showing a film forming surface 11 of the display glass substrate 10 manufactured by the method for manufacturing the display glass substrate 10 according to the first embodiment.
  • the film formation surface 11 is also a surface facing the inside of the liquid crystal panel 50 of the liquid crystal display.
  • FIG. 8A is an enlarged view of the film-forming surface 11 of the display glass substrate 10 according to the first embodiment, that is, the polished surface.
  • the enlargement magnification is the same as that shown in FIG. In FIG. 8A, it can be seen that the recessed shapes 13 and 14 that are linear in FIG. 3A do not exist in FIG. 8A.
  • FIG. 8B is an enlarged cross-sectional view corresponding to FIG.
  • the film-forming surface 11 of the glass substrate 10 for a display is entirely flat, and the recessed shapes 13 and 14 do not exist. Therefore, naturally, in the central region, the recessed shapes 13 and 14 are not present.
  • a chromium film is formed on the film formation surface 11 of the display glass substrate 10 manufactured by the method for manufacturing the display glass substrate 10 according to Embodiment 1, and a strength test is performed. The results will be described.
  • FIG. 9 is a diagram for explaining the strength test method.
  • a sample 500 of the liquid crystal panel 50 is installed on the receiving jig 61.
  • the strength test is performed using a sample 500 of the 5 cm square liquid crystal panel 50. Therefore, the size may differ from the liquid crystal panel 50 actually used for the liquid crystal display. Moreover, it may test not with a liquid crystal panel state but with the single plate cut out to 5 cm square from the glass substrate 10 for a display.
  • the center region of the sample 500 is pressurized from above the sample 500 using the pressing jig 60. Note that the pressure surface at this time is a surface facing the outside of the liquid crystal panel 50 of the liquid crystal display.
  • the same test method as the strength test described in FIG. 2 is adopted.
  • FIG. 10 is a diagram showing the strength test results of a glass substrate for display on which a chromium film is formed.
  • FIG. 10 it is the figure which compared the intensity
  • the horizontal axis represents the pressure applied by the pressing jig 60 [kgf]
  • the vertical axis represents the cumulative failure probability (CumulativemulFailure Probability) [%].
  • Curve C is the result when the conventional glass substrate 10 for display is manufactured by performing a polishing process using cerium oxide as an abrasive grain. In this case, on the polishing surface serving as the film formation surface 11 of the glass substrate 10 for display, concave shapes 13 and 14 of 15 nm or more occurred. And it showed the weakest strength.
  • Curve B is the strength test result of the display glass substrate 10 manufactured by the method for manufacturing the display glass substrate 10 according to the first embodiment.
  • colloidal silica having an average grain size of 80 nm was used.
  • the depth of the recessed shapes 13 and 14 was less than 10 nm, and the strength was remarkably improved as compared with the conventional product. As a result, it has become possible to provide the glass substrate for display 10 that can clear the standard of the strength test in most cases.
  • Curve A shows, as a comparative example, the strength test result of a display glass substrate manufactured by using another manufacturing method that places importance on flatness so that the dent shape of the film formation surface is 5 nm. Show.
  • the curve A ignores other elements required for the glass substrate for display, and realizes a glass substrate for display having a dent shape of 5 nm or less by using a manufacturing method that places importance on flatness.
  • there are various conditions that must be cleared in addition to the strength test and it is important to provide a high-quality display glass substrate as a whole. Often, this is not always a good idea. However, it can be seen that when the recess shape is 5 nm or less, the strength of the glass substrate for display is further improved.
  • the depth of a dent shape shall be 5 nm or less and the intensity
  • strength of the liquid crystal panel 50 can be raised by fully making the depth of the recessed shape 13 and 14 of the film-forming surface 11 of the glass substrate 10 for a display less than 10 nm, and the request
  • the thickness of the display glass substrate 10 is t [mm]
  • the display glass substrate 10 having sufficient substrate strength can be obtained when the average breaking load satisfies the equation (1). It has been confirmed.
  • the display glass substrate 10 is applied to the color filter side glass 15 of the liquid crystal panel 50.
  • the TFT side glass 16, the glass substrate of the organic EL panel, and the cap glass are described.
  • the present invention can be similarly applied to the glass substrate 10 for a plasma display panel.
  • Embodiment 2 to be described next an example in which the display glass substrate 10 is used as a cap glass or a glass substrate of an organic EL panel will be described.
  • FIG. 11 is a diagram showing an example of a cross-sectional configuration of a top emission type organic EL panel 51 using a glass substrate for display according to Embodiment 2 of the present invention.
  • Embodiment 2 demonstrates the example which used the glass substrate for a display of this invention for the organic electroluminescent panel 51 of an organic electroluminescent display.
  • an organic EL panel 51 includes a cap glass 17, an organic EL glass substrate 18, an ITO (transparent electrode) 210, an organic light emitting diode 23, an anode 25, a TFT substrate 41, a seal as a glass substrate. 31.
  • a top emission type organic EL panel 51 is shown, which is configured to extract light from the cap glass 17 side.
  • the organic EL panel 51 has a configuration in which a cap glass 17 and an organic EL glass substrate 18 are disposed to face each other, and a TFT substrate 41 in which a thin film transistor is formed is formed on the organic EL glass substrate 18.
  • the anode 25, the organic light emitting diode 23, and the transparent electrode 210 are laminated.
  • a gap is provided between the cap glass 17 and the transparent electrode 210.
  • seals 31 for sealing between the cap glass 17 and the organic EL glass substrate 18 are shown at both ends, but the element structure shown in FIG. 11 is for one pixel,
  • sticker 31 is provided in a peripheral part so that the pixel number which comprises a screen may be enclosed.
  • the element structure for one pixel is shown including the seal 31 for the sake of space.
  • the strength test is also performed on the organic EL panel 51 of the top emission method having such a configuration.
  • stress is applied to the cap glass 17 by the pressing jig 60 from the outer surface of the cap glass 17 that is the display surface. .
  • it is tested whether or not the organic EL panel 51 is destroyed.
  • Such a test is performed a plurality of times, and a load at which the organic EL panel 51 is broken is recorded as a breaking load. And what calculated the average of several destruction load is shown as an average destruction load.
  • a chrome film is formed on the color filter side glass substrate 15, but nothing is formed on the cap glass 17 of the organic EL panel 51. This is different from the strength test of the liquid crystal panel 50 in that no film is formed. That is, there is no factor that weakens the strength of the cap glass 17 unlike the chromium film, and the strength of the pure cap glass 17 is tested.
  • the thickness of the cap glass 17 is t [mm]
  • it is confirmed that the cap glass 17 having sufficient substrate strength can be obtained when the average breaking load satisfies the equation (1). .
  • the glass substrate for display used as the cap glass 17 is configured to satisfy the expression (1).
  • the depth of the recessed shape is less than 10 nm in the central region of 20% of the entire area of the surface of the cap glass 17 facing the inside of the organic EL panel 51.
  • the substrate strength shown in the equation (1) is realized.
  • the specific structure and manufacturing method of the glass substrate for a display which concern on Embodiment 2 are the same as the content demonstrated in Embodiment 1, the specific description is abbreviate
  • the glass substrate for display according to the second embodiment it is possible to obtain sufficient test results in the strength test even when the glass substrate for display is used in a top emission type organic EL panel. Become.
  • FIG. 12 is a diagram showing an example of a cross-sectional configuration of a bottom emission type organic EL panel 52 using a glass substrate for display according to Embodiment 3 of the present invention.
  • the organic EL panel 52 according to the third embodiment is different from the organic EL panel 51 according to the second embodiment in that it is a bottom emission type organic EL panel 52 that extracts light from the organic EL glass substrate 18a side.
  • the organic EL panel 52 according to Embodiment 3 includes a cap glass 17a, an organic EL glass substrate 18a, a TFT substrate 42, a transparent electrode 220, an organic light emitting diode 24, an anode 26, and a seal 32.
  • the cap glass 17a and the organic EL glass substrate 18a are opposed to each other, and the TFT substrate 42, the transparent electrode 220, the organic light emitting diode 24, and the anode 26 are provided therebetween.
  • the sealed point is the same as that of the organic EL panel 51 according to Embodiment 2, but the shape and arrangement thereof are different.
  • the TFT substrate 42 has an opening formed at the center, and is configured to extract light from the lower side of the TFT substrate 42. Further, as the direction of the light output direction is reversed from that of the top emission type organic EL panel according to the second embodiment, the stacking order of the transparent electrode 220, the organic light emitting diode 24, and the anode 26 is reversed. . That is, on the TFT substrate 42, the transparent electrode 220, the organic light emitting diode 24, and the anode 26 are sequentially stacked from below so as to cover the opening of the TFT substrate 42. With this configuration, light can be extracted from the lower organic EL glass substrate 18a side.
  • the strength test is performed by applying pressure from the outside of the organic EL glass substrate 18a, that is, the lower surface side. Become.
  • the organic EL glass substrate 18a satisfies the average fracture strength of the above-described formula (1), sufficient glass substrate strength can be achieved in the strength test. Therefore, as in Embodiment 3, when a display glass substrate is used for a bottom emission type organic EL panel, the organic EL glass substrate 18a on which the TFT substrate 42 on the display surface side is formed has the formula (1).
  • a glass substrate for display is constructed so as to satisfy.
  • the glass substrate for display is configured so that the depth of the dent shape is less than 10 nm in the central region having the area of.
  • the TFT substrate 42 is formed on the inner surface of the organic EL glass substrate 18a. However, since the TFT substrate 42 is not composed of a chromium film, the organic EL glass There is no effect of promoting the destruction of the substrate 18a, and the equation (1) can be applied as it is, as in the top emission method.
  • FIG. 12 shows an example in which pressure is applied from the lower surface side by the pressing jig 60.
  • the organic EL glass substrate 18a is on the upper side and the cap glass 17a is on the lower side. The strength test is performed by applying pressure to the outer surface of the organic EL glass substrate 18a from the upper side.
  • Example 2 as described in Embodiments 2 and 3, the display glass is assumed on the assumption that the display glass substrate according to this embodiment is used on the display surface side of the organic EL panel of the organic EL display.
  • the strength test of the substrate itself was performed.
  • the strength test method is the same as in FIG. 9 of Example 1, but the glass substrate for display is in a state of only a glass substrate on which no film is formed.
  • the descending speed indicates the descending speed of the pressurizing jig 60.
  • Polishing was performed using a slurry containing selenium oxide abrasive grains, which was conventionally performed, and the strength test of a conventional glass substrate for display was performed. As a result, the conventional display glass substrate could not satisfy the formula (1).
  • polishing was performed using a slurry containing colloidal silica abrasive grains having an average particle size of 80 [nm], and the strength test of the display glass substrate according to the present embodiment was performed.
  • the average breaking load was remarkably improved as compared with the conventional glass substrate for display, and the formula (1) was stably satisfied.
  • Polishing was performed using a slurry containing colloidal silica abrasive grains having an average particle diameter of 20 [nm], and the strength test of the display glass substrate according to the present embodiment was performed.
  • the average breaking load was remarkably improved as compared with the conventional glass substrate for display.
  • the average breaking load is improved (1 ) Can be satisfied more stably.
  • the display glass substrate according to the present embodiment has much higher substrate strength than the conventional display glass substrate, and is not formed at all. It can be seen that good test results can be obtained even when a strength test is directly performed on a non-display glass substrate.
  • the content corresponding to the strength test of the liquid crystal panel 50 will be mainly described.
  • the content corresponding to the strength test of the organic EL panels 51 and 52 will be mainly described.
  • the present invention is not necessarily related to the strength test, and can sufficiently respond to various demands for increasing the flatness of the glass substrate 10 for display, and can also be used for such applications. .
  • the present invention can be used for flat display panels of flat panel displays such as liquid crystal panels, organic EL panels, and plasma display panels.

Abstract

Disclosed is a highly flat glass substrate for a display, wherein sufficient strength is ensured by reducing generation of a recessed shape of the polished surface. Also disclosed is a method for manufacturing such glass substrate. The glass substrate (15) on the display surface side of the flat panel display is characterized in that the depth of the recessed shape is less than 10nm in a center region (12), which has an area of 20 % or more of the whole area of the surface (11a) facing the inside of the flat panel display.

Description

ディスプレイ用ガラス基板及びその製造方法Glass substrate for display and manufacturing method thereof
本発明は、ディスプレイ用ガラス基板及びその製造方法に関し、特に、フラットパネルディスプレイに用いられるディスプレイ用ガラス基板及びその製造方法に関する。 The present invention relates to a glass substrate for display and a manufacturing method thereof, and more particularly to a glass substrate for display used for a flat panel display and a manufacturing method thereof.
 従来から、液晶ディスプレイ用ガラス基板を製造するための研磨方法及びその装置として、基板を膜枠に貼着して支持するキャリアと、研磨定盤とを有し、キャリアと研磨定盤とを相対的に近付けて、基板の研磨面を研磨定盤に押しつけることにより、基板を研磨する技術が知られている(例えば、特許文献1参照)。 Conventionally, as a polishing method and apparatus for manufacturing a glass substrate for liquid crystal display, it has a carrier that sticks and supports a substrate on a film frame, and a polishing surface plate, and the carrier and the polishing surface plate are relatively For example, a technique for polishing a substrate by pressing the polishing surface of the substrate against a polishing surface plate is known (see, for example, Patent Document 1).
 特許文献1では、キャリアの膜枠にガラス基板を貼着し、研磨終了後、研磨定盤付近に備えられた研磨ステージでガラス基板を膜枠から取り外すのではなく、より搬出し易い、研磨ステージから離れたガラス基板取り外しステージで、研磨終了したガラス基板を膜枠から取り外している。これにより、大型ガラス基板特有のガラス基板の搬出に係る問題を解消している。 In Patent Document 1, a glass substrate is attached to a film frame of a carrier, and after polishing is completed, the glass substrate is not removed from the film frame by a polishing stage provided near the polishing surface plate. The glass substrate after polishing is removed from the film frame at the glass substrate removal stage away from the film. Thereby, the problem concerning the carrying-out of the glass substrate peculiar to a large sized glass substrate is eliminated.
日本国特開2004-122351号公報Japanese Unexamined Patent Publication No. 2004-122351
 上述の特許文献1に記載の構成では、大型ガラス基板の搬出問題を解決することはできるが、ガラス基板の研磨自体は、一般的なポリッシュ研磨を行っており、研磨スラリには、酸化セリウム水溶液を用いている。酸化セリウム水溶液を用いた研磨スラリに含まれている酸化セリウムの砥粒は、一般的には、1100nm程度の粒径があり、この粒径の砥粒を用いてポリッシュ研磨を行うと、研磨工程前に発生した凹み形状を除去し切れずに、ガラス基板の研磨面に15nm以上の凹み形状が残存する場合があるという問題があった。 In the configuration described in Patent Document 1, the problem of carrying out a large glass substrate can be solved. However, the polishing of the glass substrate itself is performed by general polishing, and the polishing slurry contains an aqueous cerium oxide solution. Is used. The abrasive grains of cerium oxide contained in the polishing slurry using an aqueous cerium oxide solution generally have a particle size of about 1100 nm. When polishing is performed using the abrasive particles having this particle size, a polishing step is performed. There has been a problem that a dent shape of 15 nm or more may remain on the polished surface of the glass substrate without completely removing the dent shape generated before.
 一方、ディスプレイ用のパネルには、ある程度の強度が要求され、例えば、液晶ディスプレイ用のガラス基板においては、液晶ディスプレイパネルを製造してから、加圧等により強度試験を行う場合がある。液晶ディスプレイパネルのカラーフィルタ用基板には、液晶ディスプレイパネルの製造後、カラーフィルタの他、遮光膜としてクロム膜からなるブラックマトリックスが形成されている。ここで、クロム膜の表面に凹み形状が存在すると、クロム膜の凹み形状から亀裂が生じ易くなり、液晶ディスプレイパネルの強度が、クロム膜の表面に凹み形状が存在しない場合よりも劣化し、強度試験において、良好な結果が得られないという問題があった。そして、このようなクロム膜の凹み形状は、クロム膜の下層にあるカラーフィルタ用ガラス基板に存在する、凹み形状に起因して発生する場合があることが確認されている。 On the other hand, a certain degree of strength is required for a display panel. For example, in a glass substrate for a liquid crystal display, after the liquid crystal display panel is manufactured, a strength test may be performed by pressing or the like. On the color filter substrate of the liquid crystal display panel, after manufacturing the liquid crystal display panel, a black matrix made of a chromium film is formed as a light shielding film in addition to the color filter. Here, if there is a dent shape on the surface of the chrome film, cracks are likely to occur from the dent shape of the chrome film, and the strength of the liquid crystal display panel is deteriorated compared with the case where there is no dent shape on the surface of the chrome film. In the test, there was a problem that good results could not be obtained. And it has been confirmed that such a dent shape of the chromium film may occur due to the dent shape existing in the glass substrate for the color filter under the chromium film.
 また、有機EL(Electro-Luminescence)パネル等の他のディスプレイ用の表示パネルにおいても、ガラス基板が用いられ、加圧等による強度試験が同様に実施される場合がある。かかる種々の表示パネルにおいて、必ずしもガラス基板に成膜が施される訳ではないが、成膜が施されていない場合であっても、ガラス基板には所定の基板強度が求められる点は変わりなく、また、ガラス基板の凹み形状が少ない方が基板強度は高くなる。 Also, in other display panels such as an organic EL (Electro-Luminescence) panel, a glass substrate is used, and a strength test by pressurization or the like may be similarly performed. In such various display panels, the glass substrate is not necessarily formed into a film, but the glass substrate is required to have a predetermined substrate strength even when the film is not formed. In addition, the substrate strength is higher when the glass substrate has fewer concave shapes.
 そこで、本発明は、基板表面の凹み形状の発生を低減させ、十分な強度を確保することができる平坦度の高いディスプレイ用ガラス基板及びその製造方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a glass substrate for a display with high flatness that can reduce the occurrence of a dent shape on the surface of the substrate and ensure sufficient strength, and a method for manufacturing the same.
 上記目的を達成するため、第1の発明に係るディスプレイ用ガラス基板は、フラットパネルディスプレイの表示面側のガラス基板であって、前記フラットパネルディスプレイの内側を向いた面の全体面積の20%以上の面積の中央領域で、凹み形状の深さが10nm未満であることを特徴とする。 To achieve the above object, the glass substrate for display according to the first invention is a glass substrate on the display surface side of the flat panel display, and is 20% or more of the entire area of the surface facing the inside of the flat panel display. And the depth of the recessed shape is less than 10 nm.
 これにより、応力の加わり易い中央領域の内側面の平坦度を向上させ、フラットパネルディスプレイに用いられたときのガラス基板強度を向上させることができる。 This makes it possible to improve the flatness of the inner surface of the central region where stress is easily applied, and to improve the strength of the glass substrate when used in a flat panel display.
 第2の発明は、第1の発明に係るディスプレイ用ガラス基板において、前記フラットパネルディスプレイの外側を向いた面から荷重を印加した場合の平均破壊荷重が、板厚をtmmとしたときに、600×(t/0.5)N以上であることを特徴とする。 According to a second invention, in the glass substrate for display according to the first invention, an average breaking load when a load is applied from a surface facing the outside of the flat panel display is 600 when the plate thickness is tmm. X (t / 0.5) 2 N or more.
 これにより、フラットパネルディスプレイの外側から応力が印加された場合であっても、十分な強度で破壊を防止することができ、フラットパネルディスプレイの信頼性を高めることができる。 Thereby, even when stress is applied from the outside of the flat panel display, it is possible to prevent the breakdown with sufficient strength and to improve the reliability of the flat panel display.
 第3の発明は、第1又は第2の発明に係るディスプレイ用ガラス基板において、前記フラットパネルディスプレイは、液晶ディスプレイであって、前記表示面側は、カラーフィルタ側であることを特徴とする。 The third invention is the glass substrate for display according to the first or second invention, wherein the flat panel display is a liquid crystal display, and the display surface side is a color filter side.
 これにより、ガラス基板のカラーフィルタ形成面にブラックマトリックスとしてクロム膜が形成された場合であっても、ガラス基板の凹み形状に起因してクロム膜に生じる亀裂を防止し、これに起因する液晶パネルの強度劣化を防止することができる。 As a result, even when a chromium film is formed as a black matrix on the color filter forming surface of the glass substrate, cracks generated in the chromium film due to the concave shape of the glass substrate are prevented, and the liquid crystal panel resulting therefrom It is possible to prevent the deterioration of strength.
 第4の発明は、第1又は第2の発明に係るディスプレイ用ガラス基板において、前記フラットパネルディスプレイは、有機ELディスプレイであって、前記表示面側は、キャップガラス側であることを特徴とする。 According to a fourth invention, in the glass substrate for display according to the first or second invention, the flat panel display is an organic EL display, and the display surface side is a cap glass side. .
 これにより、ガラス基板がトップエミッション方式の有機ELディスプレイに用いられる場合にも、外部応力に対して十分な強度を有して適応することができる。 Thus, even when the glass substrate is used in a top emission type organic EL display, it can be applied with sufficient strength against external stress.
 第5の発明は、第1又は第2の発明に係るディスプレイ用ガラス基板において、前記フラットパネルディスプレイは、有機ELディスプレイであって、前記表示面側は、TFTガラス基板側であることを特徴とする。 According to a fifth invention, in the glass substrate for display according to the first or second invention, the flat panel display is an organic EL display, and the display surface side is a TFT glass substrate side. To do.
 これにより、ガラス基板がボトムエミッション方式の有機ELディスプレイに用いられる場合にも、外部応力に対して十分な強度を有して適応することができる。 Thus, even when the glass substrate is used in a bottom emission type organic EL display, it can be applied with sufficient strength against external stress.
 第6の発明に係るディスプレイ用ガラス基板の製造方法は、フラットパネルディスプレイに用いられるディスプレイ用ガラス基板の製造方法であって、ガラス基板を形成する工程と、該ガラス基板の一方の面を研磨面として、砥粒を用いてポリシュ研磨を行う研磨装置に前記ガラス基板を設置する工程と、粒径が、平均80nm以下の砥粒を用いて、前記ガラス基板の前記研磨面を研磨する工程と、を含むことを特徴とする。 A method for producing a glass substrate for display according to a sixth invention is a method for producing a glass substrate for display used in a flat panel display, wherein a step of forming a glass substrate and one surface of the glass substrate is polished. As a step of installing the glass substrate in a polishing apparatus that performs polish polishing using abrasive grains, a step of polishing the polishing surface of the glass substrate using abrasive grains having an average particle size of 80 nm or less, It is characterized by including.
 これにより、小さな粒径の砥粒を用いて、精細なポリッシュ研磨を行うことができ、ガラス基板の研磨面の平坦度を高め、凹み形状の深さが10nm以上の凹み形状を有さないディスプレイ用ガラス基板を製造することができる。 As a result, it is possible to perform fine polish polishing using abrasive grains having a small particle diameter, to increase the flatness of the polished surface of the glass substrate, and to have a recess shape with a recess shape depth of 10 nm or more. Glass substrates can be manufactured.
 第7の発明は、第6の発明に係るディスプレイ用ガラス基板の製造方法において、前記砥粒は、コロイダルシリカを含むことを特徴とする。 The seventh invention is characterized in that, in the method for producing a glass substrate for display according to the sixth invention, the abrasive grains contain colloidal silica.
 これにより、一般的に用いられている1100nm程度の粒径を有する酸化セリウムを用いた砥粒よりも、遙か粒径の小さい砥粒を構成することができ、80nm以下、例えば、50nm、40nm、20nmといった微細な砥粒を用いて、平坦度の高いディスプレイ用ガラス基板を製造することができる。 Thereby, it is possible to construct an abrasive grain having a particle size much smaller than that of abrasive grains using cerium oxide having a grain size of about 1100 nm, which is generally used, and 80 nm or less, for example, 50 nm or 40 nm. A glass substrate for display with high flatness can be manufactured using fine abrasive grains of 20 nm.
 第8の発明は、第7の発明に係るディスプレイ用ガラス基板の製造方法において、前記砥粒は、平均粒径が20nm以下であることを特徴とする。 The eighth invention is characterized in that in the method for producing a glass substrate for display according to the seventh invention, the abrasive grains have an average particle diameter of 20 nm or less.
 第9の発明は、第6~8のいずれかの発明に係るディスプレイ用ガラス基板の製造方法において、
 前記ガラス基板を形成する工程は、フロート法により前記ガラス基板を形成することを特徴とする。
A ninth invention is a method for producing a glass substrate for display according to any one of the sixth to eighth inventions,
The step of forming the glass substrate is characterized in that the glass substrate is formed by a float method.
 これにより、大型のガラス基板を形成することができ、平坦度の高い大型のディスプレイ用ガラス基板を製造することができる。 Thus, a large glass substrate can be formed, and a large flat glass substrate for display can be manufactured.
 第10の発明は、第6~9のいずれかの発明に係るディスプレイ用ガラス基板の製造方法において、
 前記フラットパネルディスプレイは、液晶ディスプレイであって、
 前記成膜面は、カラーフィルタ基板のカラーフィルタ形成面であることを特徴とする。
A tenth invention is a method for producing a glass substrate for display according to any one of the sixth to ninth inventions,
The flat panel display is a liquid crystal display,
The film forming surface is a color filter forming surface of a color filter substrate.
 これにより、液晶ディスプレイパネルの強度試験に十分耐えうる強度の液晶ディスプレイ用ガラス基板を供給することができる。 Thereby, it is possible to supply a glass substrate for liquid crystal display having a strength sufficient to withstand the strength test of the liquid crystal display panel.
 第11の発明は、第10の発明に係るディスプレイ用ガラス基板の製造方法において、前記カラーフィルタ形成面は、カラーフィルタ形成前に、クロム膜から構成されるブラックマトリックスが形成される面であることを特徴とする。 An eleventh invention is the method for producing a glass substrate for display according to the tenth invention, wherein the color filter forming surface is a surface on which a black matrix composed of a chromium film is formed before the color filter is formed. It is characterized by.
 これにより、液晶ディスプレイパネルの強度試験において、亀裂の生じやすいクロム膜の部分についても、十分な強度を確保することができる。 Thereby, in the strength test of the liquid crystal display panel, sufficient strength can be ensured even for the portion of the chromium film which is liable to crack.
 第12の発明は、第6~9のいずれかの発明に係るディスプレイ用ガラス基板の製造方法において、
 前記フラットパネルディスプレイは、有機ELディスプレイであって、前記研磨面は、キャップガラスの内側面であることを特徴とする。
A twelfth invention is a method for producing a glass substrate for display according to any one of the sixth to ninth inventions,
The flat panel display is an organic EL display, and the polishing surface is an inner surface of a cap glass.
 これにより、トップエミッション方式の有機ELディスプレイの強度試験に耐えることができる十分な強度を有するガラス基板を製造することができる。 Thereby, a glass substrate having sufficient strength that can withstand the strength test of the top emission type organic EL display can be manufactured.
 第13の発明は、第6~9のいずれかの発明に係るディスプレイ用ガラス基板の製造方法において、
 前記フラットパネルディスプレイは、有機ELディスプレイであって、前記研磨面は、TFTガラス基板の内側面であることを特徴とする。
A thirteenth invention is a method for producing a glass substrate for display according to any one of the sixth to ninth inventions,
The flat panel display is an organic EL display, and the polishing surface is an inner surface of a TFT glass substrate.
 これにより、ボトムエミッション方式の有機ELディスプレイの強度試験に耐えることができる十分な強度を有するガラス基板を提供することができる。 Thereby, it is possible to provide a glass substrate having sufficient strength that can withstand the strength test of the bottom emission type organic EL display.
 本発明によれば、ディスプレイ用ガラス基板の平坦度を高めるとともに、フラットパネルディスプレイの表示パネルの強度を高めることができる。 According to the present invention, the flatness of the glass substrate for display can be increased and the strength of the display panel of the flat panel display can be increased.
実施形態1に係る液晶パネルのカラーフィルタ側ガラス基板15の一例を示した図である。図1(a)は、実施形態1に係るカラーフィルタ側ガラス基板15の成膜面11aの平面図である。図1(b)は、実施形態1に係るカラーフィルタ側ガラス基板15の断面図である。3 is a diagram illustrating an example of a color filter side glass substrate 15 of the liquid crystal panel according to Embodiment 1. FIG. FIG. 1A is a plan view of the film forming surface 11a of the color filter side glass substrate 15 according to the first embodiment. FIG. 1B is a cross-sectional view of the color filter side glass substrate 15 according to the first embodiment. 液晶ディスプレイの液晶パネル50の強度試験の一例を示した図である。It is the figure which showed an example of the intensity test of the liquid crystal panel 50 of a liquid crystal display. カラーフィルタ側ガラス基板15のクラック発生メカニズムの説明図である。図3(a)は、比較例として、従来のカラーフィルタ側ガラスに形成されたクロム膜の表面拡大図の一例である。図3(b)は、図3(a)のX-X’断面における拡大図である。図3(c)は、クロム膜の凹み形状21の拡大図である。図3(d)は、クロム膜の凹み形状22の拡大図である。It is explanatory drawing of the crack generation mechanism of the color filter side glass substrate. FIG. 3A is an example of a surface enlarged view of a chromium film formed on a conventional color filter side glass as a comparative example. FIG. 3B is an enlarged view of the X-X ′ cross section of FIG. FIG.3 (c) is an enlarged view of the hollow shape 21 of a chromium film | membrane. FIG. 3D is an enlarged view of the concave shape 22 of the chromium film. カラーフィルタ側ガラス基板15の成膜面11aの拡大図の一例である。It is an example of the enlarged view of the film-forming surface 11a of the color filter side glass substrate 15. 実施形態1に係るディスプレイ用ガラス基板10の製造方法のガラス基板形成工程の一例を説明するための図である。It is a figure for demonstrating an example of the glass substrate formation process of the manufacturing method of the glass substrate 10 for a display which concerns on Embodiment 1. FIG. 実施形態1に係るディスプレイ用ガラス基板10の製造方法の研磨工程の一例を説明するための図である。It is a figure for demonstrating an example of the grinding | polishing process of the manufacturing method of the glass substrate 10 for a display which concerns on Embodiment 1. FIG. 図6に係る研磨装置100とは異なる研磨装置300の一例を示した図である。It is the figure which showed an example of the grinding | polishing apparatus 300 different from the grinding | polishing apparatus 100 which concerns on FIG. 実施形態1に係るディスプレイ用ガラス基板10の成膜面11を示した図である。図8(a)は、実施例1に係るディスプレイ用ガラス基板10の成膜面11の拡大図である。図8(b)は、図8(a)に対応する拡大断面図である。It is the figure which showed the film-forming surface 11 of the glass substrate 10 for a display which concerns on Embodiment 1. FIG. FIG. 8A is an enlarged view of the film formation surface 11 of the display glass substrate 10 according to the first embodiment. FIG. 8B is an enlarged cross-sectional view corresponding to FIG. 強度試験の方法を説明するための図である。It is a figure for demonstrating the method of an intensity | strength test. クロム膜を形成したディスプレイ用ガラス基板の強度試験結果を示した図である。It is the figure which showed the strength test result of the glass substrate for displays in which the chromium film was formed. 実施形態2に係るディスプレイ用ガラス基板を用いたトップエミッション方式の有機ELパネル51の断面構成の一例を示した図である。6 is a diagram illustrating an example of a cross-sectional configuration of a top emission type organic EL panel 51 using a display glass substrate according to Embodiment 2. FIG. 実施形態3に係るディスプレイ用ガラス基板を用いたボトムエミッション方式の有機ELパネル52の断面構成の一例を示した図である。6 is a diagram illustrating an example of a cross-sectional configuration of a bottom emission type organic EL panel 52 using a display glass substrate according to Embodiment 3. FIG.
 以下、図面を参照して、本発明を実施するための形態の説明を行う。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.
図1は、本発明の実施形態1に係る液晶パネルのカラーフィルタ側ガラス基板15の一例を示した図である。図1(a)は、実施形態1に係る液晶パネルのカラーフィルタ側ガラス基板15の成膜面11aの平面図であり、図1(b)は、実施形態1に係る液晶パネルのカラーフィルタ側ガラス基板15の断面図である。 FIG. 1 is a view showing an example of a color filter side glass substrate 15 of a liquid crystal panel according to Embodiment 1 of the present invention. 1A is a plan view of a film forming surface 11a of the color filter side glass substrate 15 of the liquid crystal panel according to the first embodiment, and FIG. 1B is a color filter side of the liquid crystal panel according to the first embodiment. 2 is a cross-sectional view of a glass substrate 15. FIG.
 図1(a)において、カラーフィルタ側ガラス基板15の成膜面11aが示されているが、成膜面11aの中央領域12が、成膜面11aの重心を含むように示されている。中央領域12は、成膜面11aの全体面積の20%以上の領域である。中央領域12は、カラーフィルタ側ガラス基板15を含んで構成される液晶パネルの強度試験を行った場合に、カラーフィルタ側ガラス基板15に成膜された膜にクラック等の破壊が発生し易い領域である。 In FIG. 1A, the film formation surface 11a of the color filter side glass substrate 15 is shown, but the central region 12 of the film formation surface 11a is shown to include the center of gravity of the film formation surface 11a. The central region 12 is a region that is 20% or more of the entire area of the film formation surface 11a. The central region 12 is a region where a crack such as a crack is likely to occur in the film formed on the color filter side glass substrate 15 when a strength test of a liquid crystal panel including the color filter side glass substrate 15 is performed. It is.
 図2は、液晶ディスプレイの液晶パネル50の強度試験の一例を示した図である。図2において、液晶パネル50の断面図が示されている。液晶パネル50は、カラーフィルタ用ガラス基板から所定のサイズに切り出されたカラーフィルタ側ガラス基板15と、TFT(Thin Film Transistor、薄膜トランジスタ)用ガラス基板から所定のサイズに切り出されたTFT側ガラス16とを備える。なお、カラーフィルタ側ガラス基板15と、TFT側ガラス16との間には、スペーサ等があり、カラーフィルタ側ガラス基板15とTFT側ガラス16とを支持し、カラーフィルタ側ガラス基板15とTFT側ガラス16との間に液晶層が形成されるが、図2においては、液晶層は省略している。 FIG. 2 is a diagram showing an example of a strength test of the liquid crystal panel 50 of the liquid crystal display. In FIG. 2, a cross-sectional view of the liquid crystal panel 50 is shown. The liquid crystal panel 50 includes a color filter side glass substrate 15 cut to a predetermined size from a color filter glass substrate, and a TFT side glass 16 cut to a predetermined size from a TFT (Thin Film Transistor) glass substrate. Is provided. A spacer or the like is provided between the color filter side glass substrate 15 and the TFT side glass 16, and supports the color filter side glass substrate 15 and the TFT side glass 16, and the color filter side glass substrate 15 and the TFT side. A liquid crystal layer is formed between the glass 16 and the liquid crystal layer is omitted in FIG.
 カラーフィルタ側ガラス基板15には、TFT側ガラス16との対向面である成膜面11aに、ブラックマトリックス20と、カラーフィルタ30が形成されている。つまり、カラーフィルタ側ガラス基板15の成膜面11aは、カラーフィルタ形成面であり、液晶パネル50の内側を向いた面である。カラーフィルタ30は、ある特定の波長の光のみを通過させ、色を表示するためのフィルタである。液晶パネル50においては、カラーフィルタ30は、一般的には染料や顔料を含む樹脂膜として構成され、赤、緑、青の三原色パターンが規則正しく配列される。ブラックマトリックス20は、遮光膜であって、カラーフィルタ30の各色の間に形成される。ブラックマトリックス20は、クロム(Cr)膜で形成される場合が多い。 In the color filter side glass substrate 15, a black matrix 20 and a color filter 30 are formed on a film forming surface 11 a which is a surface facing the TFT side glass 16. That is, the film formation surface 11 a of the color filter side glass substrate 15 is a color filter formation surface and is a surface facing the inside of the liquid crystal panel 50. The color filter 30 is a filter for passing only light of a specific wavelength and displaying a color. In the liquid crystal panel 50, the color filter 30 is generally configured as a resin film containing a dye or a pigment, and the three primary color patterns of red, green, and blue are regularly arranged. The black matrix 20 is a light shielding film and is formed between the colors of the color filter 30. The black matrix 20 is often formed of a chromium (Cr) film.
 TFT側ガラス16には、カラーフィルタ側ガラス基板15との対向面である成膜面11bに、薄膜トランジスタを形成するため、例えば、アモルファスシリコン膜40が形成される。 In the TFT side glass 16, for example, an amorphous silicon film 40 is formed in order to form a thin film transistor on the film forming surface 11b which is the surface facing the color filter side glass substrate 15.
 液晶パネル50としては、TFT側ガラス16の背面に、バックライトが配置されて光が背面(図2においては、TFT側ガラス16の下方)から照射される。そして、薄膜トランジスタにより液晶が駆動して、カラーフィルタ30を介して、各色の画像がカラーフィルタ側ガラス基板15の前面(図2においては、カラーフィルタ側ガラス基板15の上方)に表示されることになる。 As the liquid crystal panel 50, a backlight is disposed on the back surface of the TFT side glass 16, and light is irradiated from the back surface (below the TFT side glass 16 in FIG. 2). Then, the liquid crystal is driven by the thin film transistor, and an image of each color is displayed on the front surface of the color filter side glass substrate 15 (above the color filter side glass substrate 15 in FIG. 2) through the color filter 30. Become.
 かかる液晶パネル50の強度試験として、図2に示すように、液晶パネル50を水平に載置した状態で、カラーフィルタ側ガラス基板15側の上方の液晶パネル50の外側を向いた面の中央部から、加圧治具60により加圧を行う試験が一般的に行われている。かかる強度試験が行われた場合に、液晶パネル50の強度が不十分であると、液晶パネル50が破壊する。ここで、液晶パネル50の破壊は、TFT側ガラス16ではなく、カラーフィルタ側ガラス基板15の方を起点とする場合が有る。また、カラーフィルタ側ガラス基板15が破壊する場合には、加圧の際、ブラックマトリックス20の表面に亀裂の起点が生じ、伸展したクラックがカラーフィルタ側ガラス基板15に伝播して液晶パネル50の破壊に至る場合があることが確認されている。また、液晶パネル50の強度試験は、図2に示すように、カラーフィルタ側ガラス基板15の中央領域から加圧が行われるため、クラックの発生は、中央領域の方が周辺部よりも多くなる。 As a strength test of the liquid crystal panel 50, as shown in FIG. 2, the center portion of the surface facing the outside of the liquid crystal panel 50 above the color filter side glass substrate 15 side with the liquid crystal panel 50 placed horizontally. Therefore, a test for pressurizing with the pressurizing jig 60 is generally performed. When the strength test is performed, if the strength of the liquid crystal panel 50 is insufficient, the liquid crystal panel 50 is destroyed. Here, the destruction of the liquid crystal panel 50 may start from the color filter side glass substrate 15 instead of the TFT side glass 16. In addition, when the color filter side glass substrate 15 is broken, a crack starting point is generated on the surface of the black matrix 20 during pressurization, and the extended crack propagates to the color filter side glass substrate 15 and the liquid crystal panel 50 It has been confirmed that it may lead to destruction. Further, in the strength test of the liquid crystal panel 50, as shown in FIG. 2, since pressure is applied from the central region of the color filter side glass substrate 15, the occurrence of cracks is greater in the central region than in the peripheral portion. .
 図3は、カラーフィルタ側ガラス基板15にクラックが発生するメカニズムを説明するための図である。図3(a)は、比較例として、従来のカラーフィルタ側ガラスのブラックマトリックス20が形成されているクロム膜の表面拡大図の一例を示した図である。図3(a)において、ブラックマトリックス20の表面に、凹み形状21、22が、線状に延びて形成されている状態が示されている。また、図3(a)において、X-X’はFIB(Focused Ion Beam、集束イオンビーム)加工位置を示し、中央の矢印は、観察方向を示している。
 図3(b)は、図3(a)のX-X’断面における拡大図である。なお、図3(b)においては、FIB加工を行うために保護層70をブラックマトリックス20のクロム膜の上に形成し、その後FIB加工を行って切断し、その断面を拡大して示している。図3(b)において、凹み形状21、22の箇所が示されている。
FIG. 3 is a view for explaining a mechanism of generating cracks in the color filter side glass substrate 15. FIG. 3A is a view showing an example of a surface enlarged view of a chromium film on which a black matrix 20 of a conventional color filter side glass is formed as a comparative example. FIG. 3A shows a state in which the concave shapes 21 and 22 are formed to extend linearly on the surface of the black matrix 20. Further, in FIG. 3A, XX ′ indicates a FIB (Focused Ion Beam) processing position, and the center arrow indicates an observation direction.
FIG. 3B is an enlarged view of the section XX ′ in FIG. In FIG. 3B, the protective layer 70 is formed on the chromium film of the black matrix 20 to perform the FIB processing, and then cut by performing the FIB processing, and the cross section is enlarged. . In FIG.3 (b), the location of the recessed shapes 21 and 22 is shown.
 図3(c)は、図3(b)に示したクロム膜の凹み形状21の更なる部分拡大図である。図3(c)に示すように、クロム膜の表面に凹み形状21が形成されている箇所の下層のカラーフィルタ側ガラスには、クロム膜と同様に凹み形状13が形成されている。 FIG. 3C is a further partial enlarged view of the recess 21 of the chromium film shown in FIG. As shown in FIG. 3 (c), a concave shape 13 is formed in the color filter side glass below the portion where the concave shape 21 is formed on the surface of the chromium film, similarly to the chromium film.
 図3(d)は、図3(b)に示したクロム膜の凹み形状22の更なる部分拡大図である。図3(d)に示すように、やはりクロム膜の表面に凹み形状22が形成されている箇所の下層のカラーフィルタ側ガラスには、凹み形状14が形成されている。 FIG. 3 (d) is a further enlarged view of the chrome film recess 22 shown in FIG. 3 (b). As shown in FIG. 3 (d), the concave shape 14 is formed in the color filter side glass in the lower layer where the concave shape 22 is formed on the surface of the chromium film.
 このような、凹み形状21、22を表面に有するクロム膜が、ブラックマトリックス20としてカラーフィルタ側ガラスに形成された状態で、液晶パネル50について強度試験を行うと、クロム膜の凹み形状21、22から亀裂を生じ、この亀裂がカラーフィルタ側ガラス基板15にも伝播してクラックを生じ、最終的に液晶パネル50の破壊に至る場合が有ることが確認されている。 When a strength test is performed on the liquid crystal panel 50 in a state where such a chrome film having the concave shapes 21 and 22 on the surface is formed on the color filter side glass as the black matrix 20, the concave shapes 21 and 22 of the chrome film are obtained. It has been confirmed that there is a case in which a crack is generated from the liquid crystal panel 50 and this crack propagates to the color filter side glass substrate 15 to generate a crack, which eventually leads to destruction of the liquid crystal panel 50.
 このことから、強度試験において、クロム膜のブラックマトリックス20の表面に凹み形状21、22が存在すると、強度試験時の加圧応力が局所集中し易くなり、強度が著しく低下することが分かる。一方、クロム膜の表面の凹み形状21、22が存在する箇所には、カラーフィルタ側ガラスの凹み形状13、14が存在することから、クロム膜表面の凹み形状21、22は、カラーフィルタ側ガラスの凹み形状13、14に起因して発生していることが分かる。 From this, it can be seen that in the strength test, if the concave shapes 21 and 22 are present on the surface of the black matrix 20 of the chrome film, the pressurizing stress during the strength test tends to be concentrated locally and the strength is remarkably reduced. On the other hand, since the concave shapes 13 and 14 of the color filter side glass are present at the locations where the concave shapes 21 and 22 on the surface of the chromium film are present, the concave shapes 21 and 22 on the surface of the chromium film are the color filter side glass. It can be seen that this occurs due to the concave shapes 13 and 14.
 図3において説明したように、カラーフィルタ側ガラス基板15の、液晶ディスプレイ内側面である成膜面11aの凹み形状を低減させれば、クロム膜からなるブラックマトリックス20の亀裂を防止又は低減させることができる。よって、図1(a)、(b)に示す、カラーフィルタ側ガラス基板15の中央領域12において凹み形状13、14を低減させることができれば、カラーフィルタ側ガラス基板15として十分な強度を持つことができることが分かる。 As described with reference to FIG. 3, if the concave shape of the film formation surface 11 a that is the inner surface of the liquid crystal display of the color filter side glass substrate 15 is reduced, cracks in the black matrix 20 made of a chromium film can be prevented or reduced. Can do. Therefore, if the concave shapes 13 and 14 can be reduced in the central region 12 of the color filter side glass substrate 15 shown in FIGS. 1A and 1B, the color filter side glass substrate 15 has sufficient strength. You can see that
 図4は、図1(b)に示した液晶パネルのカラーフィルタ側ガラス基板15の成膜面11aの拡大図の一例を示した図である。図4に示すように、カラーフィルタ側ガラス基板15の成膜面11aは、拡大すると、完全な平坦面ではなく、微小な凹凸が存在することが分かる。図4において、2箇所の凹み形状13、14がカラーフィルタ側ガラス基板15の成膜面11aに存在する。凹凸のうち、凹み形状13、14は、ブラックマトリックス20の表面の凹み形状21、22が発生する原因となり得る欠点である。ここで、凹み形状13、14の深さが、10nm未満であれば、強度試験を行っても、クロム膜からなるブラックマトリックス20に亀裂が生じ難くなり、強度試験で良好な試験結果を得られることが確認されている。具体的な実験結果に基づく実施例は後述するが、凹み形状13、14が10nm未満となるような平坦度を有すれば、液晶パネル50は、強度試験で良好な試験結果を得ることができる。 FIG. 4 is a diagram showing an example of an enlarged view of the film forming surface 11a of the color filter side glass substrate 15 of the liquid crystal panel shown in FIG. 1 (b). As shown in FIG. 4, when the film formation surface 11a of the color filter side glass substrate 15 is enlarged, it can be seen that minute unevenness exists instead of a complete flat surface. In FIG. 4, two recessed shapes 13 and 14 are present on the film formation surface 11 a of the color filter side glass substrate 15. Of the irregularities, the concave shapes 13 and 14 are disadvantages that can cause the concave shapes 21 and 22 on the surface of the black matrix 20 to occur. Here, if the depth of the dent shapes 13 and 14 is less than 10 nm, even if the strength test is performed, cracks are unlikely to occur in the black matrix 20 made of a chromium film, and good test results can be obtained in the strength test. It has been confirmed. Examples based on specific experimental results will be described later, but the liquid crystal panel 50 can obtain good test results in the strength test if the concave shapes 13 and 14 have such a flatness as to be less than 10 nm. .
 なお、カラーフィルタ側ガラス基板15の凹み形状13、14が10nm未満である領域は、広ければ広い程好ましいが、図1において説明したように、少なくとも、成膜面11aの全体面積の20%以上の面積の中央領域において、凹み形状13、14の深さを10nm未満になるように構成すれば、十分な液晶パネル50の強度向上が得られる。なお、中央領域12は、少なくとも成膜面11の外径の形状中心を中心とした領域であればよい。また、中央領域12は、少なくとも成膜面11全体の20%以上であることが好ましい。カラーフィルタ側ガラス基板15に成膜される膜が、よりクラックを生じ易い場合には、30%以上であることがより好ましく、40%以上であることが更に好ましく、50%以上であることが特に好ましい。 In addition, although it is preferable that the area | region where the concave shapes 13 and 14 of the color filter side glass substrate 15 are less than 10 nm is large, as demonstrated in FIG. 1, at least 20% or more of the whole area of the film-forming surface 11a is preferable. If the depth of the recessed shapes 13 and 14 is configured to be less than 10 nm in the central region of the area, sufficient strength improvement of the liquid crystal panel 50 can be obtained. The central region 12 may be a region centered on at least the shape center of the outer diameter of the film formation surface 11. The central region 12 is preferably at least 20% of the entire film formation surface 11. When the film formed on the color filter side glass substrate 15 is more susceptible to cracking, it is more preferably 30% or more, further preferably 40% or more, and more preferably 50% or more. Particularly preferred.
 次に、図5及び図6を用いて、本発明の実施形態に係るディスプレイ用ガラス基板10の製造方法の一例について説明する。図1~図4においては、液晶パネルのカラーフィルタ側ガラス基板15を例に挙げて説明したが、実施形態1に係るディスプレイ用ガラス基板10の製造方法は、プラズマディスプレイパネル等の他のディスプレイ用のガラス基板にも適用可能である。よって、図5及び図6においては、液晶パネル以外のディスプレイパネルにも適用可能なディスプレイ用ガラス基板10の製造方法について説明する。 Next, an example of a method for manufacturing the display glass substrate 10 according to the embodiment of the present invention will be described with reference to FIGS. 1 to 4, the color filter side glass substrate 15 of the liquid crystal panel has been described as an example, but the method for manufacturing the display glass substrate 10 according to Embodiment 1 is for other displays such as a plasma display panel. It can also be applied to other glass substrates. Therefore, in FIG.5 and FIG.6, the manufacturing method of the glass substrate 10 for a display applicable also to display panels other than a liquid crystal panel is demonstrated.
 図5は、実施形態1に係るディスプレイ用ガラス基板10の製造方法のガラス基板形成工程の一例を説明するための図である。図5は、フロート法によるガラス基板の製造を行うフロートガラス製造設備80の全体概略構成の一例を示している。 FIG. 5 is a view for explaining an example of the glass substrate forming step of the method for manufacturing the display glass substrate 10 according to the first embodiment. FIG. 5 shows an example of the overall schematic configuration of a float glass manufacturing facility 80 that manufactures a glass substrate by the float process.
 フロートガラス製造設備80は、溶融窯81と、フロートバス82と、徐冷窯87とを備える。また、フロートバス82は、ガス供給口83と、ヒータ84とを含む。徐冷窯87は、ヒータ88を含む。更に、フロートバス82と徐冷窯87との間には、引出ロール86が設けられている。 The float glass manufacturing facility 80 includes a melting kiln 81, a float bath 82, and a slow cooling kiln 87. The float bath 82 includes a gas supply port 83 and a heater 84. The slow cooling furnace 87 includes a heater 88. Further, a draw roll 86 is provided between the float bath 82 and the slow cooling furnace 87.
 次に、フロートガラス製造設備80を用いたガラス基板の製造方法の一例について説明する。溶融窯81は、重油燃焼により、最高温度が1550~1600℃に達する。ガラス原料5が、溶融窯81に供給され、溶融窯81内で溶融し、溶融ガラス6となる。溶融窯81において、泡の無い均質な溶融ガラス6とされた後は、溶融ガラス6は、フロートバス82に供給される。フロートバス82は、溶融スズ90で満たされた浅いスズ浴である。また、フロートバス82の上方空間には、スズの酸化を防止するための、水素と窒素の混合気体からなる還元性ガスが供給される。フロートバス82に供給される溶融ガラス6の温度が、上流で約1050℃、下流で約600℃となるように、必要に応じて、ヒータ84で温度調整がなされる。フロートバス82の下流の出口付近で、ガラスは固化するが、固化したガラスは、引出ロール86で徐冷窯87に移送される。徐冷窯87において、ガラスが冷却され、ひずみを除去された後、検査、切断されてガラス基板が形成される。 Next, an example of a method for manufacturing a glass substrate using the float glass manufacturing facility 80 will be described. The maximum temperature of the melting furnace 81 reaches 1550 to 1600 ° C. due to heavy oil combustion. The glass raw material 5 is supplied to the melting furnace 81 and melted in the melting furnace 81 to become the molten glass 6. In the melting furnace 81, the molten glass 6 is supplied to the float bath 82 after being made into the homogeneous molten glass 6 without bubbles. The float bath 82 is a shallow tin bath filled with molten tin 90. In addition, a reducing gas composed of a mixed gas of hydrogen and nitrogen for preventing oxidation of tin is supplied to the space above the float bath 82. The heater 84 adjusts the temperature as necessary so that the temperature of the molten glass 6 supplied to the float bath 82 is about 1050 ° C. upstream and about 600 ° C. downstream. In the vicinity of the outlet downstream of the float bath 82, the glass is solidified, but the solidified glass is transferred to the slow cooling kiln 87 by the drawing roll 86. In the slow cooling furnace 87, after the glass is cooled and strain is removed, the glass substrate is formed by inspection and cutting.
 例えば、フロート法を用いてガラス基板形成工程が行われてもよい。また、フロート法の他、フュージョン法等、他のガラス基板の製造方法によりガラス基板形成工程が実行されてもよい。ガラス基板形成工程においては、ディスプレイ用ガラス基板10製造のための材料となるガラス基板を製造することができれば、種々のガラス基板製造方法を適用することができる。 For example, the glass substrate forming step may be performed using a float process. In addition to the float process, the glass substrate forming step may be executed by other glass substrate manufacturing methods such as a fusion method. In the glass substrate forming step, various glass substrate manufacturing methods can be applied as long as a glass substrate as a material for manufacturing the display glass substrate 10 can be manufactured.
 図6は、実施形態1に係る研磨工程の一例を説明するための図である。図6は、実施形態1の研磨装置100の全体構成の一例を示している。 FIG. 6 is a diagram for explaining an example of a polishing process according to the first embodiment. FIG. 6 shows an example of the overall configuration of the polishing apparatus 100 of the first embodiment.
 研磨装置100は、第1の研磨装置101と、第2の研磨装置102の2台の研磨装置101、102を備える。第1の研磨装置101と、第2の研磨装置102は、各々研磨ヘッド150を備えているが、両方とも同様の構成であるので、同一の構成要素には、同一の参照符号を付して説明する。 The polishing apparatus 100 includes two polishing apparatuses 101 and 102, a first polishing apparatus 101 and a second polishing apparatus 102. The first polishing apparatus 101 and the second polishing apparatus 102 are each provided with a polishing head 150. Since both have the same configuration, the same reference numerals are assigned to the same components. explain.
 研磨ヘッド150は、本体ケーシング151にモータが内蔵され、このモータの出力軸が、鉛直方向に垂下されたスピンドル156に連結されて構成される。スピンドル156には、キャリア152が連結されている。また、本体ケーシング151は、昇降機構256を介してスライダ258に連結されている。この昇降機構256によって本体ケーシング151がスライダ258に対して昇降されることにより、キャリア152が第1の研磨ステージ118の研磨パッド158、及び第2の研磨ステージ120の研磨パッド160に対し進退移動されるとともに、膜枠114に貼着されたガラス基板7を研磨パッド158、160に所定の研磨圧力で押圧することができる。 The polishing head 150 is configured such that a motor is built in a main body casing 151, and an output shaft of the motor is connected to a spindle 156 suspended in a vertical direction. A carrier 152 is connected to the spindle 156. The main body casing 151 is connected to a slider 258 via an elevating mechanism 256. As the main body casing 151 is moved up and down with respect to the slider 258 by the lifting mechanism 256, the carrier 152 is moved forward and backward with respect to the polishing pad 158 of the first polishing stage 118 and the polishing pad 160 of the second polishing stage 120. In addition, the glass substrate 7 adhered to the film frame 114 can be pressed against the polishing pads 158 and 160 with a predetermined polishing pressure.
 研磨パッド158は、研磨定盤162の上面に貼り付けられ、研磨定盤162の下部には、モータ(図示せず)によって回転される回転軸164が連結される。また、研磨パッド160は、研磨定盤166の上面に貼り付けられ、研磨定盤166の下部には、モータ(図示せず)によって回転される回転軸168が連結されている。なお、研磨パッド158、160側は回転しなくてもよい場合があるので、必ずしもモータを必要としない。また、研磨パッド158、160側を揺動させてもよい。 The polishing pad 158 is affixed to the upper surface of the polishing surface plate 162, and a rotating shaft 164 rotated by a motor (not shown) is connected to the lower portion of the polishing surface plate 162. The polishing pad 160 is affixed to the upper surface of the polishing surface plate 166, and a rotating shaft 168 that is rotated by a motor (not shown) is connected to the lower portion of the polishing surface plate 166. Since the polishing pads 158 and 160 may not necessarily rotate, a motor is not necessarily required. Further, the polishing pads 158 and 160 may be swung.
 さらに、本体ケーシング151は、公転駆動機構(図示せず)に連結され、所定の公転半径で公転する機能も有してもよい。なお、この公転駆動機構は、例えば、本体ケーシング151にプラネタリーギア機構を内蔵し、プラネタリーギア機構の出力軸をスピンドル156に連結することによって構成できる。 Furthermore, the main body casing 151 may be connected to a revolution drive mechanism (not shown) and have a function of revolving at a predetermined revolution radius. The revolution drive mechanism can be configured by, for example, incorporating a planetary gear mechanism in the main body casing 151 and connecting the output shaft of the planetary gear mechanism to the spindle 156.
 また、研磨装置100は、搬送装置250、252、254を備える。搬送装置250、252、254は、各々ガイドレール270を備える。また、搬送装置250は、ステージ116を備え、搬送装置254は、ステージ122を備える。ガイドレール270により、ガラス基板7は、ステージ116、122上を移動する。また、搬送装置250、252、254は、図示しないロボットアームを備え、ステージ116から第1の研磨ステージ118、第1の研磨ステージ118から第2の研磨ステージ120、第2の研磨ステージ120からステージ122にガラス基板7を移動させることができるように構成されている。 Further, the polishing apparatus 100 includes transfer apparatuses 250, 252, and 254. Each of the transport devices 250, 252, and 254 includes a guide rail 270. The transport device 250 includes a stage 116, and the transport device 254 includes a stage 122. The glass substrate 7 moves on the stages 116 and 122 by the guide rail 270. Further, the transfer devices 250, 252, and 254 include robot arms (not shown), and the stage 116 to the first polishing stage 118, the first polishing stage 118 to the second polishing stage 120, and the second polishing stage 120 to the stage. The glass substrate 7 can be moved to 122.
 また、研磨定盤162には、スラリ供給孔130が設けられており、同様に、研磨定盤166にも、スラリ供給孔131が設けられている。スラリ供給孔130、131からは、砥粒を含む水溶液状のスラリが供給される。ガラス基板7の研磨は、スラリ供給孔130、131から砥粒を含むスラリが供給されるとともに、研磨定盤162、166及びキャリア152が回転しながら、キャリア52が、ガラス基板7の研磨面を下向きにして保持し、研磨面を研磨定盤162、166上の研磨パッド158、160に押圧することにより行われる。また、研磨パッド158、160には、スラリを流すための溝が形成されていてもよい。 The polishing platen 162 is provided with a slurry supply hole 130. Similarly, the polishing platen 166 is provided with a slurry supply hole 131. From the slurry supply holes 130 and 131, aqueous slurry containing abrasive grains is supplied. For polishing the glass substrate 7, slurry containing abrasive grains is supplied from the slurry supply holes 130, 131, and the polishing plates 162, 166 and the carrier 152 rotate while the carrier 52 moves the polishing surface of the glass substrate 7. This is done by holding it downward and pressing the polishing surface against polishing pads 158 and 160 on polishing surface plates 162 and 166. Further, the polishing pads 158 and 160 may be formed with grooves for flowing slurry.
 キャリア152には、圧縮エアを噴出する噴射口(図示せず)が複数形成されている。これらの噴射口は、図6において破線で示すエア供給路202に連通されている。エア供給路202は、研磨ヘッド150に取り付けられた図示しないロータリジョイントを介して研磨ヘッド150の外部に延設され、バルブ204を介してエアポンプ206に接続されている。したがって、バルブ204を開放すると、エアポンプ206からの圧縮エアがエア供給路202を介して、キャリア152内の噴射口に供給される。これにより、圧縮エアの圧力がガラス基板7に伝達され、この圧力によってガラス基板7が研磨パッド158、160に押し付けられて研磨される。 The carrier 152 is formed with a plurality of ejection ports (not shown) through which compressed air is ejected. These injection ports communicate with an air supply path 202 indicated by a broken line in FIG. The air supply path 202 extends to the outside of the polishing head 150 via a rotary joint (not shown) attached to the polishing head 150, and is connected to the air pump 206 via a valve 204. Therefore, when the valve 204 is opened, compressed air from the air pump 206 is supplied to the injection port in the carrier 152 via the air supply path 202. Thereby, the pressure of the compressed air is transmitted to the glass substrate 7, and the glass substrate 7 is pressed against the polishing pads 158 and 160 by this pressure and polished.
 例えば、このような構成を有する研磨装置100により、ガラス基板7の研磨工程が行われてよい。具体的には、ガラス基板7が、ステージ116から、搬送装置250により、第1の研磨ステージ118上に移動され、キャリア152に、研磨面を下向きにして保持される。つまり、ガラス基板7が第1の研磨装置101に設置される。そして、キャリア152及び研磨定盤162が回転するとともに、砥粒を含んだスラリがスラリ供給孔130から供給される。ガラス基板7は、研磨定盤162上の研磨パッド158及び砥粒との摩擦による機械的研磨作用と、スラリとの化学的反応による化学的研磨作用との双方により、ポリッシュ研磨される。 For example, the polishing process of the glass substrate 7 may be performed by the polishing apparatus 100 having such a configuration. Specifically, the glass substrate 7 is moved from the stage 116 onto the first polishing stage 118 by the transfer device 250 and held by the carrier 152 with the polishing surface facing downward. That is, the glass substrate 7 is installed in the first polishing apparatus 101. Then, the carrier 152 and the polishing surface plate 162 rotate, and slurry containing abrasive grains is supplied from the slurry supply hole 130. The glass substrate 7 is polished by both mechanical polishing action by friction with the polishing pad 158 and the abrasive grains on the polishing platen 162 and chemical polishing action by chemical reaction with the slurry.
 ここで、従来の研磨工程では、酸化セリウム(CeO)の砥粒を含むスラリを用いて、研磨工程を行っていた。ところが、酸化セリウムの砥粒は、平均的に1.1μm(=1100nm)もの粒径を有する。よって、酸化セリウムの砥粒を用いて研磨工程を実行すると、図3において示した研磨工程前に発生した凹み形状を除去し切れずに、ディスプレイ用ガラス基板の研磨面に15nm以上の凹み形状が残存してしまう場合があるという問題があった。研磨工程前に発生した凹み形状としては、研磨工程より前の工程でのハンドリングによるキズや搬送キズを挙げることができる。 Here, in the conventional polishing process, the polishing process is performed using a slurry containing abrasive grains of cerium oxide (CeO 2 ). However, the abrasive grains of cerium oxide have an average particle size of 1.1 μm (= 1100 nm). Therefore, when the polishing process is performed using the cerium oxide abrasive grains, the dent shape generated before the polishing process shown in FIG. 3 is not completely removed, and the dent shape of 15 nm or more is formed on the polishing surface of the glass substrate for display. There was a problem that it might remain. Examples of the dent shape generated before the polishing step include scratches caused by handling in the step before the polishing step and conveyance scratches.
 そこで、本実施形態に係るディスプレイ用ガラス基板10の製造方法においては、コロイダルシリカの砥粒を用いることとした。コロイダルシリカを砥粒としたスラリは、平均粒径80nmの球状のシリカ粒子を分散させたコロイダルシリカスラリを用いる。これにより、平均80nm以下の粒径の微細な砥粒を含むスラリを得ることができる。また、平均粒径20nm以下の砥粒を用いたスラリを用いて、スラリ中の粒径の平均粒径を20nm以下とすることも可能である。 Therefore, in the method for manufacturing the glass substrate 10 for display according to this embodiment, abrasive grains of colloidal silica are used. As a slurry using colloidal silica as abrasive grains, a colloidal silica slurry in which spherical silica particles having an average particle diameter of 80 nm are dispersed is used. Thereby, a slurry containing fine abrasive grains having an average particle size of 80 nm or less can be obtained. Moreover, it is also possible to make the average particle size of the particle size in the slurry 20 nm or less by using a slurry using abrasive grains having an average particle size of 20 nm or less.
 このような、小粒径の砥粒を用いることにより、研磨工程において、ディスプレイ用ガラス基板10の成膜面11の凹み形状13、14を、平均10nm未満の深さとすることができる。また、回転速度、研磨圧力等の調整により、凹み形状の深さを、平均8nm未満、更には平均5nm未満とすることができる。 By using such abrasive grains having a small particle diameter, the concave shapes 13 and 14 of the film forming surface 11 of the display glass substrate 10 can be made to have an average depth of less than 10 nm in the polishing step. Further, by adjusting the rotational speed, polishing pressure, etc., the depth of the dent shape can be less than 8 nm on average and even less than 5 nm on average.
 このように、本実施形態に係るディスプレイ用ガラス基板10の製造方法においては、小粒径の砥粒を用いることにより、ディスプレイ用ガラス基板10の成膜面11を、成膜面11の全体面積の20%以上の中央領域12において、凹み形状13、14の深さを10nm未満になるように加工することができる。これにより、液晶ディスプレイパネルの強度試験においても、十分な強度を達成することができる。 Thus, in the manufacturing method of the glass substrate 10 for a display which concerns on this embodiment, the film-forming surface 11 of the glass substrate 10 for displays is used for the whole area of the film-forming surface 11 by using a small grain size abrasive grain. In the central region 12 of 20% or more, the depth of the recessed shapes 13 and 14 can be processed to be less than 10 nm. Thereby, sufficient strength can be achieved also in the strength test of the liquid crystal display panel.
 なお、本実施形態に係るディスプレイ用ガラス基板10の製造方法においては、80nm以下、好ましくは50又は40nm以下、更に好ましくは20nm以下の粒径を実現できれば、種々の材料から構成された砥粒を本実施形態に係るディスプレイ用ガラス基板10の製造方法に適用することができる。 In addition, in the manufacturing method of the glass substrate 10 for a display which concerns on this embodiment, if it can implement | achieve the particle size of 80 nm or less, Preferably it is 50 or 40 nm or less, More preferably, it is 20 nm or less, the abrasive grain comprised from various materials will be used. The present invention can be applied to the method for manufacturing the display glass substrate 10 according to the present embodiment.
 第1の研磨装置101で研磨が終了した後は、搬送装置252によりガラス基板7を第2の研磨ステージ120に移動させる。そして、ガラス基板7をキャリア152に設置し、同様の80nm以下の粒径を有する砥粒をスラリ供給孔131から供給しながら、研磨定盤166及びキャリア152を回転させてガラス基板7のポリッシュ研磨を行う。この場合も、例えば小粒径砥粒を用いるので、ガラス基板7の研磨面の中央領域に、凹み形状の深さを10nm未満になるように研磨を行うことができる。 After completion of polishing by the first polishing apparatus 101, the glass substrate 7 is moved to the second polishing stage 120 by the transfer apparatus 252. Then, the glass substrate 7 is placed on the carrier 152, and the polishing platen 166 and the carrier 152 are rotated while the abrasive grains having the same particle diameter of 80 nm or less are supplied from the slurry supply hole 131 to polish the glass substrate 7. I do. Also in this case, for example, since small-diameter abrasive grains are used, polishing can be performed in the central region of the polishing surface of the glass substrate 7 so that the depth of the concave shape is less than 10 nm.
 また、第2の研磨装置102による研磨が終了したら、搬送装置254により、ガラス基板7は第2の研磨ステージ120からステージ122に移動され、研磨工程を終了する。この後は、必要に応じて、洗浄等が行われてもよい。 Further, when the polishing by the second polishing apparatus 102 is completed, the glass substrate 7 is moved from the second polishing stage 120 to the stage 122 by the transfer apparatus 254, and the polishing process is ended. Thereafter, cleaning or the like may be performed as necessary.
 以上、図5及び図6を用いて説明したように、ガラス基板7をまず作成し、作成されたガラス基板7を研磨装置100に設置し、粒径80nm以下の砥粒を含むスラリ用いて、ガラス基板7の成膜面11をポリッシュ研磨することにより、凹み形状13、14の深さが10nm未満の本実施形態に係るディスプレイ用ガラス基板10を製造することができる。 As described above with reference to FIG. 5 and FIG. 6, the glass substrate 7 is first created, the created glass substrate 7 is installed in the polishing apparatus 100, and a slurry containing abrasive grains having a particle size of 80 nm or less is used. By polishing the film formation surface 11 of the glass substrate 7, the glass substrate 10 for a display according to the present embodiment in which the depths of the recessed shapes 13 and 14 are less than 10 nm can be manufactured.
 また、本実施形態に係るディスプレイ用ガラス基板10の製造方法においては、第1の研磨装置101と第2の研磨装置102を用いる2段研磨の例を挙げて説明したが、これらは、1段研磨で終了してもよい。研磨の回数、時間、その他の種々の研磨条件は、用途に応じて種々設定するようにしてもよい。 Moreover, in the manufacturing method of the glass substrate 10 for a display which concerns on this embodiment, although the example of the 2 step | paragraph grinding | polishing using the 1st grinding | polishing apparatus 101 and the 2nd grinding | polishing apparatus 102 was given and demonstrated, these are 1 step | paragraphs. You may complete | finish by grinding | polishing. The number of times of polishing, time, and other various polishing conditions may be set in accordance with the application.
 次に、図7を用いて、図6に係る研磨装置100とは異なる研磨装置300による研磨工程について説明する。図7は、図6に係る研磨装置100とは異なる研磨装置300の一例を示した平面図である。 Next, with reference to FIG. 7, a polishing process by the polishing apparatus 300 different from the polishing apparatus 100 according to FIG. 6 will be described. FIG. 7 is a plan view showing an example of a polishing apparatus 300 different from the polishing apparatus 100 according to FIG.
 図7に係る研磨装置300は、吸着シート312と、円形研磨具314とを備える。研磨装置300は、千鳥状に配置された円形研磨具314を用いて、ガラス基板7を研磨する。なお、ガラス基板7は、例えば、2200mm(幅)×2600mm(長さ)以上のサイズのディスプレイ用のガラス基板7を研磨対象としてもよい。 7 includes an adsorption sheet 312 and a circular polishing tool 314. The polishing apparatus 300 polishes the glass substrate 7 using circular polishing tools 314 arranged in a staggered manner. For example, the glass substrate 7 for display having a size of 2200 mm (width) × 2600 mm (length) or more may be used for polishing.
 図7において、研磨対象のガラス基板7は、テーブル(不図示)に接着された吸着シート312にその研磨対象面と反対側の面が吸着保持され、図の矢印Xで示すように不図示の搬送装置によって連続的に搬送される。そして、搬送中に前記搬送路の上方に設置された研磨機の複数台の円形研磨具314、314…によって研磨対象面が、ディスプレイ用ガラス基板10で要求される平坦度に研磨される。 In FIG. 7, the glass substrate 7 to be polished is held on the suction sheet 312 adhered to a table (not shown) by suction and holding the surface opposite to the surface to be polished, as shown by an arrow X in the drawing. It is continuously transported by the transport device. During polishing, the surface to be polished is polished to the flatness required for the glass substrate 10 for display by a plurality of circular polishing tools 314, 314,... Of a polishing machine installed above the transfer path.
 同図に示すように、円形研磨具314、314…は、ガラス基板7の幅Wよりも小さい直径Dで構成され、自転/公転機構(不図示)によって所定の回転中心を中心に回転されるとともに、所定の公転中心を中心に公転されながらガラス基板7を研磨する。なお、図7において、実線で示した円は、円形研磨具314、314…の現在の姿勢を示しており、二点鎖線で示した多数の円は、ガラス基板7が研磨具314、314…と接触した部分のエッジ部が示されている。これらの円でも分かるように、研磨具314、314…は所定の公転中心を中心に公転される。 As shown in the figure, the circular polishing tools 314, 314,... Have a diameter D smaller than the width W of the glass substrate 7, and are rotated around a predetermined rotation center by a rotation / revolution mechanism (not shown). At the same time, the glass substrate 7 is polished while being revolved around a predetermined revolution center. In FIG. 7, circles indicated by solid lines indicate the current postures of the circular polishing tools 314, 314..., And many circles indicated by two-dot chain lines indicate that the glass substrate 7 has the polishing tools 314, 314. The edge part of the part which contacted with is shown. As can be seen from these circles, the polishing tools 314, 314,... Are revolved around a predetermined revolution center.
 また、円形研磨具314、314…はガラス基板7の移動中心線Lを基準として対を成して配置されるとともに、移動方向に位置をずらした千鳥状に配置され、円形研磨具314、314…が移動中心線Lを越えてガラス基板7を研磨するように配置される。 Further, the circular polishing tools 314, 314,... Are arranged in pairs with the movement center line L of the glass substrate 7 as a reference, and are arranged in a staggered manner with their positions shifted in the movement direction. Are disposed so as to polish the glass substrate 7 beyond the moving center line L.
 このように構成された研磨装置300によれば、1台の大型研磨具を使用するのではなく、ガラス基板7の幅Wよりも直径Dが小さい小型の円形研磨具314を複数台揃え、これらの円形研磨具314、314…をガラス基板7の移動中心線Lを基準として左右に対を成して配置し、円形研磨具314、314…が中心線Lを越えてガラス基板Gを研磨することにより、ガラス基板7全面を研磨することができる。一例として、ガラス基板7の幅が2200mmのとき、円形研磨具314のサイズはφ1290mm、公転半径は75mm、公転中心は、移動中心線Lから直交方向に左右に600mm離れた位置に設定することができる。 According to the polishing apparatus 300 configured in this way, instead of using one large polishing tool, a plurality of small circular polishing tools 314 having a diameter D smaller than the width W of the glass substrate 7 are arranged. Are arranged in pairs on the left and right with respect to the movement center line L of the glass substrate 7, and the circular polishing tools 314, 314... Polish the glass substrate G beyond the center line L. As a result, the entire surface of the glass substrate 7 can be polished. As an example, when the width of the glass substrate 7 is 2200 mm, the size of the circular polishing tool 314 is φ1290 mm, the revolution radius is 75 mm, and the revolution center is set at a position 600 mm away from the moving center line L in the right and left directions. it can.
 図7に係る研磨装置300によれば、円形研磨具314は小型小径化するので、円形研磨具314の素材確保、加工組立精度の維持、交換作業及び取り扱い等の問題は解消できる。更に、円形研磨具314、314…は、ガラス基板7の移動方向に沿って少なくとも千鳥状に2対配置されているので、板状体を均等に精度よく研磨することができる。 7, since the circular polishing tool 314 is reduced in size and diameter, problems such as securing the material of the circular polishing tool 314, maintaining processing and assembly accuracy, replacement work, and handling can be solved. Further, since the circular polishing tools 314, 314... Are arranged in at least two staggered patterns along the moving direction of the glass substrate 7, the plate-like body can be polished evenly and accurately.
 このように、研磨工程は、図7に示すように、円形研磨具314を千鳥配置した研磨装置300を用いて行うようにしてもよい。図7に係る研磨装置300を用いて研磨工程を行う際、上述のコロイダルシリカを砥粒とする粒径が平均80nm以下のスラリを供給することにより、表面の凹み形状13、14の深さが10nm未満の領域を含むディスプレイ用ガラス基板10を製造することができる。また、粒径の平均が、50nm以下、40nm以下、又は20nm以下の砥粒を含むスラリを用いてよいことも、図6における説明と同様である。その他の詳細内容も図6における説明と同様であるので、その説明を省略する。 As described above, the polishing step may be performed using a polishing apparatus 300 in which circular polishing tools 314 are arranged in a staggered manner as shown in FIG. When performing a polishing process using the polishing apparatus 300 according to FIG. 7, by supplying a slurry having an average particle size of 80 nm or less using the above-mentioned colloidal silica as abrasive grains, the depth of the concave shapes 13 and 14 on the surface can be reduced. The glass substrate 10 for a display containing the area | region less than 10 nm can be manufactured. Similarly to the description in FIG. 6, a slurry containing abrasive grains having an average particle size of 50 nm or less, 40 nm or less, or 20 nm or less may be used. The other detailed contents are the same as those in FIG.
 図6及び図7において説明したように、本実施形態に係るディスプレイ用ガラス基板10の製造方法においては、種々の研磨方法により研磨工程を行うことができる。その際、粒径が平均80nm以下の砥粒を含むスラリを用いて研磨を行うことにより、研磨面の凹み形状13、14の深さが10nm未満の領域を含むディスプレイ用ガラス基板10を製造することができる。そして、研磨面を成膜面11とし、凹み形状13、14の深さが10nm未満の領域が成膜面11の全体面積の20%以上の面積の中央領域12をカバーするようにディスプレイパネルを構成すれば、強度の高いディスプレイパネルとすることができる。 As described with reference to FIGS. 6 and 7, in the method for manufacturing the glass substrate for display 10 according to the present embodiment, the polishing step can be performed by various polishing methods. At that time, the glass substrate 10 for display including the area | region where the depth of the recessed shape 13 and 14 of a grinding | polishing surface is less than 10 nm is manufactured by grind | polishing using the slurry containing an abrasive grain with an average particle diameter of 80 nm or less. be able to. Then, the display panel is arranged so that the polishing surface is the film formation surface 11 and the region where the depth of the recessed shapes 13 and 14 is less than 10 nm covers the central region 12 having an area of 20% or more of the entire area of the film formation surface 11. If comprised, it can be set as a display panel with high intensity | strength.
 また、本実施形態に係るディスプレイ用ガラス基板10の製造方法においては、液晶パネル50を製造する前のガラス基板7に本製造工程を適用することができる。粒径80nm以下の砥粒を用いることにより、ガラス基板7の大部分の領域について、凹み形状13、14の深さを10nm未満にしたディスプレイ用ガラス基板10を製造することができる。その後、ディスプレイ用ガラス基板10が、強度試験用の5cm×5cmの液晶パネル50用のカラーフィルタ側ガラス基板15として切断された場合にも、元々の大型のディスプレイ用ガラス基板10が、深さ10nm未満の凹み形状13、14しか含んでいない部分が大半であるので、中央領域12で深さ10nm未満の凹み形状13、14しか含まないものを容易に形成することができる。 Further, in the method for manufacturing the display glass substrate 10 according to the present embodiment, the manufacturing process can be applied to the glass substrate 7 before the liquid crystal panel 50 is manufactured. By using abrasive grains having a particle size of 80 nm or less, it is possible to manufacture the glass substrate 10 for display in which the depth of the recessed shapes 13 and 14 is less than 10 nm in most regions of the glass substrate 7. Thereafter, even when the glass substrate for display 10 is cut as the color filter side glass substrate 15 for the 5 cm × 5 cm liquid crystal panel 50 for strength test, the original large-sized glass substrate for display 10 has a depth of 10 nm. Most of the portions include only the recessed shapes 13 and 14 having a depth less than 10 nm, and therefore, the central region 12 including only the recessed shapes 13 and 14 having a depth of less than 10 nm can be easily formed.
 実施例1においては、実施形態1に係るディスプレイ用ガラス基板10の製造方法を実施した結果について説明する。 In Example 1, the results of carrying out the method for manufacturing the display glass substrate 10 according to Embodiment 1 will be described.
 図8は、実施形態1に係るディスプレイ用ガラス基板10の製造方法により製造されたディスプレイ用ガラス基板10の成膜面11を示した図である。なお、成膜面11は、液晶ディスプレイの液晶パネル50の内側を向いた面でもある。 FIG. 8 is a view showing a film forming surface 11 of the display glass substrate 10 manufactured by the method for manufacturing the display glass substrate 10 according to the first embodiment. The film formation surface 11 is also a surface facing the inside of the liquid crystal panel 50 of the liquid crystal display.
 図8(a)は、実施例1に係るディスプレイ用ガラス基板10の成膜面11、つまり研磨面の拡大図である。なお、拡大倍率は、図3(a)と同様としている。図8(a)において、図3(a)においては線状で表れていた凹み形状13、14が、図8(a)においては存在しないことが分かる。このように、実施形態1に係るディスプレイ用ガラス基板10の製造方法は、凹み形状13、14を大幅に減少させる平坦度を実現できることが分かる。 FIG. 8A is an enlarged view of the film-forming surface 11 of the display glass substrate 10 according to the first embodiment, that is, the polished surface. The enlargement magnification is the same as that shown in FIG. In FIG. 8A, it can be seen that the recessed shapes 13 and 14 that are linear in FIG. 3A do not exist in FIG. 8A. Thus, it turns out that the manufacturing method of the glass substrate 10 for a display which concerns on Embodiment 1 can implement | achieve the flatness which reduces the dent shapes 13 and 14 significantly.
 図8(b)は、図8(a)に対応する拡大断面図である。このように、ディスプレイ用ガラス基板10の成膜面11が全体的に平坦であり、凹み形状13、14が存在しない。よって、中央領域においても、当然に凹み形状13、14は存在しない状態となっている。
 次に、図9及び図10を用いて、実施形態1に係るディスプレイ用ガラス基板10の製造方法により製造されたディスプレイ用ガラス基板10の成膜面11にクロム膜を形成して強度試験を行った結果について説明する。
FIG. 8B is an enlarged cross-sectional view corresponding to FIG. Thus, the film-forming surface 11 of the glass substrate 10 for a display is entirely flat, and the recessed shapes 13 and 14 do not exist. Therefore, naturally, in the central region, the recessed shapes 13 and 14 are not present.
Next, using FIG. 9 and FIG. 10, a chromium film is formed on the film formation surface 11 of the display glass substrate 10 manufactured by the method for manufacturing the display glass substrate 10 according to Embodiment 1, and a strength test is performed. The results will be described.
 図9は、強度試験の方法を説明するための図である。図9において、受け治具61の上に、液晶パネル50のサンプル500が設置されている。液晶パネル50の強度試験においては、5cm角の液晶パネル50のサンプル500を用いて、強度試験を行う。よって、実際に液晶ディスプレイに用いる液晶パネル50とは、サイズが異なっている場合がある。また、液晶パネル状態ではなく、ディスプレイ用ガラス基板10から5cm角に切り出した単板にて試験する場合もある。サンプル500の上方から、加圧治具60を用いて、サンプル500の中央領域を加圧する。なお、このときの加圧面は、液晶ディスプレイの液晶パネル50の外側を向いた面となる。図2において説明した強度試験と、同様の試験方法を採用している。 FIG. 9 is a diagram for explaining the strength test method. In FIG. 9, a sample 500 of the liquid crystal panel 50 is installed on the receiving jig 61. In the strength test of the liquid crystal panel 50, the strength test is performed using a sample 500 of the 5 cm square liquid crystal panel 50. Therefore, the size may differ from the liquid crystal panel 50 actually used for the liquid crystal display. Moreover, it may test not with a liquid crystal panel state but with the single plate cut out to 5 cm square from the glass substrate 10 for a display. The center region of the sample 500 is pressurized from above the sample 500 using the pressing jig 60. Note that the pressure surface at this time is a surface facing the outside of the liquid crystal panel 50 of the liquid crystal display. The same test method as the strength test described in FIG. 2 is adopted.
 図10は、クロム膜を形成したディスプレイ用ガラス基板の強度試験結果を示した図である。図10において、ディスプレイ用ガラス基板10の表面の凹み形状の深さの相違による、強度を比較した図である。図10において、横軸は加圧治具60による加圧力〔kgf〕、縦軸は累積破壊確率(Cumulative Failure Probability)〔%〕を示している。 FIG. 10 is a diagram showing the strength test results of a glass substrate for display on which a chromium film is formed. In FIG. 10, it is the figure which compared the intensity | strength by the difference in the depth of the dent shape of the surface of the glass substrate 10 for a display. In FIG. 10, the horizontal axis represents the pressure applied by the pressing jig 60 [kgf], and the vertical axis represents the cumulative failure probability (CumulativemulFailure Probability) [%].
 曲線Cが、従来の、酸化セリウムを砥粒として研磨工程を行い、ディスプレイ用ガラス基板10を製造した場合の結果である。この場合、ディスプレイ用ガラス基板10の成膜面11となる研磨面は、15nm以上の凹み形状13、14が発生した。そして、最も弱い強度を示した。 Curve C is the result when the conventional glass substrate 10 for display is manufactured by performing a polishing process using cerium oxide as an abrasive grain. In this case, on the polishing surface serving as the film formation surface 11 of the glass substrate 10 for display, concave shapes 13 and 14 of 15 nm or more occurred. And it showed the weakest strength.
 曲線Bが、実施形態1に係るディスプレイ用ガラス基板10の製造方法により製造されたディスプレイ用ガラス基板10の強度試験結果である。スラリは、砥粒の平均粒径が80nmのコロイダルシリカを用いた。この場合、ディスプレイ用ガラス基板10の成膜面11は、凹み形状13、14の深さが10nm未満となり、強度は従来品と比較して著しく改善された。これにより、殆どの場合で強度試験の基準をクリアできるディスプレイ用ガラス基板10を提供できるようになった。 Curve B is the strength test result of the display glass substrate 10 manufactured by the method for manufacturing the display glass substrate 10 according to the first embodiment. As the slurry, colloidal silica having an average grain size of 80 nm was used. In this case, on the film-forming surface 11 of the glass substrate 10 for display, the depth of the recessed shapes 13 and 14 was less than 10 nm, and the strength was remarkably improved as compared with the conventional product. As a result, it has become possible to provide the glass substrate for display 10 that can clear the standard of the strength test in most cases.
 曲線Aは、比較例として、平坦度を重視する他の製造方法を用いて、ディスプレイ用ガラス基板を、成膜面の凹み形状が5nmとなるように製造したディスプレイ用ガラス基板の強度試験結果を示している。曲線Aは、ディスプレイ用ガラス基板に要求される他の要素は無視し、平坦度を重視する製造方法を用いて、凹み形状が5nm以下のディスプレイ用ガラス基板を実現している。実際のディスプレイ用ガラス基板では、強度試験以外にもクリアすべき条件が種々あり、全体として品質の高いディスプレイ用ガラス基板を提供することが重要であるので、表面の平坦度のみを重視するのは、必ずしも得策とは言えない場合も多い。しかしながら、凹み形状が、5nm以下になると、ディスプレイ用ガラス基板の強度が更に改善されていることが分かる。実施形態1に係るディスプレイ用ガラス基板10の製造方法においても、更に砥粒の種類や他の条件を工夫することにより、凹み形状の深さを5nm以下とし、更に強度が高いディスプレイ用ガラス基板10とすることが可能なことが分かる。 Curve A shows, as a comparative example, the strength test result of a display glass substrate manufactured by using another manufacturing method that places importance on flatness so that the dent shape of the film formation surface is 5 nm. Show. The curve A ignores other elements required for the glass substrate for display, and realizes a glass substrate for display having a dent shape of 5 nm or less by using a manufacturing method that places importance on flatness. In actual display glass substrates, there are various conditions that must be cleared in addition to the strength test, and it is important to provide a high-quality display glass substrate as a whole. Often, this is not always a good idea. However, it can be seen that when the recess shape is 5 nm or less, the strength of the glass substrate for display is further improved. Also in the manufacturing method of the glass substrate 10 for display which concerns on Embodiment 1, the depth of a dent shape shall be 5 nm or less and the intensity | strength is further high by devising the kind of abrasive grain and other conditions. It can be seen that it is possible.
 このように、ディスプレイ用ガラス基板10の成膜面11の凹み形状13、14の深さを10nm未満とすることにより、液晶パネル50の強度を高めることができ、強度試験の要求を十分満たすことができる。ここで、ディスプレイ用ガラス基板10の厚さをt〔mm〕としたときに、平均破壊荷重が(1)式を満たしたときに、十分な基板強度のディスプレイ用ガラス基板10が得られることが確かめられている。 Thus, the intensity | strength of the liquid crystal panel 50 can be raised by fully making the depth of the recessed shape 13 and 14 of the film-forming surface 11 of the glass substrate 10 for a display less than 10 nm, and the request | requirement of an intensity | strength test is fully satisfied. Can do. Here, when the thickness of the display glass substrate 10 is t [mm], the display glass substrate 10 having sufficient substrate strength can be obtained when the average breaking load satisfies the equation (1). It has been confirmed.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 なお、実施形態1においては、ディスプレイ用ガラス基板10を、液晶パネル50のカラーフィルタ側ガラス15に適用する例を挙げて説明したが、TFT側ガラス16や、有機ELパネルのガラス基板やキャップガラス、プラズマディスプレイパネル用のディスプレイ用ガラス基板10にも、同様に適用することができる。次に説明する実施形態2においては、ディスプレイ用ガラス基板10を、有機ELパネルのキャップガラス又はガラス基板に用いた例について説明する。 In the first embodiment, the example in which the display glass substrate 10 is applied to the color filter side glass 15 of the liquid crystal panel 50 has been described. However, the TFT side glass 16, the glass substrate of the organic EL panel, and the cap glass are described. The present invention can be similarly applied to the glass substrate 10 for a plasma display panel. In Embodiment 2 to be described next, an example in which the display glass substrate 10 is used as a cap glass or a glass substrate of an organic EL panel will be described.
 図11は、本発明の実施形態2に係るディスプレイ用ガラス基板を用いたトップエミッション方式の有機ELパネル51の断面構成の一例を示した図である。実施形態2においては、有機ELディスプレイの有機ELパネル51に本発明のディスプレイ用ガラス基板を用いた例について説明する。 FIG. 11 is a diagram showing an example of a cross-sectional configuration of a top emission type organic EL panel 51 using a glass substrate for display according to Embodiment 2 of the present invention. Embodiment 2 demonstrates the example which used the glass substrate for a display of this invention for the organic electroluminescent panel 51 of an organic electroluminescent display.
 図11において、有機ELパネル51は、ガラス基板として、キャップガラス17と、有機ELガラス基板18と、ITO(透明電極)210と、有機発光ダイオード23と、アノード25と、TFT基板41と、シール31とを備える。図11においては、トップエミッション方式の有機ELパネル51が示されており、キャップガラス17側から光を取り出す構成となっている。 In FIG. 11, an organic EL panel 51 includes a cap glass 17, an organic EL glass substrate 18, an ITO (transparent electrode) 210, an organic light emitting diode 23, an anode 25, a TFT substrate 41, a seal as a glass substrate. 31. In FIG. 11, a top emission type organic EL panel 51 is shown, which is configured to extract light from the cap glass 17 side.
 有機ELパネル51は、キャップガラス17と、有機ELガラス基板18とが対向配置され、有機ELガラス基板18上に、薄膜トランジスタが形成されたTFT基板41が形成された構成を有する。TFT基板41上には、アノード25、有機発光ダイオード23及び透明電極210が積層されて形成される。そして、キャップガラス17と透明電極210との間には、空隙が設けられる。また、図11には、キャップガラス17と有機ELガラス基板18との間を封止するシール31が両端部に示されているが、図11に示した素子構造は、1画素分であり、実際は、図11に示した構成が画素数分平面的に設けられる。そして、画面を構成する画素数分を囲むように、周縁部にシール31は設けられる。図11においては、紙面の都合上、1画素分の素子構造に、シール31も含めて示している。 The organic EL panel 51 has a configuration in which a cap glass 17 and an organic EL glass substrate 18 are disposed to face each other, and a TFT substrate 41 in which a thin film transistor is formed is formed on the organic EL glass substrate 18. On the TFT substrate 41, the anode 25, the organic light emitting diode 23, and the transparent electrode 210 are laminated. A gap is provided between the cap glass 17 and the transparent electrode 210. Further, in FIG. 11, seals 31 for sealing between the cap glass 17 and the organic EL glass substrate 18 are shown at both ends, but the element structure shown in FIG. 11 is for one pixel, In practice, the configuration shown in FIG. And the seal | sticker 31 is provided in a peripheral part so that the pixel number which comprises a screen may be enclosed. In FIG. 11, the element structure for one pixel is shown including the seal 31 for the sake of space.
 かかる構成のトップエミッション方式の有機ELパネル51においても、強度試験が行われる。試験の方法は、実施形態1の図2、9において説明したのと同様に、表示面であるキャップガラス17の外側の面から、加圧治具60により、キャップガラス17に応力が印加される。そして、有機ELパネル51が破壊に至るか否かが試験される。かかる試験は、複数回行われ、有機ELパネル51が破壊に至った荷重が破壊荷重として記録される。そして、複数の破壊荷重の平均を算出したものが、平均破壊荷重として示される。 The strength test is also performed on the organic EL panel 51 of the top emission method having such a configuration. In the test method, as described with reference to FIGS. 2 and 9 of the first embodiment, stress is applied to the cap glass 17 by the pressing jig 60 from the outer surface of the cap glass 17 that is the display surface. . Then, it is tested whether or not the organic EL panel 51 is destroyed. Such a test is performed a plurality of times, and a load at which the organic EL panel 51 is broken is recorded as a breaking load. And what calculated the average of several destruction load is shown as an average destruction load.
 ここで、実施例1において説明した液晶パネル50の強度試験の場合には、カラーフィルタ側ガラス基板15にクロム膜が成膜されていたが、有機ELパネル51のキャップガラス17には、何ら成膜はなされていない点が、液晶パネル50の強度試験と異なっている。つまり、クロム膜のように、キャップガラス17の強度を弱める要因は存在せず、純粋なキャップガラス17の強度が試験されることになる。ここで、キャップガラス17の厚さをt〔mm〕としたときに、平均破壊荷重が(1)式を満たしたときに、十分な基板強度のキャップガラス17が得られることが確かめられている。 Here, in the case of the strength test of the liquid crystal panel 50 described in the first embodiment, a chrome film is formed on the color filter side glass substrate 15, but nothing is formed on the cap glass 17 of the organic EL panel 51. This is different from the strength test of the liquid crystal panel 50 in that no film is formed. That is, there is no factor that weakens the strength of the cap glass 17 unlike the chromium film, and the strength of the pure cap glass 17 is tested. Here, when the thickness of the cap glass 17 is t [mm], it is confirmed that the cap glass 17 having sufficient substrate strength can be obtained when the average breaking load satisfies the equation (1). .
 よって、実施形態2に係るディスプレイ用ガラス基板においては、キャップガラス17として用いられるディスプレイ用ガラス基板が、(1)式を満たすように構成される。 Therefore, in the glass substrate for display according to the second embodiment, the glass substrate for display used as the cap glass 17 is configured to satisfy the expression (1).
 ここで、強度試験においては、有機ELパネル51の表示面側から応力が印加されるので、図11におけるキャップガラス17の上方から加圧されることになる。よって、クラックは、キャップガラス17の内側面が最も発生し易くなるので、キャップガラス17の内側面の凹凸を低減させることにより、キャップガラス17の強度を高めることができる。 Here, in the strength test, since stress is applied from the display surface side of the organic EL panel 51, pressure is applied from above the cap glass 17 in FIG. Therefore, since the crack is most easily generated on the inner surface of the cap glass 17, the strength of the cap glass 17 can be increased by reducing the unevenness on the inner surface of the cap glass 17.
 よって、実施形態2に係るディスプレイ用ガラス基板においては、有機ELパネル51の内側を向いたキャップガラス17の面について、全体面積の20%の中央領域において、凹み形状の深さが10nm未満になるように構成し、(1)式に示した基板強度を実現する。なお、実施形態2に係るディスプレイ用ガラス基板の具体的構成及び製造方法は、実施形態1において説明した内容と同様であるので、その具体的な説明は省略する。 Therefore, in the glass substrate for display according to the second embodiment, the depth of the recessed shape is less than 10 nm in the central region of 20% of the entire area of the surface of the cap glass 17 facing the inside of the organic EL panel 51. The substrate strength shown in the equation (1) is realized. In addition, since the specific structure and manufacturing method of the glass substrate for a display which concern on Embodiment 2 are the same as the content demonstrated in Embodiment 1, the specific description is abbreviate | omitted.
 このように、実施形態2に係るディスプレイ用ガラス基板によれば、ディスプレイ用ガラス基板がトップエミッション方式の有機ELパネルに用いられた場合にも、強度試験において十分な試験結果を得ることが可能となる。 As described above, according to the glass substrate for display according to the second embodiment, it is possible to obtain sufficient test results in the strength test even when the glass substrate for display is used in a top emission type organic EL panel. Become.
 図12は、本発明の実施形態3に係るディスプレイ用ガラス基板を用いたボトムエミッション方式の有機ELパネル52の断面構成の一例を示した図である。実施形態3に係る有機ELパネル52は、有機ELガラス基板18a側から光を取り出すボトムエミッション方式の有機ELパネル52である点で、実施形態2に係る有機ELパネル51と異なっている。 FIG. 12 is a diagram showing an example of a cross-sectional configuration of a bottom emission type organic EL panel 52 using a glass substrate for display according to Embodiment 3 of the present invention. The organic EL panel 52 according to the third embodiment is different from the organic EL panel 51 according to the second embodiment in that it is a bottom emission type organic EL panel 52 that extracts light from the organic EL glass substrate 18a side.
 実施形態3に係る有機ELパネル52は、キャップガラス17aと、有機ELガラス基板18aと、TFT基板42と、透明電極220と、有機発光ダイオード24と、アノード26と、シール32とを備える。実施形態3に係る有機EL52は、キャップガラス17aと有機ELガラス基板18aが対向し、その間にTFT基板42、透明電極220、有機発光ダイオード24及びアノード26が設けられており、側面がシール32で封止されている点は実施形態2に係る有機ELパネル51と同様であるが、それらの形状及び配置が異なっている。具体的には、TFT基板42は、中央部に開口が形成され、TFT基板42の下側から光を取り出す構成となっている。また、光の出力方向の向きが実施形態2に係るトップエミッション方式の有機ELパネルと逆になったことに伴い、透明電極220、有機発光ダイオード24及びアノード26の積層順序が逆となっている。つまり、TFT基板42の上に、TFT基板42の開口部を覆うように透明電極220、有機発光ダイオード24及びアノード26が順次下から積層されている。かかる構成により、下方の有機ELガラス基板18a側から光を取り出すことができる。 The organic EL panel 52 according to Embodiment 3 includes a cap glass 17a, an organic EL glass substrate 18a, a TFT substrate 42, a transparent electrode 220, an organic light emitting diode 24, an anode 26, and a seal 32. In the organic EL 52 according to the third embodiment, the cap glass 17a and the organic EL glass substrate 18a are opposed to each other, and the TFT substrate 42, the transparent electrode 220, the organic light emitting diode 24, and the anode 26 are provided therebetween. The sealed point is the same as that of the organic EL panel 51 according to Embodiment 2, but the shape and arrangement thereof are different. Specifically, the TFT substrate 42 has an opening formed at the center, and is configured to extract light from the lower side of the TFT substrate 42. Further, as the direction of the light output direction is reversed from that of the top emission type organic EL panel according to the second embodiment, the stacking order of the transparent electrode 220, the organic light emitting diode 24, and the anode 26 is reversed. . That is, on the TFT substrate 42, the transparent electrode 220, the organic light emitting diode 24, and the anode 26 are sequentially stacked from below so as to cover the opening of the TFT substrate 42. With this configuration, light can be extracted from the lower organic EL glass substrate 18a side.
 ここで、実施形態3に係る有機ELパネル52においては、表示面が有機ELガラス基板18aとなるので、強度試験は、有機ELガラス基板18aの外側、つまり下面側から圧力が印加されることになる。この場合、有機ELガラス基板18aが上述の(1)式の平均破壊強度を満たす場合に、強度試験において十分なガラス基板強度を達成できることになる。よって、実施形態3のように、ボトムエミッション方式の有機ELパネルにディスプレイ用ガラス基板を用いる場合には、表示面側であるTFT基板42が形成された有機ELガラス基板18aが(1)式を満たすようにディスプレイ用ガラス基板を構成する。 Here, in the organic EL panel 52 according to the third embodiment, since the display surface is the organic EL glass substrate 18a, the strength test is performed by applying pressure from the outside of the organic EL glass substrate 18a, that is, the lower surface side. Become. In this case, when the organic EL glass substrate 18a satisfies the average fracture strength of the above-described formula (1), sufficient glass substrate strength can be achieved in the strength test. Therefore, as in Embodiment 3, when a display glass substrate is used for a bottom emission type organic EL panel, the organic EL glass substrate 18a on which the TFT substrate 42 on the display surface side is formed has the formula (1). A glass substrate for display is constructed so as to satisfy.
 このとき、実施形態2と同様に、有機ELパネル52の内側を向いた有機ELガラス基板18aの内側面に応力が最も加わるので、有機ELガラス基板18aの内側面について、全体面積の20%以上の面積を有する中央領域で、凹み形状の深さが10nm未満となるように、ディスプレイ用ガラス基板を構成する。なお、有機ELガラス基板18aの内面上には、TFT基板42が成膜されて形成された構成となっているが、TFT基板42はクロム膜で構成されている訳ではないので、有機ELガラス基板18aの破壊を助長する作用は無く、トップエミッション方式と同様に、(1)式をそのまま適用することができる。 At this time, as in the second embodiment, stress is most applied to the inner surface of the organic EL glass substrate 18a facing the inside of the organic EL panel 52, so that the inner surface of the organic EL glass substrate 18a is 20% or more of the entire area. The glass substrate for display is configured so that the depth of the dent shape is less than 10 nm in the central region having the area of. The TFT substrate 42 is formed on the inner surface of the organic EL glass substrate 18a. However, since the TFT substrate 42 is not composed of a chromium film, the organic EL glass There is no effect of promoting the destruction of the substrate 18a, and the equation (1) can be applied as it is, as in the top emission method.
 なお、図12においても、図11と同様に、1画素分のみが示されているため、シール32は、本来的には、もっと外側の有機ELパネル52の周縁部に存在する点は、実施形態2と同様である。また、図12においては、加圧治具60により、下面側から圧力が印加された例が示されているが、実際の強度試験では、有機ELガラス基板18aが上側に、キャップガラス17aが下側に来るように配置され、上側から有機ELガラス基板18aの外側面に圧力が印加されて強度試験が行われる。 In FIG. 12, only one pixel is shown as in FIG. 11, and therefore the seal 32 is inherently present at the periphery of the outer organic EL panel 52. This is the same as in the second mode. Further, FIG. 12 shows an example in which pressure is applied from the lower surface side by the pressing jig 60. However, in an actual strength test, the organic EL glass substrate 18a is on the upper side and the cap glass 17a is on the lower side. The strength test is performed by applying pressure to the outer surface of the organic EL glass substrate 18a from the upper side.
 なお、実施形態3に係るディスレプレイ用ガラス基板のより具体的な構成及び製造方法は、実施形態1において説明したディスプレイ用ガラス基板と同様であるので、その詳細な説明は省略する。 In addition, since the more specific structure and manufacturing method of the glass substrate for display concerning Embodiment 3 are the same as that of the glass substrate for displays demonstrated in Embodiment 1, the detailed description is abbreviate | omitted.
 実施例2においては、実施形態2、3において説明したように、有機ELディスプレイの有機ELパネルの表示面側に本実施形態に係るディスプレイ用ガラス基板が用いられる場合を想定して、ディスプレイ用ガラス基板自体の強度試験を行った。強度試験の方法は、実施例1の図9と同様であるが、ディスプレイ用ガラス基板は、成膜等がされていないガラス基板のみの状態である。 In Example 2, as described in Embodiments 2 and 3, the display glass is assumed on the assumption that the display glass substrate according to this embodiment is used on the display surface side of the organic EL panel of the organic EL display. The strength test of the substrate itself was performed. The strength test method is the same as in FIG. 9 of Example 1, but the glass substrate for display is in a state of only a glass substrate on which no film is formed.
 強度試験の条件としては、板厚0.5〔mm〕のディスプレイ用ガラス基板に、1.0mm/minの下降速度で加えた。ここで、下降速度とは、加圧治具60の下降速度を示している。 As a condition of the strength test, it was added to a glass substrate for display having a thickness of 0.5 [mm] at a descending speed of 1.0 mm / min. Here, the descending speed indicates the descending speed of the pressurizing jig 60.
 従来から行われている酸化セレンの砥粒を含むスラリを用いて研磨し、従来のディスプレイ用ガラス基板の強度試験の測定を行った。その結果、従来のディスプレイ用ガラス基板は、(1)式を満たすことができなかった。 Polishing was performed using a slurry containing selenium oxide abrasive grains, which was conventionally performed, and the strength test of a conventional glass substrate for display was performed. As a result, the conventional display glass substrate could not satisfy the formula (1).
 一方、平均粒径80〔nm〕のコロイダルシリカの砥粒を含むスラリを用いて研磨し、本実施形態に係るディスプレイ用ガラス基板の強度試験の測定を行った。その結果、従来のディスプレイ用ガラス基板と比較すると、格段に平均破壊荷重が向上しており、(1)式を安定的に満たしていた。 Meanwhile, polishing was performed using a slurry containing colloidal silica abrasive grains having an average particle size of 80 [nm], and the strength test of the display glass substrate according to the present embodiment was performed. As a result, the average breaking load was remarkably improved as compared with the conventional glass substrate for display, and the formula (1) was stably satisfied.
 平均粒径20〔nm〕のコロイダルシリカの砥粒を含むスラリを用いて研磨し、本実施形態に係るディスプレイ用ガラス基板の強度試験の測定を行った。その結果、従来のディスプレイ用ガラス基板と比較して、格段に平均破壊荷重が向上していた。さらに、平均粒径80〔nm〕のコロイダルシリカの砥粒を含むスラリを用いて研磨した、本実施形態に係るディスプレイ用ガラス基板と比較しても、平均破壊荷重が向上しており、(1)式をより安定的に満たすことができるようになった。 Polishing was performed using a slurry containing colloidal silica abrasive grains having an average particle diameter of 20 [nm], and the strength test of the display glass substrate according to the present embodiment was performed. As a result, the average breaking load was remarkably improved as compared with the conventional glass substrate for display. Further, even when compared with the display glass substrate according to the present embodiment, which is polished using a slurry containing colloidal silica abrasive grains having an average particle size of 80 [nm], the average breaking load is improved (1 ) Can be satisfied more stably.
 このように、実施例2に示したように、本実施形態に係るディスプレイ用ガラス基板は、従来のディスプレイ用ガラス基板と比較して、格段に高い基板強度を有し、何ら成膜等されていないディスプレイ用ガラス基板に直接強度試験を行った場合であっても、良好な試験結果を得ることができることが分かる。 Thus, as shown in Example 2, the display glass substrate according to the present embodiment has much higher substrate strength than the conventional display glass substrate, and is not formed at all. It can be seen that good test results can be obtained even when a strength test is directly performed on a non-display glass substrate.
 なお、実施形態1においては、液晶パネル50の強度試験に対応する内容を中心に説明し、実施形態2、3においては、有機ELパネル51、52の強度試験に対応する内容を中心に説明したが、本発明は、強度試験と必ずしも関係無く、ディスプレイ用ガラス基板10の平坦度を高める種々の要請に対して、十分に対応することができ、またそのような用途にも利用することができる。 In the first embodiment, the content corresponding to the strength test of the liquid crystal panel 50 will be mainly described. In the second and third embodiments, the content corresponding to the strength test of the organic EL panels 51 and 52 will be mainly described. However, the present invention is not necessarily related to the strength test, and can sufficiently respond to various demands for increasing the flatness of the glass substrate 10 for display, and can also be used for such applications. .
 以上、本発明の好ましい実施形態について詳説したが、本発明は、上述した実施形態に制限されることはなく、上述した実施形態に種々の変形及び置換を加えることができる。 The preferred embodiments of the present invention have been described in detail above, but the present invention is not limited to the above-described embodiments, and various modifications and substitutions can be added to the above-described embodiments.
 本出願を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2009年10月26日出願の日本特許出願(特願2009-245939)に基づくものであり、その内容はここに参照として取り込まれる。
Although this application has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on a Japanese patent application filed on October 26, 2009 (Japanese Patent Application No. 2009-245939), the contents of which are incorporated herein by reference.
 本発明は、液晶パネル、有機ELパネル、プラズマディスプレイパネル等のフラットパネルディスプレイの平板表示パネルに利用することができる。 The present invention can be used for flat display panels of flat panel displays such as liquid crystal panels, organic EL panels, and plasma display panels.
 5…ガラス原料
 6…溶融ガラス
 7…ガラス基板
 10…ディスプレイ用ガラス基板
 11…成膜面
 12…中央領域
 13、14…凹み形状
 15…カラーフィルタ側ガラス基板
 16…TFT側ガラス
 17、17a…キャップガラス
 18、18a…有機ELガラス基板
 20…ブラックマトリックス
 210、220…透明電極
 23、24…有機発光ダイオード
 25、26…アノード
 30…カラーフィルタ
 40…アモルファスシリコン膜
 41、42…TFT基板
 50…液晶パネル
 51、52…有機ELパネル
 60…加圧治具
 61…受け治具
 70…保護層
 80…フロートガラス製造設備
 81…溶融窯
 82…フロートバス
 83…ガス供給口
 84、88…ヒータ
 86…引出ロール
 87…徐冷窯
 90…溶融スズ
 100、101、102、300…研磨装置
 114…膜枠
 116、122…ステージ
 118、120…研磨ステージ
 130、131…スラリ供給孔
 150…研磨ヘッド
 152…キャリア
 156…スピンドル
 158、160…研磨パッド
 202…エア供給路
 204…バルブ
 206…エアポンプ
 250、252、254…搬送装置
 256…昇降機構
 258…スライダ
 270…ガイドレール
 312…吸着シート
 314…円形研磨具
DESCRIPTION OF SYMBOLS 5 ... Glass raw material 6 ... Molten glass 7 ... Glass substrate 10 ... Display glass substrate 11 ... Film-forming surface 12 ... Central area | region 13, 14 ... Recessed shape 15 ... Color filter side glass substrate 16 ... TFT side glass 17, 17a ... Cap Glass 18, 18a ... Organic EL glass substrate 20 ... Black matrix 210, 220 ... Transparent electrode 23, 24 ... Organic light emitting diode 25, 26 ... Anode 30 ... Color filter 40 ... Amorphous silicon film 41, 42 ... TFT substrate 50 ... Liquid crystal panel 51, 52 ... Organic EL panel 60 ... Pressure jig 61 ... Receiving jig 70 ... Protective layer 80 ... Float glass manufacturing equipment 81 ... Melting kiln 82 ... Float bath 83 ... Gas supply port 84, 88 ... Heater 86 ... Draw roll 87 ... Slow cooling furnace 90 ... Molten tin 100, 101, 102, 300 ... Polishing device 114 ... Film frame 116, 122 ... Stage 118, 120 ... Polishing stage 130, 131 ... Slurry supply hole 150 ... Polishing head 152 ... Carrier 156 ... Spindle 158, 160 ... Polishing pad 202 ... Air supply path 204 ... Valve 206 ... Air pump 250, 252, 254 ... Conveying device 256 ... Elevating mechanism 258 ... Slider 270 ... Guide rail 312 ... Suction sheet 314 ... Circular polishing tool

Claims (13)

  1.  フラットパネルディスプレイの表示面側のガラス基板であって、
     前記フラットパネルディスプレイの内側を向いた面の全体面積の20%以上の面積の中央領域で、凹み形状の深さが10nm未満であることを特徴とするディスプレイ用ガラス基板。
    A glass substrate on the display surface side of a flat panel display,
    A glass substrate for a display, wherein the depth of the concave shape is less than 10 nm in a central region having an area of 20% or more of the entire area of the surface facing the inside of the flat panel display.
  2.  前記フラットパネルディスプレイの外側を向いた面から荷重を印加した場合の平均破壊荷重が、板厚をtmmとしたときに、600×(t/0.5)N以上であることを特徴とする請求項1に記載のディスプレイ用ガラス基板。 The average breaking load when a load is applied from the surface facing the outside of the flat panel display is 600 × (t / 0.5) 2 N or more when the plate thickness is tmm. The glass substrate for a display according to claim 1.
  3.  前記フラットパネルディスプレイは、液晶ディスプレイであって、
     前記表示面側は、カラーフィルタ側であることを特徴とする請求項1又は2に記載のディスプレイ用ガラス基板。
    The flat panel display is a liquid crystal display,
    The display glass substrate according to claim 1, wherein the display surface side is a color filter side.
  4.  前記フラットパネルディスプレイは、有機ELディスプレイであって、
     前記表示面側は、キャップガラス側であることを特徴とする請求項1又は2に記載のディスプレイ用ガラス基板。
    The flat panel display is an organic EL display,
    The display glass substrate according to claim 1, wherein the display surface side is a cap glass side.
  5.  前記フラットパネルディスプレイは、有機ELディスプレイであって、
     前記表示面側は、TFTガラス基板側であることを特徴とする請求項1又は2に記載のディスプレイ用ガラス基板。
    The flat panel display is an organic EL display,
    The display glass substrate according to claim 1, wherein the display surface side is a TFT glass substrate side.
  6.  フラットパネルディスプレイに用いられるディスプレイ用ガラス基板の製造方法であって、
     ガラス基板を形成する工程と、
     該ガラス基板の一方の面を研磨面として、砥粒を用いてポリシュ研磨を行う研磨装置に前記ガラス基板を設置する工程と、
     粒径が、平均80nm以下の砥粒を用いて、前記ガラス基板の前記研磨面を研磨する工程と、を含むことを特徴とするディスプレイ用ガラス基板の製造方法。
    A method for producing a glass substrate for display used in a flat panel display,
    Forming a glass substrate;
    Setting one side of the glass substrate as a polishing surface, and installing the glass substrate in a polishing apparatus that performs polishing using abrasive grains;
    Polishing the polished surface of the glass substrate using abrasive grains having an average particle size of 80 nm or less, and a method for producing a glass substrate for a display.
  7.  前記砥粒は、コロイダルシリカを含むことを特徴とする請求項6に記載のディスプレイ用ガラス基板の製造方法。 The method for producing a glass substrate for display according to claim 6, wherein the abrasive grains contain colloidal silica.
  8.  前記砥粒は、平均粒径が20nm以下であることを特徴とする請求項7に記載のディスプレイ用ガラス基板の製造方法。 The method for producing a glass substrate for display according to claim 7, wherein the abrasive grains have an average particle diameter of 20 nm or less.
  9.  前記ガラス基板を形成する工程は、フロート法により前記ガラス基板を形成することを特徴とする請求項6乃至8のいずれか一項に記載のディスプレイ用ガラス基板の製造方法。 The method for producing a glass substrate for display according to any one of claims 6 to 8, wherein in the step of forming the glass substrate, the glass substrate is formed by a float method.
  10.  前記フラットパネルディスプレイは、液晶ディスプレイであって、
     前記研磨面は、カラーフィルタ基板のカラーフィルタ形成面であることを特徴とする請求項6乃至9のいずれか一項に記載のディスプレイ用ガラス基板の製造方法。
    The flat panel display is a liquid crystal display,
    The method for manufacturing a glass substrate for display according to any one of claims 6 to 9, wherein the polishing surface is a color filter forming surface of a color filter substrate.
  11.  前記カラーフィルタ形成面は、カラーフィルタ形成前に、クロム膜から構成されるブラックマトリックスが形成される面であることを特徴とする請求項10に記載のディスプレイ用ガラス基板の製造方法。 The method for manufacturing a glass substrate for a display according to claim 10, wherein the color filter forming surface is a surface on which a black matrix composed of a chromium film is formed before the color filter is formed.
  12.  前記フラットパネルディスプレイは、有機ELディスプレイであって、
     前記研磨面は、キャップガラスの内側面であることを特徴とする請求項6乃至9のいずれか一項に記載のディスプレイ用ガラス基板の製造方法。
    The flat panel display is an organic EL display,
    The method for producing a glass substrate for a display according to any one of claims 6 to 9, wherein the polished surface is an inner surface of a cap glass.
  13.  前記フラットパネルディスプレイは、有機ELディスプレイであって、
     前記研磨面は、TFTガラス基板の内側面であることを特徴とする請求項6乃至9のいずれか一項に記載のディスプレイ用ガラス基板の製造方法。
    The flat panel display is an organic EL display,
    The method for producing a glass substrate for a display according to any one of claims 6 to 9, wherein the polished surface is an inner surface of a TFT glass substrate.
PCT/JP2010/068828 2009-10-26 2010-10-25 Glass substrate for display and method for manufacturing the glass substrate WO2011052529A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020127010705A KR20120086704A (en) 2009-10-26 2010-10-25 Glass substrate for display and method for manufacturing the glass substrate
CN2010800485144A CN102598094A (en) 2009-10-26 2010-10-25 Glass substrate for display and method for manufacturing the glass substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-245939 2009-10-26
JP2009245939 2009-10-26

Publications (1)

Publication Number Publication Date
WO2011052529A1 true WO2011052529A1 (en) 2011-05-05

Family

ID=43921952

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/068828 WO2011052529A1 (en) 2009-10-26 2010-10-25 Glass substrate for display and method for manufacturing the glass substrate

Country Status (4)

Country Link
KR (1) KR20120086704A (en)
CN (1) CN102598094A (en)
TW (1) TW201202793A (en)
WO (1) WO2011052529A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013136949A1 (en) * 2012-03-14 2013-09-19 旭硝子株式会社 Float glass plate and method of manufacture thereof
WO2013154089A1 (en) * 2012-04-13 2013-10-17 旭硝子株式会社 Method for packaging glass plate, and package
CN105598756A (en) * 2016-02-05 2016-05-25 晶科能源有限公司 Selective transparent glass
JP2021529717A (en) * 2018-06-22 2021-11-04 コーニング インコーポレイテッド A method for laser machining a substrate laminate having one or more transparent workpieces and one black matrix layer.

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102141879B1 (en) * 2012-09-10 2020-08-07 에이지씨 가부시키가이샤 Glass substrate for display and method for manufacturing glass substrate for display

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04212929A (en) * 1990-12-07 1992-08-04 Fujitsu Ltd Color liquid crystal display element
JPH08220306A (en) * 1994-12-15 1996-08-30 Nippon Sheet Glass Co Ltd Glass substrate with small dent and production thereof
JP2004122351A (en) 2002-07-31 2004-04-22 Asahi Glass Co Ltd Method and device for polishing substrate
JP2004186042A (en) * 2002-12-04 2004-07-02 Tescom:Kk Organic el display panel, manufacturing method of unfixed side substrate of organic el display panel and manufacturing device of unfixed side substrate of organic el display panel
JP2006267883A (en) * 2005-03-25 2006-10-05 Sharp Corp Stuck substrate and its manufacturing method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101553439B (en) * 2006-12-08 2012-09-26 旭硝子株式会社 Process for producing glass sheet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04212929A (en) * 1990-12-07 1992-08-04 Fujitsu Ltd Color liquid crystal display element
JPH08220306A (en) * 1994-12-15 1996-08-30 Nippon Sheet Glass Co Ltd Glass substrate with small dent and production thereof
JP2004122351A (en) 2002-07-31 2004-04-22 Asahi Glass Co Ltd Method and device for polishing substrate
JP2004186042A (en) * 2002-12-04 2004-07-02 Tescom:Kk Organic el display panel, manufacturing method of unfixed side substrate of organic el display panel and manufacturing device of unfixed side substrate of organic el display panel
JP2006267883A (en) * 2005-03-25 2006-10-05 Sharp Corp Stuck substrate and its manufacturing method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013136949A1 (en) * 2012-03-14 2013-09-19 旭硝子株式会社 Float glass plate and method of manufacture thereof
JPWO2013136949A1 (en) * 2012-03-14 2015-08-03 旭硝子株式会社 Float glass plate and manufacturing method thereof
US9512026B2 (en) 2012-03-14 2016-12-06 Asahi Glass Company, Limited Float glass plate and method of manufacturing thereof
WO2013154089A1 (en) * 2012-04-13 2013-10-17 旭硝子株式会社 Method for packaging glass plate, and package
CN104245537A (en) * 2012-04-13 2014-12-24 旭硝子株式会社 Method for packaging glass plate, and package
CN105598756A (en) * 2016-02-05 2016-05-25 晶科能源有限公司 Selective transparent glass
JP2021529717A (en) * 2018-06-22 2021-11-04 コーニング インコーポレイテッド A method for laser machining a substrate laminate having one or more transparent workpieces and one black matrix layer.

Also Published As

Publication number Publication date
CN102598094A (en) 2012-07-18
TW201202793A (en) 2012-01-16
KR20120086704A (en) 2012-08-03

Similar Documents

Publication Publication Date Title
CN102189486B (en) Grinder, grinding method using the grinder, manufacturing method of display device using the grinding method, and display device manufactured by the manufacturing method
WO2011052529A1 (en) Glass substrate for display and method for manufacturing the glass substrate
KR100978259B1 (en) System for cutting liquid crystal display panel and method of fabricating liquid crystal display device using thereof
CN102216833B (en) Bonding apparatus and bonding method
KR20040035508A (en) Device for cutting of liquid crystal display panel
US20110012873A1 (en) Display modules
TWI480127B (en) Glass substrate and its production method
EP2286972A1 (en) Method for chamfering brittle material substrate
JP2006182009A (en) Cutting device for board, and cutting method for board using it
CN106141838B (en) Method for manufacturing glass substrate, and apparatus for manufacturing glass substrate
CN100465713C (en) Grinder wheel for liquid crystal display device and method of fabricating liquid crystal display device using the same
CN109188746A (en) Display panel and method for manufacturing the same
KR20110101000A (en) Method for laser repairing liquid crystal display device
CN1991483A (en) Method for cutting liquid crystal display panel and method for fabricating liquid crystal display panel using the same
JP5516952B2 (en) Glass substrate and manufacturing method thereof
JP2007322693A (en) Method of manufacturing display device
TWI453502B (en) A manufacturing method for an electronic device, and a manufacturing method of an electronic device, and a member for an electronic device
KR20070071010A (en) Apparatus of bonding substrates for a liquid crystal display device
KR101010381B1 (en) Grinder wheel for liquid crystal display device and grinding method using the same
KR20080049359A (en) Apparatus for polshing substrate
KR101032942B1 (en) Substrate edge grinder for liquid crystal display
CN218696878U (en) Improved OLED substrate edge grinding device
KR101488519B1 (en) substrate processing apparatus
JP4768483B2 (en) Manufacturing method of substrate device
KR100904259B1 (en) Processing line of liquid crystal display device and manufacturing method using it

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080048514.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10826661

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011538411

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127010705

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010826661

Country of ref document: EP