WO2011049234A1 - Substrate and method for manufacturing circuit device using same - Google Patents

Substrate and method for manufacturing circuit device using same Download PDF

Info

Publication number
WO2011049234A1
WO2011049234A1 PCT/JP2010/068800 JP2010068800W WO2011049234A1 WO 2011049234 A1 WO2011049234 A1 WO 2011049234A1 JP 2010068800 W JP2010068800 W JP 2010068800W WO 2011049234 A1 WO2011049234 A1 WO 2011049234A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
mounting
separation groove
support portion
substrates
Prior art date
Application number
PCT/JP2010/068800
Other languages
French (fr)
Japanese (ja)
Inventor
雅彦 水谷
貞道 高草木
晴彦 森
隆也 草部
Original Assignee
三洋電機株式会社
三洋半導体株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社, 三洋半導体株式会社 filed Critical 三洋電機株式会社
Publication of WO2011049234A1 publication Critical patent/WO2011049234A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0044Mechanical working of the substrate, e.g. drilling or punching
    • H05K3/0052Depaneling, i.e. dividing a panel into circuit boards; Working of the edges of circuit boards
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09009Substrate related
    • H05K2201/0909Preformed cutting or breaking line

Definitions

  • the present invention relates to a substrate and a method of manufacturing a circuit device using the substrate.
  • the present invention relates to a substrate in which a plurality of mounting substrates are connected via a separation groove and a method of manufacturing a circuit device using the substrate.
  • the planar size of the large substrate 100 is such that a large number of units 106 are formed, and for example, a substrate made of aluminum having a thickness of about 1.5 mm is employed.
  • the upper surface of such a large substrate 100 is covered with an insulating layer 102 made of a resin material.
  • a conductive pattern 104 patterned in a predetermined shape is formed on the upper surface of the insulating layer 102 by etching a conductive foil having a thickness of about several tens of ⁇ m.
  • the unit 106 is a unit element constituting one circuit device, and the conductive pattern 104 having the same shape is formed for each unit 106.
  • the first groove 108 is a groove formed from the upper surface of the large substrate 100 along the boundary of each unit 106, and has a V-shaped cross-sectional shape.
  • the depth of the first groove 108 is approximately 0.65 mm.
  • the second groove 110 is provided on the lower surface of the large substrate 100 in correspondence with the portion where the first groove 108 is formed. The width and depth of the second groove 110 are similar to those of the first groove 108.
  • circuit element 112 is electrically connected to conductive pattern 104 of each unit 106. Referring to FIG.
  • the large-sized substrate 100 is divided at a portion where the first groove 108 and the second groove 110 are provided, and is separated into each unit 106.
  • the large-sized substrate 100 can be easily separated in this region.
  • a circuit device is manufactured by the method described above By doing this, it is possible to efficiently manufacture a large number of circuit devices.
  • the thickness of the substrate 100 is 1.5 mm and the depths of the first groove 108 and the second groove 100 are each 0.65 mm, the thickness of the substrate 100 is about 0.2 mm at the portion where the grooves are provided. It becomes. From this, the rigidity of the large-sized substrate 100 is weakened at the portion where the first groove 108 and the second groove 110 are provided, and there is a possibility that the substrate 100 may be bent from this portion in the transport process or the like. If the large-sized substrate 100 is bent at the location where the grooves 108 and 110 are provided, the circuit element 112 may not be properly mounted or connected, and a defect may occur.
  • the present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide a substrate in which bending of the substrate is suppressed in the middle of the transfer process and a method of manufacturing a circuit device using the substrate.
  • the present invention is a substrate in which a plurality of mounting substrates are connected via a separation groove, and the mounting substrate is configured by arranging a plurality of the mounting substrates of a predetermined shape provided with a conductive pattern on the main surface.
  • a first separation groove provided by partially removing the substrate in the thickness direction along the boundary between the region and the adjacent mounting substrates, and the substrate along the side of the mounting substrate region
  • a second separation groove partially removed in the thickness direction may be provided, and a support portion connected to a plurality of the mounting substrates via the second separation groove.
  • the method for manufacturing a circuit device of the present invention is a substrate in which a plurality of mounting substrates are connected via a separation groove, and a plurality of the mounting substrates having a predetermined shape provided with a conductive pattern on the main surface are provided adjacent to each other. And a first separation groove provided by partially removing the substrate in the thickness direction along the boundary between the adjacent mounting substrates, and the side edge of the mounting substrate region.
  • Preparing a substrate including a second separation groove provided by partially removing the substrate in the thickness direction and a support portion continuous with the plurality of mounting substrates via the second separation groove A step of electrically connecting a circuit element to the conductive pattern of each mounting substrate, and separating the supporting portion from the side of the mounting substrate region at the location where the second separation groove is provided;
  • the mounting boards are divided at the location where the first separation groove is provided. Characterized in that it comprises the steps of, a.
  • the mounting substrate region is constituted of a plurality of mounting substrates connected by the separation groove, the first separation groove is provided between the mounting substrates, and the first separation groove is formed along the side of the mounting substrate region. 2 A separation groove is provided. And the support part continuous with a plurality of mounting boards is provided via the 2nd separation slot. By doing this, the plurality of mounting boards disposed inside the mounting board region is mechanically reinforced by the support portion. Therefore, in the middle of the manufacturing process, bending of the substrate at the portion where the first separation groove is provided is suppressed.
  • FIG. 1 is a view showing a method of manufacturing a substrate and a circuit device of the present invention, wherein (A) is a plan view and (B) is a perspective view.
  • FIG. 2 is a view showing a method of manufacturing a substrate and a circuit device of the present invention, (A) is a plan view, (B) and (C) are cross sectional views, and (D) is an enlarged plan view It is.
  • FIG. 3 is a view showing a method of manufacturing the circuit device of the present invention, in which (A) is a cross-sectional view and (B) is a plan view.
  • FIG. 1 is a view showing a method of manufacturing a substrate and a circuit device of the present invention, wherein (A) is a plan view and (B) is a perspective view.
  • FIG. 2 is a view showing a method of manufacturing a substrate and a circuit device of the present invention, (A) is a plan view, (B) and (C) are cross sectional views, and
  • FIG. 4 is a view showing a method of manufacturing the circuit device of the present invention, (A) is a plan view, and (B) and (C) are cross-sectional views.
  • FIG. 5 is a view showing a method of manufacturing the circuit device of the present invention, and (A) and (B) are plan views.
  • FIG. 6 is a view showing a method of manufacturing the circuit device of the present invention, and (A) and (B) are cross-sectional views.
  • FIG. 7 is a plan view showing another configuration of the substrate of the present invention.
  • FIG. 8 is a view showing a method of manufacturing a circuit device in the background art, and (A)-(C) are cross-sectional views.
  • FIG. 1 is a plan view showing the substrate 10 before this step, and FIG. 1B is a perspective view showing this step.
  • the substrate 10 is a metal substrate whose main component is aluminum or copper having a thickness of 1.0 mm or more and 2.0 mm or less (e.g., 1.5 mm).
  • both main surfaces are covered with a non-organic insulating film mainly made of an oxide film of Al. Furthermore, the upper surface of the substrate 10 is entirely covered with an insulating layer made of a resin filled with a filler, and a conductive pattern 18 is formed on the upper surface of the insulating layer.
  • the non-organic insulating film may be omitted.
  • the substrate 10 is provided with a plurality of mounting substrates 12 elongated in the lateral direction on the paper surface. That is, each mounting substrate 12 is provided with two side sides opposed in the longitudinal direction and two side sides opposed in the lateral direction.
  • the length in the lateral direction which is the longitudinal direction is about 20 cm
  • the length in the longitudinal direction which is the short direction is about 0.6 cm.
  • the mounting substrate 12 of this embodiment is, for example, one in which a plurality of LEDs are arranged in a row on the upper surface and used as a lighting device (for example, a backlight of a liquid crystal display).
  • the shape of the substrate is merely an example, and may be a quadrangular shape, and may not be a rectangular shape elongated in one direction. This is because LEDs can be applied in various parts such as backlights, home lighting, signals, car lights and the like.
  • the rectangular shaped mounting substrate 12 is employed when it is disposed as a lighting device on the side of the LCD monitor.
  • the mounting substrate 12 having the same size as the monitor is employed.
  • the conductive pattern 18 has the same pattern shape for each mounting substrate 12 and is for electrically connecting the LEDs in a later step.
  • another LED is a bare chip, and there is a first type with an anode and a cathode on the front surface, and a second type with an anode on the front surface (or back surface) and a cathode on the back surface (or front surface). Therefore, in the first type, both are connected by wires as shown in FIG. 4C, and in the latter, the LED back surface is connected to the island, and the wiring is extended from a part of this island. Then, the surface is connected through the bonding pad as shown in FIG. 4C, and extends from the bonding pad to the other wiring.
  • a pattern on which semiconductor elements other than passive elements and LEDs are mounted is formed.
  • the mounting substrate area 24 is configured by arranging the five mounting substrates 12 elongated in the lateral direction on the paper surface. Although five mounting substrates 12 are shown here as an example, the number is not limited. Furthermore, they may be arranged in a matrix in the vertical and horizontal directions.
  • the first support portion 14 and the second support portion 16 are support portions that are continuous with the left and right sides (the short sides of the plurality of mounting boards 12) of the mounting board region 24, and the third support 34 and the fourth support
  • the portion 36 is a support portion that is continuous with the upper and lower sides of the mounting substrate area 24 on the paper surface. These components have a function to prevent bending of the mounting substrate area 24 in the middle of the manufacturing process.
  • the first support portion 14, the second support portion 16, the third support portion 34, and the fourth support portion 36 constitute a frame-shaped support portion for mechanically supporting the mounting substrate region 24.
  • the dicing line 20A is provided at the boundary between the first support portion 14 and the mounting substrate region 24, and the dicing line 20B is provided between the second supporting portion 16 and the mounting substrate region 24.
  • the dicing lines 22 are provided along the boundaries of the sides in the longitudinal direction of the mounting boards 12 with each other.
  • the dicing line 22 is provided continuously from the left end to the right end of the substrate 10, but the grooves formed along this line are the ones of the first support 14 and the second support 16. End on the way. This matter will be described later with reference to FIG. 2 (D).
  • each separation groove provided along these dicing lines may terminate in front of the periphery of the substrate 10.
  • the substrate 10 is diced using the high-speed cuttings 26 and 28 rotating.
  • the cutting 26 forms a separation groove by grinding the substrate 10 from the upper surface of the substrate 10 along each dicing line.
  • the cutting 28 grinds along the dicing lines from the lower surface of the substrate 10 to form separation grooves. Grinding by double cutting is simultaneously performed on the upper and lower surfaces of the substrate 10.
  • the dicing performed in this step is not to completely cut the substrate 10, but to form V-shaped separation grooves from both upper and lower main surfaces of the substrate 10 along the dicing lines 20A, 20B and 22. is there. Therefore, even after the dicing in this step is performed, the substrate 10 is integrally held in the form of a sheet.
  • the separation grooves are formed from the upper and lower main surfaces along the dicing lines, but the separation grooves may be provided by dicing in only one of them.
  • the cutting may be a dicing apparatus employed to separate the wafers.
  • the grooves may be provided separately in one grinding device, not simultaneously on both sides.
  • FIG. 2 (A) is a plan view showing the substrate 10 provided with the separation groove
  • FIG. 2 (B) and FIG. 2 (C) are cross-sectional views of the substrate 10, and FIG. It is a top view which expands and shows the area
  • separation grooves are formed along the dicing lines shown in FIG. 1 (A). Specifically, referring to FIG. 2A, first separation grooves 30 are provided along the boundaries in the lateral direction of each mounting substrate 12, and along the left and right sides of mounting substrate region 24. The second separation groove 32 is formed.
  • the first support portion 14 and the second support portion 16 are continuous with the left and right sides of the mounting substrate region 24 (sides in the lateral direction of the plurality of mounting substrates 12) via the second separation groove 32. . Further, the third support portion 34 and the fourth support portion 36 are provided with the upper and lower sides (sides in the longitudinal direction of the mounting substrate 12 disposed at the upper and lower ends) of the mounting substrate region 24 via the first separation groove 30. It is continuous. Further, referring to FIG. 2C, the depth obtained by adding the depth of the second separation groove 32 formed from the upper surface and the depth of the second separation groove 32 formed from the lower surface is the thickness of the substrate 10 It is set shorter than.
  • the substrate 10 is not divided into the respective mounting substrates 12 from the location where the second separation groove 32 is provided, and the sheet-like state as a whole is maintained.
  • the first separation groove 30 as well.
  • the first separation groove 30 formed in the first support portion 14 and the second support portion 16 has a shape which becomes gradually shallower toward the outer side (left side in the drawing). The reason for this is that the first separation groove 30 formed in the first support portion 14 is the end of the groove to be ground by a circular dicing blade. Therefore, the depth of the first separation groove 30 provided in the first support portion 14 and the second support portion 16 is provided between the mounting substrates 12 (inside the mounting substrate region 24 shown in FIG. 2A). It becomes shallower than the first separation groove 30.
  • the end of the side of the substrate 10 is terminated.
  • This structure improves the strength of the first support 14 and the second support 16.
  • the second separation grooves 32 provided in the vertical direction on the paper surface may also be terminated before the side of the substrate.
  • the upper end of the third support portion 34 is formed. By doing so, the formation of the separation groove is facilitated, and the separation of the first support portion 14 is facilitated.
  • the cross-sectional structure of the substrate 10 will be described in detail with reference to FIG.
  • An insulating layer 38 having a thickness of about 50 ⁇ m is formed on the top surface of the metal substrate 10 made of aluminum or the like.
  • the insulating layer 38 is made of a resin material such as an epoxy resin to which a filler made of granular alumina or the like is added to improve heat conduction.
  • a conductive pattern 18 is formed on the top surface of the insulating layer 38 in a predetermined shape. The conductive pattern 18 is formed by selectively etching a conductive foil made of copper or the like attached to the upper surface of the insulating layer 38. Although not shown, the upper surfaces of the conductive pattern 18 and the insulating layer 38 may be coated with a resist made of resin.
  • the color of the resist may be white in order to efficiently reflect the light reflected from the light emitting element, or black in order not to reflect the color of the substrate on the light emitted.
  • the entire width may be occupied by the conductive pattern by providing a minimum separation width.
  • it may be filled with a dummy conductive pattern.
  • the conductive pattern can be plated with Au, Ag, Ni or the like to make the substantially entire reflection region.
  • separation grooves are formed from the upper and lower surfaces of the substrate 10. As described above, dicing in this step is performed at a depth that does not cause the substrate 10 to be divided.
  • the length obtained by adding the depth L21 of the first separation groove 30A and the depth L23 of the first separation groove 30B is shorter than the thickness of the entire substrate 10.
  • the thickness of the entire substrate 10 is 1.5 mm
  • the depth L21 of the first separation groove 30A is 0.6 mm to 0.7 mm
  • the depth L23 of the first separation groove 30B is also 0.6 mm to 0
  • the thickness L22 of the portion not provided with both separation grooves is 0.3 mm to 0.1 mm.
  • the thickness L22 be thin. For example, when L22 is 200 ⁇ m or less (particularly preferably 60 ⁇ m or less), this separation is favorably performed.
  • the depths of the first separation groove 30A and the first separation groove 30B may be the same, or one of them may be formed deeper than the other.
  • each separation groove has a V-shaped shape on the drawing, the sectional shape of the separation groove may be other than that, for example, a square shape or a U-shape may be used.
  • only one of the first separation groove 30A and the first separation groove 30B may be provided in the substrate 10.
  • the above-mentioned matter is the same also regarding the 2nd separation groove 32 shown to FIG. 2 (A).
  • a plurality of substrates 10 having the above-described structure may be provided on a large substrate 40.
  • four substrates 10 are provided on a large substrate 40.
  • dividing lines shown by dotted lines are provided at the boundaries of the respective substrates 10, and separation grooves having the above-described configuration are provided in this part.
  • the subsequent steps may be performed with the state of the substrate 40.
  • the point of the present embodiment is to provide the first support portion 14 and the second support portion 16 which are continuous with the plurality of mounting substrates 12 via the second separation groove 32 with reference to FIG. 2 (A).
  • the thickness of the remaining thickness portion L22 is, for example, about 200 ⁇ m to 60 ⁇ m at the boundary between the mounting substrates 12 as described above. Therefore, the rigidity of the boundary portion of each mounting substrate 12 is very weak, and the substrate 10 is easily bent at this boundary portion in the middle of the manufacturing process (in particular, the step of transporting the substrate 10).
  • the mounting substrate 12 has a rectangular shape elongated in the lateral direction on the paper surface, there is a high possibility that the substrate 10 may be bent by the first separation groove 30 provided at the boundary in the longitudinal direction. . In this case, circuit element mounting in the next process becomes difficult.
  • the first support portion 14 and the second support portion 16 are provided. Specifically, the first support portion 14 is continuous with the plurality of mounting boards 12 via the second separation grooves 32 at the left end of the mounting board region 24. Furthermore, the second support portion 16 is continuous with the plurality of mounting boards 12 via the second separation grooves 32 at the right end of the mounting board region 24.
  • the mounting substrate region 24 can be formed by the first support portion 14 and the second support portion 16. Being supported, bending due to this stress is suppressed. Also, even if the entire substrate 10 is temporarily bent, if the degree of this bending is within the range of the elastic deformation of the first support portion 14 and the second support portion 16, the substrate is released when the bending stress is released. 10 is flat.
  • the first support portion 14 and the second support portion 16 are provided at the places sandwiching the mounting substrate region 24 in the left-right direction, but only one of them may be provided. Even in this case, it is possible to support each mounting substrate 12 integrally. Furthermore, as shown in FIG.
  • the first separation groove 30 is formed up to the end of the first support portion. It ends in the middle. Therefore, since the mechanical strength of the first support portion 14 is secured at the portion where the first separation groove 30 is not provided, each mounting substrate 12 is supported by the first support portion 14. Furthermore, the depth of the first separation groove 30 provided in the first support portion 14 is shallower than the first separation groove 30 provided between the mounting substrates 12. In particular, the end portion of the first separation groove 30 has a shape that gradually becomes shallow toward the outside. From this, the mechanical strength of the first support portion 14 is secured. Referring to FIG. 4, next, light emitting devices are mounted on each mounting substrate 12 as circuit elements. FIG.
  • the light emitting element is fixed to the upper surface of the substrate 10 in the state of the light emitting device 50 which is a package sealed with a resin.
  • the light emitting device 50 includes a mounting substrate 52, a light emitting element 62 mounted on the top surface of the mounting substrate 52, a reflection frame 56 fixed on the top surface of the mounting substrate 52 so as to surround the light emitting element 62, and a light emitting element 62.
  • the configuration includes a sealing resin 58 for stopping and a conductive path 54 electrically connected to the light emitting element 62.
  • the mounting substrate 52 is made of a resin material such as glass epoxy resin or an inorganic material such as ceramic, and has a function of mechanically supporting the light emitting element 62.
  • the light emitting element 62 and the reflection frame 56 are disposed on the top surface of the mounting substrate 52.
  • the reflection frame 56 is formed of a metal such as aluminum in a frame shape, and the inner side surface is an inclined surface located at the lower side than the upper side. Accordingly, light emitted laterally from the side surface of the light emitting element 62 is reflected upward at the inner side surface of the reflection frame 56.
  • the conductive paths 54 are routed from the upper surface to the lower surface of the mounting substrate 52.
  • the conductive path 54 is electrically connected to the light emitting element 62 through the metal thin wire 60 on the upper surface of the mounting substrate 52.
  • the conductive path 54 formed on the lower surface of the mounting substrate 52 is connected to the conductive pattern 18 formed on the substrate 10 via a bonding material 64 such as solder.
  • a bonding material 64 such as solder.
  • the light emitting element 62 is directly fixed to the upper surface of the substrate 10 in a bare chip state without being packaged.
  • the light emitting element 62 is disposed in the recess 70 in which the upper surface of the substrate 10 is recessed, but other configurations are also possible.
  • the light emitting element 62 may be fixed to the upper surface of the substrate 10 which is a flat surface, or the light emitting element 62 may be fixed to the upper surface of the island-shaped conductive pattern 18.
  • the upper and lower surfaces of the substrate 10 are covered with oxide films 66 and 68, respectively.
  • the oxide film 66 and the insulating layer 38 are removed in the recess 70 and the periphery thereof.
  • Two electrodes (anode electrode and cathode electrode) are provided on the top surface of the light emitting element 62, and these electrodes are connected to the conductive pattern 18 via the metal thin wires 60.
  • the light emitting element 62 is fixed to the bottom surface 74 of the recess 70 via the bonding material 76.
  • each support is separated from the substrate 10.
  • the substrate 10 is separated by the dicing line 20, and the first support portion 14 and the second support portion 16 are separated from the left and right sides (the end portions of the plurality of mounting substrates 12) of the mounting substrate region 24.
  • the first supporting portion 14 and the second supporting portion 16 having high mechanical strength are kept continuous with the mounting board region 24 as follows: This turn becomes difficult. Therefore, both support portions are removed from the substrate 10 prior to the step of separating the mounting substrates 12 from each other. Further, since separation grooves are formed in the substrate 10 along the dicing lines 20 in the previous step, separation at this location can be easily performed. Also, the third support 34 and the fourth support 36 may be separated in this process as well.
  • FIG. 5B shows the substrate 10 after the separation is completed.
  • the first support portion 14, the second support portion 16, the third support portion 34, and the fourth support portion 36 are separated from the mounting substrate area 24 and removed.
  • the substrate 10 is separated into the mounting substrates 12.
  • a method of separating each mounting substrate 12 can be considered by bending the substrate 10 at the boundary between the mounting substrates 12 or a cutting method using a sharp cutter. A method of dividing each mounting substrate 12 by bending the substrate 10 will be described with reference to FIG. 6 (A).
  • the substrate 10 is partially bent so that the portion where the left first separation groove 30A and the first separation groove 30B are formed on the paper surface becomes a fulcrum.
  • the portions where the first separation grooves 30A and the first separation grooves 30B are formed are connected only by the thickness portion in which both grooves are not formed.
  • the substrate 10 can be separated. Further, the side surface of the substrate 10 is held at the time of bending so that the electric circuit formed on the upper surface of the substrate 10 is not broken.
  • a method of dividing the substrate 10 by the circular cutter 84 will be described with reference to FIG. 6 (B).
  • a disk-shaped round cutter 84 whose tip is sharpened is rotatably provided on the support 86.
  • a circuit device having a configuration in which the light emitting device 50 is mounted on the mounting substrate 12 is manufactured.
  • a hybrid integrated circuit device may be configured in which other circuit elements such as transistors and ICs are incorporated on the top surface of the mounting substrate 12. good.
  • the upper surface, the side surface, and the lower surface of the mounting substrate including the light emitting device 50 may be covered with a sealing resin by transfer molding or potting.
  • the basic configuration of the substrate 10A is the same as that of the substrate 10A described with reference to FIG. 2, and the difference is that the shape of each mounting substrate 12 is different.
  • the mounting substrate 12 included in the substrate 10A has a circular shape, and a portion where the mounting substrate 12 is not provided is formed as an opening 80 inside the mounting substrate region 24.
  • the opening 80 is a region obtained by partially cutting the substrate 10A by pressing or router processing. In the drawings, this opening 80 is indicated by sparse hatching.
  • the upper and lower end portions and the left and right end portions of each mounting substrate 12 form a continuous portion continuous with the adjacent mounting substrate 12 or supporting portion, and dicing lines 22 and 20 correspond to the continuous portions. ing.
  • the separation grooves as described above are provided in the portions of the dicing lines 20 and 22 (shown by dotted lines).
  • SYMBOLS 10 10A substrate 12 mounting substrate 14 first support portion 16 second support portion 18 conductive pattern 20, 20A, 20B dicing line 22 dicing line 24 mounting substrate region 26 cut 28 cut 28 cut 30, 30A, 30B first separation groove 32 second Separation groove 34 Third support portion 36 Fourth support portion 38 Insulating layer 40 Substrate 50 Light emitting device 52 Mounting substrate 54 Conductive path 56 Reflective frame 58 Seal resin 60 Metal fine line 62 Light emitting element 64 Bonding material 66 Oxide film 68 Oxide film 70 Recess 74 Bottom surface 76 Bonding material 80 Opening 84 Round cutter 86 Support

Abstract

Provided are a substrate which is prevented from being bent during a transfer step, and a method for manufacturing a circuit device using the same. A substrate (10) is provided with a mounting substrate region (24) comprising a plurality of mounting substrates (12) disposed adjacent to each other, and a first support part (14) and a second support part (16) that are continuous with the plurality of mounting substrates (12). First separation grooves (30) are provided in boundary portions between the mounting substrates (12), and second separation grooves (32) are provided between the mounting substrates (12), and the first support part (14) and the second support part (16). By providing the first support part (14) and the second support part (16), the substrate (10) is prevented from being bent in the stage in which the substrate (10) is transferred.

Description

基板およびそれを用いた回路装置の製造方法Substrate and method of manufacturing circuit device using the same
 本発明は、基板およびそれを用いた回路装置の製造方法に関する。特に本発明は、実装基板が分離溝を介して複数個連結された基板およびそれを用いた回路装置の製造方法に関する。 The present invention relates to a substrate and a method of manufacturing a circuit device using the substrate. In particular, the present invention relates to a substrate in which a plurality of mounting substrates are connected via a separation groove and a method of manufacturing a circuit device using the substrate.
 回路基板を採用して回路装置を形成する場合、先ずは、一枚の大判基板の上面に多数個のユニットを構成する導電パターンを形成する。続いて、導電パターンに回路素子を接続した後に、各ユニットを分離する方法が従来から採用されている(下記特許文献1参照)。
 図8を参照して、従来の回路基板およびその製造方法を説明する。
 図8(A)を参照して、先ず、大判基板100の上面に多数個のユニット106を構成する導電パターン104を形成し、各ユニット106の境界に第1溝108および第2溝110を設ける。
 大判基板100の平面的な大きさは多数個のユニット106が形成される程度であり、例えば厚みが1.5mm程度のアルミニウムから成る基板が採用される。この様な大判基板100の上面は、樹脂材料から成る絶縁層102により被覆される。
 絶縁層102の上面には、厚みが数十μm程度の導電箔をエッチングすることにより所定形状にパターニングされた導電パターン104が形成されている。ここで、ユニット106とは、1つの回路装置を構成する単位要素のことであり、各ユニット106毎に同一の形状の導電パターン104が形成されている。
 第1溝108は、各ユニット106の境界に沿って大判基板100の上面から形成された溝であり、V字型の断面形状を有する。ここで、基板100の厚みが1.5mmの場合、第1溝108の深さは0.65mm程度に形成されている。
 第2溝110は、第1溝108が形成される箇所に対応して、大判基板100の下面に設けられている。第2溝110の幅および深さは、第1溝108と同様である。
 図8(B)を参照して、次に、各ユニット106の導電パターン104に回路素子112を電気的に接続する。
 図8(C)を参照して、次に、第1溝108および第2溝110が設けられた箇所にて大判基板100を分割して、各ユニット106に分離する。第1溝108および第2溝110が設けられた領域では、基板100の厚みが局所的に薄くなっているので、この領域にて大判基板100は容易に分離できる
 上記した方法により回路装置を製造することにより、多数個の回路装置を効率的に製造することが可能となる。
When a circuit board is employed to form a circuit device, first, conductive patterns constituting a large number of units are formed on the upper surface of one large-sized substrate. Then, after connecting a circuit element to a conductive pattern, the method of isolate | separating each unit is conventionally employ | adopted (refer the following patent document 1).
A conventional circuit board and a method of manufacturing the same will be described with reference to FIG.
Referring to FIG. 8A, first, conductive patterns 104 forming a large number of units 106 are formed on the upper surface of large-sized substrate 100, and first grooves 108 and second grooves 110 are provided at the boundaries of each unit 106. .
The planar size of the large substrate 100 is such that a large number of units 106 are formed, and for example, a substrate made of aluminum having a thickness of about 1.5 mm is employed. The upper surface of such a large substrate 100 is covered with an insulating layer 102 made of a resin material.
A conductive pattern 104 patterned in a predetermined shape is formed on the upper surface of the insulating layer 102 by etching a conductive foil having a thickness of about several tens of μm. Here, the unit 106 is a unit element constituting one circuit device, and the conductive pattern 104 having the same shape is formed for each unit 106.
The first groove 108 is a groove formed from the upper surface of the large substrate 100 along the boundary of each unit 106, and has a V-shaped cross-sectional shape. Here, when the thickness of the substrate 100 is 1.5 mm, the depth of the first groove 108 is approximately 0.65 mm.
The second groove 110 is provided on the lower surface of the large substrate 100 in correspondence with the portion where the first groove 108 is formed. The width and depth of the second groove 110 are similar to those of the first groove 108.
Referring to FIG. 8B, next, circuit element 112 is electrically connected to conductive pattern 104 of each unit 106.
Referring to FIG. 8C, next, the large-sized substrate 100 is divided at a portion where the first groove 108 and the second groove 110 are provided, and is separated into each unit 106. In the region where the first groove 108 and the second groove 110 are provided, since the thickness of the substrate 100 is locally reduced, the large-sized substrate 100 can be easily separated in this region. A circuit device is manufactured by the method described above By doing this, it is possible to efficiently manufacture a large number of circuit devices.
特開2003−318334号公報JP 2003-318334 A
 しかしながら、上記した回路装置の製造方法では、製造工程の途中段階にて基板100が湾曲してしまう問題があった。
 具体的には、図8の各図を参照すると、多数個のユニット106が連結された大判基板100に対して、回路素子112を固着する工程や、回路素子112を電気的に接続する工程が行われている。更には、各工程間の搬送も、大判基板100で行われる。
 ところが、図8(A)を参照すると、ユニット106同士の間には、第1溝108と第2溝110が設けられているので、ユニット106同士は、残りの厚み部分で連結されているのみである。例えば、基板100の厚みが1.5mmであり、第1溝108および第2溝100の深さがそれぞれ0.65mmであれば、溝が設けられた部分では基板100の厚みは0.2mm程度となる。このことから、第1溝108および第2溝110が設けられた箇所は、大判基板100の剛性が弱くなり、搬送工程等において基板100がこの箇所から折れ曲がってしまう恐れがある。
 溝108、110が設けられた箇所にて大判基板100が折れ曲がってしまうと、回路素子112の実装や接続が正常に行われなくなり不良が発生する事がある。
 本発明は上記した問題を鑑みてなされ、本発明の目的は、搬送工程の途中段階に於ける基板の折れ曲がりが抑制された基板およびそれを用いた回路装置の製造方法を提供することにある。
However, in the method of manufacturing the circuit device described above, there is a problem that the substrate 100 is bent in the middle of the manufacturing process.
Specifically, referring to each drawing of FIG. 8, there is a process of fixing the circuit element 112 to the large-sized substrate 100 to which a large number of units 106 are connected, and a process of electrically connecting the circuit element 112. It has been done. Furthermore, the transfer between each process is also performed on the large-sized substrate 100.
However, referring to FIG. 8A, since the first groove 108 and the second groove 110 are provided between the units 106, the units 106 are only connected by the remaining thickness portion. It is. For example, if the thickness of the substrate 100 is 1.5 mm and the depths of the first groove 108 and the second groove 100 are each 0.65 mm, the thickness of the substrate 100 is about 0.2 mm at the portion where the grooves are provided. It becomes. From this, the rigidity of the large-sized substrate 100 is weakened at the portion where the first groove 108 and the second groove 110 are provided, and there is a possibility that the substrate 100 may be bent from this portion in the transport process or the like.
If the large-sized substrate 100 is bent at the location where the grooves 108 and 110 are provided, the circuit element 112 may not be properly mounted or connected, and a defect may occur.
The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide a substrate in which bending of the substrate is suppressed in the middle of the transfer process and a method of manufacturing a circuit device using the substrate.
 本発明は、複数の実装基板が分離溝を介して連結された基板であり、主面に導電パターンが設けられた所定形状の前記実装基板を、複数個隣設することにより構成された実装基板領域と、隣設する前記実装基板同士の境界に沿って、前記基板を厚み方向に部分的に除去して設けた第1分離溝と、前記実装基板領域の側辺に沿って、前記基板を厚み方向に部分的に除去して設けた第2分離溝と、前記第2分離溝を介して複数の前記実装基板と連続する支持部と、を備えることを特徴とする。
 本発明の回路装置の製造方法は、複数の実装基板が分離溝を介して連結された基板であり、主面に導電パターンが設けられた所定形状の前記実装基板を、複数個隣設することにより構成された実装基板領域と、隣設する前記実装基板同士の境界に沿って、前記基板を厚み方向に部分的に除去して設けた第1分離溝と、前記実装基板領域の側辺に沿って、前記基板を厚み方向に部分的に除去して設けた第2分離溝と、前記第2分離溝を介して複数の前記実装基板と連続する支持部と、を備える基板を用意する工程と、前記各実装基板の前記導電パターンに回路素子を電気的に接続する工程と、前記第2分離溝が設けられた箇所にて、前記支持部を前記実装基板領域の側辺から分離し、前記第1分離溝が設けられた箇所にて前記実装基板同士を分離する工程と、を備えることを特徴とする。
The present invention is a substrate in which a plurality of mounting substrates are connected via a separation groove, and the mounting substrate is configured by arranging a plurality of the mounting substrates of a predetermined shape provided with a conductive pattern on the main surface. A first separation groove provided by partially removing the substrate in the thickness direction along the boundary between the region and the adjacent mounting substrates, and the substrate along the side of the mounting substrate region A second separation groove partially removed in the thickness direction may be provided, and a support portion connected to a plurality of the mounting substrates via the second separation groove.
The method for manufacturing a circuit device of the present invention is a substrate in which a plurality of mounting substrates are connected via a separation groove, and a plurality of the mounting substrates having a predetermined shape provided with a conductive pattern on the main surface are provided adjacent to each other. And a first separation groove provided by partially removing the substrate in the thickness direction along the boundary between the adjacent mounting substrates, and the side edge of the mounting substrate region. Preparing a substrate including a second separation groove provided by partially removing the substrate in the thickness direction and a support portion continuous with the plurality of mounting substrates via the second separation groove A step of electrically connecting a circuit element to the conductive pattern of each mounting substrate, and separating the supporting portion from the side of the mounting substrate region at the location where the second separation groove is provided; The mounting boards are divided at the location where the first separation groove is provided. Characterized in that it comprises the steps of, a.
 本発明の基板では、分離溝により連結される複数個の実装基板から実装基板領域を構成し、実装基板同士の間に第1分離溝を設け、更に前記実装基板領域の側辺に沿って第2分離溝を設けている。そして、第2分離溝を介して複数の実装基板と連続する支持部を設けている。この様にすることにより、実装基板領域の内部に配置される複数個の実装基板が支持部により機械的に補強される。従って、製造工程の途中段階に於いて、第1分離溝が設けられた箇所にて基板が折れ曲がることが抑制される。 In the substrate of the present invention, the mounting substrate region is constituted of a plurality of mounting substrates connected by the separation groove, the first separation groove is provided between the mounting substrates, and the first separation groove is formed along the side of the mounting substrate region. 2 A separation groove is provided. And the support part continuous with a plurality of mounting boards is provided via the 2nd separation slot. By doing this, the plurality of mounting boards disposed inside the mounting board region is mechanically reinforced by the support portion. Therefore, in the middle of the manufacturing process, bending of the substrate at the portion where the first separation groove is provided is suppressed.
 図1は本発明の基板および回路装置の製造方法を示す図であり、(A)は平面図であり、(B)は斜視図である。
 図2は本発明の基板および回路装置の製造方法を示す図であり、(A)は平面図であり、(B)および(C)は断面図であり、(D)は拡大された平面図である。
 図3は本発明の回路装置の製造方法を示す図であり、(A)は断面図であり、(B)は平面図である。
 図4は本発明の回路装置の製造方法を示す図であり、(A)は平面図であり、(B)および(C)は断面図である。
 図5は本発明の回路装置の製造方法を示す図であり、(A)および(B)は平面図である。
 図6は本発明の回路装置の製造方法を示す図であり、(A)および(B)は断面図である。
 図7は本発明の基板に関して他の構成を示す平面図である。
 図8は背景技術の回路装置の製造方法を示す図であり、(A)−(C)は断面図である。
FIG. 1 is a view showing a method of manufacturing a substrate and a circuit device of the present invention, wherein (A) is a plan view and (B) is a perspective view.
FIG. 2 is a view showing a method of manufacturing a substrate and a circuit device of the present invention, (A) is a plan view, (B) and (C) are cross sectional views, and (D) is an enlarged plan view It is.
FIG. 3 is a view showing a method of manufacturing the circuit device of the present invention, in which (A) is a cross-sectional view and (B) is a plan view.
FIG. 4 is a view showing a method of manufacturing the circuit device of the present invention, (A) is a plan view, and (B) and (C) are cross-sectional views.
FIG. 5 is a view showing a method of manufacturing the circuit device of the present invention, and (A) and (B) are plan views.
FIG. 6 is a view showing a method of manufacturing the circuit device of the present invention, and (A) and (B) are cross-sectional views.
FIG. 7 is a plan view showing another configuration of the substrate of the present invention.
FIG. 8 is a view showing a method of manufacturing a circuit device in the background art, and (A)-(C) are cross-sectional views.
 図1から図6を参照して、本形態の基板およびそれを用いた回路装置の製造方法を説明する。
 図1を参照して先ず、基板(大判基板を以下基板と呼ぶ)10に対して、実装基板(後の工程で個片化された各ユニットに相当する基板)12同士の境界に分離溝を設けるためのダイシング加工を行う。図1(A)は本工程前の基板10を示す平面図であり、図1(B)は本工程を示す斜視図である。
 図1(A)を参照して、基板10は、厚みが1.0mm以上2.0mm以下(例えば1.5mm)のアルミニウムや銅を主成分とする金属基板である。基板10の材料としてアルミニウムが採用される場合は、両主面はAlの酸化膜を主とした非有機性絶縁膜により被覆される。更に、基板10の上面は、フィラーが充填された樹脂から成る絶縁層により全面的に被覆されており、この絶縁層の上面に導電パターン18が形成されている。尚、非有機性絶縁膜は、省略されても良い。
 基板10には、紙面上にて横方向に細長く伸びる複数の実装基板12が設けられている。即ち、各実装基板12は、長手方向で対向する2つの側辺と、短手方向で対向する2つの側辺を備えている。また、実装基板12のサイズの一例としては、長手方向である横方向の長さが20cm程度であり、短手方向である縦方向の長さが0.6cm程度である。本形態の実装基板12は、例えば、上面に複数個のLEDが列状に配置されて照明装置(例えば液晶ディスプレイのバックライト)として用いられるものである。
 この基板の形状はあくまでも一例であり、四角形形状であれば良く、一方方向に細長い矩形形状でなくてもよい。これは、LEDは、バックライト、家庭用照明、信号、車のライト等色々な部分で応用が可能であるからである。矩形形状の実装基板12は、LCDモニタのサイドに照明装置として配置される場合に採用される。一方、モニタの全域に渡る全面バックライトの場合であると、このモニタと同等のサイズの実装基板12が採用される。
 導電パターン18は、各実装基板12毎に同一のパターン形状を備えており、後の工程にてLEDが電気的に接続されるためのものである。
 LEDとして主に3タイプがある。一つ目は、ケースやモールド等で封止されたパッケージタイプであり、外部には2つの端子が延在される。よってこの端子と接続されるパッドと、このパッド同士を接続する配線部と、端部にて外部接続電極として機能する接続パッドとから構成されている。
 続いて、別のLEDは、ベアチップであり、表面にアノードとカソードがある第1のタイプと、表面(または裏面)がアノード、裏面(または表面)がカソードの第2のタイプがある。よって第1のタイプは、図4(C)の様に両者がワイヤで接続され、後者は、LED裏面がアイランドに接続され、このアイランドの一部から配線が延在されることになる。そして表面は、図4(C)の様にボンディングパッドを介して接続され、ボンディングパッドから他方の配線へと延在される。また駆動系や保護を考慮して若干の回路が形成される場合、受動素子やLED以外の半導体素子が実装されるパターンが形成される。
 ここでは、紙面上にて横方向に細長い5つの実装基板12が配置されることで、実装基板領域24が構成されている。一例としてここでは5つの実装基板12が示されているが、数は限定されない。更には、縦横にマトリックス状に配置されても良い。
 第1支持部14および第2支持部16は、実装基板領域24の左右側辺(複数の実装基板12の短手側辺)と連続する支持部であり、第3支持部34および第4支持部36は、実装基板領域24の紙面上に於ける上下側辺と連続する支持部である。そしてこれらは、製造工程の途中段階にて実装基板領域24の折れ曲がりを防止する働きを備えている。また、本形態では、第1支持部14、第2支持部16、第3支持部34および第4支持部36により、実装基板領域24を機械的に支持する額縁状の支持部が構成されている。
 ダイシングライン20Aは第1支持部14と実装基板領域24との境界に設けられており、ダイシングライン20Bは、第2支持部16と実装基板領域24との間に設けられている。
 ダイシングライン22は、各実装基板12同士の長手方向の側辺の境界に沿って設けられている。ここでは、ダイシングライン22は、基板10の左側端部から右側端部まで連続して設けられているが、このラインに沿って形成される溝は第1支持部14および第2支持部16の途中で終端する。この事項については、図2(D)を参照して後述する。
 尚、折れ曲がり強度を全面に確保する上では、ダイシングライン20A、20B、22とも、基板10の周辺の手前で終端しても良い。即ち、これらのダイシングラインに沿って設けられる各分離溝が、基板10の周辺の手前で終端しても良い。
 図1(B)を参照して、本工程では、高速に回転するカットソー26、28を用いて基板10をダイシングしている。カットソー26は、基板10の上面から各ダイシングラインに沿って基板10の研削加工を行うことで、分離溝を形成する。カットソー28は、基板10の下面から各ダイシングラインに沿って研削加工を行い、分離溝を形成する。両カットソーによる研削加工は、基板10の上面および下面に対して同時に行われる。
 本工程で行われるダイシングは、基板10を完全に切断するものではなく、各ダイシングライン20A、20B、22に沿って、基板10の上下両主面からV字型の分離溝を形成するものである。従って、本工程のダイシングが行われた後も、基板10はシート状に一体として保持される。
 ここで、上記説明では、ダイシングラインに沿って上下両主面から分離溝が形成されていたが、どちらか一方のみにダイシングによる分離溝が設けられても良い。またカットソーは、ウェハの個片化に採用するダイシング装置でも良い。更に、溝は、裏表同時ではなく、1つの研削装置で、別々に施しても良い。
 図2を参照して、上記工程を経た基板10の構成を説明する。図2(A)は分離溝が設けられた基板10を示す平面図であり、図2(B)および図2(C)は基板10の断面図であり、図2(D)は図2(A)にて点線の円で囲まれた領域を拡大して示す平面図である。
 図2を参照して、図1(A)に示した各ダイシングラインに沿って分離溝が形成されている。具体的には、図2(A)を参照して、各実装基板12の横方向の境界に沿って、第1分離溝30が設けられており、実装基板領域24の左右側辺に沿って、第2分離溝32が形成されている。
 第1支持部14および第2支持部16は、第2分離溝32を介して、実装基板領域24の左右側辺(複数の各実装基板12の短手方向の側辺)と連続している。更に、第3支持部34および第4支持部36は、第1分離溝30を介して、実装基板領域24の上下側辺(上下端に配置された実装基板12の長手方向の側辺)と連続している。
 また、図2(C)を参照して、上面から形成される第2分離溝32の深さと、下面から形成される第2分離溝32の深さを加算した長さは、基板10の厚みよりも短く設定されている。この様にすることで、第2分離溝32が設けられた箇所から基板10が各実装基板12に分断されることなく、全体として一枚のシート状の状態を保持している。この事項は、第1分離溝30に関しても同様である。
 また、第1支持部14、第2支持部16に形成される第1分離溝30は、外側(紙面上では左側)に向かって次第に浅くなる形状となっている。この理由は、第1支持部14に形成される第1分離溝30は、円形のダイシングブレードにより研削加工される溝の端部であるからである。従って、第1支持部14、第2支持部16に設けられる第1分離溝30の深さは、実装基板12同士の間(図2(A)に示す実装基板領域24の内部)に設けられる第1分離溝30よりも浅くなる。
 また別の表現をすれば、図2(D)に示すように、基板10の側辺の手前で終端している。この構造により、第1支持部14、第2支持部16の強度が向上する。この結果、第1分離溝30をセンターとして上側と下側が折り曲げられるのを防止できる。
 一方、紙面上にて縦方向に設けられる第2分離溝32も、基板の側辺に対し、手前で終端しても良い。しかしここでは、第3支持部34の上端に到るまで形成されている。この様にすることで、分離溝の形成が容易となり、第1支持部14の分離が容易になる。
 図3(A)を参照して、基板10の断面的な構成を詳述する。アルミニウム等から成る金属基板10の上面には、厚みが50μm程度の絶縁層38が形成されている。この絶縁層38は、熱伝導向上のために、粒状のアルミナ等から成るフィラーが添加されたエポキシ樹脂等の樹脂材料から成る。絶縁層38の上面に導電パターン18が所定形状に形成されている。この導電パターン18は、絶縁層38の上面に貼着された銅等から成る導電箔を選択的にエッチングすることにより形成される。
 また、図示はされていないが、導電パターン18および絶縁層38の上面は、樹脂から成るレジストにより被覆されても良い。このレジストの色としては、発光素子から反射された光を効率的に反射させるために白色にしても良いし、基板の色を発光される光に反映させないために黒色にしても良い。
 一方、白色レジストの劣化を考えると、最小限の分離幅を設け、全域を導電パターンで占有してもよい。またダミー導電パターンで埋めても良い。この場合、導電パターンにAu、AgまたはNi等のメッキが施せ、実質全体を反射領域と出来る。
 各実装基板12の境界部分では、基板10の上面および下面から分離溝が形成されている。
 上記したように、本工程に於けるダイシングは、基板10が分割されない程度の深さで行われる。即ち、第1分離溝30Aの深さL21と、第1分離溝30Bの深さL23とを加算した長さは、基板10全体の厚さよりも短い。例えば、基板10全体の厚さが1.5mmとすると、第1分離溝30Aの深さL21は0.6mmから0.7mmであり、第1分離溝30Bの深さL23も0.6mmから0.7mmであり、両分離溝が設けられない部分の厚さL22は0.3mmから0.1mmである。また、後の工程にて実装基板12同士を容易に分離するためには、厚さL22は薄い方が良く、例えばL22を200μm以下(特に好ましくは60μm以下)にすると、この分離を良好に行うことが出来る。
 ここで、上記した第1分離溝30Aと第1分離溝30Bとの深さは同一でも良いし、どちらか一方が他方よりも深く形成されても良い。また、紙面上では各分離溝はV字型形状を呈しているが、分離溝の断面形状はそれ以外でも良く、例えば四角形状やU字形状でも良い。更にまた、第1分離溝30Aおよび第1分離溝30Bのどちらか一方のみが基板10に設けられても良い。
 また、上記した事項は、図2(A)に示す第2分離溝32に関しても同様である。
 図3(B)を参照して、上記した構成の基板10を、大型の基板40に複数個設けても良い。ここでは、4つの基板10が、大型の基板40に設けられている。また、各基板10の境界には、点線で示す分割線が設けられており、この部分には上記したような構成の分離溝が設けられている。
 この様にすることで、分離溝をダイシングにより形成する工程迄を、複数の基板10が配置された状態で行うことにより、大型の基板全域を一括してダイシングできるため、製造コストを低減出来る。
 本装置は、基板メーカーが図3(B)の状態か、図2(A)の状態でユーザに渡し、ユーザー側は、供給された基板を用意し、この後に発光素子を実装しても良い。
 また、発光素子の実装等を行う次工程以降は、用いられるボンダー等の製造装置の仕様に応じて、大型の基板40を各基板10に分割してから行っても良いし、可能であれば基板40の状態のまま次工程以降を行っても良い。
 本形態のポイントは、図2(A)を参照して、第2分離溝32を介して、複数の実装基板12と連続する第1支持部14および第2支持部16を設けることにある。
 具体的には、先ず、各実装基板12同士の境界では、残りの厚み部分L22の厚さは、上記したように例えば200μmから60μm程度である。従って、各実装基板12の境界部分の剛性は非常に弱く、製造工程の途中段階(特に基板10を搬送する工程)等にて、この境界部分にて基板10が容易に曲折してしまう。特に、実装基板12は紙面上にて横方向に細長い矩形形状を呈しているので、これらの長手方向の境界部分に設けられた第1分離溝30にて基板10が曲折してしまう恐れが大きい。この様になると、次工程の回路素子実装が困難になる。
 この対策として、本形態では、第1支持部14および第2支持部16が設けられている。具体的には、第1支持部14は、実装基板領域24の左端にて、第2分離溝32を介して複数個の実装基板12と連続している。
 更に、第2支持部16は、実装基板領域24の右端にて、第2分離溝32を介して複数の実装基板12と連続している。この様にすることで、第1分離溝30の箇所にて折れ曲がりが発生するような曲げ応力が基板10に作用しても、第1支持部14および第2支持部16により実装基板領域24が支持されているので、この応力による折れ曲がりが抑制される。また、一時的に基板10全体が湾曲したとしても、この湾曲の程度が第1支持部14および第2支持部16の弾性変形の範囲内であれば、曲げ応力が解除された時点で、基板10は平坦状態となる。
 ここで、上記説明では、実装基板領域24を左右方向から挟む箇所に第1支持部14および第2支持部16が設けられていたが、これらのどちらか一方のみが設けられても良い。この場合に於いても、各実装基板12を一体的に支持することは可能である。
 更にまた、図2(D)に示すように、第1支持部14には第1分離溝が形成されているが、第1分離溝30は第1支持部の端部までは形成されておらず途中で終端している。従って、第1分離溝30が設けられない部分にて第1支持部14の機械的強度が確保されているので、第1支持部14により各実装基板12が支持される。
 更にまた、第1支持部14に設けられる第1分離溝30の深さは、実装基板12同士の間に設けられる第1分離溝30より浅い。特に、第1分離溝30の端部では、外側に向かって徐々に浅くなる形状である。このことから、第1支持部14の機械的強度が確保されている。
 図4を参照して、次に、各実装基板12に回路素子として発光装置を実装する。図4(A)は本工程を経た基板10を示す平面図であり、図4(B)は実装の構造を示す断面図であり、図4(C)は他の実装構造を示す断面図である。
 図4(A)を参照して、各実装基板12には、長手方向に等間隔で導電パターン18から成るパッドが設けられており、このパッドに発光装置50が接続される。本工程の接続を行うことにより、各実装基板12の上面にて、複数個の発光装置50が直列に接続される。
 図4(B)を参照して、基板10にLEDである発光装置が配置される構造を説明する。ここでは、発光素子が樹脂封止されたパッケージである発光装置50の状態で、基板10の上面に固着されている。
 発光装置50は、実装基板52と、実装基板52の上面に実装された発光素子62と、発光素子62を取り囲むように実装基板52の上面に固着された反射枠56と、発光素子62を封止する封止樹脂58と、発光素子62と電気的に接続される導電路54とを備えた構成と成っている。
 実装基板52は、ガラスエポキシ樹脂等の樹脂材料やセラミック等の無機物から成り、発光素子62を機械的に支持する機能を有する。実装基板52の上面に発光素子62および反射枠56が配置される。
 反射枠56は、アルミニウム等の金属を額縁状に形成したものであり、内側の側面は上部よりも下部が内側に位置する傾斜面と成っている。従って、発光素子62の側面から側方に発光された光は、反射枠56の内側の側面で上方に反射される。
 導電路54は、実装基板52の上面から下面まで引き回されている。実装基板52の上面において導電路54は金属細線60を経由して発光素子62と電気的に接続される。そして、実装基板52の下面に形成された導電路54は、半田等の接合材64を介して、基板10に形成された導電パターン18と接続されている。
 図4(C)を参照して、ここでは、発光素子62がパッケージ化されずにベアチップの状態で、直に基板10の上面に固着されている。この図では、基板10の上面を窪ませた凹部70に発光素子62が配置されているが、他の構成も採用可能である。例えば、平坦面である基板10の上面に発光素子62が固着されても良いし、アイランド形状の導電パターン18の上面に発光素子62が固着されても良い。また、基板10の上面および下面は酸化膜66、68により被覆される。そして、凹部70およびその周辺部では、酸化膜66および絶縁層38は除去されている。
 発光素子62の上面には、2つの電極(アノード電極、カソード電極)が設けられ、これらの電極は金属細線60を経由して、導電パターン18と接続される。また、この凹部70の底面74に発光素子62が、接合材76を介して固着されている。
 図5(A)を参照して、次に、基板10から各支持部を分離する。具体的には、ダイシングライン20にて基板10の分離を行い、実装基板領域24の左右両側辺(複数の実装基板12の端部)から、第1支持部14および第2支持部16を分離する。
 次工程にてダイシングライン22にて曲折により各実装基板12を分離する際に、機械的強度が強い第1支持部14および第2支持部16が実装基板領域24に連続した状態のままでは、この曲折が困難になる。従って、実装基板12同士の分離を行う工程に先行して、両支持部は基板10から除去される。また、先工程にて、ダイシングライン20に沿って基板10に分離溝が形成されているので、この箇所に於ける分離は容易に行える。また、第3支持部34および第4支持部36も同様に本工程で分離されても良い。具体的な分離の方法としては、図6(A)および図6(B)を参照して後述する分離方法と同様でよい。
 図5(B)に上記分離が終了した後の基板10を示す。ここでは、第1支持部14、第2支持部16、第3支持部34および第4支持部36が、実装基板領域24から分離されて除去されている。
 図6を参照して、次に、基板10を各実装基板12に分離する。各実装基板12の分離は、実装基板12同士の境界にて基板10を曲折させることにより行う方法と、鋭利なカッターを使用した切断方法が考えられる。
 図6(A)を参照して、基板10を曲折させることにより、個々の実装基板12を分割する方法を説明する。この方法では、紙面上にて左側の第1分離溝30Aおよび第1分離溝30Bが形成された箇所が支点と成るように、基板10を部分的に折り曲げる。第1分離溝30Aおよび第1分離溝30Bが形成された箇所は、両溝が形成されていない厚み部分のみで連結されているので、この箇所で複数回折り曲げることにより、この連結部分から容易に基板10を分離することができる。また、基板10の上面に形成された電気回路が破壊されないように、曲折を行う際には基板10の側面を保持する。
 図6(B)を参照して、丸カッター84により、基板10の分割を行う方法を説明する。先端が鋭利に形成された円盤状の丸カッター84は、回転自在に支持部86に備えられている。そして、第1分離溝30Aに丸カッター84を押し当てながら支持部86を移動させることにより、第1分離溝30Aと第1分離溝30Bとの間の基板10の残りの厚み部分を除去している。
 以上の工程により、実装基板12に発光装置50が実装された構成の回路装置が製造される。また、上記工程では、発光素子のみが実装基板12の上面に実装されていたが、トランジスタやIC等の他の回路素子が実装基板12の上面に組み込まれた混成集積回路装置が構成されても良い。更には、トランスファーモールドやポッティングにより、発光装置50を含む実装基板の上面、側面および下面が、封止樹脂により被覆されても良い。
 図7を参照して、本形態に適用可能な他の形態の基板10Aの構成を説明する。基板10Aの基本的な構成は、図2を参照して説明した基板10Aと同様であり、相違点は各実装基板12の形状が異なることにある。
 具体的には、基板10Aに含まれる実装基板12は、円形の形状を呈しており、実装基板領域24の内側に於いて、実装基板12が設けられない部分は開口部80と成っている。開口部80は、プレス加工やルーター加工により基板10Aを部分的に切除した領域である。図面では、この開口部80を疎なハッチングにて示している。そして、各実装基板12の上下端部および左右端部は、隣設する他の実装基板12または支持部と連続する連続部となっており、この連続部にはダイシングライン22、20が対応している。このダイシングライン20、22(点線にて示す)の部分には、上記したような分離溝が設けられている。
The substrate of the present embodiment and a method of manufacturing a circuit device using the substrate will be described with reference to FIGS. 1 to 6.
Referring to FIG. 1, first, with respect to a substrate (large-sized substrate is hereinafter referred to as a substrate) 10, separation grooves are formed at the boundaries between mounting substrates (substrates corresponding to respective units separated in a later step) 12 Carry out dicing processing for installation. FIG. 1A is a plan view showing the substrate 10 before this step, and FIG. 1B is a perspective view showing this step.
Referring to FIG. 1A, the substrate 10 is a metal substrate whose main component is aluminum or copper having a thickness of 1.0 mm or more and 2.0 mm or less (e.g., 1.5 mm). When aluminum is employed as the material of the substrate 10, both main surfaces are covered with a non-organic insulating film mainly made of an oxide film of Al. Furthermore, the upper surface of the substrate 10 is entirely covered with an insulating layer made of a resin filled with a filler, and a conductive pattern 18 is formed on the upper surface of the insulating layer. The non-organic insulating film may be omitted.
The substrate 10 is provided with a plurality of mounting substrates 12 elongated in the lateral direction on the paper surface. That is, each mounting substrate 12 is provided with two side sides opposed in the longitudinal direction and two side sides opposed in the lateral direction. Further, as an example of the size of the mounting substrate 12, the length in the lateral direction which is the longitudinal direction is about 20 cm, and the length in the longitudinal direction which is the short direction is about 0.6 cm. The mounting substrate 12 of this embodiment is, for example, one in which a plurality of LEDs are arranged in a row on the upper surface and used as a lighting device (for example, a backlight of a liquid crystal display).
The shape of the substrate is merely an example, and may be a quadrangular shape, and may not be a rectangular shape elongated in one direction. This is because LEDs can be applied in various parts such as backlights, home lighting, signals, car lights and the like. The rectangular shaped mounting substrate 12 is employed when it is disposed as a lighting device on the side of the LCD monitor. On the other hand, in the case of the entire backlight extending over the entire area of the monitor, the mounting substrate 12 having the same size as the monitor is employed.
The conductive pattern 18 has the same pattern shape for each mounting substrate 12 and is for electrically connecting the LEDs in a later step.
There are three main types of LEDs. The first is a package type sealed with a case, a mold or the like, and two terminals are extended to the outside. Therefore, it is comprised from the pad connected with this terminal, the wiring part which connects these pads, and the connection pad which functions as an external connection electrode in an edge part.
Then, another LED is a bare chip, and there is a first type with an anode and a cathode on the front surface, and a second type with an anode on the front surface (or back surface) and a cathode on the back surface (or front surface). Therefore, in the first type, both are connected by wires as shown in FIG. 4C, and in the latter, the LED back surface is connected to the island, and the wiring is extended from a part of this island. Then, the surface is connected through the bonding pad as shown in FIG. 4C, and extends from the bonding pad to the other wiring. In addition, when some circuits are formed in consideration of a drive system and protection, a pattern on which semiconductor elements other than passive elements and LEDs are mounted is formed.
Here, the mounting substrate area 24 is configured by arranging the five mounting substrates 12 elongated in the lateral direction on the paper surface. Although five mounting substrates 12 are shown here as an example, the number is not limited. Furthermore, they may be arranged in a matrix in the vertical and horizontal directions.
The first support portion 14 and the second support portion 16 are support portions that are continuous with the left and right sides (the short sides of the plurality of mounting boards 12) of the mounting board region 24, and the third support 34 and the fourth support The portion 36 is a support portion that is continuous with the upper and lower sides of the mounting substrate area 24 on the paper surface. These components have a function to prevent bending of the mounting substrate area 24 in the middle of the manufacturing process. Further, in the present embodiment, the first support portion 14, the second support portion 16, the third support portion 34, and the fourth support portion 36 constitute a frame-shaped support portion for mechanically supporting the mounting substrate region 24. There is.
The dicing line 20A is provided at the boundary between the first support portion 14 and the mounting substrate region 24, and the dicing line 20B is provided between the second supporting portion 16 and the mounting substrate region 24.
The dicing lines 22 are provided along the boundaries of the sides in the longitudinal direction of the mounting boards 12 with each other. Here, the dicing line 22 is provided continuously from the left end to the right end of the substrate 10, but the grooves formed along this line are the ones of the first support 14 and the second support 16. End on the way. This matter will be described later with reference to FIG. 2 (D).
In order to secure the bending strength over the entire surface, all of the dicing lines 20A, 20B, and 22 may be terminated before the periphery of the substrate 10. That is, each separation groove provided along these dicing lines may terminate in front of the periphery of the substrate 10.
Referring to FIG. 1 (B), in this process, the substrate 10 is diced using the high- speed cuttings 26 and 28 rotating. The cutting 26 forms a separation groove by grinding the substrate 10 from the upper surface of the substrate 10 along each dicing line. The cutting 28 grinds along the dicing lines from the lower surface of the substrate 10 to form separation grooves. Grinding by double cutting is simultaneously performed on the upper and lower surfaces of the substrate 10.
The dicing performed in this step is not to completely cut the substrate 10, but to form V-shaped separation grooves from both upper and lower main surfaces of the substrate 10 along the dicing lines 20A, 20B and 22. is there. Therefore, even after the dicing in this step is performed, the substrate 10 is integrally held in the form of a sheet.
Here, in the above description, the separation grooves are formed from the upper and lower main surfaces along the dicing lines, but the separation grooves may be provided by dicing in only one of them. Further, the cutting may be a dicing apparatus employed to separate the wafers. Furthermore, the grooves may be provided separately in one grinding device, not simultaneously on both sides.
The configuration of the substrate 10 that has undergone the above steps will be described with reference to FIG. 2 (A) is a plan view showing the substrate 10 provided with the separation groove, FIG. 2 (B) and FIG. 2 (C) are cross-sectional views of the substrate 10, and FIG. It is a top view which expands and shows the area | region enclosed with the dotted line circle by A).
Referring to FIG. 2, separation grooves are formed along the dicing lines shown in FIG. 1 (A). Specifically, referring to FIG. 2A, first separation grooves 30 are provided along the boundaries in the lateral direction of each mounting substrate 12, and along the left and right sides of mounting substrate region 24. The second separation groove 32 is formed.
The first support portion 14 and the second support portion 16 are continuous with the left and right sides of the mounting substrate region 24 (sides in the lateral direction of the plurality of mounting substrates 12) via the second separation groove 32. . Further, the third support portion 34 and the fourth support portion 36 are provided with the upper and lower sides (sides in the longitudinal direction of the mounting substrate 12 disposed at the upper and lower ends) of the mounting substrate region 24 via the first separation groove 30. It is continuous.
Further, referring to FIG. 2C, the depth obtained by adding the depth of the second separation groove 32 formed from the upper surface and the depth of the second separation groove 32 formed from the lower surface is the thickness of the substrate 10 It is set shorter than. By doing this, the substrate 10 is not divided into the respective mounting substrates 12 from the location where the second separation groove 32 is provided, and the sheet-like state as a whole is maintained. The same applies to the first separation groove 30 as well.
Further, the first separation groove 30 formed in the first support portion 14 and the second support portion 16 has a shape which becomes gradually shallower toward the outer side (left side in the drawing). The reason for this is that the first separation groove 30 formed in the first support portion 14 is the end of the groove to be ground by a circular dicing blade. Therefore, the depth of the first separation groove 30 provided in the first support portion 14 and the second support portion 16 is provided between the mounting substrates 12 (inside the mounting substrate region 24 shown in FIG. 2A). It becomes shallower than the first separation groove 30.
In another expression, as shown in FIG. 2D, the end of the side of the substrate 10 is terminated. This structure improves the strength of the first support 14 and the second support 16. As a result, it is possible to prevent the upper side and the lower side from being bent with the first separation groove 30 as the center.
On the other hand, the second separation grooves 32 provided in the vertical direction on the paper surface may also be terminated before the side of the substrate. However, here, the upper end of the third support portion 34 is formed. By doing so, the formation of the separation groove is facilitated, and the separation of the first support portion 14 is facilitated.
The cross-sectional structure of the substrate 10 will be described in detail with reference to FIG. An insulating layer 38 having a thickness of about 50 μm is formed on the top surface of the metal substrate 10 made of aluminum or the like. The insulating layer 38 is made of a resin material such as an epoxy resin to which a filler made of granular alumina or the like is added to improve heat conduction. A conductive pattern 18 is formed on the top surface of the insulating layer 38 in a predetermined shape. The conductive pattern 18 is formed by selectively etching a conductive foil made of copper or the like attached to the upper surface of the insulating layer 38.
Although not shown, the upper surfaces of the conductive pattern 18 and the insulating layer 38 may be coated with a resist made of resin. The color of the resist may be white in order to efficiently reflect the light reflected from the light emitting element, or black in order not to reflect the color of the substrate on the light emitted.
On the other hand, in consideration of the deterioration of the white resist, the entire width may be occupied by the conductive pattern by providing a minimum separation width. Also, it may be filled with a dummy conductive pattern. In this case, the conductive pattern can be plated with Au, Ag, Ni or the like to make the substantially entire reflection region.
At the boundary of each mounting substrate 12, separation grooves are formed from the upper and lower surfaces of the substrate 10.
As described above, dicing in this step is performed at a depth that does not cause the substrate 10 to be divided. That is, the length obtained by adding the depth L21 of the first separation groove 30A and the depth L23 of the first separation groove 30B is shorter than the thickness of the entire substrate 10. For example, assuming that the thickness of the entire substrate 10 is 1.5 mm, the depth L21 of the first separation groove 30A is 0.6 mm to 0.7 mm, and the depth L23 of the first separation groove 30B is also 0.6 mm to 0 The thickness L22 of the portion not provided with both separation grooves is 0.3 mm to 0.1 mm. Further, in order to separate the mounting substrates 12 from each other easily in a later step, it is preferable that the thickness L22 be thin. For example, when L22 is 200 μm or less (particularly preferably 60 μm or less), this separation is favorably performed. I can do it.
Here, the depths of the first separation groove 30A and the first separation groove 30B may be the same, or one of them may be formed deeper than the other. Although each separation groove has a V-shaped shape on the drawing, the sectional shape of the separation groove may be other than that, for example, a square shape or a U-shape may be used. Furthermore, only one of the first separation groove 30A and the first separation groove 30B may be provided in the substrate 10.
Moreover, the above-mentioned matter is the same also regarding the 2nd separation groove 32 shown to FIG. 2 (A).
Referring to FIG. 3B, a plurality of substrates 10 having the above-described structure may be provided on a large substrate 40. Here, four substrates 10 are provided on a large substrate 40. Further, dividing lines shown by dotted lines are provided at the boundaries of the respective substrates 10, and separation grooves having the above-described configuration are provided in this part.
By doing this, by carrying out the process of forming the separation groove by dicing in the state where the plurality of substrates 10 are arranged, the entire large substrate can be diced collectively, and therefore the manufacturing cost can be reduced.
This device may be handed over to the user in the state of FIG. 3B or FIG. 2A by the board maker, and the user side may prepare the supplied board and mount the light emitting element thereafter. .
In the subsequent steps of mounting the light emitting element, etc., the large substrate 40 may be divided into the respective substrates 10 in accordance with the specifications of the manufacturing apparatus such as a bonder to be used. The subsequent steps may be performed with the state of the substrate 40.
The point of the present embodiment is to provide the first support portion 14 and the second support portion 16 which are continuous with the plurality of mounting substrates 12 via the second separation groove 32 with reference to FIG. 2 (A).
Specifically, first, the thickness of the remaining thickness portion L22 is, for example, about 200 μm to 60 μm at the boundary between the mounting substrates 12 as described above. Therefore, the rigidity of the boundary portion of each mounting substrate 12 is very weak, and the substrate 10 is easily bent at this boundary portion in the middle of the manufacturing process (in particular, the step of transporting the substrate 10). In particular, since the mounting substrate 12 has a rectangular shape elongated in the lateral direction on the paper surface, there is a high possibility that the substrate 10 may be bent by the first separation groove 30 provided at the boundary in the longitudinal direction. . In this case, circuit element mounting in the next process becomes difficult.
As a countermeasure, in the present embodiment, the first support portion 14 and the second support portion 16 are provided. Specifically, the first support portion 14 is continuous with the plurality of mounting boards 12 via the second separation grooves 32 at the left end of the mounting board region 24.
Furthermore, the second support portion 16 is continuous with the plurality of mounting boards 12 via the second separation grooves 32 at the right end of the mounting board region 24. By doing this, even if a bending stress that causes bending at the location of the first separation groove 30 acts on the substrate 10, the mounting substrate region 24 can be formed by the first support portion 14 and the second support portion 16. Being supported, bending due to this stress is suppressed. Also, even if the entire substrate 10 is temporarily bent, if the degree of this bending is within the range of the elastic deformation of the first support portion 14 and the second support portion 16, the substrate is released when the bending stress is released. 10 is flat.
Here, in the above description, the first support portion 14 and the second support portion 16 are provided at the places sandwiching the mounting substrate region 24 in the left-right direction, but only one of them may be provided. Even in this case, it is possible to support each mounting substrate 12 integrally.
Furthermore, as shown in FIG. 2D, although the first separation groove is formed in the first support portion 14, the first separation groove 30 is formed up to the end of the first support portion. It ends in the middle. Therefore, since the mechanical strength of the first support portion 14 is secured at the portion where the first separation groove 30 is not provided, each mounting substrate 12 is supported by the first support portion 14.
Furthermore, the depth of the first separation groove 30 provided in the first support portion 14 is shallower than the first separation groove 30 provided between the mounting substrates 12. In particular, the end portion of the first separation groove 30 has a shape that gradually becomes shallow toward the outside. From this, the mechanical strength of the first support portion 14 is secured.
Referring to FIG. 4, next, light emitting devices are mounted on each mounting substrate 12 as circuit elements. FIG. 4A is a plan view showing the substrate 10 which has undergone this step, FIG. 4B is a cross sectional view showing a mounting structure, and FIG. 4C is a cross sectional view showing another mounting structure. is there.
Referring to FIG. 4A, on each mounting substrate 12, pads formed of conductive patterns 18 are provided at equal intervals in the longitudinal direction, and the light emitting device 50 is connected to the pads. By performing the connection in this step, the plurality of light emitting devices 50 are connected in series on the upper surface of each mounting substrate 12.
A structure in which a light emitting device which is an LED is disposed on the substrate 10 will be described with reference to FIG. 4B. Here, the light emitting element is fixed to the upper surface of the substrate 10 in the state of the light emitting device 50 which is a package sealed with a resin.
The light emitting device 50 includes a mounting substrate 52, a light emitting element 62 mounted on the top surface of the mounting substrate 52, a reflection frame 56 fixed on the top surface of the mounting substrate 52 so as to surround the light emitting element 62, and a light emitting element 62. The configuration includes a sealing resin 58 for stopping and a conductive path 54 electrically connected to the light emitting element 62.
The mounting substrate 52 is made of a resin material such as glass epoxy resin or an inorganic material such as ceramic, and has a function of mechanically supporting the light emitting element 62. The light emitting element 62 and the reflection frame 56 are disposed on the top surface of the mounting substrate 52.
The reflection frame 56 is formed of a metal such as aluminum in a frame shape, and the inner side surface is an inclined surface located at the lower side than the upper side. Accordingly, light emitted laterally from the side surface of the light emitting element 62 is reflected upward at the inner side surface of the reflection frame 56.
The conductive paths 54 are routed from the upper surface to the lower surface of the mounting substrate 52. The conductive path 54 is electrically connected to the light emitting element 62 through the metal thin wire 60 on the upper surface of the mounting substrate 52. The conductive path 54 formed on the lower surface of the mounting substrate 52 is connected to the conductive pattern 18 formed on the substrate 10 via a bonding material 64 such as solder.
Referring to FIG. 4C, here, the light emitting element 62 is directly fixed to the upper surface of the substrate 10 in a bare chip state without being packaged. In this figure, the light emitting element 62 is disposed in the recess 70 in which the upper surface of the substrate 10 is recessed, but other configurations are also possible. For example, the light emitting element 62 may be fixed to the upper surface of the substrate 10 which is a flat surface, or the light emitting element 62 may be fixed to the upper surface of the island-shaped conductive pattern 18. The upper and lower surfaces of the substrate 10 are covered with oxide films 66 and 68, respectively. The oxide film 66 and the insulating layer 38 are removed in the recess 70 and the periphery thereof.
Two electrodes (anode electrode and cathode electrode) are provided on the top surface of the light emitting element 62, and these electrodes are connected to the conductive pattern 18 via the metal thin wires 60. In addition, the light emitting element 62 is fixed to the bottom surface 74 of the recess 70 via the bonding material 76.
Next, referring to FIG. 5A, each support is separated from the substrate 10. Specifically, the substrate 10 is separated by the dicing line 20, and the first support portion 14 and the second support portion 16 are separated from the left and right sides (the end portions of the plurality of mounting substrates 12) of the mounting substrate region 24. Do.
When the mounting boards 12 are separated by bending at the dicing line 22 in the next step, the first supporting portion 14 and the second supporting portion 16 having high mechanical strength are kept continuous with the mounting board region 24 as follows: This turn becomes difficult. Therefore, both support portions are removed from the substrate 10 prior to the step of separating the mounting substrates 12 from each other. Further, since separation grooves are formed in the substrate 10 along the dicing lines 20 in the previous step, separation at this location can be easily performed. Also, the third support 34 and the fourth support 36 may be separated in this process as well. A specific separation method may be the same as the separation method described later with reference to FIGS. 6 (A) and 6 (B).
FIG. 5B shows the substrate 10 after the separation is completed. Here, the first support portion 14, the second support portion 16, the third support portion 34, and the fourth support portion 36 are separated from the mounting substrate area 24 and removed.
Next, referring to FIG. 6, the substrate 10 is separated into the mounting substrates 12. A method of separating each mounting substrate 12 can be considered by bending the substrate 10 at the boundary between the mounting substrates 12 or a cutting method using a sharp cutter.
A method of dividing each mounting substrate 12 by bending the substrate 10 will be described with reference to FIG. 6 (A). In this method, the substrate 10 is partially bent so that the portion where the left first separation groove 30A and the first separation groove 30B are formed on the paper surface becomes a fulcrum. The portions where the first separation grooves 30A and the first separation grooves 30B are formed are connected only by the thickness portion in which both grooves are not formed. The substrate 10 can be separated. Further, the side surface of the substrate 10 is held at the time of bending so that the electric circuit formed on the upper surface of the substrate 10 is not broken.
A method of dividing the substrate 10 by the circular cutter 84 will be described with reference to FIG. 6 (B). A disk-shaped round cutter 84 whose tip is sharpened is rotatably provided on the support 86. Then, by moving the support portion 86 while pressing the round cutter 84 against the first separation groove 30A, the remaining thickness portion of the substrate 10 between the first separation groove 30A and the first separation groove 30B is removed. There is.
Through the above steps, a circuit device having a configuration in which the light emitting device 50 is mounted on the mounting substrate 12 is manufactured. In the above process, only the light emitting element is mounted on the top surface of the mounting substrate 12, but a hybrid integrated circuit device may be configured in which other circuit elements such as transistors and ICs are incorporated on the top surface of the mounting substrate 12. good. Furthermore, the upper surface, the side surface, and the lower surface of the mounting substrate including the light emitting device 50 may be covered with a sealing resin by transfer molding or potting.
With reference to FIG. 7, the structure of the board | substrate 10A of the other form applicable to this form is demonstrated. The basic configuration of the substrate 10A is the same as that of the substrate 10A described with reference to FIG. 2, and the difference is that the shape of each mounting substrate 12 is different.
Specifically, the mounting substrate 12 included in the substrate 10A has a circular shape, and a portion where the mounting substrate 12 is not provided is formed as an opening 80 inside the mounting substrate region 24. The opening 80 is a region obtained by partially cutting the substrate 10A by pressing or router processing. In the drawings, this opening 80 is indicated by sparse hatching. The upper and lower end portions and the left and right end portions of each mounting substrate 12 form a continuous portion continuous with the adjacent mounting substrate 12 or supporting portion, and dicing lines 22 and 20 correspond to the continuous portions. ing. The separation grooves as described above are provided in the portions of the dicing lines 20 and 22 (shown by dotted lines).
 10、10A   基板
 12   実装基板
 14   第1支持部
 16   第2支持部
 18   導電パターン
 20、20A、20B   ダイシングライン
 22   ダイシングライン
 24   実装基板領域
 26   カットソー
 28   カットソー
 30、30A、30B   第1分離溝
 32   第2分離溝
 34   第3支持部
 36   第4支持部
 38   絶縁層
 40   基板
 50   発光装置
 52   実装基板
 54   導電路
 56   反射枠
 58   封止樹脂
 60   金属細線
 62   発光素子
 64   接合材
 66   酸化膜
 68   酸化膜
 70   凹部
 74   底面
 76   接合材
 80   開口部
 84   丸カッター
 86   支持部
DESCRIPTION OF SYMBOLS 10 10A substrate 12 mounting substrate 14 first support portion 16 second support portion 18 conductive pattern 20, 20A, 20B dicing line 22 dicing line 24 mounting substrate region 26 cut 28 cut 28 cut 30, 30A, 30B first separation groove 32 second Separation groove 34 Third support portion 36 Fourth support portion 38 Insulating layer 40 Substrate 50 Light emitting device 52 Mounting substrate 54 Conductive path 56 Reflective frame 58 Seal resin 60 Metal fine line 62 Light emitting element 64 Bonding material 66 Oxide film 68 Oxide film 70 Recess 74 Bottom surface 76 Bonding material 80 Opening 84 Round cutter 86 Support

Claims (14)

  1.  複数の実装基板が分離溝を介して連結された基板であり、
     主面に導電パターンが設けられた所定形状の前記実装基板を、複数個隣設することにより構成された実装基板領域と、
     隣設する前記実装基板同士の境界に沿って、前記基板を厚み方向に部分的に除去して設けた第1分離溝と、
     前記実装基板領域の側辺に沿って、前記基板を厚み方向に部分的に除去して設けた第2分離溝と、
     前記第2分離溝を介して複数の前記実装基板と連続する支持部と、を備えることを特徴とする基板。
    A plurality of mounting substrates connected via separation grooves,
    A mounting substrate region configured by arranging a plurality of the mounting substrates of a predetermined shape provided with a conductive pattern on the main surface, and
    A first separation groove provided by partially removing the substrate in the thickness direction along the boundary between the mounting substrates provided adjacent to each other;
    A second separation groove provided by partially removing the substrate in the thickness direction along the side of the mounting substrate region;
    And a supporting portion that is continuous with the plurality of mounting substrates via the second separation groove.
  2.  前記第1分離溝は、前記支持部まで連続して設けられ、
     前記支持部に設けられる前記第1分離溝は、前記実装基板同士の間に設けられる前記第1分離溝よりも浅いことを特徴とする請求項1記載の基板。
    The first separation groove is provided continuously to the support portion,
    The substrate according to claim 1, wherein the first separation groove provided in the support portion is shallower than the first separation groove provided between the mounting substrates.
  3.  前記支持部に設けられる前記第1分離溝は、外側に向かって次第に浅くなる形状であることを特徴とする請求項2記載の基板。 3. The substrate according to claim 2, wherein the first separation groove provided in the support portion is shaped to be gradually shallow toward the outside.
  4.  前記支持部に設けられる前記第1分離溝は、前記支持部の途中で終端することを特徴とする請求項3記載の基板。 4. The substrate according to claim 3, wherein the first separation groove provided in the support portion terminates midway in the support portion.
  5.  前記第1分離溝および前記第2分離溝は、前記基板の第1主面および第2主面の両方に設けられることを特徴とする請求項4記載の基板。 5. The substrate according to claim 4, wherein the first separation groove and the second separation groove are provided on both the first main surface and the second main surface of the substrate.
  6.  前記第1分離溝および前記第2分離溝は、V型の断面を備えることを特徴とする請求項5記載の基板。 The substrate according to claim 5, wherein the first separation groove and the second separation groove have a V-shaped cross section.
  7.  前記支持部は、複数の前記実装基板の短手方向の側辺と連続する第1支持部および第2支持部と、前記実装基板領域の端部に配置された前記実装基板の長手方向の側辺と連続する第3支持部および第4支持部と、を備えることを特徴とする請求項6記載の基板。 The support portion may be a first support portion and a second support portion that are continuous with the lateral sides of the plurality of mounting boards, and the longitudinal side of the mounting board disposed at an end of the mounting board region. The substrate according to claim 6, comprising a third support and a fourth support which are continuous with the side.
  8.  前記実装基板には、回路素子が接続されるパッドが、前記実装基板の長手方向に沿って複数個設けられることを特徴とする請求項7記載の基板。 8. The substrate according to claim 7, wherein a plurality of pads to which circuit elements are connected are provided on the mounting substrate along the longitudinal direction of the mounting substrate.
  9.  前記実装基板は、矩形形状を備えることを特徴とする請求項8記載の基板。 The substrate according to claim 8, wherein the mounting substrate has a rectangular shape.
  10.  前記実装基板の外周は湾曲形状を備え、前記実装基板同士の間に、前記基板を部分的に除去した開口部が設けられることを特徴とする請求8記載の基板。 9. The substrate according to claim 8, wherein an outer periphery of the mounting substrate has a curved shape, and an opening from which the substrate is partially removed is provided between the mounting substrates.
  11.  複数の実装基板が分離溝を介して連結された基板であり、主面に導電パターンが設けられた所定形状の前記実装基板を、複数個隣設することにより構成された実装基板領域と、隣設する前記実装基板同士の境界に沿って、前記基板を厚み方向に部分的に除去して設けた第1分離溝と、前記実装基板領域の側辺に沿って、前記基板を厚み方向に部分的に除去して設けた第2分離溝と、前記第2分離溝を介して複数の前記実装基板と連続する支持部と、を備える基板を用意する工程と、
     前記各実装基板の前記導電パターンに回路素子を電気的に接続する工程と、
     前記第2分離溝が設けられた箇所にて、前記支持部を前記実装基板領域の側辺から分離し、前記第1分離溝が設けられた箇所にて前記実装基板同士を分離する工程と、を備えることを特徴とする回路装置の製造方法。
    It is a substrate in which a plurality of mounting substrates are connected via a separation groove, and a mounting substrate region constituted by arranging a plurality of the mounting substrates of a predetermined shape provided with a conductive pattern on the main surface is adjacent The first separation groove formed by partially removing the substrate in the thickness direction along the boundary between the mounting substrates to be provided and the substrate in the thickness direction along the side of the mounting substrate region Preparing a substrate provided with a second separation groove which is provided by being removed and a support portion which is continuous with the plurality of mounting substrates via the second separation groove;
    Electrically connecting a circuit element to the conductive pattern of each mounting substrate;
    Separating the support portion from the side of the mounting substrate region at the location where the second separation groove is provided, and separating the mounting substrates at the location where the first separation groove is provided; A method of manufacturing a circuit device, comprising:
  12.  前記接続する工程では、前記支持部により湾曲が低減された状態の前記基板に対して、前記回路素子が固着されることを特徴とする請求項11記載の回路装置の製造方法。 The method for manufacturing a circuit device according to claim 11, wherein, in the connecting step, the circuit element is fixed to the substrate in a state where the curvature is reduced by the support portion.
  13.  前記基板を用意する工程では、前記実装基板領域と前記支持部とから成る基板領域が前記基板に複数個設けられ、
     前記接続する工程以後の工程は、前記基板領域毎に分割された前記基板に対して行われることを特徴とする請求項12記載の回路装置の製造方法。
    In the step of preparing the substrate, a plurality of substrate regions including the mounting substrate region and the support portion are provided on the substrate.
    13. The method of manufacturing a circuit device according to claim 12, wherein the steps after the step of connecting are performed on the substrates divided into the substrate regions.
  14.  前記接続する工程では、前記実装基板領域の長手方向に沿って複数個の前記回路素子が列状に配置されることを特徴とする請求項13記載の回路装置の製造方法。 The method for manufacturing a circuit device according to claim 13, wherein in the connecting step, the plurality of circuit elements are arranged in a row along the longitudinal direction of the mounting substrate region.
PCT/JP2010/068800 2009-10-21 2010-10-19 Substrate and method for manufacturing circuit device using same WO2011049234A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009242332 2009-10-21
JP2009-242332 2009-10-21

Publications (1)

Publication Number Publication Date
WO2011049234A1 true WO2011049234A1 (en) 2011-04-28

Family

ID=43900454

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/068800 WO2011049234A1 (en) 2009-10-21 2010-10-19 Substrate and method for manufacturing circuit device using same

Country Status (1)

Country Link
WO (1) WO2011049234A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014010184A (en) * 2012-06-27 2014-01-20 Uproad Plans Co Ltd Two-dimensionally-arrayed led lamp
EP3448133A4 (en) * 2016-04-22 2019-12-18 Kyocera Corporation Multipiece wiring board, wiring board, and method for manufacturing multipiece wiring board
CN116884964A (en) * 2023-08-04 2023-10-13 江苏诚盛科技有限公司 LED chip packaging method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003318334A (en) * 2002-04-24 2003-11-07 Sanyo Electric Co Ltd Hybrid integrated circuit device
JP2007235067A (en) * 2006-03-03 2007-09-13 Nitto Denko Corp Wiring circuit board assembly sheet, and method of manufacturing same
JP2008016587A (en) * 2006-07-05 2008-01-24 Denso Corp Method of manufacturing ceramic laminated layer substrate
JP2008258195A (en) * 2007-03-30 2008-10-23 Kyocera Corp Wiring board, channel formation wiring board, structure, and process for producing channel formation wiring board

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003318334A (en) * 2002-04-24 2003-11-07 Sanyo Electric Co Ltd Hybrid integrated circuit device
JP2007235067A (en) * 2006-03-03 2007-09-13 Nitto Denko Corp Wiring circuit board assembly sheet, and method of manufacturing same
JP2008016587A (en) * 2006-07-05 2008-01-24 Denso Corp Method of manufacturing ceramic laminated layer substrate
JP2008258195A (en) * 2007-03-30 2008-10-23 Kyocera Corp Wiring board, channel formation wiring board, structure, and process for producing channel formation wiring board

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014010184A (en) * 2012-06-27 2014-01-20 Uproad Plans Co Ltd Two-dimensionally-arrayed led lamp
EP3448133A4 (en) * 2016-04-22 2019-12-18 Kyocera Corporation Multipiece wiring board, wiring board, and method for manufacturing multipiece wiring board
CN116884964A (en) * 2023-08-04 2023-10-13 江苏诚盛科技有限公司 LED chip packaging method
CN116884964B (en) * 2023-08-04 2024-03-26 江苏诚盛科技有限公司 LED chip packaging method

Similar Documents

Publication Publication Date Title
US8637892B2 (en) LED package and method for manufacturing same
US9991422B2 (en) Electronic device mounted on a substrate
US9240527B2 (en) Submount, optical module provided with submount, and submount manufacturing method
JP6126752B2 (en) Semiconductor device and manufacturing method thereof
JP2011119557A (en) Light emitting device, and method of manufacturing the same
JP2012182276A (en) Light emitting unit and display device
KR20100118252A (en) Light emitting device package and method for fabricating the same
KR100616680B1 (en) Light emitting diode package and method for manufacturing the same
WO2013186982A1 (en) Film wiring board and light emitting apparatus
US20070063204A1 (en) Surface mounting led substrate and led
WO2011049234A1 (en) Substrate and method for manufacturing circuit device using same
JP2006156462A (en) Surface-mounted light emitting diode
JP6450096B2 (en) Optical device, semiconductor device, mounting structure of optical device, and manufacturing method of optical device
JPH11214607A (en) Semiconductor device
CN106847780B (en) Semiconductor device having a frame with multiple arms and related methods
JP4497304B2 (en) Semiconductor device and manufacturing method thereof
WO2011074684A1 (en) Substrate and method for manufacturing circuit device that use same
KR20090095242A (en) Semiconductor package fabricating method
JP2012227254A (en) Lead frame substrate for led element, and manufacturing method thereof
JP2013110288A (en) Side-view type light emitting device and method for manufacturing the same
JP5436353B2 (en) Light emitting device
KR101819907B1 (en) Substrate for semiconductor light emitting device
JP6194804B2 (en) Mold package
WO2011089806A1 (en) Substrate and manufacturing method for circuit device using substrate
JP2005209899A (en) Relay member and multichip package using relay member

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10825081

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 10825081

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP