WO2011050735A1 - 紫杉醇/类固醇复合物 - Google Patents

紫杉醇/类固醇复合物 Download PDF

Info

Publication number
WO2011050735A1
WO2011050735A1 PCT/CN2010/078202 CN2010078202W WO2011050735A1 WO 2011050735 A1 WO2011050735 A1 WO 2011050735A1 CN 2010078202 W CN2010078202 W CN 2010078202W WO 2011050735 A1 WO2011050735 A1 WO 2011050735A1
Authority
WO
WIPO (PCT)
Prior art keywords
paclitaxel
steroid
complex
cholesterol
emulsion
Prior art date
Application number
PCT/CN2010/078202
Other languages
English (en)
French (fr)
Inventor
刘玉玲
夏学军
郭瑞芳
张鹏宵
周翠萍
汪仁芸
金笃嘉
Original Assignee
中国医学科学院药物研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国医学科学院药物研究所 filed Critical 中国医学科学院药物研究所
Priority to EP10826098.5A priority Critical patent/EP2494956A4/en
Priority to BR112012010149-8A priority patent/BR112012010149A2/pt
Priority to AU2010312017A priority patent/AU2010312017B2/en
Priority to US13/505,173 priority patent/US20130150335A1/en
Priority to JP2012535616A priority patent/JP6158513B2/ja
Priority to CN201080059671.5A priority patent/CN102811706B/zh
Priority to CA2779316A priority patent/CA2779316C/en
Publication of WO2011050735A1 publication Critical patent/WO2011050735A1/zh
Priority to HK13106587.1A priority patent/HK1179513A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/107Emulsions ; Emulsion preconcentrates; Micelles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/56Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
    • A61K31/575Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids substituted in position 17 beta by a chain of three or more carbon atoms, e.g. cholane, cholestane, ergosterol, sitosterol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/107Emulsions ; Emulsion preconcentrates; Micelles
    • A61K9/1075Microemulsions or submicron emulsions; Preconcentrates or solids thereof; Micelles, e.g. made of phospholipids or block copolymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/337Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having four-membered rings, e.g. taxol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/56Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
    • A61K31/57Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids substituted in position 17 beta by a chain of two carbon atoms, e.g. pregnane or progesterone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/28Steroids, e.g. cholesterol, bile acids or glycyrrhetinic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/141Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers
    • A61K9/145Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers with organic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/19Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles lyophilised, i.e. freeze-dried, solutions or dispersions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2013Organic compounds, e.g. phospholipids, fats
    • A61K9/2018Sugars, or sugar alcohols, e.g. lactose, mannitol; Derivatives thereof, e.g. polysorbates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2022Organic macromolecular compounds
    • A61K9/205Polysaccharides, e.g. alginate, gums; Cyclodextrin
    • A61K9/2054Cellulose; Cellulose derivatives, e.g. hydroxypropyl methylcellulose
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/4841Filling excipients; Inactive ingredients
    • A61K9/4858Organic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system

Definitions

  • the present invention relates to a paclitaxel/steroid complex and a preparation method thereof, and to a use of the paclitaxel/steroid complex, which belongs to the technical field of pharmaceutical preparations. Background technique
  • Paclitaxel (Pastalxel, Taxol) has important anti-tumor activity and is widely used in the treatment of ovarian cancer, breast cancer, non-small sputum cancer, head cancer and neck cancer. Because it is almost insoluble in water (0. 006 g/ml), the current clinical injection of Taxol® is a mixture of Cremopher EL (polyoxyethyl castor oil) / ethanol (50: 50, V / V). The solution was prepared by dissolving 30 mg of paclitaxel in 5 ml. Because the prescription contains a large amount of Cremopher EL, it is easy to cause the release of body entanglement, leading to severe allergic reactions.
  • Cremopher EL polyoxyethyl castor oil
  • the clinical shed should be desensitized as follows: oral dexamethasone 10 mg 12 hours before treatment, oral dexamethasone 10 mg 6 hours before treatment, 20 mg to 60 minutes before treatment, diphenhydramine intramuscular injection 20 mg, static Note cimetidine 300mg or ranitidine 50mg. Even so, clinically, 5% to 30% of patients have varying degrees of allergic reactions.
  • the concentrated solution of paclitaxel solubilized by Cremopher EL/ethanol has physical stability problems after dilution. If the ambient temperature is low or the infusion time is too long, the drug may be precipitated and there is a safety hazard.
  • the cyclodextrin inclusion compound can increase the solubility of paclitaxel, it is easy to cause severe nephrotoxicity due to the large amount of cyclodextrin, and it is easy to precipitate the drug after dilution with water. Therefore, it has not been incorporated into the clinic.
  • the quality of the moon is low in the encapsulation rate, long-term storage is easy to leak, and the drug is easily precipitated after dilution.
  • the industrialization is difficult. Although it has undergone 20 years of research abroad, it has not seen the product.
  • the freeze-dried powder of paclitaxel liposome (ricein) approved in the early stage of China (listed in 2004) contains 30mg of drug per drug.
  • the specifications and clinical use of the same grain are the same as those of the common injections on the market. There is no significant difference in efficacy.
  • the intermediate preparation step has been added, and desensitization pretreatment is also required, which does not show obvious technical advantages.
  • paclitaxel polymer micelles research at home and abroad is extremely active, but due to low drug loading and unstable quality after storage, it needs to be lyophilized and stored, which limits industrial development.
  • polymer micelles have been made. The research technology has been rapidly developed, but a large number of new structural polymer materials have been introduced into the body, and the safety of clinical drug use needs further investigation.
  • the oil-in-water submicron emulsion is an emulsion having an average particle diameter of 600 or less obtained by utilizing the lipophilicity of the drug, dissolving the drug in the oil phase, using natural phospholipid as an emulsifier, and preparing by high-pressure homogenization. Since the drug is present in the internal oil phase, avoiding contact with water and air, it is possible to eliminate the defects of the liquid preparation due to low solubility and poor stability of the soluble drug. Compared with liposome technology, submicron emulsion has more industrial development advantages; compared with albumin-bound nanoparticles, submicron emulsion has low manufacturing cost, can be terminally sterilized, and can be directly instilled clinically.
  • X disclosed paclitaxel lipid complex the lipid material of the marrow is natural egg yolk lecithin, soybean phospholipid and cholesterol, the weight ratio of paclitaxel and lipid material is 1: wide 19, that is, the amount of lipid material is up to paclitaxel 19 times wider (in which phospholipid is used as a lipid material, the molar ratio of paclitaxel to lipid material is about 1: 20; when cholesterol is used as a lipid material, the molar ratio of paclitaxel to lipid material is about 1: 2. 2 2; When bile acid is used as the lipid material, the molar ratio of paclitaxel to lipid material is about 1: 2. wide 40).
  • the submicron emulsion disclosed in 200810168212. 5 is the paclitaxel lipid complex disclosed in 200810168213. X as an intermediate carrier.
  • the cholesterol complex and its preparation, the cholesterol intake is equivalent to 300mg 700mg, the highest is equivalent to 19 egg yolks, which is obviously high, and there are safety hazards;
  • the prepared submicron emulsion is unstable for long-term storage: When a cholesterol composite is used as an intermediate carrier to prepare a submicron emulsion, the higher the amount of the lipid material in the complex, the higher the total amount of the compound encapsulated in the inner oil phase of the submicron emulsion, according to the clinical therapeutic dose and the specific paclitaxel concentration. The more.
  • the lipid materials and their amounts were further screened and optimized.
  • steroids also known as classes
  • Sterols are the best lipid materials, specifically the steroid lipid material has a strong ability to complex paclitaxel, and a smaller amount of steroids can maximize the solubility of the drug in oil.
  • the oil-in-oil submicron emulsion is prepared by using the steroid complex described in the patent of the invention as an intermediate carrier, and the obtained submicron emulsion not only has a higher encapsulation efficiency but also is not easy to be demulsified for a long period of time due to a decrease in the total amount of the encapsulated composite.
  • One object of the present invention is to provide a paclitaxel/steroid complex which is a composite of paclitaxel and a steroid lipid material.
  • the molar ratio of paclitaxel to steroid is 1: 0. 2 ⁇ 4, medullary 1: 0. 25 ⁇ 2, more medullary 1: 0. 33 ⁇ 1.
  • the paclitaxel/steroid compound of the present invention wherein the steroid lipid material is at least one of a natural steroid substance or a derivative thereof; the natural steroid is selected from the group consisting of cholesterol and 7-dehydrocholesterol (also known as 7-hydrogenated) Cholesterol), lanosterol, sitosterol, sterol, gluten, ergosterol, rapeseed sterol, fungal sterol, oyster sterol; said steroid derivative selected from the group consisting of cholic acid, deoxycholic acid and goose Deoxycholic acid.
  • the steroidal materials of the marrow are cholesterol, 7-dehydrocholesterol and ergosterol, more preferably cholesterol and ergosterol.
  • the paclitaxel/steroid complex of the present invention may further contain an antioxidant stabilizer.
  • the anti-oxidation stabilizer of the marrow is selected from at least one of sodium hydrogen sulfite, sodium metabisulfite, vitamin C, EDTA and salts thereof, vitamin E and derivatives thereof.
  • Another object of the present invention is to provide a process for preparing a paclitaxel/steroid complex of the present invention, which can be prepared according to the following method 1 or 2.
  • Method 1 includes the following steps:
  • Method 2 includes the following steps:
  • the organic arsenic is selected from one or more selected from the group consisting of dichloromethane, ethanol, methanol, benzyl alcohol, acetone, ethyl acetate, tetrahydrofuran, and t-butanol; preferably, it may be selected from One or more of ethanol, acetone, ethyl acetate and tetrahydrofuran.
  • a plurality of organic solvents refers to a mixture of selected organic solvents.
  • the organic hydrazine removal is achieved by rotary evaporation or spray drying.
  • "mixed in proportion" means that the ratio of paclitaxel to steroid is given in the above-mentioned application, that is, the molar ratio of paclitaxel to steroid is 1: 0. 2 ⁇ 4, preferably 1: 0.
  • Appropriate amount in an appropriate amount of organic means an amount determined by a person skilled in the art to dissolve a mixture of paclitaxel and a steroid according to a conventional technique, for example, paclitaxel and steroid
  • concentration of the complex in the solution is calculated from the paclitaxel, and may be 0. 5 ⁇ 16mg/ml, preferably 1. 0 ⁇ 8. Omg/ml;
  • suitable temperature condition means the temperature can be between 25 ° C and 70 ° C , »35-55 ° C, such as 25 ° C, 35 ° C, 45 ° C, 55 ° C or 70 ° C.
  • the vacuum drying time may be 8 hours to 48 hours, such as 8 hours, 12 hours, 16 hours or 24 hours.
  • the amount of the antioxidant stabilizer is generally used in the preparation of the lipid complex in the art, and generally does not exceed the sum of the weights of both paclitaxel and cholesterol. 1% by weight.
  • the invention also provides the use of the paclitaxel/steroid complex of the invention in the preparation of an oil-in-water submicron emulsion, a dry emulsion, a microemulsion system or an oral formulation.
  • the oil-in-water submicron emulsion preparation or the dry emulsion is prepared by dissolving the paclitaxel/steroid complex of the present invention in an oil phase, which can be administered by injection for clinical treatment of a tumor, which is High drug volume, good stability, and no Cremopher EL in the prescription, the safety is better than the commercial injection.
  • the self-microemulsion system is prepared by dissolving the paclitaxel/steroid complex of the present invention in an oil phase, adding an appropriate amount of a surfactant (emulsion) and a co-surfactant (co-emulsifier), which can be injected by injection. , mucosal or oral administration, for clinical treatment of tumors.
  • Oral preparations, especially solid preparations such as capsules or tablets, are prepared by adding the paclitaxel/steroid complex of the present invention to a pharmaceutically acceptable pharmaceutical excipient, which can be administered orally.
  • the clinical treatment of the tumor has a higher bioavailability.
  • the present invention also provides the use of the paclitaxel/steroid compound of the present invention for preparing an anticancer drug, the cancer selection From ovarian cancer, breast cancer, non-small cancer, head cancer or neck cancer. It can also be gastric cancer or pancreatic cancer.
  • the amount of fat and rot is less, preparation j»low:
  • the compounding of the drug and the lipid material is the prerequisite for the maximum improvement and improvement of the solubility of the drug in the oil.
  • the molar ratio of the drug of the present invention to the lipid material steroid is 1:0.2, preferably compared to the paclitaxel complex known in the art, including the paclitaxel complex prepared in Patent 200810168213.
  • the molecular weight of the steroid lipid material selected in the present invention is 384.6 ⁇ 414.7, and thus, when the molar ratio of the drug to the steroid is 1:0.2, the corresponding weight ratio is 1:0.09 ⁇ 1: 0.097; the molar ratio is 1:4.
  • the corresponding weight ratio is 1:1.80 ⁇ 1.94, that is, the molar ratio of the drug to the steroid is in the preferred range of 1:0.2, and the corresponding weight ratio is
  • the weight ratio is 1:0.1 wide and 0.97; when the molar ratio of the drug to the steroid is more preferably 1:0.33 ⁇ 1, the corresponding weight ratio is 1: 0.15 ⁇ 0.49.
  • the present invention uses steroid as a lipid material, and the weight ratio of the drug to the lipid material is reduced from 1: wide to 1:0 ⁇ 09 ⁇ 1 ⁇ 94 («3 ⁇ 43 ⁇ 41:0. ⁇ .97), reduced the amount of lipid material, reduced the dosage range, increased the drug loading of paclitaxel in the complex (from 5% to 50% to 35% to 91.7%), and still ensured that paclitaxel was completely Compounding, the solubility in the oil is increased to a large extent to meet the preparation of the subsequent submicron emulsion. Increasing the amount of lipid material does not continue to increase the solubility of the drug in oil.
  • the amount of steroid per ingestion can be controlled from 27 mg to 580 mg, preferably 33 mg to 290 mg, and 300 mg to 5700 mg of the patented technology of 200810168213. X according to the calculation of paclitaxel 300 mg per administration. In contrast, the intake of steroids is greatly reduced, reducing the safety hazards that may result from the high intake of steroids.
  • the maximum amount of steroids in the composite provided by the invention is only 1.94 times of the weight of paclitaxel and 0.97 times of the pith, which is dissolved in vegetable oil to prepare oil-in-water.
  • the total amount of the composite encapsulated in the inner oil phase is small, which is beneficial to improve the encapsulation efficiency and physical stability and chemical stability of long-term storage.
  • the submicron emulsion prepared by using the composite of the invention as an intermediate carrier has an encapsulation supplement of more than 90%.
  • the storage quality was stable at 4 ° C for 12 months, and the encapsulation efficiency of the submicroemulsion described in 200810168212. 5 patent was 65% _85 %.
  • the storage stratification occurred at 4 ° C for 12 months, and the impurities increased significantly.
  • the paclitaxel/steroid complex of the present invention is used as an intermediate carrier to prepare a submicron emulsion, which does not contain Cremopher EL, avoids severe allergic reactions caused by Cremopher EL, and reduces Animal toxicity has increased the tolerated dose.
  • Figure 1 DSC plot of composites and physical mixtures of different molar ratios in Test Example 3.
  • Figure 4 Figure 4-1: Ultraviolet spectrum of Test Example 8
  • Figure 4-2 Comparison of HPLC chromatograms of Test Example 8 (Peak 1 is paclitaxel)
  • paclitaxel 5 lg, cholesterol 4.95g, placed in a rotary evaporator, add 5200ml of a mixture of ethanol and tert-butanol to dissolve it, stir at 45 ° C 3 ⁇ 43 ⁇ 4g for 1 hour, move to a rotary evaporator, rotate Evaporation method is used to remove the ship by vacuum drying at 65 ° C for 15 hours.
  • glycerin 25 g was dissolved in about 720 ml of water for injection, heat was applied to 40-60 ° C, 15 g of refined soybean lecithin and 30 g of poloxamer (188) were added, and treated in a tissue crusher to form a uniform aqueous phase. Maintain at this temperature; separately take the appropriate amount of paclitaxel / steroid complex in Example 1 to Example 18 (equivalent to paclitaxel 500mg), add 200ml of soybean oil, heat to 40 ⁇ 60 ° C, make oil phase. The aqueous phase was slowly added to the oil phase under stirring, and stirred to form a uniform colostrum.
  • Example 20 Submicron emulsion with paclitaxel/steroid complex as intermediate carrier
  • glycerol 12 ⁇ 5g dissolved in about 300ml of water for injection, heat to about 50°C, add 7g of refined egg yolk lecithin and 15g of poloxamer (188), and treat it in a tissue crusher to make it uniform.
  • the aqueous phase is maintained at this 3 ⁇ 4 ⁇ ; the appropriate amount of paclitaxel/steroid complex (equivalent to paclitaxel 500 mg) is applied, and 125 ml of a mixed oil consisting of soybean oil and medium chain oil in equal volumes is added.
  • the heat is heated to about 50 ° C to make an oil phase.
  • the aqueous phase was slowly added to the oil phase under stirring, and the mixture was stirred at a high speed to form a uniform colostrum.
  • the colostrum was quickly transferred to a high-pressure homogenizer for several times, and the pH was adjusted to 4. 0-6. 0 with 0. lmol/L hydrochloric acid, and water was added to 500 ml, and the whole emulsion was collected and sterilized at 115 ° C for 30 minutes. , that is, a submicron emulsion having a drug loading of 1.0 mg/ml.
  • the laser particle size analyzer measured the average particle size of 230 raT250.
  • Example 21 Submicron emulsion with paclitaxel steroid as intermediate carrier
  • Example 22 Submicron emulsion with paclitaxel steroid as intermediate carrier
  • glycerol 12 ⁇ 5g dissolved in about 300ml of water for injection, heat to 60°C, add 7g of refined soybean lecithin and 15g of poloxamer (188), dispose of it by tissue mincer, and stir evenly at high speed.
  • the aqueous phase was maintained at this temperature; the appropriate amount of the paclitaxel/steroid complex in Example 1 to Example 18 (corresponding to paclitaxel 1000 mg) was added to 150 ml of soybean oil and heated to 60 ° C to prepare an oil phase. .
  • the aqueous phase was slowly added to the oil phase under stirring, and stirred at a high speed to form a uniform colostrum.
  • the colostrum was quickly transferred to a high-pressure homogenizer for several times.
  • Example 23 Dry emulsion with paclitaxel steroid as intermediate carrier
  • Example 24 Self-microemulsion with paclitaxel steroid complex as intermediate carrier
  • paclitaxel / steroid complex of Example 1-18 (equivalent to paclitaxel 100 mg), 5 ml of medium-chain oil, stirred to dissolve, added 1. 6ml PEG400 0. 5 ml B soil temperature 80, stir evenly, that is Uniform transparent self-microemulsion system.
  • Example 25 Capsule with paclitaxel steroid as intermediate carrier
  • Example 26 Tablets with paclitaxel steroid complex as intermediate carrier
  • paclitaxel/steroid complex of Example 1-18 Take the appropriate amount of paclitaxel/steroid complex of Example 1-18 (corresponding to paclitaxel 500mg), add microcrystalline cellulose 500 mg, lactose 500 mg, magnesium stearate, mix and mix, adjust the punch, the compression specification is 100_250mg tablets. Test case
  • Test example 1 Chinese patent application flat 168213. X patent disclosure technical solution verification
  • soybean lecithin and cholesterol are used as lipid materials, and the weight ratio of the drug to the lipid material is controlled at 1: 1.85 18. 5 to prepare the ginseng.
  • solubility in soybean oil was examined and compared with uncomplexed free paclitaxel.
  • Table 1 200810168213. Compound verification results disclosed in the X patent Complex composition paclitaxel/lipid material dosage ratio solubility in soybean oil
  • the concentration of paclitaxel had no significant effect on the solubility of the complex in oil, as shown in the table below.
  • Paclitaxel/cholesterol complex (complexes prepared in Table 2, Table 2, molar ratios of 4:1, 3:1, 2:1, 1:1, 1:2, 1:4);
  • Test method DSC curve characteristics were observed by differential scanning calorimetry (DSC), temperature 25 ⁇ 300 °C, heating rate 10 °C/min, nitrogen flow rate 60 ml/min; DSC curve is shown in Fig. 1.
  • the endothermic melting peak of paclitaxel was 225.7 ° C, and the endothermic peak of cholesterol was 150.9 ° C. Physical mixture prepared according to different proportions, the endothermic change characteristic of cholesterol did not occur, S insects melting temperature still 149-150 ° C; taxol endothermic peak although a small shift occurred, but the melting characteristics still exist, Tips are a simple physical mix.
  • the reason for the shift of the melting peak of paclitaxel in the physical mixture is as follows. The melting point of cholesterol is lower than the melting point of paclitaxel. When the cholesterol is melted, the dispersion state of the drug will be affected, and the melting characteristics of paclitaxel are changed.
  • 3CHT 1 wavenumbers absorption peaks; IR spectrum physical mixture substantially superimposed cholesterol paclitaxel respective absorption peaks; and wherein the composite absorption peak is changed
  • the characteristic peak shape of the ketone ketone carbonyl group and the amide group changed.
  • the ketone carbonyl group changed from two split peaks to 1724. 7 cm - 1 is a blunt peak with a large absorption intensity, and the carbonyl group of the amide group is 1646.
  • the peak shape at 4 cm- 1 wave becomes dull; the peak of the absorption peak of the hydroxyl group of cholesterol at 3432. 9 cm- 1 wave width becomes wider, and the absorption intensity increases.
  • the drug/steroid complex solid powder prepared in Examples 1-18 was stored at 25 ° C, and samples were taken periodically to examine the change in appearance. Add anhydrous ethanol to make a suitable concentration of solution, and take 20 L into the HPLC instrument, using Kromasil-C18 (250mmX4.6mm, 5 ⁇ ) as the column, acetonitrile-water (54: 46) as mobile phase, flow rate 1.0 mL. /min, detection wavelength 230nm, determination of content and impurities. The results showed that there was no significant change in appearance, content and impurities compared with the initial one, and the quality was stable.
  • Paclitaxel Steroid Complex Experimental compound broad experimental complex 6 : According to the technical requirements of the present invention, cholesterol, 7-dehydrocholesterol and ergosterol are used to prepare a complex of paclitaxel/steroid molar ratio of 1:1 to 1:4, specifically prepared The method is to put paclitaxel and steroid together in a triangular flask, dissolve it by adding 2000 ml of acetone, stir at 40 ° C for 1 hour, transfer to a rotary evaporator, remove the solvent by rotary evaporation, and decompress at 40 ° C. Dry in vacuum for 24 hours. ,
  • Reference compound broad reference compound 4 According to the technical requirements of the composite in 200810168212. 5, using soybean phospholipid and cholesterol as lipid materials, four sets of reference composites were prepared according to the same method as above for comparative study. The molar ratio of paclitaxel/phospholipid complex is 1:6 and 1:10, and the molar ratio of paclitaxel/cholesterol complex is 1:10 and 1:20. See the table below for details.
  • Table 7 Composition of paclitaxel/cholesterol complex
  • Test Preparation 10-2 Paclitaxel submicron emulsion with paclitaxel cholesterol complex as intermediate carrier
  • Example 1 is the experimental compound of the paclitaxel/cholesterol weight ratio of 1:0.5 prepared in Example 1.
  • soybean oil was weighed according to the prescribed amount, preheated to 40 ° C, and the paclitaxel cholesterol complex 1 prepared in Example 1 was weighed, dissolved in preheated soybean oil, and dispersed in a tissue masher to obtain a uniform oil phase. ;
  • the water phase is slowly added to the oil phase, and sheared at 10,000 rpm for 5 min to form a uniform colostrum, which is quickly transferred to a high-pressure homogenizer, homogenized 6 times, and the entire emulsion is collected.
  • the pH was adjusted to 4. 0 ⁇ 0.5 by using 0.1 mol/L hydrochloric acid, and water was added to 200 ml, shaken, and dispensed, and sterilized at 115 ° C for 30 minutes.
  • the amount of the emulsifier poloxamer (188) is 0.5% (g/ml), 1. 0% (g) /mg), 2. 0% (g / ml) and 3. 0% (g / ml), the drug loading of paclitaxel was 0. 5mg / ml, 1. 0mg / ml, 2. 0mg / ml, 4. 0mg/ml.
  • Test Preparation Example 10-3 Paclitaxel submicron emulsion with paclitaxel cholesterol complex as intermediate carrier
  • Glycerin 5g 5g 5g 5g Vitamin EIII 40mg Soybean Oil 40ml 40ml 50ml 50ml
  • Example 2 is the experimental complex 2 having a paclitaxel/cholesterol weight ratio of 1:0.90 prepared in Example 1.
  • the water phase is slowly added to the oil phase, and sheared at 20000 rpm for 10 min to form a uniform colostrum, which is quickly transferred to a high-pressure homogenizer, homogenized 6 times, and all the emulsions are collected. Adjust the pH to 5.5 ⁇ 0.5 with 0.1 mol/L hydrochloric acid, add water to 200 ml, shake well, dispense, and sterilize at 115 ° C for 30 minutes.
  • Submicron 5 - submicroemulsion 8 emulsifier (egg egg lecithin) is 1.0% (g/ml), 1.2% (g/ml), 1.5% (g/ml), and the total amount of submicron emulsion, respectively.
  • 1.5% (g/ml) the emulsifier poloxamer (188) is 1.2% (g/ml), 2.0% (g/ml), 2.0% (g/ml) and the total amount of the submicron emulsion. 3.0% (g/ml), the drug loading of paclitaxel was 0.5 mg/ml, 1.0 mg/ml, 2. Omg/ml, 4.0 mg/ml, respectively.
  • Test Preparation 10-4 Paclitaxel submicron emulsion with paclitaxel cholesterol complex as intermediate carrier
  • Polosham (188) 4g 4g 4g 4g Glycerin 5g 5g 5g 5g
  • Example 1 is the experimental complex 1 having a paclitaxel/cholesterol weight ratio of 1:0.45 prepared in Example 1.
  • the amount of submicron emulsion 9-submicroemulsion 12, emulsifier (soybean phospholipid) was 1.2% (g/ml), 1.2% (g/ml), 1.2% (g/ml) and 1.5 of the total amount of submicron emulsion, respectively.
  • %(g/ml) the co-emulsifier poloxamer (188) is 2.0% (g/ml) of the total amount of submicron emulsion, and the drug loading of paclitaxel is 0.5mg/ml, 1.0mg/ml. 2. Omg/ml and 5.
  • Submicron 16 Component Submicron milk 13 Submicron 14 Submicron 15 Submicron 16
  • Example 1 is an experimental complex of paclitaxel/cholesterol weight ratio of 1:0.45 prepared in Example 1.
  • Compound 1
  • the oil mixture is a mixture of soybean oil / medium chain oil (volume ratio 1: 1).
  • the submicron emulsion 13-submicroemulsion 16, emulsifier (soybean phospholipid) content is 1.2% (g/ml), 1.2% (g/ml), 1.2% (g/ml) and 2.0 of the total amount of the submicron emulsion, respectively.
  • %(g/ml), co-emulsifier poloxamer (188) is 1.5% (g/ml), 1.5% (g/ml), 2.0% (g/ml) and 2.0 of the total amount of submicron emulsion.
  • % (g/ml), paclitaxel loading was 1.0 mg / ml, 1.5 mg / ml, 2. Omg / ml and 5. Omg / ml.
  • the average particle size of the four groups of emulsions was 145 nm, 138 nm, 133 nm, and 146 nm as determined by a laser granulometer.
  • Test Preparation 10-6 Paclitaxel submicron emulsion with paclitaxel cholesterol complex as intermediate carrier
  • Submicron 20 Component Submicron milk 17 Submicron 18 Submicron 19 Submicron 20
  • Example 2 is the experimental complex 2 having a paclitaxel/cholesterol weight ratio of 1:0.90 prepared in Example 1.
  • the oil mixture is a mixture of soybean oil / medium chain oil (volume ratio 1: 1).
  • the submicron emulsion 17-submicroemulsion 20 the emulsifier (egg egg lecithin) content is 1.5% (g/ml), 1.5% (g/ml), 2.0% (g/ml) of the total amount of the submicron emulsion, respectively. 3.0% (g/ml), co-emulsifier poloxamer (188)
  • the amount of the submicron emulsion is 2.0% (g/ml), 2. 0% (g/ml), 3. 0% (g/ml), and 3.0% (g/ml) of paclitaxel. 5mg/ ⁇ , 2. Omg/ml, and 5. Omg/ml, respectively.
  • Test Preparation 10-7 Paclitaxel submicroemulsion with paclitaxel cholesterol complex as intermediate carrier
  • Submicron 21 Submicron 22
  • Submicron 23 Submicron 24
  • Oleic acid 0. 2g 0. 2g 0. 2g 0. 2g 0. 2g 0. 2g
  • Example 1 is the experimental complex 1 of the paclitaxel/cholesterol weight ratio of 1:0.5 prepared in Example 1.
  • the oil mixture is a mixture of soybean oil / medium chain oil (volume ratio 1: 1).
  • the fatty acid glyceride emulsifier is used in an amount of 1.5% (g/ml) of the total amount of the submicron emulsion.
  • the amount of the submicron emulsion is 2. 0% (g/ml) and 3, the amount of the submicron emulsion is emulsifier. . 0% (g/ml).
  • the amount of the co-emulsifier poloxamer (188) is 1.5% (g/ml), 2. 0% (g/ml) of the total amount of the submicron emulsion. 2. 0% (g/ml) and
  • Soybean phospholipid 2. 4g 2. 4g 2. 4g 4. 0g
  • Example 6 is the paclitaxel/7-hydrogenated cholesterol complex and the paclitaxel/ergot complex prepared in Example 1.
  • the oil mixture is a mixture of soybean oil / medium chain oil (volume ratio 1: 1).
  • the drug loading of paclitaxel was 1. 0 mg/ml.
  • the average particle size of the four groups of emulsions was 143 nm, 138 nm, 141 nm, and 132 nm as determined by a laser granulometer.
  • Test Preparation 10-9 Paclitaxel submicron emulsion with reference complex as intermediate carrier
  • the reference composite 1-reference composite 4 prepared under the test preparation example 1 was prepared, and the submicron emulsion 29 to the submicroemulsion 32 was prepared according to the preparation method of the submicron emulsion of the above example, and the drug loading amount was 0. 5, 1. 0, 1. 0 and 2. 0 mg/ml, for comparative studies.
  • the specific prescription, preparation method and measured encapsulation efficiency results are as follows:
  • Reference composites 1, 2 are the two reference compositions of the paclitaxel/phospholipid weight ratio of 1:5 and the weight ratio of 1:9, respectively, prepared in Test Preparation Example 1.
  • Reference composites 3 and 4 are the two reference complexes of the cholesterol paclitaxel/phospholipid weight ratios prepared in Test Preparation Example 1: 1: 4.50 and 1: 9.06, respectively;
  • Soybean oil was weighed according to the prescription amount, preheated to 40-80 ° C, and the paclitaxel cholesterol complex 1 prepared in Example 1 was weighed, dissolved in preheated soybean oil, and dispersed in a tissue mincer to make a uniform oil. Phase
  • the water phase is slowly added to the oil phase, and cut at 10,000-20,000 rpm for 5-10 min to form a uniform colostrum, which is quickly transferred to a high-pressure homogenizer, homogenized 6 times, collected.
  • the whole emulsion was adjusted to pH 4. 5 ⁇ 0. 5 with 0. lmol/L hydrochloric acid, and water was added to 200 ml, shaken, dispensed, and sterilized at 115 ° C for 30 minutes.
  • the flow rate was 1. OmL/min, detection wavelength 230 should be, the column temperature is room temperature, measured according to law, the chromatogram is recorded, the drug content in the emulsion is calculated according to the peak area according to the external standard method, and the impurity content is calculated according to the normalization method.
  • Emulsion 15 Uniform milk 99. 2% 0. 31% Uniform milk 137nm 98. 5% 0. 63%
  • Emulsion 17 Uniform milk 255nm 97. 8% 0. 32% Uniform milk 244nm 97. 6% 0. 57% /0. 5mg/ml
  • the steroidal complex is an intermediate carrier prepared by the submicron emulsion submicron emulsion 28, after storage in a refrigerator (4 ° C) for 12 months, compared with the initial, 1) the drug loading is 5.
  • Omg / ml of the emulsion average Particle size Increasing trend, but no stratification, no obvious change in appearance and content. Although the impurity has a force increase but not more than 2.0%; 2)
  • the emulsion with a drug loading of 4 ⁇ Omg/ml has no stratification, grain There was no significant change in the diameter, appearance and content. Although the impurities increased, it did not exceed 1.3%.
  • the submicron emulsion is prepared by using the reference paclitaxel/phospholipid complex as an intermediate carrier.
  • a uniform emulsion (submicroemulsion 29) can be formed, and the appearance and the granules are placed until 6 months. There was no significant change in the diameter, and the impurity increased to 3.0%, but after 12 months, the particle size increased significantly, the impurity level was as high as 7% or more, the content decreased significantly, and stratification occurred. And bleaching phenomenon; 2) When the drug loading increased to 1.0 mg/ml, a uniform emulsion (submicroemulsion 30) could not be formed, and the presence of drug crystallization and oil droplets was initially observed.
  • a uniform emulsion can be formed when the drug loading is 1.0 mg/ml and 2.0 mg/ml (sample 3 is wide 32), 1) when placed for 6 months The appearance, particle size and content of the emulsion did not change significantly. Although the impurities increased, they did not exceed 1.5%. 2) After storage for 12 months, the particle size of the emulsion increased, the content decreased, and the impurities increased respectively. Between 3.58% and 4.64%, the emulsion with a drug loading of 2.0 mg/ml also showed slight stratification.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Endocrinology (AREA)
  • Diabetes (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)
  • Steroid Compounds (AREA)
  • Epoxy Compounds (AREA)

Description

紫杉醇 /类固醇复合物 技术领域
本发明涉及一种紫杉醇 /类固醇的复合物及其制备方法, 本发明还涉及该紫杉醇 /类固 醇复合物的用途, 属医药制剂技术领域。 背景技术
紫杉醇 (paditaxel, Taxol)具有重要的抗肿瘤活性, 临床上广泛用于卵巢癌、 和乳腺 癌、 非小细鹏巿癌、 头癌和颈癌等的治疗。 由于其几乎不溶于水 (0. 006 g/ml ),目前用 于临床的紫杉醇普通注射剂 Taxol®系采用 Cremopher EL (聚氧乙基蓖麻油) /乙醇 (50: 50, V/V) 的混合溶液 5ml溶解 30mg的紫杉醇制成。 由于处方中含有大量的 Cremopher EL, 易引起体内纏安释放, 导致严重的过敏反应。 为此, 临床棚时需进行如下脱敏处理: 治 疗前 12小时口服地塞米松 10mg, 治疗前 6小时再口服地塞米松 10mg, 治疗前 30〜60分钟给 予苯海拉明肌注 20mg、 静注西咪替丁 300mg或雷尼替丁 50mg。 即使如此, 临床上仍有 5%〜 30%的病人出现不同程度的过敏反应。 此外, 以 Cremopher EL/乙醇增溶的紫杉醇浓溶液, 稀释后存在物理稳定性问题, 如环境温度偏低或滴注时间过长, 均有可能析出药物, 存在 安全性隐患。
针对紫杉醇注射剂存在的问题, 自紫杉醇上市后的二十余年来, 国内外药剂学工作者 开展了广泛的新型释药系统研究, 涉及的技术方案包括环糊精包合物、 月旨质体、 聚合物胶 束、 纳米粒等。
环糊精包合物虽能增加紫杉醇溶解度, 但由于环糊精用量太大易导致严重的肾毒性, 且加水稀释后易析出药物, 因此, 至今未言琎入临床。
月旨质 在包封率低、 长期贮存易泄漏、 力口水稀释后易析出药物的缺陷, 产业化发展 困难, 国外虽经历了 20年的研究, 但最终并未见产品上市。 国内早期(2004年上市)批准 的紫杉醇脂质体(力扑素)冻干粉针每支含药物 30mg, 规格、 临床使用齐糧与市售的普通 注射液完全一致, 疗效无明显差异, 但增加了中间配制环节, 且同样需采用脱敏预处理, 未体现出明显的技术优势。
关于紫杉醇聚合物胶束, 国内外研究异常活跃, 但因载药量低、 放置后质量不稳定, 需冻干保存, 限制了产业化发展。 近年来, 随着新型高分子材料的涌现, 使得聚合物胶束 的研究技术得到快速发展, 但将大量的全新结构的聚合物材料引入体内, 其临床用药的安 全性有待进一步考察。
美国生物科学公司 2005年获 FDA批准上市的注射用白蛋白结合型紫杉醇纳米粒(代 号 ABI—007)是迄今为止国际上最有影响力的获得国际专利保护的紫杉醇新制剂,其技术 方案系使用人血白蛋白作为药物载体, 将紫杉醇制成白蛋白结合型的纳米粒, 经无菌过滤 和冷冻干燥后, 制成每支含紫杉醇 lOOmg和白蛋白 900mg的注射用冻干粉针。 与普通注射 液相比, 注射用白蛋白结合型紫杉醇纳米粒的优势体现在两个方面, 1 ) 处方中不含 Cremopher EL, 彻底消除了过敏反应, 成为国际上唯一的不需要脱敏处理而直接使用的紫 杉醇新制剂; 2 ) 由于毒性降低、 耐受性提高, 临床上患者使用剂量由普通注射液的 135〜175mg/m2提高至 260mg/m2, 临床治疗效果明显优于紫极醇的普通注射液。 但因载体材 料白蛋白的用量过大, 价格昂贵(每只售价高达 6200元), 再加上中间配制操作环节极为 复杂, 要求苛刻, 限制了白蛋白结合型紫杉醇纳¾*立的临床应用。 水包油亚微乳是利用药物的亲脂性, 将药物溶于油相, 以天然磷脂为乳化剂, 经高压 均质乳化制备而得到的平均粒径在 600皿以下的乳液。 由于药物存在于内油相, 避免与水 及空气接触, 能够克 ¾隹溶性药物因溶解度低和稳定性差而不利于制成液体制剂的缺陷。 与脂质体技术相比, 亚微乳更具产业化发展优势; 与白蛋白结合型的纳米粒相比, 亚微乳 制造成本低, 可采用终端灭菌, 临床上可直接滴注, 不易析出药物, ■方便安全。 因此, 以亚微乳作为载体发展紫杉醇新制剂具有良好的前景。尽管国内外学者对紫杉醇亚微乳进 行了大量偿试, 但由于紫杉醇不 隹溶于水, 同时在油中溶解度也很小 (约 0. 25 mg/ml), 直接制备亚微乳载药量低于 0. 02 mg/ml, 且灭菌和贮存过程中药物易从油相转移至水相, 导致破乳、 分层或聚集。 受紫杉醇在油中溶解度低的限制, 至今国际上未能研制出载药量 高、 耐热压灭菌、 长期贮存质量稳定的紫杉醇亚微乳制剂。
为提高药物在油相中溶解度、 突破理化性质对紫杉醇亚微乳剂研究的限制, 我们前期 对 "紫杉醇脂质复合物"及 "以脂质复合物为中间载体的紫杉醇亚微乳剂"进行了研究, 并申请了两项发明专利: 申请号为 200810168213. X的 "紫杉醇脂质复合物"和申请号为 200810168212. 5的 "以脂质复合物为中间载体的紫杉醇亚微乳剂"。
200810168213. X公开的紫杉醇脂质复合物, 髓的脂质材料为天然蛋黄卵磷脂、 大豆 磷脂和胆固醇, 紫杉醇和脂质材料的重量比例为 1 :广 19, 即脂质材料的用量高达紫杉醇的 广 19倍(其中以磷脂为脂质材料时, 紫杉醇与脂质材料的摩尔比约 1 :广 20; 以胆固醇为脂 质材料时, 紫杉醇与脂质材料摩尔比约 1 : 2. 2 2; 以胆酸类为脂质材料时, 紫杉醇与脂质 材料摩尔比约为 1 : 2.广 40) 。 而 200810168212. 5公开的亚微乳剂, 则是以 200810168213. X 公开的紫杉醇脂质复合物为中间载体。
紫杉醇脂质复合物制备目的, 旨在提高紫杉醇在油中的溶解度, 为后续的亚微乳制备 提供良好的中间载体。但进一步研究发现, 200810168213. X和 200810168212. 5专利中提到 的技术方案存在以下缺陷:
1、 以磷脂为脂质材料制备复合物时, 虽对药物油溶性有明显的改善效果, 但最大仅 可达到 2mg/ml左右, 进一步提高磷脂用量并不能继续提高油中溶解度; 以磷脂复合物为中 间载体制备亚微乳剂, 载药量最大仅可达到 0. 5mg/ml左右, 且放置 6个月后不稳定, 无法 满足临床治疗需求。
2、 以胆固醇为脂质材料制备复合物时, 对药物油溶性改善效果明显优于磷脂, 但胆 固醇系类固醇类脂质材料, 其用量高达紫杉醇重量的广 19倍, 存在多种弊端, ( 1)摄入 量过大: 健康成人每天胆固醇的摄入量大多在在 300mg OOmg (相当于广 2个鸡蛋黄中含 的胆固醇量) , 紫杉醇临床每次给药剂量约 300mg, 根据 200810168213. X专利涉及的胆固 醇复合物及其制剂, 摄入的胆固醇相当于 300mg 700mg, 最高时已相当于 19个鸡蛋黄, 明 显偏高, 存在安全性隐患; (2)制备的亚微乳剂长期贮存不稳定: 将胆固醇复合物作为 中间载体制备亚微乳剂时, 根据临床治疗剂量和特定的紫杉醇浓度, 复合物中的脂质材料 用量越高, 则亚微乳的内油相中所包裹的复合物总量就越多。 受内油相油滴体积和油水界 面的限制, 包裹的复合物总量超过油相和油水界面可容纳的内容物时, 就有可能使部分药 物游离到外水相中, 从而导致包封率降低, 且使制得的亚微乳剂不稳定。 ¾(寸
200810168212. 5专利所述的亚微乳进行考察, 包封率低于 85%, 4°C贮存 6个月质 fi¾比较 稳定,但贮存至 12个月时出现明显的分层现象,标示含量下降,紫杉醇杂质明显升高; (3) 制备成本高: 月旨质材料的用量高、 制备过程中溶剂用量大、 挥干 U所需时间长, 导致制 造成本高, 不符合药物经济学原则。 为此, 在上述两项专利申请基础上, 为 共脂质材料用量少的复合物, 降低成本并提 高临床用药的安全性、 有效性和质量可控性, 本申请经过大量的试验研究, 对脂质材料及 其用量进行了进一步筛选和优化。 本发明人发现, 在众多的脂质材料中, 类固醇(又称类 甾醇)为最佳的脂质材料, 具体表现为类固醇脂质材料对紫杉醇的复合能力强, 较少用量 的类固醇即可最大限度提高药物在油中溶解度。 以本发明专利所述的类固醇复合物为中间 载体制备水包油亚微乳剂, 因包裹的复合物总量减少, 制得的亚微乳剂不仅包封率更高, 且长期贮存不易破乳, 物理稳定性和化学稳定性优于 200810168212. 5专利所述的亚微乳 齐 本发明 ¾f共的紫杉醇 /类固醇复合物, 为后续亚微乳齐啲质量可控性及临床用药的有 效性和安全性奠定了坚实的基础。 发明内容 本发明的一个目的在于提供一种紫杉醇 /类固醇复合物, 其由紫杉醇与类固醇脂质材 料复合而成。 紫杉醇与类固醇的摩尔比为 1 : 0. 2〜4, 髓 1 : 0. 25〜2, 更髓 1 : 0. 33〜1。
本发明所述的紫杉醇 /类固醇复合物, 其类固醇脂质材料为天然类固醇物质或其衍生 物中的至少一种; 所述的天然类固醇选自胆固醇、 7-脱氢胆固醇(又称 7-氢化胆固醇) 、 羊毛固醇、 谷 醇、 豆 醇、 麦固醇、 麦角固醇、 菜子固醇、 真菌固醇、 牡蛎固醇中; 所 述的类固醇衍生物选自胆酸、 脱氧胆酸和鹅脱氧胆酸。 髓的类固醇材料为胆固醇、 7-脱 氢胆固醇和麦角固醇, 更优选胆固醇和麦角固醇。
本发明的紫杉醇 /类固醇复合物, 还可含有抗氧化稳定剂。 髓的抗氧化稳定剂选自 亚硫酸氢钠、 焦亚硫酸钠、 维生素 C、 EDTA及其盐、 维生素 E及其衍生物中的至少一种。 本发明的另一个目的在于提供本发明的紫杉醇 /类固醇复合物的制备方法, 所述紫杉 醇 /类固醇复合物可以是按照如下方法 1或 2制备的。
方法 1包括如下步骤:
a .将紫杉醇与类固醇按比例混合, 加入适量有机溶剂溶解, 任选地加入抗氧化稳定 剂;
b.在 的 牛下搅拌, 去除有机 IJ, 真空干燥即得。
方法 2包括如下步骤:
a .将紫杉醇与类固醇, 分别加入适量的不同的有机 U溶解, 将其混合, 任选地加 入抗氧化稳定剂;
b.在^ ¾的 下搅拌, 通过旋转蒸发或喷雾干燥去除有机翻, 真空干燥即 得。
在本发明的制备方法中, 所述有机 阿选自二氯甲烷、 乙醇、 甲醇、苯甲醇、丙酮、 乙酸乙酯、 四氢呋喃、 叔丁醇中的一种或多种; 优选地, 可选自乙醇、 丙酮、 乙酸乙酯和 四氢呋喃中的一种或多种。 当选用多种有机溶剂时, 其是指所选有机溶剂的混合物。
在本发明的制备方法中, 有机 啲去除是通过旋转蒸发或喷雾干燥实现的。 在本发明的制备方法中, "按比例混合"是指按照本申请上述给出的紫杉醇与类固醇 的比例混合, 即紫杉醇与类固醇的摩尔比为 1 : 0. 2〜4, 优选 1 : 0. 25〜2, 更优选 1 : 0. 33〜1; "适量的有机 中的 "适量"是指本领域技术人员按照常规技术可确定用于溶解紫 杉醇与类固醇的混合物的量,比如,紫杉醇与类固醇复合物在溶液中的浓度以紫杉醇计算, 可以为 0. 5〜16mg/ml, 优选 1. 0〜8. Omg/ml; "合适的温度条件"系指温度可以在 25°C -70 °C , »35-55°C , 例如 25°C、 35°C、 45°C、 55°C或 70°C。
在本发明的制备方法中, 搅拌反应的时间和真空干燥的时间都可以由本领域技术人员 按照常规技术确定, 比如搅拌反应的时间可以是 0. 5-3. 0小时, 例如 0. 5小时、 1. 0小时、 1. 5小时或 2. 0小时, 真空干燥的时间可以是 8小时至 48小时, 例如 8小时、 12小时、 16小时 或 24小时。
在本发明的制备方法中, 可以考虑加入适量的抗氧化稳定剂, 抗氧化稳定剂用量是本 领域在制备脂质复合物中通常采用的用量, 一般不超过紫杉醇与胆固醇两者重量之和的 1% (重量) 。
本发明还提供本发明的紫杉醇 /类固醇复合物在制备水包油型亚微乳剂、 干乳剂、 自 微乳系统或口服制剂中的应用。其中水包油亚微乳制剂或干乳剂是通过将本发明所述的紫 杉醇 /类固醇复合物溶于油相制备得到的, 其可通过注射给药用于肿瘤的临床治疗, 该制 齐 IJ载药量高、 稳定性好, 并且处方中不含 Cremopher EL, 安全性优于市售注射剂。 自微乳 系统是通过将本发明所述的紫杉醇 /类固醇复合物溶于油相, 加入适量表面活性剂(乳化 齐 U) 、 助表面活性剂(助乳化剂)制备得到的, 其可通过注射、 粘膜或口服给药, 用于肿 瘤的临床治疗。 口服制剂, 特别是固体制剂比如胶囊或片齐,, 是通过将本发明所述的紫 杉醇 /类固醇复合物, 加入药剂学上允许的药用赋形剂制备得到的, 其可通过口服给药用 于的肿瘤的临床治疗, 具有更高的生物利用度。
本发明还提供本发明的紫杉醇 /类固醇复合物在制备抗癌药物中的应用, 所述的癌选 自卵巢癌、 乳腺癌、 非小细删巿癌、 头癌症或颈癌。 还可以是胃癌或胰腺癌。
在本发明中, 如果没有特别地指出, 本文所用的科学和技术术语以及名称都具有与本 发明所属领域普通技术人员常规理解相同的意思; 并且, 如果没有特别地指出, 其中所采 用的物质及其含量或比例、 装置、 仪器、 制备 牛等都是本领域技术人员所熟知的或者其 根据本发明的描述可得知的。 本发明 共的紫杉醇 /类固醇复^特别地具有如下优点:
1)脂腐才料用量少、 制备 j»低: 药物与脂质材料复合完全是药物在油中溶解度得 到最大改善和提高的前提。 与本领域已知的紫杉醇复合物, 包括专利 200810168213. X中制 备得到的紫杉醇复合物相比, 本发明的药物与脂质材料类固醇的摩尔比为 1:0.2 , 优选
1:0·25〜2, 更 i¾tl:0.33〜1。
本发明所选择的类固醇脂质材料分子量在 384.6^414.7, 由此计算, 在药物与类固醇 摩尔比为 1:0.2时, 对应的重量比为 1:0.09〜1: 0.097; 摩尔比为 1 :4时对应的重量比为 1:1.80^1.94, 即药物与类固醇的摩尔比在 1:0.2 的优选范围内, 对应的重量比为
1:0.09〜1.94。相应地, 当药物与类固醇的摩尔比髓 1:0.25〜2时,重量比为 1 :0.1广0.97; 当药物与类固醇的摩尔比更优选 1:0.33〜1时, 对应的重量比为 1:0.15^0.49。
与 200810168213. X公开的内容相比, 本发明采用类固醇为脂质材料, 药物与脂质材料 的重量比例范围由 1:广 19缩减到 1:0· 09〜1· 94 («¾¾1:0. ΐΓθ.97) , 降低了脂质材料 用量, 缩小了用量范围, 提高了复合物中紫杉醇的载药量(由 5%〜50%提高到 35%〜91.7%) , 并仍能确保紫杉醇被完全复合, 使油中溶解度得至嘬大程度的提高, 以满足后续亚微乳剂 的制备。 增加脂质材料用量并不能继续提高药物在油中的溶解度。
2)脂质摄入量少: 根据紫杉醇每次给药 300mg计算, 每次摄入的类固醇的量可控制在 27mg〜580mg, 优选的为 33mg〜290mg, 与 200810168213. X专利技术的 300mg〜5700mg相比, 类 固醇物质的摄入量大大降低, 减少了因类固醇大量摄入而可能引发的安全性隐患。
3)有利于提高亚微乳剂的包封率和稳定性: 本发明提供的复合物中类固醇的最大用 量仅为紫杉醇重量 1.94倍, 髓的为 0.97倍, 将其溶于植物油中制备水包油亚微乳剂时, 内油相中包裹的复合物总量较少, 有利于提高包封率和长期贮存的物理稳定性及化学稳定 性。 经比较研究, 以本发明的复合物为中间载体制备的亚微乳剂, 包封輔在 90%以上, 4°C贮存 12个月质量稳定, 而 200810168212. 5专利所述的亚微乳剂包封率在 65%_85 %, 4°C 贮存 12个月出现明显的分层现象, 杂质明显升高。
4)安全性提高: 与市售普通注射液相比, 以本发明的紫杉醇 /类固醇复合物为中间载 体制备亚微乳剂, 处方中不含 Cremopher EL, 避免了 Cremopher EL引发的严重过敏反应, 降低了动物毒性, 提高了耐受剂量。 下面将参照附图说明和实施例进一步详细阐述本发明, 但是本领域技术人员应当理 解, 但本发明并不限于这些实施例以及棚的制备方法。 而且, 本领域技术人员根据本发 明的描述可以对本发明进行对其进行等同替换、 组合、 改良或修饰, 但这些都将包括在本 发明的范围内。 附图说明
图 1: 试验例 3中不同摩尔比的复合物和物理混合物的 DSC曲线图
图 2: 试验例 6的 X-射线衍射图
图 3: 试验例 7的红外光谱图
图 4: 图 4-1: 试验例 8的紫外光谱图 图 4-2: 试验例 8的 HPLC色图峰比较 (峰 1为紫杉醇) 具体实施方式
制备实施例 实施例 1紫杉醇胆固醇复^ I /
取紫杉醇 9. 0g, 胆固醇 0. 81g置于旋转蒸发仪中, 加入丙酮 3000ml将其溶解, 在 40°C 的 下搅拌 1小时, 移至旋转蒸发仪中, 旋转蒸发法去除溶剂, 经 40°C¾E真空干燥 12 小时即得。 实施例 2紫杉醇胆固醇复^ I /
取紫杉醇 9. 0g, 胆固醇 0. 99g置于旋转蒸发仪中, 加入四氢呋喃 3000ml将其溶解, 在 25°C的 ¾¾g下搅拌 1小时, 移至旋转蒸发仪中, 旋转蒸发法去除 U, 经 25°C¾E真空干 燥 12小时即得。 实施例 3紫杉醇胆固醇复^ I /
取紫杉醇 8. 5g, 胆固醇 1. 275g置于三角瓶中, 加入四氢呋喃 3000ml将其溶解, 在 45°C 温度 下搅拌 1. 5小时, 移至旋转蒸发仪中, 旋转蒸发法去除 U, 经 45°C 真空干 燥 16小时即得。 实施例 4紫杉醇胆固醇复^ I /
取紫杉醇 8. 0g, 胆固醇 1. 84g置于 角瓶中, 加入丙酮 1000ml将其溶解, 在 35°C 条件下搅拌 1小时, 移至旋转蒸发仪中 旋转蒸发法去除 U, 经 35°C 真空干燥 10小 时即得。 实施例 5紫杉醇胆固醇复^ I /
取紫杉醇 7. 0g, 胆固醇 3. 15g置于 角瓶中, 加入丙酮 32500ml将其溶解, 在 50°C温度 条件下搅拌 2小时, 移至旋转蒸发仪中 旋转蒸发法去除 ί#¾, 经 50°C¾E真空干燥 15小 时即得。 实施例 6紫杉醇胆固醇复^ ¾
取紫杉醇 7. 0g, 胆固醇 4. 2g置于三角瓶中, 加入 5000ml的乙酸乙酯将其溶解, 在 55°C 温度 牛下搅拌 1小时, 移至旋转蒸发仪中, 旋转蒸发法去除 ί#¾ 经 40°C减压真空干燥 15小时即得。 实施例 7紫杉醇胆固醇复^ I /
取紫杉醇 5. 2g, 胆固醇 4. 73g, 置于旋转蒸发仪中, 加入 3000ml的二氯甲焼将其溶解, 在 60°C 下搅拌 2. 5小时, 移至旋转蒸发仪中, 旋转蒸发法去除 U, 经 55°C减压 真空干燥 15小时即得。 实施例 8紫杉醇胆固醇复^ I /
取紫杉醇 5. 2g, 胆固醇 4. 85g, 维生素 E 0. 05g, 置于旋转蒸发仪中, 加入 4000ml的四 氢呋喃将其溶解, 在 40°C温度 下搅拌 1小时, 喷雾干燥 15小时去除 IJ, 经 55°C减压 真空干燥 15小时即得。 实施例 9紫杉醇胆固醇复^ I /
取紫杉醇 5. lg, 胆固醇 4. 95g, 置于旋转蒸发仪中, 加入 5200ml的乙醇和叔丁醇的混 合物将其溶解, 在 45°C¾¾g条件下搅拌 1小时, 移至旋转蒸发仪中, 旋转蒸发法去除舰 经 65°C减压真空干燥 15小时即得。
实施例 10紫杉醇胆固醇复^
取紫杉醇 5. 0g, 胆固醇 7. 51g, 置于旋转蒸发仪中, 加入 5200ml的乙醇和叔丁醇的混 合物将其溶解, 在 45°C¾¾g条件下搅拌 1小时, 移至旋转蒸发仪中, 旋转蒸发法去除翻, 经 65°C减压真空干燥 15小时即得。 实施例 11紫杉醇胆固醇复^
取紫杉醇 5. 0g, 胆固醇 9. 10g, 置于旋转蒸发仪中, 加入 5200ml的乙醇和叔丁醇的混 合物将其溶解, 在 45°C¾¾g条件下搅拌 1小时, 移至旋转蒸发仪中, 旋转蒸发法去除舰 经 65°C减压真空干燥 15小时即得。 实施例 12紫杉醇 /7-脱氢胆固醇复合物
取紫杉醇 5g, 加入 7-脱氢胆固醇 0. 55g, 置于旋转蒸发仪中, 加入 500ml的丙酮将其溶 解, 在 45°C 下搅拌 1小时, 移至旋转蒸发仪中, 旋转蒸发法去除 U, 经 65°C减 压真空干燥 15小时即得。 实施例 13紫杉醇 /7-脱氢胆固醇复合物
取紫杉醇 5g, 加入 7-脱氢胆固醇 4. 85g, 置于旋转蒸发仪中, 加入 500ml的丙酮将其溶 解, 在 45°C 下搅拌 1小时, 移至旋转蒸发仪中, 旋转蒸发法去除 U, 经 65°C减 压真空干燥 15小时即得。 实施例 14紫杉醇 /7-脱氢胆固醇复合物
取紫杉醇 5g, 加入 7-脱氢胆固醇 9. 70g, 置于旋转蒸发仪中, 加入 500ml的丙酮将其溶 解, 在 45°C 下搅拌 1小时, 移至旋转蒸发仪中, 旋转蒸发法去除 U, 经 65°C减 压真空干燥 15小时即得。 实施例 15紫杉醇 /麦角固醇复^
取紫杉醇 5g, 麦角固醇 0. 54g, 一同置于旋转蒸发仪中, 加入 500ml的丙酮将其溶解, 在 45°C 下搅拌 1小时, 移至旋转蒸发仪中, 旋转蒸发法去除溶剂, 经 65°C¾E真 空干燥 15小时即得。 实施例 16紫杉醇 /麦角甾醇复合物
取紫杉醇 5g,麦角固醇 4. 83g,置于旋转蒸发仪中,加入 500ml的丙酮将其溶解,在 45°C 温度 牛下搅拌 1小时, 移至旋转蒸发仪中, 旋转蒸发法去除 ί#¾ 经 65°C减压真空干燥 15小时即得。 实施例 17紫杉醇 /麦角固醇复^
取紫杉醇 5g,麦角固醇 9. 10g,置于旋转蒸发仪中,加入 500ml的丙酮将其溶解,在 45°C 温度 牛下搅拌 1小时, 移至旋转蒸发仪中, 旋转蒸发法去除 ί#¾ 经 65°C减压真空干燥 15小时即得。 实施例 18紫杉醇胆酸复
各取紫杉醇 4g共 5份, 分别加入胆酸 0. 5g、 2. 0g、 3. 0g、 4. 6g和 7. 70g, 置于旋转蒸发 仪中, 各加入 1000ml的丙酮将其溶解, 在 45°C温度条件下搅拌 1小时, 移至旋转蒸发仪中, 旋转蒸发法去除溶剂, 经 65°C减压真空干燥 15小时即得。 实施例 19: 以紫杉醇 /类固醇复合物为中间载体的亚微乳剂
取甘油 25g溶于约 720ml注射用水中, 力口热至 40-60°C, 加入精制大豆卵磷脂 15g和泊洛 沙姆 ( 188) 30g, 置组织捣碎机中处理, 使成均匀水相, 保持在该温度下; 另分别取实施 例 1至实施例 18中的紫杉醇 /类固醇复合物适量(相当于紫杉醇 500mg) , 加入 200ml大豆油 中, 力口热到 40〜60°C, 制成油相。 在搅拌条件下将水相缓缓加入至油相, 搅拌使形成均匀 初乳。 将初乳 转移至高压均质机中均质数次, 用 0. lmol/L的盐酸调节 pH至 4. 0-6. 0, 并加水至 1000ml, 收集全部乳液, 115°C灭菌 30分钟, 即得载药量为 0. 5mg/ml的亚微乳剂。 激光粒度测定仪测定, 平均粒径为 125 raTl50nm。 实施例 20: 以紫杉醇 /类固醇复合物为中间载体的亚微乳剂
取甘油 12· 5g溶于约 300ml注射用水中, 力口热至约 50°C, 加入精制蛋黄卵磷脂 7· 5g和泊 洛沙姆 ( 188) 15g, 置组织捣碎机中处理, 使成均匀水相, 保持在该¾ ^下; 另取实施 ί列 5、 13、 16的紫杉醇 /类固醇复合物适量(相当于紫杉醇 500mg) , 加入 125ml由大豆油和中 链油按等体积组成的混合油中, 力口热到约 50°C, 制成油相。 在搅拌 牛下将水相缓缓加入 至油相,高速搅拌使形成均匀初乳。将初乳迅速转移至高压均质机中均质数次,用 0. lmol/L 的盐酸调节 pH至 4. 0-6. 0, 并加水至 500ml, 收集全部乳液, 115°C灭菌 30分钟, 即得载药 量为 1. 0mg/ml的亚微乳剂。 激光粒度测定仪测定, 平均粒径为 230 raT250應。 实施例 21: 以紫杉醇类固醇复^为中间载体的亚微乳剂
取甘油 12. 5g溶于约 300ml注射用水中, 力口热至 55°C, 加入精制大豆卵磷脂 7. 5g和泊洛 沙姆 ( 188) 15g, 置组织捣碎机处理, 使成均匀水相, 保持在该温度下; 另取实施例 1至 实施例 18中的紫杉醇 /类固醇复合物适量(相当于紫杉醇 600mg) , 加入 125ml大豆油中, 加热到 55°C,制成油相。在搅拌条件下将水相缓缓加入至油相,高速搅拌使形成均匀初乳。 将初乳 转移至高压均质机中均质数次, 用 0. lmol/L的盐酸调节 pH至 4. 0-6. 0, 并加水 至 500ml, 收集全部乳液, 115°C灭菌 30分钟, 即得载药量为 1. 2mg/ml的亚微乳剂。 激光粒 度测定仪测定, 平均粒径为 125 nm 〜133應。 实施例 22: 以紫杉醇类固醇复^为中间载体的亚微乳剂
取甘油 12· 5g溶于约 300ml注射用水中, 力口热至 60°C, 加入精制大豆卵磷脂 7· 5g和泊洛 沙姆 ( 188) 15g, 置组织捣碎机处理, 高速搅拌使成均匀水相, 保持在该温度下; 另分 别取实施例 1至实施例 18中的紫杉醇 /类固醇复合物适量(相当于紫杉醇 lOOOmg) , 加入 150ml大豆油中, 加热到 60°C, 制成油相。 在搅拌条件下将水相缓缓加入至油相, 高速搅 拌使形成均匀初乳。将初乳迅速转移至高压均质机中均质数次, 用 0. lmol/L的盐酸调节 pH 至 4. 0-6. 0, 并加水至 500ml, 收集全部乳液, 115°C灭菌 30分钟, 即得载药量为 2. 0mg/ml 的亚微乳剂。 激光粒度测定仪测定, 平均粒径为 128 nm 〜141應。 实施例 23: 以紫杉醇类固醇复^为中间载体的干乳剂
取实施例 20〜实施例 22制备的未经灭菌处理的亚微乳剂适量, 加入 3% (W/V)甘露醇 溶解, 经 0. 22«的微孔滤膜无菌过滤, 冷冻干燥即得。 实施例 24: 以紫杉醇类固醇复合物为中间载体的自微乳剂
分别取实施例 1-18的紫杉醇 /类固醇复合物适量(相当于紫杉醇 lOOmg) , 加入中链 油 5ml, 搅拌使溶解, 加入 1. 6ml PEG400 0. 5 ml B土温 80, 搅拌均匀, 即得均匀透明的自 微乳系统。
取上述自微乳系统 10ml,加入 5%葡萄糖注射液至 50 ml,即刻形成微乳,粒径小于 100 实施例 25: 以紫杉醇类固醇复^为中间载体的胶囊剂
分别取实施例 1-18的紫杉醇 /类固醇复合物适量(相当于紫杉醇 250mg) , 装入 2号硬 胶囊中, 即得。 实施例 26: 以紫杉醇类固醇复合物为中间载体的片剂
分别取实施例 1-18的紫杉醇 /类固醇复合物适量(相当于紫杉醇 500mg) , 加入微晶纤 维素 500 mg, 乳糖 500 mg, 硬脂酸镁适量, 混合混匀, 调整冲头, 压制规格为 100_250mg 的片剂。 试验例
试验例 1: 中国专利申请扁 168213. X专利公开的技术方案验证
按 专^ ^^200810168213. X专利 的脂质材料及其用量, 分别以大豆卵磷脂和 胆固醇为脂质材料, 药物与脂质材料的重量比控制在 1 : 1. 85 18. 5, 制备参比复合物, 考 察大豆油中的溶解度 (以紫杉醇计) , 并与未经复合的游离紫杉醇进行比较。 表 1 200810168213. X专利公开的复合物验证结果 复合物组成 紫杉醇 /脂质材料投料比例 大豆油中溶解度
摩尔比 重量比 (mg/ml)
1:2 1:1.85, 0.68 紫杉醇扁旨 1:4 1:3.70 0.75
1:6 1:5.55 2.12
1:10 1:9.23 2.32
1:20 1: 18.46 2.25 紫杉醇 /胆固醇 1:4 1:1.82 9.04
1:6 1:2.73 8.87
1:10 1:4.53 9.15
1:20 1:9.06 8.75
1:40 1:18.12 8.69 紫杉醇对照 1 1 0.27 结果显示, 当磷脂用量超过紫杉醇重量的 5.55倍时, 溶解度趋于平稳, 约为
2.12〜2.32mg/ml; 而胆固醇用量在紫杉醇重量的 1.82〜18.12倍范围内, 溶解度稳定在 8.75^9.15 mg/ml, 提示以胆固醇为脂质材料对药物油中溶解度的改善效果明显优于磷脂, 且胆固醇的用量有进一步降低和优化的空间。 试验例 2 本发明的紫杉醇 /类固醇复合物在油中溶解度的影响因素分析
紫杉醇与类固醇的投料比例
称取紫杉醇 4g, 按下表 2的投料比例, 分别加入胆固醇、 7-脱氢胆固醇和麦角固醇, 一同置于旋转蒸发仪中, 各加入 500ml的丙酮将其溶解, 在 45°C 条件下搅拌 1小时, 移 至旋转蒸发仪中, 旋转蒸发法去除 U, 经 65°C 真空干燥 15小时得复合物。 取复合物 适量, 分别加入注射用大豆油 20g, 60°C水浴加热 lh并振摇, 得到过饱和溶液, 取样过滤, 称取续滤液适量, 无水乙醇定容后取 20 μ 入液相色谱仪, 以 Kromasil-C18(250讓 X 4.6mm, 5μπι)为色谱柱, 乙腈-水 (54: 46)为流动相, 流速 1.0mL/min, 检测波长 230nm, 依法测定, 计算紫杉醇在植物油中的溶解度,结果见下表。
表 2紫杉醇与类固醇投料比例对复合物油溶性的影响
Figure imgf000016_0001
结果表明, 当紫杉醇和类固醇的摩尔比在 1 : 0. 2、, 即类固醇的最大用量控制在紫杉 醇摩尔数的 4倍以下, 药物在油中溶解度已得到最大程度提高。 紫杉醇的浓度
以丙酮为反应溶剂, 紫杉醇与胆固醇的投料摩尔比为 1:1, 反应温度为 35°C, 反应时 间为 0.5h。 考察紫杉醇浓度为 16.0、 8.0、 4.0、 2.0、 1.0和 0.5mg/mL对复合物制备结果 的影响。 结果表明, 紫杉醇的浓度对复合物在油中溶解度的影响不明显, 见下表。
表 3紫杉醇浓度对胆固醇复合物油溶性的影响
Figure imgf000017_0001
试验例 3紫杉醇胆固醇复^的 DSC曲线特征
试验样品:
· 紫杉醇;
•胆固醇;
• 紫杉醇 /胆固醇复合物(试验例 2项下表 2中制备的复合物,摩尔比为 4:1, 3:1, 2:1, 1:1, 1:2, 1:4) ;
• 紫杉醇 /胆固醇物理混合物(按复合物相同的摩尔比投料, 将两者直接混合即得, 用于对比研究) ;
试验方法: 采用示差扫描量热法 (DSC)考察 DSC曲线特征, 温度 25〜300°C, 升温速 度 10°C/min, 氮气流速 60ml/min; DSC曲线见附图 1。
试验结果: 紫杉醇吸热熔融峰为 225.7°C, 胆固醇吸热峰在 150.9°C。 按不同比例制备 的物理混合物中, 胆固醇的吸热特征均未发生改变, S虫熔温度仍为 149-150°C; 紫杉醇的 吸热峰虽发生了少量偏移, 但融熔特征仍然存在, 提示两者系简单的物理混合。 物理混合 物中紫杉醇熔融峰发生偏移的原因分析如下, 胆固醇融点低于紫杉醇的熔点, 当胆固醇融 熔后, 对药物的分散状态将产生一定影响, 使紫杉醇的融熔特征发生了改变。 按不同比例制备的复合物中, 胆固醇的融熔特征均发生了明显偏移, 紫杉醇的吸热峰 完全消失, 提示两者完全复合。 试验例 4紫杉醇胆固醇复^在不同油相中的溶解度考察
取试验例 2项下表 2中的紫杉醇 /胆固醇复合物适量, 分别加入注射用大豆油、 中链油 (MCT)和大豆油 /MCT ( 1: 1 )混合油, 力口热至 60°C, 搅拌使充分混合、 溶解, 60°C水浴 加热 lh, 此过程中不断振摇, 制成过饱和溶液, 取样过滤, 称取续滤液适量, ¾K乙醇稀 释后采用 HPLC法测定, 计算复合物在油中的溶解度; 另取紫杉醇适量, 同法测定溶解度。 将复合物与原料药的溶解度进行比较, 结果表明, 本发明制备的不同比例的胆固醇复合物 均可提高药物在油中溶解度, 见下表:
表 4植物油中药物溶解度测定结果 (mg/mL)
Figure imgf000018_0001
注: 混合油 *为大豆油 /中链油 (体积比 1: 1)的混合物。 试验例 5紫杉醇胆固醇复^在正辛醇中的溶解度考察
取表 2中的紫杉醇 /胆固醇复合物适量,置于 50mL锥形瓶中,加入正辛醇 10 10g,置 25°C 恒温振荡器中, 振荡 24h, 得到过饱和溶液。 取样 5mL, 用 0. 45 μ πι滤膜过滤, 取续滤液适 量, 用无水乙醇稀释, 按照紫外分光光度法依法测定, 计算物理混合物和胆固醇复合物在 正辛醇中的表观溶解度, 并将结果与紫杉醇比较, 结果表明, 不同比例胆固醇复合物均可 提高药物在正辛醇中溶解度, 见下表。
表 5正辛醇中药物溶解度测定结果 (mg/mL, 25 °C)
Figure imgf000018_0002
试验例 6紫杉醇胆固醇复^ I /X-射线衍射分析(■) 测定样品: 紫杉醇, 胆固醇, 紫杉醇胆固醇复合物(实施例 5的样品) , 紫杉醇胆固 醇物理混合物(摩尔比为 1 : 1 )
检测条件: Cu-K 靶, 测定管压 40kV, 管流 200MA, 衍射范围为 3° 〈2 Θ〈60° 测定结果: X-射线衍射测定结果见附图 2
结果表明, 紫杉醇的特征衍射峰在 2, 4, 7号, 衍射角 (2 Θ )在 5. 480, 8. 840,
12. 180, 峰强度为 23567, 11319, 13277; 胆固醇的最强衍射峰位在 1号, 衍射角在 5. 160, 峰强度为 35506 ; 混合物图谱中二者的特征衍射峰仍然能清楚的看到, 是紫 杉醇与胆固醇图谱的简单叠加; 而复合物衍射图谱则发生了变化, 紫杉醇和胆固醇 各自的特征衍射峰强度大大减弱或峰消失, 而在衍射角为 15. 240、 16. 759、 17. 160 和 17. 960处出现了新的特征衍射峰, 衍射峰强度为 4492, 3588, 2604和 3186, 低于 紫杉醇和胆固醇各自的特征衍射峰强度。 表明紫杉醇在复合物中以微晶状态或无定 形状态分散。 试验例 7紫杉醇胆固醇复合物红外光谱特性 (IR)分析
分别取紫杉醇、胆固醇、紫杉醇胆固醇复合物(实施例 5中摩尔比为 1 : 1的样品), 紫杉醇与胆固醇的物理混合物(摩尔比为 1 : 1 ),采用溴化钾压片,在 400 4000 cm-1 范围内扫描红外光谱, 结果见附图 3
红外图谱显示, 紫杉醇主要特征吸收峰为酮羰基 C = 0在 1733. 8 cm— 1和 1714. 4 cnT1 波数处的两个裂分峰, 酰胺基在 1646. 4 cm— 1波数处的羰基峰, 以及在 3300— 3500 cm ―1波数处羟基 0— H的伸缩振动吸收峰; 胆固醇红外光谱主要特征吸收峰为 2933. 1 cm 2901. 0 cm— 1和 2866. 4 cm— 1波数处的饱和 C一 H键的伸缩振动以及在 3402. 3CHT1波 数处的羟基伸缩振动吸收峰; 物理混合物的红外光谱基本是胆固醇与紫杉醇各吸收 峰的叠加; 而复合物的特征吸收峰则发生了变化, 紫杉醇酮羰基和酰胺基的特征峰 峰形发生了变化,酮羰基由两个裂分峰变成 1724. 7 cm— 1处一个吸收强度较大的钝峰, 酰胺基的羰基峰在 1646. 4 cm— 1波数处峰型变钝; 胆固醇的羟基在 3432. 9 cm— 1波数处 吸收峰的峰型变宽, 吸收强度增加。 由此表明, 紫杉醇的酮羰基基团与胆固醇的羟 基之间可能发生了分子间相互作用, 形成了一种复合物。 试验例 8胆固醇复合物紫外吸收光谱(UV)及 HPLC色谱峰考察 取紫杉醇及紫杉醇胆固醇复合物 (实施例 5中摩尔比为 1:1的样品) , 分别溶于 无水乙醇中, 以无水乙醇为空白, 在 200〜400nm范围内进行紫外扫描, 结果见附图 4-1。结果表明, 紫杉醇与紫杉醇胆固醇复合物两者紫外特征一致, 表明复合物中紫 杉醇的发色基团未发生改变, 即两者通过分子间作用力相互结合形成复合物后, 并 未形成新的化学键。
另取上述紫杉醇及紫杉醇胆固醇复合物的乙醇溶液 20 μ L注入液相色谱仪, 以 Kromasil-C18(250mmX4.6mm, 5μπι)为色谱柱, 乙腈一水 (54: 46) 为流动相, 流 速 1.0mL/min, 检测波长 230nm, 依法测定, 记录色谱峰保留时间, 结果见附图 4_2。 结果表明, 紫杉醇与紫杉醇胆固醇复合物的主峰保留时间完全一致, 表明在质子化 的乙醇溶液中, 复合物解离出游离的紫杉醇。 试验例 9: 紫杉醇 /胆固醇复合物的稳定性考察
取实施例 1-18制备的药物 /类固醇复合物固体粉末,在 25°C条件下贮存,定期取 样, 考察外观变化。 加无水乙醇制成合适浓度的溶液, 量取 20 L注入 HPLC仪, 以 Kromasil-C18(250mmX4.6mm, 5μπι)为色谱柱, 乙腈一水 (54: 46) 为流动相, 流 速 l.OmL/min, 检测波长 230nm, 测定含量及杂质。 结果表明, 与初始相比, 外观、 含量及杂质均无明显变化, 质量稳定。
表 6 紫杉醇 /类胆固醇复合物长期贮存稳定性
Figure imgf000020_0001
试验例 10
试验制备例 10-1 紫杉醇类固醇复合物 实验复合物广实验复合物 6 : 按本发明专利的技术要求, 选用胆固醇、 7-脱氢胆 固醇和麦角固醇, 制备紫杉醇 /类固醇摩尔比为 1 : 1至 1 : 4的复合物, 具体制备方法 是将紫杉醇和类固醇一同置于三角瓶中, 加入丙酮 2000ml将其溶解, 在 40 °C温度条 件下搅拌 1小时,移至旋转蒸发仪中, 旋转蒸发法去除溶剂, 经 40 °C减压真空干燥 24 小时即得。 ,
参比复合物广参比复合物 4:按 200810168212. 5专利中的复合物技术要求,选用 豆磷脂和胆固醇为脂质材料,按上述相同方法制备 4组参比复合物用于对比研究,其 中紫杉醇 /磷脂复合物的摩尔比为 1 : 6和 1 : 10, 紫杉醇 /胆固醇复合物的摩尔比为 1 : 10和 1 : 20。 详见下表。
表 7 : 紫杉醇 /胆固醇复合物的组成
Figure imgf000021_0001
试验制备例 10-2: 以紫杉醇胆固醇复合物为中间载体的紫杉醇亚微乳剂
[处方誠]
组分 亚微乳剂 1 亚微乳剂 2 亚微乳剂 3 亚微乳剂 4
实验复合物 1* 145mg 290mg 580mg 1160mg
蛋黄卵磷脂 2g 2. 4g 3g 3g
泊洛沙姆(188) lg 2g 4g 6g 甘油 5g 5g 5g 5g
大豆油 40ml 40ml 50ml 50ml
注射用水加至 200ml 200ml 200ml 200ml
总量 200ml 200ml 200ml 200ml
*实验复合物 1为实施例 1中制备得到的紫杉醇 /胆固醇重量比为 1 : 0. 45的实验复合物
1。
[制备方法]
-取注射用水约 130-140ml, 按处方量加入蛋黄卵磷脂、 泊洛沙姆 (188)和甘油, 置组 织捣碎机中分散, 制成均匀水相, 加热至 40°C, 保温;
-按处方量量取大豆油, 预热至 40°C, 称取实施例 1制备的紫杉醇胆固醇复合物 1, 溶 于预热的大豆油中, 置组织捣碎机中分散制成均匀油相;
-在搅拌条件下, 将水相缓缓加入至油相中, 以 10000转 /min剪切 5min, 使形成均匀 初乳, 迅速转移至高压均质机中, 均质 6次, 收集全部乳液, 用 0. lmol/L盐酸调节 pH至 4. 0 ±0. 5, 并加水至 200ml, 摇匀, 分装, 115°C灭菌 30分钟, 即得。
亚微乳 1_亚微乳 4, 乳化剂 (蛋黄卵磷脂)用量分别为亚微乳剂总量的 1. 0%(g/ml) 、 1. 2%(g/ml) 、 1. 5%(g/ml) 和 1. 5%(g/ml), 助乳化剂泊洛沙姆(188) 用量为亚微乳剂总量 的 0. 5%(g/ml)、 1. 0%(g/ml)、 2. 0%(g/ml) 禾口 3. 0%(g/ml),紫杉醇的载药量分别为 0. 5mg/ml, 1. 0mg/ml, 2. 0mg/ml, 4. 0mg/ml。 激光粒度测定仪测定, 4组乳剂平均粒径分别为 225應, 233應, 245應, 230應。 试验制备例 10-3: 以紫杉醇胆固醇复合物为中间载体的紫杉醇亚微乳剂
[处方誠]
组分 亚微乳剂 5 亚微乳剂 6 亚微乳剂 7 亚微乳剂 8
实验复合物 2* 190mg 380mg 760mg 1520mg
蛋黄卵磷脂 2g 2. 4g 3g 3g
泊洛沙姆 (188) 2. 4g 4g 4g 6g
甘油 5g 5g 5g 5g 维生素 E I I I 40mg 大豆油 40ml 40ml 50ml 50ml
注射用水加至 200ml 200ml 200ml 200ml
总 200ml 200ml 200ml 200ml
*实验复合物 2为实施例 1中制备得到的紫杉醇 /胆固醇重量比为 1:0.90的实验复 合物 2。
[制备方法]
- 取注射用水约 130-140ml, 按处方量加入泊洛沙姆(188)和甘油, 置组织捣碎 机中分散, 制成均匀水相, 加热至 80°C, 保温;
- 按处方量量取大豆油, 预热至 80°C, 按处方量称取复合物 2、蛋黄卵磷脂及维 生素 E, 加至预热的大豆油中, 置组织捣碎机中分散溶解制成均匀透明的油相;
- 在搅拌条件下, 将水相缓缓加入至油相中, 以 20000 转 /min 剪切 10 min, 使形成均匀初乳, 迅速转移至高压均质机中, 均质 6次, 收集全部乳液, 用 0. lmol/L 盐酸调节 pH至 5.5±0.5, 并加水至 200ml, 摇匀, 分装, 115°C灭菌 30分钟, 即得。
亚微乳 5-亚微乳 8, 乳化剂 (蛋黄卵磷脂) 用量分别为亚微乳剂总量的 1.0%(g/ml)、 1.2%(g/ml)、 1.5%(g/ml) 和 1.5%(g/ml), 助乳化剂泊洛沙姆(188) 用 量为亚微乳剂总量的 1.2%(g/ml)、 2.0%(g/ml)、 2.0%(g/ml) 和 3.0%(g/ml), 紫杉醇 的载药量分别为 0.5mg/ml, 1.0mg/ml, 2. Omg/ml, 4.0mg/ml。激光粒度测定仪测定, 4组乳剂平均粒径分别为 246nm, 262nm, 231nm, 242nm。 试验制备例 10-4: 以紫杉醇胆固醇复合物为中间载体的紫杉醇亚微乳剂
[处方组成]
组分 亚微乳 9 亚微乳 10 亚微乳 11 亚微乳 12
实验复合物 1* 145mg 290mg 580mg 1450mg
大豆磷脂 2.4g 2.4g 2.4g 3. Og
泊洛沙姆(188) 4g 4g 4g 4g 甘油 5g 5g 5g 5g
维生素 E I I I 40mg
中链油 40ml 40ml 50ml 50ml
注射用水加至 200ml 200ml 200ml 200ml
总量 200ml 200ml 200ml 200ml
*实验复合物 1为实施例 1中制备得到的紫杉醇 /胆固醇重量比为 1:0.45的实验复 合物 1。
[制备方法]
同试验制备例 10-3, 其中 pH值调节为 5.0±0.5。
亚微乳 9-亚微乳 12,乳化剂 (大豆磷脂)用量分别为亚微乳剂总量的 1.2%(g/ml)、 1.2%(g/ml)、 1.2%(g/ml) 和 1.5%(g/ml),助乳化剂泊洛沙姆(188) 用量均为亚微乳 剂总量的 2.0%(g/ml), 紫杉醇的载药量分别为 0.5mg/ml, 1.0mg/ml, 2. Omg/ml和 5. Omg/mlo 激光粒度测定仪测定, 4组乳剂平均粒径分别为 165nm, 153nm, 127nm, 138nm。 试验制备例 10-5: 以紫杉醇胆固醇复合物为中间载体的紫杉醇亚微乳剂
[处方组成]
组分 亚微乳 13 亚微乳 14 亚微乳 15 亚微乳 16
实验复合物 1* 290mg 435mg 580mg 1450mg
大豆磷脂 2.4g 2.4g 2.4g 4.0g
泊洛沙姆(188) 3g 3g 4g 4g
甘油 5g 5g 5g 5g
油混合物 ** 40ml 40ml 40ml 50ml
注射用水加至 200ml 200ml 200ml 200ml
总量 200ml 200ml 200ml 200ml
*实验复合物 1为实施例 1中制备得到的紫杉醇 /胆固醇重量比为 1:0.45的实验复 合物 1。
**油混合物为大豆油 /中链油(体积比 1: 1)的混合物。
[制备方法]
同实施例 3。 其中 pH值调节为 4.5±0.5。
亚微乳 13-亚微乳 16, 乳化剂 (大豆磷脂) 含量分别为亚微乳剂总量的 1.2%(g/ml)、 1.2%(g/ml)、 1.2%(g/ml) 和 2.0%(g/ml), 助乳化剂泊洛沙姆(188) 用 量为亚微乳剂总量的 1.5%(g/ml)、 1.5%(g/ml)、 2.0%(g/ml) 和 2.0%(g/ml), 紫杉醇 的载药量分别为 1.0mg/ml, 1.5mg/ml, 2. Omg/ml和 5. Omg/ml。激光粒度测定仪测定, 4组乳剂平均粒径分别为 145nm, 138nm, 133nm, 146nm。
试验制备例 10-6: 以紫杉醇胆固醇复合物为中间载体的紫杉醇亚微乳剂
[处方组成]
组分 亚微乳 17 亚微乳 18 亚微乳 19 亚微乳 20
实验复合物 2* 190mg 380mg 760mg 1520mg
蛋黄卵磷脂 3. Og 3. Og 4.0g 6.0g
泊洛沙姆(188) 4g 4g 6g 6g
甘油 5g 5g 5g 5g
油混合物 ** 30ml 40ml 50ml 60ml
注射用水加至 200ml 200ml 200ml 200ml
总量 200ml 200ml 200ml 200ml
*实验复合物 2为实施例 1中制备得到的紫杉醇 /胆固醇重量比为 1:0.90的实验复 合物 2。
**油混合物为大豆油 /中链油(体积比 1: 1)的混合物。 [制备方法]
同实施例 2。 其中 pH值调节为 5.5±0.5。
亚微乳 17-亚微乳 20, 乳化剂 (蛋黄卵磷脂) 含量分别为亚微乳剂总量的 1.5%(g/ml)、 1.5%(g/ml)、 2.0%(g/ml) 和 3.0%(g/ml), 助乳化剂泊洛沙姆(188) 用 量为亚微乳剂总量的 2. 0% (g/ml)、 2. 0% (g/ml)、 3. 0% (g/ml) 和 3. 0% (g/ml), 的紫杉 醇的载药量分别为 0. 5mg/ml, 1. 0mg/ml , 2. Omg/ml和 5. Omg/ml。 激光粒度测定仪测 定, 4组乳剂平均粒径分别为 255nm, 263nm, 285nm, 232nm。 试验制备例 10-7: 以紫杉醇胆固醇复合物为中间载体的紫杉醇亚微乳剂
[处方组成]
组分 亚微乳 21 亚微乳 22 亚微乳 23 亚微乳 24
实验复合物 1* 145mg 290mg 580mg 1160mg
脂肪酸甘油酯 3. Og 4. Og 1 1
聚氧乙烯失水山 1 1 4. Og 6. 0g
梨醇脂肪酸酯
泊洛沙姆(188) 3g 4g 4g 6g
甘油 5g 5g 5g 5g
油酸 0. 2g 0. 2g 0. 2g 0. 2g
油混合物 ** 30ml 40ml 50ml 50ml
注射用水加至 200ml 200ml 200ml 200ml
总量 200ml 200ml 200ml 200ml
*实验复合物 1为实施例 1中制备得到的紫杉醇 /胆固醇重量比为 1 : 0. 45的实验复 合物 1。
**油混合物为大豆油 /中链油(体积比 1: 1)的混合物。
[制备方法]
同实施例 3。
亚微乳 21和 22中, 脂肪酸甘油酯乳化剂的用量为亚微乳剂总量的 1. 5% (g/ml)和
2. 0% (g/ml) , 亚微乳 23和 24使用聚氧乙烯失水山梨醇脂肪酸酯为乳化剂、 用量为亚 微乳剂总量的 2. 0% (g/ml) 和 3. 0% (g/ml)。 亚微乳 21-亚微乳 24中, 助乳化剂泊洛沙 姆(188)的用量为亚微乳剂总量的 1. 5% (g/ml)、 2. 0% (g/ml)、 2. 0% (g/ml) 和
3. 0% (g/ml), 紫杉醇的载药量分别为 0. 5mg/ml, 1. Omg/ml , 2. Omg/ml禾口 4. Omg/ml。 激光粒度测定仪测定, 4组乳剂平均粒径分别为 145nm, 133nm, 126nm, 158nm。 试验制备例 10-8: 7-氢化胆固醇或麦角 醇复合物为中间载体的
[处方组成]
组分 亚微乳 25 亚微乳 26 亚微乳 27 亚微乳 28
实验复合物 3* 290mg 1 1 1
实验复合物 4* 1 5604mg 1 1
实验复合物 5* 1 1 292mg 1
实验复合物 6* 1 1 1 5720mg
大豆磷脂 2. 4g 2. 4g 2. 4g 4. 0g
泊洛沙姆(188) 3g 3g 4g 4g
甘油 5g 5g 5g 5g
油混合物 ** 40ml 40ml 40ml 50ml
注射用水加至 200ml 200ml 200ml 200ml
总量 200ml 200ml 200ml 200ml
*实验复合物; Γ实验复合物 6为实施例 1中制备得到的紫杉醇 /7-氢化胆固醇复合 物和紫杉醇 /麦角 醇复合物。
**油混合物为大豆油 /中链油(体积比 1: 1)的混合物。
[制备方法]
同实施例 5。
亚微乳 25-亚微乳 28中, 紫杉醇的载药量均为 1. 0mg/ml。 激光粒度测定仪测定, 4组乳剂平均粒径分别为 143nm, 138nm, 141nm, 132nm。 试验制备例 10-9: 以参比复合物为中间载体的紫杉醇亚微乳剂
取试验制备例 1项下制备的参比复合物 1-参比复合物 4, 参照上述实施例亚微乳齐啲制 备方法, 制备亚微乳剂 29〜亚微乳剂 32, 载药量分别为 0. 5、 1. 0、 1. 0和 2. 0mg/ml, 用于对 比研究。 具体处方、 制备方法及测得的包封率结果如下:
[处方组成]
组分 亚微乳 29 亚微乳 30 亚微乳 31 亚微乳 32
参比复合物 1* 655mg 1 1 1
参比复合物 2* 1 1023mg 1 1
参比复合物 3* 1 1 HOOmg 1
参比复合物 4* 1 1 1 4024mg
蛋黄卵磷脂 3g 3g 3g 3g
泊洛沙姆 188 3g 3g 3g 3g
甘油 5g 5g 5g 5g
大豆油 40ml 40ml 50ml 50ml
注射用水加至 200ml 200ml 200ml 200ml
总量 200ml 200ml 200ml 200ml
*参比复合物 1、 2分别为试验制备例 1项中制备得到的紫杉醇 /磷脂重量比为 1 : 5. 55和 重量比为 1 : 9. 23的两组参比复合物。
*参比复合物 3、 4分别为试验制备例 1项中制备得到的胆固醇紫杉醇 /磷脂重量比为 1: 4. 50和 1: 9. 06的两组参比复合物;
[制备方法]
取注射用水约 130-140ml, 按处方量加入蛋黄卵磷脂、 泊洛沙姆 (188)和甘油, 置组织 捣碎机中分散, 制成均匀水相, 力口热至 40-80°C, 保温;
按处方量量取大豆油, 预热至 40-80°C, 称取实施例 1制备的紫杉醇胆固醇复合物 1, 溶于预热的大豆油中, 置组织捣碎机中分散制成均匀油相;
在搅拌条件下, 将水相缓缓加入至油相中, 10000-20000转 /min剪切 5-10 min, 使形 成均匀初乳, 迅速转移至高压均质机中, 均质 6次, 收集全部乳液, 用 0. lmol/L盐酸调节 pH至 4. 5±0. 5, 并加水至 200ml, 摇匀, 分装, 115°C25灭菌 30分钟, 即得。 上述试 ¾ί¾备例中制备的亚微乳剂的稳定性考察与比较 取试验制备例 10-2至试验制备例 10-8制备的 28组亚微乳和试验制备例 10-9制备的 4组 亚微乳剂, 分别于 4°C条件下贮存 12个月, 于 0、 6、 12个月取样, 照如下方法考察外观、 粒径、 含量及杂质变化。
性状: 目视法, 按实物描述亚微乳剂的颜色, 记录表面是否有油滴或分层现象。 粒径: 取亚微乳剂, 采用 MASTER SIZER 2000激光粒度测定仪 (MALVERN)测定粒径。 含量及有关物质: 精密量取紫杉醇亚微乳剂适量, 加无水乙醇破乳, 制 10备合适浓 度的供试溶液。 精密量取供试液 20 μ L注入色谱仪, 照 HPLC法, 以 Kromasil-C18 (300mmX 4. 6mm, 5 μ πι)为色谱柱, 乙腈一水 (54: 46 ) 为流动相, 流速 1. OmL/min, 检测波长 230應, 柱温为室温, 依法测定, 记录色谱图, 根据峰面积按外标法 计算乳剂中药物含量, 按归一化法计算杂质含量。
测定结果: 详见下表。
亚微乳剂稳定性比较结果
Figure imgf000029_0001
乳齐 [J 12/5. Omg/ml 均匀乳 0. 45% 均匀乳 155nm 99. 4% 1. 24%
138nm
乳齐 [J 13/1. Omg/ml 均匀乳 97. 4% 0. 31% 均匀乳 138nm 98. 0% 0. 57%
145nm
乳齐 U 14/1. 5mg/ml 均匀乳 100. 3% 0. 35% 均匀乳 136nm 98. 7% 0. 65%
138nm
乳 剂 15 均匀乳 99. 2% 0. 31% 均匀乳 137nm 98. 5% 0. 63%
133nm
/2. Omg/ml
乳齐 [J 16/5. Omg/ml 均匀乳 98. 5% 0. 43% 均匀乳 173nm 97. 2% 1. 68%
146nm
乳 剂 17 均匀乳 255nm 97. 8% 0. 32% 均匀乳 244nm 97. 6% 0. 57% /0. 5mg/ml
乳齐 U 18/1. Omg/ml 均匀乳 263nm 99. 2% 0. 36% 均匀乳 259應 99. 5% 0. 53% 乳齐 [J 19/2. Omg/ml 均匀乳 285應 100. 4% 0. 33% 均匀乳 272nm 0. 61% 乳剂 20/5· Omg/ml 均匀乳 232nm 101. 4% 0. 48% 均匀乳 258nm 97. 8% 1. 76% 乳剂 21/0. 5mg/ml 均匀乳 145nm 98. 7% 0. 36% 均匀乳 136nm 99. 1% 0. 59% 乳 剂 22 均匀乳 133nm 98. 2% 0. 32% 均匀乳 127nm 97. 6% 0. 57% /1. Omg/ml
乳剂 23/2· Omg/ml 均匀乳 126nm 101. 1% 0. 38% 均匀乳 134nm 99. 5% 0. 56% 乳剂 24/4· Omg/ml 均匀乳 158nm 0. 41% 均匀乳 163nm 97. 9% 1. 25% 乳剂 25/1· Omg/ml 均匀乳 143應 99. 5% 0. 33% 均匀乳 128nm 98. 9% 0. 56% 乳剂 26/1· Omg/ml 均匀乳 138nm 97. 8% 0. 35% 均匀乳 132nm 97. 4% 0. 58% 乳剂 27/1. Omg/ml 均匀乳 141nm 99. 4% 0. 30% 均匀乳 145nm 99. 1% 0. 61% 乳剂 28/1· Omg/ml 均匀乳 132nm 98. 6% 0. 36% 均匀乳 126nm 98. 2% 0. 54% 乳剂 29/0. 5mg/ml 均匀乳 253nm 97. 5% 0. 92% 分层漂油 323nm 90. 8% 7. 63% 乳剂 30/1· Omg/ml 分层 522nm 93. 2% 6. 27% 油水分离 未测 未测 未测 乳剂 31/1· Omg/ml 均匀乳 247nm 98. 6% 0. 62% 均匀乳 263nm 94. 7% 3. 58% 乳剂 32/2· Omg/ml 均匀乳 266nm 98. 9% 0. 78% 轻微分层 311nm 92. 8% 4. 64% 以本发明的类固醇复合物为中间载体制备的亚微乳广亚微乳 28, 经冰箱 (4°C )贮存 12个月后, 与初始相比, 1 )载药量为 5. Omg/ml的乳剂平均粒径有增加趋势, 但未见分层, 外观和含量均无明显变化, 杂质虽有增力口但未超过 2· 0%; 2)载药量为 4· Omg/ml的乳剂未 见分层, 粒径、外观和含量均无明显变化, 杂质虽有增加但未超过 1. 3%; 3)载药量 3mg/ml 的乳剂未见分层, 粒径、外观及含量均无明显变化, 杂质未超过 1· 0%; 4)载药量为 2mg/ml 或以下时, 夕卜观性状、 粒径和含量均无明显变化, 杂质水平低于 0. 7%。
以参比的紫杉醇 /磷脂复合物为中间载体制备亚微乳剂, 1 )当载药量为 0. 5mg/ml时可 形成均匀乳剂 (亚微乳剂 29),放置至 6个月时外观和粒径均无明显变化,杂质增加至 3. 0% , 但放置至 12个月后粒径显著增大, 杂质水平已高达 7%以上, 含量明显下降, 且出现分层 和漂油现象; 2) 当载药量增加到 1. 0mg/ml时, 不能形成均匀乳剂 (亚微乳剂 30) , 初始 时即 察到药物结晶和油滴存在。
以参比的紫杉醇 /胆固醇复合物为中间载体, 当载药量为 1. Omg/ml和 2. Omg/ml时均可 形成均匀乳剂 (样品 3广 32) , 1 )放置至 6个月时, 乳剂其外观、 粒径、 含量均无明显变 化, 杂质虽有升高, 但均未超过 1. 5%; 2)贮存至 12个月后, 乳剂粒径增大, 含量下降, 杂质分别上升到 3. 58%和 4. 64%, 其中载药量为 2. Omg/ml的乳剂还出现轻微分层现象。

Claims

权 利 要 求
I、 一种紫杉醇 /类固醇复合物, 其特征在于, 由紫杉醇与类固醇复合而成, 紫杉醇与 类固醇的摩尔比为 1 : 0. 2 。
2、 根据权利要求 1所述的紫杉醇 /类固醇复合物, 其特征在于, 紫杉醇与类固醇的摩 尔比为 1 : 0. 25〜2。
3、 根据权利要求 2所述的紫杉醇 /类固醇复合物, 其特征在于, 紫杉醇与类固醇的摩 尔比为 1 : 0. 33〜1。
4、 根据权利要求广 3中任一项所述的紫杉醇 /类固醇复合物, 其特征在于, 所述类固 醇为天然类固醇或其衍生物。
5、 根据权利要求 4所述的紫杉醇 /类固醇复合物, 其特征在于, 所述的天然类固醇选 自胆固醇、 7-脱氢胆固醇、羊毛固醇、谷 醇、菜籽固醇、真菌固醇、牡蛎固醇、豆甾醇、 麦固醇和麦角固醇中的至少一种; 所述的类固醇衍生物选自胆酸、 脱氧胆酸、 鹅脱氧胆酸 中的至少一种。
6、 根据权利要求广 5中任一项所述的紫杉醇 /类固醇复合物, 其特征在于, 所述复合 物还含有抗氧化稳定剂。
7、 根据权利要求 6所述的紫杉醇 /类固醇复合物, 其特征在于, 所述抗氧化稳定剂选 自亚硫酸氢钠、 焦亚硫酸钠、 维生素 C、 EDTA及其盐、 维生素 E及其衍生物中的至少一种。
8、 权利要求 1 中任一项所述的紫杉醇 /类固醇复合物的制备方法, 其特征在于, 包 括如下步骤:
a.将紫杉醇与类固醇脂质材料按比例混合, 加入适量有机 U溶解, 任选地加入抗氧 化稳定剂;
b.在 的 牛下搅拌, 去除有机 U, 真空干燥即得。
9、 根据权利要求 8所述的制备方法, 其特征在于, 在步骤 a. ) 中, 将分别取紫杉醇与 类固醇, 采用不同的有机溶剂溶解, 之后混合。
10、 根据权利要求 8 中任一项所述的制备方法, 其特征在于, 所述有机 阿选自 二氯甲烷、 乙醇、 甲醇、 苯甲醇、 丙酮、 乙酸乙酯、 四氢呋喃、 叔丁醇中的一种或多种。
II、 根据权利要求 8 中任一项所述的制备方法, 其特征在于, 所述有机 阿选自 乙醇、 丙酮、 乙酸乙酯和四氢呋喃中的一种或多种。
12、 根据权利要求广7中任一项所述的紫杉醇 /类固醇复合物在制备水包油型亚微乳 齐 IJ、 干乳剂、 自微乳系统或口服制剂中的应用。
PCT/CN2010/078202 2009-10-29 2010-10-28 紫杉醇/类固醇复合物 WO2011050735A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP10826098.5A EP2494956A4 (en) 2009-10-29 2010-10-28 Paclitaxel / STEROID COMPLEX
BR112012010149-8A BR112012010149A2 (pt) 2009-10-29 2010-10-28 composto de paclitaxel / esteroidal
AU2010312017A AU2010312017B2 (en) 2009-10-29 2010-10-28 Paclitaxel/steroidal complex
US13/505,173 US20130150335A1 (en) 2009-10-29 2010-10-28 Paclitaxel/steroidal complex
JP2012535616A JP6158513B2 (ja) 2009-10-29 2010-10-28 タクソール/ステロイド化合物
CN201080059671.5A CN102811706B (zh) 2009-10-29 2010-10-28 紫杉醇/类固醇复合物
CA2779316A CA2779316C (en) 2009-10-29 2010-10-28 Paclitaxel/steroidal compound
HK13106587.1A HK1179513A1 (zh) 2009-10-29 2013-06-04 紫杉醇/類固醇複合物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910236960.7A CN102048725B (zh) 2009-10-29 2009-10-29 紫杉醇胆固醇复合物
CN200910236960.7 2009-10-29

Publications (1)

Publication Number Publication Date
WO2011050735A1 true WO2011050735A1 (zh) 2011-05-05

Family

ID=43921347

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/078202 WO2011050735A1 (zh) 2009-10-29 2010-10-28 紫杉醇/类固醇复合物

Country Status (10)

Country Link
US (1) US20130150335A1 (zh)
EP (1) EP2494956A4 (zh)
JP (1) JP6158513B2 (zh)
KR (1) KR20120091258A (zh)
CN (2) CN102048725B (zh)
AU (1) AU2010312017B2 (zh)
BR (1) BR112012010149A2 (zh)
CA (1) CA2779316C (zh)
HK (1) HK1179513A1 (zh)
WO (1) WO2011050735A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2863907A1 (de) * 2012-06-26 2015-04-29 Universitätsklinikum Freiburg Pharmazeutische zusammensetzung mit synergistischer wirkung von direkten katalaseinhibitoren und zur katalasezerstörung führenden modulatoren des no-stoffwechsels oder der extrazellulären superoxidanionenproduktion

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102048688B (zh) * 2009-10-29 2014-03-05 中国医学科学院药物研究所 以胆固醇复合物为中间载体的紫杉醇亚微乳
CA3067232C (en) * 2017-06-16 2023-06-20 Sorse Technology Corporation Preparing stable liquid emulsion forms of plant extract
CN108272747B (zh) * 2018-03-16 2020-02-18 武汉百纳礼康生物制药有限公司 一种非那雄胺溶致液晶凝胶制剂前体及其制备方法
CA3112201A1 (en) 2018-10-16 2020-04-23 US Nano Food & Drug INC Intratumor injection formulation
JP2023520975A (ja) 2020-04-13 2023-05-23 ユーエス・ナノ・フード・アンド・ドラッグ・インコーポレーテッド 塩基性化学療法腫瘍内注射製剤
CN115177589B (zh) * 2021-04-07 2024-02-06 中国医学科学院药物研究所 一种紫杉醇脑靶向脂质体和其制备方法及应用
CN115463110B (zh) * 2021-06-10 2023-12-15 中国医学科学院药物研究所 一种胆酸修饰的口服紫杉醇纳米粒、其制备方法及应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101396343A (zh) * 2007-09-26 2009-04-01 中国医学科学院药物研究所 以脂质复合物为中间载体的紫杉醇亚微乳

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5616330A (en) * 1994-07-19 1997-04-01 Hemagen/Pfc Stable oil-in-water emulsions incorporating a taxine (taxol) and method of making same
US5827533A (en) * 1997-02-06 1998-10-27 Duke University Liposomes containing active agents aggregated with lipid surfactants
CN1116875C (zh) * 2000-10-19 2003-08-06 南京振中生物工程有限公司 紫杉醇脂质组合物及其制备方法
US20090110739A1 (en) * 2007-05-15 2009-04-30 University Of North Texas Health Science Center At Forth Worth Targeted cancer chemotherapy using synthetic nanoparticles

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101396343A (zh) * 2007-09-26 2009-04-01 中国医学科学院药物研究所 以脂质复合物为中间载体的紫杉醇亚微乳
CN101396346A (zh) * 2007-09-26 2009-04-01 中国医学科学院药物研究所 紫杉醇脂质复合物

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2863907A1 (de) * 2012-06-26 2015-04-29 Universitätsklinikum Freiburg Pharmazeutische zusammensetzung mit synergistischer wirkung von direkten katalaseinhibitoren und zur katalasezerstörung führenden modulatoren des no-stoffwechsels oder der extrazellulären superoxidanionenproduktion

Also Published As

Publication number Publication date
AU2010312017B2 (en) 2014-07-17
CN102811706A (zh) 2012-12-05
CA2779316C (en) 2016-05-03
JP6158513B2 (ja) 2017-07-12
BR112012010149A2 (pt) 2018-03-20
HK1179513A1 (zh) 2013-10-04
US20130150335A1 (en) 2013-06-13
CN102048725B (zh) 2014-07-16
CN102811706B (zh) 2015-05-06
EP2494956A4 (en) 2013-10-23
EP2494956A9 (en) 2013-04-17
AU2010312017A1 (en) 2012-06-21
KR20120091258A (ko) 2012-08-17
EP2494956A1 (en) 2012-09-05
JP2013509360A (ja) 2013-03-14
CN102048725A (zh) 2011-05-11
CA2779316A1 (en) 2011-05-05

Similar Documents

Publication Publication Date Title
WO2011050735A1 (zh) 紫杉醇/类固醇复合物
Tan et al. Silica-lipid hybrid (SLH) microcapsules: a novel oral delivery system for poorly soluble drugs
WO2011050739A1 (zh) 以类固醇复合物为中间载体的紫杉醇亚微乳
WO2020253689A1 (zh) 一种绿原酸自乳化组合物及其用途
CN104163915B (zh) 胆固醇-泊洛沙姆-胆固醇三嵌段共聚物及其制备方法和应用
CN105853403A (zh) 一种紫杉醇棕榈酸酯脂质体及其制备方法
CN111803632B (zh) 黄酮多酚类药物自乳化组合物、其制备方法、药物组合物及用途
CN110742861A (zh) 一种大麻二酚自乳化给药系统、固体自乳化制剂及其制备方法
EP3697418A1 (en) Improved bromocriptine formulations
Maryana et al. Phytosome containing silymarin for oral administration: Formulation and physical evaluation
JP2020522580A (ja) オキサリプラチンを含む経口用薬物送達組成物及びその製造方法
CN102451176B (zh) 多西紫杉烷/类固醇复合物
CN114425038B (zh) 一种20(s)-ppd脂质体乳剂复合体口服给药制剂及其制备方法和应用
CN110538137B (zh) 秦皮甲素纳米混悬凝胶剂及其制备方法与应用
CN104288141B (zh) 一种辛伐他汀固体药物组合物及其制备方法
JP2004528366A (ja) 両親媒性ヘパリン誘導体の粘膜吸収を増加させるための製造方法
AU2018351131B2 (en) Improved bromocriptine formulations
CN114404368A (zh) 一种多甲氧基黄酮脂质体及其制备方法
CN102451157A (zh) 以类固醇复合物为中间载体的多西紫杉烷亚微乳

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080059671.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10826098

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012535616

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2779316

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20127013922

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010312017

Country of ref document: AU

Ref document number: 2010826098

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2010312017

Country of ref document: AU

Date of ref document: 20101028

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13505173

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012010149

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012010149

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120430