WO2011051765A1 - Power source optimisation device for electric power supply system - Google Patents

Power source optimisation device for electric power supply system Download PDF

Info

Publication number
WO2011051765A1
WO2011051765A1 PCT/IB2010/002422 IB2010002422W WO2011051765A1 WO 2011051765 A1 WO2011051765 A1 WO 2011051765A1 IB 2010002422 W IB2010002422 W IB 2010002422W WO 2011051765 A1 WO2011051765 A1 WO 2011051765A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
converter
power supply
secondary battery
discharge
Prior art date
Application number
PCT/IB2010/002422
Other languages
French (fr)
Japanese (ja)
Inventor
卓也 香川
之広 村田
晃 吉武
Original Assignee
パナソニック電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック電工株式会社 filed Critical パナソニック電工株式会社
Publication of WO2011051765A1 publication Critical patent/WO2011051765A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • H02J1/12Parallel operation of dc generators with converters, e.g. with mercury-arc rectifier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/08Three-wire systems; Systems having more than three wires
    • H02J1/082Plural DC voltage, e.g. DC supply voltage with at least two different DC voltage levels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Definitions

  • the present invention relates to a power supply optimization device for a power supply system that supplies each load with power obtained from a grid, a self-sustaining power generation battery, a storage facility, and the like.
  • the house is provided with a power supply system (see Patent Document 1, etc.) which converts AC voltage of commercial power supply into DC voltage and supplies it to various devices in the house.
  • a power supply system see Patent Document 1, etc.
  • solar cells that generate electric power by solar power generation, and not only commercial power sources, but also those that can supply DC power to various devices in solar cells are becoming popular.
  • some power supply systems were equipped with storage batteries as backup power sources for the system, and it was possible to generate electricity from night commercial power source with low charge and extra sunlight during the daytime. It is possible to store electricity in the storage battery.
  • a distribution board 82 is provided as a device for branching and wiring the main trunk of electricity in the home.
  • the distribution board 82 includes an ACZDC converter 84 for converting AC voltage input from the commercial power supply 83 into DC voltage, a DCZDC converter 86 for converting DC voltage input from the solar battery 85 to a predetermined value, and DC of the storage battery 87.
  • a DCZDC converter 88 is provided to convert the voltage to a predetermined value.
  • Connected to these converters 84, 86, 88 is a coordination control unit 89 that coordinates the commercial power supply 83 and the solar cell 85, and charges and discharges the storage battery 87.
  • the cooperative control unit 89 supplies the DC voltage necessary for operation to each of the DC devices 91 via the respective breakers 90.
  • Patent Document 1 Japanese Patent Application Publication No. 2009-1 159690
  • DCZDC converter 86 inputs a high voltage of solar battery 85
  • DC DC converter 88 inputs a high voltage of commercial power supply 83. Therefore, these converters 86, 88 should use relatively large-capacity large converters. There is a compelling situation. For this reason, in the conventional power supply system 81, since it is necessary to mount two large DCZDC converters 86, 88 having a capacity on the distribution board 82, the size of the distribution board 82, that is, the size of the entire apparatus There was a problem of becoming larger. Summary of the invention
  • the present invention has been made in view of the above, and provides a power supply optimization device of a power supply system capable of reducing the device size.
  • a plurality of DC power supplies and DC power from the plurality of DC power supplies are input, voltage converted into predetermined DC voltage, and output to a DC load device.
  • a power supply optimization device of a power supply system is provided.
  • the plurality of DC power supplies include a self-sustaining power generation battery and a storage facility, and the output voltage conversion means outputs power at the maximum power point by the DC power supply.
  • the DC power supply is controlled at the maximum output point, the plurality of DC power supplies are connected in parallel, and their combined power is output to the output voltage conversion means as the DC power supply.
  • the DC power supply and the storage facility are connected in parallel, and the combined output of these two is made possible by the output voltage conversion unit at the maximum output point, so one large-capacity output voltage conversion means It is possible to share For this reason, it is not necessary to separately provide a large capacity output voltage conversion means in each of the self-sustaining power generation battery and the storage facility, and it is possible to miniaturize the apparatus size accordingly.
  • the storage facility may be a secondary battery.
  • the power storage facility may be a capacitor.
  • the storage facility includes a series circuit in which a secondary battery and a capacitor are connected in series, and a charge capable of charging the secondary battery with the power stored in the capacitor as an input.
  • a converter may be provided.
  • a battery remaining amount detecting means for detecting a remaining amount of the power storage facility
  • a power generation capability detecting means for detecting a power generation capability of the self-supporting power generation battery
  • a charge current detection means for detecting a charge current flowing through the charge converter.
  • the charge converter can also charge the power storage facility with a charging current according to the remaining battery capacity of the power storage facility and the power generation capacity of the self-standing power generation battery.
  • the power storage facility includes: a secondary battery capable of storing electric power; an input unit connected to the self-supporting power generation battery; and an output unit connected in series to the secondary battery
  • a discharge converter for managing discharge of the secondary battery, an input unit connected to an output unit of the discharge converter, and an output unit connected to both ends of the secondary battery, the secondary battery
  • the self-sustaining power generation battery and the storage device may be capable of outputting electric power in parallel.
  • a battery residual amount detecting means for detecting the residual amount of the power storage facility
  • a power generation capability detecting means for detecting the power generation capability of the self-supporting power generation battery
  • a charge current detection for detecting the charge current flowing through the charge converter.
  • Means, and discharge current detection means for detecting a discharge current flowing through the discharge converter, wherein the charge converter and the discharge converter are selected according to the remaining battery capacity of the storage facility and the power generation capacity of the self-supporting power generation battery.
  • the charge current or the discharge current may be current controlled.
  • the storage facility can be charged and discharged according to the remaining battery capacity of the storage facility and the power generation capacity of the stand-alone power generation battery. Therefore, the remaining battery capacity of the storage facility can be reduced. It becomes possible to manage precisely.
  • the discharge converter and the charge converter are configured to eliminate the difference between the discharge current and the charge current. It is also possible to control the current.
  • the output voltage of the self-sustaining power generation battery is less likely to fluctuate due to the influence of the storage equipment, so the maximum output point control performed by the output voltage conversion means is the same as before. It is possible to do with the control content.
  • the discharge converter when power is output from both the self-supporting power generation battery and the storage facility, the discharge converter may control the discharge current to a predetermined current amount at the time of discharge. .
  • the storage facility is controlled so that a predetermined amount of current always flows, so that the maximum output point control performed by the output voltage conversion means can be performed with the same control content as before. Become.
  • the charging converter may control the charging current to a predetermined current amount during charging.
  • the input of the output voltage conversion means becomes the voltage of the storage facility, and it becomes possible to supply power only from the storage facility to the load.
  • the power supply optimization device may further comprise a short circuit for shorting the discharge converter when the self-supporting power generation battery is stopped.
  • the storage facility includes: a secondary battery capable of storing electric power; an input unit connected to both ends of the secondary battery; and an output unit connected in series to the secondary battery A charge converter configured to control discharge of a battery; an input unit connected to an output unit of the discharge converter; and an output unit connected to both ends of the secondary battery; It is also possible to perform discharge according to the remaining amount of the secondary battery regardless of the presence or absence of the output of the self-supporting power generation battery.
  • the discharge converter and the charge converter may be provided as an integrated charge / discharge converter.
  • the present invention may further comprise constant voltage means for keeping a system voltage supplied to the load via the output voltage conversion means constant.
  • the constant voltage means is connected in series to a constant voltage secondary battery capable of storing electric power, an input unit connected to an output of the output voltage conversion means, and the constant voltage secondary battery.
  • a constant voltage discharge converter capable of discharging the constant voltage secondary battery, an input unit connected to the output unit of the discharge capacitor, and both ends of the constant voltage secondary battery. It has an output unit to be connected, and has a constant voltage charge converter capable of charging the secondary battery for constant voltage, and when the power supply output to the load is high, the constant voltage charge converter performs the constant voltage charge converter.
  • the system voltage may be kept constant by charging a secondary battery and discharging the constant voltage secondary battery by the constant voltage discharge converter when the power supply output is low.
  • the constant voltage means comprises: a constant voltage secondary battery capable of storing electric power; an input unit connected to both ends of the constant voltage secondary battery; and a series connection to the constant voltage secondary battery An output unit, a discharge converter for discharging constant voltage of the secondary battery for constant voltage, an input unit connected to an output unit of the discharge converter, and both ends of the secondary battery for constant voltage Output connected to A constant voltage charging converter capable of charging the constant voltage secondary battery; and a high power output to the load, the constant voltage charging converter charges the constant voltage secondary battery using the constant voltage charging converter.
  • the system voltage can be kept constant by discharging the constant voltage secondary battery with the constant voltage discharge converter.
  • the constant voltage discharge converter and the constant voltage charge converter may be integrated as a constant voltage charge / discharge converter.
  • FIG. 1 is a block diagram showing an entire configuration of a power supply system according to a first embodiment.
  • FIG. 2 is a block diagram showing the configuration of a power input / output control device.
  • FIG. 3 is a waveform chart showing V-I and V-P curves of a solar cell.
  • FIG. 4 is a block diagram showing another configuration of the power input / output control device.
  • FIG. 5 is a block diagram showing the configuration of a power input / output control device according to a second embodiment.
  • FIG. 6 is a block diagram showing another configuration of the power input control device.
  • FIG. 8 is a block diagram showing another configuration of the power input / output control device.
  • FIG. 9 is a diagram for explaining the solar cell operation and charge / discharge control operation, wherein (a) is an explanatory view when the output voltage of the solar cell increases, and (b) is when the output voltage of the solar cell decreases FIG.
  • FIG. 10 is a block diagram showing the configuration of a power input / output control apparatus according to a fourth embodiment.
  • FIG. 1 1 is a configuration diagram for explaining constant current control, and a characteristic waveform diagram showing a relationship between an external command value and an output current.
  • FIG. 12 is a configuration diagram showing another configuration of the power input / output control device.
  • FIG. 13 is a configuration diagram showing a configuration of a power input / output control device in a fifth embodiment.
  • FIG. 14 is a block diagram showing another configuration of the power input / output control device.
  • FIG. 15 is a configuration diagram for describing constant current control and constant voltage control, and a characteristic waveform diagram showing a relationship between an external command value, an output current, and an output voltage.
  • FIG. 17 is a block diagram showing a schematic configuration of a conventional power supply system.
  • FIGS. 1 to 4 a first embodiment of a power supply optimization device of a power supply system in which the present invention is embodied in a house will be described according to FIGS. 1 to 4.
  • a house of a detached house is assumed as a building to which the present invention is applied, but it does not prevent applying the technical idea of the present invention to a building such as an apartment house, an office, a commerce house, or a factory. Absent.
  • the home is provided with a power supply system 1 for supplying power to various devices (lighting equipment, air conditioners, household appliances, audio visual equipment, etc.) installed in the home.
  • the power supply system 1 operates various devices using the commercial AC power source (AC power source) obtained from the grid 2 as electric power, and also supplies the power of the solar battery 3 generated by sunlight as a power source to the various devices.
  • the solar cell 3 is composed of, for example, a plurality of cells 4.
  • the power supply system 1 supplies power to the AC device 6 that operates by inputting an AC power supply (AC power), in addition to the DC device 5 that operates by inputting a DC power supply (DC power supply).
  • the solar battery 3 constitutes a DC power supply and a self-generating battery, and the DC device 5 and the AC device 6 constitute a load.
  • the power supply system 1 is provided with a control unit 7 and a DC distribution board (with a DC breaker built-in) 8 as a component conditioner of the system 1.
  • the control room is provided with a control unit 7a that generally controls the operation of the unit.
  • a control unit 9 and a reorganization unit 10 are provided as devices for controlling the operation of the DC device 5 in the house.
  • An AC power distribution board 11 for branching AC power is connected to the control unit 1 via an AC power line 12.
  • the control unit 7 is connected to the grid 2 via the AC distribution board 11 and to the solar cell 3 via a DC power line 13.
  • the control unit 7 takes in AC power from the AC distribution board 11 and also takes in DC power from the solar cell 3, and converts these powers into predetermined DC power as equipment power. Then, control unit 7 outputs the DC power after conversion to DC distribution board 8 through DC power line 14 or to storage battery unit 16 through DC power line 15. Charge the same power.
  • the control unit 7 not only receives AC power from the AC distribution board 1 1 but also converts the power of the solar battery 3 and the storage battery unit 16 into AC power and supplies it to the AC distribution board 1 1 It is possible.
  • the control unit 7 exchanges data with the DC distribution board 8 through the signal line 17.
  • the DC distribution board 8 is a kind of breaker compatible with DC power.
  • the DC distribution board 8 branches the DC power input from the control unit 7 and outputs the DC power after the branch to the control unit 9 via the DC power line 18 or the DC power line 1 Output to relay unit 10 via 9 and so on. Also, the DC distribution board 8 is connected to the control unit 9 via the signal line 20. — Exchange data with the relay unit 10 via the signal line 2 1
  • a plurality of DC devices 5 are connected to the control unit 9. These DC devices 5 are connected to the control unit 9 via a DC supply line 22 which can carry both DC power and data by a pair of wires.
  • the DC supply line 22 is a so-called power line carrier communication in which a communication signal for transmitting a read signal with a high frequency carrier wave is superimposed on a DC voltage serving as a power supply of a DC device. Transport both data to DC instrument 5.
  • the control unit 9 acquires the DC power of the DC device 5 through the DC power line 18 and determines which DC device 5 based on the operation command obtained from the DC distribution board 8 through the signal line 20. Figure out what to control. Then, the control unit 9 outputs the DC voltage and the operation command to the instructed DC device 5 via the DC supply line 22 and controls the operation of the DC device 5.
  • the control unit 9 is connected via a DC supply line 22 with a switch 23 operated when switching the operation of the DC device 5 in the house. Further, a sensor 24 for detecting a radio wave transmitted from, for example, an infrared ray remote controller is connected to the control unit 9 via a DC supply line 22. Therefore, not only the operation instruction from the DC distribution board 8 but also the operation of the switch 23 and the detection of the sensor 24 flow a communication signal to the DC supply line 22 to control the DC device 5.
  • a plurality of DC devices 5 are connected to the relay unit 10 via respective DC power lines 25 respectively.
  • the relay unit 10 obtains the DC power supply of the DC device 5 through the DC power line 19, and the DC device 5 based on the operation command obtained from the DC distribution board 8 through the signal line 21. Figure out what to do.
  • the relay unit 10 controls the operation of the DC device 5 by turning on and off the power supply to the DC power line 25 with the built-in relay for the instructed DC device 5.
  • a plurality of switches 26 for manually operating the DC device 5 are connected to the relay unit 10, and the power supply to the DC power line 25 is controlled by operating the switch 26. By turning on and off, the DC device 5 is controlled.
  • a DC outlet 2 is connected to the DC distribution panel 8 via a DC power line 2 8 installed in a house in the manner of a wall outlet or a floor panel. It is possible to directly supply DC power to the DC outlet 27 by plugging a DC device plug (not shown) into the DC outlet 27.
  • an electric camera 29 capable of remotely detecting the amount of use of the system 2 is connected between the system 2 and the AC distribution board 11.
  • the power meter 29 is equipped with not only the function of remote meter reading of the commercial power consumption, but also the function of power line carrier communication and wireless communication, for example.
  • the power meter 29 transmits a measurement result to a power company or the like through power line communication, wireless communication, or the like.
  • the power supply system 1 is provided with a network system 30 which can control various devices in the house by network communication.
  • the network system 30 is provided with a home server 31 as a control unit of the system 30.
  • Home server 3 1 is connected to the management server 32 outside the home via a network N such as the Internet, and is connected to the home appliance 34 via a signal line 33.
  • the in-home server 31 operates using DC power acquired from the DC distribution board 8 via the DC power line 35 as a power supply.
  • the home server 31 is connected via a signal line 37 with a control box 36 that manages operation control of various devices in the home by network communication.
  • the control box 36 is connected to the control unit board and the DC distribution board 8 via the signal line 17, and can control the DC device 5 directly via the DC supply line 38.
  • a gas water meter 39 capable of remotely measuring the amount of used gas and water is connected to the control box 36, and is connected to the operation panel 40 of the network system 30.
  • a monitoring device 41 comprising, for example, a door phone handset, a sensor, and a camera.
  • the home server 31 When the home server 31 inputs an operation command of various devices in the home through the network N, the home server 31 notifies the control box 36 of the command and operates the control box 36 so that the various devices operate according to the operation command. .
  • the home server 31 can provide various kinds of information acquired from the gas and water supply system 39 to the management server 32 through the network N, and at the same time, the operation panel 40 indicates that the monitoring device 41 detects an abnormality. From the network N to the management server 32 via the network N.
  • FIG. 2 illustrates a power input / output control device 1a that manages power input / output of the solar battery 3 and the storage battery unit 16 and this will be described below.
  • the control unit 7 is provided with a bidirectional ACZDC converter 42 capable of both converting DC power into AC power and converting AC power into DC power.
  • the bi-directional ACZDC converter 42 includes an ACZDC converter 43 that converts and outputs an input AC voltage to a DC voltage, and a DC / AC inverter 44 that converts and outputs an input DC voltage to an AC voltage.
  • the ACZD C converter 43 converts the AC voltage input from the system 2 into a DC voltage and outputs the DC voltage to the DC device 5 or the storage battery unit 16.
  • the DCZAC inverter 44 converts the DC voltage input from the solar battery 3 or the storage battery unit 16 into an AC voltage and reversely flows the current to the grid 2.
  • the control unit 7 is provided with a maximum power point control DCZDC converter 45 that outputs the power of the solar cell 3 at the most power efficient point (maximum power point).
  • the maximum output point control DCZDC converter 45 is connected to the solar cell 3 and to the bidirectional ACZD C converter 42 and the DC device 5.
  • the maximum output point control DCZDC converter 45 corresponds to the output voltage conversion means.
  • Maximum power point control is a type of voltage output control called so-called MP PT (Maximum Power Point Tracking) control.
  • MP PT Maximum Power Point Tracking
  • the solar cell 3 has a point where it can most efficiently output electric power at the maximum, that is, a maximum electric power point. Output is possible.
  • the maximum power point control DCZDC converter 45 automatically changes the input voltage according to the power generation state of the solar cell 3 to make the voltage of the solar cell 3, that is, the maximum power point follow. Power of the most efficient.
  • the maximum power point control is also called the hill-climbing method.
  • the output voltage of the solar cell 3 is intentionally varied, and the values before and after the variation are compared to confirm whether the current output is maximum or not. Do the thing repeatedly.
  • a secondary battery 4 is connected in parallel to the solar battery 3 as a storage facility 46 of the storage battery unit 16.
  • Maximum Power Point Control The DCZDC converter 45 receives the combined power J of the solar battery 3 and the secondary battery 47, controls the maximum power point, and outputs a voltage.
  • the secondary battery 47 for example, a lithium ion battery is used.
  • the storage facility 46 refers to a function that controls the storage location of the storage battery unit 1 6 and the input / output (charge / discharge) operation thereof.
  • the storage unit 46 constitutes a DC power supply.
  • the combined power J of the solar battery 3 and the secondary battery 4 is output to the maximum power point control DCZDC converter 45.
  • Maximum Output Point Control The DCZDC converter 45 performs maximum output point control on the combined power J, and outputs the combined power J at the maximum power by switching the input voltage. Therefore, the DC device 5 and the AC device 6 operate as a device power supply with the combined power J. At this time, even if the power of the solar cell 3 is larger than that of the secondary battery 47 and there is a difference in the supplied power from these two, these are output as the combined power J to the maximum output point control DCZDC converter 45, It is output with the suitable value of following the output point.
  • the power of system 2 is used as the device power supply of DC device 5 and AC device 6.
  • the control unit converts the AC power of the system 2 into DC by the ACZDC converter 43 and supplies the DC power to the DC device 5.
  • the power of the secondary battery 47 is used as a device power source.
  • the solar cell 3 since the solar cell 3 is not generating power, only the voltage of the secondary cell 47 is applied to the maximum power point control DCZDC converter 45. Therefore, the output power of the secondary battery 4 is supplied to the DC device 5, and the DC device 5 and the AC device 6 are operated by this power.
  • the solar battery 3 and the secondary battery 47 are connected in parallel, the combined power of these is input to the maximum output point control DCZDC converter 45, and the maximum output point control is performed.
  • the secondary battery 47 is used as a storage facility of the storage battery unit 16, since it itself has a power input / output function, it is not necessary to prepare a special input / output converter. Also, by preparing a plurality of secondary batteries 47 and connecting them in series, it is possible to switch the output voltage and output capacity of the storage battery unit 16 appropriately. Therefore, it is also possible to easily change the output voltage and output capacity of storage battery unit 16 according to the application.
  • the power storage facility of the storage battery unit 16 is not limited to the secondary battery 47, and may be, for example, a capacitor 48 as shown in FIG. In this case, it is possible to obtain an effect that it is not necessary to prepare a special input / output converter as in the case of the secondary battery 4 and an effect that the output voltage and the output capacity can be switched appropriately by series connection. It is.
  • the capacitor 48 is used in the storage facility of the storage battery unit 16, it is possible to accelerate the tracking speed to the voltage fluctuation of the solar battery 3 as compared with the case of the secondary battery 47.
  • the power storage facility 46 is connected in parallel to the solar cell 3, and the combined output J input from these two parties is controlled at the maximum output point by the maximum output point control D CZ DC converter 45. Supply to DC device 5. For this reason, it is possible to share one maximum power point control D CZ D C converter 45, that is, one large capacity converter, between the solar cell 3 and the storage facility 46. Therefore, since it is not necessary to provide separate large capacity DCCDC converters for each of the solar cell 3 and the storage facility 46, the device size can be reduced accordingly.
  • the secondary battery 47 has the advantages of high storage density and small fluctuations in power input / output. Therefore, if the secondary battery 4 7 is used as the storage facility 46, the power can be efficiently charged. It is possible to input and output power with less voltage fluctuation.
  • the capacitor 48 has the advantage of being highly responsive to voltage fluctuations of the solar cell 3 compared to the secondary battery 47. Therefore, if the capacitor 48 is used as the storage facility 46, Charge and discharge can be performed with high compliance to the voltage fluctuation of the battery 3.
  • a series circuit 49 of a secondary battery 4 7 and a capacitor 48 is connected in parallel to the solar cell 3. Further, between the secondary battery 47 and the capacitor 48, a charging DCZDC converter 50 for managing charging of the secondary battery 47 is connected.
  • the input parts 5 1 a and 5 1 a consisting of a pair of terminals are in contact with both ends of the capacitor 4 8 Connected at both ends of the secondary battery 47 are output portions 5 1 b and 5 1 b consisting of a pair of terminals.
  • the charging DCZ DC converter 50 supplies power to the secondary battery 4 7 using the power stored in the capacitor 4 8 as an input source. That is, the charge DCZ DC converter 50 constitutes a charge converter.
  • the stored power of the secondary battery 47 may be managed.
  • a battery remaining amount current detection circuit 52 for detecting the battery remaining amount of the secondary battery 4 7 (storage battery unit 16) is connected in series to the series circuit 49.
  • the battery level current detection circuit 52 detects the battery level of the storage battery unit 16 by looking at how much the total amount of current flows out from the secondary battery 47 that has started discharging.
  • the battery residual current detection circuit 52 corresponds to a battery residual detection means.
  • a voltage detection circuit 53 for generation capacity for detecting the generation capacity of the solar cell 3 is connected between the terminals of the solar cell 3.
  • a current detection circuit 54 for generation capacity for detecting the generation capacity of the solar cell 3 is connected on the + side wiring of the solar cell 3.
  • the power generation capacity of the solar cell 3 that is, the amount of power that can be output, is calculated by multiplying the output voltage of the solar cell 3 by the output current. For this reason, the power generation capacity of the solar cell 3 is calculated by multiplying the voltage obtained from the power generation capacity voltage detection circuit 53 by the current obtained from the power generation capacity current detection circuit 54.
  • the power generation capacity voltage detection circuit 53 and the power generation capacity current detection circuit 54 constitute a power generation capacity detection means.
  • a charging current detection circuit 55 for detecting a charging current flowing in the converter 50 is connected to the input wiring of the charging DCZDC converter 50.
  • the charging current detection circuit 55 detects the charging current flowing into the secondary battery 47, that is, the charge amount of the secondary battery 47.
  • the charging current detection circuit 55 corresponds to the charging current detection means.
  • the charging DCCDC converter 50 grasps the battery residual quantity of the secondary battery 4. Also, the charge D C Z D C converter 50 grasps the power generation capacity of the solar cell 3 based on the detection values from the power generation capacity voltage detection circuit 53 and the power generation capacity current detection circuit 54. Then, according to the detected battery remaining capacity and power generation capacity, the charge D CZ DC converter 50 monitors the value of the charge current detection circuit 55 and discharges the secondary battery 4 7 with an arbitrary charge current. To charge.
  • the remaining battery level of the secondary battery 47 can be monitored and controlled, it is possible to perform energy storage management as needed, such as storage according to the battery life, battery output at night, etc. Become. Therefore, it becomes possible to make the power supply system 1 a highly versatile and high-performance system. According to the configuration of this embodiment, in addition to (1) to (4) described in the first embodiment and the second embodiment, the following effects can be obtained.
  • the secondary battery 47 and the capacitor 48 are connected in series, and the power stored in the capacitor 48 can be used as an input source to charge the secondary battery 47. Therefore, when the secondary battery 47 is charged, Can.
  • the charge DCZD C converter 50 can be charged with an arbitrary charge current. For this reason, since the remaining battery level can be monitored and controlled, energy saving management is performed as needed, for example, charging the remaining of the power sent to the DC device 5 to the secondary battery 47. be able to.
  • a discharge DCZDC converter 56 for managing the discharge operation of the secondary battery 47 is connected between the solar cell 3 and the secondary battery 4.
  • the input parts 57a, 57a consisting of a pair of terminals are connected in parallel to the solar cell 3, and the output parts 57b, 57b also consisting of a pair of terminals are connected in series with the secondary battery 47.
  • the discharge DCZDC converter 56 and the secondary battery 47 are connected in series, and the voltage between the terminals of the series circuit is discharged in the discharge operation.
  • the discharge DCZDC converter 56 constitutes a discharge converter.
  • the charging DCZDC converter 50 is similar to that described in the second embodiment. In this charge D CZD C converter 50, the input parts 51 a and 51 a are connected to the output parts 57 b and 57 b of the discharged D CZ DC comparator 56, and the output parts 51 b and 51 b are for the secondary battery 47. It is connected to both ends.
  • the charging DCZDC converter 50 can charge power to the secondary battery 4 using the output power from the discharging DCZDC converter 56 as an input source.
  • the discharge DCZ DC converter 56 is connected in series to the secondary battery 47 connected in parallel to the solar battery 3, the output from the solar battery 3 and the output from the secondary battery 47 Can be extracted in parallel. That is, these two outputs can be mixed simultaneously and output.
  • the discharge power at this time is a value obtained by multiplying the voltage obtained by adding the voltage of secondary battery 47 and the voltage of discharge DCZDC comparator 56 by the output current flowing through secondary battery 47 (discharge DCZDC converter 56). Take Therefore, even if discharge DC / DC converter 56 uses a small capacity, it is possible to secure a large discharge power.
  • the control unit 7 includes the battery residual current detection circuit 52, the generation capacity voltage detection circuit 53, the generation capacity current detection circuit 54, and the charge current detection as described in the second embodiment.
  • a circuit 55 is provided.
  • a discharge current for detecting the discharge current flowing through the discharge DC-DC converter 56 is output to the output 5 b of the discharge DCZDC converter 56.
  • the detection circuit 58 is connected.
  • a diode D for preventing backflow is connected to the + terminal side of the solar cell 3.
  • the discharge current detection circuit 58 corresponds to discharge current detection means.
  • the solar cell 3 only outputs power during the daytime and maximum power point control DCZDC converter 45 performs maximum power point control
  • the difference between the current flowing through charging DCZDC converter 50 and the current flowing through discharging DCZDC converter 56 It is possible to take the form of current control so that it becomes “0”.
  • the charge DCZDC converter 50 controls the value of the charge current
  • the discharge DCZDC converter 56 controls the value of the discharge current.
  • the secondary battery 47 will not be charged and discharged, so the output voltage of the solar cell 3 is unlikely to fluctuate under the influence of the secondary battery 47. It is possible to perform the same maximum power point control.
  • the discharge current flowing through the discharge DCZDC converter 56 is controlled to a predetermined value, and the maximum output is obtained.
  • the point control DCZDC converter 45 may perform the maximum output point control.
  • the discharge DCZDC converter 56 controls the value of the discharge current.
  • the maximum output point control at the time of power supply is the maximum output point with the DCZDC converter 45 It may be in the form of control.
  • the charging DCZDC converter 50 controls the value of the charging current. This makes it possible to charge the secondary battery 47 under a constant current.
  • a short circuit (switch) 59 is provided between the input portions 51 a and 51 a of the charging DCZDC converter 50, and when the solar cell 3 is stopped
  • the charge / discharge circuit may be discharged only from the secondary battery 47 by shorting the short circuit 59.
  • the short circuit 59 is shorted, the charge / discharge circuit is shorted, so it is possible to reduce the conduction loss of the charge / discharge circuit.
  • FIG. 9 (a) when the output voltage of the solar cell 3 increases, the output current of the solar cell 3 ⁇ I 0 (also illustrated in FIG. 8) as the output voltage increases.
  • the curve waveform also gradually increases.
  • the current I ⁇ also shown in FIG. 8 flowing through the remaining battery current detection circuit 52 is larger than “0”
  • charging of the secondary battery 47 is performed as the solar battery operation.
  • charge / discharge control a discharge operation is performed in which the discharge current of discharge current detection circuit 58 is made larger than “0”, and current I is adjusted to “0”. Force power is controlled to the maximum power point.
  • the solar cell operation is Run the discharge. Further, as the charge / discharge control, a charge operation to make the charge current of the charge current detection circuit 55 larger than "0" is executed, and the current I ⁇ is adjusted to "0", so that the output of the solar cell 3 is output. Power is controlled to the maximum power point.
  • the output current ⁇ I 0 of the solar cell 3 has a curved waveform as the output voltage increases. It will gradually become smaller.
  • the current I is smaller than “0”
  • the secondary battery 47 is caused to discharge as the solar cell operation.
  • a charge operation to make the charge current of the charge current detection circuit 55 larger than “0” is executed, and the current I is adjusted to “0”.
  • the output power is controlled to the maximum power point.
  • the storage facility 46 comprises a secondary battery 47, a charging DCZDC converter 50 and a discharging DCZDC converter 56.
  • the input of the discharging DCZDC converter 56 is connected in parallel to the solar cell 3, and the output of the discharging DCZDC converter 56 is secondary Connected in series to the battery 47, the input of the charging DCZ DC converter 50 is connected to the output of the discharging DCZ DC converter 56, and the output of the charging DCZ DC converter 50 is connected to both ends of the secondary battery 47. For this reason, it is possible to simultaneously mix the solar cell 3 and the secondary cell 47 and output power.
  • a storage battery 46 is provided with a short circuit 59 for shorting the discharge DCZDC converter 56.
  • the short circuit 59 is shorted to discharge only the secondary battery 47. By doing this, it is possible to reduce the conduction loss of the charge and discharge circuit.
  • the discharge DCZDC converter 56 is connected to both ends of the input part 57 a, 57 a force secondary battery 47, and the output parts 57 b, 5 b are connected in series with the secondary battery 47. Ru.
  • the input parts 51a and 51a are connected to the output parts 57b and 57b of the discharged DCZDC converter 56 through the current detection circuits 55 and 58, and the output parts 51b and 51b are 2
  • the battery 47 is connected to both ends.
  • the solar battery 3 is output to the discharge DCZDC converter 56. It becomes possible to switch the amount of discharge.
  • the discharge control can be performed according to the remaining amount of the secondary battery 47 without depending on the presence or absence of the output of the solar cell 3.
  • the power storage facility 46 can also control the current value by constant current control in which the current flowing in the battery residual current detection circuit 52 is a constant current. At this time, the power storage facility 46 functions as a constant current charge / discharge circuit.
  • the constant current value is variable according to, for example, the external command value R i.
  • the external command value R i is output from, for example, the control unit 7 a (see FIG. 1) that controls the control unit 7 centrally, and a constant current corresponding to the command value R i flows through the charge and discharge circuit.
  • the charge / discharge DCZDC converter 60 may be used by combining the charge DCC converter 50 and the discharge DCZDC converter 56 into one component.
  • input parts 61a, 61a consisting of a pair of terminals are connected in series with the secondary battery 47 via the charging current detection circuit 55, and output parts 61b, 61 consisting of a pair of terminals b is connected to both ends of the secondary battery 47 via the discharge current detection circuit 58.
  • the charge / discharge DCZDC converter 60 constitutes a charge / discharge converter (charge converter and discharge converter).
  • the storage facility 46 is composed of a secondary battery 47, a charge converter 500, and a discharge 00 or C converter 56.
  • the input of the discharge DCZDC converter 56 is connected to both ends of the secondary battery 47.
  • the output of the discharge DC / DC converter 56 is output in series with the secondary battery 47, and the input of the charge DCZDC converter 50 is connected to the output of the DCZDC converter 56.
  • the output of the charge DCZDC converter 50 is a secondary battery 47 Connect to both ends of the For this reason, regardless of the presence or absence of the output of the solar cell 3, it is possible to execute the discharge control according to the remaining battery capacity of the secondary battery 47.
  • a constant voltage circuit 62 for keeping the voltage applied to the DC device 5 (referred to as the system voltage Vs) constant. It is connected.
  • the constant voltage circuit 62 has the same configuration as the storage facility 46 of the third embodiment, and includes a secondary battery 63, a charging DCZDC converter 64, a discharging DCZDC comparator 65, and a battery residual current detection.
  • a circuit 66, a charge current detection circuit 6 and a discharge current detection circuit 68 are provided.
  • the input section 69a and 69a are connected in parallel to the output of the maximum output point control DCZDC converter 45, and the output section is connected in series to the secondary battery 63.
  • the charging unit of the circuit 62 has an input connected to the output of the discharge DCZDC converter 65 and an output connected to both ends of the secondary battery 63.
  • One terminal of the battery 63 is connected to both ends of the DC device 5.
  • the constant voltage circuit 62 corresponds to a constant voltage means
  • the secondary battery 63 corresponds to a constant voltage secondary battery.
  • the charging DCZDC converter 64 corresponds to a constant voltage charging converter
  • the discharging DCZDC converter 65 corresponds to a constant voltage discharging converter.
  • the total capacity of the loads to which power is to be supplied by the power supply system 1 is a load capacity W1
  • the power supplied to these loads via the constant voltage circuit 62 is a power output W2.
  • the constant voltage circuit 62 charges the secondary battery 63 by the charging DCZDC converter 64 when the load capacity W1 is less than the power output W2 (load capacity W1 ⁇ power output W2).
  • the load capacity W1 is more than the power output W2 (load capacity W1 ⁇ power output W2)
  • the secondary battery 63 is discharged by the discharge DCZDC comparator 65.
  • the constant voltage circuit 62 functions as a buffer
  • the system voltage V s can be made constant.
  • the constant voltage circuit 62 is the same as the storage facility 46 of the fourth embodiment. It may be a configuration.
  • the constant voltage circuit 62 includes a secondary battery 63, a charging current detection circuit 67, a discharging current detection circuit 68, and a charging / discharging DCZ DC converter 70.
  • a pair of input parts 7 1 a and 7 1 a are connected in series with the secondary battery 63, and a pair of output parts 7 1 b and 7 1 b are connected to both ends of the secondary battery 6 3. It is connected to the.
  • the charge / discharge DCZDC converter 70 constitutes a constant voltage discharge converter (constant voltage charge converter and constant voltage discharge converter).
  • the charge / discharge D C Z D C converter 70 may be a component in which the converter is divided into charge and discharge separately as shown in FIG.
  • the input part of the discharge converter is connected to both ends of the secondary battery 63, and the output part is connected in series to the secondary battery 63.
  • the input part of the charge converter is connected to the input part of the discharge converter, and the output part is connected to both ends of the secondary battery 63.
  • the constant-current charge / discharge circuit 3 controls the constant-current charge / discharge circuit 3 while controlling the power from the constant-current power supply 72.
  • Constant voltage control may be used.
  • the constant current charge / discharge circuit 73 has the same configuration as that of the storage facility 46 of the above-described embodiment.
  • the constant voltage charge / discharge circuit 74 has the same configuration as that of the constant voltage circuit 62 of this example, and here, a type in which converters are separately separated for charge and discharge is used. ing.
  • a capacitor 7 5 is connected to the input portion of the charging DC-DC converter 64, and a DC load voltage detection circuit 76 is connected between the terminals of the DC load.
  • a capacitor 48 is connected to the input portion of the charging D CZ D C converter 50.
  • the constant voltage control is performed by setting the voltage detected by the DC load voltage detection circuit 76 to a constant voltage. Also, the constant voltage value is variable according to, for example, the external command value Rv.
  • the external command value Rv is output from the control unit 7 a of the control unit 7, and a constant voltage corresponding to the command value Rv is applied to the DC device 5.
  • Figure 16 summarizes the operation example of constant voltage control and constant current control in this case.
  • the constant voltage value is set to 4 8 V
  • the charge circuit is turned on and the discharge circuit Is turned off.
  • the secondary battery 63 is charged, and the output voltage is maintained at 4 8 V.
  • the charging circuit is turned off and the discharging circuit is turned on.
  • the secondary battery 63 is discharged, and the output voltage is maintained at 48 V.
  • the power supply system 1 was provided with a constant voltage circuit 62 for keeping the system voltage Vs constant. Therefore, even if the system voltage Vs fluctuates due to the remaining battery capacity, temperature, etc., it can be supplied to the DC device 5 while maintaining this at a constant value.
  • the embodiment is not limited to the configuration described above, and may be changed to the following aspect.
  • the self-supporting power generation cell is not limited to the solar cell 3 and may be, for example, a fuel cell.
  • the number of self-sustaining power generation cells is not limited to one, and may be plural. This is also true for storage equipment.
  • the secondary battery (constant voltage secondary battery) is not limited to a lithium ion battery, but any kind of battery that can store electric power. You may use
  • the battery residual amount detection means, the power generation ability detection means, the charge current detection means, and the discharge current detection means are not limited to being composed of a current detection circuit, a voltage detection circuit, etc.
  • the number of secondary batteries 47 (63) and capacitors 48 is not limited to one each, and may be plural. When multiple secondary batteries 47 (63) and capacitors 48 are provided, they can be freely connected in series and parallel.
  • the power storage facility 46 is not limited to being configured of the secondary battery 47 and the capacitor 48, and may be of any type as long as it can store power.
  • the excess power generated by the solar cell 3 may be sold by reverse power flow to the grid 2 regardless of what is stored in the storage facility 46.
  • the power stored in the secondary battery 63 of the constant voltage circuit 62 does not know which of the solar battery 3 and the grid 2, so it is not sold and the secondary storage battery 46 Electricity Since the power of the pond 47 is the power stored from the solar cell 3, the power may be reversed by selling to the grid 2.
  • the grid 2 is not limited to a commercial AC power supply that supplies an AC voltage, and may supply a DC voltage.
  • the power supply system 1 is not limited to being used in a house, and may be applied to other buildings such as a factory.
  • the functional part capable of forming the characteristic constituent features of the present invention may be provided anywhere as long as it is a constituent member of the power supply system 1.
  • a power line communication control unit is provided that supplies power and data to the load via power line communication, and controls the load. According to this configuration, since the load can be controlled by the power line communication, it is possible to supply power and data to the load with less wiring.

Abstract

Disclosed is a power source optimisation device for an electric power supply system. The power source optimisation device is equipped with a plurality of DC power sources and an output voltage conversion means which receives DC power from the plurality of DC power sources, converts the DC power to a predetermined DC voltage and outputs the converted DC electric power to DC load apparatuses.

Description

明細書 電力供給システムの電源最適化装置 技術分野  Power supply optimization device for power supply system
本発明は、 系統、 自立発電電池、 蓄電設備等から得た電力を各負荷に供給する電力供 給システムの電源最適化装置に関する。 背景技術  The present invention relates to a power supply optimization device for a power supply system that supplies each load with power obtained from a grid, a self-sustaining power generation battery, a storage facility, and the like. Background art
住宅には、 商用電源の AC電圧を DC電圧に変換して宅内の各種機器に供給する電力 供給システム(特許文献 1等参照)が設けられている。近年の電力供給システムの中には、 太陽光による発電によって電力を生成する太陽電池を設け、 商用電源のみならず、 太陽電 池でも各種機器に DC電力が供給可能なものも普及し始めてきている。 また、 電力供給シ ステムには、 同システムのバックアップ用電源として蓄電池が設けられたものもあり、 料 金の安い夜間の商用電源や、 昼間に余分に太陽光によリ発電することができた電力を蓄電 池に蓄えておくことが可能となっている。  The house is provided with a power supply system (see Patent Document 1, etc.) which converts AC voltage of commercial power supply into DC voltage and supplies it to various devices in the house. Among the power supply systems in recent years, there are provided solar cells that generate electric power by solar power generation, and not only commercial power sources, but also those that can supply DC power to various devices in solar cells are becoming popular. There is. In addition, some power supply systems were equipped with storage batteries as backup power sources for the system, and it was possible to generate electricity from night commercial power source with low charge and extra sunlight during the daytime. It is possible to store electricity in the storage battery.
図 1 フに示すように、 この種の電力供給システム 81には、 宅内において電気の幹線 を分岐配線する装置として分電盤 82が設けられている。 分電盤 82には、 商用電源 83 から入力する AC電圧を DC電圧に変換する A CZDCコンバータ 84と、 太陽電池 85 から入力する DC電圧を所定値に変換する DCZDCコンバータ 86と、 蓄電池 87の D C電圧を所定値に変換する DCZDCコンバータ 88とが設けられている。 これらコンパ —タ 84, 86, 88には、 商用電源 83及び太陽電池 85の協調や、 蓄電池 87の充放 電を行う協調制御部 89が接続されている。 協調制御部 89は、 それぞれのブレーカ 90 …を介して、 各 DC機器 91…に動作の際に必要な DC電圧を供給する。  As shown in FIG. 1, in the power supply system 81 of this type, a distribution board 82 is provided as a device for branching and wiring the main trunk of electricity in the home. The distribution board 82 includes an ACZDC converter 84 for converting AC voltage input from the commercial power supply 83 into DC voltage, a DCZDC converter 86 for converting DC voltage input from the solar battery 85 to a predetermined value, and DC of the storage battery 87. A DCZDC converter 88 is provided to convert the voltage to a predetermined value. Connected to these converters 84, 86, 88 is a coordination control unit 89 that coordinates the commercial power supply 83 and the solar cell 85, and charges and discharges the storage battery 87. The cooperative control unit 89 supplies the DC voltage necessary for operation to each of the DC devices 91 via the respective breakers 90.
【特許文献 1】 特開 2009— 1 59690号公報  [Patent Document 1] Japanese Patent Application Publication No. 2009-1 159690
ところで、 DCZDCコンバータ 86は太陽電池 85という高い電圧を入力し、 DC DCコンバータ 88は商用電源 83という高い電圧を入力するので、 これらコンバータ 86, 88は相対的に大容量サイズの大型コンバータを使用せざるを得ない現状がある。 このため、 従来の電力供給システム 81においては、 分電盤 82に容量の大型 DCZDC コンバータ 86, 88を 2つ搭載する必要があるので、 その分だけ分電盤 82のサイズ、 即ち装置全体のサイズが大型化する問題があった。 発明の概要  By the way, DCZDC converter 86 inputs a high voltage of solar battery 85, and DC DC converter 88 inputs a high voltage of commercial power supply 83. Therefore, these converters 86, 88 should use relatively large-capacity large converters. There is a compelling situation. For this reason, in the conventional power supply system 81, since it is necessary to mount two large DCZDC converters 86, 88 having a capacity on the distribution board 82, the size of the distribution board 82, that is, the size of the entire apparatus There was a problem of becoming larger. Summary of the invention
本発明は上記を鑑みて成されたものであって、 装置サィズを小さく抑えることができ る電力供給システムの電源最適化装置を提供する。 前記問題点を解決するために、 本発明では、 複数の直流電源と、 前記複数の直流電源 からの直流電力を入力されて所定の直流電圧に電圧変換して直流負荷機器に出力する出力 電圧変換手段と、 を備える電力供給システムの電源最適化装置が提供される。 The present invention has been made in view of the above, and provides a power supply optimization device of a power supply system capable of reducing the device size. In order to solve the above problems, in the present invention, a plurality of DC power supplies and DC power from the plurality of DC power supplies are input, voltage converted into predetermined DC voltage, and output to a DC load device. A power supply optimization device of a power supply system is provided.
前記の電力供給システムの電源最適化装置において、 前記複数の直流電源は、 自立発 電電池及び蓄電設備を含み、 前記出力電圧変換手段は、 前記直流電源が前記最大電力点で 電力出力するように当該直流電源を最大出力点制御し、 前記複数の直流電源は並列接続さ れ、 これらの合成電力が前記直流電源として前記出力電圧変換手段に出力される。  In the power supply optimization device of the above power supply system, the plurality of DC power supplies include a self-sustaining power generation battery and a storage facility, and the output voltage conversion means outputs power at the maximum power point by the DC power supply. The DC power supply is controlled at the maximum output point, the plurality of DC power supplies are connected in parallel, and their combined power is output to the output voltage conversion means as the DC power supply.
この構成によれば、 直流電源と蓄電設備とを並列接続して、 これら 2者の合成電力を 出力電圧変換部によって最大出力点で電力出力可能としたので、 1つの大容量の出力電圧 変換手段を共用することが可能となる。 このため、 自立発電電池及び蓄電設備の各々に、 個別に大容量の出力電圧変換手段を設けずに済むので、 その分だけ装置サイズを小型化す ることが可能となる。  According to this configuration, the DC power supply and the storage facility are connected in parallel, and the combined output of these two is made possible by the output voltage conversion unit at the maximum output point, so one large-capacity output voltage conversion means It is possible to share For this reason, it is not necessary to separately provide a large capacity output voltage conversion means in each of the self-sustaining power generation battery and the storage facility, and it is possible to miniaturize the apparatus size accordingly.
前記蓄電設備は、 2次電池からなることでも良い。  The storage facility may be a secondary battery.
これによれば、 例えば 2次電池を複数用意して、 これらを直並列することにより、 蓄 電設備の出力電圧や蓄電容量を、 用途に応じて適宜設定することが可能となる。  According to this, for example, by preparing a plurality of secondary batteries and connecting them in series, it becomes possible to appropriately set the output voltage and storage capacity of the storage facility according to the application.
また、 前記蓄電設備は、 コンデンサからなることでも良い。  Further, the power storage facility may be a capacitor.
これによれば、 例えばコンデンサを複数用意して、 これらを直並列することにより、 蓄電設備の出力電圧や蓄電容量を、 用途に応じて適宜設定することが可能となる。 また、 蓄電設備にコンデンサを使用すれば、 自立発電電池の電圧変動に対する蓄電設備の追従速 度を早くすることが可能となる。  According to this, for example, by preparing a plurality of capacitors and connecting them in series, it becomes possible to set the output voltage and storage capacity of the storage facility appropriately according to the application. In addition, if a capacitor is used for the storage facility, it is possible to accelerate the tracking speed of the storage facility with respect to the voltage fluctuation of the self-sustaining power generation battery.
本発明の電源最適化装置において、 前記蓄電設備は、 2次電池及びコンデンサを直列 接続した直列回路と、 前記コンデンサに蓄積された電力を入力として、 前記 2次電池に電 力を充電可能な充電コンバ一タとを備えても良い。  In the power supply optimization device of the present invention, the storage facility includes a series circuit in which a secondary battery and a capacitor are connected in series, and a charge capable of charging the secondary battery with the power stored in the capacitor as an input. A converter may be provided.
この構成によれば、 コンデンサに蓄積された電力を入力として、 充電コンバータによ つて 2次電池を充電することが可能となる。  According to this configuration, it is possible to charge the secondary battery by the charge converter with the power stored in the capacitor as an input.
また、 前記蓄電設備の残量を検出する電池残量検出手段と、 前記自立発電電池の発電 能力を検出する発電能力検出手段と、 前記充電コンバータを流れる充電電流を検出する充 電電流検出手段とを更に備え、 前記充電コンバータは、 前記蓄電設備の電池残量と前記自 立発電電池の発電能力とに応じた充電電流によリ、 前記蓄電設備を充電することも可能で める。  Further, a battery remaining amount detecting means for detecting a remaining amount of the power storage facility, a power generation capability detecting means for detecting a power generation capability of the self-supporting power generation battery, a charge current detection means for detecting a charge current flowing through the charge converter. The charge converter can also charge the power storage facility with a charging current according to the remaining battery capacity of the power storage facility and the power generation capacity of the self-standing power generation battery.
この構成によれば、 蓄電設備の電池残量と自立発電電池の発電能力とに応じた充電状 態で、 蓄電設備への充電を行うことが可能となるので、 例えば自立発電電池により生成さ れる電力のうち負荷に回した残リを蓄電設備に充電するというように、 必要に応じたエネ ルギー貯蓄管理が可能となる。  According to this configuration, since it becomes possible to charge the storage facility with a state of charge according to the remaining battery capacity of the storage facility and the power generation capacity of the self-sustaining power generation battery, for example It is possible to manage energy savings as needed, such as charging the remaining electricity that has been diverted to the load to the storage facility.
本発明の電源最適化装置において、 前記蓄電設備は、 電力を蓄電可能な 2次電池と、 前記自立発電電池に接続される入力部と、 前記 2次電池に直列接続される出力部を備え、 前記 2次電池の放電を管理する放電コンバ一タと、 前記放電コンバ一タの出力部に接続さ れる入力部と、 前記 2次電池の両端に接続される出力部を備え、 前記 2次電池の充電を管 理する充電コンバータとを備え、 前記自立発電電池及び前記蓄電設備は、 電力を並列に出 力することが可能となっていることにしても良い。 In the power supply optimization device of the present invention, the power storage facility includes: a secondary battery capable of storing electric power; an input unit connected to the self-supporting power generation battery; and an output unit connected in series to the secondary battery A discharge converter for managing discharge of the secondary battery, an input unit connected to an output unit of the discharge converter, and an output unit connected to both ends of the secondary battery, the secondary battery The self-sustaining power generation battery and the storage device may be capable of outputting electric power in parallel.
この構成によれば、 自立発電電池からの電力と、 蓄電設備からの電力とを、 同時に混 合して出力することが可能となるので、 もし仮に放電コンバータが小容量のものであって も、 大きな放電電力を確保することが可能となる。  According to this configuration, it is possible to simultaneously mix and output the power from the self-sustaining power generation battery and the power from the storage facility, so even if the discharge converter has a small capacity, It is possible to secure a large discharge power.
また、 前記蓄電設備の残量を検出する電池残量検出手段と、 前記自立発電電池の発電 能力を検出する発電能力検出手段と、 前記充電コンバ一タを流れる充電電流を検出する充 電電流検出手段と、 前記放電コンバータを流れる放電電流を検出する放電電流検出手段と を更に備え、 前記充電コンバータ及び前記放電コンバータは、 前記蓄電設備の電池残量と 前記自立発電電池の発電能力とに応じて、 前記充電電流や前記放電電流を電流制御するこ とでも良い。  Further, a battery residual amount detecting means for detecting the residual amount of the power storage facility, a power generation capability detecting means for detecting the power generation capability of the self-supporting power generation battery, and a charge current detection for detecting the charge current flowing through the charge converter. Means, and discharge current detection means for detecting a discharge current flowing through the discharge converter, wherein the charge converter and the discharge converter are selected according to the remaining battery capacity of the storage facility and the power generation capacity of the self-supporting power generation battery. The charge current or the discharge current may be current controlled.
この構成によれば、蓄電設備の電池残量と自立発電電池の発電能力とに応じた状態で、 蓄電設備に充放電を実行させることが可能となるので、 蓄電設備の電池残量をよリ精度よ く管理することが可能となる。  According to this configuration, the storage facility can be charged and discharged according to the remaining battery capacity of the storage facility and the power generation capacity of the stand-alone power generation battery. Therefore, the remaining battery capacity of the storage facility can be reduced. It becomes possible to manage precisely.
また、 前記自立発電電池のみから電力が出力されて前記最大出力点制御が実行される 場合、 前記放電コンバータ及び前記充電コンバータは、 前記放電電流と前記充電電流との 差がなくなるように、 これらを電流制御することも可能である。  Further, when the maximum output point control is performed by outputting power only from the self-supporting power generation battery, the discharge converter and the charge converter are configured to eliminate the difference between the discharge current and the charge current. It is also possible to control the current.
この構成によれば、 自立発電電池の出力電圧が蓄電設備に影響を受けて変動してしま う状況が発生し難くなるので、 出力電圧変換手段で行う最大出力点制御を、 これまでと同 じ制御内容のもので済ますことが可能となる。  According to this configuration, the output voltage of the self-sustaining power generation battery is less likely to fluctuate due to the influence of the storage equipment, so the maximum output point control performed by the output voltage conversion means is the same as before. It is possible to do with the control content.
本発明の電源最適化装置において、 前記自立発電電池及び前記蓄電設備の両方から電 力が出力される場合、 前記放電コンバータは、 放電時において前記放電電流を所定電流量 に電流制御しても良い。  In the power supply optimization device of the present invention, when power is output from both the self-supporting power generation battery and the storage facility, the discharge converter may control the discharge current to a predetermined current amount at the time of discharge. .
この構成によれば、蓄電設備からは常に所定の電流量が流れるように制御されるので、 出力電圧変換手段で行う最大出力点制御を、 これまでと同じ制御内容のもので済ますこと が可能となる。  According to this configuration, the storage facility is controlled so that a predetermined amount of current always flows, so that the maximum output point control performed by the output voltage conversion means can be performed with the same control content as before. Become.
また、 前記自立発電電池の発電電力で前記蓄電設備が充電される場合、 前記充電コン バータは、 充電時において前記充電電流を所定電流量に電流制御することにしても良い。  In the case where the storage facility is charged with the power generated by the self-sustaining power generation battery, the charging converter may control the charging current to a predetermined current amount during charging.
この構成によれば、 自立発電電池の出力がないとき、 出力電圧変換手段の入力が蓄電 設備の電圧になって、 蓄電設備からのみの電力を負荷に供給することが可能となる。  According to this configuration, when there is no output of the self-sustaining power generation battery, the input of the output voltage conversion means becomes the voltage of the storage facility, and it becomes possible to supply power only from the storage facility to the load.
本発明の電源最適化装置において、 前記自立発電電池が停止する際、 放電コンバータ をショートさせる短絡回路を更に備えても良い。  The power supply optimization device according to the present invention may further comprise a short circuit for shorting the discharge converter when the self-supporting power generation battery is stopped.
これによれば、 この短絡によって充放電回路が短絡されるので、 充放電回路の通電ロ スを削減することが可能となる。 本発明では、 前記蓄電設備は、 電力を蓄電可能な 2次電池と、 前記 2次電池の両端に 接続された入力部と、 前記 2次電池に直列接続された出力部を備え、 前記 2次電池の放電 を管理する放電コンバータと、 前記放電コンバータの出力部に接続された入力部と、 前記 2次電池の両端に接続された出力部を備え、 前記 2次電池の充電を管理する充電コンバー タとを備え、 前記自立発電電池の出力有無によらず、 前記 2次電池の残量に応じた放電を 実行することも可能である。 According to this, since the charge / discharge circuit is shorted by the short circuit, it is possible to reduce the conduction loss of the charge / discharge circuit. In the present invention, the storage facility includes: a secondary battery capable of storing electric power; an input unit connected to both ends of the secondary battery; and an output unit connected in series to the secondary battery A charge converter configured to control discharge of a battery; an input unit connected to an output unit of the discharge converter; and an output unit connected to both ends of the secondary battery; It is also possible to perform discharge according to the remaining amount of the secondary battery regardless of the presence or absence of the output of the self-supporting power generation battery.
この構成によれば、 放電コンバータの出力を 2次電池に繋ぐと、 自立発電電池の出力 は周囲に関係なく放電コンバ一タに電力を供給することが可能となるので、 2次電¾の電 池残量によって放電量を変えることが可能となる。 よって、 例えば電池残量が多い場合に は、 電池から多量の電力を出力し、 電池残量が少ない場合には、 電池からの出力を減らす 動作をとることが可能となる。  According to this configuration, when the output of the discharge converter is connected to the secondary battery, it becomes possible to supply power to the discharge converter regardless of the surrounding output of the self-sustaining power generation battery. It becomes possible to change the amount of discharge depending on the remaining amount of pond. Therefore, for example, when the battery remaining amount is large, it is possible to output a large amount of power from the battery, and when the battery remaining amount is small, it is possible to take an operation to reduce the output from the battery.
本発明では、 前記放電コンバ一タと前記充電コンバータとが一体化した充放電コンバ ータとして設けられていることも可能である。  In the present invention, the discharge converter and the charge converter may be provided as an integrated charge / discharge converter.
この構成によれば、 充電と放電とで各々個別のコンバータを設けずに済むので、 部品 点数を少なく抑えることが可能となる。  According to this configuration, since it is not necessary to provide separate converters for charging and discharging, it is possible to reduce the number of parts.
本発明では、 前記出力電圧変換手段を経て前記負荷に供給されるシステム電圧を一定 に保つ定電圧手段を更に備えても良い。  The present invention may further comprise constant voltage means for keeping a system voltage supplied to the load via the output voltage conversion means constant.
この構成によれば、 蓄電設備からの電力が例えば電池残量や温度等によって変動する 状況となっても、 この電力は定電圧手段によって定電圧化された後、 システム電圧として 出力することが可能となる。 よって、 蓄電設備の状態によらず、 定電圧を負荷に供給する ことが可能となる。  According to this configuration, even if power from the storage facility fluctuates due to, for example, the remaining amount of battery, temperature, etc., this power can be output as the system voltage after being made constant by the constant voltage means. It becomes. Therefore, the constant voltage can be supplied to the load regardless of the state of the storage facility.
本発明では、 前記定電圧手段は、 電力を蓄電可能な定電圧用 2次電池と、 前記出力電 圧変換手段の出力に接続される入力部と、 前記定電圧用 2次電池に直列接続される出力部 を備え、 該定電圧用 2次電池を放電可能な定電圧用放電コンバータと、 前記放電コンパ一 タの出力部に接続される入力部と、 前記定電圧用 2次電池の両端に接続される出力部を備 え、 前記定電圧用 2次電池に充電可能な定電圧用充電コンバータとを備え、 前記負荷への 電源出力が高い場合、前記定電圧用充電コンバータにより前記定電圧用 2次電池を充電し、 前記電源出力が低い場合、 前記定電圧用放電コンバ一タによリ前記定電圧用 2次電池を放 電させることにより、 前記システム電圧を一定に保つことでも良い。  In the present invention, the constant voltage means is connected in series to a constant voltage secondary battery capable of storing electric power, an input unit connected to an output of the output voltage conversion means, and the constant voltage secondary battery. A constant voltage discharge converter capable of discharging the constant voltage secondary battery, an input unit connected to the output unit of the discharge capacitor, and both ends of the constant voltage secondary battery. It has an output unit to be connected, and has a constant voltage charge converter capable of charging the secondary battery for constant voltage, and when the power supply output to the load is high, the constant voltage charge converter performs the constant voltage charge converter. The system voltage may be kept constant by charging a secondary battery and discharging the constant voltage secondary battery by the constant voltage discharge converter when the power supply output is low.
この構成によれば、 定電圧手段の放電は、 定電圧用 2次電池と定電圧用放電コンパ一 タとにより行われるので、 定電圧用放電コンバータが小容量のものであっても、 大きな放 電電力を確保することが可能となる。  According to this configuration, discharge of the constant voltage means is performed by the secondary battery for constant voltage and the discharge capacitor for constant voltage, so even if the constant voltage discharge converter has a small capacity, a large discharge can be achieved. It becomes possible to secure electric power.
本発明では、 前記定電圧手段は、 電力を蓄電可能な定電圧用 2次電池と、 前記定電圧 用 2次電池の両端に接続される入力部と、 前記定電圧用 2次電池に直列接続される出力部 を備え、 前記定電圧用 2次電池の放電可能な定電圧用放電コンバータと、 前記放電コンバ ータの出力部に接続される入力部と、 前記定電圧用 2次電池の両端に接続される出力部を 備え、 前記定電圧用 2次電池を充電可能な定電圧用充電コンバータとを備え、 前記負荷へ の電源出力が高い場合、 前記定電圧用充電コンバータによリ前記定電圧用 2次電池を充電 し、 前記電源出力が低い場合、 前記定電圧用放電コンバータにより前記定電圧用 2次電池 を放電させることにより、 前記システム電圧を一定に保つことも可能である。 In the present invention, the constant voltage means comprises: a constant voltage secondary battery capable of storing electric power; an input unit connected to both ends of the constant voltage secondary battery; and a series connection to the constant voltage secondary battery An output unit, a discharge converter for discharging constant voltage of the secondary battery for constant voltage, an input unit connected to an output unit of the discharge converter, and both ends of the secondary battery for constant voltage Output connected to A constant voltage charging converter capable of charging the constant voltage secondary battery; and a high power output to the load, the constant voltage charging converter charges the constant voltage secondary battery using the constant voltage charging converter. When the power supply output is low, the system voltage can be kept constant by discharging the constant voltage secondary battery with the constant voltage discharge converter.
この構成によれば、 出力電圧変換手段からの出力有無によらず、 定電圧用 2次電池の 電池残量に応じた放電制御を行うことが可能となる。  According to this configuration, regardless of the presence or absence of the output from the output voltage conversion means, it becomes possible to perform discharge control according to the remaining battery capacity of the constant voltage secondary battery.
本発明では、 前記定電圧用放電コンバータと前記定電圧用充電コンバータとが一体化 した定電圧用充放電コンバ一タとして設けられても良い。  In the present invention, the constant voltage discharge converter and the constant voltage charge converter may be integrated as a constant voltage charge / discharge converter.
この構成によれば、 充電と放電とで各々個別のコンバータを設けずに済むので、 部品 点数を少なく抑えることが可能となる。  According to this configuration, since it is not necessary to provide separate converters for charging and discharging, it is possible to reduce the number of parts.
図面の簡単な説明 Brief description of the drawings
本発明の目的及び特徴は以下のような添付図面を参照する以後の好ましい実施例の説明 により明確になる。  The objects and features of the present invention will become more apparent from the following description of the preferred embodiments with reference to the accompanying drawings.
【図 1】 第 1実施形態における電力供給システムの全体構成を示すプロック図。 FIG. 1 is a block diagram showing an entire configuration of a power supply system according to a first embodiment.
【図 2】 電力入出力制御装置の構成を示す構成図。 FIG. 2 is a block diagram showing the configuration of a power input / output control device.
【図 3】 太陽電池の V— I曲線と V—P曲線とを示す波形図。  FIG. 3 is a waveform chart showing V-I and V-P curves of a solar cell.
【図 4】 電力入出力制御装置の他の構成を示す構成図。  FIG. 4 is a block diagram showing another configuration of the power input / output control device.
【図 5】 第 2実施形態における電力入出力制御装置の構成を示す構成図。  FIG. 5 is a block diagram showing the configuration of a power input / output control device according to a second embodiment.
【図 6】 電力入力制御装置の他の構成を示す構成図。  FIG. 6 is a block diagram showing another configuration of the power input control device.
【図 7】 第 3実施形態における電力入出力制御装置の構成を示す構成図。  <Figure 7> The block diagram which shows the constitution of the electric power input and output control device in 3rd execution form.
【図 8】 電力入出力制御装置の他の構成を示す構成図。  FIG. 8 is a block diagram showing another configuration of the power input / output control device.
【図 9】太陽電池動作及び充放電制御動作を説明する図であり、 (a ) が太陽電池の出 力電圧が増加する場合の説明図、 (b ) が太陽電池の出力電圧が減少する場合の説明図。  FIG. 9 is a diagram for explaining the solar cell operation and charge / discharge control operation, wherein (a) is an explanatory view when the output voltage of the solar cell increases, and (b) is when the output voltage of the solar cell decreases FIG.
【図 1 0】 第 4実施形態における電力入出力制御装置の構成を示す構成図。  FIG. 10 is a block diagram showing the configuration of a power input / output control apparatus according to a fourth embodiment.
【図 1 1】 定電流制御を説明するための構成図と、 外部指令値と出力電流との関係を 示す特性波形図。  FIG. 1 1 is a configuration diagram for explaining constant current control, and a characteristic waveform diagram showing a relationship between an external command value and an output current.
【図 1 2】 電力入出力制御装置の他の構成を示す構成図。  FIG. 12 is a configuration diagram showing another configuration of the power input / output control device.
【図 1 3】 第 5実施形態における電力入出力制御装置の構成を示す構成図。  FIG. 13 is a configuration diagram showing a configuration of a power input / output control device in a fifth embodiment.
【図 1 4】 電力入出力制御装置の他の構成を示す構成図。  FIG. 14 is a block diagram showing another configuration of the power input / output control device.
【図 1 5】 定電流制御及び定電圧制御を説明するための構成図と、 外部指令値と出力 電流及び出力電圧との関係を示す特性波形図。  FIG. 15 is a configuration diagram for describing constant current control and constant voltage control, and a characteristic waveform diagram showing a relationship between an external command value, an output current, and an output voltage.
【図 1 6】 充電回路と放電回路の動作をまとめた表。  [Figure 16] A table summarizing the operation of the charging and discharging circuits.
【図 1 7】 従来における電力供給システムの概略構成を示すブロック図。  FIG. 17 is a block diagram showing a schematic configuration of a conventional power supply system.
発明を実施するための形態 以下、 本発明の実施形態が本明細書の一部を成す添付図面を参照してより詳細に説明 する。 図面全体において同一又は類似する部分については同一参照符号を付して説明を省 略する。 MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in more detail with reference to the accompanying drawings which form a part of the present specification. The same reference symbols are attached to the same or similar parts throughout the drawings and the description is omitted.
(第 1実施形態)  First Embodiment
以下、 本発明を住宅に具体化した電力供給システムの電源最適化装置の第 1実施形態 を図 1〜図 4に従って説明する。 以下において、 本発明を適用する建物として戸建て住宅 の家屋を想定して説明するが、 本発明の技術思想を集合住宅や事務室、 商家、 工場などの ような建物に適用することを妨げるものではない。  Hereinafter, a first embodiment of a power supply optimization device of a power supply system in which the present invention is embodied in a house will be described according to FIGS. 1 to 4. In the following description, it is assumed that a house of a detached house is assumed as a building to which the present invention is applied, but it does not prevent applying the technical idea of the present invention to a building such as an apartment house, an office, a commerce house, or a factory. Absent.
図 1に示すように、 住宅には、 宅内に設置された各種機器 (照明機器、 エアコン、 家 電、 オーディオビジュアル機器等) に電力を供給する電力供給システム 1が設けられてい る。 電力供給システム 1は、 系統 2から得る商用交流電源 (A C電源) を電力として各種 機器を動作させる他に、 太陽光により発電する太陽電池 3の電力も各種機器に電源として 供給する。 太陽電池 3は、 例えば複数のセル 4から構成されている。 電力供給システム 1 は、 直流電源 (D C電源) を入力して動作する D C機器 5の他に、 交流電源 (A C電源) を入力して動作する A C機器 6にも電力を供給する。 なお、 太陽電池 3が直流電源及び自 立発電電池を構成し、 D C機器 5及び A C機器 6が負荷を構成する。  As shown in FIG. 1, the home is provided with a power supply system 1 for supplying power to various devices (lighting equipment, air conditioners, household appliances, audio visual equipment, etc.) installed in the home. The power supply system 1 operates various devices using the commercial AC power source (AC power source) obtained from the grid 2 as electric power, and also supplies the power of the solar battery 3 generated by sunlight as a power source to the various devices. The solar cell 3 is composed of, for example, a plurality of cells 4. The power supply system 1 supplies power to the AC device 6 that operates by inputting an AC power supply (AC power), in addition to the DC device 5 that operates by inputting a DC power supply (DC power supply). The solar battery 3 constitutes a DC power supply and a self-generating battery, and the DC device 5 and the AC device 6 constitute a load.
電力供給システム 1には、 同システム 1のパヮ一コンデイショナとしてコントロール ユニット 7及び D C分電盤 (直流ブレーカ内蔵) 8が設けられている。 コントロールュニ ットフには、 同ユニットフの動作を統括制御する制御部 7 aが設けられている。 また、 電 力供給システム 1には、 住宅の D C機器 5の動作を制御する機器として制御ュニット 9及 びリレ一ュニット 1 0が設けられている。  The power supply system 1 is provided with a control unit 7 and a DC distribution board (with a DC breaker built-in) 8 as a component conditioner of the system 1. The control room is provided with a control unit 7a that generally controls the operation of the unit. Further, in the power supply system 1, a control unit 9 and a reorganization unit 10 are provided as devices for controlling the operation of the DC device 5 in the house.
コントロールユニットフには、 交流電源を分岐させる A C分電盤 1 1が交流系電力線 1 2を介して接続されている。 コントロールユニット 7は、 この A C分電盤 1 1を介して 系統 2に接続されるとともに、 直流系電力線 1 3を介して太陽電池 3に接続されている。 コントロールユニット 7は、 A C分電盤 1 1から交流電力を取り込むとともに太陽電池 3 から直流電力を取り込み、 これら電力を機器電源として所定の直流電力に変換する。 そし て、 コントロールユニット 7は、 この変換後の直流電力を、 直流系電力線 1 4を介して D C分電盤 8に出力したり、 又は直流系電力線 1 5を介して蓄電池ユニット 1 6に出力して 同電力を蓄電したりする。 コントロールユニット 7は、 A C分電盤 1 1から交流電力を取 リ込むのみならず、 太陽電池 3や蓄電池ユニット 1 6の電力を交流電力に変換して A C分 電盤 1 1に供給することも可能である。 コントロールユニット 7は、 信号線 1 7を介して D C分電盤 8とデータやり取リを実行する。  An AC power distribution board 11 for branching AC power is connected to the control unit 1 via an AC power line 12. The control unit 7 is connected to the grid 2 via the AC distribution board 11 and to the solar cell 3 via a DC power line 13. The control unit 7 takes in AC power from the AC distribution board 11 and also takes in DC power from the solar cell 3, and converts these powers into predetermined DC power as equipment power. Then, control unit 7 outputs the DC power after conversion to DC distribution board 8 through DC power line 14 or to storage battery unit 16 through DC power line 15. Charge the same power. The control unit 7 not only receives AC power from the AC distribution board 1 1 but also converts the power of the solar battery 3 and the storage battery unit 16 into AC power and supplies it to the AC distribution board 1 1 It is possible. The control unit 7 exchanges data with the DC distribution board 8 through the signal line 17.
D C分電盤 8は、 直流電力対応の一種のブレーカである。 D C分電盤 8は、 コント口 —ルユニット 7から入力した直流電力を分岐させ、 その分岐後の直流電力を、 直流系電力 線 1 8を介して制御ュニット 9に出力したり、 直流系電力線 1 9を介してリレ一ユニット 1 0に出力したりする。 また、 D C分電盤 8は、 信号線 2 0を介して制御ユニット 9とデ —タやり取りをしたり、 信号線 2 1を介してリレ一ュニット 1 0とデータをやり取りした りする。 The DC distribution board 8 is a kind of breaker compatible with DC power. The DC distribution board 8 branches the DC power input from the control unit 7 and outputs the DC power after the branch to the control unit 9 via the DC power line 18 or the DC power line 1 Output to relay unit 10 via 9 and so on. Also, the DC distribution board 8 is connected to the control unit 9 via the signal line 20. — Exchange data with the relay unit 10 via the signal line 2 1
制御ユニット 9には、 複数の D C機器 5が接続されている。 これら D C機器 5は、 直 流電力及びデータの両方を 1対の線によって搬送可能な直流供給線路 2 2を介して制御ュ ニット 9と接続されている。 直流供給線路 2 2は、 D C機器の電源となる直流電圧に、 高 周波の搬送波によリデ一タを電送する通信信号を重畳する、 いわゆる電力線搬送通信によ リ、 1対の線で電力及びデータの両方を D C機器 5に搬送する。 制御ユニット 9は、 直流 系電力線 1 8を介して D C機器 5の直流電源を取得し、 D C分電盤 8から信号線 2 0を介 して得る動作指令を基に、どの D C機器 5をどのように制御するのかを把握する。そして、 制御ュニット 9は、 指示された D C機器 5に直流供給線路 2 2を介して直流電圧及び動作 指令を出力し、 D C機器 5の動作を制御する。  A plurality of DC devices 5 are connected to the control unit 9. These DC devices 5 are connected to the control unit 9 via a DC supply line 22 which can carry both DC power and data by a pair of wires. The DC supply line 22 is a so-called power line carrier communication in which a communication signal for transmitting a read signal with a high frequency carrier wave is superimposed on a DC voltage serving as a power supply of a DC device. Transport both data to DC instrument 5. The control unit 9 acquires the DC power of the DC device 5 through the DC power line 18 and determines which DC device 5 based on the operation command obtained from the DC distribution board 8 through the signal line 20. Figure out what to control. Then, the control unit 9 outputs the DC voltage and the operation command to the instructed DC device 5 via the DC supply line 22 and controls the operation of the DC device 5.
制御ュニット 9には、 宅内の D C機器 5の動作を切り換える際に操作するスィッチ 2 3が直流供給線路 2 2を介して接続されている。 また、 制御ユニット 9には、 例えば赤外 線リモ一トコントローラからの発信電波を検出するセンサ 2 4が直流供給線路 2 2を介し て接続されている。 よって、 D C分電盤 8からの動作指示のみならず、 スィッチ 2 3の操 作やセンサ 2 4の検知によっても、 直流供給線路 2 2に通信信号を流して D C機器 5が制 御される。  The control unit 9 is connected via a DC supply line 22 with a switch 23 operated when switching the operation of the DC device 5 in the house. Further, a sensor 24 for detecting a radio wave transmitted from, for example, an infrared ray remote controller is connected to the control unit 9 via a DC supply line 22. Therefore, not only the operation instruction from the DC distribution board 8 but also the operation of the switch 23 and the detection of the sensor 24 flow a communication signal to the DC supply line 22 to control the DC device 5.
リレーュニット 1 0には、 複数の D C機器 5がそれぞれ個別の直流系電力線 2 5を介 して接続されている。 リレーユニット 1 0は、 直流系電力線 1 9を介して D C機器 5の直 流電源を取得し、 D C分電盤 8から信号線 2 1を介して得る動作指令を基に、 どの D C機 器 5を動作させるのかを把握する。 そして、 リレーユニット 1 0は、 指示された D C機器 5に対し、 内蔵のリレ一にて直流系電力線 2 5への電源供給をオンオフすることで、 D C 機器 5の動作を制御する。 また、 リレーユニット 1 0には、 D C機器 5を手動操作するた めの複数のスィッチ 2 6が接続されており、 スィッチ 2 6の操作によって直流系電力線 2 5への電源供給をリレ一にてオンオフすることにより、 D C機器 5が制御される。  A plurality of DC devices 5 are connected to the relay unit 10 via respective DC power lines 25 respectively. The relay unit 10 obtains the DC power supply of the DC device 5 through the DC power line 19, and the DC device 5 based on the operation command obtained from the DC distribution board 8 through the signal line 21. Figure out what to do. The relay unit 10 controls the operation of the DC device 5 by turning on and off the power supply to the DC power line 25 with the built-in relay for the instructed DC device 5. Further, a plurality of switches 26 for manually operating the DC device 5 are connected to the relay unit 10, and the power supply to the DC power line 25 is controlled by operating the switch 26. By turning on and off, the DC device 5 is controlled.
D C分電盤 8には、 例えば壁コンセントゃ床コンセン卜の態様で住宅に建て付けられ た直流コンセント 2フが直流系電力線 2 8を介して接続されている。 この直流コンセント 2 7に D C機器のプラグ (図示略) を差し込めば、 同機器に直流電力を直接供給すること が可能である。  For example, a DC outlet 2 is connected to the DC distribution panel 8 via a DC power line 2 8 installed in a house in the manner of a wall outlet or a floor panel. It is possible to directly supply DC power to the DC outlet 27 by plugging a DC device plug (not shown) into the DC outlet 27.
また、 系統 2と A C分電盤 1 1との間には、 系統 2の使用量を遠隔検針可能な電カメ —タ 2 9が接続されている。 電力メータ 2 9には、 商用電源使用量の遠隔検針の機能のみ ならず、 例えば電力線搬送通信や無線通信の機能が搭載されている。 電力メータ 2 9は、 電力線通信や無線通信等を介して検針結果を電力会社等に送信する。  In addition, an electric camera 29 capable of remotely detecting the amount of use of the system 2 is connected between the system 2 and the AC distribution board 11. The power meter 29 is equipped with not only the function of remote meter reading of the commercial power consumption, but also the function of power line carrier communication and wireless communication, for example. The power meter 29 transmits a measurement result to a power company or the like through power line communication, wireless communication, or the like.
電力供給システム 1には、 宅内の各種機器をネットワーク通信によって制御可能とす るネットワークシステム 3 0が設けられている。 ネットワークシステム 3 0には、 同シス テム 3 0のコントロールュニットとして宅内サーバ 3 1が設けられている。 宅内サーバ 3 1は、 インターネットなどのネットワーク Nを介して宅外の管理サーバ 32と接続される とともに、信号線 33を介して宅内機器 34に接続されている。また、宅内サーバ 31は、 D C分電盤 8から直流系電力線 35を介して取得する直流電力を電源として動作する。 The power supply system 1 is provided with a network system 30 which can control various devices in the house by network communication. The network system 30 is provided with a home server 31 as a control unit of the system 30. Home server 3 1 is connected to the management server 32 outside the home via a network N such as the Internet, and is connected to the home appliance 34 via a signal line 33. Further, the in-home server 31 operates using DC power acquired from the DC distribution board 8 via the DC power line 35 as a power supply.
宅内サーバ 31には、 ネットワーク通信による宅内の各種機器の動作制御を管理する コント口一ルボックス 36が信号線 37を介して接続されている。 コントロールボックス 36は、 信号線 1 7を介してコントロールユニットフ及び DC分電盤 8に接続されるとと もに、 直流供給線路 38を介して DC機器 5を直接制御可能である。 コントロールボック ス 36には、 例えば使用したガス量や水道量を遠隔検針可能なガス 水道メ一タ 39が接 続されるとともに、 ネットワークシステム 30の操作パネル 40に接続されている。 操作 パネル 40には、 例えばドアホン子器やセンサやカメラからなる監視機器 41が接続され ている。  The home server 31 is connected via a signal line 37 with a control box 36 that manages operation control of various devices in the home by network communication. The control box 36 is connected to the control unit board and the DC distribution board 8 via the signal line 17, and can control the DC device 5 directly via the DC supply line 38. For example, a gas water meter 39 capable of remotely measuring the amount of used gas and water is connected to the control box 36, and is connected to the operation panel 40 of the network system 30. Connected to the operation panel 40 is a monitoring device 41 comprising, for example, a door phone handset, a sensor, and a camera.
宅内サーバ 31は、ネットワーク Nを介して宅内の各種機器の動作指令を入力すると、 コントロールボックス 36に指示を通知して、 各種機器が動作指令に準じた動作をとるよ うにコントロールボックス 36を動作させる。 また、 宅内サーバ 31は、 ガス 水道メ一 タ 39から取得した各種情報を、 ネットワーク Nを通じて管理サ一バ 32に提供可能であ るとともに、 監視機器 41で異常検出があったことを操作パネル 40から受け付けると、 その旨もネットワーク Nを通じて管理サーバ 32に提供する。  When the home server 31 inputs an operation command of various devices in the home through the network N, the home server 31 notifies the control box 36 of the command and operates the control box 36 so that the various devices operate according to the operation command. . In addition, the home server 31 can provide various kinds of information acquired from the gas and water supply system 39 to the management server 32 through the network N, and at the same time, the operation panel 40 indicates that the monitoring device 41 detects an abnormality. From the network N to the management server 32 via the network N.
図 2に、 太陽電池 3及び蓄電池ユニット 1 6の電力入出力を管理する電力入出力制御 装置 1 aを図示し、 以下にこれを説明する。 同図に示すように、 コントロールユニット 7 には、 直流電力の交流電力への変換と交流電力の直流電力への変換との両方が可能な双方 向 ACZDCコンバータ 42が設けられている。 双方向 ACZDCコンバータ 42は、 入 力交流電圧を直流電圧に変換出力する A CZDCコンバータ 43と、 入力直流電圧を交流 電圧に変換出力する D C/ A Cインバータ 44とを備えている。 A CZD Cコンバータ 4 3は、 系統 2から入力した交流電圧を直流電圧に変換して DC機器 5や蓄電池ュニット 1 6に出力する。 また、 DCZACインバータ 44は、 太陽電池 3や蓄電池ユニット 1 6か ら入力した直流電圧を交流電圧に変換して系統 2に逆潮流する。  FIG. 2 illustrates a power input / output control device 1a that manages power input / output of the solar battery 3 and the storage battery unit 16 and this will be described below. As shown in the figure, the control unit 7 is provided with a bidirectional ACZDC converter 42 capable of both converting DC power into AC power and converting AC power into DC power. The bi-directional ACZDC converter 42 includes an ACZDC converter 43 that converts and outputs an input AC voltage to a DC voltage, and a DC / AC inverter 44 that converts and outputs an input DC voltage to an AC voltage. The ACZD C converter 43 converts the AC voltage input from the system 2 into a DC voltage and outputs the DC voltage to the DC device 5 or the storage battery unit 16. Further, the DCZAC inverter 44 converts the DC voltage input from the solar battery 3 or the storage battery unit 16 into an AC voltage and reversely flows the current to the grid 2.
コントロールユニット 7には、 太陽電池 3の電力を最も電力効率の良い点 (最大電力 点) で出力させる最大出力点制御 DCZDCコンバータ 45が設けられている。 最大出力 点制御 DCZDCコンバータ 45は、 太陽電池 3に接続されるとともに、 双方向 ACZD Cコンバータ 42及び DC機器 5に接続されている。 なお、 最大出力点制御 DCZDCコ ンバータ 45が出力電圧変換手段に相当する。  The control unit 7 is provided with a maximum power point control DCZDC converter 45 that outputs the power of the solar cell 3 at the most power efficient point (maximum power point). The maximum output point control DCZDC converter 45 is connected to the solar cell 3 and to the bidirectional ACZD C converter 42 and the DC device 5. The maximum output point control DCZDC converter 45 corresponds to the output voltage conversion means.
最大出力点制御は、 いわゆる MP PT (Maximum Power Point Tracking) 制御と呼ば れる電圧出力制御の一種である。 ところで、 太陽電池 3には、 図 3に示すように、 電力を 最も効率よく最大出力できる点、 つまり最大電力点というものがあり、 この点を満たす点 で発電しているとき、 無駄のない電力出力が可能である。 しかし、 太陽電池 3は、 日射量 や温度により V— I特性が刻々と変化し、 それに応じて最大電力点もその都度変化する。 よって、 最大出力点制御 DCZDCコンバータ 45は、 太陽電池 3の発電状態に応じて自 動的に入力電圧を変化させることにより、 太陽電池 3の電圧、 即ち最大電力点を追従させ て、 太陽電池 3の電力を最も効率の良い電力で取り出している。 最大出力点制御は、 山登 リ法とも呼ばれ、 太陽電池 3の出力電圧を意図的に変動させて、 変動前と後との値を比較 し、 現在の出力が最大か否かを確認することを繰り返し行う。 Maximum power point control is a type of voltage output control called so-called MP PT (Maximum Power Point Tracking) control. By the way, as shown in FIG. 3, the solar cell 3 has a point where it can most efficiently output electric power at the maximum, that is, a maximum electric power point. Output is possible. However, in the solar cell 3, the V-I characteristics change every moment depending on the amount of solar radiation and the temperature, and the maximum power point also changes accordingly. Therefore, the maximum power point control DCZDC converter 45 automatically changes the input voltage according to the power generation state of the solar cell 3 to make the voltage of the solar cell 3, that is, the maximum power point follow. Power of the most efficient. The maximum power point control is also called the hill-climbing method. The output voltage of the solar cell 3 is intentionally varied, and the values before and after the variation are compared to confirm whether the current output is maximum or not. Do the thing repeatedly.
太陽電池 3には、 蓄電池ュニット 1 6の蓄電設備 46として 2次電池 4フが並列接続 されている。 最大出力点制御 DCZDCコンバータ 45は、 太陽電池 3と 2次電池 47と の合成電力 Jを入力し、これを最大出力点制御して電圧出力する。 2次電池 47としては、 例えばリチウムイオン電池が使用される。 また、 蓄電設備 46とは、 蓄電池ュニット 1 6 の電力蓄電箇所や、 その入出力 (充放電) の動作を司る機能のことをいう。 なお、 蓄電設 備 46が直流電源を構成する。  A secondary battery 4 is connected in parallel to the solar battery 3 as a storage facility 46 of the storage battery unit 16. Maximum Power Point Control The DCZDC converter 45 receives the combined power J of the solar battery 3 and the secondary battery 47, controls the maximum power point, and outputs a voltage. As the secondary battery 47, for example, a lithium ion battery is used. Further, the storage facility 46 refers to a function that controls the storage location of the storage battery unit 1 6 and the input / output (charge / discharge) operation thereof. The storage unit 46 constitutes a DC power supply.
さて、 昼間において太陽電池 3が太陽光発電する際、 太陽電池 3と 2次電池 4フとの 合成電力 Jが最大出力点制御 DCZDCコンバータ 45に出力される。 最大出力点制御 D CZDCコンバータ 45は、 この合成電力 Jを最大出力点制御し、 入力電圧を切り換える ことで合成電力 Jを最大電力で出力する。 よって、 DC機器 5や AC機器 6は、 合成電力 Jで機器電源として動作する。このとき、 2次電池 47よりも太陽電池 3の電力が大きく、 これら 2者間からの供給電力に差が生じても、 これらは合成電力 Jとして最大出力点制御 DCZDCコンバータ 45に出力され、 最大出力点を追従するという好適な値で出力され る。  Now, when the solar battery 3 generates solar power in the daytime, the combined power J of the solar battery 3 and the secondary battery 4 is output to the maximum power point control DCZDC converter 45. Maximum Output Point Control The DCZDC converter 45 performs maximum output point control on the combined power J, and outputs the combined power J at the maximum power by switching the input voltage. Therefore, the DC device 5 and the AC device 6 operate as a device power supply with the combined power J. At this time, even if the power of the solar cell 3 is larger than that of the secondary battery 47 and there is a difference in the supplied power from these two, these are output as the combined power J to the maximum output point control DCZDC converter 45, It is output with the suitable value of following the output point.
なお、 合成電力 Jが余った際には、 DCZACインバ一タ 44を介して系統 2に逆潮 流されて売電される。 また、 昼間において天候不順により太陽光発電ができない場合、 系 統 2の電力が DC機器 5や AC機器 6の機器電源として使用される。  When the combined power J is left, it is reversely flowed to the grid 2 via the DCZAC inverter 44 and sold. In addition, when solar power generation can not be performed due to irregular weather in the daytime, the power of system 2 is used as the device power supply of DC device 5 and AC device 6.
夜間時は、 太陽電池 3が発電できないので、 系統 2の電源が使用される。 このとき、 コントロールュニットフは、 系統 2の交流電力を A CZD Cコンバータ 43で直流に変換 し、 その直流電力を DC機器 5に供給する。  At night, since the solar cell 3 can not generate power, the power source of the grid 2 is used. At this time, the control unit converts the AC power of the system 2 into DC by the ACZDC converter 43 and supplies the DC power to the DC device 5.
また、 夜間においてバックアツプ電源として残しておく量よリも多い電力が 2次電池 47に蓄電されている場合や、 或いは停電時には、 2次電池 47の電力が機器電源として 使用される。 このとき、 太陽電池 3は発電していないので、 2次電池 47の電圧のみが最 大出力点制御 DCZDCコンバータ 45にかかる。 よって、 2次電池 4フの出力電力が D C機器 5に供給され、 この電力によって DC機器 5や AC機器 6が動作される。  In addition, when a large amount of power is stored in the secondary battery 47 as compared to the amount left as a backup power source at night, or at the time of a power failure, the power of the secondary battery 47 is used as a device power source. At this time, since the solar cell 3 is not generating power, only the voltage of the secondary cell 47 is applied to the maximum power point control DCZDC converter 45. Therefore, the output power of the secondary battery 4 is supplied to the DC device 5, and the DC device 5 and the AC device 6 are operated by this power.
従って、 本例においては、 太陽電池 3と 2次電池 47 (蓄電池ユニット 1 6) とを並 列接続し、 これらの合成電力を最大出力点制御 DCZDCコンバータ 45に入力して、 最 大出力点制御を経た後の電力を、 を DC機器 5や AC機器 6の電源として供給する。 よつ て、 1つの最大出力点制御 DCZDCコンバータ 45、 つまリ大容量コンバータを、 太陽 電池 3と 2次電池 47とで共用することが可能となるので、 この種の大容量コンバータの 数を減らすことが可能となる。 このため、 コントロールユニット 7、 ひいては電力供給シ ステム 1の装置サイズを小型化することが可能となる。 Therefore, in this example, the solar battery 3 and the secondary battery 47 (battery unit 16) are connected in parallel, the combined power of these is input to the maximum output point control DCZDC converter 45, and the maximum output point control is performed. Supply the power after passing through as the power supply of DC equipment 5 and AC equipment 6. Therefore, one maximum power point control DCZDC converter 45 and a large-capacity converter can be shared by solar cell 3 and secondary battery 47, thus reducing the number of such large-capacity converters. It becomes possible. Therefore, the control unit 7 and thus the power supply system It is possible to reduce the size of the stem 1 device.
さらに、 蓄電池ユニット 1 6の蓄電設備として 2次電池 4 7を使用すれば、 これ自体 が電力入出力機能を持つので、特別な入出力用のコンバ一タを用意する必要がない。また、 2次電池 4 7を複数用意し、 これらを直並列することで、 蓄電池ユニット 1 6の出力電圧 や出力容量を適宜切り換えることが可能となる。 よって、 用途に応じて簡単に蓄電池ュニ ット 1 6の出力電圧や出力容量を変更することも可能となる。  Furthermore, if the secondary battery 47 is used as a storage facility of the storage battery unit 16, since it itself has a power input / output function, it is not necessary to prepare a special input / output converter. Also, by preparing a plurality of secondary batteries 47 and connecting them in series, it is possible to switch the output voltage and output capacity of the storage battery unit 16 appropriately. Therefore, it is also possible to easily change the output voltage and output capacity of storage battery unit 16 according to the application.
また、 蓄電池ユニット 1 6の電力蓄電設備は、 2次電池 4 7に限定されず、 図 4に示 すように、例えばコンデンサ 4 8としてもよい。この場合、 2次電池 4フの場合と同様に、 特別な入出力コンバータを用意する必要がない効果や、 直並列することで出力電圧や出力 容量を適宜切り換えることができる効果を得ることが可能である。 また、 蓄電池ユニット 1 6の蓄電設備にコンデンサ 4 8を使用すれば、 2次電池 4 7の場合と比較して、 太陽電 池 3の電圧変動に対する追従速度を早くすることが可能となる。  Further, the power storage facility of the storage battery unit 16 is not limited to the secondary battery 47, and may be, for example, a capacitor 48 as shown in FIG. In this case, it is possible to obtain an effect that it is not necessary to prepare a special input / output converter as in the case of the secondary battery 4 and an effect that the output voltage and the output capacity can be switched appropriately by series connection. It is. In addition, if the capacitor 48 is used in the storage facility of the storage battery unit 16, it is possible to accelerate the tracking speed to the voltage fluctuation of the solar battery 3 as compared with the case of the secondary battery 47.
本実施形態の構成によれば、 以下に記載の効果を得ることができる。  According to the configuration of the present embodiment, the following effects can be obtained.
( 1 ) 太陽電池 3に蓄電設備 4 6を並列接続し、 これら 2者から入力される合成電力 J を最大出力点制御 D CZ D Cコンバータ 4 5によって最大出力点制御し、 同制御後の電力 を D C機器 5に供給する。 このため、 1つの最大出力点制御 D CZ D Cコンバータ 4 5、 即ち 1つの大容量コンバータを、 太陽電池 3と蓄電設備 4 6とで共用することが可能とな る。 よって、 太陽電池 3と蓄電設備 4 6との各々に、 個別の大容量 D CZ D Cコンバータ を設ける必要がなくなるので、 その分だけ装置サイズを小型化することができる。  (1) The power storage facility 46 is connected in parallel to the solar cell 3, and the combined output J input from these two parties is controlled at the maximum output point by the maximum output point control D CZ DC converter 45. Supply to DC device 5. For this reason, it is possible to share one maximum power point control D CZ D C converter 45, that is, one large capacity converter, between the solar cell 3 and the storage facility 46. Therefore, since it is not necessary to provide separate large capacity DCCDC converters for each of the solar cell 3 and the storage facility 46, the device size can be reduced accordingly.
( 2 ) 蓄電設備 4 6として 2次電池 4 7やコンデンサ 4 8を使用すれば、 電力入出力機 能が部品内に組み込まれた構造を既にとつているので、 この種の機能を別途用意せずに済 む。 また、 2次電池 4 7やコンデンサ 4 8を複数個用意し、 これらを直並列することによ リ、 出力電圧や電池容量を、 用途に応じて適宜変更することもできる。  (2) If a secondary battery 4 7 or capacitor 4 8 is used as the storage facility 46, the power input / output function already has a structure incorporated in the part, so this type of function should be prepared separately. You can go without it. Further, by preparing a plurality of secondary batteries 47 and capacitors 48 and connecting them in series, the output voltage and the battery capacity can be appropriately changed according to the application.
( 3 ) 2次電池 4 7には、 蓄電密度が高いという利点や電力入出力変動が小さいという 利点があるので、 蓄電設備 4 6として 2次電池 4 7を使用すれば、 効率よく電力を充電す ることができ、 電圧変動少なく電力を入出力することができる。  (3) The secondary battery 47 has the advantages of high storage density and small fluctuations in power input / output. Therefore, if the secondary battery 4 7 is used as the storage facility 46, the power can be efficiently charged. It is possible to input and output power with less voltage fluctuation.
( 4 ) コンデンサ 4 8には、 2次電池 4 7と比較して太陽電池 3の電圧変動に対する追 従性が高いという利点があるので、 蓄電設備 4 6としてコンデンサ 4 8を使用すれば、 太 陽電池 3の電圧変動に対して追従性高く充放電を行うことができる。  (4) The capacitor 48 has the advantage of being highly responsive to voltage fluctuations of the solar cell 3 compared to the secondary battery 47. Therefore, if the capacitor 48 is used as the storage facility 46, Charge and discharge can be performed with high compliance to the voltage fluctuation of the battery 3.
(第 2実施形態)  Second Embodiment
次に、 第 2実施形態を図 5及び図 6に従って説明する。 なお、 本例は第 1実施形態と 異なる部分についてのみ詳述する。  Next, a second embodiment will be described according to FIG. 5 and FIG. In this example, only the parts different from the first embodiment will be described in detail.
図 5に示すように、 太陽電池 3には、 2次電池 4 7とコンデンサ 4 8との直列回路 4 9が並列接続されている。 また、 2次電池 4 7とコンデンサ 4 8との間には、 2次電池 4 7の充電を管理する充電 D C Z D Cコンバータ 5 0が接続されている。 充電 D C/ D Cコ ンバータ 5 0は、 一対の端子からなる入力部 5 1 a , 5 1 aがコンデンサ 4 8の両端に接 続され、一対の端子からなる出力部 5 1 b , 5 1 bが 2次電池 4 7の両端接続されている。 充電 D CZ D Cコンバータ 5 0は、 コンデンサ 4 8に蓄積された電力を入力源として、 2 次電池 4 7に電力を供給する。 即ち、 充電 D CZ D Cコンバータ 5 0が充電コンバータを 構成する。 As shown in FIG. 5, a series circuit 49 of a secondary battery 4 7 and a capacitor 48 is connected in parallel to the solar cell 3. Further, between the secondary battery 47 and the capacitor 48, a charging DCZDC converter 50 for managing charging of the secondary battery 47 is connected. In the charging DC / DC converter 50, the input parts 5 1 a and 5 1 a consisting of a pair of terminals are in contact with both ends of the capacitor 4 8 Connected at both ends of the secondary battery 47 are output portions 5 1 b and 5 1 b consisting of a pair of terminals. The charging DCZ DC converter 50 supplies power to the secondary battery 4 7 using the power stored in the capacitor 4 8 as an input source. That is, the charge DCZ DC converter 50 constitutes a charge converter.
太陽電池 3が太陽光発電すると、 太陽電池 3により生成された電力によってコンデン サ 4 8に電荷が蓄電される。 充電 D CZ D Cコンバータ 5 0は、 コンデンサ 4 8の蓄電電 荷を充電 D C Z D Cコンバータ 5 0の 1次側に流すことにより、 太陽電池 3から得る電力 を 2次電池 4フに充電する。 よって、 太陽電池 3の太陽光発電により得た電力によって、 2次電池 4 7に充電を行うことが可能となる。  When the solar cell 3 generates solar power, electric charge generated by the solar cell 3 is stored in the capacitor 48. Charging D CZ D C converter 50 charges the power obtained from the solar cell 3 to the secondary battery 4 by flowing the storage charge of the capacitor 4 8 to the primary side of the charging D C Z D C converter 50. Therefore, the secondary battery 47 can be charged by the power obtained by the solar power generation of the solar battery 3.
また、 図 6に示すように、 2次電池 4 7の貯蓄電力を管理可能としてもよい。 この場 合、 直列回路 4 9には、 2次電池 4 7 (蓄電池ユニット 1 6 ) の電池残量を検出する電池 残量用電流検出回路 5 2が直列接続されている。 電池残量用電流検出回路 5 2は、 放電を 開始した 2次電池 4 7からどれだけの総量の電流が流れ出たのかを見ることで、 蓄電池ュ ニット 1 6の電池残量を検出する。 なお、 電池残量用電流検出回路 5 2が電池残量検出手 段に相当する。  Also, as shown in FIG. 6, the stored power of the secondary battery 47 may be managed. In this case, a battery remaining amount current detection circuit 52 for detecting the battery remaining amount of the secondary battery 4 7 (storage battery unit 16) is connected in series to the series circuit 49. The battery level current detection circuit 52 detects the battery level of the storage battery unit 16 by looking at how much the total amount of current flows out from the secondary battery 47 that has started discharging. The battery residual current detection circuit 52 corresponds to a battery residual detection means.
太陽電池 3の端子間には、 太陽電池 3の発電能力を検出するための発電能力用電圧検 出回路 5 3が接続されている。 太陽電池 3の +側配線上には、 太陽電池 3の発電能力を検 出するための発電能力用電流検出回路 5 4が接続されている。 太陽電池 3の発電能力、 即 ち出力可能電力量は、 太陽電池 3の出力電圧と出力電流との乗算により計算される。 この ため、 太陽電池 3の発電能力は、 発電能力用電圧検出回路 5 3から得る電圧と、 発電能力 用電流検出回路 5 4から得る電流との乗算によって算出される。 なお、 発電能力用電圧検 出回路 5 3及び発電能力用電流検出回路 5 4が発電能力検出手段を構成する。  Between the terminals of the solar cell 3, a voltage detection circuit 53 for generation capacity for detecting the generation capacity of the solar cell 3 is connected. On the + side wiring of the solar cell 3, a current detection circuit 54 for generation capacity for detecting the generation capacity of the solar cell 3 is connected. The power generation capacity of the solar cell 3, that is, the amount of power that can be output, is calculated by multiplying the output voltage of the solar cell 3 by the output current. For this reason, the power generation capacity of the solar cell 3 is calculated by multiplying the voltage obtained from the power generation capacity voltage detection circuit 53 by the current obtained from the power generation capacity current detection circuit 54. The power generation capacity voltage detection circuit 53 and the power generation capacity current detection circuit 54 constitute a power generation capacity detection means.
充電 D CZ D Cコンバータ 5 0の入力配線上には、 同コンバータ 5 0に流れる充電電 流を検出する充電用電流検出回路 5 5が接続されている。 充電用電流検出回路 5 5は、 2 次電池 4 7に流れ込む充電電流、 即ち 2次電池 4 7の充電量を検出する。 なお、 充電用電 流検出回路 5 5が充電電流検出手段に相当する。  A charging current detection circuit 55 for detecting a charging current flowing in the converter 50 is connected to the input wiring of the charging DCZDC converter 50. The charging current detection circuit 55 detects the charging current flowing into the secondary battery 47, that is, the charge amount of the secondary battery 47. The charging current detection circuit 55 corresponds to the charging current detection means.
さて、 充電 D CZ D Cコンバータ 5 0は、 電池残量用電流検出回路 5 2からの検出値 を基に、 2次電池 4フの電池残量を把握する。 また、 充電 D C Z D Cコンバータ 5 0は、 発電能力用電圧検出回路 5 3及び発電能力用電流検出回路 5 4からの検出値を基に、 太陽 電池 3の発電能力を把握する。 そして、 充電 D CZ D Cコンバータ 5 0は、 検出した電池 残量及び発電能力に応じて、 充電用電流検出回路 5 5の値を見ながら、 2次電池 4 7を任 意の充電電流によリ充電する。  Now, based on the detection value from the battery residual current detection circuit 52, the charging DCCDC converter 50 grasps the battery residual quantity of the secondary battery 4. Also, the charge D C Z D C converter 50 grasps the power generation capacity of the solar cell 3 based on the detection values from the power generation capacity voltage detection circuit 53 and the power generation capacity current detection circuit 54. Then, according to the detected battery remaining capacity and power generation capacity, the charge D CZ DC converter 50 monitors the value of the charge current detection circuit 55 and discharges the secondary battery 4 7 with an arbitrary charge current. To charge.
このため、 2次電池 4 7の電池残量を監視制御することができるので、 電池寿命に応 じた蓄電や、 夜間の電池出力量など、 必要に応じたエネルギー貯蓄管理を行うことが可能 となる。 よって、 電力供給システム 1を汎用性の高い高性能システムとすることが可能と なる。 本実施形態の構成によれば、 第 1実施形態や第 2実施形態に記載の (1 ) 〜 (4) に 加え、 以下に記載の効果を得ることができる。 Therefore, since the remaining battery level of the secondary battery 47 can be monitored and controlled, it is possible to perform energy storage management as needed, such as storage according to the battery life, battery output at night, etc. Become. Therefore, it becomes possible to make the power supply system 1 a highly versatile and high-performance system. According to the configuration of this embodiment, in addition to (1) to (4) described in the first embodiment and the second embodiment, the following effects can be obtained.
(5) 2次電池 47とコンデンサ 48とを直列接続し、 コンデンサ 48に蓄電された電 力を入力源として 2次電池 47に充電可能としたので、 2次電池 47に電力を充電するこ とができる。  (5) The secondary battery 47 and the capacitor 48 are connected in series, and the power stored in the capacitor 48 can be used as an input source to charge the secondary battery 47. Therefore, when the secondary battery 47 is charged, Can.
(6) 検出回路 52〜55により検出した電池残量や発電能力に応じて、 充電 DCZD Cコンバータ 50により任意の充電電流で充電可能である。 このため、 電池残量を監視制 御することができるので、 例えば D C機器 5に回した電力のうちの残りを 2次電池 47に 充電するというように、 必要に応じたエネルギー貯蓄管理を実行することができる。  (6) Detection Circuit According to the remaining battery capacity and the power generation capacity detected by the detection circuits 52 to 55, the charge DCZD C converter 50 can be charged with an arbitrary charge current. For this reason, since the remaining battery level can be monitored and controlled, energy saving management is performed as needed, for example, charging the remaining of the power sent to the DC device 5 to the secondary battery 47. be able to.
(第 3実施形態)  Third Embodiment
次に、 第 3実施形態を図 7〜図 9に従って説明する。 なお、 本例も第 1及び第 2実施 形態と異なる部分についてのみ詳述する。  Next, a third embodiment will be described with reference to FIGS. Note that this example will also be described in detail only for parts different from the first and second embodiments.
図 7に示すように、 太陽電池 3と 2次電池 4フとの間には、 2次電池 47の放電動作 を管理する放電 DCZDCコンバータ 56が接続されている。 放電 DCZDCコンバータ 56は、 一対の端子からなる入力部 57 a, 57 aが太陽電池 3に並列接続され、 同じく 一対の端子からなる出力部 57 b, 57 bが 2次電池 47と直列接続されている。 即ち、 放電 DCZDCコンバータ 56及び 2次電池 47を直列接続し、 放電動作の際には、 この 直列回路の端子間電圧を放電する。 なお、 放電 D CZD Cコンバータ 56が放電コンバー タを構成する。  As shown in FIG. 7, a discharge DCZDC converter 56 for managing the discharge operation of the secondary battery 47 is connected between the solar cell 3 and the secondary battery 4. In the discharge DCZDC converter 56, the input parts 57a, 57a consisting of a pair of terminals are connected in parallel to the solar cell 3, and the output parts 57b, 57b also consisting of a pair of terminals are connected in series with the secondary battery 47. There is. That is, the discharge DCZDC converter 56 and the secondary battery 47 are connected in series, and the voltage between the terminals of the series circuit is discharged in the discharge operation. The discharge DCZDC converter 56 constitutes a discharge converter.
充電 DCZDCコンバータ 50は、 第 2実施形態で述べたものと同様のものである。 この充電 D CZD Cコンバータ 50は、 入力部 51 a, 51 aが放電 D CZ D Cコンパ一 タ 56の出力部 57 b, 57 bに接続され、 出力部 51 b, 51 bが 2次電池 47の両端 に接続されている。 充電 DCZDCコンバータ 50は、 放電 DCZDCコンバータ 56か らの出力電力を入力源として、 2次電池 4フに電力を充電可能となっている。  The charging DCZDC converter 50 is similar to that described in the second embodiment. In this charge D CZD C converter 50, the input parts 51 a and 51 a are connected to the output parts 57 b and 57 b of the discharged D CZ DC comparator 56, and the output parts 51 b and 51 b are for the secondary battery 47. It is connected to both ends. The charging DCZDC converter 50 can charge power to the secondary battery 4 using the output power from the discharging DCZDC converter 56 as an input source.
さて、 本例の場合は、 太陽電池 3に対して並列接続された 2次電池 47に放電 DCZ DCコンバータ 56を直列接続したので、 太陽電池 3からの出力と 2次電池 47からの出 力とを、 並列に取り出すことが可能となる。 即ち、 これら 2出力を同時に混合して出力可 能である。 なお、 このときの放電電力は、 2次電池 47の電圧と放電 DCZDCコンパ一 タ 56の電圧とを足した電圧に、 2次電池 47 (放電 DCZDCコンバータ 56) を流れ る出力電流を乗算した値をとる。 よって、 仮に放電 DC/DCコンバータ 56が小容量の ものを使用する場合であっても、 大きな放電電力を確保することが可能となる。  Now, in the case of this example, since the discharge DCZ DC converter 56 is connected in series to the secondary battery 47 connected in parallel to the solar battery 3, the output from the solar battery 3 and the output from the secondary battery 47 Can be extracted in parallel. That is, these two outputs can be mixed simultaneously and output. The discharge power at this time is a value obtained by multiplying the voltage obtained by adding the voltage of secondary battery 47 and the voltage of discharge DCZDC comparator 56 by the output current flowing through secondary battery 47 (discharge DCZDC converter 56). Take Therefore, even if discharge DC / DC converter 56 uses a small capacity, it is possible to secure a large discharge power.
また、 図 8に示すように、 2次電池 47の充放電を更に細分化して制御することも可 能である。 この場合、 コントロールユニット 7には、 第 2実施形態で述べたような、.電池 残量用電流検出回路 52、 発電能力用電圧検出回路 53、 発電能力用電流検出回路 54及 び充電用電流検出回路 55が設けられている。 また、 放電 DCZDCコンバータ 56の出 力部 5フ bには、 放電 DCノ DCコンバータ 56を流れる放電電流を検出する放電用電流 検出回路 58が接続されている。 さらに、 太陽電池 3の +端子側には、 逆流を防止するダ ィオード Dが接続されている。 なお、 放電用電流検出回路 58が放電電流検出手段に相当 する。 Further, as shown in FIG. 8, it is also possible to further subdivide the charge and discharge of the secondary battery 47 to control. In this case, the control unit 7 includes the battery residual current detection circuit 52, the generation capacity voltage detection circuit 53, the generation capacity current detection circuit 54, and the charge current detection as described in the second embodiment. A circuit 55 is provided. Also, a discharge current for detecting the discharge current flowing through the discharge DC-DC converter 56 is output to the output 5 b of the discharge DCZDC converter 56. The detection circuit 58 is connected. Furthermore, a diode D for preventing backflow is connected to the + terminal side of the solar cell 3. The discharge current detection circuit 58 corresponds to discharge current detection means.
さて、 例えば昼間など太陽電池 3のみ電力出力して、 最大出力点制御 DCZDCコン バータ 45が最大出力点制御する場合、 充電 DCZDCコンバータ 50を流れる電流と、 放電 DCZDCコンバータ 56を流れる電流との差力 「0」となるように電流制御する形 式をとることが可能である。 このとき、 充電 DCZDCコンバータ 50が充電電流の値を 制御し、 放電 DCZDCコンバータ 56が放電電流の値を制御する。 これにより、 2次電 池 47が充放電されないこととなるので、 太陽電池 3の出力電圧は 2次電池 47に影響を 受けて変動し難くなリ、 従来と同じ最大出力点制御、 即ち今まで通りの最大出力点制御を 行うことが可能となる。  Now, for example, when the solar cell 3 only outputs power during the daytime and maximum power point control DCZDC converter 45 performs maximum power point control, the difference between the current flowing through charging DCZDC converter 50 and the current flowing through discharging DCZDC converter 56 It is possible to take the form of current control so that it becomes “0”. At this time, the charge DCZDC converter 50 controls the value of the charge current, and the discharge DCZDC converter 56 controls the value of the discharge current. As a result, the secondary battery 47 will not be charged and discharged, so the output voltage of the solar cell 3 is unlikely to fluctuate under the influence of the secondary battery 47. It is possible to perform the same maximum power point control.
また、 太陽電池 3の発電量では足らず太陽電池 3と 2次電池 47との両方で電力を出 力する場合、放電 D CZD Cコンバータ 56を流れる放電電流を所定値に電流制御しつつ、 最大出力点制御 DCZDCコンバータ 45で最大出力点制御を行う形式をとつてもよい。 このとき、 放電 DCZDCコンバータ 56が放電電流の値を制御する。 これにより、 2次 電池 47からは常に所定の電流が供給されるようになるので、 従来と同じ最大出力点制御 を行うことが可能となる。  In addition, when electric power is output by both the solar battery 3 and the secondary battery 47 because the amount of power generation of the solar battery 3 is insufficient, the discharge current flowing through the discharge DCZDC converter 56 is controlled to a predetermined value, and the maximum output is obtained. The point control DCZDC converter 45 may perform the maximum output point control. At this time, the discharge DCZDC converter 56 controls the value of the discharge current. As a result, since the predetermined current is always supplied from the secondary battery 47, it becomes possible to perform the same maximum output point control as before.
さらに、 太陽電池 3の発電電力で 2次電池 47を充電する場合、 充電 DCZDCコン バータ 50を流れる充電電流を所定値に電流制御しつつ、 電力供給時には最大出力点制御 DCZDCコンバータ 45で最大出力点制御を行う形式をとつてもよい。 このとき、 充電 DCZDCコンバータ 50が充電電流の値を制御する。 これにより、 2次電池 47を一定 電流下で充電することが可能となる。  Furthermore, when charging the secondary battery 47 with the generated power of the solar battery 3, while controlling the charging current flowing through the charging DCZDC converter 50 to a predetermined value, the maximum output point control at the time of power supply is the maximum output point with the DCZDC converter 45 It may be in the form of control. At this time, the charging DCZDC converter 50 controls the value of the charging current. This makes it possible to charge the secondary battery 47 under a constant current.
また、 例えば図 8の 1点鎖線の円内に示すように、 充電 DCZDCコンバータ 50の 入力部 51 a, 51 aの間に短絡回路 (スィッチ) 59を設け、 太陽電池 3の停止時、 こ の短絡回路 59をショートさせることにより、 充放電回路を 2次電池 47のみから放電さ せるようにしてもよい。 短絡回路 59がショートすると、 充放電回路は短絡するので、 充 放電回路の通電ロスを削減することが可能となる。  Further, for example, as shown in the circle of a dashed dotted line in FIG. 8, a short circuit (switch) 59 is provided between the input portions 51 a and 51 a of the charging DCZDC converter 50, and when the solar cell 3 is stopped The charge / discharge circuit may be discharged only from the secondary battery 47 by shorting the short circuit 59. When the short circuit 59 is shorted, the charge / discharge circuit is shorted, so it is possible to reduce the conduction loss of the charge / discharge circuit.
続いて、 最大出力点制御時の太陽電池動作と充放電制御動作とを、 図 9に図示する。 図 9 (a) に示すように、 太陽電池 3の出力電圧が増加していく場合、 この出力電圧が高 くなるに連れて、 太陽電池 3の出力電流△ I 0 (図 8にも図示) も曲線波形をとつて徐々 に大きくなる。 ここで、 電池残量用電流検出回路 52を流れる電流 I α (図 8にも図示) が 「0」 よりも大きいとき、 太陽電池動作としては、 2次電池 47への充電を実行する。 また、 充放電制御としては、 放電用電流検出回路 58の放電電流を 「0」 よりも大きくす る放電動作が実行され、 電流 I が 「0」 に合わせ込まれることにより、 太陽電池 3の出 力電力が最大電力点に制御される。  Subsequently, the solar cell operation and the charge / discharge control operation at the time of maximum power point control are illustrated in FIG. As shown in FIG. 9 (a), when the output voltage of the solar cell 3 increases, the output current of the solar cell 3 Δ I 0 (also illustrated in FIG. 8) as the output voltage increases. The curve waveform also gradually increases. Here, when the current I α (also shown in FIG. 8) flowing through the remaining battery current detection circuit 52 is larger than “0”, charging of the secondary battery 47 is performed as the solar battery operation. In addition, as charge / discharge control, a discharge operation is performed in which the discharge current of discharge current detection circuit 58 is made larger than “0”, and current I is adjusted to “0”. Force power is controlled to the maximum power point.
また、 電流 I が 「0」 よりも小さいとき、 太陽電池動作としては、 2次電池 47に 放電を実行させる。また、充放電制御としては、充電用電流検出回路 55の充電電流を「0」 よりも大きくする充電動作が実行され、 電流 I αが 「0」 に合わせ込まれることにより、 太陽電池 3の出力電力が最大電力点に制御される。 Also, when the current I is smaller than “0”, the solar cell operation is Run the discharge. Further, as the charge / discharge control, a charge operation to make the charge current of the charge current detection circuit 55 larger than "0" is executed, and the current I α is adjusted to "0", so that the output of the solar cell 3 is output. Power is controlled to the maximum power point.
—方、 図 9 (b) に示すように、 太陽電池 3の出力電圧が減少していく場合、 この出 力電圧が高くなるに連れて、 太陽電池 3の出力電流△ I 0は曲線波形をとつて徐々に小さ くなる。 ここで、 電流 I が 「0」 よりも小さいとき、 太陽電池動作としては、 2次電池 47に放電を実行させる。 また、 充放電制御としては、 充電用電流検出回路 55の充電電 流を 「0」 よりも大きくする充電動作が実行され、 電流 I が 「0」 に合わせ込まれるこ とにより、 太陽電池 3の出力電力が最大電力点に制御される。  As shown in Fig. 9 (b), when the output voltage of the solar cell 3 decreases, the output current ΔI 0 of the solar cell 3 has a curved waveform as the output voltage increases. It will gradually become smaller. Here, when the current I is smaller than “0”, the secondary battery 47 is caused to discharge as the solar cell operation. In addition, as charge / discharge control, a charge operation to make the charge current of the charge current detection circuit 55 larger than “0” is executed, and the current I is adjusted to “0”. The output power is controlled to the maximum power point.
また、 電流 I が 「0」 よりも大きいとき、 太陽電池動作としては、 2次電池 47へ の充電を実行する。また、充放電制御としては、放電用電流検出回路 58の放電電流を Γ 0 J よりも大きくする放電動作が実行され、 電流 I が 「0」 に合わせ込まれることにより、 太陽電池 3の出力電力が最大電力点に制御される。  Also, when the current I is larger than “0”, charging of the secondary battery 47 is performed as the solar cell operation. Also, as charge / discharge control, a discharge operation is performed to make the discharge current of discharge current detection circuit 58 larger than Γ 0 J, and current I is adjusted to “0”, so that the output power of solar cell 3 is output. Is controlled to the maximum power point.
本実施形態の構成によれば、 第 1実施形態や第 2実施形態に記載の (1 ) ~ (6) に 加え、 以下に記載の効果を得ることができる。  According to the configuration of this embodiment, in addition to (1) to (6) described in the first embodiment and the second embodiment, the following effects can be obtained.
(7) 蓄電設備 46を 2次電池 47と充電 DCZDCコンバータ 50と放電 DCZDC コンバータ 56とから構成し、 放電 DCZDCコンバータ 56の入力を太陽電池 3に並列 接続し、 放電 DCZDCコンバータ 56の出力を 2次電池 47に直列接続し、 充電 DCZ D Cコンバータ 50の入力を放電 DCZDCコンバータ 56の出力に接続し、 充電 DCZ D Cコンバータ 50の出力を 2次電池 47の両端に接続する。 このため、 太陽電池 3から と 2次電池 47からとを、 同時に混合して電力を出力することができる。  (7) The storage facility 46 comprises a secondary battery 47, a charging DCZDC converter 50 and a discharging DCZDC converter 56. The input of the discharging DCZDC converter 56 is connected in parallel to the solar cell 3, and the output of the discharging DCZDC converter 56 is secondary Connected in series to the battery 47, the input of the charging DCZ DC converter 50 is connected to the output of the discharging DCZ DC converter 56, and the output of the charging DCZ DC converter 50 is connected to both ends of the secondary battery 47. For this reason, it is possible to simultaneously mix the solar cell 3 and the secondary cell 47 and output power.
(8) 放電は 2次電池 47及び放電 DCZ DCコンバータ 56とから行われるので、 放 電 DCZDCコンバータ 56が小容量のものであっても、 大きな放電電力を確保すること ができる。  (8) Since the discharge is performed from the secondary battery 47 and the discharge DCZ DC converter 56, a large discharge power can be secured even if the discharge DCZ DC converter 56 has a small capacity.
(9) 検出回路 52~ 55, 58により検出した電池残量や発電能力に応じて、 充電 D C DCコンバータ 50及ぴ放電 DCZDCコンバータ 56により任意の充放電が可能と なるので、 蓄電設備 46の電池残量をより精度よく管理することができる。  (9) Detection circuit Depending on the remaining battery capacity and power generation capacity detected by the detection circuits 52 to 55, 58, arbitrary charging and discharging can be performed by the charging DC DC converter 50 and discharging DCZ DC converter 56. The remaining amount can be managed more accurately.
(1 0) 太陽電池 3のみ出力して最大出力点制御が行われる場合、 充電 DCZDCコン バ一タ 50の電流と、 放電 DCZDCコンバータ 56の電流との差が 「0」 となるように 電流制御されれば、 2次電池 47は充放電されないことになる。 よって、 太陽電池 3の出 力電圧の変動は、 2次電池 47による影響を受けなくなるので、 最大出力点制御を従来の 形式のもので済ますことができる。  (10) When maximum power point control is performed by outputting only solar cell 3, current control such that the difference between the current of charging DCZDC converter 50 and the current of discharging DCZDC converter 56 becomes “0” Then, the secondary battery 47 will not be charged or discharged. Therefore, since the fluctuation of the output voltage of the solar cell 3 is not affected by the secondary battery 47, the maximum power point control can be performed with the conventional type.
( 1 1 ) 太陽電池 3と 2次電池 4フとの両方で電力を出力する場合、 放電 DCZDCコ ンバータ 56の電流を所定電流量に電流制御する形式をとれば、 2次電池 47からは常に 同じ値の電流が流れることになるので、 最大出力点制御を従来の形式のもので済ますこと ができる。 (1 2) 太陽電池 3で 2次電池 47を充電する場合、 充電 DC/DCコンバータ 50の 電流を所定電流量に電流制御する形式をとれぱ、 太陽電池 3の出力がないときには、 最大 出力点制御 DCZDCコンバータ 45の入力は 2次電池 4フになって、 2次電池 47の電 力が DC機器 5が供給される。 (1 1) When power is output from both the solar cell 3 and the secondary battery 4, if the current of the discharge DCZDC converter 56 is controlled to a predetermined amount of current, the secondary battery 47 is always Since the same value of current flows, the maximum power point control can be done in the conventional way. (1 2) When charging the secondary battery 47 with the solar cell 3, the current control of the charging DC / DC converter 50 is controlled to a predetermined current amount. If the solar cell 3 does not have an output, the maximum output point The input of the control DCZDC converter 45 is a secondary battery 4, and the power of the secondary battery 47 is supplied to the DC device 5.
(1 3) 蓄電設備 46に放電 DCZDCコンバータ 56をショートさせる短絡回路 59 を設けたので、 例えば、 太陽電池 3の停止時、 この短絡回路 59をショートさせ、 2次電 池 47のみから放電させるようにすることで、 充放電回路の通電ロスを削減することがで さる。  (1 3) A storage battery 46 is provided with a short circuit 59 for shorting the discharge DCZDC converter 56. For example, when the solar cell 3 is stopped, the short circuit 59 is shorted to discharge only the secondary battery 47. By doing this, it is possible to reduce the conduction loss of the charge and discharge circuit.
(第 4実施形態)  Fourth Embodiment
次に、 第 4実施形態を図 1 0〜図 1 2に従って説明する。 なお、 本例も第 1実施形態 〜第 3実施形態と異なる部分についてのみ詳述する。  Next, a fourth embodiment will be described according to FIG. 10 to FIG. Note that this example will also be described in detail only for portions different from the first to third embodiments.
図 1 0に示すように、 放電 DCZDCコンバータ 56は、 入力部 57 a, 57 a力 2 次電池 47の両端に接続され、 出力部 57 b, 5フ bが 2次電池 47と直列接続されてい る。また、充電 DCZDCコンバータ 50は、入力部 51 a, 51 aが電流検出回路 55, 58を介して放電 DCZDCコンバータ 56の出力部 57 b, 57 bに接続され、 出力部 51 b, 51 bが 2次電池 47の両端に接続されている。  As shown in FIG. 10, the discharge DCZDC converter 56 is connected to both ends of the input part 57 a, 57 a force secondary battery 47, and the output parts 57 b, 5 b are connected in series with the secondary battery 47. Ru. In the charging DCZDC converter 50, the input parts 51a and 51a are connected to the output parts 57b and 57b of the discharged DCZDC converter 56 through the current detection circuits 55 and 58, and the output parts 51b and 51b are 2 The battery 47 is connected to both ends.
この場合、 放電 DCZDCコンバータ 56の入力部 57 a, 57 aを 2次電池 47に 接続すると、 太陽電池 3が放電 DCZDCコンバータ 56に出力されるので、 2次電池 4 フの電池残量に応じて放電量を切り換えることが可能となる。 よって、 例えば 2次電池 4 7の電池残量が多いときには、 2次電池 47から多量の出力を出し、 2次電池 47の電池 残量が少ないときには、 2次電池 47からの出力を減らすように、 太陽電池 3の出力の有 無に寄らず、 2次電池 47の残量に応じた放電制御を行うことが可能となる。  In this case, when the input parts 57a and 57a of the discharge DCZDC converter 56 are connected to the secondary battery 47, the solar battery 3 is output to the discharge DCZDC converter 56. It becomes possible to switch the amount of discharge. Thus, for example, when the battery level of the secondary battery 47 is large, a large amount of output is output from the secondary battery 47, and when the battery level of the secondary battery 47 is small, the output from the secondary battery 47 is reduced. The discharge control can be performed according to the remaining amount of the secondary battery 47 without depending on the presence or absence of the output of the solar cell 3.
また、 蓄電設備 46は、 図 1 1に示すように、 電池残量用電流検出回路 52に流れる 電流を定電流にして流す定電流制御によって、 電流値を制御することも可能である。 この とき、 蓄電設備 46は、 定電流充放電回路として機能する。 この定電流値は、 例えば外部 指令値 R iによって可変となっている。 外部指令値 R iは、 例えばコントロールュニット 7を統括制御する制御部 7 a (図 1参照) から出力され、 同指令値 R iに応じた一定電流 が充放電回路に流される。  In addition, as shown in FIG. 11, the power storage facility 46 can also control the current value by constant current control in which the current flowing in the battery residual current detection circuit 52 is a constant current. At this time, the power storage facility 46 functions as a constant current charge / discharge circuit. The constant current value is variable according to, for example, the external command value R i. The external command value R i is output from, for example, the control unit 7 a (see FIG. 1) that controls the control unit 7 centrally, and a constant current corresponding to the command value R i flows through the charge and discharge circuit.
また、 図 1 2に示すように、 充電 D C D Cコンバータ 50と放電 D CZD Cコンパ —タ 56とを一部品とすることにより、 充放電 DCZDCコンバータ 60を使用してもよ い。 充放電 DCZDCコンバータ 60は、 一対の端子からなる入力部 61 a, 61 aが充 電用電流検出回路 55を介して 2次電池 47と直列接続され、 一対の端子からなる出力部 61 b, 61 bが放電用電流検出回路 58を介して 2次電池 47の両端に接続されている。 なお、 充放電 DCZDCコンバータ 60が充放電コンバータ (充電コンバータ及び放電コ ンバ一タ) を構成する。  Alternatively, as shown in FIG. 12, the charge / discharge DCZDC converter 60 may be used by combining the charge DCC converter 50 and the discharge DCZDC converter 56 into one component. In the charge / discharge DCZDC converter 60, input parts 61a, 61a consisting of a pair of terminals are connected in series with the secondary battery 47 via the charging current detection circuit 55, and output parts 61b, 61 consisting of a pair of terminals b is connected to both ends of the secondary battery 47 via the discharge current detection circuit 58. The charge / discharge DCZDC converter 60 constitutes a charge / discharge converter (charge converter and discharge converter).
この場合、 充電 D CZD Cコンバータ 50と放電 D CZD Cコンバータ 56とを"!つ の部品として済ますことが可能となるので、 部品点数を削減することが可能となる。 本実施形態の構成によれば、 第 1実施形態や第 2実施形態に記載の (1 ) ~ (6) に加 え、 以下に記載の効果を得ることができる。 In this case, charge D CZD C converter 50 and discharge D CZD C converter 56! It is possible to reduce the number of parts because it is possible to According to the configuration of the present embodiment, in addition to (1) to (6) described in the first embodiment and the second embodiment, the following effects can be obtained.
(1 4) 蓄電設備 46を2次電池47と充電0〇 0〇コンバ一タ 50と放電00ノり Cコンバータ 56とから構成し、 放電 DCZDCコンバータ 56の入力を 2次電池 47の 両端に接続し、 放電 DC/DCコンバータ 56の出力を 2次電池 47と直列出力し、 充電 DCZDCコンバータ 50の入力を放電 D CZD Cコンバータ 56の出力に接続し、 充電 DCZDCコンバータ 50の出力を 2次電池 47の両端に接続する。 このため、 太陽電池 3の出力有無によらず、 2次電池 47の電池残量に応じた放電制御を実行することができ る。  (1 4) The storage facility 46 is composed of a secondary battery 47, a charge converter 500, and a discharge 00 or C converter 56. The input of the discharge DCZDC converter 56 is connected to both ends of the secondary battery 47. The output of the discharge DC / DC converter 56 is output in series with the secondary battery 47, and the input of the charge DCZDC converter 50 is connected to the output of the DCZDC converter 56. The output of the charge DCZDC converter 50 is a secondary battery 47 Connect to both ends of the For this reason, regardless of the presence or absence of the output of the solar cell 3, it is possible to execute the discharge control according to the remaining battery capacity of the secondary battery 47.
(1 5) 1つのコンバータで充放電の両方が可能な充放電 DCZDCコンバータ 60を 使用すれば、 その分だけ部品点数を削減することができる。  (1 5) The number of parts can be reduced accordingly by using the charge / discharge DCZDC converter 60 that can perform both charge and discharge with one converter.
(第 5実施形態)  Fifth Embodiment
次に、 第 5実施形態を図 1 3〜図 1 6に従って、 説明する。 なお、 本例も第 1実施形 態〜第 4実施形態と異なる部分についてのみ説明する。  Next, a fifth embodiment will be described according to FIG. 13 to FIG. Also in this example, only parts different from the first to fourth embodiments will be described.
図 1 3に示すように、 最大出力点制御 DCZDCコンバータ 45と DC機器 5との間 には、 DC機器 5に印加される電圧 (システム電圧 V sと言う) を一定に保つ定電圧回路 62が接続されている。 定電圧回路 62は、 第 3実施形態の蓄電設備 46と同じ構成をと るものであって、 2次電池 63、 充電 D CZD Cコンバータ 64、 放電 DCZDCコンパ —タ 65、 電池残量用電流検出回路 66、 充電用電流検出回路 6フ及び放電用電流検出回 路 68を備えている。定電圧回路 62の放電 DC/DCコンバータ 65は、入力部 69 a, 69 aが最大出力点制御 D CZDCコンバータ 45の出力に並列接続され、 出力部が 2次 電池 63に直列接続され、 定電圧回路 62の充電 DCZDCコンバータ 64は、 入力部が 前記放電 DCZDCコンバータ 65の出力部に接続され、 出力部が 2次電池 63の両端に 接続されるとともに、 電池残量用電流検出回路 66と 2次電池 63の一端子とが DC機器 5の両端に接続されている。 なお、 定電圧回路 62が定電圧手段に相当し、 2次電池 63 が定電圧用 2次電池に相当する。 また、 充電 DCZDCコンバータ 64が定電圧用充電コ ンバ一タに相当し、放電 D CZD Cコンバータ 65が定電圧用放電コンバ一タに相当する。  As shown in Fig. 13, between the maximum power point control DCZDC converter 45 and the DC device 5, a constant voltage circuit 62 for keeping the voltage applied to the DC device 5 (referred to as the system voltage Vs) constant. It is connected. The constant voltage circuit 62 has the same configuration as the storage facility 46 of the third embodiment, and includes a secondary battery 63, a charging DCZDC converter 64, a discharging DCZDC comparator 65, and a battery residual current detection. A circuit 66, a charge current detection circuit 6 and a discharge current detection circuit 68 are provided. In the DC / DC converter 65, the input section 69a and 69a are connected in parallel to the output of the maximum output point control DCZDC converter 45, and the output section is connected in series to the secondary battery 63. The charging unit of the circuit 62 has an input connected to the output of the discharge DCZDC converter 65 and an output connected to both ends of the secondary battery 63. One terminal of the battery 63 is connected to both ends of the DC device 5. The constant voltage circuit 62 corresponds to a constant voltage means, and the secondary battery 63 corresponds to a constant voltage secondary battery. Also, the charging DCZDC converter 64 corresponds to a constant voltage charging converter, and the discharging DCZDC converter 65 corresponds to a constant voltage discharging converter.
ここで、 電力供給システム 1で電力を供給しなければならない負荷の総容量を負荷容 量 W1とし、定電圧回路 62を介してこれら負荷に供給される電源を電源出力 W2とする。 定電圧回路 62は、 負荷容量 W1が電源出力 W 2未満 (負荷容量 W1 <電源出力 W2) の とき、 充電 DCZDCコンバータ 64によって 2次電池 63を ¾電する。 一方、 負荷容量 W1が電源出力 W2以上 (負荷容量 W1≥電源出力 W2) のと "、 放電 DCZDCコンパ —タ 65によって 2次電池 63を放電する。 このように、 定電圧回路 62がバッファとし て働くので、 システム電圧 V sを定電圧にすることが可能となる。  Here, the total capacity of the loads to which power is to be supplied by the power supply system 1 is a load capacity W1, and the power supplied to these loads via the constant voltage circuit 62 is a power output W2. The constant voltage circuit 62 charges the secondary battery 63 by the charging DCZDC converter 64 when the load capacity W1 is less than the power output W2 (load capacity W1 <power output W2). On the other hand, when the load capacity W1 is more than the power output W2 (load capacity W1 電源 power output W2), the secondary battery 63 is discharged by the discharge DCZDC comparator 65. Thus, the constant voltage circuit 62 functions as a buffer As it works, the system voltage V s can be made constant.
また、 定電圧回路 62は、 図 1 4に示すように、 第 4実施形態の蓄電設備 46と同じ 構成をとるものでもよい。 この場合、 定電圧回路 6 2は、 2次電池 6 3、 充電用電流検出 回路 6 7、 放電用電流検出回路 6 8及び充放電 D CZ D Cコンバータ 7 0を備える。 充放 電 D C Z D Cコンバータ 7 0は、 一対の入力部 7 1 a , 7 1 aが 2次電池 6 3と直列接続 され、 一対の出力部 7 1 b , 7 1 bが 2次電池 6 3の両端に接続されている。 なお、 充放 電 D C Z D Cコンバータ 7 0が定電圧用放電コンバータ (定電圧用充電コンバータ及び定 電圧用放電コンバータ) を構成する。 Also, as shown in FIG. 14, the constant voltage circuit 62 is the same as the storage facility 46 of the fourth embodiment. It may be a configuration. In this case, the constant voltage circuit 62 includes a secondary battery 63, a charging current detection circuit 67, a discharging current detection circuit 68, and a charging / discharging DCZ DC converter 70. In the charging / discharging DCZDC converter 70, a pair of input parts 7 1 a and 7 1 a are connected in series with the secondary battery 63, and a pair of output parts 7 1 b and 7 1 b are connected to both ends of the secondary battery 6 3. It is connected to the. The charge / discharge DCZDC converter 70 constitutes a constant voltage discharge converter (constant voltage charge converter and constant voltage discharge converter).
なお、 充放電 D C Z D Cコンバータ 7 0は、 図 1 0のように充電と放電とでコンバー タが別々に分かれる部品でもよい。 この場合、 放電コンバータの入力部は 2次電池 6 3の 両端に接続され、 出力部は 2次電池 6 3に直列接続される。 また、 充電コンバータの入力 部は放電コンバータの入力部に接続され、 出力部は 2次電池 6 3の両端に接続される。  Note that the charge / discharge D C Z D C converter 70 may be a component in which the converter is divided into charge and discharge separately as shown in FIG. In this case, the input part of the discharge converter is connected to both ends of the secondary battery 63, and the output part is connected in series to the secondary battery 63. Further, the input part of the charge converter is connected to the input part of the discharge converter, and the output part is connected to both ends of the secondary battery 63.
更に、 例えば図 1 5に示すように、 太陽電池 3がない場合、 定電流電源 7 2からの電 力を、 定電流充放電回路フ 3で定電流制御しつつ、 定電圧充放電回路フ 4で定電圧制御す るものでもよい。 なお、 定電流充放電回路 7 3は、 前述した実施形態の蓄電設備 4 6と同 様の構成をとるものである。 また、 定電圧充放電回路 7 4は、 本例の定電圧回路 6 2と同 様の構成をとるもので、 ここでは充電と放電とでコンバータが別々に分かれている型のも のが使用されている。 また、 充電 D Cノ D Cコンバータ 6 4の入力部にはコンデンサ 7 5 が接続され、 直流負荷の端子間には直流負荷用電圧検出回路 7 6が接続されている。 充電 D CZ D Cコンバータ 5 0の入力部にはコンデンサ 4 8が接続されている。  Furthermore, for example, as shown in FIG. 15, when there is no solar cell 3, the constant-current charge / discharge circuit 3 controls the constant-current charge / discharge circuit 3 while controlling the power from the constant-current power supply 72. Constant voltage control may be used. The constant current charge / discharge circuit 73 has the same configuration as that of the storage facility 46 of the above-described embodiment. The constant voltage charge / discharge circuit 74 has the same configuration as that of the constant voltage circuit 62 of this example, and here, a type in which converters are separately separated for charge and discharge is used. ing. In addition, a capacitor 7 5 is connected to the input portion of the charging DC-DC converter 64, and a DC load voltage detection circuit 76 is connected between the terminals of the DC load. A capacitor 48 is connected to the input portion of the charging D CZ D C converter 50.
定電圧制御は、 直流負荷用電圧検出回路 7 6で検出される電圧を定電圧にすることに より行われる。 また、 定電圧値は、 例えば外部指令値 R vによって可変となっている。 外 部指令値 R vは、 コントロールユニット 7の制御部 7 aから出力され、 同指令値 R vに応 じた一定電圧が D C機器 5に印加される。  The constant voltage control is performed by setting the voltage detected by the DC load voltage detection circuit 76 to a constant voltage. Also, the constant voltage value is variable according to, for example, the external command value Rv. The external command value Rv is output from the control unit 7 a of the control unit 7, and a constant voltage corresponding to the command value Rv is applied to the DC device 5.
図 1 6に、 この場合の定電圧制御及び定電流制御の動作例をまとめる。 まず、 定電圧 制御の場合、 例えば定電圧値を 4 8 Vに設定したとすると、 システム電圧 V s (ライン電 圧) が 4 8 V以上の値をとるとき、 充電回路がオンされ、 放電回路がオフされる。 これに より、 2次電池 6 3が充電され、 出力電圧が 4 8 Vに維持される。 また、 システム電圧 V s (ライン電圧) が 4 8 V未満の値をとるとき、 充電回路がオフされ、 放電回路がオンさ れる。 これにより、 2次電池 6 3が放電されて、 出力電圧が 4 8 Vに維持される。  Figure 16 summarizes the operation example of constant voltage control and constant current control in this case. First, in the case of constant voltage control, for example, assuming that the constant voltage value is set to 4 8 V, when the system voltage V s (line voltage) takes a value of 4 8 V or more, the charge circuit is turned on and the discharge circuit Is turned off. As a result, the secondary battery 63 is charged, and the output voltage is maintained at 4 8 V. Also, when the system voltage V s (line voltage) takes a value less than 4 8 V, the charging circuit is turned off and the discharging circuit is turned on. As a result, the secondary battery 63 is discharged, and the output voltage is maintained at 48 V.
続いて、 定電流制御の場合、 出力電流が + 5 Aに設定 (電池放電) された場合、 シス テム電圧 V sは定電圧制御の電源で 4 8 Vに設定され、 充電回路がオフされ、 放電回路が 5 Aでオンされて、 2次電池 4 7が放電される。 また、 出力電流が一 5 Aに設定 (電池充 電) された場合、 システム電圧 V sは定電圧制御の電源で 4 8 Vに設定され、 充電回路が 5 Aでオンされ、 放電回路がオフされて、 2次電池 4 7が充電される。 更に、 出力電流が O Aに設定 (電池充放電無し) された場合、 システム電圧 V sに +電流が発生する際、 充 電回路がオンされ、 放電回路がオフされ、 逆にシステム電圧 V sに一電流が発生する際、 充電回路がオフされ、 放電回路がオンされる。 本実施形態の構成によれば、 第 1実施形態〜第 4実施形態に記載の (1 ) 〜 (1 5) に加え、 以下に記載の効果を得ることができる。 Subsequently, in the case of constant current control, when the output current is set to +5 A (battery discharge), the system voltage V s is set to 48 V by the constant voltage control power supply, and the charging circuit is turned off. The discharge circuit is turned on at 5 A, and the secondary battery 47 is discharged. Also, when the output current is set to 1 5 A (battery charging), the system voltage V s is set to 4 8 V by the constant voltage control power supply, the charging circuit is turned on at 5 A, and the discharging circuit is turned off And the secondary battery 47 is charged. Furthermore, when the output current is set to OA (without battery charge / discharge), when + current is generated in the system voltage V s, the charge circuit is turned on and the discharge circuit is turned off, and conversely, the system voltage V s is When one current is generated, the charging circuit is turned off and the discharging circuit is turned on. According to the configuration of the present embodiment, in addition to (1) to (15) described in the first to fourth embodiments, the effects described below can be obtained.
(1 6) 電力供給システム 1に、 システム電圧 Vsを一定に保つ定電圧回路 62を設け た。 よって、 もし仮に電池残量や温度等によってシステム電圧 Vsが変動する状況となつ ても、 これを一定値に保って DC機器 5に供給することができる。  (1 6) The power supply system 1 was provided with a constant voltage circuit 62 for keeping the system voltage Vs constant. Therefore, even if the system voltage Vs fluctuates due to the remaining battery capacity, temperature, etc., it can be supplied to the DC device 5 while maintaining this at a constant value.
(1 7) 定電圧回路 62を第 3実施形態の蓄電設備 46と同様の構成とした場合、 定電 圧回路 62の放電は 2次電池 63及び放電 DCZDCコンバータ 65とから行われるので、 放電 DCZDCコンバータ 65が小容量のものであっても、 大きな放電電力を確保するこ とができる。  (1 7) When the constant voltage circuit 62 has the same configuration as the storage facility 46 of the third embodiment, the discharge of the constant voltage circuit 62 is performed from the secondary battery 63 and the discharge DCZDC converter 65, so discharge DCZDC Even if converter 65 has a small capacity, a large discharge power can be secured.
(1 8) 定電圧回路 62を第 4実施形態の蓄電設備 46と同様の構成とした場合、 最大 出力点制御 DCZDCコンバータ 45からの出力有無によらず、 2次電池 63の電池残量 に応じた放電制御を実行することができる。  (1 8) When the constant voltage circuit 62 has the same configuration as the storage facility 46 of the fourth embodiment, the maximum output point control DCZDC converter 45 is used regardless of the presence or absence of output from the secondary battery 63 depending on the remaining battery capacity. Discharge control can be performed.
(1 9) 定電圧回路 62の放電 DCZDCコンバータと充電 DCZDCコンバータとを 1つの充放電 DCZDCコンバータフ 0とした場合、 充電と放電とで各々個別のコンパ一 タを設けずに済むので、 部品点数を少なく抑えることができる。  (1 9) Discharge of constant voltage circuit 62 If DCZDC converter and charge DCZDC converter are one charge / discharge DCZDC converter 0, there is no need to provide separate converters for charge and discharge, so the number of parts is reduced. Can be reduced.
なお、 実施形態はこれまでに述べた構成に限らず、 以下の態様に変更してもよい。 ■第 1〜第 5実施形態において、 自立発電電池は、 太陽電池 3に限定されず、 例えば燃 料電池としてもよい。  The embodiment is not limited to the configuration described above, and may be changed to the following aspect. In the first to fifth embodiments, the self-supporting power generation cell is not limited to the solar cell 3 and may be, for example, a fuel cell.
-第 1〜第 5実施形態において、 自立発電電池の数は、 1つのみに限らず、 複数存在し てもよい。 また、 これは蓄電設備でも同様に言える。  -In the first to fifth embodiments, the number of self-sustaining power generation cells is not limited to one, and may be plural. This is also true for storage equipment.
•第 1〜第 5実施形態において、 2次電池 (定電圧用 2次電池) は、 リチウムイオン電 池であることに限らず、 電力を蓄えることが可能な電池であれば、 どのような種のものを 使用してもよい。  • In the first to fifth embodiments, the secondary battery (constant voltage secondary battery) is not limited to a lithium ion battery, but any kind of battery that can store electric power. You may use
■第 2〜第 5実施形態において、 電池残量検出手段、 発電能力検出手段、 充電電流検出 手段、放電電流検出手段は、電流検出回路や電圧検出回路等から構成されることに限らず、 種々の計器ゃセンサ等が使用可能である。  In the second to fifth embodiments, the battery residual amount detection means, the power generation ability detection means, the charge current detection means, and the discharge current detection means are not limited to being composed of a current detection circuit, a voltage detection circuit, etc. The instruments, sensors, etc. of
【01 1 5】  [01 1 5]
■第 1〜第 5実施形態において、 2次電池 47 (63) やコンデンサ 48の数は、 各々 1つずつに限定されず、 複数設けてもよい。 2次電池 47 (63) やコンデンサ 48を複 数設けた場合、 これらは自由に直並列可能である。  (1) In the first to fifth embodiments, the number of secondary batteries 47 (63) and capacitors 48 is not limited to one each, and may be plural. When multiple secondary batteries 47 (63) and capacitors 48 are provided, they can be freely connected in series and parallel.
■第 1〜第 5実施形態において、 蓄電設備 46は、 2次電池 47やコンデンサ 48から 構成されることに限らず、電力を蓄電可能なものであれば、どのような種のものでもよい。  In the first to fifth embodiments, the power storage facility 46 is not limited to being configured of the secondary battery 47 and the capacitor 48, and may be of any type as long as it can store power.
-第 1〜第 5実施形態において、 太陽電池 3で発電して余った電力は、 蓄電設備 46に 蓄電しておいたものを問わず、 系統 2に逆潮流して売電してもよい。  -In the first to fifth embodiments, the excess power generated by the solar cell 3 may be sold by reverse power flow to the grid 2 regardless of what is stored in the storage facility 46.
■第 5実施形態において、 定電圧回路 62の 2次電池 63に蓄電した電力は、 太陽電池 3及び系統 2のどちらのものか分からないので、 これを売電せず、 蓄電設備 46の 2次電 池 4 7の電力は、 太陽電池 3から蓄えた電力であるので、 系統 2に逆潮流して売電しても よい。 ■ In the fifth embodiment, the power stored in the secondary battery 63 of the constant voltage circuit 62 does not know which of the solar battery 3 and the grid 2, so it is not sold and the secondary storage battery 46 Electricity Since the power of the pond 47 is the power stored from the solar cell 3, the power may be reversed by selling to the grid 2.
■第 1〜第 5実施形態において、系統 2は、交流電圧を供給する商用交流電源に限らず、 直流電圧を供給するものでもよい。  In the first to fifth embodiments, the grid 2 is not limited to a commercial AC power supply that supplies an AC voltage, and may supply a DC voltage.
'第 1〜第 5実施形態において、 電力供給システム 1は、 住宅に使用されることに限ら ず、 例えば工場等の他の建物に応用してもよい。  In the first to fifth embodiments, the power supply system 1 is not limited to being used in a house, and may be applied to other buildings such as a factory.
■第 1〜第 5実施形態において、 本発明の特徴的構成要件をなし得る機能部は、 電力供 給システム 1の構成部材であれば、 どこに設けられてもよい。  (1) In the first to fifth embodiments, the functional part capable of forming the characteristic constituent features of the present invention may be provided anywhere as long as it is a constituent member of the power supply system 1.
-第 1〜第 5実施形態の各々に記載の技術思想は、 場合によって適宜組み合わせること が可能である。  The technical ideas described in each of the first to fifth embodiments can be combined as appropriate depending on circumstances.
次に、 上記実施形態及び別例から把握できる技術的思想について、 それらの効果とと もに以下に追記する。  Next, technical ideas that can be grasped from the above-described embodiment and another example will be additionally described below together with their effects.
前記負荷に電力線通信を介して電力及びデータを供給して、 該負荷を制御する電力線 通信制御部を備えた。 この構成によれば、 電力線通信によって負荷を制御することが可能 となるので、 少ない配線で負荷に電力及びデータを供給することが可能となる。  A power line communication control unit is provided that supplies power and data to the load via power line communication, and controls the load. According to this configuration, since the load can be controlled by the power line communication, it is possible to supply power and data to the load with less wiring.
以上、 本発明の好ましい実施形態が説明されたが、 本発明はこれらの特定実施形態に 限定されず、 後続する請求範囲の範疇を超えず、 多様な変更及び修正が行われることが可 能であり、 それも本発明の範疇に属すると言える。  Although the preferred embodiments of the present invention have been described above, the present invention is not limited to these specific embodiments, and various changes and modifications can be made without departing from the scope of the following claims. Yes, it also belongs to the category of the present invention.

Claims

請求範囲 Billing range
【請求項 1】  [Claim 1]
複数の直流電源と、  With multiple DC power supplies,
前記複数の直流電源からの直流電力を入力されて所定の直流電圧に電圧変換して直流負 荷機器に出力する出力電圧変換手段と、  Output voltage conversion means for receiving DC power from the plurality of DC power supplies, converting the voltage into a predetermined DC voltage, and outputting the voltage to a DC load device;
を備える電力供給システムの電源最適化装置。  Power supply optimization device of a power supply system comprising:
【請求項 2】  [Claim 2]
前記複数の直流電源は、 自立発電電池及び蓄電設備を含み、  The plurality of direct current power sources include a self-sustaining power generation battery and a storage facility,
前記出力電圧変換手段は、 前記直流電源が前記最大電力点で電力出力するように当該直 流電源を最大出力点制御し、  The output voltage conversion means performs maximum power point control of the DC power supply such that the DC power supply outputs power at the maximum power point,
前記複数の直流電源は並列接続され、 これらの合成電力が前記直流電源として前記出力 電圧変換手段に出力される請求項 1に記載の電力供給システムの電源最適化装置。  The power supply optimization device of the power supply system according to claim 1, wherein the plurality of direct current power supplies are connected in parallel, and the combined power thereof is output as the direct current power supply to the output voltage conversion means.
【請求項 3】  [Claim 3]
前記蓄電設備は、 2次電池からなる請求項 2に記載の電力供給システムの電源最適化装 置。  The power supply optimization device of the power supply system according to claim 2, wherein the storage facility comprises a secondary battery.
【請求項 4】  [Claim 4]
前記蓄電設備は、 コンデンサからなる請求項 2に記載の電力供給システムの電源最適化 装置。  The power supply optimization device for a power supply system according to claim 2, wherein the storage facility comprises a capacitor.
【請求項 5】  [Claim 5]
前記蓄電設備は、  The storage facility is
2次電池及びコンデンサを直列接続した直列回路と、  A series circuit in which a secondary battery and a capacitor are connected in series;
前記コンデンサに蓄積された電力を入力として、 前記 2次電池に電力を充電可能な充電 コンバータと  A charge converter capable of charging the secondary battery with the power stored in the capacitor as an input;
を備えた請求項 2に記載の電力供給システムの電源最適化装置。 The power supply optimization device for a power supply system according to claim 2, comprising:
【請求項 6】  [Claim 6]
前記蓄電設備の残量を検出する電池残量検出手段と、  Battery remaining amount detecting means for detecting the remaining amount of the power storage facility;
前記自立発電電池の発電能力を検出する発電能力検出手段と、  Power generation capacity detection means for detecting the power generation capacity of the self-supporting power generation battery;
前記充電コンバ一タを流れる充電電流を検出する充電電流検出手段とを更に備え、 前記充電コンバータは、 前記蓄電設備の電池残量と前記自立発電電池の発電能力とに応 じた充電電流によリ、 前記蓄電設備を充電する請求項 5に記載の電力供給システムの電源 最適化装置。  The charge converter further includes charge current detection means for detecting a charge current flowing through the charge converter, and the charge converter is based on a charge current according to the remaining battery capacity of the storage facility and the power generation capacity of the self-supporting power generation battery. The power supply optimization device of the power supply system according to claim 5, wherein the power storage facility is charged.
【請求項 7】  [Claim 7]
前記蓄電設備は、  The storage facility is
電力を蓄電可能な 2次電池と、  Secondary battery capable of storing electric power,
前記自立発電電池に接続される入力部と、前記 2次電池に直列接続される出力部を備え、 前記 2次電池の放電を管理する放電コンバー夕と、 And an output unit connected in series to the secondary battery. A discharge converter for managing discharge of the secondary battery;
前記放電コンバータの出力部に接続される入力部と、 前記 2次電池の両端に接続される 出力部を備え、 前記 2次電池の充電を管理する充電コンバータとを備え、  The device includes an input unit connected to an output unit of the discharge converter, and an output unit connected to both ends of the secondary battery, and a charge converter that manages charging of the secondary battery.
前記自立発電電池及び前記蓄電設備は、 電力を並列に出力することが可能となっている 請求項 2に記載の電力供給システムの電源最適化装置。  The power supply optimization device for a power supply system according to claim 2, wherein the self-sustained generation battery and the storage facility are capable of outputting electric power in parallel.
【請求項 8】  [Claim 8]
前記蓄電設備の残量を検出する電池残量検出手段と、  Battery remaining amount detecting means for detecting the remaining amount of the power storage facility;
前記自立発電電池の発電能力を検出する発電能力検出手段と、  Power generation capacity detection means for detecting the power generation capacity of the self-supporting power generation battery;
前記充電コンバータを流れる充電電流を検出する充電電流検出手段と、  Charge current detection means for detecting a charge current flowing through the charge converter;
前記放電コンバ一タを流れる放電電流を検出する放電電流検出手段とを更に備え、 前記充電コンバータ及び前記放電コンバータは、 前記蓄電設備の電池残量と前記自立発 電電池の発電能力とに応じて、 前記充電電流や前記放電電流を電流制御する請求項 7に記 載の電力供給システムの電源最適化装置。  The charge converter and the discharge converter may further include: a discharge current detection unit that detects a discharge current flowing through the discharge converter, wherein the charge converter and the discharge converter are configured to The power supply optimization device according to claim 7, wherein the charge current and the discharge current are current-controlled.
【請求項 9】 '  [Claim 9] '
前記自立発電電池のみから電力が出力されて前記最大出力点制御が実行される場合、 前 記放電コンバータ及び前記充電コンバータは、 前記放電電流と前記充電電流との差がなく なるように、これらを電流制御する請求項 8に記載の電力供給システムの電源最適化装置。 【請求項 1 0】  When the maximum power point control is performed by outputting electric power only from the stand-alone power generation battery, the discharge converter and the charge converter are configured to eliminate the difference between the discharge current and the charge current. The power supply optimization device for a power supply system according to claim 8, wherein the current control is performed. [Claim 10]
前記自立発電電池及び前記蓄電設備の両方から電力が出力される場合、 前記放電コンバ ータは、 放電時において前記放電電流を所定電流量に電流制御する請求項 8又は 9に記載 の電力供給システムの電源最適化装置。  The electric power supply system according to claim 8 or 9, wherein, when electric power is output from both of the self-sustaining power generation battery and the electric storage facility, the discharge converter controls the discharge current to a predetermined current amount at the time of discharge. Power optimization device.
【請求項 1 1】  [Claim 1 1]
前記自立発電電池の発電電力で前記蓄電設備が充電される場合、前記充電コンバータは、 充電時において前記充電電流を所定電流量に電流制御する請求項 8 ~ 1 0のうちいずれか 一項に記載の電力供給システムの電源最適化装置。  When the storage facility is charged with the power generated by the self-sustaining power generation battery, the charge converter controls the charge current to a predetermined amount of current at the time of charge, according to any one of claims 8 to 10. Power supply optimization device of the power supply system.
【請求項 1 2】  [Claim 1 2]
前記自立発電電池が停止する際、 放電コンバータをショートさせる短絡回路を更に備え た請求項 8〜 1 1のうちいずれか一項に記載の電力供給システムの電源最適化装置。 【請求項 1 3】  The power supply optimization device for a power supply system according to any one of claims 8 to 11, further comprising a short circuit that shorts a discharge converter when the self-supporting power generation battery stops. [Claim 1 3]
前記蓄電設備は、  The storage facility is
電力を蓄電可能な 2次電池と、  Secondary battery capable of storing electric power,
前記 2次電池の両端に接続された入力部と、 前記 2次電池に直列接続された出力部を備 え、 前記 2次電池の放電を管理する放電コンバータと、  A discharge converter including an input unit connected to both ends of the secondary battery, and an output unit connected in series to the secondary battery, the discharge converter managing discharge of the secondary battery;
前記放電コンバ一タの出力部に接続された入力部と、 前記 2次電池の両端に接続された 出力部を備え、 前記 2次電池の充電を管理する充電コンバータとを備え、  The device includes an input unit connected to an output unit of the discharge converter, and an output unit connected to both ends of the secondary battery, and a charge converter that manages charging of the secondary battery.
前記自立発電電池の出力有無によらず、 前記 2次電池の残量に応じた放電を実行する請 求項 1に記載の電力供給システムの電源最適化装置。 Request to perform discharge according to the remaining amount of the secondary battery regardless of the presence or absence of the output of the self-supporting power generation battery A power supply optimization device for a power supply system according to claim 1.
【請求項 1 4】  [Claim 1 4]
前記放電コンバータと前記充電コンバ一タとは一体化した充放電コンバ一タとして設け られている請求項 1 3に記載の電力供給システムの電源最適化装置。  The power supply optimization device for a power supply system according to claim 13, wherein the discharge converter and the charge converter are provided as an integrated charge / discharge converter.
【請求項 1 5】  [Claim 1 5]
前記出力電圧変換手段を経て前記負荷に供給されるシステム電圧を一定に保つ定電圧手 段を更に備えた請求項 2〜 1 4のうちいずれか一項に記載の電力供給システムの電源最適 化装置。  The power supply optimization device for a power supply system according to any one of claims 2 to 14, further comprising a constant voltage means for keeping a system voltage supplied to the load constant via the output voltage conversion means. .
【請求項 1 6】  [Claim 1 6]
前記定電圧手段は、  The constant voltage means is
電力を蓄電可能な定電圧用 2次電池と、  A constant voltage secondary battery capable of storing power;
前記出力電圧変換手段の出力に接続される入力部と、 前記定電圧用 2次電池に直接接続 される出力部を備え、 前記定電圧用 2次電池を放電可能な定電圧用放電コンバータと、 前記放電コンバ一タの出力部に接続される入力部と、 前記定電圧用 2次電池の両端に接 続される出力部を備え、 前記定電圧用 2次電池に充電可能な定電圧用充電コンバータとを 備え、  A constant voltage discharge converter comprising: an input unit connected to the output of the output voltage conversion means; and an output unit directly connected to the constant voltage secondary battery, wherein the constant voltage discharge converter can discharge the constant voltage secondary battery; The device includes an input unit connected to the output unit of the discharge converter, and an output unit connected to both ends of the constant voltage secondary battery, wherein the constant voltage charge capable of charging the constant voltage secondary battery Equipped with a converter,
前記負荷への電源出力が高い場合、 前記定電圧用充電コンバータにより前記定電圧用 2 次電池を充電し、 前記電源出力が低い場合、 前記定電圧用放電コンバータにより前記定電 圧用 2次電池を放電させることにより、 前記システム電圧を一定に保つ請求項 1 5に記載 の電力供給システムの電源最適化装置。  When the power supply output to the load is high, the constant voltage secondary battery is charged by the constant voltage charge converter, and when the power supply output is low, the constant voltage secondary battery is charged by the constant voltage discharge converter. The power supply optimization device for a power supply system according to claim 15, wherein the system voltage is kept constant by discharging.
【請求項 1 7】  [Claim 1 7]
前記定電圧手段は、  The constant voltage means is
電力を蓄電可能な定電圧用 2次電池と、  A constant voltage secondary battery capable of storing power;
前記定電圧用 2次電池の両端に接続される入力部と、 前記定電圧用 2次電池に直接接続 される出力部を備え、 前記定電圧用 2次電池の放電可能な定電圧用放電コンバータと、 前記放電コンバ一タの出力部に接続される入力部と、 前記定電圧用 2次電池の両端に接 続される出力部を備え、 前記定電圧用 2次電池を充電可能な定電圧用充電コンバータとを 備え、  An input unit connected to both ends of the constant voltage secondary battery; and an output unit connected directly to the constant voltage secondary battery, the discharge converter for a constant voltage dischargeable secondary battery for the constant voltage being dischargeable An input unit connected to the output unit of the discharge converter; and an output unit connected to both ends of the constant voltage secondary battery, the constant voltage capable of charging the constant voltage secondary battery Equipped with a charging converter for
前記負荷への電源出力が高い場合、 前記定電圧用充電コンバ一タによリ前記定電圧用 2 次電池を充電し、 前記電源出力が低い場合、 前記定電圧用放電コンバータによリ前記定電 圧用 2次電池を放電させることにより、 前記システム電圧を一定に保つ請求項 1 5に記載 の電力供給システムの電源最適化装置。  When the power supply output to the load is high, the constant voltage secondary battery is charged by the constant voltage charging converter, and when the power output is low, the constant voltage discharging converter The power supply optimization device for a power supply system according to claim 16, wherein the system voltage is kept constant by discharging a secondary battery for voltage.
【請求項 1 8】  [Claim 1 8]
前記定電圧用放電コンバータと前記定電圧用充電コンバ一タとが一体化した定電圧用充 放電コンバータとして設けられいる請求項 1 7に記載の電力供給システムの電源最適化装 置。  The power supply optimization device for a power supply system according to claim 17, wherein said constant voltage discharge converter and said constant voltage charge converter are integrated as a constant voltage charge / discharge converter.
PCT/IB2010/002422 2009-10-02 2010-09-28 Power source optimisation device for electric power supply system WO2011051765A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009230864A JP5475387B2 (en) 2009-10-02 2009-10-02 Power supply optimization device for power supply system
JP2009-230864 2009-10-02

Publications (1)

Publication Number Publication Date
WO2011051765A1 true WO2011051765A1 (en) 2011-05-05

Family

ID=43921414

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2010/002422 WO2011051765A1 (en) 2009-10-02 2010-09-28 Power source optimisation device for electric power supply system

Country Status (2)

Country Link
JP (1) JP5475387B2 (en)
WO (1) WO2011051765A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102231560A (en) * 2011-06-24 2011-11-02 南开大学 Intelligent distributed maximum generation power point tracking coordination control system
CN102810902A (en) * 2012-09-04 2012-12-05 山东力诺太阳能电力工程有限公司 Household hybrid power supply management system and power supply management method
CN110247388A (en) * 2019-06-25 2019-09-17 珠海格力电器股份有限公司 Air-conditioning system

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130043723A1 (en) * 2011-08-19 2013-02-21 Robert Bosch Gmbh Solar synchronized loads for photovoltaic systems
JP6031759B2 (en) * 2011-12-28 2016-11-24 株式会社Ihi Solar cell power generation system
JP6028499B2 (en) 2012-04-06 2016-11-16 ソニー株式会社 Power supply
CN107726496A (en) * 2013-12-24 2018-02-23 珠海格力电器股份有限公司 PV air-conditioner system and its control method
JP6403036B1 (en) * 2018-03-30 2018-10-10 パナソニックIpマネジメント株式会社 Energy harvest terminal

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0973328A (en) * 1995-09-04 1997-03-18 Osaki Electric Co Ltd Solar light power generation controller
JP2008061308A (en) * 2006-08-29 2008-03-13 Sharp Corp Power feeding system and control method of power feeding system
JP2008283841A (en) * 2007-05-08 2008-11-20 Yasuo Ohashi Dc voltage power supply system for residence

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07234734A (en) * 1994-02-24 1995-09-05 Matsushita Electric Works Ltd Solar power generation system
WO2007086472A1 (en) * 2006-01-27 2007-08-02 Sharp Kabushiki Kaisha Power supply system
JP2011078267A (en) * 2009-10-01 2011-04-14 Sharp Corp Dc power supply system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0973328A (en) * 1995-09-04 1997-03-18 Osaki Electric Co Ltd Solar light power generation controller
JP2008061308A (en) * 2006-08-29 2008-03-13 Sharp Corp Power feeding system and control method of power feeding system
JP2008283841A (en) * 2007-05-08 2008-11-20 Yasuo Ohashi Dc voltage power supply system for residence

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102231560A (en) * 2011-06-24 2011-11-02 南开大学 Intelligent distributed maximum generation power point tracking coordination control system
CN102810902A (en) * 2012-09-04 2012-12-05 山东力诺太阳能电力工程有限公司 Household hybrid power supply management system and power supply management method
CN110247388A (en) * 2019-06-25 2019-09-17 珠海格力电器股份有限公司 Air-conditioning system

Also Published As

Publication number Publication date
JP5475387B2 (en) 2014-04-16
JP2011083060A (en) 2011-04-21

Similar Documents

Publication Publication Date Title
US11050260B2 (en) Smart main electrical panel for energy generation systems
EP2648304B1 (en) Electric power supplying apparatus, electric power supplying method
WO2011051765A1 (en) Power source optimisation device for electric power supply system
US10424933B2 (en) Automatic smart transfer switch for energy generation systems
US10069307B2 (en) Power conversion device, power conversion system, and power conversion method
JP5485857B2 (en) Power management system
US20120235492A1 (en) Power supply system
EP2983265B1 (en) Electric power conversion device, control system, and control method
CN102498636A (en) Power distribution system
WO2011055186A1 (en) Power distribution system
WO2011058405A1 (en) Power distribution system
EP2797198A1 (en) Charging/discharging device and charging/discharging system using same
JP5563267B2 (en) Storage battery remaining power monitoring device for power supply system
JP2014192986A (en) Electric power system
KR102257906B1 (en) An energy storage system
JP5507946B2 (en) Battery control unit
JP2011083059A (en) Storage battery operation controller of power supply system
US10320327B1 (en) Power storage power conditioner
JP6694930B2 (en) Power control system control method, power control system, and power control device
JP2013116033A (en) Power supply device
JP6272123B2 (en) Power supply control device
US20180323614A1 (en) Apparatus control device, apparatus control system, and apparatus control method
EP3264557B1 (en) Power conditioning system and power conditioning method
US11205911B2 (en) Energy storage system
JP2022095068A (en) Power supply system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10826184

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10826184

Country of ref document: EP

Kind code of ref document: A1