WO2011125460A1 - Optical transmitter/receiver - Google Patents

Optical transmitter/receiver Download PDF

Info

Publication number
WO2011125460A1
WO2011125460A1 PCT/JP2011/056560 JP2011056560W WO2011125460A1 WO 2011125460 A1 WO2011125460 A1 WO 2011125460A1 JP 2011056560 W JP2011056560 W JP 2011056560W WO 2011125460 A1 WO2011125460 A1 WO 2011125460A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
photodiode
optical fiber
transmission
light
Prior art date
Application number
PCT/JP2011/056560
Other languages
French (fr)
Japanese (ja)
Inventor
前多泰成
鈴木誠
神戸聡
Original Assignee
株式会社Qdレーザ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Qdレーザ filed Critical 株式会社Qdレーザ
Publication of WO2011125460A1 publication Critical patent/WO2011125460A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/02208Mountings; Housings characterised by the shape of the housings
    • H01S5/02212Can-type, e.g. TO-CAN housings with emission along or parallel to symmetry axis
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4214Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4246Bidirectionally operating package structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02251Out-coupling of light using optical fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02255Out-coupling of light using beam deflecting elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/02325Mechanically integrated components on mount members or optical micro-benches

Definitions

  • the present invention relates to an optical transceiver.
  • a BIDI (bi-directional) optical transceiver module is known.
  • the BIDI type optical transmission / reception module has a structure in which a transmission TO-CAN, a reception TO-CAN, and a wavelength branching filter are individually mounted in a casing. For this reason, the BIDI type optical transceiver module has a large number of parts.
  • An optical transceiver module in which a laser diode, a photodiode, and a wavelength branching filter are mounted in one TO-CAN is known as an optical transceiver module with a reduced number of parts compared to a BIDI optical transceiver module (for example, Non-Patent Document 1).
  • a BIDI optical transceiver module for example, Non-Patent Document 1
  • two TO-CANs and lenses required for the BIDI optical transceiver module can be reduced to one.
  • the laser diode Since the laser diode has temperature characteristics, a part of the light emitted by the laser diode is received by the monitoring photodiode so that the light output of the laser diode becomes constant even when the temperature changes, and is fed back to the drive current.
  • the method of applying is known.
  • a monitor for monitoring the optical output of the laser diode on the back side of the laser diode A photodiode is provided.
  • the optical transmission / reception module according to Non-Patent Document 1 includes a wavelength branch filter and a monitoring photodiode in addition to the laser diode and the photodiode.
  • the wavelength branching filter is disposed on the front side of the laser diode and above the photodiode, and the monitoring photodiode is disposed on the back side of the laser diode.
  • a region for mounting these is required, and the number of components increases. Therefore, it is difficult to reduce the size and cost of the optical transceiver module according to Non-Patent Document 1.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide an optical transmission / reception apparatus capable of realizing downsizing and cost reduction.
  • the present invention includes a first photodiode that receives received light emitted from an optical fiber, a second photodiode having a light receiving surface that forms the same surface as the light receiving surface of the first photodiode, A laser diode that emits transmission light incident on the optical fiber toward the first photodiode and the second photodiode; and a laser diode provided on a light-receiving surface of the first photodiode; A thin film that reflects a part of the transmitted light emitted toward the optical fiber and transmits the received light emitted from the optical fiber, wherein the second photodiode is the laser diode It receives the other part of the transmission light emitted by the optical transmission / reception apparatus. According to the present invention, it is possible to realize downsizing and cost reduction of an optical transmission / reception apparatus capable of single-fiber bidirectional optical communication and monitoring the optical output of a laser diode.
  • the first photodiode and the second photodiode can be formed on the same substrate. According to this configuration, since the first photodiode and the second photodiode can be manufactured at the same time, the cost can be further reduced.
  • the thin film provided on the light receiving surface of the first photodiode may be disposed on the optical axis of the transmission light emitted from the laser diode. According to this configuration, most of the transmission light emitted from the laser diode can be reflected by the thin film and incident on the optical fiber.
  • the first photodiode may be disposed on the optical axis of the optical fiber. According to this configuration, the reception light emitted from the optical fiber can be efficiently received by the first photodiode.
  • the optical axis of the transmission light reflected by the thin film and the optical axis of the optical fiber can coincide with each other. According to this configuration, the transmission light emitted from the laser diode can be efficiently incident on the optical fiber.
  • the laser diode is provided on a plane perpendicular to the optical axis of the optical fiber, and the first photodiode and the second photodiode are optical axes of the optical fiber. It can be set as the structure provided on the surface inclined with respect to. According to this configuration, the laser diode, the first photodiode, and the second photodiode can be easily mounted.
  • the optical axis of the transmission light emitted from the laser diode and the optical axis of the reception light emitted from the optical fiber may intersect at an acute angle. According to this configuration, it is possible to improve the light receiving efficiency of the received light emitted from the optical fiber by the first photodiode.
  • the present invention it is possible to realize downsizing and cost reduction of an optical transmission / reception apparatus capable of single-fiber bidirectional optical communication and monitoring the optical output of the LD.
  • FIG. 1A is an example of a schematic top view of the optical transceiver according to the first embodiment
  • FIG. 1B is an example of a schematic cross-sectional view taken along the line AA in FIG.
  • FIG. 2 is an example of a schematic top view of the first photodiode and the second photodiode
  • 3A is an example of the light intensity distribution of the transmission light
  • FIG. 3B is an example of the light intensity distribution of the reception light
  • FIG. 3C is an example of the light intensity distribution of the transmission light incident on the light receiving surface of the second photodiode
  • 4A is an example of a schematic top view of the first photodiode and the second photodiode
  • FIG. 4B is a schematic cross-sectional view taken along the line AA in FIG. 4A. It is an example.
  • FIG. 5 is a simulation result illustrating the optical characteristics of the thin film provided on the light receiving surface of the first photodiode.
  • FIG. 6 is an example of a conceptual diagram illustrating propagation of transmission / reception light by the optical transmission / reception apparatus according to the first embodiment.
  • FIG. 7A is an example of a schematic top view of the optical transceiver according to the second embodiment
  • FIG. 7B is an example of a schematic cross-sectional view taken along line AA in FIG.
  • FIG. 1A is an example of a schematic top view of the optical transceiver 100 according to the first embodiment
  • FIG. 1B is an example of a schematic cross-sectional view taken along a line AA in FIG. 1A is a schematic top view of the thin film 18, the cap 24, the glass ball lens 22, and the sealing glass 46 seen through.
  • the optical transceiver 100 mainly includes a stem 12, a laser diode (hereinafter referred to as an LD) 14, a first photodiode (hereinafter referred to as a first PD). 16), a second photodiode (hereinafter referred to as second PD) 17, a thin film 18, a glass ball lens 22, and a cap 24.
  • LD laser diode
  • second PD second photodiode
  • the stem 12 is made of, for example, an iron-based alloy such as ordinary steel (SPCC), and has a columnar base portion 26 and a projection portion 30 protruding in the vertical direction on the reference surface 28 of the base portion 26.
  • the reference plane 28 is a plane perpendicular to the optical axis of the optical fiber 20, and the distance to the LD 14, the first PD 16, and the glass ball lens 22 is set based on this plane.
  • the first mounting surface 32 there are a surface parallel to the reference surface 28 (hereinafter referred to as the first mounting surface 32) and an inclined surface (hereinafter referred to as the second mounting surface 34).
  • the second mounting surface 34 has an inclination of, for example, 45 ° with respect to the first mounting surface 32.
  • a lead pin 36 is fixedly attached to the stem 12 via an insulator 38 such as glass.
  • an insulator 38 such as glass.
  • four lead pins 36 are provided, one of which is connected to the LD 14 by a wire 39, the other two are connected to the first PD 16 and the second PD 17, respectively, and the other one is connected to the ground. It is connected.
  • illustration of the lead pins connected to the ground is omitted.
  • the number of lead pins 36 is not limited to four, and may be other numbers such as five.
  • the LD 14 is mounted on a heat sink 40 made of, for example, aluminum nitride (AlN).
  • the heat sink 40 on which the LD 14 is mounted is mounted on the first mounting surface 32 at the tip of the protrusion 30.
  • the first PD 16 and the second PD 17 are mounted on the second mounting surface 34 at the tip of the protrusion 30.
  • the light receiving surface 42a of the first PD 16 and the light receiving surface 42b of the second PD 17 are arranged to be inclined by 45 ° with respect to the optical axis of the LD 14.
  • the thin film 18 is coated on the first PD 16 so as to include the light receiving surface 42a.
  • the LD 14 is, for example, a quantum well laser.
  • the LD 14 emits transmission light toward the first PD 16 and the second PD 17.
  • a part of the transmission light emitted from the LD 14 is reflected to the optical fiber 20 side by the thin film 18 coated on the first PD 16.
  • the transmission light reflected by the thin film 18 is collected by the glass ball lens 22 and enters the optical fiber 20.
  • Another part of the transmission light emitted from the LD 14 is incident on the light receiving surface 42b of the second PD 17.
  • the received light emitted from the optical fiber 20 is collected by the glass ball lens 22, passes through the thin film 18, and enters the light receiving surface 42 a of the first PD 16.
  • the thin film 18 functions as a high reflection film for the transmission light emitted from the LD 14 and functions as a low reflection film for the reception light emitted from the optical fiber 20.
  • FIG. 2 is an example of a schematic top view of the first PD 16 and the second PD 17.
  • the first PD 16 and the second PD 17 are disposed adjacent to each other, and the light receiving surface 42a of the first PD 16 and the light receiving surface 42b of the second PD 17 form the same surface.
  • the thin film 18 is provided on the first PD 16 so as to include the light receiving surface 42a.
  • the thin film 18 is not provided on the second PD 17.
  • the first PD 16 is a rectangle of 500 ⁇ m ⁇ 350 ⁇ m
  • the second PD 17 is a rectangle of 500 ⁇ m ⁇ 150 ⁇ m.
  • 3A is an example of the light intensity distribution of the transmitted light between AA in FIG. 2
  • FIG. 3B is an example of the light intensity distribution of the received light between AA in FIG. is there
  • FIG. 3C is an example of the light intensity distribution of the transmission light incident on the light receiving surface 42b of the second PD 17.
  • the horizontal axis in FIGS. 3A to 3C is the distance (mm) from the center when the center between AA is 0, and the vertical axis is the relative intensity. That is, when the horizontal axis is between ⁇ 0.1 mm and 0.25 mm, the first PD 16 is used, and when the horizontal axis is between ⁇ 0.25 mm and ⁇ 0.1 mm, the second PD 17 is used.
  • the transmission light emitted from the LD 14 is incident on a wide area over the first PD 16 and the second PD 17. This is because the transmission light emitted from the LD 14 has a certain degree of spread angle. For example, the transmission light emitted from the LD 14 has a full angle at half maximum and a divergence angle of 40 ° in the vertical direction and 20 ° in the horizontal direction.
  • the received light emitted from the optical fiber 20 is locally incident on the first PD 16 as shown in FIG. This is because the received light emitted from the optical fiber 20 has a small NA (numerical aperture). For example, the NA of the received light emitted from the optical fiber 20 is 0.16.
  • the thin film 18 functions as a high reflection film for transmission light emitted from the LD 14 and functions as a low reflection film for reception light emitted from the optical fiber 20.
  • the thin film 18 by providing the thin film 18 on the first PD 16 so as to include the light receiving surface 42a, the received light emitted from the optical fiber 20 is transmitted through the thin film 18 and the light receiving surface 42a of the first PD 16. A part of the transmitted light emitted from the LD 14 can be reflected by the thin film 18 to the optical fiber 20 side.
  • the thin film 18 is not provided on the second PD 17, another part of the transmission light emitted from the LD 14 is incident on the light receiving surface 42b of the second PD 17 (see FIG. 3C). For this reason, another part of the transmission light emitted from the LD 14 can be received by the light receiving surface 42b of the second PD 17. Since the transmission light incident on the light receiving surface 42b of the second PD 17 is in the far field region, even if the thin film 18 is provided on the second PD 17, it is reflected by the thin film 18 and enters the optical fiber 20. Not what you get. Therefore, even if a part of transmission light is received by the light receiving surface 42b without providing the thin film 18 on the second PD 17, it does not cause a decrease in coupling efficiency during transmission.
  • the light receiving surface 42a of the first PD 16 and the light receiving surface 42b of the second PD 17 are arranged adjacent to each other so as to form the same surface, the thin film 18 is provided on the light receiving surface 42a, and the thin film is formed on the light receiving surface 42b.
  • the light receiving surface 42a of the first PD 16 and the light receiving surface 42b of the second PD 17 are arranged adjacent to each other in the wide direction in the FFP (Far Field Pattern) of the transmission light emitted from the LD 14. It is preferable.
  • the light receiving surface 42a of the first PD 16 is disposed on the optical axis of the optical fiber 20, and is disposed on the optical axis of the transmission light emitted from the LD 14. That is, the thin film 18 provided on the light receiving surface 42a of the first PD 16 is disposed on the optical axis of the transmission light emitted from the LD 14. The optical axis of the transmission light reflected by the thin film 18 is coincident with the optical axis of the optical fiber 20. Thereby, the transmission light emitted from the LD 14 can be efficiently incident on the optical fiber 20. Also, the received light emitted from the optical fiber 20 can be efficiently received by the first PD 16. In this case, the optical axis of the transmission light reflected by the thin film 18 and the optical axis of the reception light emitted from the optical fiber 20 also coincide with each other.
  • the cap 24 is made of metal, for example, and has a cylindrical shape.
  • the upper surface 44 of the cap 24 is provided with a hole, and the glass ball lens 22 is fitted into the hole.
  • a sealing glass 46 is provided on the upper surface 44 of the cap 24 so as to cover the hole around the glass ball lens 22, and the hole is sealed by the sealing glass 46 and the glass ball lens 22.
  • the LD 14, the first PD 16 and the second PD 17 can be sealed with the cap 24 and sealed by fixing the lower portion 48 of the cap 24 to the stem 12 by welding.
  • the inside of the cap 24 may be filled with air, it is preferable that the cap 24 is filled with nitrogen gas for the purpose of suppressing the deterioration of the LD 14, the first PD 16 and the second PD 17.
  • the optical transceiver 100 is used in an FTTH (Fiber To The Home) system.
  • FTTH Fiber To The Home
  • the wavelength band of 1.31 ⁇ m is generally used for the upstream and the wavelength band of 1.49 ⁇ m is used for the downstream. Therefore, the LD 14 of the optical transceiver 100 emits transmission light of the 1.31 ⁇ m wavelength band
  • the first PD 16 receives received light in the 1.49 ⁇ m wavelength band emitted from the optical fiber 20
  • the second PD 17 receives transmission light in the 1.31 ⁇ m wavelength band emitted from the LD 14. Therefore, the thin film 18 coated on the first PD 16 is required to have an optical characteristic of reflecting light in the 1.31 ⁇ m wavelength band and transmitting light in the 1.49 ⁇ m wavelength band.
  • the LD 14 that emits transmission light having a wavelength of 1.31 ⁇ m includes, for example, a lower cladding layer made of an n-type InP layer, an active layer made of an InGaAsP-MQW (Multiple Quantum Wells) layer, and an upper cladding made of a p-type InP layer. And a quantum well laser comprising a layer.
  • FIG. 4A is an example of a schematic top view of the first PD 16 and the second PD 17, and FIG. 4B is an example of a schematic cross-sectional view taken along the line AA of FIG. 4A.
  • the anode electrode 76 for the first PD 16 and the anode electrode 80 for the second PD 17 are both provided on the first PD 16.
  • the anode electrode 76 for the first PD 16 is connected to the light receiving surface 42 a of the first PD 16 via the wiring 78.
  • the anode electrode 80 for the second PD 17 is connected to the light receiving surface 42 b of the second PD 17 via the wiring 79.
  • a transimpedance amplifier (TIA) is connected to the anode electrode 76 via a wire.
  • the transimpedance amplifier converts the current generated when the first PD 16 receives the reception light emitted from the optical fiber 20 into a voltage.
  • an APC (Auto Power Control) circuit is connected to the anode electrode 80 via a wire.
  • the APC circuit applies feedback to the drive current of the LD 14 based on the detected light output in order to keep the light output of the LD 14 constant.
  • the first PD 16 and the second PD 17 are formed on the same substrate 56.
  • the substrate 56 is, for example, an n-type InP substrate.
  • An n-type InP buffer layer 58 and an n-type InGaAs layer 60 are sequentially formed on the substrate 56.
  • a cathode electrode 77 is provided on the back surface of the substrate 56.
  • the n-type InP buffer layer 58, the n-type InGaAs layer 60, and the cathode electrode 77 are common to the first PD 16 and the second PD 17.
  • a p-type region 64 in which p-type carriers are introduced into n-type InP is formed on the n-type InGaAs layer 60, and a pn junction 66 is formed between the n-type InGaAs layer 60 and the p-type region 64. Is done.
  • a diffusion blocking region 68 is formed around the p-type region 64.
  • the thin film 18 that is a multilayer film is coated so as to cover the upper surface of the p-type region 64 that is the light receiving surface 42a.
  • a p-type region 64 in which p-type carriers are introduced into n-type InP is formed on the n-type InGaAs layer 60, and a pn junction 66 is formed between the n-type InGaAs layer 60 and the p-type region 64. Is done.
  • a diffusion blocking region 68 is formed around the p-type region 64.
  • the first PD 16 and the second PD 17 are separated from each other by the diffusion blocking region 68.
  • the thin film 18 is not provided on the upper surface of the p-type region 64 that is the light receiving surface 42b.
  • the first PD 16 and the second PD 17 are simultaneously manufactured in the same process. For this reason, the upper surface of the p-type region 64 of the first PD 16 and the upper surface of the p-type region 64 of the second PD 17 form the same plane. Therefore, the light receiving surface 42a of the first PD 16 and the light receiving surface 42b of the second PD 17 form the same plane.
  • Table 1 is an example of the structure of the thin film 18 which is a multilayer film, and shows the material, film thickness, and refractive index of each layer of the multilayer film.
  • the thin film 18 has a structure in which, for example, a silicon layer (Si layer) and a silicon oxide layer (SiO 2 layer) are repeatedly provided on an aluminum oxide layer (Al 2 O 3 layer).
  • a silicon layer having a thickness of 53.5 nm and a refractive index of 3.56 is formed on an aluminum oxide layer having a thickness of 58.0 nm and a refractive index of 1.58, and a refractive index of 1.45 having a thickness of 348.0 nm.
  • a silicon oxide layer, a silicon layer having a thickness of 36.9 nm and a refractive index of 3.56, and a silicon oxide layer having a thickness of 182.3 nm and a refractive index of 1.45 are sequentially stacked. Further thereon, a silicon layer having a thickness of 73.7 nm and a refractive index of 3.56 and a silicon oxide layer having a thickness of 182.3 nm and a refractive index of 1.45 are repeatedly formed five times. As the uppermost layer, a silicon layer having a thickness of 36.9 nm and a refractive index of 3.56 is formed.
  • FIG. 5 shows the reflection characteristics of the thin film 18 when the thin film 18 having the structure shown in Table 1 is formed on a GaAs substrate having a refractive index of 3.42 and light is incident on the thin film 18 at an incident angle of 45 °. It is the simulation result which calculated the transmission characteristic and the loss characteristic.
  • the horizontal axis of FIG. 5 represents the wavelength (nm) of light incident on the thin film 18, and the vertical axis represents the light reflectance (%), transmittance (%), and loss rate (%).
  • the reflection characteristics and transmission characteristics of the thin film 18 depend on the wavelength.
  • the thin film 18 functions as a high-reflection film that reflects light with a high reflectance with respect to light in the 1300 nm wavelength band, and as a low-reflection film that transmits light with high transmittance without substantially reflecting with respect to light in the 1500 nm wavelength band. Function. Regarding the loss characteristics, it is 0% in the wavelength band of 1150 nm to 1650 nm. As described above, the thin film 18 having the structure shown in Table 1 functions as a highly reflective film with respect to the 1.31 ⁇ m wavelength band transmission light emitted from the LD 14 and has a 1.49 ⁇ m wavelength band emitted from the optical fiber 20. It functions as a low reflection film for received light.
  • FIG. 6 is an example of a conceptual diagram illustrating light transmission / reception when the optical transmission / reception apparatus 100 according to the first embodiment is used in an FTTH system.
  • the optical axis of the transmission light and the optical axis of the reception light are shifted from each other, but in reality, the optical axis of the transmission light and the optical axis of the reception light coincide with each other.
  • the optical transmitter / receiver 100 according to the first embodiment receives the LD 14 that emits transmission light having a wavelength of 1.31 ⁇ m, the first PD 16 that receives reception light having a wavelength of 1.49 ⁇ m, and the transmission light having a wavelength of 1.31 ⁇ m.
  • the thin film 18 having the structure shown in Table 1 on the light receiving surface 42a of the first PD 16.
  • a part of the 1.31 ⁇ m wavelength transmission light emitted from the LD 14 is reflected by the thin film 18 coated on the first PD 16, collected by the glass ball lens 22, and then the optical fiber 20. Is incident on.
  • the other part of the 1.31 ⁇ m wavelength transmission light emitted from the LD 14 is incident on the light receiving surface 42 b of the second PD 17.
  • the 1.49 ⁇ m wavelength received light emitted from the optical fiber 20 is collected by the glass ball lens 22, passes through the thin film 18, and enters the light receiving surface 42 a of the first PD 16.
  • the LD 14 transmits toward the light receiving surface 42 a of the first PD 16 and the light receiving surface 42 b of the second PD 17. Emits light.
  • the thin film 18 is provided on the light receiving surface 42 a of the first PD 16.
  • the thin film 18 functions as a highly reflective film for transmission light emitted from the LD 14. For this reason, the thin film 18 reflects part of the transmission light emitted from the LD 14 toward the optical fiber 20. Further, the thin film 18 functions as a low reflection film for the received light emitted from the optical fiber 20. For this reason, the thin film 18 transmits the received light emitted from the optical fiber 20.
  • the light receiving surface 42b of the second PD 17 forms the same surface as the light receiving surface 42a of the first PD 16.
  • the thin film 18 is not provided in the light-receiving surface 42b of 2nd PD17.
  • the second PD 17 can receive a part of the transmission light emitted from the LD.
  • the second PD 17 can monitor the light output of the LD 14.
  • the first PD 16 and the second PD 17 can be provided in the direction in which the LD 14 emits transmission light. Compared to the structure described in No. 1, the size can be reduced.
  • the optical transmission / reception device 100 As described above, according to the optical transmission / reception device 100 according to the first embodiment, it is possible to reduce the size and the cost of the optical transmission / reception device capable of performing one-fiber bidirectional optical communication and monitoring the optical output of the LD. It can be realized.
  • the first PD 16 and the second PD 17 are formed on the same substrate 56. Thereby, since 1st PD16 and 2nd PD17 can be manufactured simultaneously, cost reduction can be implement
  • the thin film 18 provided on the light receiving surface 42 a of the first PD 16 is preferably disposed on the optical axis of the transmission light emitted from the LD 14. Thereby, most of the transmission light emitted from the LD 14 can be reflected by the thin film 18 and incident on the optical fiber 20.
  • the first PD 16 is preferably disposed on the optical axis of the optical fiber 20. Thereby, the received light emitted from the optical fiber 20 can be efficiently received by the first PD 16. Further, it is preferable that the optical axis of the transmission light reflected by the thin film 18 and the optical axis of the optical fiber 20 coincide with each other. Thereby, the transmission light emitted from the LD 14 can be efficiently incident on the optical fiber 20.
  • the LD 14 is provided on a first mounting surface 32 that is a surface perpendicular to the optical axis of the optical fiber 20, and the first PD 16 and the second PD 17 are arranged on the optical axis of the optical fiber 20. It is provided on the second mounting surface 34 that is a surface inclined obliquely.
  • the LD 14 is mounted on the first mounting surface 32 perpendicular to the optical axis of the optical fiber 20, and the first PD 16 and the second PD 17 are mounted on the second mounting surface 34 inclined obliquely with respect to the optical axis of the optical fiber 20.
  • the stem 12 having a structure in which the reference surface 28 and the first mounting surface 32 are parallel to each other and only the second mounting surface 34 is inclined is manufactured more easily than in the case of Example 2 described later. be able to.
  • the thin film 18 is shown as an example of a multilayer film of an aluminum oxide layer, a silicon layer, and a silicon oxide layer having a structure as shown in Table 1.
  • the present invention is not limited to this.
  • it is a thin film having the property of reflecting the transmission light emitted from the LD 14 and transmitting the reception light emitted from the optical fiber 20, it may be made of other film structures or materials.
  • the thin film 18 reflects the transmission light of the wavelength band of 1.31 ⁇ m emitted from the LD 14 and emits the 1.49 ⁇ m of light emitted from the optical fiber 20.
  • the wavelength band of 1.31 ⁇ m is used for the upstream and the wavelength band of 1.55 ⁇ m is used for the downstream, the wavelength band of 1.49 ⁇ m or 1.55 ⁇ m is used for the upstream, and the wavelength of 1.31 ⁇ m is used for the downstream.
  • a band may be used.
  • the thin film 18 has an optical characteristic of reflecting the transmission light in the wavelength band of 1.31 ⁇ m and transmitting the reception light in the wavelength band of 1.55 ⁇ m, or transmitting in the wavelength band of 1.49 ⁇ m or 1.55 ⁇ m. It may have an optical characteristic of reflecting light and transmitting received light having a wavelength band of 1.31 ⁇ m.
  • the second PD 17 receives an optical output of about 5% with respect to the total output of the transmission light emitted by the LD 14. Therefore, it is preferable that the positions of the first PD 16 and the second PD 17 are determined with respect to the optical axis emitted from the LD 14 so that about 5% of the transmission light emitted from the LD 14 is incident on the second PD 17.
  • the LD 14 may be another semiconductor laser such as a quantum dot laser. Further, it may be a DFB (Distributed Feedback) type laser or a Fabry-Perot type laser.
  • DFB Distributed Feedback
  • a protective film is preferably provided on the second PD 17 so as to include the light receiving surface 42b. It is preferable that the protective film has an optical characteristic that becomes a low reflection film with respect to the transmission light emitted from the LD 14 so that the second PD 17 can receive the transmission light emitted from the LD 14.
  • the light receiving surface 42a of the first PD 16 is inclined 45 ° with respect to the optical axis of the LD 14 is illustrated as an example because the second mounting surface 34 is inclined 45 ° with respect to the first mounting surface 32.
  • the optical axis of the transmission light reflected by the thin film 18 coated on the light receiving surface 42a can be matched with the optical axis of the optical fiber 20, and the transmission light emitted from the LD 14 is efficiently transmitted to the optical fiber 20. It can be made incident.
  • the inclination is not limited to 45 °, and the transmission light emitted from the LD 14 may have another inclination within a range in which the transmission light is reflected by the thin film 18 and is incident on the optical fiber 20.
  • the inclination may be within a range of 30 ° to 60 °.
  • FIG. 7A is an example of a schematic top view of the optical transceiver 200 according to the second embodiment
  • FIG. 7B is an example of a schematic cross-sectional view taken along line AA in FIG. 7A.
  • 7A is a schematic top view of the thin film 18, the cap 24, the glass ball lens 22, and the sealing glass 46 seen through.
  • the tip of the protrusion 30 of the stem 12 has a dogleg shape and is a third surface that is inclined obliquely with respect to the reference surface 28.
  • a mounting surface 82 and a fourth mounting surface 84 are provided. That is, the third mounting surface 82 and the fourth mounting surface 84 are surfaces inclined obliquely with respect to the optical axis of the optical fiber 20. Both the third mounting surface 82 and the fourth mounting surface 84 have an inclination of, for example, 30 ° with respect to the reference surface 28.
  • the heat sink 40 on which the LD 14 is mounted is mounted on the third mounting surface 82 at the tip of the protrusion 30.
  • the angle ⁇ between the optical axis of the transmission light emitted from the LD 14 and the optical axis of the reception light emitted from the optical fiber 20 is an acute angle of 60 °.
  • the first PD 16 and the second PD 17 are mounted on the fourth mounting surface 84 of the protrusion 30.
  • the light receiving surface 42a of the first PD 16 and the light receiving surface 42b of the second PD 17 are arranged obliquely with respect to the optical axis of the LD 14.
  • the other configuration is the same as that of the first embodiment and is shown in FIG.
  • the LD 14 is inclined with respect to the optical axis of the optical fiber 20 as illustrated in FIGS. 7A and 7B.
  • the optical axis of the transmission light emitted from the LD 14 and the optical axis of the reception light emitted from the optical fiber 20 intersect each other at an acute angle.
  • the light receiving surface 42a of the first PD 16 is closer to being perpendicular to the optical axis of the optical fiber 20 than in the first embodiment. Therefore, the received light emitted from the optical fiber 20 is easily transmitted through the thin film 18 provided on the light receiving surface 42a of the first PD 16, and the intensity of the received light incident on the light receiving surface 42a is increased. That is, the light receiving efficiency of the received light by the first PD 16 is improved.
  • the transmission light emitted from the LD 14 may be reflected by the thin film 18 and have another inclination within a range where it is incident on the optical fiber 20.
  • the angle of the third mounting surface 82 with respect to the reference surface 28 increases, and the optical axis of the transmission light emitted from the LD 14
  • the angle ⁇ of the fourth mounting surface 84 with respect to the reference surface 28 is reduced as the angle ⁇ formed between the optical axis of the received light emitted from the optical fiber 20 and the light receiving surface 42a of the first PD 16 is reduced.

Abstract

Disclosed is an optical transmitter/receiver which is provided with: a first photodiode (16) which receives receiving light outputted from an optical fiber (20); a second photodiode (17) which has a light receiving surface (42b) that forms the same plane as the light receiving surface (42a) of the first photodiode (16); a laser diode (14) which outputs, toward the first photodiode (16) and the second photodiode (17), transmitting light inputted to the optical fiber (20); and a thin film (18), which is provided on the light receiving surface (42a) of the first photodiode (16), reflects, toward the optical fiber (20), some of the transmitting light outputted from the laser diode (14), and which passes through the receiving light outputted from the optical fiber (20). The second photodiode (17) receives some of other transmitting light outputted from the laser diode (14).

Description

光送受信装置Optical transceiver
 本発明は、光送受信装置に関する。 The present invention relates to an optical transceiver.
 近年、一心双方向型光通信に用いられる光送受信装置の開発が盛んに行われており、例えば、BIDI(bi-directional)型光送受信モジュールが知られている。BIDI型光送受信型モジュールは、送信用TO-CANと、受信用TO-CANと、波長分岐フィルタとが個別に筐体に搭載された構造をしている。このため、BIDI型光送受信モジュールは部品点数が多い。 In recent years, an optical transceiver used for single-fiber bidirectional optical communication has been actively developed. For example, a BIDI (bi-directional) optical transceiver module is known. The BIDI type optical transmission / reception module has a structure in which a transmission TO-CAN, a reception TO-CAN, and a wavelength branching filter are individually mounted in a casing. For this reason, the BIDI type optical transceiver module has a large number of parts.
 BIDI型光送受信モジュールに対して、部品点数を削減した光送受信モジュールとして、レーザダイオードと、フォトダイオードと、波長分岐フィルタとを1つのTO-CANに搭載した光送受信モジュールが知られている(例えば、非特許文献1)。この構造の光送受信モジュールによれば、BIDI型光送受信モジュールでは2個必要としたTO-CANおよびレンズを1個に削減できる。 An optical transceiver module in which a laser diode, a photodiode, and a wavelength branching filter are mounted in one TO-CAN is known as an optical transceiver module with a reduced number of parts compared to a BIDI optical transceiver module (for example, Non-Patent Document 1). According to the optical transceiver module having this structure, two TO-CANs and lenses required for the BIDI optical transceiver module can be reduced to one.
 また、レーザダイオードは温度特性を有するため、温度が変化した場合でもレーザダイオードの光出力が一定になるよう、レーザダイオードが出射する光の一部をモニタ用フォトダイオードで受光し、駆動電流にフィードバックをかける方法が知られている。例えば、非特許文献1に係る光送受信モジュールのように、光ファイバから出射される受信光を受光するフォトダイオードの他に、レーザダイオードの背面側にレーザダイオードの光出力をモニタリングするためのモニタ用フォトダイオードを備えている。 Since the laser diode has temperature characteristics, a part of the light emitted by the laser diode is received by the monitoring photodiode so that the light output of the laser diode becomes constant even when the temperature changes, and is fed back to the drive current. The method of applying is known. For example, as in an optical transceiver module according to Non-Patent Document 1, in addition to a photodiode that receives received light emitted from an optical fiber, a monitor for monitoring the optical output of the laser diode on the back side of the laser diode A photodiode is provided.
 非特許文献1に係る光送受信モジュールは、レーザダイオードとフォトダイオードの他に、波長分岐フィルタやモニタ用フォトダイオードを備えている。波長分岐フィルタは、レーザダイオードの前面側且つフォトダイオードの上方側に配置され、モニタ用フォトダイオードは、レーザダイオードの背面側に配置されている。このような波長分岐フィルタやモニタ用フォトダイオードを備えると、これらを搭載するための領域が必要となり、また部品点数も増加する。したがって、非特許文献1に係る光送受信モジュールでは、小型化、低コスト化を図ることが難しい。 The optical transmission / reception module according to Non-Patent Document 1 includes a wavelength branch filter and a monitoring photodiode in addition to the laser diode and the photodiode. The wavelength branching filter is disposed on the front side of the laser diode and above the photodiode, and the monitoring photodiode is disposed on the back side of the laser diode. When such a wavelength branching filter and a monitoring photodiode are provided, a region for mounting these is required, and the number of components increases. Therefore, it is difficult to reduce the size and cost of the optical transceiver module according to Non-Patent Document 1.
 本発明は、上記課題に鑑みなされたものであり、小型化、低コスト化を実現することが可能な光送受信装置を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide an optical transmission / reception apparatus capable of realizing downsizing and cost reduction.
 本発明は、光ファイバから出射される受信光を受光する第1のフォトダイオードと、前記第1のフォトダイオードの受光面と同一面を形成する受光面を有する第2のフォトダイオードと、前記第1のフォトダイオードと前記第2のフォトダイオードとに向かって、前記光ファイバに入射される送信光を出射するレーザダイオードと、前記第1のフォトダイオードの受光面上に設けられ、前記レーザダイオードが出射する前記送信光の一部を前記光ファイバに向かって反射させ、且つ前記光ファイバから出射される前記受信光を透過する薄膜と、を具備し、前記第2のフォトダイオードは、前記レーザダイオードが出射する前記送信光の他の一部を受光することを特徴とする光送受信装置である。本発明によれば、一心双方向型光通信が可能であると共に、レーザダイオードの光出力のモニタリングが可能な光送受信装置の、小型化、低コスト化を実現することが可能となる。 The present invention includes a first photodiode that receives received light emitted from an optical fiber, a second photodiode having a light receiving surface that forms the same surface as the light receiving surface of the first photodiode, A laser diode that emits transmission light incident on the optical fiber toward the first photodiode and the second photodiode; and a laser diode provided on a light-receiving surface of the first photodiode; A thin film that reflects a part of the transmitted light emitted toward the optical fiber and transmits the received light emitted from the optical fiber, wherein the second photodiode is the laser diode It receives the other part of the transmission light emitted by the optical transmission / reception apparatus. According to the present invention, it is possible to realize downsizing and cost reduction of an optical transmission / reception apparatus capable of single-fiber bidirectional optical communication and monitoring the optical output of a laser diode.
 上記構成において、前記第1のフォトダイオードと前記第2のフォトダイオードとは同じ基板上に形成されている構成とすることができる。この構成によれば、第1のフォトダイオードと第2のフォトダイオードとを同時に製造することができるため、より低コスト化を実現することができる。 In the above structure, the first photodiode and the second photodiode can be formed on the same substrate. According to this configuration, since the first photodiode and the second photodiode can be manufactured at the same time, the cost can be further reduced.
 上記構成において、前記第1のフォトダイオードの受光面上に設けられた前記薄膜は、前記レーザダイオードが出射する前記送信光の光軸上に配置されている構成とすることができる。この構成によれば、レーザダイオードが出射する送信光の大部分を薄膜で反射させて光ファイバに入射させることができる。 In the above configuration, the thin film provided on the light receiving surface of the first photodiode may be disposed on the optical axis of the transmission light emitted from the laser diode. According to this configuration, most of the transmission light emitted from the laser diode can be reflected by the thin film and incident on the optical fiber.
 上記構成において、前記第1のフォトダイオードは、前記光ファイバの光軸上に配置されている構成とすることができる。この構成によれば、光ファイバから出射される受信光を第1のフォトダイオードで効率よく受光することができる。 In the above configuration, the first photodiode may be disposed on the optical axis of the optical fiber. According to this configuration, the reception light emitted from the optical fiber can be efficiently received by the first photodiode.
 上記構成において、前記薄膜で反射される前記送信光の光軸と前記光ファイバの光軸とは一致する構成とすることができる。この構成によれば、レーザダイオードが出射する送信光を光ファイバに効率よく入射させることができる。 In the above-described configuration, the optical axis of the transmission light reflected by the thin film and the optical axis of the optical fiber can coincide with each other. According to this configuration, the transmission light emitted from the laser diode can be efficiently incident on the optical fiber.
 上記構成において、前記レーザダイオードは、前記光ファイバの光軸に対して垂直な面上に設けられていて、前記第1のフォトダイオードと前記第2のフォトダイオードとは、前記光ファイバの光軸に対して斜めに傾いた面上に設けられている構成とすることができる。この構成によれば、レーザダイオード、第1のフォトダイオード、第2のフォトダイオードの実装を容易に行なうことができる。 In the above configuration, the laser diode is provided on a plane perpendicular to the optical axis of the optical fiber, and the first photodiode and the second photodiode are optical axes of the optical fiber. It can be set as the structure provided on the surface inclined with respect to. According to this configuration, the laser diode, the first photodiode, and the second photodiode can be easily mounted.
 上記構成において、前記レーザダイオードが出射する前記送信光の光軸と前記光ファイバから出射される前記受信光の光軸とが鋭角に交わる構成とすることができる。この構成によれば、光ファイバから出射される受信光の第1のフォトダイオードによる受光効率を向上させることができる。 In the above configuration, the optical axis of the transmission light emitted from the laser diode and the optical axis of the reception light emitted from the optical fiber may intersect at an acute angle. According to this configuration, it is possible to improve the light receiving efficiency of the received light emitted from the optical fiber by the first photodiode.
 本発明によれば、一心双方向型光通信が可能であると共に、LDの光出力のモニタリングが可能な光送受信装置の、小型化、低コスト化を実現することが可能となる。 According to the present invention, it is possible to realize downsizing and cost reduction of an optical transmission / reception apparatus capable of single-fiber bidirectional optical communication and monitoring the optical output of the LD.
図1(a)は、実施例1に係る光送受信装置の上面模式図の例であり、図1(b)は、図1(a)のA-A間の断面模式図の例である。FIG. 1A is an example of a schematic top view of the optical transceiver according to the first embodiment, and FIG. 1B is an example of a schematic cross-sectional view taken along the line AA in FIG. 図2は、第1のフォトダイオードおよび第2のフォトダイオードの上面模式図の例である。FIG. 2 is an example of a schematic top view of the first photodiode and the second photodiode. 図3(a)は、送信光の光強度分布の例であり、図3(b)は、受信光の光強度分布の例である。図3(c)は、第2のフォトダイオードの受光面に入射する送信光の光強度分布の例である。3A is an example of the light intensity distribution of the transmission light, and FIG. 3B is an example of the light intensity distribution of the reception light. FIG. 3C is an example of the light intensity distribution of the transmission light incident on the light receiving surface of the second photodiode. 図4(a)は、第1のフォトダイオードと第2のフォトダイオードとの上面模式図の例であり、図4(b)は、図4(a)のA-A間の断面模式図の例である。4A is an example of a schematic top view of the first photodiode and the second photodiode, and FIG. 4B is a schematic cross-sectional view taken along the line AA in FIG. 4A. It is an example. 図5は、第1のフォトダイオードの受光面に設けられた薄膜の光学特性を説明するシミュレーション結果である。FIG. 5 is a simulation result illustrating the optical characteristics of the thin film provided on the light receiving surface of the first photodiode. 図6は、実施例1に係る光送受信装置による送受信光の伝搬を説明する概念図の例である。FIG. 6 is an example of a conceptual diagram illustrating propagation of transmission / reception light by the optical transmission / reception apparatus according to the first embodiment. 図7(a)は実施例2に係る光送受信装置の上面模式図の例であり、図7(b)は、図7(a)のA-A間の断面模式図の例である。FIG. 7A is an example of a schematic top view of the optical transceiver according to the second embodiment, and FIG. 7B is an example of a schematic cross-sectional view taken along line AA in FIG.
 以下、図面を参照して、本発明に係る光送受信装置の実施例としてCANパッケージを採用した光送受信装置について説明する。 Hereinafter, an optical transceiver employing a CAN package as an embodiment of the optical transceiver according to the present invention will be described with reference to the drawings.
 図1(a)は実施例1に係る光送受信装置100の上面模式図の例であり、図1(b)は図1(a)のA-A間の断面模式図の例である。なお、図1(a)は、薄膜18、キャップ24、ガラスボールレンズ22、および封止ガラス46を透視した上面模式図である。図1(a)および図1(b)のように、光送受信装置100は、主として、ステム12と、レーザダイオード(以下、LDと称す)14と、第1のフォトダイオード(以下、第1PDと称す)16と、第2のフォトダイオード(以下、第2PDと称す)17と、薄膜18と、ガラスボールレンズ22と、キャップ24と、から構成される。 FIG. 1A is an example of a schematic top view of the optical transceiver 100 according to the first embodiment, and FIG. 1B is an example of a schematic cross-sectional view taken along a line AA in FIG. 1A is a schematic top view of the thin film 18, the cap 24, the glass ball lens 22, and the sealing glass 46 seen through. As shown in FIGS. 1A and 1B, the optical transceiver 100 mainly includes a stem 12, a laser diode (hereinafter referred to as an LD) 14, a first photodiode (hereinafter referred to as a first PD). 16), a second photodiode (hereinafter referred to as second PD) 17, a thin film 18, a glass ball lens 22, and a cap 24.
 ステム12は、例えば普通鋼(SPCC)のような鉄系の合金で形成され、円柱形状をした基部26と、基部26の基準面28で垂直方向に突出した突起部30と、を有する。基準面28は、光ファイバ20の光軸に対して垂直な面であり、この面を基準に、LD14、第1PD16、およびガラスボールレンズ22までの距離などを設定する。突起部30の先端には、基準面28に対して平行な面(以下、第1実装面32と称す)と斜めに傾いた面(以下、第2実装面34と称す)とを有する。第2実装面34は、第1実装面32に対して、例えば45°の傾きを有する。ステム12には、リードピン36が、例えばガラスなどの絶縁物38を介して固定され取り付けられている。リードピン36は、例えば4本設けられていて、その内の1本はワイヤ39によりLD14に接続され、他の2本は夫々第1PD16と第2PD17とに夫々接続され、残りの1本はグランドに接続されている。なお、図1(a)においては、グランドに接続されたリードピンについての図示は省略している。また、リードピン36の本数は、4本に限られるわけではなく、5本など、他の本数の場合でもよい。 The stem 12 is made of, for example, an iron-based alloy such as ordinary steel (SPCC), and has a columnar base portion 26 and a projection portion 30 protruding in the vertical direction on the reference surface 28 of the base portion 26. The reference plane 28 is a plane perpendicular to the optical axis of the optical fiber 20, and the distance to the LD 14, the first PD 16, and the glass ball lens 22 is set based on this plane. At the tip of the projecting portion 30, there are a surface parallel to the reference surface 28 (hereinafter referred to as the first mounting surface 32) and an inclined surface (hereinafter referred to as the second mounting surface 34). The second mounting surface 34 has an inclination of, for example, 45 ° with respect to the first mounting surface 32. A lead pin 36 is fixedly attached to the stem 12 via an insulator 38 such as glass. For example, four lead pins 36 are provided, one of which is connected to the LD 14 by a wire 39, the other two are connected to the first PD 16 and the second PD 17, respectively, and the other one is connected to the ground. It is connected. In FIG. 1A, illustration of the lead pins connected to the ground is omitted. Further, the number of lead pins 36 is not limited to four, and may be other numbers such as five.
 LD14は、例えば窒化アルミニウム(AlN)で形成されたヒートシンク40上にマウントされている。LD14がマウントされたヒートシンク40は、突起部30の先端の第1実装面32に実装されている。第1PD16および第2PD17は、突起部30の先端の第2実装面34に実装されている。これにより、第1PD16の受光面42aと第2PD17の受光面42bとは、LD14の光軸に対して45°傾いて配置される。第1PD16上には、受光面42aを含むように薄膜18がコーティングされている。 The LD 14 is mounted on a heat sink 40 made of, for example, aluminum nitride (AlN). The heat sink 40 on which the LD 14 is mounted is mounted on the first mounting surface 32 at the tip of the protrusion 30. The first PD 16 and the second PD 17 are mounted on the second mounting surface 34 at the tip of the protrusion 30. Thereby, the light receiving surface 42a of the first PD 16 and the light receiving surface 42b of the second PD 17 are arranged to be inclined by 45 ° with respect to the optical axis of the LD 14. The thin film 18 is coated on the first PD 16 so as to include the light receiving surface 42a.
 LD14は、例えば量子井戸レーザである。LD14は、第1PD16および第2PD17に向かって送信光を出射する。LD14が出射する送信光の一部は、第1PD16上にコーティングされた薄膜18で光ファイバ20側に反射される。薄膜18で反射された送信光は、ガラスボールレンズ22で集光され、光ファイバ20に入射する。LD14が出射する送信光の他の一部は、第2PD17の受光面42bに入射する。また、光ファイバ20から出射される受信光は、ガラスボールレンズ22で集光され、薄膜18を透過して、第1PD16の受光面42aに入射する。このように、薄膜18は、LD14が出射する送信光に対しては高反射膜として機能し、光ファイバ20から出射される受信光に対しては低反射膜として機能する。 The LD 14 is, for example, a quantum well laser. The LD 14 emits transmission light toward the first PD 16 and the second PD 17. A part of the transmission light emitted from the LD 14 is reflected to the optical fiber 20 side by the thin film 18 coated on the first PD 16. The transmission light reflected by the thin film 18 is collected by the glass ball lens 22 and enters the optical fiber 20. Another part of the transmission light emitted from the LD 14 is incident on the light receiving surface 42b of the second PD 17. Also, the received light emitted from the optical fiber 20 is collected by the glass ball lens 22, passes through the thin film 18, and enters the light receiving surface 42 a of the first PD 16. Thus, the thin film 18 functions as a high reflection film for the transmission light emitted from the LD 14 and functions as a low reflection film for the reception light emitted from the optical fiber 20.
 ここで、図2を用いて、第1PD16および第2PD17について説明する。図2は、第1PD16および第2PD17の上面模式図の例である。図2のように、第1PD16と第2PD17とは隣り合って配置され、第1PD16の受光面42aと第2PD17の受光面42bとは同一面を形成している。第1PD16上には、受光面42aを含むように薄膜18が設けられている。一方、第2PD17上には薄膜18は設けられていない。例えば、第1PD16は、500μm×350μmの長方形であり、第2PD17は、500μm×150μmの長方形である。 Here, the first PD 16 and the second PD 17 will be described with reference to FIG. FIG. 2 is an example of a schematic top view of the first PD 16 and the second PD 17. As shown in FIG. 2, the first PD 16 and the second PD 17 are disposed adjacent to each other, and the light receiving surface 42a of the first PD 16 and the light receiving surface 42b of the second PD 17 form the same surface. The thin film 18 is provided on the first PD 16 so as to include the light receiving surface 42a. On the other hand, the thin film 18 is not provided on the second PD 17. For example, the first PD 16 is a rectangle of 500 μm × 350 μm, and the second PD 17 is a rectangle of 500 μm × 150 μm.
 次に、図3(a)および図3(b)を用いて、第1PD16および第2PD17に入射する際の送信光と受信光との光強度分布について説明する。図3(a)は、図2のA-A間における送信光の光強度分布の例であり、図3(b)は、図2のA-A間における受信光の光強度分布の例である。また、図3(c)は、第2PD17の受光面42bに入射する送信光の光強度分布の例である。図3(a)から図3(c)の横軸はA-A間の中心を0とした場合の中心からの距離(mm)であり、縦軸は相対強度である。つまり、横軸が-0.1mmから0.25mmの間は第1PD16であり、-0.25mmから-0.1mmの間は第2PD17である。 Next, the light intensity distribution between the transmitted light and the received light when entering the first PD 16 and the second PD 17 will be described with reference to FIGS. 3 (a) and 3 (b). 3A is an example of the light intensity distribution of the transmitted light between AA in FIG. 2, and FIG. 3B is an example of the light intensity distribution of the received light between AA in FIG. is there. FIG. 3C is an example of the light intensity distribution of the transmission light incident on the light receiving surface 42b of the second PD 17. The horizontal axis in FIGS. 3A to 3C is the distance (mm) from the center when the center between AA is 0, and the vertical axis is the relative intensity. That is, when the horizontal axis is between −0.1 mm and 0.25 mm, the first PD 16 is used, and when the horizontal axis is between −0.25 mm and −0.1 mm, the second PD 17 is used.
 図3(a)のように、LD14が出射する送信光は、第1PD16および第2PD17に亘り広範囲の領域に入射する。これは、LD14が出射する送信光は、ある程度の大きさの拡がり角を有するためである。例えば、LD14が出射する送信光は、半値全角で垂直方向が40°水平方向が20°の拡がり角を有する。 As shown in FIG. 3A, the transmission light emitted from the LD 14 is incident on a wide area over the first PD 16 and the second PD 17. This is because the transmission light emitted from the LD 14 has a certain degree of spread angle. For example, the transmission light emitted from the LD 14 has a full angle at half maximum and a divergence angle of 40 ° in the vertical direction and 20 ° in the horizontal direction.
 一方、図3(b)のように、光ファイバ20から出射される受信光は、第1PD16に局所的に入射する。これは、光ファイバ20から出射される受信光はNA(開口数)が小さいためである。例えば、光ファイバ20から出射される受信光のNAは0.16である。 On the other hand, the received light emitted from the optical fiber 20 is locally incident on the first PD 16 as shown in FIG. This is because the received light emitted from the optical fiber 20 has a small NA (numerical aperture). For example, the NA of the received light emitted from the optical fiber 20 is 0.16.
 前述したように、薄膜18は、LD14が出射する送信光に対しては高反射膜として機能し、光ファイバ20から出射される受信光に対しては低反射膜として機能する。このため、図2に示すように、第1PD16上に受光面42aを含むように薄膜18を設けることで、光ファイバ20から出射される受信光は薄膜18を透過して第1PD16の受光面42aで受光でき、LD14が出射する送信光の一部は、薄膜18で光ファイバ20側に反射させることができる。 As described above, the thin film 18 functions as a high reflection film for transmission light emitted from the LD 14 and functions as a low reflection film for reception light emitted from the optical fiber 20. For this reason, as shown in FIG. 2, by providing the thin film 18 on the first PD 16 so as to include the light receiving surface 42a, the received light emitted from the optical fiber 20 is transmitted through the thin film 18 and the light receiving surface 42a of the first PD 16. A part of the transmitted light emitted from the LD 14 can be reflected by the thin film 18 to the optical fiber 20 side.
 また、第2PD17上には薄膜18が設けられていないため、LD14が出射する送信光の他の一部は、第2PD17の受光面42bに入射する(図3(c)参照)。このため、第2PD17の受光面42bで、LD14が出射する送信光の他の一部を受光できる。第2PD17の受光面42bに入射する送信光は、ファーフィールド領域のものであるため、仮に、第2PD17上に薄膜18が設けられていたとしても、薄膜18で反射されて光ファイバ20に入射され得るものではない。したがって、第2PD17上に薄膜18を設けずに、受光面42bで送信光の一部を受光したとしても、送信時の結合効率の低下を招くものではない。 Further, since the thin film 18 is not provided on the second PD 17, another part of the transmission light emitted from the LD 14 is incident on the light receiving surface 42b of the second PD 17 (see FIG. 3C). For this reason, another part of the transmission light emitted from the LD 14 can be received by the light receiving surface 42b of the second PD 17. Since the transmission light incident on the light receiving surface 42b of the second PD 17 is in the far field region, even if the thin film 18 is provided on the second PD 17, it is reflected by the thin film 18 and enters the optical fiber 20. Not what you get. Therefore, even if a part of transmission light is received by the light receiving surface 42b without providing the thin film 18 on the second PD 17, it does not cause a decrease in coupling efficiency during transmission.
 このように、第1PD16の受光面42aと第2PD17の受光面42bとが同一面を形成するように隣り合って配置され、受光面42a上には薄膜18を設け、受光面42b上には薄膜18を設けない構造とすることで、送信光の一部を光ファイバ20に入射させ、送信光の他の一部を第2PD17の受光面42bで受光でき、かつ受信光を第1PD16の受光面42aで受光できる。このような効果を容易に得るために、第1PD16の受光面42aと第2PD17の受光面42bとは、LD14が出射する送信光のFFP(Far Field Pattern)における幅広方向に隣り合って配置されている場合が好ましい。 Thus, the light receiving surface 42a of the first PD 16 and the light receiving surface 42b of the second PD 17 are arranged adjacent to each other so as to form the same surface, the thin film 18 is provided on the light receiving surface 42a, and the thin film is formed on the light receiving surface 42b. By adopting a structure in which 18 is not provided, a part of the transmission light can be incident on the optical fiber 20 and another part of the transmission light can be received by the light receiving surface 42b of the second PD 17, and the received light can be received by the light receiving surface of the first PD 16. 42a can receive light. In order to easily obtain such an effect, the light receiving surface 42a of the first PD 16 and the light receiving surface 42b of the second PD 17 are arranged adjacent to each other in the wide direction in the FFP (Far Field Pattern) of the transmission light emitted from the LD 14. It is preferable.
 図1(a)および図1(b)に戻り、第1PD16の受光面42aは、光ファイバ20の光軸上に配置され且つLD14が出射する送信光の光軸上に配置されている。即ち、第1PD16の受光面42a上に設けられた薄膜18は、LD14が出射する送信光の光軸上に配置されていることとなる。薄膜18で反射される送信光の光軸と光ファイバ20の光軸とは一致している。これにより、LD14が出射する送信光を光ファイバ20に効率よく入射させることができる。また、光ファイバ20から出射される受信光を効率よく第1PD16で受光することができる。なおこの場合、薄膜18で反射される送信光の光軸と光ファイバ20から出射される受信光の光軸とが一致することにもなる。 1 (a) and 1 (b), the light receiving surface 42a of the first PD 16 is disposed on the optical axis of the optical fiber 20, and is disposed on the optical axis of the transmission light emitted from the LD 14. That is, the thin film 18 provided on the light receiving surface 42a of the first PD 16 is disposed on the optical axis of the transmission light emitted from the LD 14. The optical axis of the transmission light reflected by the thin film 18 is coincident with the optical axis of the optical fiber 20. Thereby, the transmission light emitted from the LD 14 can be efficiently incident on the optical fiber 20. Also, the received light emitted from the optical fiber 20 can be efficiently received by the first PD 16. In this case, the optical axis of the transmission light reflected by the thin film 18 and the optical axis of the reception light emitted from the optical fiber 20 also coincide with each other.
 キャップ24は、例えば金属製であり、円筒形状をしている。キャップ24の上面44には、孔部が設けられていて、孔部にガラスボールレンズ22が嵌め込まれている。キャップ24の上面44には、ガラスボールレンズ22の周囲で孔部を覆うように封止ガラス46が設けられており、封止ガラス46とガラスボールレンズ22により孔部がシールされている。これにより、キャップ24の下部48をステム12に溶接固定することで、LD14、第1PD16および第2PD17をキャップ24で密閉し、封止することができる。キャップ24内部は大気が充満している場合でもよいが、LD14、第1PD16および第2PD17の劣化を抑制するなどの目的から窒素ガスが充満している場合が好ましい。 The cap 24 is made of metal, for example, and has a cylindrical shape. The upper surface 44 of the cap 24 is provided with a hole, and the glass ball lens 22 is fitted into the hole. A sealing glass 46 is provided on the upper surface 44 of the cap 24 so as to cover the hole around the glass ball lens 22, and the hole is sealed by the sealing glass 46 and the glass ball lens 22. Thereby, the LD 14, the first PD 16 and the second PD 17 can be sealed with the cap 24 and sealed by fixing the lower portion 48 of the cap 24 to the stem 12 by welding. Although the inside of the cap 24 may be filled with air, it is preferable that the cap 24 is filled with nitrogen gas for the purpose of suppressing the deterioration of the LD 14, the first PD 16 and the second PD 17.
 ここで、実施例1に係る光送受信装置100がFTTH(Fiber To The Home)システムに用いられる場合を想定する。FTTHでは、一般的に上りは1.31μmの波長帯域を、下りは1.49μmの波長帯域を用いることから、光送受信装置100が有するLD14は、1.31μm波長帯の送信光を出射し、第1PD16は、光ファイバ20から出射される1.49μm波長帯の受信光を受光し、第2PD17は、LD14が出射する1.31μm波長帯の送信光を受光する。したがって、第1PD16上にコーティングされる薄膜18は、1.31μm波長帯の光を反射し、且つ、1.49μm波長帯の光を透過する光学特性を有することが求められる。 Here, it is assumed that the optical transceiver 100 according to the first embodiment is used in an FTTH (Fiber To The Home) system. In FTTH, the wavelength band of 1.31 μm is generally used for the upstream and the wavelength band of 1.49 μm is used for the downstream. Therefore, the LD 14 of the optical transceiver 100 emits transmission light of the 1.31 μm wavelength band, The first PD 16 receives received light in the 1.49 μm wavelength band emitted from the optical fiber 20, and the second PD 17 receives transmission light in the 1.31 μm wavelength band emitted from the LD 14. Therefore, the thin film 18 coated on the first PD 16 is required to have an optical characteristic of reflecting light in the 1.31 μm wavelength band and transmitting light in the 1.49 μm wavelength band.
 1.31μm波長帯の送信光を出射するLD14は、例えば、n型InP層からなる下部クラッド層と、InGaAsP-MQW(Multiple Quantum Wells)層からなる活性層と、p型InP層からなる上部クラッド層と、を含む量子井戸レーザを用いることができる。 The LD 14 that emits transmission light having a wavelength of 1.31 μm includes, for example, a lower cladding layer made of an n-type InP layer, an active layer made of an InGaAsP-MQW (Multiple Quantum Wells) layer, and an upper cladding made of a p-type InP layer. And a quantum well laser comprising a layer.
 次に、1.49μm波長帯の受信光を受光し、受光面42aを含むように薄膜18がコーティングされた第1PD16と、1.31μm波長帯の送信光を受光する第2PD17と、を説明する。図4(a)は、第1PD16と第2PD17との上面模式図の例であり、図4(b)は、図4(a)のA-A間の断面模式図の例である。 Next, a description will be given of the first PD 16 that receives received light in the 1.49 μm wavelength band and is coated with the thin film 18 so as to include the light receiving surface 42a, and the second PD 17 that receives transmitted light in the 1.31 μm wavelength band. . FIG. 4A is an example of a schematic top view of the first PD 16 and the second PD 17, and FIG. 4B is an example of a schematic cross-sectional view taken along the line AA of FIG. 4A.
 図4(a)のように、第1PD16用のアノード電極76と第2PD17用のアノード電極80とは共に第1PD16上に設けられている。第1PD16用のアノード電極76は配線78を介して、第1PD16の受光面42aに接続している。第2PD17用のアノード電極80は配線79を介して、第2PD17の受光面42bに接続している。アノード電極76には、例えばワイヤを介して、トランスインピーダンスアンプ(TIA)が接続されている。トランスインピーダンスアンプは、第1PD16が光ファイバ20から出射される受信光を受光することにより発生する電流を電圧に変換する。アノード電極80には、例えばワイヤを介して、APC(Auto Power Control)回路が接続されている。APC回路は、LD14の光出力を一定に保つために、検出した光出力に基づいてLD14の駆動電流にフィードバックをかける。 As shown in FIG. 4A, the anode electrode 76 for the first PD 16 and the anode electrode 80 for the second PD 17 are both provided on the first PD 16. The anode electrode 76 for the first PD 16 is connected to the light receiving surface 42 a of the first PD 16 via the wiring 78. The anode electrode 80 for the second PD 17 is connected to the light receiving surface 42 b of the second PD 17 via the wiring 79. For example, a transimpedance amplifier (TIA) is connected to the anode electrode 76 via a wire. The transimpedance amplifier converts the current generated when the first PD 16 receives the reception light emitted from the optical fiber 20 into a voltage. For example, an APC (Auto Power Control) circuit is connected to the anode electrode 80 via a wire. The APC circuit applies feedback to the drive current of the LD 14 based on the detected light output in order to keep the light output of the LD 14 constant.
 図4(b)のように、第1PD16と第2PD17とは同じ基板56上に形成されている。基板56は、例えばn型InP基板である。基板56上には、n型InPバッファ層58とn型InGaAs層60とが順次形成されている。基板56の裏面にはカソード電極77が設けられている。n型InPバッファ層58、n型InGaAs層60、およびカソード電極77は、第1PD16と第2PD17とで共通である。 As shown in FIG. 4B, the first PD 16 and the second PD 17 are formed on the same substrate 56. The substrate 56 is, for example, an n-type InP substrate. An n-type InP buffer layer 58 and an n-type InGaAs layer 60 are sequentially formed on the substrate 56. A cathode electrode 77 is provided on the back surface of the substrate 56. The n-type InP buffer layer 58, the n-type InGaAs layer 60, and the cathode electrode 77 are common to the first PD 16 and the second PD 17.
 第1PD16において、n型InGaAs層60上に、n型InPにp型キャリアを導入したp型領域64が形成され、n型InGaAs層60とp型領域64との間にはpn接合66が形成される。p型領域64の周囲には拡散遮断領域68が形成されている。受光面42aであるp型領域64上面を覆うように、多層膜である薄膜18がコーティングされている。 In the first PD 16, a p-type region 64 in which p-type carriers are introduced into n-type InP is formed on the n-type InGaAs layer 60, and a pn junction 66 is formed between the n-type InGaAs layer 60 and the p-type region 64. Is done. A diffusion blocking region 68 is formed around the p-type region 64. The thin film 18 that is a multilayer film is coated so as to cover the upper surface of the p-type region 64 that is the light receiving surface 42a.
 第2PD17において、n型InGaAs層60上に、n型InPにp型キャリアを導入したp型領域64が形成され、n型InGaAs層60とp型領域64との間にはpn接合66が形成される。p型領域64の周囲には拡散遮断領域68が形成されている。拡散遮断領域68により、第1PD16と第2PD17との分離が図られている。受光面42bであるp型領域64上面には薄膜18は設けられていない。 In the second PD 17, a p-type region 64 in which p-type carriers are introduced into n-type InP is formed on the n-type InGaAs layer 60, and a pn junction 66 is formed between the n-type InGaAs layer 60 and the p-type region 64. Is done. A diffusion blocking region 68 is formed around the p-type region 64. The first PD 16 and the second PD 17 are separated from each other by the diffusion blocking region 68. The thin film 18 is not provided on the upper surface of the p-type region 64 that is the light receiving surface 42b.
 第1PD16と第2PD17とは、同一工程で同時に製造される。このため、第1PD16のp型領域64上面と第2PD17のp型領域64上面とは同一平面を形成する。したがって、第1PD16の受光面42aと第2PD17の受光面42bとは同一平面を形成することになる。 The first PD 16 and the second PD 17 are simultaneously manufactured in the same process. For this reason, the upper surface of the p-type region 64 of the first PD 16 and the upper surface of the p-type region 64 of the second PD 17 form the same plane. Therefore, the light receiving surface 42a of the first PD 16 and the light receiving surface 42b of the second PD 17 form the same plane.
 表1は、多層膜である薄膜18の構造の例であり、多層膜それぞれの層の材料、膜厚、および屈折率を示している。表1のように、薄膜18は、例えば酸化アルミニウム層(Al層)上にシリコン層(Si層)と酸化シリコン層(SiO層)とが繰り返し設けられた構造をしている。具体的には、膜厚58.0nmで屈折率1.58の酸化アルミニウム層上に、膜厚53.5nmで屈折率3.56のシリコン層、膜厚348.0nmで屈折率1.45の酸化シリコン層、膜厚36.9nmで屈折率3.56のシリコン層、膜厚182.3nmで屈折率1.45の酸化シリコン層が順次積層されている。その上にはさらに、膜厚73.7nmで屈折率3.56のシリコン層と膜厚182.3nmで屈折率1.45の酸化シリコン層とが5回繰り返して形成されている。最上層には、膜厚36.9nmで屈折率3.56のシリコン層が形成されている。
Figure JPOXMLDOC01-appb-T000001
Table 1 is an example of the structure of the thin film 18 which is a multilayer film, and shows the material, film thickness, and refractive index of each layer of the multilayer film. As shown in Table 1, the thin film 18 has a structure in which, for example, a silicon layer (Si layer) and a silicon oxide layer (SiO 2 layer) are repeatedly provided on an aluminum oxide layer (Al 2 O 3 layer). Specifically, a silicon layer having a thickness of 53.5 nm and a refractive index of 3.56 is formed on an aluminum oxide layer having a thickness of 58.0 nm and a refractive index of 1.58, and a refractive index of 1.45 having a thickness of 348.0 nm. A silicon oxide layer, a silicon layer having a thickness of 36.9 nm and a refractive index of 3.56, and a silicon oxide layer having a thickness of 182.3 nm and a refractive index of 1.45 are sequentially stacked. Further thereon, a silicon layer having a thickness of 73.7 nm and a refractive index of 3.56 and a silicon oxide layer having a thickness of 182.3 nm and a refractive index of 1.45 are repeatedly formed five times. As the uppermost layer, a silicon layer having a thickness of 36.9 nm and a refractive index of 3.56 is formed.
Figure JPOXMLDOC01-appb-T000001
 図5は、屈折率3.42のGaAs基板上に、表1に示す構造の薄膜18を形成し、薄膜18に対して45°の入射角で光を入射させた場合における薄膜18の反射特性、透過特性、および損失特性を計算したシミュレーション結果である。図5の横軸は薄膜18に入射する光の波長(nm)を、縦軸は薄膜18による光の反射率(%)・透過率(%)・損失率(%)を表している。図5のように、薄膜18の反射特性と透過特性とは波長に依存している。薄膜18は、1300nm波長帯の光に対しては高反射率で反射する高反射膜として機能し、1500nm波長帯の光に対してはほとんど反射せずに高透過率で透過する低反射膜として機能する。損失特性に関しては、1150nmから1650nmの波長帯において0%である。このように、表1に示した構造の薄膜18は、LD14が出射する1.31μm波長帯の送信光に対して高反射膜として機能し、光ファイバ20から出射される1.49μm波長帯の受信光に対して低反射膜として機能する。 FIG. 5 shows the reflection characteristics of the thin film 18 when the thin film 18 having the structure shown in Table 1 is formed on a GaAs substrate having a refractive index of 3.42 and light is incident on the thin film 18 at an incident angle of 45 °. It is the simulation result which calculated the transmission characteristic and the loss characteristic. The horizontal axis of FIG. 5 represents the wavelength (nm) of light incident on the thin film 18, and the vertical axis represents the light reflectance (%), transmittance (%), and loss rate (%). As shown in FIG. 5, the reflection characteristics and transmission characteristics of the thin film 18 depend on the wavelength. The thin film 18 functions as a high-reflection film that reflects light with a high reflectance with respect to light in the 1300 nm wavelength band, and as a low-reflection film that transmits light with high transmittance without substantially reflecting with respect to light in the 1500 nm wavelength band. Function. Regarding the loss characteristics, it is 0% in the wavelength band of 1150 nm to 1650 nm. As described above, the thin film 18 having the structure shown in Table 1 functions as a highly reflective film with respect to the 1.31 μm wavelength band transmission light emitted from the LD 14 and has a 1.49 μm wavelength band emitted from the optical fiber 20. It functions as a low reflection film for received light.
 図6は、実施例1に係る光送受信装置100をFTTHシステムに用いた場合の光の送受信について説明する概念図の例である。なお、図を明瞭にする目的から、送信光の光軸と受信光の光軸とをずらして図示しているが、実際は、送信光の光軸と受信光の光軸とは一致している。実施例1に係る光送受信装置100に、1.31μmの波長の送信光を出射するLD14と、1.49μmの波長の受信光を受光する第1PD16と、1.31μmの波長の送信光を受光する第2PD17と、第1PD16の受光面42a上に表1に示す構造の薄膜18と、を用いる。図6のように、LD14が出射する1.31μm波長帯の送信光の一部は、第1PD16上にコーティングされた薄膜18で反射され、ガラスボールレンズ22で集光された後、光ファイバ20に入射する。また、LD14が出射する1.31μm波長帯の送信光の他の一部は、第2PD17の受光面42bに入射する。一方、光ファイバ20から出射される1.49μm波長帯の受信光は、ガラスボールレンズ22で集光され、薄膜18を透過して第1PD16の受光面42aに入射する。 FIG. 6 is an example of a conceptual diagram illustrating light transmission / reception when the optical transmission / reception apparatus 100 according to the first embodiment is used in an FTTH system. For the purpose of clarifying the figure, the optical axis of the transmission light and the optical axis of the reception light are shifted from each other, but in reality, the optical axis of the transmission light and the optical axis of the reception light coincide with each other. . The optical transmitter / receiver 100 according to the first embodiment receives the LD 14 that emits transmission light having a wavelength of 1.31 μm, the first PD 16 that receives reception light having a wavelength of 1.49 μm, and the transmission light having a wavelength of 1.31 μm. And the thin film 18 having the structure shown in Table 1 on the light receiving surface 42a of the first PD 16. As shown in FIG. 6, a part of the 1.31 μm wavelength transmission light emitted from the LD 14 is reflected by the thin film 18 coated on the first PD 16, collected by the glass ball lens 22, and then the optical fiber 20. Is incident on. Further, the other part of the 1.31 μm wavelength transmission light emitted from the LD 14 is incident on the light receiving surface 42 b of the second PD 17. On the other hand, the 1.49 μm wavelength received light emitted from the optical fiber 20 is collected by the glass ball lens 22, passes through the thin film 18, and enters the light receiving surface 42 a of the first PD 16.
 以上説明してきたように、実施例1に係る光送受信装置100によれば、図1および図6のように、LD14は、第1PD16の受光面42aと第2PD17の受光面42bとに向かって送信光を出射する。第1PD16の受光面42a上には、薄膜18が設けられている。薄膜18は、LD14が出射する送信光に対して高反射膜として機能する。このため、薄膜18は、LD14が出射する送信光の一部を光ファイバ20に向かって反射させる。また、薄膜18は、光ファイバ20から出射される受信光に対しては低反射膜として機能する。このため、薄膜18は、光ファイバ20から出射される受信光を透過する。これにより、LD14が出射する送信光の一部を光ファイバ20に入射させ、光ファイバ20から出射される受信光を第1PD16で受光できる。よって、波長分岐フィルタを別途個別に搭載することなく、一心双方向型光通信が可能となる。 As described above, according to the optical transceiver 100 according to the first embodiment, as shown in FIGS. 1 and 6, the LD 14 transmits toward the light receiving surface 42 a of the first PD 16 and the light receiving surface 42 b of the second PD 17. Emits light. The thin film 18 is provided on the light receiving surface 42 a of the first PD 16. The thin film 18 functions as a highly reflective film for transmission light emitted from the LD 14. For this reason, the thin film 18 reflects part of the transmission light emitted from the LD 14 toward the optical fiber 20. Further, the thin film 18 functions as a low reflection film for the received light emitted from the optical fiber 20. For this reason, the thin film 18 transmits the received light emitted from the optical fiber 20. Thereby, a part of the transmission light emitted from the LD 14 is made incident on the optical fiber 20, and the reception light emitted from the optical fiber 20 can be received by the first PD 16. Therefore, single-fiber bidirectional optical communication is possible without separately mounting the wavelength branching filter.
 また、第2PD17の受光面42bは、第1PD16の受光面42aと同一面を形成している。そして、第2PD17の受光面42bには薄膜18は設けられていない。このため、図3(c)で説明したように、第2PD17は、LD14が出射する送信光の一部を受光することができる。これにより、第2PD17は、LD14の光出力をモニタリングすることが可能となる。また、第2PD17の受光面42bが第1PD16の受光面42aと同一面を形成していることにより、LD14が送信光を出射する方向に第1PD16と第2PD17とを設けることができ、非特許文献1に記載された構造に比べて、小型化を図ることができる。 Further, the light receiving surface 42b of the second PD 17 forms the same surface as the light receiving surface 42a of the first PD 16. And the thin film 18 is not provided in the light-receiving surface 42b of 2nd PD17. For this reason, as explained in FIG. 3C, the second PD 17 can receive a part of the transmission light emitted from the LD. Thereby, the second PD 17 can monitor the light output of the LD 14. Further, since the light receiving surface 42b of the second PD 17 forms the same surface as the light receiving surface 42a of the first PD 16, the first PD 16 and the second PD 17 can be provided in the direction in which the LD 14 emits transmission light. Compared to the structure described in No. 1, the size can be reduced.
 このように、実施例1に係る光送受信装置100によれば、一心双方向型光通信が可能であると共に、LDの光出力のモニタリングが可能な光送受信装置の、小型化、低コスト化を実現することが可能となる。 As described above, according to the optical transmission / reception device 100 according to the first embodiment, it is possible to reduce the size and the cost of the optical transmission / reception device capable of performing one-fiber bidirectional optical communication and monitoring the optical output of the LD. It can be realized.
 また、図4(b)で示したように、第1PD16と第2PD17とは同じ基板56上に形成されている。これにより、第1PD16と第2PD17とを同時に製造することができるため、より低コスト化を実現することができる。 Further, as shown in FIG. 4B, the first PD 16 and the second PD 17 are formed on the same substrate 56. Thereby, since 1st PD16 and 2nd PD17 can be manufactured simultaneously, cost reduction can be implement | achieved more.
 図1および図6のように、第1PD16の受光面42aに設けられた薄膜18は、LD14が出射する送信光の光軸上に配置されていることが好ましい。これにより、LD14が出射する送信光の大部分を薄膜18で反射させて光ファイバ20に入射させることができる。 As shown in FIGS. 1 and 6, the thin film 18 provided on the light receiving surface 42 a of the first PD 16 is preferably disposed on the optical axis of the transmission light emitted from the LD 14. Thereby, most of the transmission light emitted from the LD 14 can be reflected by the thin film 18 and incident on the optical fiber 20.
 図1および図6のように、第1PD16は、光ファイバ20の光軸上に配置されている場合が好ましい。これにより、光ファイバ20から出射される受信光を第1PD16で効率よく受光することができる。また、薄膜18で反射された送信光の光軸と光ファイバ20の光軸とは一致している場合が好ましい。これにより、LD14が出射する送信光を光ファイバ20に効率よく入射させることができる。 As shown in FIGS. 1 and 6, the first PD 16 is preferably disposed on the optical axis of the optical fiber 20. Thereby, the received light emitted from the optical fiber 20 can be efficiently received by the first PD 16. Further, it is preferable that the optical axis of the transmission light reflected by the thin film 18 and the optical axis of the optical fiber 20 coincide with each other. Thereby, the transmission light emitted from the LD 14 can be efficiently incident on the optical fiber 20.
 図1のように、LD14は、光ファイバ20の光軸に対して垂直な面である第1実装面32上に設けられていて、第1PD16と第2PD17とは、光ファイバ20の光軸に対して斜めに傾いた面である第2実装面34上に設けられている。LD14を光ファイバ20の光軸に垂直な第1実装面32上に実装し、第1PD16と第2PD17とを光ファイバ20の光軸に対して斜めに傾いた第2実装面34上に実装することは、後述する実施例2のようにLD14と第1PD16および第2PD17とを光ファイバ20の光軸に対して斜めに傾いた面に実装する場合に比べて容易に実装できる。また、基準面28と第1実装面32とは互いに平行であり、第2実装面34だけが斜めに傾いている構造のステム12は、後述する実施例2の場合に比べて容易に製造することができる。 As shown in FIG. 1, the LD 14 is provided on a first mounting surface 32 that is a surface perpendicular to the optical axis of the optical fiber 20, and the first PD 16 and the second PD 17 are arranged on the optical axis of the optical fiber 20. It is provided on the second mounting surface 34 that is a surface inclined obliquely. The LD 14 is mounted on the first mounting surface 32 perpendicular to the optical axis of the optical fiber 20, and the first PD 16 and the second PD 17 are mounted on the second mounting surface 34 inclined obliquely with respect to the optical axis of the optical fiber 20. This can be easily implemented as compared with the case where the LD 14 and the first PD 16 and the second PD 17 are mounted on a surface inclined obliquely with respect to the optical axis of the optical fiber 20 as in Example 2 described later. Further, the stem 12 having a structure in which the reference surface 28 and the first mounting surface 32 are parallel to each other and only the second mounting surface 34 is inclined is manufactured more easily than in the case of Example 2 described later. be able to.
 実施例1において、薄膜18は、表1に示すような構造の酸化アルミニウム層とシリコン層と酸化シリコン層との多層膜である場合を例に示したが、これに限られるわけではない。LD14が出射する送信光を反射し、光ファイバ20から出射される受信光を透過する性質を有する薄膜であれば、その他の膜構造や材料からなる場合でもよい。特に、実施例1に係る光送受信装置100をFTTHシステムに用いる場合、薄膜18は、LD14が出射する1.31μmの波長帯の送信光を反射し、光ファイバ20から出射される1.49μmの波長帯の受信光を透過する光学特性を有する場合が好ましい。また、FTTHシステムでは、上りに1.31μmの波長帯を、下りに1.55μmの波長帯を用いる場合や、上りに1.49μmまたは1.55μmの波長帯を、下りに1.31μmの波長帯を用いる場合もある。したがって、薄膜18は、1.31μmの波長帯の送信光を反射し、1.55μmの波長帯の受信光を透過する光学特性を有する場合や、1.49μmまたは1.55μmの波長帯の送信光を反射し、1.31μmの波長帯の受信光を透過する光学特性を有する場合でもよい。 In Example 1, the thin film 18 is shown as an example of a multilayer film of an aluminum oxide layer, a silicon layer, and a silicon oxide layer having a structure as shown in Table 1. However, the present invention is not limited to this. As long as it is a thin film having the property of reflecting the transmission light emitted from the LD 14 and transmitting the reception light emitted from the optical fiber 20, it may be made of other film structures or materials. In particular, when the optical transceiver 100 according to the first embodiment is used in the FTTH system, the thin film 18 reflects the transmission light of the wavelength band of 1.31 μm emitted from the LD 14 and emits the 1.49 μm of light emitted from the optical fiber 20. The case where it has the optical characteristic which permeate | transmits the received light of a wavelength band is preferable. In the FTTH system, the wavelength band of 1.31 μm is used for the upstream and the wavelength band of 1.55 μm is used for the downstream, the wavelength band of 1.49 μm or 1.55 μm is used for the upstream, and the wavelength of 1.31 μm is used for the downstream. A band may be used. Accordingly, the thin film 18 has an optical characteristic of reflecting the transmission light in the wavelength band of 1.31 μm and transmitting the reception light in the wavelength band of 1.55 μm, or transmitting in the wavelength band of 1.49 μm or 1.55 μm. It may have an optical characteristic of reflecting light and transmitting received light having a wavelength band of 1.31 μm.
 LD14の光出力をモニタリングするために、第2PD17は、LD14が出射する送信光の総出力に対して5%程度の光出力を受光する場合が好ましい。したがって、LD14が出射する送信光のうち5%程度の光量が第2PD17に入射されるように、LD14が出射する光軸に対して第1PD16および第2PD17の位置が定まっている場合が好ましい。 In order to monitor the optical output of the LD 14, it is preferable that the second PD 17 receives an optical output of about 5% with respect to the total output of the transmission light emitted by the LD 14. Therefore, it is preferable that the positions of the first PD 16 and the second PD 17 are determined with respect to the optical axis emitted from the LD 14 so that about 5% of the transmission light emitted from the LD 14 is incident on the second PD 17.
 LD14は量子井戸レーザである場合を例に示したが、例えば量子ドットレーザなどの他の半導体レーザである場合でもよい。また、DFB(Distributed Feedback)型レーザであってもファブリペロ型レーザであってもよい。 Although the case where the LD 14 is a quantum well laser has been described as an example, the LD 14 may be another semiconductor laser such as a quantum dot laser. Further, it may be a DFB (Distributed Feedback) type laser or a Fabry-Perot type laser.
 第2PD17上には受光面42bを含むように例えば保護膜が設けられている場合が好ましい。保護膜は、第2PD17でLD14が出射する送信光を受光できるように、LD14が出射する送信光に対して低反射膜となる光学特性を有する場合が好ましい。 For example, a protective film is preferably provided on the second PD 17 so as to include the light receiving surface 42b. It is preferable that the protective film has an optical characteristic that becomes a low reflection film with respect to the transmission light emitted from the LD 14 so that the second PD 17 can receive the transmission light emitted from the LD 14.
 第2実装面34が第1実装面32に対して45°傾いていることで、第1PD16の受光面42aがLD14の光軸に対して45°傾いている場合を例に示した。この場合は、受光面42aにコーティングされた薄膜18で反射される送信光の光軸と光ファイバ20の光軸とを一致させることができ、LD14が出射する送信光を光ファイバ20に効率よく入射させることができる。しかしながら、傾きは45°の場合に限られず、LD14が出射する送信光が薄膜18で反射して光ファイバ20に入射される範囲内でその他の傾きを有する場合でもよい。例えば30°から60°の範囲内の傾きを有する場合でもよい。 The case where the light receiving surface 42a of the first PD 16 is inclined 45 ° with respect to the optical axis of the LD 14 is illustrated as an example because the second mounting surface 34 is inclined 45 ° with respect to the first mounting surface 32. In this case, the optical axis of the transmission light reflected by the thin film 18 coated on the light receiving surface 42a can be matched with the optical axis of the optical fiber 20, and the transmission light emitted from the LD 14 is efficiently transmitted to the optical fiber 20. It can be made incident. However, the inclination is not limited to 45 °, and the transmission light emitted from the LD 14 may have another inclination within a range in which the transmission light is reflected by the thin film 18 and is incident on the optical fiber 20. For example, the inclination may be within a range of 30 ° to 60 °.
 図7(a)は実施例2に係る光送受信装置200の上面模式図の例であり、図7(b)は図7(a)のA-A間の断面模式図の例である。なお、図7(a)は、薄膜18、キャップ24、ガラスボールレンズ22、および封止ガラス46を透視した上面模式図である。図7(a)および図7(b)のように、ステム12が有する突起部30の先端は、くの字型になっており、基準面28に対して斜めに傾いた面である第3実装面82と第4実装面84とを有する。つまり、第3実装面82と第4実装面84とは、光ファイバ20の光軸に対して斜めに傾いた面である。第3実装面82と第4実装面84とは共に、基準面28に対して、例えば、30°の傾きを有する。 FIG. 7A is an example of a schematic top view of the optical transceiver 200 according to the second embodiment, and FIG. 7B is an example of a schematic cross-sectional view taken along line AA in FIG. 7A. 7A is a schematic top view of the thin film 18, the cap 24, the glass ball lens 22, and the sealing glass 46 seen through. As shown in FIGS. 7A and 7B, the tip of the protrusion 30 of the stem 12 has a dogleg shape and is a third surface that is inclined obliquely with respect to the reference surface 28. A mounting surface 82 and a fourth mounting surface 84 are provided. That is, the third mounting surface 82 and the fourth mounting surface 84 are surfaces inclined obliquely with respect to the optical axis of the optical fiber 20. Both the third mounting surface 82 and the fourth mounting surface 84 have an inclination of, for example, 30 ° with respect to the reference surface 28.
 LD14がマウントされたヒートシンク40は、突起部30の先端の第3実装面82に実装されている。これにより、LD14が出射する送信光の光軸と光ファイバ20から出射された受信光の光軸とが交わる角θは60°と鋭角になる。第1PD16および第2PD17は、突起部30の第4実装面84に実装されている。これにより、第1PD16の受光面42aおよび第2PD17の受光面42bは、LD14の光軸に対して斜めに配置されている。その他の構成については、実施例1と同じであり、図1に示しているので、ここでは説明を省略する。 The heat sink 40 on which the LD 14 is mounted is mounted on the third mounting surface 82 at the tip of the protrusion 30. As a result, the angle θ between the optical axis of the transmission light emitted from the LD 14 and the optical axis of the reception light emitted from the optical fiber 20 is an acute angle of 60 °. The first PD 16 and the second PD 17 are mounted on the fourth mounting surface 84 of the protrusion 30. Thereby, the light receiving surface 42a of the first PD 16 and the light receiving surface 42b of the second PD 17 are arranged obliquely with respect to the optical axis of the LD 14. The other configuration is the same as that of the first embodiment and is shown in FIG.
 このように、実施例2に係る光送受信装置200によれば、図7(a)および図7(b)のように、LD14は、光ファイバ20の光軸に対して斜めに傾いた面である第3実装面82上に設けられていて、LD14が出射する送信光の光軸と光ファイバ20から出射される受信光の光軸とは鋭角に交わっている。これにより、実施例1に比べて、第1PD16の受光面42aは光ファイバ20の光軸に対して垂直に近づくことになる。よって、光ファイバ20から出射される受信光は、第1PD16の受光面42a上に設けられた薄膜18を透過しやすくなり、受光面42aに入射される受信光の強度が大きくなる。つまり、第1PD16による受信光の受光効率が向上する。 As described above, according to the optical transmission / reception device 200 according to the second embodiment, the LD 14 is inclined with respect to the optical axis of the optical fiber 20 as illustrated in FIGS. 7A and 7B. The optical axis of the transmission light emitted from the LD 14 and the optical axis of the reception light emitted from the optical fiber 20 intersect each other at an acute angle. As a result, the light receiving surface 42a of the first PD 16 is closer to being perpendicular to the optical axis of the optical fiber 20 than in the first embodiment. Therefore, the received light emitted from the optical fiber 20 is easily transmitted through the thin film 18 provided on the light receiving surface 42a of the first PD 16, and the intensity of the received light incident on the light receiving surface 42a is increased. That is, the light receiving efficiency of the received light by the first PD 16 is improved.
 実施例2において、第3実装面82と第4実装面84とが、基準面28に対して30°傾いている場合を例に示したが、この場合に限られるわけではない。LD14が出射する送信光が薄膜18で反射して光ファイバ20に入射される範囲内でその他の傾きを有する場合でもよい。特に、薄膜18で反射される送信光の光軸と光ファイバ20の光軸とを一致させる場合、基準面28に対する第3実装面82の角度が大きくなり、LD14が出射する送信光の光軸と光ファイバ20から出射される受信光の光軸とのなす角θが小さくなる程、基準面28に対する第4実装面84の角度を小さくし、第1PD16の受光面42aを光ファイバ20の光軸に対して垂直に近づける必要がある。この場合、第1PD16による受信光の受光効率は向上する。したがって、基準面28に対する第3実装面82の傾きは大きく、第4実装面84の傾きは小さい場合が好ましい。 In the second embodiment, the case where the third mounting surface 82 and the fourth mounting surface 84 are inclined by 30 ° with respect to the reference surface 28 is shown as an example, but the present invention is not limited to this case. The transmission light emitted from the LD 14 may be reflected by the thin film 18 and have another inclination within a range where it is incident on the optical fiber 20. In particular, when the optical axis of the transmission light reflected by the thin film 18 and the optical axis of the optical fiber 20 are matched, the angle of the third mounting surface 82 with respect to the reference surface 28 increases, and the optical axis of the transmission light emitted from the LD 14 And the angle θ of the fourth mounting surface 84 with respect to the reference surface 28 is reduced as the angle θ formed between the optical axis of the received light emitted from the optical fiber 20 and the light receiving surface 42a of the first PD 16 is reduced. Must be close to perpendicular to the axis. In this case, the light receiving efficiency of the received light by the first PD 16 is improved. Therefore, it is preferable that the inclination of the third mounting surface 82 with respect to the reference surface 28 is large and the inclination of the fourth mounting surface 84 is small.
 以上、本発明の好ましい実施例について詳述したが、本発明は係る特定の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。 The preferred embodiments of the present invention have been described in detail above, but the present invention is not limited to such specific embodiments, and various modifications can be made within the scope of the gist of the present invention described in the claims.・ Change is possible.

Claims (7)

  1.  光ファイバから出射される受信光を受光する第1のフォトダイオードと、
     前記第1のフォトダイオードの受光面と同一面を形成する受光面を有する第2のフォトダイオードと、
     前記第1のフォトダイオードと前記第2のフォトダイオードとに向かって、前記光ファイバに入射される送信光を出射するレーザダイオードと、
     前記第1のフォトダイオードの受光面上に設けられ、前記レーザダイオードが出射する前記送信光の一部を前記光ファイバに向かって反射させ、且つ前記光ファイバから出射される前記受信光を透過する薄膜と、を具備し、
     前記第2のフォトダイオードは、前記レーザダイオードが出射する前記送信光の他の一部を受光することを特徴とする光送受信装置。
    A first photodiode that receives received light emitted from the optical fiber;
    A second photodiode having a light receiving surface forming the same surface as the light receiving surface of the first photodiode;
    A laser diode that emits transmission light incident on the optical fiber toward the first photodiode and the second photodiode;
    Provided on the light receiving surface of the first photodiode, reflects a part of the transmission light emitted by the laser diode toward the optical fiber, and transmits the reception light emitted from the optical fiber. A thin film,
    The second photodiode receives an other part of the transmission light emitted from the laser diode.
  2.  前記第1のフォトダイオードと前記第2のフォトダイオードとは同じ基板上に形成されていることを特徴とする請求項1記載の光送受信装置。 The optical transceiver according to claim 1, wherein the first photodiode and the second photodiode are formed on the same substrate.
  3.  前記第1のフォトダイオードの受光面上に設けられた前記薄膜は、前記レーザダイオードが出射する前記送信光の光軸上に配置されていることを特徴とする請求項1または2記載の光送受信装置。 3. The optical transmission / reception according to claim 1, wherein the thin film provided on the light receiving surface of the first photodiode is disposed on an optical axis of the transmission light emitted from the laser diode. apparatus.
  4.  前記第1のフォトダイオードは、前記光ファイバの光軸上に配置されていることを特徴とする請求項3記載の光送受信装置。 The optical transmission / reception apparatus according to claim 3, wherein the first photodiode is disposed on an optical axis of the optical fiber.
  5.  前記薄膜で反射される前記送信光の光軸と前記光ファイバの光軸とは一致することを特徴とする請求項4記載の光送受信装置。 The optical transceiver according to claim 4, wherein an optical axis of the transmission light reflected by the thin film coincides with an optical axis of the optical fiber.
  6.  前記レーザダイオードは、前記光ファイバの光軸に対して垂直な面上に設けられていて、前記第1のフォトダイオードと前記第2のフォトダイオードとは、前記光ファイバの光軸に対して斜めに傾いた面上に設けられていることを特徴とする請求項1から5のいずれか一項記載の光送受信装置。 The laser diode is provided on a plane perpendicular to the optical axis of the optical fiber, and the first photodiode and the second photodiode are inclined with respect to the optical axis of the optical fiber. The optical transmission / reception apparatus according to claim 1, wherein the optical transmission / reception apparatus is provided on a surface inclined toward the surface.
  7.  前記レーザダイオードが出射する前記送信光の光軸と前記光ファイバから出射される前記受信光の光軸とが鋭角に交わることを特徴とする請求項1から5のいずれか一項記載の光送受信装置。 6. The optical transmission / reception according to claim 1, wherein an optical axis of the transmission light emitted from the laser diode and an optical axis of the reception light emitted from the optical fiber intersect at an acute angle. apparatus.
PCT/JP2011/056560 2010-04-08 2011-03-18 Optical transmitter/receiver WO2011125460A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-089746 2010-04-08
JP2010089746A JP2011221249A (en) 2010-04-08 2010-04-08 Optical transmitter/receiver

Publications (1)

Publication Number Publication Date
WO2011125460A1 true WO2011125460A1 (en) 2011-10-13

Family

ID=44762416

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/056560 WO2011125460A1 (en) 2010-04-08 2011-03-18 Optical transmitter/receiver

Country Status (3)

Country Link
JP (1) JP2011221249A (en)
TW (1) TW201144884A (en)
WO (1) WO2011125460A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014075536A (en) * 2012-10-05 2014-04-24 Sumitomo Electric Ind Ltd Optical module and cap for optical module
JP2020102578A (en) * 2018-12-25 2020-07-02 三菱電機株式会社 Optical transmitter module

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09283853A (en) * 1996-04-15 1997-10-31 Sankyo Seiki Mfg Co Ltd Semiconductor laser module and optical pickup
JPH10173207A (en) * 1996-10-11 1998-06-26 Sharp Corp Optical transmission-reception module
JP2001215368A (en) * 2000-02-04 2001-08-10 Japan Aviation Electronics Industry Ltd Optical transceiving module
JP2003233923A (en) * 2002-02-08 2003-08-22 Sony Corp Optical pickup and disk drive unit
JP2004031512A (en) * 2002-06-24 2004-01-29 Matsushita Electric Ind Co Ltd Wavelength-selective light receiving apparatus and optical transmitting-receiving module
JP2005045032A (en) * 2003-07-22 2005-02-17 Matsushita Electric Ind Co Ltd Semiconductor laser device and pickup device
JP2006310704A (en) * 2005-05-02 2006-11-09 Sumitomo Electric Ind Ltd Optical transmission and reception module

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09283853A (en) * 1996-04-15 1997-10-31 Sankyo Seiki Mfg Co Ltd Semiconductor laser module and optical pickup
JPH10173207A (en) * 1996-10-11 1998-06-26 Sharp Corp Optical transmission-reception module
JP2001215368A (en) * 2000-02-04 2001-08-10 Japan Aviation Electronics Industry Ltd Optical transceiving module
JP2003233923A (en) * 2002-02-08 2003-08-22 Sony Corp Optical pickup and disk drive unit
JP2004031512A (en) * 2002-06-24 2004-01-29 Matsushita Electric Ind Co Ltd Wavelength-selective light receiving apparatus and optical transmitting-receiving module
JP2005045032A (en) * 2003-07-22 2005-02-17 Matsushita Electric Ind Co Ltd Semiconductor laser device and pickup device
JP2006310704A (en) * 2005-05-02 2006-11-09 Sumitomo Electric Ind Ltd Optical transmission and reception module

Also Published As

Publication number Publication date
JP2011221249A (en) 2011-11-04
TW201144884A (en) 2011-12-16

Similar Documents

Publication Publication Date Title
US20200310054A1 (en) Optical transceiver
US10181694B2 (en) Optical module
KR101041570B1 (en) Optical communication module
US10746933B2 (en) Fiber coupled laser source pump with wavelength division multiplexer, isolator, tap filter, and photodetector
JP2009522805A (en) Monitor photodetector for integrated photonic devices
US20160349470A1 (en) Hybrid integrated optical sub-assembly
CN102043208A (en) Cooled laser module
US20200328814A1 (en) Optical packaging and designs for optical transceivers
US20190187391A1 (en) Optical module having two lens system and monitor photodiode between two lenses
KR100734874B1 (en) Bi-directional optical module
KR102167838B1 (en) Optical modulator package for bi-directional data communication with low wavelength separation
US20140029890A1 (en) Optical system with integrated photodetectors
JP2011164143A (en) Optical module
WO2011125460A1 (en) Optical transmitter/receiver
JP2008244368A (en) Optical semiconductor module and light-receiving element
US11705691B2 (en) Light source device
US9935425B2 (en) Fiber coupled laser source pump with wavelength division multiplexer
JP2007248581A (en) Laser module
US20140186032A1 (en) Optical bench apparatus having integrated monitor photodetectors and method for monitoring optical power using same
WO2011046004A1 (en) Optical transmission/reception device
JP3232998B2 (en) Optical transmission / reception module
JP7265213B2 (en) Light source device
JP2018066888A (en) Optical module
JP7041362B2 (en) Light source unit
JPH0943458A (en) Light transmission and reception module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11765362

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11765362

Country of ref document: EP

Kind code of ref document: A1