WO2011046004A1 - Optical transmission/reception device - Google Patents

Optical transmission/reception device Download PDF

Info

Publication number
WO2011046004A1
WO2011046004A1 PCT/JP2010/066082 JP2010066082W WO2011046004A1 WO 2011046004 A1 WO2011046004 A1 WO 2011046004A1 JP 2010066082 W JP2010066082 W JP 2010066082W WO 2011046004 A1 WO2011046004 A1 WO 2011046004A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
optical fiber
light
thin film
transmission
Prior art date
Application number
PCT/JP2010/066082
Other languages
French (fr)
Japanese (ja)
Inventor
前多泰成
鈴木誠
神戸聡
Original Assignee
株式会社Qdレーザ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Qdレーザ filed Critical 株式会社Qdレーザ
Publication of WO2011046004A1 publication Critical patent/WO2011046004A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier the potential barrier being of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02255Out-coupling of light using beam deflecting elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49113Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting different bonding areas on the semiconductor or solid-state body to a common bonding area outside the body, e.g. converging wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/02208Mountings; Housings characterised by the shape of the housings
    • H01S5/02212Can-type, e.g. TO-CAN housings with emission along or parallel to symmetry axis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02251Out-coupling of light using optical fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters

Definitions

  • the present invention relates to an optical transmission / reception device, and more particularly to an optical transmission / reception device used for single-fiber bidirectional optical communication.
  • a BIDI (bi-directional) optical transceiver module is known.
  • the BIDI type optical transmission / reception module has a structure in which a transmission TO-CAN, a reception TO-CAN, and a wavelength branching filter are individually mounted in a casing. For this reason, the BIDI type optical transceiver module has a large number of parts.
  • Non-Patent Document 1 there is known an optical transmission / reception module in which a laser diode, a photodiode, and a wavelength branching filter are mounted in one TO-CAN (for example, Non-Patent Document 1). According to the optical transceiver module having this structure, two TO-CANs and lenses required for the BIDI optical transceiver module can be reduced to one.
  • the transmission light emitted from the laser diode is incident on the optical fiber, and the reception light emitted from the optical fiber is incident on the photodiode.
  • a wavelength branching filter is provided. This wavelength branching filter is an obstacle to miniaturization and cost reduction of the optical transceiver module.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide an optical transmission / reception apparatus used for single-fiber bidirectional optical communication, which can be reduced in size and cost.
  • the present invention provides a laser diode that emits transmission light incident on an optical fiber, a photodiode that receives reception light emitted from the optical fiber, and a light receiving surface of the photodiode, the laser diode comprising: An optical transmission / reception apparatus comprising: a thin film that reflects the transmitted light emitted so as to be incident on the optical fiber and transmits the received light emitted from the optical fiber.
  • An optical transmission / reception apparatus comprising: a thin film that reflects the transmitted light emitted so as to be incident on the optical fiber and transmits the received light emitted from the optical fiber.
  • the photodiode may be arranged on the optical axis of the optical fiber. According to this configuration, received light emitted from the optical fiber can be efficiently received by the photodiode.
  • the optical axis of the transmission light reflected by the thin film and the optical axis of the optical fiber can be made to coincide with each other. According to this configuration, the transmission light emitted from the laser diode can be efficiently incident on the optical fiber.
  • the laser diode is provided on a surface perpendicular to the optical axis of the optical fiber, and the photodiode is provided on a surface inclined obliquely with respect to the optical axis of the optical fiber. It can be set as the structure currently provided. According to this configuration, the laser diode and the photodiode can be easily mounted.
  • the laser diode may be configured such that the transmitted light emitted and the received light emitted from the optical fiber intersect at an acute angle. According to this configuration, the light receiving efficiency of the received light emitted from the optical fiber by the photodiode can be improved.
  • the laser diode may be a quantum dot laser diode. According to this configuration, it is possible to eliminate the need for a monitoring photodiode, and it is possible to achieve further downsizing and cost reduction.
  • one-way bidirectional optical communication can be performed without using a wavelength branching filter, and the optical transceiver can be reduced in size and cost.
  • FIG. 1A is a schematic top view of the optical transceiver according to the first embodiment
  • FIG. 1B is a schematic cross-sectional view taken along a line AA in FIG.
  • FIG. 2 is a schematic cross-sectional view of a photodiode provided with a thin film on a light receiving surface, which is used in the optical transceiver according to the first embodiment.
  • FIG. 3 is a diagram for explaining the optical characteristics of the thin film provided on the light receiving surface of the photodiode.
  • FIG. 4 is a diagram for explaining propagation of transmission / reception light by the optical transmission / reception apparatus according to the first embodiment.
  • FIG. 5A is a schematic top view of the optical transceiver according to the second embodiment
  • FIG. 5B is a schematic cross-sectional view taken along the line AA in FIG. 5A.
  • FIG. 1A is a schematic top view of the optical transceiver 100 according to the first embodiment
  • FIG. 1B is a schematic cross-sectional view taken along the line AA in FIG.
  • FIG. 1A is a schematic top view of the cap 24, the glass ball lens 22, and the sealing glass 46 seen through.
  • the optical transceiver 100 mainly includes a stem 12, a laser diode (hereinafter referred to as LD) 14, and a photodiode (hereinafter referred to as PD) 16.
  • LD laser diode
  • PD photodiode
  • the stem 12 is made of, for example, an iron-based alloy such as ordinary steel (SPCC), and has a columnar base portion 26 and a projection portion 30 protruding in the vertical direction on the reference surface 28 of the base portion 26.
  • the reference plane 28 is a plane perpendicular to the optical axis of the optical fiber 20, and the distance to the LD 14, PD 16, and glass ball lens 22 is set based on this plane.
  • the first mounting surface 32 there are a surface parallel to the reference surface 28 (hereinafter referred to as the first mounting surface 32) and an inclined surface (hereinafter referred to as the second mounting surface 34).
  • the second mounting surface 34 has an inclination of, for example, 45 ° with respect to the first mounting surface 32.
  • a lead pin 36 is fixedly attached to the stem 12 via an insulator 38 such as glass.
  • an insulator 38 such as glass.
  • three lead pins 36 are provided, one of which is connected to the LD 14 by a wire 39, the other one is connected to the PD 16, and the other one is connected to the ground.
  • the number of lead pins 36 is not limited to three, and may be other numbers such as four.
  • the LD 14 is mounted on a heat sink 40 made of, for example, aluminum nitride (AlN).
  • the heat sink 40 on which the LD 14 is mounted is mounted on the first mounting surface 32 at the tip of the protrusion 30.
  • the PD 16 is mounted on the second mounting surface 34 at the tip of the protrusion 30.
  • the light receiving surface 42 of the PD 16 is disposed with an inclination of 45 ° with respect to the optical axis of the LD 14.
  • the light receiving surface 42 of the PD 16 is coated with the thin film 18. Details of the PD 16 and the thin film 18 will be described later.
  • the LD 14 is, for example, a quantum dot laser.
  • the transmission light emitted from the LD 14 is reflected to the optical fiber 20 side by the thin film 18 coated on the light receiving surface 42 of the PD 16.
  • the transmission light reflected by the thin film 18 is collected by the glass ball lens 22 and enters the optical fiber 20.
  • the received light emitted from the optical fiber 20 is collected by the glass ball lens 22, passes through the thin film 18, and enters the light receiving surface 42 of the PD 16.
  • the thin film 18 functions as a high reflection film for the transmission light emitted from the LD 14 and functions as a low reflection film for the reception light emitted from the optical fiber 20.
  • the PD 16 is arranged on the optical axis of the optical fiber 20.
  • the optical axis of the transmission light reflected by the thin film 18 is coincident with the optical axis of the optical fiber 20.
  • the transmission light emitted from the LD 14 can be efficiently incident on the optical fiber 20.
  • the received light emitted from the optical fiber 20 can be efficiently received by the PD 16.
  • the optical axis of the transmission light reflected by the thin film 18 and the optical axis of the reception light emitted from the optical fiber 20 also coincide with each other.
  • the cap 24 is made of metal, for example, and has a cylindrical shape.
  • the upper surface 44 of the cap 24 is provided with a hole, and the glass ball lens 22 is fitted into the hole.
  • a sealing glass 46 is provided on the upper surface 44 of the cap 24 so as to cover the hole around the glass ball lens 22, and the hole is sealed by the sealing glass 46 and the glass ball lens 22.
  • the LD 14 and the PD 16 can be sealed with the cap 24 and sealed by welding and fixing the lower portion 48 of the cap 24 to the stem 12.
  • the inside of the cap 24 may be filled with air, but is preferably filled with nitrogen gas for the purpose of suppressing the deterioration of the LD 14 and PD 16.
  • the optical transceiver 100 is used in an FTTH (Fiber To The Home) system.
  • FTTH Fiber To The Home
  • the wavelength band of 1.31 ⁇ m is generally used for the upstream and the wavelength band of 1.49 ⁇ m is used for the downstream. Therefore, the LD 14 of the optical transceiver 100 emits transmission light of the 1.31 ⁇ m wavelength band, The PD 16 receives received light in the 1.49 ⁇ m wavelength band emitted from the optical fiber 20. Therefore, the thin film 18 coated on the light receiving surface 42 of the PD 16 is required to have an optical characteristic of reflecting light in the 1.31 ⁇ m wavelength band and transmitting light in the 1.49 ⁇ m wavelength band.
  • the LD 14 that emits transmission light in the 1.31 ⁇ m wavelength band includes, for example, a lower cladding layer made of a p-type AlGaAs layer, a quantum dot active layer having InAs quantum dots, and an upper cladding layer made of an n-type AlGaAs layer. Including quantum dot lasers can be used.
  • FIG. 2 is a schematic cross-sectional view of the PD 16 coated with the thin film 18.
  • the PD 16 includes, for example, an n-type InP buffer layer 52, an n-type InGaAs layer 54, and a p-type region 58 in which p-type carriers are introduced into an n-type InP window layer 56 on an n-type InP substrate 50.
  • a pn junction 61 is formed between the n-type InGaAs layer 54 and the p-type region 58.
  • a diffusion blocking region 63 is formed around the p-type region 58.
  • a p-type InGaAs contact layer 64 is formed on the p-type region 58, and a p-electrode 66 is formed on the p-type InGaAs contact layer 64.
  • the p electrode 66 and the p-type region 58 are electrically connected via the p-type InGaAs contact layer 64.
  • a polyimide layer 65 is interposed between the diffusion blocking region 63 and the p electrode 66.
  • An n-electrode 68 is provided on the back surface of the n-type InP substrate 50.
  • the thin film 18 that is a multilayer film is coated so as to cover the upper surface of the p-type region 58 that is the light receiving surface 42.
  • Table 1 is an example of the structure of the thin film 18 which is a multilayer film, and shows the material, film thickness, and refractive index of each layer of the multilayer film.
  • the thin film 18 has a structure in which, for example, a silicon layer (Si layer) and a silicon oxide layer (SiO 2 layer) are repeatedly provided on an aluminum oxide layer (Al 2 O 3 layer).
  • a silicon layer having a thickness of 53.5 nm and a refractive index of 3.56 is formed on an aluminum oxide layer having a thickness of 58.0 nm and a refractive index of 1.58, and a refractive index of 1.45 having a thickness of 348.0 nm.
  • a silicon oxide layer, a silicon layer having a thickness of 36.9 nm and a refractive index of 3.56, and a silicon oxide layer having a thickness of 182.3 nm and a refractive index of 1.45 are sequentially stacked. Further thereon, a silicon layer having a thickness of 73.7 nm and a refractive index of 3.56 and a silicon oxide layer having a thickness of 182.3 nm and a refractive index of 1.45 are repeatedly formed five times. As the uppermost layer, a silicon layer having a thickness of 36.9 nm and a refractive index of 3.56 is formed.
  • FIG. 3 shows the reflection characteristics of the thin film 18 when the thin film 18 having the structure shown in Table 1 is formed on a GaAs substrate having a refractive index of 3.42 and light is incident on the thin film 18 at an incident angle of 45 °. It is the simulation result which calculated the transmission characteristic and the loss characteristic.
  • the horizontal axis in FIG. 3 represents the wavelength (nm) of light incident on the thin film 18, and the vertical axis represents the light reflectance (%), transmittance (%), and loss rate (%).
  • the reflection characteristics and transmission characteristics of the thin film 18 depend on the wavelength.
  • the thin film 18 functions as a high-reflection film that reflects light with a high reflectance with respect to light in the 1300 nm wavelength band, and as a low-reflection film that transmits light with high transmittance without substantially reflecting with respect to light in the 1500 nm wavelength band. Function. Regarding the loss characteristics, it is 0% in the wavelength band of 1150 nm to 1650 nm.
  • FIG. 4 is a conceptual diagram illustrating light transmission / reception when the optical transmission / reception apparatus 100 according to the first embodiment is used in an FTTH system.
  • the optical axis of the transmission light and the optical axis of the reception light are shifted from each other, but in reality, the optical axis of the transmission light and the optical axis of the reception light coincide with each other.
  • the LD 14 that emits light having a wavelength of 1.31 ⁇ m
  • the PD 16 that receives light having a wavelength of 1.49 ⁇ m
  • the thin film 18 having the structure shown in Table 1 in the optical transceiver 100 according to the first embodiment, As shown in FIG.
  • the transmission light in the 1.31 ⁇ m wavelength band emitted from the LD 14 is reflected by the thin film 18 coated on the light receiving surface 42 of the PD 16, collected by the glass ball lens 22, and then the optical fiber 20. Is incident on.
  • the 1.49 ⁇ m wavelength received light emitted from the optical fiber 20 is collected by the glass ball lens 22, passes through the thin film 18, and enters the light receiving surface 42 of the PD 16.
  • the LD 14 that emits the transmission light incident on the optical fiber 20 and the received light that is emitted from the optical fiber 20.
  • the thin film 18 that reflects the transmission light emitted by the LD 14 so as to enter the optical fiber 20 and transmits the reception light emitted from the optical fiber 20 on the light receiving surface 42 of the PD 16.
  • the PD 16 is preferably disposed on the optical axis of the optical fiber 20. Thereby, the received light emitted from the optical fiber 20 can be efficiently received by the PD 16. Further, it is preferable that the optical axis of the transmission light reflected by the thin film 18 and the optical axis of the optical fiber 20 coincide with each other. Thereby, the transmission light emitted from the LD 14 can be efficiently incident on the optical fiber 20.
  • the LD 14 is provided on the first mounting surface 32 that is a surface perpendicular to the optical axis of the optical fiber 20, and the PD 16 is inclined obliquely with respect to the optical axis of the optical fiber 20. It is provided on the second mounting surface 34, which is a curved surface. The mounting of the LD 14 on the first mounting surface 32 perpendicular to the optical axis of the optical fiber 20 and the mounting of the PD 16 on the second mounting surface 34 inclined obliquely with respect to the optical axis of the optical fiber 20 will be described later.
  • the stem 12 having a structure in which the reference surface 28 and the first mounting surface 32 are parallel to each other and only the second mounting surface 34 is inclined is manufactured more easily than in the case of Example 2 described later. be able to.
  • the thin film 18 provided on the light receiving surface 42 of the PD 16 is a multilayer film of an aluminum oxide layer, a silicon layer, and a silicon oxide layer having a structure as shown in Table 1 as an example.
  • Any thin film structure or material may be used as long as the thin film has a property of reflecting the transmission light emitted from the PD 14 and transmitting the reception light emitted from the optical fiber 20.
  • the thin film 18 reflects the transmission light of the wavelength band of 1.31 ⁇ m emitted from the LD 14 and emits the 1.49 ⁇ m of light emitted from the optical fiber 20.
  • the wavelength band of 1.31 ⁇ m is used for the upstream and the wavelength band of 1.55 ⁇ m is used for the downstream, the wavelength band of 1.49 ⁇ m or 1.55 ⁇ m is used for the upstream, and the wavelength of 1.31 ⁇ m is used for the downstream.
  • a band may be used.
  • the thin film 18 has an optical characteristic of reflecting the transmission light in the wavelength band of 1.31 ⁇ m and transmitting the reception light in the wavelength band of 1.55 ⁇ m, or transmitting in the wavelength band of 1.49 ⁇ m or 1.55 ⁇ m. It may have an optical characteristic of reflecting light and transmitting received light having a wavelength band of 1.31 ⁇ m.
  • the LD 14 is a quantum dot laser, but it may be another semiconductor laser such as a quantum well laser. Further, it may be a DFB (Distributed Feedback) type laser or a Fabry-Perot type laser.
  • a DFB (Distributed Feedback) type laser or a Fabry-Perot type laser.
  • APC Auto Power Control
  • the second mounting surface 34 is inclined by 45 ° with respect to the first mounting surface 32, so that the light receiving surface 42 of the PD 16 is inclined 45 ° with respect to the optical axis of the LD 14 as an example. It was.
  • the optical axis of the transmission light reflected by the thin film 18 coated on the light receiving surface 42 and the optical axis of the optical fiber 20 can be matched, and the transmission light emitted from the LD 14 is efficiently transmitted to the optical fiber 20. It can be made incident.
  • the inclination is not limited to 45 °, and the transmission light emitted from the LD 14 may have another inclination within a range in which the transmission light is reflected by the thin film 18 and is incident on the optical fiber 20.
  • the inclination may be within a range of 30 ° to 60 °.
  • FIG. 5A is a schematic top view of the optical transceiver 200 according to the second embodiment
  • FIG. 5B is a schematic cross-sectional view taken along a line AA in FIG. 5A
  • 5A is a schematic top view of the cap 24, the glass ball lens 22, and the sealing glass 46 seen through.
  • the tip of the protrusion 30 of the stem 12 has a dogleg shape and is a third surface that is inclined obliquely with respect to the reference surface 28.
  • a mounting surface 60 and a fourth mounting surface 62 are provided. That is, the third mounting surface 60 and the fourth mounting surface 62 are surfaces inclined obliquely with respect to the optical axis of the optical fiber 20. Both the third mounting surface 60 and the fourth mounting surface 62 have an inclination of, for example, 30 ° with respect to the reference surface 28.
  • the heat sink 40 on which the LD 14 is mounted is mounted on the third mounting surface 60 at the tip of the protrusion 30.
  • the angle ⁇ between the transmission light emitted from the LD 14 and the reception light emitted from the optical fiber 20 becomes an acute angle of 60 °.
  • the PD 16 is mounted on the fourth mounting surface 62 of the protrusion 30.
  • the light receiving surface 42 of the PD 16 is disposed obliquely with respect to the optical axis of the LD 14.
  • the PD 16 is disposed on the optical axis of the optical fiber 20, and the optical axis of the transmission light reflected by the thin film 18 coincides with the optical axis of the optical fiber 20.
  • the other configuration is the same as that of the first embodiment and is shown in FIG.
  • the LD 14 is provided on the third mounting surface 60 that is an inclined surface with respect to the optical axis of the optical fiber 20.
  • the transmission light emitted from the LD 14 and the reception light emitted from the optical fiber 20 intersect at an acute angle.
  • the light receiving surface 42 of the PD 16 approaches a direction perpendicular to the optical axis of the optical fiber 20 as compared with the first embodiment. Therefore, the received light emitted from the optical fiber 20 is easily transmitted through the thin film 18 provided on the light receiving surface 42 of the PD 16, and the intensity of the received light incident on the light receiving surface 42 is increased. That is, the light receiving efficiency of the received light by the PD 16 is improved.
  • the transmission light emitted from the LD 14 may be reflected by the thin film 18 and have another inclination within a range where it is incident on the optical fiber 20.
  • the angle of the third mounting surface 60 with respect to the reference surface 28 increases, and the transmission light and the optical fiber emitted by the LD 14 are increased.
  • the angle ⁇ of the fourth mounting surface 62 with respect to the reference surface 28 is reduced as the angle ⁇ formed with the received light emitted from the optical fiber 20 becomes smaller, and the light receiving surface 42 of the PD 16 is brought closer to the optical axis of the optical fiber 20. There is a need. In this case, the light receiving efficiency of the received light by the PD 16 is improved. Therefore, it is preferable that the inclination of the third mounting surface 60 with respect to the reference surface 28 is large and the inclination of the fourth mounting surface 62 is small.

Abstract

Disclosed is an optical transmission/reception device provided with: a laser diode (14) for emitting transmission light incident on an optical fibre (20); a photodiode (16) for receiving reception light emitted from the optical fibre (20); and a thin film (18) which is disposed on a light-receiving surface (42) of the photodiode (16), reflects transmission light emitted by the laser diode (14) in such a way such that the transmission light is incident on the optical fibre (20), and transmits reception light emitted from the optical fibre (20).

Description

光送受信装置Optical transceiver
 本発明は、光送受信装置に関し、特に、一心双方向型光通信に用いられる光送受信装置に関する。 The present invention relates to an optical transmission / reception device, and more particularly to an optical transmission / reception device used for single-fiber bidirectional optical communication.
 近年、一心双方向型光通信に用いられる光送受信装置の開発が盛んに行われており、例えば、BIDI(bi-directional)型光送受信モジュールが知られている。BIDI型光送受信型モジュールは、送信用TO-CANと、受信用TO-CANと、波長分岐フィルタとが個別に筐体に搭載された構造をしている。このため、BIDI型光送受信モジュールは部品点数が多い。 In recent years, an optical transceiver used for single-fiber bidirectional optical communication has been actively developed. For example, a BIDI (bi-directional) optical transceiver module is known. The BIDI type optical transmission / reception module has a structure in which a transmission TO-CAN, a reception TO-CAN, and a wavelength branching filter are individually mounted in a casing. For this reason, the BIDI type optical transceiver module has a large number of parts.
 また、レーザダイオードと、フォトダイオードと、波長分岐フィルタとを1つのTO-CANに搭載した光送受信モジュールが知られている(例えば、非特許文献1)。この構造の光送受信モジュールによれば、BIDI型光送受信モジュールでは2個必要としたTO-CANおよびレンズを1個に削減できる。 Further, there is known an optical transmission / reception module in which a laser diode, a photodiode, and a wavelength branching filter are mounted in one TO-CAN (for example, Non-Patent Document 1). According to the optical transceiver module having this structure, two TO-CANs and lenses required for the BIDI optical transceiver module can be reduced to one.
 しかしながら、非特許文献1に係る光送受信モジュールは、レーザダイオードとフォトダイオードの他に、レーザダイオードが出射する送信光を光ファイバに入射させ、光ファイバから出射される受信光をフォトダイオードに入射させるための波長分岐フィルタを備えている。この波長分岐フィルタが、光送受信モジュールの小型化、低コスト化の障害となっている。 However, in the optical transceiver module according to Non-Patent Document 1, in addition to the laser diode and the photodiode, the transmission light emitted from the laser diode is incident on the optical fiber, and the reception light emitted from the optical fiber is incident on the photodiode. A wavelength branching filter is provided. This wavelength branching filter is an obstacle to miniaturization and cost reduction of the optical transceiver module.
 本発明は、上記課題に鑑みなされたものであり、小型化、低コスト化を実現することが可能な、一心双方向型光通信に用いられる光送受信装置を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide an optical transmission / reception apparatus used for single-fiber bidirectional optical communication, which can be reduced in size and cost.
 本発明は、光ファイバに入射される送信光を出射するレーザダイオードと、前記光ファイバから出射される受信光を受光するフォトダイオードと、前記フォトダイオードの受光面上に設けられ、前記レーザダイオードが出射する前記送信光を前記光ファイバに入射されるように反射し、前記光ファイバから出射される前記受信光を透過する薄膜と、を具備することを特徴とする光送受信装置である。本発明によれば、波長分岐フィルタを用いることなく一心双方向型光通信を行うことが可能となり、光送受信装置の小型化、低コスト化が実現できる。 The present invention provides a laser diode that emits transmission light incident on an optical fiber, a photodiode that receives reception light emitted from the optical fiber, and a light receiving surface of the photodiode, the laser diode comprising: An optical transmission / reception apparatus comprising: a thin film that reflects the transmitted light emitted so as to be incident on the optical fiber and transmits the received light emitted from the optical fiber. According to the present invention, single-fiber bidirectional optical communication can be performed without using a wavelength branching filter, and downsizing and cost reduction of an optical transceiver can be realized.
 上記構成において、前記フォトダイオードは、前記光ファイバの光軸上に配置されている構成とすることができる。この構成によれば、光ファイバから出射される受信光をフォトダイオードで効率よく受光することができる。 In the above configuration, the photodiode may be arranged on the optical axis of the optical fiber. According to this configuration, received light emitted from the optical fiber can be efficiently received by the photodiode.
 上記構成において、前記薄膜で反射された前記送信光の光軸と前記光ファイバの光軸とは一致する構成とすることができる。この構成によれば、レーザダイオードが出射する送信光を光ファイバに効率よく入射させることができる。 In the above configuration, the optical axis of the transmission light reflected by the thin film and the optical axis of the optical fiber can be made to coincide with each other. According to this configuration, the transmission light emitted from the laser diode can be efficiently incident on the optical fiber.
 上記構成において、前記レーザダイオードは、前記光ファイバの光軸に対して垂直な面上に設けられていて、前記フォトダイオードは、前記光ファイバの光軸に対して斜めに傾いた面上に設けられている構成とすることができる。この構成によれば、レーザダイオードおよびフォトダイオードの実装を容易に行うことができる。 In the above configuration, the laser diode is provided on a surface perpendicular to the optical axis of the optical fiber, and the photodiode is provided on a surface inclined obliquely with respect to the optical axis of the optical fiber. It can be set as the structure currently provided. According to this configuration, the laser diode and the photodiode can be easily mounted.
 上記構成において、前記レーザダイオードは、出射する前記送信光と前記光ファイバから出射される前記受信光とが鋭角に交わるように設けられている構成とすることができる。この構成によれば、光ファイバから出射される受信光のフォトダイオードによる受光効率を向上させることができる。 In the above configuration, the laser diode may be configured such that the transmitted light emitted and the received light emitted from the optical fiber intersect at an acute angle. According to this configuration, the light receiving efficiency of the received light emitted from the optical fiber by the photodiode can be improved.
 上記構成において、前記レーザダイオードは、量子ドットレーザダイオードである構成とすることができる。この構成によれば、モニタ用フォトダイオードを不要とすることができ、より小型化、低コスト化を実現できる。 In the above configuration, the laser diode may be a quantum dot laser diode. According to this configuration, it is possible to eliminate the need for a monitoring photodiode, and it is possible to achieve further downsizing and cost reduction.
 本発明によれば、波長分岐フィルタを用いることなく一心双方向型光通信を行うことが可能となり、光送受信装置の小型化、低コスト化が実現できる。 According to the present invention, one-way bidirectional optical communication can be performed without using a wavelength branching filter, and the optical transceiver can be reduced in size and cost.
図1(a)は、実施例1に係る光送受信装置の上面模式図であり、図1(b)は、図1(a)のA-A間の断面模式図である。FIG. 1A is a schematic top view of the optical transceiver according to the first embodiment, and FIG. 1B is a schematic cross-sectional view taken along a line AA in FIG. 図2は、実施例1に係る光送受信装置に用いる、薄膜を受光面に備えたフォトダイオードの断面模式図である。FIG. 2 is a schematic cross-sectional view of a photodiode provided with a thin film on a light receiving surface, which is used in the optical transceiver according to the first embodiment. 図3は、フォトダイオードの受光面に設けられた薄膜の光学特性を説明する図である。FIG. 3 is a diagram for explaining the optical characteristics of the thin film provided on the light receiving surface of the photodiode. 図4は、実施例1に係る光送受信装置による送受信光の伝搬を説明する図である。FIG. 4 is a diagram for explaining propagation of transmission / reception light by the optical transmission / reception apparatus according to the first embodiment. 図5(a)は、実施例2に係る光送受信装置の上面模式図であり、図5(b)は、図5(a)のA-A間の断面模式図である。FIG. 5A is a schematic top view of the optical transceiver according to the second embodiment, and FIG. 5B is a schematic cross-sectional view taken along the line AA in FIG. 5A.
 以下、図面を参照して、本発明に係る光送受信装置の実施例としてCANパッケージを採用した光送受信装置について説明する。 Hereinafter, an optical transceiver employing a CAN package as an embodiment of the optical transceiver according to the present invention will be described with reference to the drawings.
 図1(a)は実施例1に係る光送受信装置100の上面模式図であり、図1(b)は図1(a)のA-A間の断面模式図である。なお、図1(a)は、キャップ24、ガラスボールレンズ22、および封止ガラス46を透視した上面模式図である。図1(a)および図1(b)のように、光送受信装置100は、主として、ステム12と、レーザダイオード(以下、LDと称す)14と、フォトダイオード(以下、PDと称す)16と、PD16の受光面42上に設けられた薄膜18と、LD14が出射する送信光および光ファイバ20から出射される受信光を集光するガラスボールレンズ22と、LD14およびPD16を封止するキャップ24と、から構成される。 FIG. 1A is a schematic top view of the optical transceiver 100 according to the first embodiment, and FIG. 1B is a schematic cross-sectional view taken along the line AA in FIG. FIG. 1A is a schematic top view of the cap 24, the glass ball lens 22, and the sealing glass 46 seen through. As shown in FIGS. 1A and 1B, the optical transceiver 100 mainly includes a stem 12, a laser diode (hereinafter referred to as LD) 14, and a photodiode (hereinafter referred to as PD) 16. The thin film 18 provided on the light receiving surface 42 of the PD 16, the glass ball lens 22 that collects the transmission light emitted from the LD 14 and the reception light emitted from the optical fiber 20, and a cap 24 that seals the LD 14 and PD 16. And.
 ステム12は、例えば普通鋼(SPCC)のような鉄系の合金で形成され、円柱形状をした基部26と、基部26の基準面28で垂直方向に突出した突起部30と、を有する。基準面28は、光ファイバ20の光軸に対して垂直な面であり、この面を基準に、LD14、PD16、およびガラスボールレンズ22までの距離などを設定する。突起部30の先端には、基準面28に対して平行な面(以下、第1実装面32と称す)と斜めに傾いた面(以下、第2実装面34と称す)とを有する。第2実装面34は、第1実装面32に対して、例えば45°の傾きを有する。ステム12には、リードピン36が、例えばガラスなどの絶縁物38を介して固定され取り付けられている。リードピン36は、例えば3本設けられていて、その内の1本はワイヤ39によりLD14に接続され、他の1本はPD16に接続され、残りの1本はグランドに接続されている。なお、リードピン36の本数は、3本に限られるわけではなく、4本など、他の本数の場合でもよい。 The stem 12 is made of, for example, an iron-based alloy such as ordinary steel (SPCC), and has a columnar base portion 26 and a projection portion 30 protruding in the vertical direction on the reference surface 28 of the base portion 26. The reference plane 28 is a plane perpendicular to the optical axis of the optical fiber 20, and the distance to the LD 14, PD 16, and glass ball lens 22 is set based on this plane. At the tip of the projecting portion 30, there are a surface parallel to the reference surface 28 (hereinafter referred to as the first mounting surface 32) and an inclined surface (hereinafter referred to as the second mounting surface 34). The second mounting surface 34 has an inclination of, for example, 45 ° with respect to the first mounting surface 32. A lead pin 36 is fixedly attached to the stem 12 via an insulator 38 such as glass. For example, three lead pins 36 are provided, one of which is connected to the LD 14 by a wire 39, the other one is connected to the PD 16, and the other one is connected to the ground. Note that the number of lead pins 36 is not limited to three, and may be other numbers such as four.
 LD14は、例えば窒化アルミニウム(AlN)で形成されたヒートシンク40上にマウントされている。LD14がマウントされたヒートシンク40は、突起部30の先端の第1実装面32に実装されている。PD16は、突起部30の先端の第2実装面34に実装されている。これにより、PD16の受光面42は、LD14の光軸に対して45°傾いて配置される。PD16の受光面42には薄膜18がコーティングされている。PD16および薄膜18の詳細については後述する。 The LD 14 is mounted on a heat sink 40 made of, for example, aluminum nitride (AlN). The heat sink 40 on which the LD 14 is mounted is mounted on the first mounting surface 32 at the tip of the protrusion 30. The PD 16 is mounted on the second mounting surface 34 at the tip of the protrusion 30. As a result, the light receiving surface 42 of the PD 16 is disposed with an inclination of 45 ° with respect to the optical axis of the LD 14. The light receiving surface 42 of the PD 16 is coated with the thin film 18. Details of the PD 16 and the thin film 18 will be described later.
 LD14は、例えば量子ドットレーザである。LD14が出射する送信光は、PD16の受光面42にコーティングされた薄膜18で光ファイバ20側に反射される。薄膜18で反射された送信光は、ガラスボールレンズ22で集光され、光ファイバ20に入射する。一方、光ファイバ20から出射される受信光は、ガラスボールレンズ22で集光され、薄膜18を透過して、PD16の受光面42に入射する。このように、薄膜18は、LD14が出射する送信光に対しては高反射膜として機能し、光ファイバ20から出射される受信光に対しては低反射膜として機能する。 LD 14 is, for example, a quantum dot laser. The transmission light emitted from the LD 14 is reflected to the optical fiber 20 side by the thin film 18 coated on the light receiving surface 42 of the PD 16. The transmission light reflected by the thin film 18 is collected by the glass ball lens 22 and enters the optical fiber 20. On the other hand, the received light emitted from the optical fiber 20 is collected by the glass ball lens 22, passes through the thin film 18, and enters the light receiving surface 42 of the PD 16. Thus, the thin film 18 functions as a high reflection film for the transmission light emitted from the LD 14 and functions as a low reflection film for the reception light emitted from the optical fiber 20.
 PD16は、光ファイバ20の光軸上に配置されている。薄膜18で反射される送信光の光軸と光ファイバ20の光軸とは一致している。これにより、LD14が出射する送信光を光ファイバ20に効率よく入射させることができる。また、光ファイバ20から出射される受信光を効率よくPD16で受光することができる。なおこの場合、薄膜18で反射される送信光の光軸と光ファイバ20から出射される受信光の光軸とが一致することにもなる。 PD 16 is arranged on the optical axis of the optical fiber 20. The optical axis of the transmission light reflected by the thin film 18 is coincident with the optical axis of the optical fiber 20. Thereby, the transmission light emitted from the LD 14 can be efficiently incident on the optical fiber 20. Further, the received light emitted from the optical fiber 20 can be efficiently received by the PD 16. In this case, the optical axis of the transmission light reflected by the thin film 18 and the optical axis of the reception light emitted from the optical fiber 20 also coincide with each other.
 キャップ24は、例えば金属製であり、円筒形状をしている。キャップ24の上面44には、孔部が設けられていて、孔部にガラスボールレンズ22が嵌め込まれている。キャップ24の上面44には、ガラスボールレンズ22の周囲で孔部を覆うように封止ガラス46が設けられており、封止ガラス46とガラスボールレンズ22により孔部がシールされている。これにより、キャップ24の下部48をステム12に溶接固定することで、LD14とPD16をキャップ24で密閉し、封止することができる。キャップ24内部は大気が充満している場合でもよいが、LD14やPD16の劣化を抑制するなどの目的から窒素ガスが充満している場合が好ましい。 The cap 24 is made of metal, for example, and has a cylindrical shape. The upper surface 44 of the cap 24 is provided with a hole, and the glass ball lens 22 is fitted into the hole. A sealing glass 46 is provided on the upper surface 44 of the cap 24 so as to cover the hole around the glass ball lens 22, and the hole is sealed by the sealing glass 46 and the glass ball lens 22. Thereby, the LD 14 and the PD 16 can be sealed with the cap 24 and sealed by welding and fixing the lower portion 48 of the cap 24 to the stem 12. The inside of the cap 24 may be filled with air, but is preferably filled with nitrogen gas for the purpose of suppressing the deterioration of the LD 14 and PD 16.
 ここで、実施例1に係る光送受信装置100がFTTH(Fiber To The Home)システムに用いられる場合を想定する。FTTHでは、一般的に上りは1.31μmの波長帯域を、下りは1.49μmの波長帯域を用いることから、光送受信装置100が有するLD14は、1.31μm波長帯の送信光を出射し、PD16は、光ファイバ20から出射される1.49μm波長帯の受信光を受光する。したがって、PD16の受光面42にコーティングされる薄膜18は、1.31μm波長帯の光を反射し、且つ、1.49μm波長帯の光を透過する光学特性を有することが求められる。 Here, it is assumed that the optical transceiver 100 according to the first embodiment is used in an FTTH (Fiber To The Home) system. In FTTH, the wavelength band of 1.31 μm is generally used for the upstream and the wavelength band of 1.49 μm is used for the downstream. Therefore, the LD 14 of the optical transceiver 100 emits transmission light of the 1.31 μm wavelength band, The PD 16 receives received light in the 1.49 μm wavelength band emitted from the optical fiber 20. Therefore, the thin film 18 coated on the light receiving surface 42 of the PD 16 is required to have an optical characteristic of reflecting light in the 1.31 μm wavelength band and transmitting light in the 1.49 μm wavelength band.
 1.31μm波長帯の送信光を出射するLD14は、例えば、p型AlGaAs層からなる下部クラッド層と、InAs量子ドットを有する量子ドット活性層と、n型AlGaAs層からなる上部クラッド層と、を含む量子ドットレーザを用いることができる。 The LD 14 that emits transmission light in the 1.31 μm wavelength band includes, for example, a lower cladding layer made of a p-type AlGaAs layer, a quantum dot active layer having InAs quantum dots, and an upper cladding layer made of an n-type AlGaAs layer. Including quantum dot lasers can be used.
 次に、1.49μm波長帯の受信光を受光し、受光面42に薄膜18がコーティングされたPD16を説明する。図2は、薄膜18がコーティングされたPD16の断面模式図である。図2のように、PD16は、例えばn型InP基板50上に、n型InPバッファ層52、n型InGaAs層54と、n型InP窓層56にp型キャリアを導入したp型領域58と、が順次形成されている。n型InGaAs層54とp型領域58との間にはpn接合61が形成される。また、p型領域58の周囲には拡散遮断領域63が形成されている。p型領域58上にはp型InGaAsコンタクト層64が形成され、p型InGaAsコンタクト層64上には、p電極66が形成されている。p電極66とp型領域58とは、p型InGaAsコンタクト層64を介して電気的に接続している。拡散遮断領域63とp電極66との間にはポリイミド層65が介在している。n型InP基板50の裏面にはn電極68が設けられている。受光面42であるp型領域58上面を覆うように、多層膜である薄膜18がコーティングされている。 Next, a PD 16 that receives received light in the 1.49 μm wavelength band and has the light receiving surface 42 coated with the thin film 18 will be described. FIG. 2 is a schematic cross-sectional view of the PD 16 coated with the thin film 18. As shown in FIG. 2, the PD 16 includes, for example, an n-type InP buffer layer 52, an n-type InGaAs layer 54, and a p-type region 58 in which p-type carriers are introduced into an n-type InP window layer 56 on an n-type InP substrate 50. Are sequentially formed. A pn junction 61 is formed between the n-type InGaAs layer 54 and the p-type region 58. A diffusion blocking region 63 is formed around the p-type region 58. A p-type InGaAs contact layer 64 is formed on the p-type region 58, and a p-electrode 66 is formed on the p-type InGaAs contact layer 64. The p electrode 66 and the p-type region 58 are electrically connected via the p-type InGaAs contact layer 64. A polyimide layer 65 is interposed between the diffusion blocking region 63 and the p electrode 66. An n-electrode 68 is provided on the back surface of the n-type InP substrate 50. The thin film 18 that is a multilayer film is coated so as to cover the upper surface of the p-type region 58 that is the light receiving surface 42.
 表1は、多層膜である薄膜18の構造の例であり、多層膜それぞれの層の材料、膜厚、および屈折率を示している。表1のように、薄膜18は、例えば酸化アルミニウム層(Al層)上にシリコン層(Si層)と酸化シリコン層(SiO層)とが繰り返し設けられた構造をしている。具体的には、膜厚58.0nmで屈折率1.58の酸化アルミニウム層上に、膜厚53.5nmで屈折率3.56のシリコン層、膜厚348.0nmで屈折率1.45の酸化シリコン層、膜厚36.9nmで屈折率3.56のシリコン層、膜厚182.3nmで屈折率1.45の酸化シリコン層が順次積層されている。その上にはさらに、膜厚73.7nmで屈折率3.56のシリコン層と膜厚182.3nmで屈折率1.45の酸化シリコン層とが5回繰り返して形成されている。最上層には、膜厚36.9nmで屈折率3.56のシリコン層が形成されている。
Figure JPOXMLDOC01-appb-T000001
Table 1 is an example of the structure of the thin film 18 which is a multilayer film, and shows the material, film thickness, and refractive index of each layer of the multilayer film. As shown in Table 1, the thin film 18 has a structure in which, for example, a silicon layer (Si layer) and a silicon oxide layer (SiO 2 layer) are repeatedly provided on an aluminum oxide layer (Al 2 O 3 layer). Specifically, a silicon layer having a thickness of 53.5 nm and a refractive index of 3.56 is formed on an aluminum oxide layer having a thickness of 58.0 nm and a refractive index of 1.58, and a refractive index of 1.45 having a thickness of 348.0 nm. A silicon oxide layer, a silicon layer having a thickness of 36.9 nm and a refractive index of 3.56, and a silicon oxide layer having a thickness of 182.3 nm and a refractive index of 1.45 are sequentially stacked. Further thereon, a silicon layer having a thickness of 73.7 nm and a refractive index of 3.56 and a silicon oxide layer having a thickness of 182.3 nm and a refractive index of 1.45 are repeatedly formed five times. As the uppermost layer, a silicon layer having a thickness of 36.9 nm and a refractive index of 3.56 is formed.
Figure JPOXMLDOC01-appb-T000001
 図3は、屈折率3.42のGaAs基板上に、表1に示す構造の薄膜18を形成し、薄膜18に対して45°の入射角で光を入射させた場合における薄膜18の反射特性、透過特性、および損失特性を計算したシミュレーション結果である。図3の横軸は薄膜18に入射する光の波長(nm)を、縦軸は薄膜18による光の反射率(%)・透過率(%)・損失率(%)を表している。図3のように、薄膜18の反射特性と透過特性とは波長に依存している。薄膜18は、1300nm波長帯の光に対しては高反射率で反射する高反射膜として機能し、1500nm波長帯の光に対してはほとんど反射せずに高透過率で透過する低反射膜として機能する。損失特性に関しては、1150nmから1650nmの波長帯において0%である。 FIG. 3 shows the reflection characteristics of the thin film 18 when the thin film 18 having the structure shown in Table 1 is formed on a GaAs substrate having a refractive index of 3.42 and light is incident on the thin film 18 at an incident angle of 45 °. It is the simulation result which calculated the transmission characteristic and the loss characteristic. The horizontal axis in FIG. 3 represents the wavelength (nm) of light incident on the thin film 18, and the vertical axis represents the light reflectance (%), transmittance (%), and loss rate (%). As shown in FIG. 3, the reflection characteristics and transmission characteristics of the thin film 18 depend on the wavelength. The thin film 18 functions as a high-reflection film that reflects light with a high reflectance with respect to light in the 1300 nm wavelength band, and as a low-reflection film that transmits light with high transmittance without substantially reflecting with respect to light in the 1500 nm wavelength band. Function. Regarding the loss characteristics, it is 0% in the wavelength band of 1150 nm to 1650 nm.
 図4は、実施例1に係る光送受信装置100をFTTHシステムに用いた場合の光の送受信について説明する概念図である。なお、図を明瞭にする目的から、送信光の光軸と受信光の光軸とをずらして図示しているが、実際は、送信光の光軸と受信光の光軸とは一致している。実施例1に係る光送受信装置100に、1.31μmの波長の光を出射するLD14と、1.49μmの波長の光を受光するPD16と、表1に示す構造の薄膜18を用いることで、図4のように、LD14から出射される1.31μm波長帯の送信光は、PD16の受光面42にコーティングされた薄膜18で反射され、ガラスボールレンズ22で集光された後、光ファイバ20に入射する。一方、光ファイバ20から出射される1.49μm波長帯の受信光は、ガラスボールレンズ22で集光され、薄膜18を透過してPD16の受光面42に入射する。 FIG. 4 is a conceptual diagram illustrating light transmission / reception when the optical transmission / reception apparatus 100 according to the first embodiment is used in an FTTH system. For the purpose of clarifying the figure, the optical axis of the transmission light and the optical axis of the reception light are shifted from each other, but in reality, the optical axis of the transmission light and the optical axis of the reception light coincide with each other. . By using the LD 14 that emits light having a wavelength of 1.31 μm, the PD 16 that receives light having a wavelength of 1.49 μm, and the thin film 18 having the structure shown in Table 1 in the optical transceiver 100 according to the first embodiment, As shown in FIG. 4, the transmission light in the 1.31 μm wavelength band emitted from the LD 14 is reflected by the thin film 18 coated on the light receiving surface 42 of the PD 16, collected by the glass ball lens 22, and then the optical fiber 20. Is incident on. On the other hand, the 1.49 μm wavelength received light emitted from the optical fiber 20 is collected by the glass ball lens 22, passes through the thin film 18, and enters the light receiving surface 42 of the PD 16.
 以上説明してきたように、実施例1に係る光送受信装置100によれば、図1のように、光ファイバ20に入射される送信光を出射するLD14と、光ファイバ20から出射される受信光を受光するPD16と、PD16の受光面42上に、LD14が出射する送信光が光ファイバ20に入射されるように反射し、光ファイバ20から出射される受信光を透過する薄膜18と、が設けられている。これにより、波長分岐フィルタを別途個別に搭載することなく、一心双方向型光通信が可能となり、光送受信装置の小型化、低コスト化を実現することができる。 As described above, according to the optical transceiver 100 according to the first embodiment, as shown in FIG. 1, the LD 14 that emits the transmission light incident on the optical fiber 20 and the received light that is emitted from the optical fiber 20. And the thin film 18 that reflects the transmission light emitted by the LD 14 so as to enter the optical fiber 20 and transmits the reception light emitted from the optical fiber 20 on the light receiving surface 42 of the PD 16. Is provided. As a result, single-fiber bidirectional optical communication can be performed without separately mounting a wavelength branching filter, and downsizing and cost reduction of the optical transceiver can be realized.
 図1のように、PD16は、光ファイバ20の光軸上に配置されている場合が好ましい。これにより、光ファイバ20から出射される受信光をPD16で効率よく受光することができる。また、薄膜18で反射された送信光の光軸と光ファイバ20の光軸とは一致している場合が好ましい。これにより、LD14が出射する送信光を光ファイバ20に効率よく入射させることができる。 As shown in FIG. 1, the PD 16 is preferably disposed on the optical axis of the optical fiber 20. Thereby, the received light emitted from the optical fiber 20 can be efficiently received by the PD 16. Further, it is preferable that the optical axis of the transmission light reflected by the thin film 18 and the optical axis of the optical fiber 20 coincide with each other. Thereby, the transmission light emitted from the LD 14 can be efficiently incident on the optical fiber 20.
 図1のように、LD14は、光ファイバ20の光軸に対して垂直な面である第1実装面32上に設けられていて、PD16は、光ファイバ20の光軸に対して斜めに傾いた面である第2実装面34上に設けられている。LD14を光ファイバ20の光軸に垂直な第1実装面32上に実装し、PD16を光ファイバ20の光軸に対して斜めに傾いた第2実装面34上に実装することは、後述する実施例2のようにLD14とPD16とを共に光ファイバ20の光軸に対して斜めに傾いた面に実装する場合に比べて容易に実装できる。また、基準面28と第1実装面32とは互いに平行であり、第2実装面34だけが斜めに傾いている構造のステム12は、後述する実施例2の場合に比べて容易に製造することができる。 As shown in FIG. 1, the LD 14 is provided on the first mounting surface 32 that is a surface perpendicular to the optical axis of the optical fiber 20, and the PD 16 is inclined obliquely with respect to the optical axis of the optical fiber 20. It is provided on the second mounting surface 34, which is a curved surface. The mounting of the LD 14 on the first mounting surface 32 perpendicular to the optical axis of the optical fiber 20 and the mounting of the PD 16 on the second mounting surface 34 inclined obliquely with respect to the optical axis of the optical fiber 20 will be described later. Compared to the case where both the LD 14 and the PD 16 are mounted on a surface inclined obliquely with respect to the optical axis of the optical fiber 20 as in the second embodiment, the mounting can be facilitated. Further, the stem 12 having a structure in which the reference surface 28 and the first mounting surface 32 are parallel to each other and only the second mounting surface 34 is inclined is manufactured more easily than in the case of Example 2 described later. be able to.
 実施例1において、PD16の受光面42上に設けられた薄膜18は、表1に示すような構造の酸化アルミニウム層とシリコン層と酸化シリコン層との多層膜である場合を例に示したが、これに限られるわけではない。PD14が出射する送信光を反射し、光ファイバ20から出射される受信光を透過する性質を有する薄膜であれば、その他の膜構造や材料からなる場合でもよい。特に、実施例1に係る光送受信装置100をFTTHシステムに用いる場合、薄膜18は、LD14が出射する1.31μmの波長帯の送信光を反射し、光ファイバ20から出射される1.49μmの波長帯の受信光を透過する光学特性を有する場合が好ましい。また、FTTHシステムでは、上りに1.31μmの波長帯を、下りに1.55μmの波長帯を用いる場合や、上りに1.49μmまたは1.55μmの波長帯を、下りに1.31μmの波長帯を用いる場合もある。したがって、薄膜18は、1.31μmの波長帯の送信光を反射し、1.55μmの波長帯の受信光を透過する光学特性を有する場合や、1.49μmまたは1.55μmの波長帯の送信光を反射し、1.31μmの波長帯の受信光を透過する光学特性を有する場合でもよい。 In the first embodiment, the thin film 18 provided on the light receiving surface 42 of the PD 16 is a multilayer film of an aluminum oxide layer, a silicon layer, and a silicon oxide layer having a structure as shown in Table 1 as an example. However, it is not limited to this. Any thin film structure or material may be used as long as the thin film has a property of reflecting the transmission light emitted from the PD 14 and transmitting the reception light emitted from the optical fiber 20. In particular, when the optical transceiver 100 according to the first embodiment is used in the FTTH system, the thin film 18 reflects the transmission light of the wavelength band of 1.31 μm emitted from the LD 14 and emits the 1.49 μm of light emitted from the optical fiber 20. The case where it has the optical characteristic which permeate | transmits the received light of a wavelength band is preferable. In the FTTH system, the wavelength band of 1.31 μm is used for the upstream and the wavelength band of 1.55 μm is used for the downstream, the wavelength band of 1.49 μm or 1.55 μm is used for the upstream, and the wavelength of 1.31 μm is used for the downstream. A band may be used. Accordingly, the thin film 18 has an optical characteristic of reflecting the transmission light in the wavelength band of 1.31 μm and transmitting the reception light in the wavelength band of 1.55 μm, or transmitting in the wavelength band of 1.49 μm or 1.55 μm. It may have an optical characteristic of reflecting light and transmitting received light having a wavelength band of 1.31 μm.
 実施例1において、LD14は量子ドットレーザである場合を例に示したが、例えば量子井戸レーザなどの他の半導体レーザである場合でもよい。また、DFB(Distributed Feedback)型レーザであってもファブリペロ型レーザであってもよい。しかしながら、量子ドットレーザは、出射光の光出力の温度依存性が小さいため、APC(Auto Power Control)回路を用いて出射光の光出力をフィードバックしなくても、一定の光出力を得ることができる。したがって、LD14に量子ドットレーザを用いた場合は、モニタ用フォトダイオードなどを設けなくて済むため、光送受信装置100の小型化、低コスト化をより一層実現することができる。 In the first embodiment, the LD 14 is a quantum dot laser, but it may be another semiconductor laser such as a quantum well laser. Further, it may be a DFB (Distributed Feedback) type laser or a Fabry-Perot type laser. However, since the temperature dependence of the light output of the emitted light is small in the quantum dot laser, a constant light output can be obtained without feeding back the light output of the emitted light by using an APC (Auto Power Control) circuit. it can. Therefore, when a quantum dot laser is used for the LD 14, it is not necessary to provide a monitoring photodiode or the like, so that the optical transceiver 100 can be further reduced in size and cost.
 実施例1において、第2実装面34が第1実装面32に対して45°傾いていることで、PD16の受光面42がLD14の光軸に対して45°傾いている場合を例に示した。この場合は、受光面42にコーティングされた薄膜18で反射される送信光の光軸と光ファイバ20の光軸とを一致させることができ、LD14が出射する送信光を光ファイバ20に効率よく入射させることができる。しかしながら、傾きは45°の場合に限られず、LD14が出射する送信光が薄膜18で反射して光ファイバ20に入射される範囲内でその他の傾きを有する場合でもよい。例えば30°から60°の範囲内の傾きを有する場合でもよい。 In the first embodiment, the second mounting surface 34 is inclined by 45 ° with respect to the first mounting surface 32, so that the light receiving surface 42 of the PD 16 is inclined 45 ° with respect to the optical axis of the LD 14 as an example. It was. In this case, the optical axis of the transmission light reflected by the thin film 18 coated on the light receiving surface 42 and the optical axis of the optical fiber 20 can be matched, and the transmission light emitted from the LD 14 is efficiently transmitted to the optical fiber 20. It can be made incident. However, the inclination is not limited to 45 °, and the transmission light emitted from the LD 14 may have another inclination within a range in which the transmission light is reflected by the thin film 18 and is incident on the optical fiber 20. For example, the inclination may be within a range of 30 ° to 60 °.
 図5(a)は実施例2に係る光送受信装置200の上面模式図であり、図5(b)は図5(a)のA-A間の断面模式図である。なお、図5(a)は、キャップ24、ガラスボールレンズ22、および封止ガラス46を透視した上面模式図である。図5(a)および図5(b)のように、ステム12が有する突起部30の先端は、くの字型になっており、基準面28に対して斜めに傾いた面である第3実装面60と第4実装面62とを有する。つまり、第3実装面60と第4実装面62とは、光ファイバ20の光軸に対して斜めに傾いた面である。第3実装面60と第4実装面62とは共に、基準面28に対して、例えば、30°の傾きを有する。 FIG. 5A is a schematic top view of the optical transceiver 200 according to the second embodiment, and FIG. 5B is a schematic cross-sectional view taken along a line AA in FIG. 5A. 5A is a schematic top view of the cap 24, the glass ball lens 22, and the sealing glass 46 seen through. As shown in FIGS. 5A and 5B, the tip of the protrusion 30 of the stem 12 has a dogleg shape and is a third surface that is inclined obliquely with respect to the reference surface 28. A mounting surface 60 and a fourth mounting surface 62 are provided. That is, the third mounting surface 60 and the fourth mounting surface 62 are surfaces inclined obliquely with respect to the optical axis of the optical fiber 20. Both the third mounting surface 60 and the fourth mounting surface 62 have an inclination of, for example, 30 ° with respect to the reference surface 28.
 LD14がマウントされたヒートシンク40は、突起部30の先端の第3実装面60に実装されている。これにより、LD14が出射する送信光と光ファイバ20から出射された受信光とが交わる角θは60°と鋭角になる。PD16は、突起部30の第4実装面62に実装されている。これにより、PD16の受光面42は、LD14の光軸に対して斜めに配置されている。PD16は、光ファイバ20の光軸上に配置されていて、薄膜18で反射された送信光の光軸と光ファイバ20の光軸とは一致している。その他の構成については、実施例1と同じであり、図1に示しているので、ここでは説明を省略する。 The heat sink 40 on which the LD 14 is mounted is mounted on the third mounting surface 60 at the tip of the protrusion 30. As a result, the angle θ between the transmission light emitted from the LD 14 and the reception light emitted from the optical fiber 20 becomes an acute angle of 60 °. The PD 16 is mounted on the fourth mounting surface 62 of the protrusion 30. Thus, the light receiving surface 42 of the PD 16 is disposed obliquely with respect to the optical axis of the LD 14. The PD 16 is disposed on the optical axis of the optical fiber 20, and the optical axis of the transmission light reflected by the thin film 18 coincides with the optical axis of the optical fiber 20. The other configuration is the same as that of the first embodiment and is shown in FIG.
 このように、実施例2に係る光送受信装置200によれば、図5のように、LD14は、光ファイバ20の光軸に対して斜めに傾いた面である第3実装面60上に設けられていて、LD14が出射する送信光と光ファイバ20から出射される受信光とは鋭角に交わっている。これにより、実施例1に比べて、PD16の受光面42は光ファイバ20の光軸に対して垂直に近づくことになる。よって、光ファイバ20から出射される受信光は、PD16の受光面42上に設けられた薄膜18を透過しやすくなり、受光面42に入射される受信光の強度が大きくなる。つまり、PD16による受信光の受光効率が向上する。 As described above, according to the optical transceiver 200 according to the second embodiment, as shown in FIG. 5, the LD 14 is provided on the third mounting surface 60 that is an inclined surface with respect to the optical axis of the optical fiber 20. The transmission light emitted from the LD 14 and the reception light emitted from the optical fiber 20 intersect at an acute angle. As a result, the light receiving surface 42 of the PD 16 approaches a direction perpendicular to the optical axis of the optical fiber 20 as compared with the first embodiment. Therefore, the received light emitted from the optical fiber 20 is easily transmitted through the thin film 18 provided on the light receiving surface 42 of the PD 16, and the intensity of the received light incident on the light receiving surface 42 is increased. That is, the light receiving efficiency of the received light by the PD 16 is improved.
 実施例2において、第3実装面60と第4実装面62とが、基準面28に対して30°傾いている場合を例に示したが、この場合に限られるわけではない。LD14が出射する送信光が薄膜18で反射して光ファイバ20に入射される範囲内でその他の傾きを有する場合でもよい。特に、薄膜18で反射される送信光の光軸と光ファイバ20の光軸とを一致させる場合、基準面28に対する第3実装面60の角度が大きくなり、LD14が出射する送信光と光ファイバ20から出射される受信光とのなす角θが小さくなる程、基準面28に対する第4実装面62の角度を小さくし、PD16の受光面42を光ファイバ20の光軸に対して垂直に近づける必要がある。この場合、PD16による受信光の受光効率は向上する。したがって、基準面28に対する第3実装面60の傾きは大きく、第4実装面62の傾きは小さい場合が好ましい。 In the second embodiment, the case where the third mounting surface 60 and the fourth mounting surface 62 are inclined by 30 ° with respect to the reference surface 28 has been described as an example. The transmission light emitted from the LD 14 may be reflected by the thin film 18 and have another inclination within a range where it is incident on the optical fiber 20. In particular, when the optical axis of the transmission light reflected by the thin film 18 and the optical axis of the optical fiber 20 are matched, the angle of the third mounting surface 60 with respect to the reference surface 28 increases, and the transmission light and the optical fiber emitted by the LD 14 are increased. The angle θ of the fourth mounting surface 62 with respect to the reference surface 28 is reduced as the angle θ formed with the received light emitted from the optical fiber 20 becomes smaller, and the light receiving surface 42 of the PD 16 is brought closer to the optical axis of the optical fiber 20. There is a need. In this case, the light receiving efficiency of the received light by the PD 16 is improved. Therefore, it is preferable that the inclination of the third mounting surface 60 with respect to the reference surface 28 is large and the inclination of the fourth mounting surface 62 is small.
 以上、本発明の好ましい実施例について詳述したが、本発明は係る特定の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。 The preferred embodiments of the present invention have been described in detail above, but the present invention is not limited to such specific embodiments, and various modifications can be made within the scope of the gist of the present invention described in the claims.・ Change is possible.

Claims (6)

  1.  光ファイバに入射される送信光を出射するレーザダイオードと、
     前記光ファイバから出射される受信光を受光するフォトダイオードと、
     前記フォトダイオードの受光面上に設けられ、前記レーザダイオードが出射する前記送信光を前記光ファイバに入射されるように反射し、前記光ファイバから出射される前記受信光を透過する薄膜と、
     を具備することを特徴とする光送受信装置。
    A laser diode that emits transmission light incident on an optical fiber;
    A photodiode that receives received light emitted from the optical fiber;
    A thin film that is provided on a light receiving surface of the photodiode, reflects the transmission light emitted by the laser diode so as to be incident on the optical fiber, and transmits the reception light emitted from the optical fiber;
    An optical transmitting / receiving apparatus comprising:
  2.  前記フォトダイオードは、前記光ファイバの光軸上に配置されていることを特徴とする請求項1記載の光送受信装置。 The optical transceiver according to claim 1, wherein the photodiode is disposed on an optical axis of the optical fiber.
  3.  前記薄膜で反射される前記送信光の光軸と前記光ファイバの光軸とは一致することを特徴とする請求項2記載の光送受信装置。 3. The optical transceiver according to claim 2, wherein an optical axis of the transmission light reflected by the thin film coincides with an optical axis of the optical fiber.
  4.  前記レーザダイオードは、前記光ファイバの光軸に対して垂直な面上に設けられていて、前記フォトダイオードは、前記光ファイバの光軸に対して斜めに傾いた面上に設けられていることを特徴とする請求項2または3記載の光送受信装置。 The laser diode is provided on a surface perpendicular to the optical axis of the optical fiber, and the photodiode is provided on a surface inclined obliquely with respect to the optical axis of the optical fiber. The optical transceiver according to claim 2 or 3.
  5.  前記レーザダイオードは、出射する前記送信光と前記光ファイバから出射される前記受信光とが鋭角に交わるように設けられていることを特徴とする請求項2または3記載の光送受信装置。 4. The optical transmitting / receiving apparatus according to claim 2, wherein the laser diode is provided so that the transmitted light to be emitted and the received light to be emitted from the optical fiber intersect at an acute angle.
  6.  前記レーザダイオードは、量子ドットレーザダイオードであることを特徴とする請求項1から5のいずれか一項記載の光送受信装置。 6. The optical transceiver according to claim 1, wherein the laser diode is a quantum dot laser diode.
PCT/JP2010/066082 2009-10-13 2010-09-16 Optical transmission/reception device WO2011046004A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-236025 2009-10-13
JP2009236025A JP2011085623A (en) 2009-10-13 2009-10-13 Optical transmission/reception device

Publications (1)

Publication Number Publication Date
WO2011046004A1 true WO2011046004A1 (en) 2011-04-21

Family

ID=43876057

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/066082 WO2011046004A1 (en) 2009-10-13 2010-09-16 Optical transmission/reception device

Country Status (2)

Country Link
JP (1) JP2011085623A (en)
WO (1) WO2011046004A1 (en)

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63114277A (en) * 1986-10-31 1988-05-19 Fujitsu Ltd Optical semiconductor device
JPH11307860A (en) * 1998-04-17 1999-11-05 Nec Corp Semiconductor laser and semiconductor optical amplifier
JP2001144379A (en) * 1999-11-15 2001-05-25 Hitachi Ltd Semiconductor laser device and optical communication device using the same
JP2001215368A (en) * 2000-02-04 2001-08-10 Japan Aviation Electronics Industry Ltd Optical transceiving module
JP2004031512A (en) * 2002-06-24 2004-01-29 Matsushita Electric Ind Co Ltd Wavelength-selective light receiving apparatus and optical transmitting-receiving module
JP2004179206A (en) * 2002-11-25 2004-06-24 Hitachi Ltd Optical semiconductor device, optical transmission module and optical amplification module
JP2005181754A (en) * 2003-12-19 2005-07-07 Matsushita Electric Ind Co Ltd Optical transmitter/receiver module
JP2006310704A (en) * 2005-05-02 2006-11-09 Sumitomo Electric Ind Ltd Optical transmission and reception module
WO2007114053A1 (en) * 2006-04-06 2007-10-11 Nippon Telegraph And Telephone Corporation Single-core bidirectional optical transmitting/receiving module and its manufacturing method
JP2008085064A (en) * 2006-09-27 2008-04-10 Fujitsu Ltd Optical semiconductor device and its manufacturing method
JP2008083281A (en) * 2006-09-27 2008-04-10 Nippon Telegr & Teleph Corp <Ntt> Single core bi-directional transmission/reception module
JP2009071001A (en) * 2007-09-12 2009-04-02 Sumitomo Electric Ind Ltd Optical transmission and reception module
JP2009075465A (en) * 2007-09-21 2009-04-09 Sumitomo Electric Ind Ltd Optical transception module
JP2009093101A (en) * 2007-10-12 2009-04-30 Hitachi Communication Technologies Ltd Optical module
WO2009098999A1 (en) * 2008-02-06 2009-08-13 Qd Laser Inc. Optical module, electronic device and spatial communication system
WO2009116153A1 (en) * 2008-03-19 2009-09-24 富士通株式会社 Semiconductor light emitting element and its manufacturing method

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63114277A (en) * 1986-10-31 1988-05-19 Fujitsu Ltd Optical semiconductor device
JPH11307860A (en) * 1998-04-17 1999-11-05 Nec Corp Semiconductor laser and semiconductor optical amplifier
JP2001144379A (en) * 1999-11-15 2001-05-25 Hitachi Ltd Semiconductor laser device and optical communication device using the same
JP2001215368A (en) * 2000-02-04 2001-08-10 Japan Aviation Electronics Industry Ltd Optical transceiving module
JP2004031512A (en) * 2002-06-24 2004-01-29 Matsushita Electric Ind Co Ltd Wavelength-selective light receiving apparatus and optical transmitting-receiving module
JP2004179206A (en) * 2002-11-25 2004-06-24 Hitachi Ltd Optical semiconductor device, optical transmission module and optical amplification module
JP2005181754A (en) * 2003-12-19 2005-07-07 Matsushita Electric Ind Co Ltd Optical transmitter/receiver module
JP2006310704A (en) * 2005-05-02 2006-11-09 Sumitomo Electric Ind Ltd Optical transmission and reception module
WO2007114053A1 (en) * 2006-04-06 2007-10-11 Nippon Telegraph And Telephone Corporation Single-core bidirectional optical transmitting/receiving module and its manufacturing method
JP2008085064A (en) * 2006-09-27 2008-04-10 Fujitsu Ltd Optical semiconductor device and its manufacturing method
JP2008083281A (en) * 2006-09-27 2008-04-10 Nippon Telegr & Teleph Corp <Ntt> Single core bi-directional transmission/reception module
JP2009071001A (en) * 2007-09-12 2009-04-02 Sumitomo Electric Ind Ltd Optical transmission and reception module
JP2009075465A (en) * 2007-09-21 2009-04-09 Sumitomo Electric Ind Ltd Optical transception module
JP2009093101A (en) * 2007-10-12 2009-04-30 Hitachi Communication Technologies Ltd Optical module
WO2009098999A1 (en) * 2008-02-06 2009-08-13 Qd Laser Inc. Optical module, electronic device and spatial communication system
WO2009116153A1 (en) * 2008-03-19 2009-09-24 富士通株式会社 Semiconductor light emitting element and its manufacturing method

Also Published As

Publication number Publication date
JP2011085623A (en) 2011-04-28

Similar Documents

Publication Publication Date Title
US10181694B2 (en) Optical module
JP5017804B2 (en) Tunnel junction type surface emitting semiconductor laser device and manufacturing method thereof
US20190033542A1 (en) Optical transceiver
US6792008B2 (en) Tracking error suppression and method of reducing tracking error
US20060118893A1 (en) Monitoring photodetector for integrated photonic devices
US10663774B2 (en) Optical transmission module, optical transceiver, and optical communication system including same
KR101124173B1 (en) Laser Diode Package
WO2012046420A1 (en) Electronic element, surface-emitting laser, surface-emitting laser array, light source, and light module
KR102167838B1 (en) Optical modulator package for bi-directional data communication with low wavelength separation
JP5197978B2 (en) Optical semiconductor module
WO2011125460A1 (en) Optical transmitter/receiver
US11705691B2 (en) Light source device
WO2011046004A1 (en) Optical transmission/reception device
JP2010147149A (en) Optical module and semiconductor light-emitting device
JP3232998B2 (en) Optical transmission / reception module
KR101876949B1 (en) Optical module, optical transceiver and communication system including the same
JP2018066888A (en) Optical module
JP3904985B2 (en) Optical communication module and optical communication system
US20210234335A1 (en) Surface emitting laser package and light emitting device comprising same
JP2006126275A (en) Optical receiving module
JP2011053520A (en) Optical communication system and method of manufacturing optical communication system
JP2011243650A (en) Semiconductor laser element
US20060198412A1 (en) Grating-coupled surface emitting laser with gallium arsenide substrate
JPH11231176A (en) Optical reception module, optical transmission-reception module, and manufacture of the optical reception module
TW200947894A (en) Light transceiver for fiber communication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10823272

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10823272

Country of ref document: EP

Kind code of ref document: A1