WO2011047858A1 - Method and device for laterally guiding the flow of a metal melt during strip casting - Google Patents

Method and device for laterally guiding the flow of a metal melt during strip casting Download PDF

Info

Publication number
WO2011047858A1
WO2011047858A1 PCT/EP2010/006432 EP2010006432W WO2011047858A1 WO 2011047858 A1 WO2011047858 A1 WO 2011047858A1 EP 2010006432 W EP2010006432 W EP 2010006432W WO 2011047858 A1 WO2011047858 A1 WO 2011047858A1
Authority
WO
WIPO (PCT)
Prior art keywords
melt
spout
casting
flow
outlet
Prior art date
Application number
PCT/EP2010/006432
Other languages
German (de)
French (fr)
Inventor
Hans-Jürgen ODENTHAL
Original Assignee
Sms Siemag Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sms Siemag Ag filed Critical Sms Siemag Ag
Priority to EP10810749.1A priority Critical patent/EP2490843B1/en
Priority to CN201080048164.1A priority patent/CN102596449B/en
Publication of WO2011047858A1 publication Critical patent/WO2011047858A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0602Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by a casting wheel and belt, e.g. Properzi-process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0605Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by two belts, e.g. Hazelett-process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/103Distributing the molten metal, e.g. using runners, floats, distributors

Definitions

  • the present invention relates to a method and a device for lateral flow guidance in strip casting by the Coanda effect.
  • EP 0 635 323 B1 discloses a nozzle for continuous casting plants. In this case, a pouring tip for a nozzle of a continuous casting apparatus will be described. From US 4,526,223 a continuous casting with two cooling drums is known. From EP 0 859 675 a method and apparatus for casting a metal strip is known. WO 2008/087002 A1 discloses a method and a device for casting non-ferrous metal melts, in particular copper or copper alloys. When tape casting according to the Belt Casting technology, the hot, liquid melt from the distributor (tundish) must be placed on the moving sub-belt.
  • the problem here is the combination of the uniform, horizontal distribution of the melt over the entire casting width, which can be up to two meters, and the simultaneous realization of high casting speeds of up to 30 m / min.
  • special pouring or homogenizing devices are used, which are also referred to as snouts.
  • the casting spouts can be closed (closed snout) or open (open snout).
  • open spout the hot melt is in direct contact with the surrounding gas (air, inert gas).
  • the melt coming from the distributor forms an open channel flow, which can be either subcritical (Froude number ⁇ 1) or supercritical (Froude number> 1).
  • the Froude number for open channels is defined as
  • Fr ; u is the flow velocity of the channel, g is the ground agitator
  • the melt leaves the refractory material and forms a melting case with a certain drop height, which depends on the position of the pouring spout over the moving strip.
  • the melt cools and is transported away.
  • the initially still liquid melt on the conveyor belt is extremely sensitive from a fluid and heat engineering point of view. Long-lasting flow patterns are retained during solidification and produce an undesirable microstructure, both microscopically and macroscopically.
  • the melt laterally constricted as a result of the interfacial tension during the overflow from the pouring spout onto the lower strip forms a hot strand, which generates undesired turbulences when impinging on the conveyor belt or also ensures that the lateral area on the lower belt is not even charged or filled with melt ,
  • the constriction of the melt also occurs when the pouring spout is completely filled with melt until it exits.
  • the strand induces turbulence and turbulence extending to the narrow but critical side region of the melt pool.
  • the melt flow may already be released on the pouring spout.
  • the melt constricts and thickens. This forms a hot strand.
  • the hot strand emerges from the spout and strikes the underlying moving sub-band with high kinetic energy. On the tape it comes to intense, unwanted vortexes.
  • the lateral flow generally has a higher momentum and higher kinetic energy than the mid-band flow. The melt therefore penetrates laterally with high momentum onto the conveyor belt, whereby the typical strands structure is retained and a non-uniform velocity profile is induced.
  • Strip casting plants which operate according to the above-described method, require an inductive stirrer for homogenizing the melt.
  • the object of the present invention is to provide a method and a device for lateral flow guidance of a molten metal during strip casting, whereby the stranding of the melt in the overflow reduced or completely suppressed by the casting spout on the moving belt and the associated undesirable microstructure in the band.
  • the object of the present invention is achieved by a method for lateral, supporting flow guidance of a molten metal during strip casting, wherein
  • the melt is guided via the distribution device, in particular casting spout (1), onto a moving belt.
  • the present invention also relates to a method for the lateral, passive flow guidance of a molten metal during strip casting by utilizing the Coanda effect.
  • the lateral, directed into the melt interior constriction of an open melt jet in the distribution to a moving conveyor belt (strip casting technology) is inventively reduced.
  • the solidifying melt is distributed more uniformly over the casting width on the conveyor belt.
  • the characteristic undesirable flow patterns at the strip edges are prevented.
  • the melt is passed over a casting spout, in which the last stretch of the refractory side wall is specially curved three-dimensionally (convex, concave), in the form of a wing-like, hereinafter referred to as Coanda profile.
  • the Coanda effect describes the property of a fluid jet or jet (gaseous, liquid) to attach to and follow a nearby convex wall. In this way, the fluid jet changes its original direction of propagation.
  • the effect of the Coanda effect is based on the superposition of several physical mechanisms, essentially the Bemoulli effect, the molecular ones Forces between wall and fluid jet, the flow boundary layer and the pressure gradient in the flow direction.
  • the contour of the Coanda profile already begins in or on the spout and is specially shaped beyond the spout and at the same time also in the direction of the treadmill. It is a three-dimensional, wing-shaped contour of refractory material, such as SiC, MgO formed. Due to the Coanda effect, the melt follows the contour of the Coanda profile and is at the same time deflected outwards from the center of the strip and downwards in the direction of the moving bath. This counteracts the constriction of the melt jet, this is therefore avoided.
  • the velocity profile in the pool is clearly homogenized over the entire casting width.
  • the special, geometric shape at the outlet of a pouring spout causes the outflowing melt to expand horizontally. This reduces the striation. This ensures u. a. the Coanda effect for an expansion of the melt flow and thus for a homogenization of the melt across the casting width.
  • the kinetic energy must be as low as possible when the melt overflows from the casting line to the strip.
  • the introduction of gas bubbles into the melt and, on the other hand, the generation of flow patterns is minimized.
  • the lateral stratification during the overflow of the melt on the moving belt of a strip casting is reduced and improves the microstructure.
  • the essential advantage of the invention is that the passive flow guidance through the Coanda profile supports the homogenization process on the basis of the magnetic stirrer.
  • the new method is thereby inexpensive.
  • the refractory form of the distribution device between continuous casting distributor and conveyor belt only needs to be changed.
  • the dimension of the inductive stirrer is reduced with simultaneous use of the Coanda profile.
  • the U. a. The principle based on the Coanda effect can be applied wherever free pouring streams are to be influenced by a passive flow without external influence only by shaping measures.
  • the method can also be applied to strip casters for non-ferrous metals.
  • the object of the present invention is further achieved by a device for strip casting with lateral flow of a molten metal with a casting spout over which the melt flows on a moving belt, wherein the refractory side wall at the exit region of the spout a streamlined, three-dimensional contour of an ellipsoid of revolution and / or Having wing.
  • the refractory side wall at the outlet region of the casting snout is specially designed, three-dimensional (convex, concave), flight-like.
  • the outlet of the pouring spout is preferably in the form of a flight and at the same time in the form of an ellipsoid of revolution and / or wing (2) in the direct casting direction x.
  • the exact geometry of the Coanda profile depends, among other things, on the flow velocity of the melt on the casting spout.
  • the widths of the pouring device and the conveyor belt are usually between 1.0 m and 2.0 m.
  • the length of the pouring device is about 1 m.
  • the distance from the casting spout to the treadmill, hence the drop height of the melt from the spout to the revolving belt, is about 20 mm to 80 mm.
  • the speed of the treadmill is up to 30 m / min.
  • the angle between the ladle and the treadmill is 0 ° to 20 °.
  • the temperature of the melt depends on the steel composition. For Low Carbon Steel the temperature is 1550 ° C, for high alloy steels it is 1450 ° C.
  • the method can be applied to copper, aluminum or zinc except on steel grades. strip casting are applied.
  • the melt is copper, aluminum, zinc, LowCar- bon Steel or high-alloy steel.
  • the refractory coating contains MgO or SiC.
  • the melt flows out below the distributor, there may be another vessel, which represents the actual feeding and distributing device, in particular pouring spout, of the melt onto the moving lower belt
  • the melt flows out of the distributor via the so-called immersion tube (SEN - Submerged Entry Nozzle) in the feeder, which calms and distributes the melt.
  • immersion tube SEN - Submerged Entry Nozzle
  • the shaping at the lateral outlet of the pouring spout is decisive.
  • the last stretch of the refractory side wall at the exit area of the casting spout which can be up to about 30 cm long, is designed to optimize flow.
  • the contour is formed like a flight in the direct casting direction. Due to this special contour, the melt follows a relatively long time, therefore without separation along the contour. This behavior is supported by the Coanda effect.
  • the Coanda profile is similar to a wing on the aircraft flows from the front. At the same time, the melt is also continued after leaving the casting spout. The melt is transported as quietly as possible, at low speed and with low turbulence to the running sub-belt. The wing sticks out over the spout. By combining these two conditions, the Coanda profile has the form of a flow-optimized ellipsoid of revolution.
  • FIG. 1a shows a plan view of a continuously expanding spout according to the prior art, shows a plan view of a pouring spout according to the invention, a side view shows an outlet according to the invention of the pouring spout,
  • melt stream 7 already dissolves at the spout 1 at the point A down.
  • the melt 3 constricts, thickening and it forms a strand that emerges from the spout 1 and strikes with high kinetic energy to the underlying, moving sub-belt 4 with side sealing.
  • the lower band 4 moves in the x direction.
  • the strand leads in the pool on the conveyor belt 4 to intensive, unwanted turbulence 5 or to areas that are not acted upon by melt 3.
  • the turbulence 5 is described by the flow separation A and constriction 6 in FIG. 2, here at the shown a game of a water model.
  • the lateral flow 7 has a higher momentum and a higher kinetic energy than the flow 7 in the middle of the band.
  • the melt 3 therefore penetrates deeper into the melt pool of the conveyor belt 4, wherein the typical strands structure is maintained and a non-uniform velocity profile 8 is induced.
  • the tress attaches itself to the side seal (insulation block chain) in the re-start point or stagnation point B. This process is illustrated by the laser-optical measurements in the mold pool of a Hazelett-Caster water model during the outflow without Coanda profile in FIG.
  • melt 3 can even upstream against the transport direction x of the belt 4, whereby near the side seal relatively stable, disturbing flow patterns are generated, which may be retained in the continuous solidification under certain circumstances.
  • Observations on a Hazelett caster in operation have shown that it is a highly transient process, with recovery point B moving upstream and downstream. This results in an uneven velocity profile 8.
  • the spout 1 according to FIG. 1 b shows the general shaping according to the invention at the lateral outlet.
  • the last stretch of the refractory side wall is formed like a flight.
  • the Coanda profile 2 is formed over the spout 1 in the y-direction and at the same time also in the direction of the treadmill in the x-direction.
  • a three-dimensional nale, wing-shaped and thus streamlined wing contour 2 created from refractory material.
  • the melt 3 follows the wing contour 2 as a result of the coanda effect and is at the same time deflected outwards in the z direction and downwards in the y direction, therefore away from the strip center, as is additionally shown in FIGS.
  • FIG. 3 b shows a laser-optical speed measurement in the water model, in which only one Coanda profile 2 was installed in comparison with FIG. 3 a. It becomes clear that the streaking is reduced.

Abstract

The present invention relates to a method for laterally passively guiding the flow of a metal melt during strip casting utilizing the Coanda effect, the melt flowing along adjacent fixed edges at the outlet of the casting spout and the melt being led onto a moving belt via the casting spout. The present invention further relates to a device for strip casting by means of laterally guiding the flow of a metal melt 3, having a casting spout 1 via which the melt 3 flows onto a moving belt 4, wherein the fire-resistant side wall in the outlet region of the casting spout 1 is formed three-dimensionally and so as to promote flow, in order to utilize the Coanda effect.

Description

Verfahren und Vorrichtung zur seitlichen Strömungsführung einer Metallschmelze beim Bandgießen  Method and device for lateral flow guidance of a molten metal during strip casting
Die vorliegende Erfindung betrifft ein Verfahren und eine Vorrichtung zur seitli- chen Strömungsführung beim Bandgießen durch den Coanda-Effekt. The present invention relates to a method and a device for lateral flow guidance in strip casting by the Coanda effect.
Aus EP 0 635 323 B1 ist eine Düse für Stranggießanlagen bekannt. Dabei wird eine Gießspitze für eine Düse einer Stranggießvorrichtung beschrieben. Aus US 4,526,223 ist eine Stranggießvorrichtung mit zwei Kühltrommeln bekannt. Aus EP 0 859 675 ist ein Verfahren und Vorrichtung zum Gießen eines Metallbandes bekannt. Aus WO 2008/087002 A1 ist ein Verfahren und eine Vorrichtung zum Vergießen von NE-Metallschmelzen, insbesondere Kupfer oder Kupferlegierungen bekannt. Beim Bandgießen nach der Belt Casting Technologie muss die heiße, flüssige Schmelze aus dem Verteiler (tundish) auf das bewegte Unterband gebracht werden. Problematisch ist hier die Kombination aus der gleichförmigen, horizontalen Verteilung der Schmelze über die gesamte Gießbreite, die bis zu zwei Meter betragen kann, und der gleichzeitigen Realisierung hoher Gießgeschwindig- keiten von bis zu 30 m/min. Zu diesem Zweck werden spezielle Ausgieß- oder Homogenisierungsvorrichtungen verwendet, die man auch als Gießschnauzen (snout) bezeichnet. Die Gießschnauzen können geschlossen (closed snout) oder offen (open snout) sein. Bei einer offenen Gießschnauze steht die heiße Schmelze in direktem Kontakt mit dem umgebenen Gas (Luft, Inertgas). Auf der Gießschnauze bildet die aus dem Verteiler kommende Schmelze eine offene Gerinneströmung, die entweder unterkritisch (Froude-Zahl < 1 ) oder überkritisch (Froude-Zahl > 1 ) sein kann. Die Froude-Zahl für offene Gerinne ist definiert als EP 0 635 323 B1 discloses a nozzle for continuous casting plants. In this case, a pouring tip for a nozzle of a continuous casting apparatus will be described. From US 4,526,223 a continuous casting with two cooling drums is known. From EP 0 859 675 a method and apparatus for casting a metal strip is known. WO 2008/087002 A1 discloses a method and a device for casting non-ferrous metal melts, in particular copper or copper alloys. When tape casting according to the Belt Casting technology, the hot, liquid melt from the distributor (tundish) must be placed on the moving sub-belt. The problem here is the combination of the uniform, horizontal distribution of the melt over the entire casting width, which can be up to two meters, and the simultaneous realization of high casting speeds of up to 30 m / min. For this purpose, special pouring or homogenizing devices are used, which are also referred to as snouts. The casting spouts can be closed (closed snout) or open (open snout). In an open spout, the hot melt is in direct contact with the surrounding gas (air, inert gas). On the casting spout, the melt coming from the distributor forms an open channel flow, which can be either subcritical (Froude number <1) or supercritical (Froude number> 1). The Froude number for open channels is defined as
Fr = ; u ist die Fließgeschwindigkeit des Gerinnes, g die Erdbeschleu-
Figure imgf000003_0001
Fr =; u is the flow velocity of the channel, g is the ground agitator
Figure imgf000003_0001
nigung und hhyd die hydraulische Höhe des Gerinnes. and hy hy d the hydraulic height of the channel.
BESTÄTK JNGSKOPIE Am Austritt der Gießschnauze verlässt die Schmelze das Feuerfestmaterial und bildet einen Schmelzenfall mit einer bestimmten Fallhöhe, welche von der Position der Gießschnauze über dem bewegten Band abhängig ist. Auf dem bewegten Band kühlt die Schmelze ab und wird abtransportiert. Die zunächst noch flüssige Schmelze auf dem Transportband ist aus strömungs- und wärmetech- nischer Sicht gesehen extrem empfindlich. Langlebige Strömungsmuster bleiben bei der Erstarrung erhalten und erzeugen eine unerwünschte Gefügestruktur, sowohl aus mikroskopischer als auch aus makroskopischer Sicht. BESTÄTK JNGSKOPIE At the exit of the pouring spout, the melt leaves the refractory material and forms a melting case with a certain drop height, which depends on the position of the pouring spout over the moving strip. On the moving belt, the melt cools and is transported away. The initially still liquid melt on the conveyor belt is extremely sensitive from a fluid and heat engineering point of view. Long-lasting flow patterns are retained during solidification and produce an undesirable microstructure, both microscopically and macroscopically.
Die infolge der Grenzflächenspannung beim Überlauf aus der Gießschnauze auf das Unterband seitlich eingeschnürte Schmelze bildet eine heiße Strähne, die beim Auftreffen auf das Transportband unerwünschte Verwirbelungen erzeugt oder auch dafür sorgt, dass der seitliche Bereich auf dem Unterband erst gar nicht mit Schmelze beaufschlagt oder ausgefüllt wird. Das Einschnüren der Schmelze tritt auch dann auf, wenn die Gießschnauze bis zum Austritt vollstän- dig mit Schmelze ausgefüllt ist. Die Strähne induziert Verwirbelungen und Turbulenzen, die sich auf den schmalen, aber kritischen Seitenbereich des Schmelzenpools erstrecken. The melt laterally constricted as a result of the interfacial tension during the overflow from the pouring spout onto the lower strip forms a hot strand, which generates undesired turbulences when impinging on the conveyor belt or also ensures that the lateral area on the lower belt is not even charged or filled with melt , The constriction of the melt also occurs when the pouring spout is completely filled with melt until it exits. The strand induces turbulence and turbulence extending to the narrow but critical side region of the melt pool.
Beim Bandgießen von Kupfer, Aluminium oder Zink, beispielsweise mit einem Hazelett-Caster, gestaltet sich die Situation ähnlich. Hier wird die Schmelze zwischen zwei schräg gestellte, umlaufende Transportbänder (Ober- und Unterband) gegossen, wobei der Abstand der Transportbänder die Gießdicke festlegt. Beim Übergang der Schmelze von der Gießschnauze in den zwischen den Bändern befindlichen Schmelzenpool bilden sich ebenfalls seitliche Strähnen aus, die tief in den Schmelzenpool eindringen und unerwünschte Wirbelstrukturen erzeugen. Die Achsen dieser Wirbelstrukturen richten sich im Wesentlichen normal zum Unterband aus. Die Strähnen bleiben im Schmelzenpool erhalten und legen sich unter Umständen stromabwärts, daher tief im Schmelzenpool, wieder an die Seitenabdichtung an. Hierbei kann die Schmelze sogar gegen die Transportrichtung des Bandes stromauf gelangen. Dadurch werden nahe der Seitenabdichtung relativ stabile, störende Strömungsmuster erzeugt, die bei der fortlaufenden Erstarrung erhalten bleiben und die Qualität der Bandkanten verschlechtern. When tape casting copper, aluminum or zinc, for example with a Hazelett Caster, the situation is similar. Here, the melt between two inclined, circulating conveyor belts (upper and lower belt) is poured, the distance of the conveyor belts determines the casting thickness. When the melt passes from the casting spout into the melt pool located between the ribbons, lateral strands also form which penetrate deep into the melt pool and produce undesirable vortex structures. The axes of these vortex structures are oriented essentially normal to the lower belt. The strands remain intact in the melt pool and, under certain circumstances, attach themselves downstream to the side sealing, thus deep in the melt pool. In this case, the melt can even pass upstream against the transport direction of the strip. As a result, relatively stable, disturbing flow patterns are generated near the side seal, which in the continuous solidification and deteriorate the quality of the band edges deteriorate.
Im Fall einer sich um einen definierten Winkel stetig erweiternden offenen Gießschnauze löst die Schmelzenströmung unter Umständen bereits auf der Gießschnauze ab. Im Randbereich schnürt sich die Schmelze ein und dickt auf. Dabei bildet sich eine heiße Strähne. Die heiße Strähne tritt aus der Gießschnauze aus und trifft auf das darunter liegende bewegte Unterband mit hoher kinetischer Energie. Auf dem Band kommt es zu intensiven, unerwünschten Verwirbelungen. Die seitliche Strömung besitzt im Allgemeinen einen höheren Impuls und eine höhere kinetische Energie als die Strömung in der Bandmitte. Die Schmelze dringt daher seitlich mit hohem Impuls auf das Transportband auf, wobei die typische Strähnenstruktur erhalten bleibt und ein ungleichförmiges Geschwindigkeitsprofil induziert wird. Im Fall paralleler Seitenwände der Gießschnauze bleibt die Schmelze bis zum Austritt aus der Gießschnauze an den Seitenwänden anliegen. Es findet daher keine Strömungsablösung auf der Gießschnauze statt. Sobald die Schmelze die Gießschnauze verlässt, schnürt sie sich jedoch infolge fehlender Adhäsionskräfte und dann dominierender Kohäsionskräfte ein und es bildet sich wiederum die bereits beschriebene Strähne mit dem bekannten Strömungsmuster auf dem Transportband. Laseroptische Geschwindigkeitsmessungen am Wassermodell verdeutlichen diesen Effekt. In the case of an open pouring spout that is constantly widening by a defined angle, the melt flow may already be released on the pouring spout. In the edge area, the melt constricts and thickens. This forms a hot strand. The hot strand emerges from the spout and strikes the underlying moving sub-band with high kinetic energy. On the tape it comes to intense, unwanted vortexes. The lateral flow generally has a higher momentum and higher kinetic energy than the mid-band flow. The melt therefore penetrates laterally with high momentum onto the conveyor belt, whereby the typical strands structure is retained and a non-uniform velocity profile is induced. In the case of parallel side walls of the pouring spout, the melt remains on the side walls until it leaves the pouring spout. There is therefore no flow separation on the spout instead. However, as soon as the melt leaves the pouring spout, it constricts due to lack of adhesion forces and then dominating cohesive forces and in turn forms the already described strand with the known flow pattern on the conveyor belt. Laser-optical speed measurements on the water model illustrate this effect.
Zusätzliche Maßnahmen, wie induktives Rühren, müssen dieser Wirbelbildung entgegenwirken. Bandgießanlagen, die nach dem oben geschilderten Verfahren arbeiten, benötigen einen induktiven Rührer zur Homogenisierung der Schmelze. Additional measures, such as inductive stirring, must counteract this vortex formation. Strip casting plants, which operate according to the above-described method, require an inductive stirrer for homogenizing the melt.
Die Aufgabe der vorliegenden Erfindung liegt darin, ein Verfahren und eine Vor- richtung zur seitlichen Strömungsführung einer Metallschmelze beim Bandgießen bereitzustellen, wodurch die Strähnenbildung der Schmelze beim Überlauf von der Gießschnauze auf das bewegte Band und die damit verbundene unerwünschte Gefügestruktur im Band reduziert oder vollständig unterbunden werden. The object of the present invention is to provide a method and a device for lateral flow guidance of a molten metal during strip casting, whereby the stranding of the melt in the overflow reduced or completely suppressed by the casting spout on the moving belt and the associated undesirable microstructure in the band.
Die Aufgabe der vorliegenden Erfindung wird durch ein Verfahren zur seitlichen, unterstützenden Strömungsführung einer Metallschmelze beim Bandgießen gelöst, wobei The object of the present invention is achieved by a method for lateral, supporting flow guidance of a molten metal during strip casting, wherein
a) die Schmelze an benachbarten festen Berandungen am Auslass einer Verteilvorrichtung, insbesondere einer Gießschnauze, entlang fließt und gleichzeitig nach außen sowie nach unten umgelenkt wird und a) the melt flows on adjacent solid boundaries at the outlet of a distribution device, in particular a casting spout, along and at the same time is deflected outwards and downwards, and
b) die Schmelze über die Verteilvorrichtung, insbesondere Gießschnauze (1 ), auf ein bewegtes Band geführt wird. b) the melt is guided via the distribution device, in particular casting spout (1), onto a moving belt.
Bevorzugte Ausführungsformen gehen aus den Unteransprüchen hervor.  Preferred embodiments will become apparent from the dependent claims.
Die vorliegende Erfindung betrifft demnch ein Verfahren zur seitlichen, passiven Strömungsführung einer Metallschmelze beim Bandgießen unter Ausnutzung des Coanda-Effektes. Die seitliche, in das Schmelzeninnere gerichtete Einschnürung eines offenen Schmelzenstrahls bei der Verteilung auf ein laufendes Transportband (Bandgießtechnologie) wird erfindungsgemäß reduziert. Dadurch wird die erstarrende Schmelze gleichmäßiger über die Gießbreite auf dem Transportband verteilt. Die charakteristischen unerwünschten Strömungsmuster an den Bandkanten werden verhindert. The present invention also relates to a method for the lateral, passive flow guidance of a molten metal during strip casting by utilizing the Coanda effect. The lateral, directed into the melt interior constriction of an open melt jet in the distribution to a moving conveyor belt (strip casting technology) is inventively reduced. As a result, the solidifying melt is distributed more uniformly over the casting width on the conveyor belt. The characteristic undesirable flow patterns at the strip edges are prevented.
Die Schmelze wird über eine Gießschnauze geführt, bei der die letzte Strecke der feuerfesten Seitenwand speziell dreidimensional gebogen (konvex, konkav), und zwar in Form eines flügelähnlichen, im Folgenden so genannten Coanda- Profils ausgebildet ist. Der Coanda-Effekt beschreibt die Eigenschaft eines Flu- idstrahls oder -jets (gasförmig, flüssig), sich an eine in der Nähe befindliche, konvexe Wand anzulegen und dieser entlang zu folgen. Auf diese Weise ändert der Fluidstrahl seine ursprüngliche Ausbreitungsrichtung. Die Wirkungsweise des Coanda-Effektes basiert aus der Überlagerung mehrer physikalischer Mechanismen, im Wesentlichen sind dies der Bemoulli-Effekt, die molekularen Kräfte zwischen Wand und Fluidstrahl, die Strömungsgrenzschicht und der Druckgradient in Strömungsrichtung. The melt is passed over a casting spout, in which the last stretch of the refractory side wall is specially curved three-dimensionally (convex, concave), in the form of a wing-like, hereinafter referred to as Coanda profile. The Coanda effect describes the property of a fluid jet or jet (gaseous, liquid) to attach to and follow a nearby convex wall. In this way, the fluid jet changes its original direction of propagation. The effect of the Coanda effect is based on the superposition of several physical mechanisms, essentially the Bemoulli effect, the molecular ones Forces between wall and fluid jet, the flow boundary layer and the pressure gradient in the flow direction.
Im vorliegenden Fall beginnt die Kontur des Coanda-Profil bereits in oder auf der Gießschnauze und wird über die Gießschnauze hinaus sowie gleichzeitig auch in Richtung des Laufbandes speziell geformt. Es wird eine dreidimensionale, tragflügelförmige Kontur aus Feuerfestmaterial, wie SiC, MgO geformt. Die Schmelze folgt aufgrund des Coanda-Effektes der Kontur des Coanda- Profils und wird gleichzeitig nach außen von der Bandmitte weg sowie nach unten in Richtung des bewegten Bades umgelenkt. Dies wirkt der Einschnürung des Schmelzenstrahls entgegen, diese wird daher vermieden. Das Geschwindigkeitsprofil im Pool wird über die gesamte Gießbreite deutlich homogenisiert. In the present case, the contour of the Coanda profile already begins in or on the spout and is specially shaped beyond the spout and at the same time also in the direction of the treadmill. It is a three-dimensional, wing-shaped contour of refractory material, such as SiC, MgO formed. Due to the Coanda effect, the melt follows the contour of the Coanda profile and is at the same time deflected outwards from the center of the strip and downwards in the direction of the moving bath. This counteracts the constriction of the melt jet, this is therefore avoided. The velocity profile in the pool is clearly homogenized over the entire casting width.
Die besondere, geometrische Formgebung am Auslass einer Gießschnauze bewirkt, dass sich die abfließende Schmelze horizontal aufweitet. Dadurch wird die Strähnenbildung reduziert. Hierbei sorgt u. a. der Coanda-Effekt für eine Aufweitung der Schmelzenströmung und damit für eine Homogenisierung der Schmelze über die Gießbreite. The special, geometric shape at the outlet of a pouring spout causes the outflowing melt to expand horizontally. This reduces the striation. This ensures u. a. the Coanda effect for an expansion of the melt flow and thus for a homogenization of the melt across the casting width.
Die kinetische Energie muss beim Überlauf der Schmelze aus der Gießschnau- ze auf das Band möglichst gering sein. Damit wird einerseits der Einzug von Gasblasen in die Schmelze und andererseits die Erzeugung von Strömungsmustern minimiert. Die seitliche Strähnenbildung beim Überlauf der Schmelze auf das bewegte Band einer Bandgießanlage wird reduziert und die Gefügestruktur verbessert. The kinetic energy must be as low as possible when the melt overflows from the casting line to the strip. Thus, on the one hand, the introduction of gas bubbles into the melt and, on the other hand, the generation of flow patterns is minimized. The lateral stratification during the overflow of the melt on the moving belt of a strip casting is reduced and improves the microstructure.
Der wesentliche Vorteil der Erfindung besteht darin, dass die passive Strömungsführung durch das Coanda-Profil den Homogenisierungsprozess auf der Basis des magnetischen Rührers unterstützt. Das neue Verfahren ist dadurch kostengünstig. Die Feuerfestform der Verteileinrichtung zwischen Stranggieß- Verteiler und Transportband muss lediglich geändert werden. Die Dimension des induktiven Rührers wird bei gleichzeitigem Einsatz des Coanda-Profils reduziert. The essential advantage of the invention is that the passive flow guidance through the Coanda profile supports the homogenization process on the basis of the magnetic stirrer. The new method is thereby inexpensive. The refractory form of the distribution device between continuous casting distributor and conveyor belt only needs to be changed. The dimension of the inductive stirrer is reduced with simultaneous use of the Coanda profile.
Das u. a. auf dem Coanda-Effekt beruhende Prinzip kann überall dort angewendet werden, wo freie Gießstrahlen durch eine passive Strömungsführung ohne äußere Einwirkung nur durch formgebende Maßnahmen, beeinflusst werden sollen. Das Verfahren kann auch bei Bandgießanlagen für NE-Metalle angewendet werden. The U. a. The principle based on the Coanda effect can be applied wherever free pouring streams are to be influenced by a passive flow without external influence only by shaping measures. The method can also be applied to strip casters for non-ferrous metals.
Die Aufgabe der vorliegenden Erfindung wird weiter durch eine Vorrichtung zum Bandgießen mit seitlicher Strömungsführung einer Metallschmelze mit einer Gießschnauze gelöst, über die die Schmelze auf ein bewegtes Band fließt, wobei die feuerfesten Seitenwand am Austrittsbereich der Gießschnauze eine strömungsgünstige, dreidimensionale Kontur eines Rotationsellipsoids und/oder Tragflügels aufweist. Die feuerfesten Seitenwand am Austrittsbereich der Gieß- schnauze ist speziell, dreidimensional (konvex, konkav), flügeiförmig ausgebildet. The object of the present invention is further achieved by a device for strip casting with lateral flow of a molten metal with a casting spout over which the melt flows on a moving belt, wherein the refractory side wall at the exit region of the spout a streamlined, three-dimensional contour of an ellipsoid of revolution and / or Having wing. The refractory side wall at the outlet region of the casting snout is specially designed, three-dimensional (convex, concave), flight-like.
Der Austritt der Gießschnauze ist bevorzugt flügeiförmig und gleichzeitig in Form eines Rotationsellipsoids und/oder Tragflügels (2) in direkter Gießrichtung x ausgebildet. The outlet of the pouring spout is preferably in the form of a flight and at the same time in the form of an ellipsoid of revolution and / or wing (2) in the direct casting direction x.
Die genaue Geometrie des Coanda-Profils ist unter anderem von der Fließgeschwindigkeit der Schmelze auf der Gießschnauze abhängig. Die Breiten der Ausgießvorrichtung und des Transportbandes liegen gewöhnlich zwischen 1.0 m und 2.0 m. Die Länge der Ausgießvorrichtung liegt bei etwa 1 m. Der Ab- stand von der Gießschnauze zum Laufband, daher die Fallhöhe der Schmelze aus der Gießschnauze auf das mitlaufende Band, beträgt etwa 20 mm bis 80 mm. Die Geschwindigkeit des Laufbandes beträgt bis 30 m/min. Der Winkel zwischen der Gießpfanne und dem Laufband beträgt 0° bis 20°. Die Temperatur der Schmelze hängt von der Stahlzusammensetzung ab. Bei Low Carbon Steel liegt die Temperatur bei 1550°C, bei hochlegierten Stählen bei 1450°C. Das Verfahren kann außer auf Stahlsorten auch auf Kupfer-, Aluminium oder Zink- bandguss angewandt werden. Die kinematische Viskosität der Schmelze beträgt etwa v = 1x10"6 m2/s. Die Schmelze ist Kupfer, Aluminium, Zink, LowCar- bon Steel oder hochlegierter Stahl. Die Feuerfest-Beschichtung enthält MgO oder SiC. In einer Bandgießanlage fließt die Schmelze aus der Pfanne in einen Stranggießverteiler. Unterhalb des Verteilers kann sich ein weiteres Gefäß befinden, das die eigentliche Aufgabe- und Verteilvorrichtung, insbesondere Gießschnauze, der Schmelze auf das bewegte Unterband darstellt. Aus dem Verteiler fließt die Schmelze über das so genannte Tauchrohr (SEN - Submerged Entry Nozz- le) in die Aufgabevorrichtung, welche die Schmelze beruhigt und verteilt. The exact geometry of the Coanda profile depends, among other things, on the flow velocity of the melt on the casting spout. The widths of the pouring device and the conveyor belt are usually between 1.0 m and 2.0 m. The length of the pouring device is about 1 m. The distance from the casting spout to the treadmill, hence the drop height of the melt from the spout to the revolving belt, is about 20 mm to 80 mm. The speed of the treadmill is up to 30 m / min. The angle between the ladle and the treadmill is 0 ° to 20 °. The temperature of the melt depends on the steel composition. For Low Carbon Steel the temperature is 1550 ° C, for high alloy steels it is 1450 ° C. The method can be applied to copper, aluminum or zinc except on steel grades. strip casting are applied. The kinematic viscosity of the melt is about v = 1x10 "6 m 2 / s. The melt is copper, aluminum, zinc, LowCar- bon Steel or high-alloy steel. The refractory coating contains MgO or SiC. In a strip caster, the melt flows out Below the distributor, there may be another vessel, which represents the actual feeding and distributing device, in particular pouring spout, of the melt onto the moving lower belt The melt flows out of the distributor via the so-called immersion tube (SEN - Submerged Entry Nozzle) in the feeder, which calms and distributes the melt.
Für das erfindungsgemäße Verfahren ist die Formgebung am seitlichen Austritt der Gießschnauze maßgebend. Die letzte Strecke der feuerfesten Seitenwand am Austrittsbereich der Gießschnauze, der bis zu etwa 30 cm lang sein kann, ist strömungsoptimiert ausgebildet. Die Kontur ist flügeiförmig in direkter Gießrichtung ausgebildet. Augrund dieser speziellen Kontur folgt die Schmelze relativ lange, daher ablösungsfrei an der Kontur entlang. Dieses Verhalten wird durch den Coanda-Effekt unterstützt. Das Coanda-Profil wird ähnlich wie ein Tragflügel am Flugzeug von vorne angeströmt. Gleichzeitig wird die Schmelze nach dem Verlassen von der Gießschnauze auch weiter geführt. Die Schmelze wird möglichst ruhig, mit geringer Geschwindigkeit und turbulenzarm auf das laufende Unterband transportiert. Der Flügel ragt über die Gießschnauze hinaus. Durch die Verknüpfung dieser beiden Bedingungen weist das Coanda- Profil die Form eines strömungsoptimierten Rotationsellipsoids auf. For the method according to the invention, the shaping at the lateral outlet of the pouring spout is decisive. The last stretch of the refractory side wall at the exit area of the casting spout, which can be up to about 30 cm long, is designed to optimize flow. The contour is formed like a flight in the direct casting direction. Due to this special contour, the melt follows a relatively long time, therefore without separation along the contour. This behavior is supported by the Coanda effect. The Coanda profile is similar to a wing on the aircraft flows from the front. At the same time, the melt is also continued after leaving the casting spout. The melt is transported as quietly as possible, at low speed and with low turbulence to the running sub-belt. The wing sticks out over the spout. By combining these two conditions, the Coanda profile has the form of a flow-optimized ellipsoid of revolution.
Die Erfindung wird anhand einer Zeichnung und eines Beispiels näher erläutert. Es zeigen: The invention will be explained in more detail with reference to a drawing and an example. Show it:
Fig. 1a zeigt eine Draufsicht auf eine stetig erweiternde Gießschnauze nach dem Stand der Technik, zeigt eine Draufsicht auf eine erfindungsgemäße Gießschnauze, zeigt eine seitliche Ansicht einen erfindungsgemäßen Austritt der Gießschnauze, 1a shows a plan view of a continuously expanding spout according to the prior art, shows a plan view of a pouring spout according to the invention, a side view shows an outlet according to the invention of the pouring spout,
zeigt anhand einer Draufsicht auf eine Gießschnauze die typische Strömungsablösung, wenn der Öffnungswinkel der Gießschnauze zu groß ist,  shows from a plan view of a spout the typical flow separation, when the opening angle of the spout is too large,
zeigt anhand einer Draufsicht auf eine Gießschnauze das Ergebnis einer quantitativen laseroptischen Geschwindigkeitsmessung im Pool einer stehenden Kokille (Hazelett-Caster) für den Fall ohne Coanda-Profil,  shows a top view of a casting spout the result of a quantitative laser-optical speed measurement in the pool of a standing mold (Hazelett-Caster) for the case without Coanda profile,
zeigt anhand einer Draufsicht auf eine Gießschnauze das Ergebnis einer quantitativen laseroptischen Geschwindigkeitsmessung im Pool einer stehenden Kokille (Hazelett-Caster) für den Fall mit Coanda-Profil,  shows a top view of a casting spout the result of a quantitative laser-optical speed measurement in the pool of a standing mold (Hazelett-Caster) for the case with Coanda profile,
eine perspektivische Darstellung der erfindungsgemäßen Gießschnauze,  a perspective view of the casting spout according to the invention,
eine Vergrößerung des erfindungsgemäßen Coanda-Profils aus Fig. 4.  an enlargement of the Coanda profile according to the invention from FIG. 4.
Fig. 1a zeigt die grundlegende Situation am Austritt der Gießschnauze mit der darunter liegenden Poolströmung mit einer sich um einen definierten Winkel (0° < α < 20°) stetig erweiternden, offenen Gießschnauze 1. Die Schmelzenströmung 7 löst bereits auf der Gießschnauze 1 im Punkt A ab. Im Randbereich schnürt sich die Schmelze 3 ein, dickt auf und es bildet sich eine Strähne, die aus der Gießschnauze 1 austritt und mit hoher kinetischer Energie auf das darunter liegende, bewegte Unterband 4 mit Seitenabdichtung trifft. Das Unterband 4 bewegt sich in x-Richtung. Die Strähne führt im Pool auf dem Transportband 4 zu intensiven, unerwünschten Verwirbelungen 5 oder auch zu Bereichen, die nicht mit Schmelze 3 beaufschlagt werden. Die Entwicklung der Verwirbelung 5 wird über die Strömungsablösung A und Einschnürung 6 in Fig. 2, hier am Bei- spiel eines Wassermodells gezeigt. Generell besitzt die seitliche Strömung 7 einen höheren Impuls und eine höhere kinetische Energie als die Strömung 7 in der Bandmitte. Die Schmelze 3 dringt daher tiefer in den Schmelzenpool des Transportbands 4 ein, wobei die typische Strähnenstruktur erhalten bleibt und ein ungleichförmiges Geschwindigkeitsprofil 8 induziert wird. Stromab des Auf- treffpunktes auf dem Band 4 legt sich die Strähne an die Seitenabdichtung (Dämmblockkette) im Wiederanlegepunkt bzw. Staupunkt B an. Dieser Ablauf wird anhand der Laseroptischen Messungen im Kokillenpool eines Hazelett- Caster-Wassermodells beim Ausströmen ohne Coanda-Profil in Fig. 3a dargestellt. Hierbei kann die Schmelze 3 sogar gegen die Transportrichtung x des Bandes 4 stromauf gelangen, wodurch nahe der Seitenabdichtung relativ stabile, störende Strömungsmuster erzeugt werden, die bei der fortlaufenden Erstarrung unter Umständen erhalten bleiben. Beobachtungen an einem in Betrieb befindlichen Hazelett-Caster haben gezeigt, dass es sich um einen hochgradig instationären Prozess handelt, wobei der Wiederanlegepunkt B stromauf und - stromab wandert. Es ergibt sich ein ungleichmäßiges Geschwindigkeitsprofil 8. 1a shows the basic situation at the outlet of the casting spout with the underlying pool flow with an open casting spout 1 which widens steadily by a defined angle (0 ° <α <20 °). The melt stream 7 already dissolves at the spout 1 at the point A down. In the edge region, the melt 3 constricts, thickening and it forms a strand that emerges from the spout 1 and strikes with high kinetic energy to the underlying, moving sub-belt 4 with side sealing. The lower band 4 moves in the x direction. The strand leads in the pool on the conveyor belt 4 to intensive, unwanted turbulence 5 or to areas that are not acted upon by melt 3. The development of the turbulence 5 is described by the flow separation A and constriction 6 in FIG. 2, here at the shown a game of a water model. In general, the lateral flow 7 has a higher momentum and a higher kinetic energy than the flow 7 in the middle of the band. The melt 3 therefore penetrates deeper into the melt pool of the conveyor belt 4, wherein the typical strands structure is maintained and a non-uniform velocity profile 8 is induced. Downstream of the impact point on the belt 4, the tress attaches itself to the side seal (insulation block chain) in the re-start point or stagnation point B. This process is illustrated by the laser-optical measurements in the mold pool of a Hazelett-Caster water model during the outflow without Coanda profile in FIG. 3a. Here, the melt 3 can even upstream against the transport direction x of the belt 4, whereby near the side seal relatively stable, disturbing flow patterns are generated, which may be retained in the continuous solidification under certain circumstances. Observations on a Hazelett caster in operation have shown that it is a highly transient process, with recovery point B moving upstream and downstream. This results in an uneven velocity profile 8.
Im Fall paralleler Wände ( = 0°) bleibt die Schmelze 3 bis zum Austritt der Gießschnauze 1 an den Seitenwänden anliegen. Es findet daher keine Ablösung auf der Gießschnauze 1 statt. Sobald die Schmelze 3 die Gießschnauze 1 verlässt, schnürt sie sich jedoch infolge fehlender Adhäsionskräfte und dann dominierender Kohäsionskräfte ein und es bildet sich wiederum die bereits beschriebene Strähne mit dem bekannten Strömungsmuster. Laseroptische Geschwindigkeitsmessungen verdeutlichen diesen Effekt, wie in Fig. 3a gezeigt wird. In the case of parallel walls (= 0 °), the melt 3 remains up to the outlet of the pouring spout 1 on the side walls. There is therefore no replacement on the spout 1 instead. However, as soon as the melt 3 leaves the pouring spout 1, it constricts due to lack of adhesion forces and then dominating cohesive forces and in turn forms the already described strand with the known flow pattern. Laser-optical velocity measurements illustrate this effect, as shown in Fig. 3a.
Die Gießschnauze 1 gemäß Fig. 1 b zeigt die erfindungsgemäße generelle Formgebung am seitlichen Austritt. Die letzte Strecke der feuerfesten Seitenwand wird flügeiförmig ausgebildet. Es ist wesentlich, dass das Coanda-Profil 2 über die Gießschnauze 1 hinaus in y-Richtung und gleichzeitig auch in Richtung des Laufbandes in x-Richtung geformt wird. Es wird folglich eine dreidimensio- nale, tragflügelförmige und damit strömungsgünstige Flügelkontur 2 aus Feuerfestmaterial geschaffen. In diesem Fall folgt die Schmelze 3 infolge des Coan- da-Effektes der Flügelkontur 2 und wird gleichzeitig nach außen in z-Richtung sowie nach unten in y-Richtung, daher von der Bandmitte weg, umgelenkt, wie es zusätzlich in Figuren 1 b, 1c und 4 gezeigt wird. Dadurch wird die Einschnü- rung 6 vermieden und das Geschwindigkeitsprofil 8 über die gesamte Gießbreite homogenisiert. Es wird ein gleichförmiges Geschwindigkeitsprofil 8 erhalten. Fig. 3b zeigt eine laseroptische Geschwindigkeitsmessung im Wassermodell, bei der im Vergleich zu Fig. 3a lediglich ein Coanda-Profil 2 installiert wurde. Es wird deutlich, dass die Strähnenbildung reduziert wird. The spout 1 according to FIG. 1 b shows the general shaping according to the invention at the lateral outlet. The last stretch of the refractory side wall is formed like a flight. It is essential that the Coanda profile 2 is formed over the spout 1 in the y-direction and at the same time also in the direction of the treadmill in the x-direction. As a result, a three-dimensional nale, wing-shaped and thus streamlined wing contour 2 created from refractory material. In this case, the melt 3 follows the wing contour 2 as a result of the coanda effect and is at the same time deflected outwards in the z direction and downwards in the y direction, therefore away from the strip center, as is additionally shown in FIGS. 1c and 4 is shown. As a result, the constriction 6 is avoided and the velocity profile 8 is homogenized over the entire casting width. A uniform velocity profile 8 is obtained. FIG. 3 b shows a laser-optical speed measurement in the water model, in which only one Coanda profile 2 was installed in comparison with FIG. 3 a. It becomes clear that the streaking is reduced.
Bezugszeichenliste LIST OF REFERENCE NUMBERS
1 Ausgießvorrichtung / Verteilvorrichtung / Gießschnauze / Open Snout1 pouring device / distributor / pouring spout / open snout
2 Coanda-Profil / Flügelkontur / Flügelprofil / Tragflügel / Rotationsellipsoid2 Coanda profile / wing contour / wing profile / wing / ellipsoid of revolution
3 Schmelze / Schmelzenströmung 3 melt / melt flow
4 Transportband / Band / bewegtes Unterband  4 conveyor belt / belt / moving lower belt
5 Wirbel / Verwirbelungen  5 whirls / turbulences
6 Einschnürung  6 constriction
7 Strömung  7 flow
8 Geschwindigkeitsprofil  8 speed profile
A Strömungsablösung  A flow separation
B Wiederanlegepunkt / Staupunkt  B Reassembly point / stagnation point

Claims

Patentansprüche claims
1. Verfahren zur seitlichen Strömungsführung einer Metallschmelze beim Bandgießen, wobei 1. A method for lateral flow guidance of a molten metal during strip casting, wherein
a) die Schmelze (3) an benachbarten festen Berandungen am Auslass einer Verteilvorrichtung, insbesondere einer Gießschnauze (1 ), entlang fließt und gleichzeitig nach außen sowie nach unten umgelenkt wird und  a) the melt (3) at adjacent solid boundaries at the outlet of a distribution device, in particular a casting spout (1), flows along and is simultaneously deflected outwards and downwards, and
b) die Schmelze (3) über die Verteilvorrichtung, insbesondere Gießschnauze (1 ), auf ein bewegtes Band (4) geführt wird.  b) the melt (3) via the distribution device, in particular casting spout (1), on a moving belt (4) is guided.
2. Verfahren nach Anspruch 1 , wobei die Schmelze (3) einer strömungsgünstig geformten Kontur der feuerfesten Seitenwand am seitlichen Austritt der Gießschnauze (1 ) folgt. 2. The method of claim 1, wherein the melt (3) follows a flow-shaped contour of the refractory side wall at the side outlet of the spout (1).
3. Verfahren nach Anspruch 1 oder 2, wobei die Schmelze (3) einer tragflügelähnlichen Kontur der feuerfesten Seitenwand am seitlichen Austritt der Gießschnauze (1 ) folgt. 3. The method of claim 1 or 2, wherein the melt (3) follows a wing-like contour of the refractory side wall at the side outlet of the spout (1).
4. Verfahren nach einem der Ansprüche 1 bis 3, wobei die Schmelzströmung im Auslass der Gießschnauze (1 ) aufgeweitet wird. 4. The method according to any one of claims 1 to 3, wherein the melt flow in the outlet of the spout (1) is widened.
5. Verfahren nach einem der Ansprüche 1 bis 4, wobei die Schmelze (3) von der Gießschnauze (1 ) auf das laufende Transportband (4) über eine Distanz von 20 mm bis 80 mm geführt wird. 5. The method according to any one of claims 1 to 4, wherein the melt (3) from the spout (1) on the moving conveyor belt (4) over a distance of 20 mm to 80 mm is performed.
6. Verfahren nach einem der Ansprüche 1 bis 5, wobei die Geschwindigkeit des Transportbandes (4) bis 30 m/min beträgt. 6. The method according to any one of claims 1 to 5, wherein the speed of the conveyor belt (4) is up to 30 m / min.
7. Verfahren nach einem der Ansprüche 1 bis 6, wobei der Winkel von der Gießschnauze (1 ) zum Transportband (4) 0° bis 20° beträgt. 7. The method according to any one of claims 1 to 6, wherein the angle of the spout (1) to the conveyor belt (4) is 0 ° to 20 °.
8. Verfahren nach einem der Ansprüche 1 bis 7, wobei die Temperatur der Schmelze (3) von etwa 660°C bis 1550°C beträgt. 8. The method according to any one of claims 1 to 7, wherein the temperature of the melt (3) of about 660 ° C to 1550 ° C is.
9. Verfahren nach einem der Ansprüche 1 bis 8, wobei die Schmelze Kupfer, Aluminium, Zink, niedrig kohlenstoffhaltige Stähle, hochlegierte Stähle und Gemische davon enthält. A process according to any one of claims 1 to 8, wherein the melt contains copper, aluminum, zinc, low carbon steels, high alloy steels and mixtures thereof.
10. Vorrichtung zum Bandgießen mit seitlicher Strömungsführung einer Metallschmelze, mit einer Gießschnauze (1 ), über die die Schmelze (3) auf ein bewegtes Band (4) oder zwischen zwei bewegten Bändern (4) fließt, wobei die feuerfesten Seitenwand am Austrittsbereich der Gießschnauze (1 ) eine strömungsgünstige, dreidimensionale Kontur eines Rotationsellipsoids und/oder Tragflügels (2) aufweist. 10. Device for strip casting with lateral flow guidance of a molten metal, with a casting spout (1) over which the melt (3) on a moving belt (4) or between two moving belts (4) flows, wherein the refractory side wall at the exit region of the spout (1) has a streamlined, three-dimensional contour of an ellipsoid of revolution and / or wing (2).
11. Vorrichtung nach Anspruch 9, wobei der Austritt der Gießschnauze (1 ) flügeiförmig und gleichzeitig in Form eines Rotationsellipsoids und/oder Tragflügels (2) in direkter Gießrichtung x ausgebildet ist. 11. The device according to claim 9, wherein the outlet of the spout (1) is formed like a flight and simultaneously in the form of an ellipsoid of revolution and / or wing (2) in the direct casting direction x.
PCT/EP2010/006432 2009-10-21 2010-10-21 Method and device for laterally guiding the flow of a metal melt during strip casting WO2011047858A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP10810749.1A EP2490843B1 (en) 2009-10-21 2010-10-21 Method and apparatus for the lateral guidance of the melt during strip casting
CN201080048164.1A CN102596449B (en) 2009-10-21 2010-10-21 Method and device for laterally guiding the flow of a metal melt during strip casting

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102009050248.3 2009-10-21
DE102009050248 2009-10-21
DE102009054218.3 2009-11-21
DE102009054218A DE102009054218A1 (en) 2009-10-21 2009-11-21 Method and device for lateral flow guidance of a molten metal during strip casting

Publications (1)

Publication Number Publication Date
WO2011047858A1 true WO2011047858A1 (en) 2011-04-28

Family

ID=43877745

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/006432 WO2011047858A1 (en) 2009-10-21 2010-10-21 Method and device for laterally guiding the flow of a metal melt during strip casting

Country Status (4)

Country Link
EP (1) EP2490843B1 (en)
CN (1) CN102596449B (en)
DE (1) DE102009054218A1 (en)
WO (1) WO2011047858A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0134980A1 (en) * 1983-07-16 1985-03-27 Fried. Krupp Gesellschaft mit beschränkter Haftung Pouring nozzle for a steel melt using continuous casting moulds with mould walls revolving in the pouring direction
US4526223A (en) 1984-04-09 1985-07-02 Aluminum Company Of America Roll caster apparatus having converging tip assembly
JPS62248543A (en) * 1986-04-19 1987-10-29 Kobe Steel Ltd Device for supplying molten metal to strip caster
JPH0647503A (en) * 1992-07-31 1994-02-22 Kawasaki Steel Corp Amorphous ribbon carrying device
US5499673A (en) * 1992-06-08 1996-03-19 Kawasaki Steel Corporation Method of and apparatus for conveying and guiding thin metal strip formed by quenching
EP0859675A1 (en) 1995-08-16 1998-08-26 MANNESMANN Aktiengesellschaft A machine and a method for casting a metal strip
EP0635323B1 (en) 1993-07-13 1999-06-02 C. Edward Eckert Nozzle for continuous caster
EP0962271A1 (en) * 1996-11-27 1999-12-08 Hazelett Strip-Casting Corporation Radial-flow distributor for wide uniform nonturbulent non-dribbling pouring of molten metal into a continuous metal-casting machine methods and apparatus
DE102004030982A1 (en) * 2004-06-26 2006-01-12 Dieter Figge Casting method for rapid casting of thin steel strips comprises using a tundish, a support tube, a filling tube and a casting tube which are connected together in an airtight manner
WO2008087002A1 (en) 2007-01-20 2008-07-24 Mkm Mansfelder Kupfer Und Messing Gmbh Method and apparatus for casting ne metal baths, particularly copper or copper alloys
DE102007055346A1 (en) * 2007-11-19 2009-05-20 Sms Demag Ag Casting machine with a device for application to a casting belt

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060191664A1 (en) * 2005-02-25 2006-08-31 John Sulzer Method of and molten metal feeder for continuous casting
PL1932605T3 (en) * 2006-12-14 2010-08-31 Mkm Mansfelder Kupfer Und Messing Gmbh Method and device for manufacturing wide strips made of copper or copper alloys

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0134980A1 (en) * 1983-07-16 1985-03-27 Fried. Krupp Gesellschaft mit beschränkter Haftung Pouring nozzle for a steel melt using continuous casting moulds with mould walls revolving in the pouring direction
US4526223A (en) 1984-04-09 1985-07-02 Aluminum Company Of America Roll caster apparatus having converging tip assembly
JPS62248543A (en) * 1986-04-19 1987-10-29 Kobe Steel Ltd Device for supplying molten metal to strip caster
US5499673A (en) * 1992-06-08 1996-03-19 Kawasaki Steel Corporation Method of and apparatus for conveying and guiding thin metal strip formed by quenching
JPH0647503A (en) * 1992-07-31 1994-02-22 Kawasaki Steel Corp Amorphous ribbon carrying device
EP0635323B1 (en) 1993-07-13 1999-06-02 C. Edward Eckert Nozzle for continuous caster
EP0859675A1 (en) 1995-08-16 1998-08-26 MANNESMANN Aktiengesellschaft A machine and a method for casting a metal strip
EP0962271A1 (en) * 1996-11-27 1999-12-08 Hazelett Strip-Casting Corporation Radial-flow distributor for wide uniform nonturbulent non-dribbling pouring of molten metal into a continuous metal-casting machine methods and apparatus
DE102004030982A1 (en) * 2004-06-26 2006-01-12 Dieter Figge Casting method for rapid casting of thin steel strips comprises using a tundish, a support tube, a filling tube and a casting tube which are connected together in an airtight manner
WO2008087002A1 (en) 2007-01-20 2008-07-24 Mkm Mansfelder Kupfer Und Messing Gmbh Method and apparatus for casting ne metal baths, particularly copper or copper alloys
DE102007055346A1 (en) * 2007-11-19 2009-05-20 Sms Demag Ag Casting machine with a device for application to a casting belt

Also Published As

Publication number Publication date
CN102596449B (en) 2014-11-26
CN102596449A (en) 2012-07-18
DE102009054218A1 (en) 2011-05-19
EP2490843B1 (en) 2017-05-24
EP2490843A1 (en) 2012-08-29

Similar Documents

Publication Publication Date Title
EP2111313B1 (en) Method and device for casting non-ferrous metal melts, in particular copper or copper alloys
DE2410252A1 (en) METHOD AND DEVICE FOR GAS COVERING LIQUIDS
DE19740536B4 (en) strip casting
DE69813535T2 (en) MELT FEEDING DEVICE FOR MOLDING CONTINUOUS CASTING MACHINES
EP0019114B1 (en) Method and apparatus for the continuous casting of several strands
DE3201725A1 (en) METHOD FOR THE CASTING OF LIGHT METAL PRODUCTS
DE102011078370A1 (en) Method for continuous casting of a cast strand and continuous casting plant
EP1932605B1 (en) Method and device for manufacturing wide strips made of copper or copper alloys
EP2490843B1 (en) Method and apparatus for the lateral guidance of the melt during strip casting
EP0036611B1 (en) Method and arrangement for supporting a steel strand produced by continuous casting
EP0045365B1 (en) Means for introducing molten metal into a continuous-casting mould having travelling walls
DE60114779T2 (en) IMPROVED DIVING TUBE FOR CONTINUOUS CASTING
DE2853868A1 (en) METHOD AND DEVICES FOR THE CONTINUOUS CUTTING OF STRENGTH OF STEEL AND CORRESPONDELY PRODUCED PRODUCTS THEREOF
DE19738385C2 (en) Immersion pouring tube for introducing melt from a casting or intermediate container into a mold
WO2011117296A1 (en) Method, casting tube, and continuous casting system for casting a melt made of liquid metal into a continuously cast product
DE2944159C2 (en) Method and device for continuous slab casting with electromagnetic stirring
EP1450972B1 (en) Method and device for producing a metal strip in a continuous casting machine with casting cylinders
WO1988002288A1 (en) Process and device for casting thin strip or foil from a molten mass
DE10130354C1 (en) Immersion tube used for casting molten metal comprises a tubular section extending from a filling opening for the molten metal, a funnel chamber connected to the tubular section, a removal stream opening, and a collision shoulder
EP1106286B1 (en) Device for feeding molten metal from a tundish through a submerged tube in a continuous casting mould
AT411024B (en) INTERMEDIATE VESSEL AND METHOD FOR PRODUCING A METAL STRAND OF HIGH PURITY
DE3516737A1 (en) Method and installation for the production of metallic materials containing voids, in the form of sections
DE3320322A1 (en) METHOD FOR FEEDING A METAL MELT
DE4410511A1 (en) Method and device for pouring melts close to final dimensions
DE1758777A1 (en) Process and casting metal supply for the continuous casting of metal, in particular steel

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080048164.1

Country of ref document: CN

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10810749

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2010810749

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010810749

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 4325/CHENP/2012

Country of ref document: IN