JPH0973328A - Solar light power generation controller - Google Patents

Solar light power generation controller

Info

Publication number
JPH0973328A
JPH0973328A JP7248272A JP24827295A JPH0973328A JP H0973328 A JPH0973328 A JP H0973328A JP 7248272 A JP7248272 A JP 7248272A JP 24827295 A JP24827295 A JP 24827295A JP H0973328 A JPH0973328 A JP H0973328A
Authority
JP
Japan
Prior art keywords
output voltage
converter
voltage
solar cell
optimum operating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7248272A
Other languages
Japanese (ja)
Other versions
JP3091400B2 (en
Inventor
Jun Abe
純 阿部
Takashi Emori
崇 江守
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaki Electric Co Ltd
Original Assignee
Osaki Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaki Electric Co Ltd filed Critical Osaki Electric Co Ltd
Priority to JP07248272A priority Critical patent/JP3091400B2/en
Publication of JPH0973328A publication Critical patent/JPH0973328A/en
Application granted granted Critical
Publication of JP3091400B2 publication Critical patent/JP3091400B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Landscapes

  • Photovoltaic Devices (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Control Of Electrical Variables (AREA)
  • Dc-Dc Converters (AREA)

Abstract

PROBLEM TO BE SOLVED: To lower the cost and make a solar battery in a different combination usable by controlling the output voltage of the solar battery to a constant voltage after an optimum operating voltage of the solar battery is set. SOLUTION: After a system is actuated, a control part 6 reads in the output voltage VIN of the solar battery 1 and the output voltage V2 N of a DC/DC converter 4 in each sampling cycle. In setting mode for the optimum operating voltage Vop, the input current to the DC/DC converter 4 is increased and the output voltage of the solar battery 1 when the output voltage indicates a maximum value is the optimum operating voltage Vop. An arithmetic part of the control part 6 compares the output voltage V2 N of the DC/DC converter 4 with the output voltage V2 B at last sampling time and sets the output voltage V1 B of the solar battery 1 corresponding to V2 B as the optimum operating voltage Vop when V2 N becomes less than V2 B. When V1 N > Vop, the output voltage of the solar battery 1 is reduced and when V1 N < Vop,. the output voltage of the solar battery 1 is increased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、太陽電池を常に最
大電力で発電させる機能を持つ太陽光発電制御装置の改
良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of a photovoltaic power generation control device having a function of constantly generating maximum power from a solar cell.

【0002】[0002]

【従来の技術】太陽電池には図4に示すI−V特性があ
り、最大出力を示す最適動作点(Vop,Iop)が存
在する。最適動作点は太陽電池の種類又は太陽電池セル
の組み合わせ方によって異なり、また日射量や温度の変
化にも影響を受けることが知られている。太陽光発電シ
ステムにおいて太陽電池から効率良く出力を得るために
は太陽電池を最適動作点付近で制御する必要がある。
2. Description of the Related Art A solar cell has the IV characteristic shown in FIG. 4, and has an optimum operating point (Vop, Iop) at which the maximum output is obtained. It is known that the optimum operating point differs depending on the type of solar cell or the combination of solar cells, and is also affected by changes in the amount of solar radiation and temperature. In a solar power generation system, it is necessary to control the solar cell near the optimum operating point in order to efficiently obtain the output from the solar cell.

【0003】図5及び図6は従来の太陽光発電システム
の構成を示す。太陽電池21の出力電力は逆接防止ダイ
オード22及び平滑コンデンサ23を介して、チョーク
コイル24a、逆接防止ダイオード24b、平滑コンデ
ンサ24c及びスイッチングトランジスタ24d等より
構成されるDC/DCコンバータ24に入力し、DC/
DCコンバータ24の出力電力として負荷25に供給さ
れる。太陽電池21の負荷25に対する供給電力はDC
/DCコンバータ24の出力電圧によって決定する。し
たがって、DC/DCコンバータ24の出力電圧を制御
することにより太陽電池21を常に最適動作点付近で発
電させることができる。以下に制御方法を説明する。
5 and 6 show the structure of a conventional solar power generation system. The output power of the solar cell 21 is input to a DC / DC converter 24 including a choke coil 24a, a reverse connection prevention diode 24b, a smoothing capacitor 24c, a switching transistor 24d, and the like via a reverse connection prevention diode 22 and a smoothing capacitor 23, and a DC /
The output power of the DC converter 24 is supplied to the load 25. The power supplied to the load 25 of the solar cell 21 is DC
It is determined by the output voltage of the / DC converter 24. Therefore, by controlling the output voltage of the DC / DC converter 24, the solar cell 21 can always generate power near the optimum operating point. The control method will be described below.

【0004】図5に示されるものは最適動作点制御を用
いた従来の太陽光発電システムである。制御部26では
太陽電池21の出力電流信号及び出力電圧信号を電流検
出器27、電圧検出器28及びA/D変換器29,30
を経てサンプリングして出力電力を算出し、出力電力の
推移から動作点を推定し、最適動作点に近づくようにD
C/DCコンバータ24を制御する。
FIG. 5 shows a conventional photovoltaic power generation system using optimum operating point control. The control unit 26 outputs the output current signal and the output voltage signal of the solar cell 21 to the current detector 27, the voltage detector 28, and the A / D converters 29 and 30.
After that, the output power is calculated by sampling, the operating point is estimated from the transition of the output power, and D is calculated so as to approach the optimum operating point.
The C / DC converter 24 is controlled.

【0005】図6に示されるものは一定電圧制御を用い
た太陽光発電システムである。制御部26では太陽電池
21の出力電圧を既定の値に設定し、日射量の変化に対
しても常に一定の電圧を維持するようにDC/DCコン
バータ24を制御する。
FIG. 6 shows a photovoltaic power generation system using constant voltage control. The control unit 26 sets the output voltage of the solar cell 21 to a predetermined value, and controls the DC / DC converter 24 so as to always maintain a constant voltage even when the amount of solar radiation changes.

【0006】[0006]

【発明が解決しようとする課題】前記従来の太陽光発電
システムには以下のような問題点がある。
The above-mentioned conventional photovoltaic power generation system has the following problems.

【0007】図5のシステムは、太陽電池21の出力電
力の変化から最適動作点を推定するため、太陽電池21
の種類によらず、効率良く出力を得ることができる。し
かし、制御方法が複雑になることや、出力電流を測定す
るための電流検出器27が必要であり、一般的にはシャ
ント抵抗や電流センサ等の比較的高価な部品を用いて構
成するため、コストが増加すること等の問題点がある。
The system of FIG. 5 estimates the optimum operating point from the change in the output power of the solar cell 21, so that the solar cell 21
It is possible to efficiently obtain the output regardless of the type. However, the control method becomes complicated, and the current detector 27 for measuring the output current is required, and since it is generally configured using relatively expensive components such as a shunt resistor and a current sensor, There are problems such as an increase in cost.

【0008】図6のシステムは、回路構成も簡単で、制
御も容易であるが、太陽電池21の出力電圧を設定する
ために予め使用する太陽電池21の最適動作電圧を正確
に調べる必要があり、また異なる太陽電池21の使用に
際しては制御ソフトの変更が必要となる等、システムの
汎用性に問題がある。
The system of FIG. 6 has a simple circuit configuration and is easy to control, but it is necessary to accurately check the optimum operating voltage of the solar cell 21 to be used in advance in order to set the output voltage of the solar cell 21. In addition, there is a problem in the versatility of the system such that the control software needs to be changed when using different solar cells 21.

【0009】本発明の目的は、コストダウンを図ること
ができ、しかも、種類やセルの組み合わせ方が異なる太
陽電池に対して事前準備の必要なしに使用することがで
きる太陽光発電制御装置を提供することである。
An object of the present invention is to provide a photovoltaic power generation control device which can reduce the cost and can be used for solar cells having different types and combinations of cells without the need for advance preparation. It is to be.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、太陽電池の出力電力を受けて負荷に供給
するDC−DCコンバータの入力電流を増減させること
によって、太陽電池の最適動作点制御を行う太陽光発電
制御装置において、最適動作電圧設定モードでは前記D
C−DCコンバータの入力電流を増加させながら前記D
C−DCコンバータの出力電圧が最大になった時の太陽
電池出力電圧を最適動作電圧に設定し、通常動作では太
陽電池出力電圧を前記設定された最適動作電圧に維持す
るように前記DC−DCコンバータを制御するようにし
たことを特徴とするものである。
In order to achieve the above object, the present invention optimizes the solar cell by increasing or decreasing the input current of a DC-DC converter which receives the output power of the solar cell and supplies it to a load. In the photovoltaic power generation control device that performs operating point control, in the optimum operating voltage setting mode, the D
While increasing the input current of the C-DC converter, the D
The DC-DC is set so that the output voltage of the solar cell when the output voltage of the C-DC converter becomes maximum is set to the optimum operating voltage, and the solar cell output voltage is maintained at the set optimum operating voltage in the normal operation. It is characterized in that the converter is controlled.

【0011】[0011]

【発明の実施の形態】図1は本発明の実施の一形態であ
る太陽光発電制御装置を含む太陽光発電システムの構成
を示す。
1 shows the configuration of a photovoltaic power generation system including a photovoltaic power generation control apparatus according to an embodiment of the present invention.

【0012】太陽電池1の出力電力は逆接防止ダイオー
ド2及び平滑コンデンサ3を介して、チョークコイル4
a、逆接防止ダイオード4b、平滑コンデンサ4c及び
スイッチングトランジスタ4d等より構成されるDC/
DCコンバータ4に入力し、DC/DCコンバータ4の
出力電力として負荷5に供給される。DC/DCコンバ
ータ4は制御部6からの制御信号によって制御される。
太陽電池1の出力電圧は電圧検出器7で検出され、A/
D変換器8を介して制御部6に入力される。また、DC
/DCコンバータ4の出力電圧は電圧検出器9で検出さ
れ、A/D変換器10を介して制御部6に入力される。
CNは太陽光発電制御装置である。
The output power of the solar cell 1 is passed through a reverse connection prevention diode 2 and a smoothing capacitor 3 to a choke coil 4
DC / composed of a, reverse connection prevention diode 4b, smoothing capacitor 4c, switching transistor 4d, etc.
It is input to the DC converter 4 and is supplied to the load 5 as output power of the DC / DC converter 4. The DC / DC converter 4 is controlled by a control signal from the control unit 6.
The output voltage of the solar cell 1 is detected by the voltage detector 7, and A /
It is input to the control unit 6 via the D converter 8. Also, DC
The output voltage of the / DC converter 4 is detected by the voltage detector 9 and input to the control unit 6 via the A / D converter 10.
CN is a photovoltaic power generation control device.

【0013】制御部6の詳細を図2を示す。制御部6
は、演算部6a、太陽電池1の現在サンプリング時の出
力電圧V1N、前回サンプリング時の出力電圧V1B、DC
/DCコンバータ4の現在サンプリング時の出力電圧V
2N、前回サンプリング時の出力電圧V2B及び最適動作電
圧値Vopを記憶するメモリ6b及びPWMパルス発生
器6cより構成される。本形態では、DC/DCコンバ
ータ4を入力電流増減のための制御信号により制御して
いる。例えば、入力電流増減のための制御信号として、
DC/DCコンバータ4内のスイッチングトランジスタ
4dを駆動するためのPWMパルス信号を用いている。
この場合、DC/DCコンバータ4の入力電流を増加す
れば,太陽電池1の出力電流が増加し、出力電圧は減少
する。反対に、入力電流を減少すれば、太陽電池1の出
力電流が減少し、出力電圧は増加する。
The details of the control unit 6 are shown in FIG. Control unit 6
Are the output voltage V 1N of the computing unit 6a and the solar cell 1 at the current sampling time, the output voltage V 1B of the previous sampling time, DC
/ DC converter 4 output voltage V at the time of current sampling
2N , the output voltage V 2B at the time of the previous sampling and the memory 6b for storing the optimum operating voltage value Vop and the PWM pulse generator 6c. In this embodiment, the DC / DC converter 4 is controlled by the control signal for increasing / decreasing the input current. For example, as a control signal for increasing or decreasing the input current,
The PWM pulse signal for driving the switching transistor 4d in the DC / DC converter 4 is used.
In this case, if the input current of the DC / DC converter 4 is increased, the output current of the solar cell 1 is increased and the output voltage is decreased. On the contrary, if the input current is decreased, the output current of the solar cell 1 is decreased and the output voltage is increased.

【0014】以下に、図3のフローチャートを用いて本
形態の制御手順を説明する。
The control procedure of this embodiment will be described below with reference to the flowchart of FIG.

【0015】システム起動後、制御部6ではサンプリン
グ周期毎に太陽電池1の出力電圧V1N及びDC/DCコ
ンバータ4の出力電圧V2Nを読み込む(ステップ1)。
最適動作電圧Vopの設定モードかどうかを判断して
(ステップ2)、Vopの設定モードの場合、DC/D
Cコンバータ4の入力電流を増加していく。太陽電池1
の出力電力はDC/DCコンバータ4の出力電圧により
決定するが、出力特性曲線上の最大出力以上の出力は得
られないので、太陽電池1が最適動作点に到達するまで
はDC/DCコンバータ4の出力電圧は増加するが、最
適動作点を超過すると、DC/DCコンバータ4の出力
電圧は減少に転じる。したがって、DC/DCコンバー
タ4の出力電圧が最大値を示した時の太陽電池1の出力
電圧が最適動作電圧Vopとなる。演算部6aでは、サ
ンプリング周期毎にDC/DCコンバータ4の出力電圧
2Nを前回サンプリング時の出力電圧V2Bと比較し(ス
テップ3)、V2N<V2Bになった時点で、V2Bに対応す
る太陽電池1の出力電圧V1Bを最適動作電圧Vopと設
定する(ステップ4)。Vopをメモリ6bに記憶し、
以後はサンプリング周期毎に太陽電池1の現在出力電圧
1NとVopを比較して(ステップ5)、V1N>Vop
の場合は、DC/DCコンバータ4の入力電流を増加し
て太陽電池1の出力電圧を減少させ(ステップ6)、V
1N<Vopの場合は、入力電流を減少して太陽電池1の
出力電圧を増加させる(ステップ7)ことにより、太陽
電池(1)の出力電圧を常に最適動作電圧Vopに維持
することができる。
After the system is activated, the control unit 6 reads the output voltage V 1N of the solar cell 1 and the output voltage V 2N of the DC / DC converter 4 in each sampling cycle (step 1).
It is judged whether or not it is the optimum operating voltage Vop setting mode (step 2), and if it is the Vop setting mode, DC / D
The input current of the C converter 4 is increased. Solar cell 1
Output power is determined by the output voltage of the DC / DC converter 4, but since the output above the maximum output on the output characteristic curve cannot be obtained, the DC / DC converter 4 is not operated until the solar cell 1 reaches the optimum operating point. Output voltage increases, but when the optimum operating point is exceeded, the output voltage of the DC / DC converter 4 starts to decrease. Therefore, the output voltage of the solar cell 1 when the output voltage of the DC / DC converter 4 exhibits the maximum value becomes the optimum operating voltage Vop. The calculation unit 6a compares the output voltage V 2N of the DC / DC converter 4 with the output voltage V 2B at the previous sampling at each sampling cycle (step 3), and when V 2N <V 2B , changes to V 2B . The output voltage V 1B of the corresponding solar cell 1 is set as the optimum operating voltage Vop (step 4). Store Vop in the memory 6b,
After that, the current output voltages V 1N and Vop of the solar cell 1 are compared every sampling cycle (step 5), and V 1N > Vop
In the case of, the input current of the DC / DC converter 4 is increased to decrease the output voltage of the solar cell 1 (step 6), and V
When 1N <Vop, the output voltage of the solar cell (1) can be always maintained at the optimum operating voltage Vop by decreasing the input current and increasing the output voltage of the solar cell 1 (step 7).

【0016】以上のように、システム起動直後に太陽電
池1の最適動作電圧Vopの設定を行い、設定後は太陽
電池1の出力電圧を最適動作電圧Vopになるように一
定電圧制御することにより太陽電池1の種類やセルの組
み合わせ方に関係なく容易に、比較的効率良く出力を得
ることができる。また、図5に示される電流検出手段2
7,29を必要とせず、電圧検出手段7,8及び9,1
0については電圧値は相対値であれば良いので、電圧値
の補正など絶対的な精度を要求する必要がない。したが
って、安価に構成することができる。なお、図1では例
として昇圧型のDC/DCコンバータ4を示したが、入
力電流の制御が可能であればこれに限るものではない。
As described above, the optimum operating voltage Vop of the solar cell 1 is set immediately after the system is started, and after the setting, the output voltage of the solar cell 1 is controlled to be the optimum operating voltage Vop by a constant voltage. The output can be easily and relatively efficiently obtained regardless of the type of the battery 1 and the combination of the cells. In addition, the current detection means 2 shown in FIG.
The voltage detecting means 7, 8 and 9, 1 are not required,
As for 0, since the voltage value may be a relative value, it is not necessary to request absolute accuracy such as correction of the voltage value. Therefore, the cost can be reduced. Although the step-up DC / DC converter 4 is shown as an example in FIG. 1, the invention is not limited to this as long as the input current can be controlled.

【0017】[0017]

【発明の効果】以上説明したように、本発明によれば、
最適動作電圧設定モードでは前記DC−DCコンバータ
の入力電流を増加させながら前記DC−DCコンバータ
の出力電圧が最大になった時の太陽電池出力電圧を最適
動作電圧に設定し、通常動作では太陽電池出力電圧を前
記設定された最適動作電圧に維持するように前記DC−
DCコンバータを制御するようにしたから、従来のよう
に電流検出手段を必要とせず、2つの電圧検出手段につ
いては相対的な精度があればよく、よって、コストダウ
ンを図ることができる。しかも、最適動作電圧設定モー
ドにて最適動作電圧の設定を行うために、予め最適動作
電圧を正確に調べる必要がなく、種類やセルの組み合わ
せ方が異なる太陽電池に対してもソフトウエアなどの変
更を要さず、よって、種類やセルの組み合わせ方が異な
る太陽電池に対して事前準備の必要なしに使用すること
ができる。
As described above, according to the present invention,
In the optimum operating voltage setting mode, the solar cell output voltage when the output voltage of the DC-DC converter is maximized is set to the optimum operating voltage while increasing the input current of the DC-DC converter, and in the normal operation, the solar cell is set. In order to maintain the output voltage at the set optimum operating voltage, the DC-
Since the DC converter is controlled, the current detecting means is not required unlike the conventional case, and the two voltage detecting means need only have the relative accuracy, and thus the cost can be reduced. Moreover, in order to set the optimum operating voltage in the optimum operating voltage setting mode, it is not necessary to accurately check the optimum operating voltage in advance, and the software etc. can be changed even for solar cells with different types and cell combinations. Therefore, it can be used for solar cells of different types and combinations of cells without any preparation.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の一形態である太陽光発電制御装
置を含む太陽光発電システムのシステム構成を示すブロ
ック図である。
FIG. 1 is a block diagram showing a system configuration of a photovoltaic power generation system including a photovoltaic power generation control device according to an embodiment of the present invention.

【図2】本発明の実施の一形態である制御部の詳細を示
すブロック図である。
FIG. 2 is a block diagram showing details of a control unit that is an embodiment of the present invention.

【図3】図1の制御部の動作を示すフローチャートであ
る。
FIG. 3 is a flowchart showing an operation of a control unit in FIG.

【図4】太陽電池のI−V特性及び出力特性を示す図で
ある。
FIG. 4 is a diagram showing an IV characteristic and an output characteristic of a solar cell.

【図5】従来の太陽光発電システムの一例のシステム構
成を示すブロック図である。
FIG. 5 is a block diagram showing a system configuration of an example of a conventional photovoltaic power generation system.

【図6】従来の太陽光発電システムの他の例のシステム
構成を示すブロック図である。
FIG. 6 is a block diagram showing a system configuration of another example of the conventional solar power generation system.

【符号の説明】[Explanation of symbols]

1 太陽電池 2 逆接防止ダイオード 3 平滑コンデンサ 4 DC−DCコンバータ 5 負荷 6 制御部 6a 演算部 6b メモリ 6c PWMパルス発生器 7,9 電圧検出器 8,10 A/D変換器 CN 太陽光発電制御装置 DESCRIPTION OF SYMBOLS 1 Solar cell 2 Reverse connection prevention diode 3 Smoothing capacitor 4 DC-DC converter 5 Load 6 Control part 6a Calculation part 6b Memory 6c PWM pulse generator 7, 9 Voltage detector 8, 10 A / D converter CN Solar power generation control device

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H02M 3/155 H01L 31/04 R ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location H02M 3/155 H01L 31/04 R

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 太陽電池の出力電力を受けて負荷に供給
するDC−DCコンバータの入力電流を増減させること
によって、太陽電池の最適動作点制御を行う太陽光発電
制御装置において、最適動作電圧設定モードでは前記D
C−DCコンバータの入力電流を増加させながら前記D
C−DCコンバータの出力電圧が最大になった時の太陽
電池出力電圧を最適動作電圧に設定し、通常動作では太
陽電池出力電圧を前記設定された最適動作電圧に維持す
るように前記DC−DCコンバータを制御するようにし
たことを特徴とする太陽光発電制御装置。
1. A photovoltaic power generation controller for performing optimal operating point control of a solar cell by increasing or decreasing an input current of a DC-DC converter that receives output power of the solar cell and supplies it to a load. In the mode D
While increasing the input current of the C-DC converter, the D
The DC-DC is set so that the output voltage of the solar cell when the output voltage of the C-DC converter becomes maximum is set to the optimum operating voltage, and the solar cell output voltage is maintained at the set optimum operating voltage in the normal operation. A photovoltaic power generation control device characterized by controlling a converter.
【請求項2】 太陽電池の出力電力を受けて負荷に供給
する、入力電流増減機能を有するDC−DCコンバータ
に、入力電流を増減させるための制御信号を与えること
によって、太陽電池の最適動作点制御を行う太陽光発電
制御装置において、サンプリング周期毎に太陽電池の出
力電圧を検出する第1の電圧検出手段と、サンプリング
周期毎に前記DC−DCコンバータの出力電圧を検出す
る第2の電圧検出手段と、最適動作電圧設定モードでは
前記DC−DCコンバータの入力電流を増加させながら
前記DC−DCコンバータの出力電圧が最大になった時
の太陽電池出力電圧を最適動作電圧に設定し、通常動作
では太陽電池出力電圧を前記設定された最適動作電圧に
維持するように前記DC−DCコンバータを制御する制
御手段と、前記第1及び第2の電圧検出手段により検出
された出力電圧及び前記制御手段により設定された最適
動作電圧を記憶する記憶手段とを具備したことを特徴と
する太陽光発電制御装置。
2. An optimum operating point of the solar cell by giving a control signal for increasing or decreasing the input current to a DC-DC converter having an input current increasing / decreasing function, which receives the output power of the solar cell and supplies it to a load. In a photovoltaic power generation control device for controlling, first voltage detection means for detecting an output voltage of a solar cell in each sampling cycle, and second voltage detection for detecting an output voltage of the DC-DC converter in each sampling cycle. In the optimum operating voltage setting mode, the solar cell output voltage when the output voltage of the DC-DC converter is maximized is set to the optimum operating voltage while increasing the input current of the DC-DC converter, and the normal operation is performed. Then, control means for controlling the DC-DC converter so as to maintain the solar cell output voltage at the set optimum operating voltage, and the first means. And a storage unit that stores the output voltage detected by the second voltage detection unit and the optimum operating voltage set by the control unit.
JP07248272A 1995-09-04 1995-09-04 Solar power generation control device Expired - Fee Related JP3091400B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07248272A JP3091400B2 (en) 1995-09-04 1995-09-04 Solar power generation control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07248272A JP3091400B2 (en) 1995-09-04 1995-09-04 Solar power generation control device

Publications (2)

Publication Number Publication Date
JPH0973328A true JPH0973328A (en) 1997-03-18
JP3091400B2 JP3091400B2 (en) 2000-09-25

Family

ID=17175663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07248272A Expired - Fee Related JP3091400B2 (en) 1995-09-04 1995-09-04 Solar power generation control device

Country Status (1)

Country Link
JP (1) JP3091400B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000112545A (en) * 1998-09-30 2000-04-21 Daihen Corp Photovoltaic power generation system
WO2003061104A1 (en) * 2002-01-16 2003-07-24 Toyota Jidosha Kabushiki Kaisha Voltage converter control apparatus, voltage conversion method, storage medium, program, drive system, and vehicle having the drive system
JP2005115441A (en) * 2003-10-03 2005-04-28 Nagano Japan Radio Co Photovoltaic generation apparatus
JP2006040931A (en) * 2004-07-22 2006-02-09 Nagano Japan Radio Co Apparatus for generating solar light power
WO2006048978A1 (en) * 2004-11-02 2006-05-11 Matsushita Electric Industrial Co., Ltd. Power supply
US7148650B1 (en) * 2005-06-22 2006-12-12 World Water & Power Corp. Maximum power point motor control
JP2009502107A (en) * 2005-07-20 2009-01-22 エコソル ソーラー テクノロジーズ,インコーポレイテッド Devices that use photovoltaic output
JP2011083060A (en) * 2009-10-02 2011-04-21 Panasonic Electric Works Co Ltd Apparatus for optimizing power supply of electric power supply system
WO2011148828A1 (en) * 2010-05-28 2011-12-01 太陽誘電株式会社 Power conversion device
JP2013069225A (en) * 2011-09-26 2013-04-18 Toshiba Lighting & Technology Corp Dc power supply system and lighting apparatus
KR101434789B1 (en) * 2013-04-30 2014-08-26 서울대학교산학협력단 Photovoltaic apparatus and controlling method for maximizing power efficiency of the same
US9236805B2 (en) 2013-06-13 2016-01-12 Hyundai Motor Company System and method for controlling DC-DC converter

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX339474B (en) * 2011-06-23 2016-05-27 Hirata Spinning Workpiece support device.
KR102175429B1 (en) * 2018-12-19 2020-11-06 주식회사 포스코 Apparatus for photovoltaic power generation

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000112545A (en) * 1998-09-30 2000-04-21 Daihen Corp Photovoltaic power generation system
WO2003061104A1 (en) * 2002-01-16 2003-07-24 Toyota Jidosha Kabushiki Kaisha Voltage converter control apparatus, voltage conversion method, storage medium, program, drive system, and vehicle having the drive system
US7199537B2 (en) 2002-01-16 2007-04-03 Toyota Jidosha Kabushiki Kaisha Voltage converter control apparatus, and method
CN100409552C (en) * 2002-01-16 2008-08-06 丰田自动车株式会社 Voltage converter control apparatus, voltage conversion method, storage medium, program, drive system, and vehicle having the drive system
JP2005115441A (en) * 2003-10-03 2005-04-28 Nagano Japan Radio Co Photovoltaic generation apparatus
JP4528574B2 (en) * 2004-07-22 2010-08-18 長野日本無線株式会社 Solar power plant
JP2006040931A (en) * 2004-07-22 2006-02-09 Nagano Japan Radio Co Apparatus for generating solar light power
WO2006048978A1 (en) * 2004-11-02 2006-05-11 Matsushita Electric Industrial Co., Ltd. Power supply
US7719252B2 (en) 2004-11-02 2010-05-18 Panasonic Corporation Power supply
US7148650B1 (en) * 2005-06-22 2006-12-12 World Water & Power Corp. Maximum power point motor control
JP2009502107A (en) * 2005-07-20 2009-01-22 エコソル ソーラー テクノロジーズ,インコーポレイテッド Devices that use photovoltaic output
JP2011083060A (en) * 2009-10-02 2011-04-21 Panasonic Electric Works Co Ltd Apparatus for optimizing power supply of electric power supply system
WO2011051765A1 (en) * 2009-10-02 2011-05-05 パナソニック電工株式会社 Power source optimisation device for electric power supply system
WO2011148828A1 (en) * 2010-05-28 2011-12-01 太陽誘電株式会社 Power conversion device
JP5369234B2 (en) * 2010-05-28 2013-12-18 太陽誘電株式会社 Power converter
JP2013069225A (en) * 2011-09-26 2013-04-18 Toshiba Lighting & Technology Corp Dc power supply system and lighting apparatus
KR101434789B1 (en) * 2013-04-30 2014-08-26 서울대학교산학협력단 Photovoltaic apparatus and controlling method for maximizing power efficiency of the same
US9236805B2 (en) 2013-06-13 2016-01-12 Hyundai Motor Company System and method for controlling DC-DC converter

Also Published As

Publication number Publication date
JP3091400B2 (en) 2000-09-25

Similar Documents

Publication Publication Date Title
US6373729B1 (en) Electric power source apparatus including electric power converter circuit and method for controlling the same
US6169680B1 (en) Switching power source with a digital control circuit to maintain a constant DC output signal
US7262978B2 (en) Voltage conversion apparatus, voltage conversion method, and computer-readable recording medium with program recorded thereon to allow computer to execute voltage conversion control
JPH0973328A (en) Solar light power generation controller
JP4719434B2 (en) Solar cell power generator
US7579817B2 (en) Constant-voltage circuit capable of reducing time required for starting, semiconductor apparatus including constant-voltage circuit, and control method of constant-voltage circuit
JPH10225105A (en) Dc-dc converter
JP4158513B2 (en) Vehicle power generation control device
JP2002252971A (en) Switching power unit
JP2000123970A (en) Circuit for indirectly controlling output voltage of electroluminescent lamp drive and its method
JPS60121932A (en) Controller for automotive charging generator
JP2003209976A (en) Pwm inverter and its current detecting method
JPH09261949A (en) Dc/dc converter and solar generation system
JP2000152616A (en) Power supply device
JP2009183081A (en) Apparatus for detecting reactor state of chopper converter
JP3762036B2 (en) Power conditioner in solar power generation system
JPH0690596A (en) Circuit and method for driving motor
JP3451945B2 (en) Solar power inverter
JPH08294282A (en) Voltage booster power factor improving circuit
JP6648704B2 (en) In-vehicle control device and in-vehicle power supply device
JP2832667B2 (en) Solar cell output control device
JP3350665B2 (en) Brushless DC motor position detection method
JP3840236B2 (en) Converter device and control method thereof
JP2547652B2 (en) Power converter
JP7312088B2 (en) Power conversion device and power conversion control device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080721

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080721

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090721

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100721

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120721

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130721

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees