WO2007114053A1 - Single-core bidirectional optical transmitting/receiving module and its manufacturing method - Google Patents

Single-core bidirectional optical transmitting/receiving module and its manufacturing method Download PDF

Info

Publication number
WO2007114053A1
WO2007114053A1 PCT/JP2007/055769 JP2007055769W WO2007114053A1 WO 2007114053 A1 WO2007114053 A1 WO 2007114053A1 JP 2007055769 W JP2007055769 W JP 2007055769W WO 2007114053 A1 WO2007114053 A1 WO 2007114053A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
fiber
signal receiving
wavelength selection
receiving element
Prior art date
Application number
PCT/JP2007/055769
Other languages
French (fr)
Japanese (ja)
Inventor
Akira Oki
Seiji Fukushima
Yuji Akatsu
Original Assignee
Nippon Telegraph And Telephone Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph And Telephone Corporation filed Critical Nippon Telegraph And Telephone Corporation
Priority to JP2008508507A priority Critical patent/JP5144498B2/en
Publication of WO2007114053A1 publication Critical patent/WO2007114053A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4246Bidirectionally operating package structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • H01S5/0078Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping for frequency filtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/02208Mountings; Housings characterised by the shape of the housings
    • H01S5/02212Can-type, e.g. TO-CAN housings with emission along or parallel to symmetry axis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02251Out-coupling of light using optical fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02255Out-coupling of light using beam deflecting elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/02325Mechanically integrated components on mount members or optical micro-benches
    • H01S5/02326Arrangements for relative positioning of laser diodes and optical components, e.g. grooves in the mount to fix optical fibres or lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters

Definitions

  • the present invention relates to a single-fiber bidirectional optical transmission / reception module mounted as an optical transmission / reception function unit in an optical signal transmission / reception terminal device, which is a component of an optical communication network, and a method for manufacturing the same.
  • a single-fiber bidirectional optical transceiver module that transmits optical signals of two different wavelengths for transmission and reception using a single optical fiber
  • an optical transceiver module conventionally called a BIDI (bi-directional) type is used. Have been used (for example, see Non-Patent Document 1).
  • Fig. 23 shows the configuration of this BIDI module.
  • a transmitting TO (transistor outline) equipped with a laser diode 112—CAN101, a receiving TO equipped with a photodiode 122—CAN102, and an optical fiber 141 Is aligned and fixed to the BIDI housing 100 in which the WDM filter 103 is built.
  • the transmitting TO—CAN101 and optical fiber 141 are fixed to the opposite end faces of the BIDI housing 100, and the receiving TO—CAN102 is fixed to the plane orthogonal to the end face to which the transmitting TO—CAN101 and optical fiber 141 are fixed. It has been.
  • TO-CAN is a cylindrical metal housing that houses circuit elements, and TO-CAN 101 and 102 shown in FIG. 23 have a built-in lens.
  • the transmission TO-CAN 101 includes a monitor photodiode 113 mounted on a stem 111 together with a laser diode 112 and is sealed with a lens cap 114.
  • the receiving T O—CAN 102 has a receiving IC 123 mounted on a stem 121 together with a photodiode 122 and is sealed with a lens cap 124.
  • the optical signal travels in the direction indicated by the solid line when transmitting, and proceeds in the direction indicated by the broken line when receiving. For this reason, the BIDI module requires at least two active alignment processes.
  • Non-Patent Document 1 "Optical device for PON (E-PON, B-PON, GE-PON)" [online], January 2004, Fujitsu Limited, [March 2006 search], Internet ⁇ URL : http: ⁇ telecom.fuji tsu.com/jp/roducts/device/df/on_bidi_i.pdf)
  • Non-Patent Document 2 H. Tanaka et.al, IEEE Photonics Technology Letters, Vol. 10, No. 3, 1 998
  • Non-Patent Document 3 Y. Kuhara et.al, Journal of Lightwave Technology, Vol. 16, No. 2, 1998
  • Non-Patent Document 4 HLAlthaus et.al, IEEE Trans. On Components, Packaging, and Manufacturing faction Technology part B , Vol.21, No.2, 1998
  • Non-Patent Document 5 H. Yoon et.al, IEEE Photonics Technology Letters, Vol. 16, No. 8, 200 4
  • Non-patent documents 2, 3, 4, and 5 are given as typical examples.
  • Non-Patent Document 2 a half mirror is provided on the surface of a receiving photodiode, 50% of the transmitted light emitted from the laser diode is reflected by this half mirror, and is coupled to an optical fiber via a rod lens. Proposed configuration. In this configuration, since the optical path between the laser diode and the optical fiber passes through the half mirror on the photodiode, alignment between the laser diode and the optical fiber and between the photodiode and the optical fiber is achieved by one active alignment. There are advantages you can do. On the other hand, this configuration has the following disadvantages and is suitable for application to access optical communication systems.
  • the half mirror reflects about 50% of the optical signal sent from other places. In principle, a 3 dB deterioration in sensitivity is inevitable.
  • Non-Patent Document 3 proposes to use a translucent photodiode (HT-PD) in place of the photodiode with a half mirror of Non-Patent Document 2. This proposal also has the same advantages and disadvantages as document 2, and is not suitable for application to an actual system.
  • HT-PD translucent photodiode
  • Non-Patent Document 4 proposes a configuration in which a Si substrate processed with high precision using a photo process is used as a support such as a laser diode, a photodiode, a filter, or a lens.
  • a Si substrate processed with high precision using a photo process is used as a support such as a laser diode, a photodiode, a filter, or a lens.
  • the high processing accuracy of the support and the high-precision mounting of parts aim at low cost by optical path alignment using only inexpensive passive alignment.
  • the component mounting accuracy required by this proposal is ⁇ 2 ⁇ m or less, and it is extremely difficult to achieve such high accuracy during mass production. In fact, even now, eight years after the proposal in Reference 4, no mass-produced product based on this proposal has been made.
  • Non-Patent Document 5 proposes that the BIDI housing be made smaller and mounted inside T0_CAN.
  • a metal BIDI housing is not used, but a lens and a filter are fixed on the ceramic plate with an adhesive.
  • a spherical lens is fixed on a flat ceramic plate with an adhesive, the ceramic plate and the lens are in point contact with each other, so high adhesive strength cannot be expected. It is difficult to ensure reliability.
  • the number of lenses used is three more than the BIDI type module, and cost reduction effects cannot be expected.
  • Non-Patent Document 5 unlike Non-Patent Documents 2, 3, and 4, provides technical support for overlapping parts of the two optical paths between the laser diode and the optical fiber and between the photodiode and the optical fiber. No, ... An engineer who is familiar with the processing accuracy of actual photodiodes, laser diodes, ceramic substrates, ball lenses, filters, etc. can determine that the realization of the structure of Non-Patent Document 5 is difficult technically.
  • the conventional technical proposal and invention for integrating the functions of the BIDI module as described in Non-Patent Documents 2 to 5 in one TO-CAN can reduce the cost and the manufacturing time.
  • BIDI-type modules are still widely distributed.
  • a simple passive alignment method hereinafter, confusion with other passive alignment methods for matching the optical path between a laser diode and an optical fiber with the optical path between a photodiode and an optical fiber.
  • the above-mentioned problems of the BIDI type and the conventional CAN type transmission / reception module are solved, and a small and low-cost CAN type transmission / reception module is realized. Will be possible.
  • An object of the present invention is to provide a single-fiber bidirectional optical transceiver module with a small number of parts and manufacturing steps and a low cost.
  • a single-fiber bidirectional optical transmission / reception module for solving the above-mentioned problem is a lens cap having a light transmission part made of a condensing lens on a cylindrical or columnar metal member.
  • a single semiconductor optical transmitter, one optical receiver, and at least one wavelength selection filter are mounted inside the container that is fixedly attached to the container, and one optical fiber is placed outside the container.
  • the emission end face of the resonator of the semiconductor optical transmission element or the emission end face of the semiconductor optical transmission element has a shape capable of specifying the emission position of the laser beam,
  • the difference between the optical path length from the emitting end face of the semiconductor optical transmitting element to the optical fiber and the optical path length of the optical signal receiving element is small, and the optical path length to the optical fiber is small.
  • the signal receiving element and the wavelength selecting filter have different supports at positions where the optical path between the semiconductor optical transmitting element and the optical fiber and the optical path between the optical signal receiving element and the optical fiber overlap each other. It is fixed to the metal member through.
  • a single-fiber bidirectional optical transmission / reception module for solving the above-mentioned problem is a lens cap having a light transmission part made of a condensing lens on a cylindrical or columnar metal member.
  • a single semiconductor optical transmitter, one optical receiver, and at least one wavelength selection filter are mounted inside the container that is fixedly attached to the container, and one optical fiber is placed outside the container.
  • the emission end face of the resonator of the semiconductor optical transmission element or the emission end face of the semiconductor optical transmission element has a shape capable of specifying the emission position of the laser beam
  • Semiconductor optical transmitter The difference between the optical path length from the emission end face to the optical fiber and the optical signal receiving element light receiving surface force is small, and the semiconductor optical transmitting element, the optical signal receiving element, and The wavelength selecting filter is disposed at a position where the optical path between the semiconductor optical transmission element and the optical fiber and the optical path between the optical signal receiving element and the optical fiber partially overlap, and the semiconductor optical transmission element and the optical fiber
  • the optical signal receiving element is fixed to the metal member via a common support, and the wavelength selection filter is fixed to the metal member via another support.
  • a single-fiber bidirectional optical transmission / reception module for solving the above-mentioned problem is a lens cap having a light transmission part made of a condensing lens on a cylindrical or columnar metal member.
  • a single semiconductor optical transmitter, one optical receiver, and at least one wavelength selection filter are mounted inside the container that is fixedly attached to the container, and one optical fiber is placed outside the container.
  • the emission end face of the resonator of the semiconductor optical transmission element or the emission end face of the semiconductor optical transmission element has a shape capable of specifying the emission position of the laser beam,
  • the difference between the optical path length from the emitting end face of the semiconductor optical transmitting element to the optical fiber and the optical path length of the optical signal receiving element is small, and the optical path length to the optical fiber is small.
  • the optical signal receiving element and the wavelength selecting filter are disposed at a position where the optical path between the semiconductor optical transmitting element and the optical fiber and the optical path between the optical signal receiving element and the optical fiber overlap each other, and
  • the transmitting element and the wavelength selection filter are fixed to the metal member via a common support, and the optical signal receiving element is fixed to the metal member via another support.
  • a single-fiber bidirectional optical transmission / reception module for solving the above-described problem is a lens cap having a light transmission portion made of a condensing lens on a cylindrical or columnar metal member.
  • a single semiconductor optical transmitter, one optical receiver, and at least one wavelength selection filter are mounted inside the container that is fixedly attached to the container, and one optical fiber is placed outside the container.
  • the emission end face of the resonator of the semiconductor optical transmission element or the emission end face of the semiconductor optical transmission element has a shape capable of specifying the emission position of the laser beam
  • Semiconductor optical transmitter The difference between the optical path length from the emission end face to the optical fiber and the optical signal receiving element light receiving surface force is small, and the semiconductor optical transmitting element, the optical signal receiving element, and The wavelength selection filter is disposed at a position where an optical path between the semiconductor optical transmission element and the optical fiber and an optical path between the optical signal reception element and the optical fiber partially overlap, and the wavelength selection filter and the optical path
  • the signal receiving element is fixed to the metal member via a common support, and the semiconductor optical transmission element is fixed to the metal member via another support.
  • a single-fiber bidirectional optical transmission / reception module according to claim 5 of the present invention for solving the above-described problems is the single-fiber bidirectional optical transmission / reception module according to any one of claims 1 to 3.
  • the wavelength selection filter has a transmittance of 10% or more and 90% or less in at least a part of the visible light region.
  • a method for manufacturing a single-fiber bidirectional optical transmission / reception module according to claim 6 of the present invention for solving the above-described problem is a single-fiber bidirectional optical transmission / reception according to any one of claims 1 to 5.
  • At least the support body to which the wavelength selection filter is fixed is reflected through the wavelength selection filter and the reflection image of the emission end face of the semiconductor optical transmission element;
  • the support having the at least wavelength selection filter fixed thereto is disposed at a position where the light receiving surface of the optical signal receiving element transmitted through the wavelength selection filter overlaps. It is fixed to a metal member.
  • a single-fiber bidirectional optical transceiver module according to claim 7 of the present invention for solving the above-described problem is a method of manufacturing the single-fiber bidirectional optical transceiver module according to claim 4,
  • the wavelength selection filter has a transmittance of 10% or more and 90% or less in at least a part of the visible light region.
  • a method for manufacturing a single-fiber bidirectional optical transmission / reception module according to claim 8 of the present invention for solving the above-mentioned problems manufactures the single-fiber bidirectional optical transmission / reception module according to claim 4 or 7.
  • a body is fixed to the metal member.
  • the difference between the optical path length from the emitting end face of the semiconductor optical transmission element to the optical fiber and the optical path length from the light receiving surface of the optical signal receiving element to the optical fiber is small.
  • the difference D between the optical path length from the emitting end surface of the semiconductor optical transmission element to the optical fiber and the optical path length from the light receiving surface of the optical signal receiving element to the optical fiber is within a range satisfying the following inequality. That means.
  • d is the diameter of the light receiving surface of the optical signal receiving element used
  • NA is the numerical aperture of the condensing lens used.
  • the optical signal transmission / reception function of the BIDI type module can be easily integrated in one storage body.
  • the functions of the BID I-type module can be mounted in one storage body, the number of parts can be reduced by about 30% compared to the BIDI type.
  • an optical path between a semiconductor optical transmission element such as a laser diode and an optical fiber, and an optical signal reception element such as a photodiode and an optical fiber Therefore, the processing and mounting accuracy of the semiconductor optical transmission element, the optical signal receiving element, and their supports can be relaxed.
  • the number of active alignments can be reduced to one by simply matching the optical path between the optical fiber of the semiconductor optical transmission element and the optical fiber of the optical signal receiving element.
  • FIG. 1 is a schematic diagram showing a single-fiber bidirectional optical transceiver module in an embodiment of the present invention.
  • FIG. 2 (a) is a schematic diagram showing an observation optical path in an embodiment of the present invention
  • FIG. 2 (b) is a schematic diagram showing a WDM filter surface in an embodiment of the present invention.
  • FIG. 3 is a schematic diagram showing an alignment method by movement of a WDM filter in an embodiment of the present invention.
  • FIG. 4 is a schematic view showing an example of mounting a laser diode in Example 1 of the present invention.
  • FIG. 5 is a schematic diagram showing an example of manufacturing a receiving unit according to the first embodiment of the present invention.
  • FIG. 6 is a schematic diagram showing an example of WDM filter alignment fixing in Example 1 of the present invention.
  • FIG. 7 is a schematic diagram showing an example of sealing with a cap with a lens and optical fiber alignment fixing in Example 1 of the present invention.
  • FIG. 8 is a graph showing code error rate characteristics of the optical transceiver module according to Embodiment 1 of the present invention.
  • FIG. 9 is a graph showing waveforms of laser diode transmission signals by the optical transceiver module according to Embodiment 1 of the present invention.
  • FIG. 10 is a schematic diagram showing an example of manufacturing a laser diode carrier in Example 2 of the present invention.
  • FIG. 11 is a schematic diagram showing an example of manufacturing a receiving unit according to the second embodiment of the present invention.
  • FIG. 12 is a schematic diagram showing an example of WDM filter alignment fixing in Example 2 of the present invention.
  • FIG. 13 is a schematic diagram showing an example of sealing with a cap with a lens and optical fiber alignment fixing in Example 2 of the present invention.
  • FIG. 14 is a schematic diagram showing an example of subcarrier production in Example 3 of the present invention.
  • FIG. 15 is a schematic diagram showing an example of mounting a laser diode in Example 3 of the present invention.
  • FIG. 16 is a schematic diagram showing an example of WDM filter alignment fixing in Example 3 of the present invention.
  • FIG. 17 is a schematic diagram showing an example of sealing with a cap with a lens and optical fiber alignment fixing in Example 3 of the present invention.
  • FIG. 18 is a schematic diagram showing an example of subcarrier fabrication in Example 4 of the present invention.
  • FIG. 19 is a schematic diagram showing an example of component mounting in Example 4 of the present invention.
  • FIG. 20 is a schematic diagram showing an example of WDM filter alignment fixing in Example 4 of the present invention.
  • FIG. 21 is a schematic diagram showing an example of sealing with a cap with a lens and optical fiber alignment fixing in Example 4 of the present invention.
  • FIG. 22 is a diagram showing an example of light transmission characteristics of a WDM filter in Example 5 of the present invention.
  • FIG. 23 is a schematic diagram showing the structure of a conventional BIDI type module.
  • one semiconductor optical transmitter is provided inside a package as a storage body in which a lens cap having a light transmitting portion made of a condenser lens is fixed to a stem as a cylindrical metal member.
  • the optical signal transmission / reception function can be easily integrated in one package.
  • the package structure One—Can type
  • its manufacturing method One—Can type
  • the end face of the resonator of the laser diode has a shape capable of specifying the emission position of the laser beam, the optical path length from the emission end face of the laser diode to the optical fiber, and the light receiving face of the photodiode to the optical fiber.
  • the difference between the optical path length and the optical path length is small, that is, within the range of the value D that satisfies the above-mentioned equation (1), so that the filter transmission image transmitted through the WDM finator of the photodiode light receiving part and the laser diode light emitting part You can observe the reflected image at the same time.
  • the optical path between the laser diode, the photodiode, the WDM filter, the laser diode and the optical fiber, and the optical path between the photodiode and the optical fiber are arranged so as to partially overlap.
  • FIGS. 1 to 3 An outline of an example of visual alignment that is important in the present embodiment will be described based on FIGS. 1 to 3.
  • the laser diode 1 and the photodiode 2 are fixed on the stem 7 which is a cylindrical metal member via the subcarriers 4 and 5 and then the WDM filter 3 is fixed.
  • the stem 7 is made of a cylindrical metal member, but may be a columnar metal member.
  • subcarrier 6 with WDM filter 3 mounted is inserted into the space between laser diode 1 and photodiode 2 as indicated by the arrow. .
  • a reflected image 41 of the end face of the laser diode 1 as shown in FIG. 2 (b) is passed through the WDM filter 3 in the observation optical path 31 shown in FIG. Observe.
  • the laser diode 1 has an optical waveguide structure with a concave or convex surface on the resonator end face such as a ridge or mesa type, the laser diode light surrounded by the broken line in FIG. Can be confirmed accurately.
  • the reflected image 41 shown in FIG. 2B shows an example of a ridge waveguide.
  • force 41 shows an example in which the reflection image 41 of the exit end face of the resonator of laser diode 1 is reflected in the WDM filter 3.
  • a surface emitting laser diode is applied. Or, you can observe the reflected image of the laser diode's exit end face.
  • the optical design of the difference D between the optical path length from the stereomicroscope or CCD camera 11 to the photodiode 2 and the observation optical path length 31 shown in Fig. 2 (a) is 0.5 mm or less
  • Fig. 2 ( a) (b) As shown in Fig. 3, when the filter subcarrier 6 is moved to the photodiode 2 side, the filter transmission image that has passed through the WDM filter 3 of the photodiode receiver 2a as the light receiving surface of the optical signal receiving element is shown. 42 and the reflected image 41 of the light emitting part of the laser diode 1 can be observed simultaneously. Then, by superimposing these two images 41 and 42, the optical path between the laser diode 1 and the optical fiber and the optical path between the photodiode 2 and the optical fiber coincide.
  • the processing of the member is performed. Regardless of the accuracy and the mounting accuracy of laser diode 1 and photodiode 2, optical path alignment between laser diode 1 and photodiode 2 can be easily performed with a yield of almost 100%.
  • a general optical system material is shown.
  • the optical path alignment between the laser diode and the photodiode can be performed regardless of the member accuracy and the chip mounting accuracy.
  • the condition necessary for performing this visual alignment is that the laser diode 1 has an uneven optical waveguide structure that can specify the light emission position on the end face of the resonator, for example, an edge emitting laser diode having a ridge or mesa waveguide structure.
  • a surface-emitting laser diode (VCSEL) is provided and the reflected image 41 on the end face of the laser diode 1 and the transmitted image 42 of the photodiode light receiving portion 2a are in focus at the same time.
  • the resonator end face structure of the laser diode 1 is not particularly problematic as long as a ridge-processed type laser diode chip is selected.
  • the difference D between the surface power of the WDM filter 3 and the optical path length to the photodiode 2 is within the range satisfying the inequality shown in the above (1), for example, when using a general optical system material.
  • the filter transmission image 42 that has passed through the WDM filter 3 of the photodiode light receiving part 2a and the reflection image 41 of the light emitting part of the laser diode 1 are set to values that can be observed simultaneously.
  • Optical design shall be performed. As a result, the optical path between the laser diode 1 and the optical fiber can be matched with a part of the optical path between the photodiode 2 and the optical fiber.
  • the optical waveguide structure having an unevenness that can specify the light emitting position on the resonator end face of the laser diode 1 described above is an embedded waveguide type, and a ridge or mesa is added for reasons such as reducing the capacitance. Also included are engineered laser diodes.
  • the single-fiber bidirectional optical transceiver module and the manufacturing method thereof by using the visual alignment method, the optical path between the laser diode 1_optical fiber and the photodiode 2_optical fiber It is possible to reduce the processing accuracy and mounting accuracy of laser diode 1, photodiode 2 and their subcarriers 3 and 4, which are necessary for superimposing the optical paths. As a result, the manufacturing yield is improved, and the cost reduction of the optical module is further promoted together with the downsizing of the optical module due to the effect of reducing the number of parts and man-hours.
  • the optical design by quantitatively taking in the optical path length difference between the laser diode 1 side and the photodiode 2 side is the difference from the inventions described in Non-Patent Documents 2 to 5 described above. is there.
  • a ridge waveguide type FP_laser diode having an oscillation wavelength of 1310 nm is used as a laser diode, and an InGaAs pin type photodiode (hereinafter simply referred to as a photo diode) having a light receiving diameter of 80 ⁇ m as a receiving element.
  • a photo diode as a semiconductor optical transmission element
  • a photodiode as an optical signal receiving element
  • a WDM filter as a wavelength selection filter
  • the power of the WDM filter is designed to be 0.65 ⁇ 0. lmm, and the optical path length from the WDM filter to the laser diode is 0.6 ⁇ 0. lmm. (Maximum optical path length difference: 0.25 mm).
  • FIGS. 4 to 7 show an assembly process of the optical transmission module in the present embodiment.
  • a laser diode 1 and a laser diode output monitoring photodiode (hereinafter referred to as a monitoring photodiode) 13 are fixed onto a stem 7 via a laser diode subcarrier 4 by gold tin solder.
  • Laser diode 1 is mounted by an automatic mounting machine, and the mounting accuracy is almost 100 in a circle with a radius of 100 zm centered on the specified coordinates on stem 7. The accuracy can be satisfied with the yield of / o.
  • the laser diode 1 and the monitoring photodiode 13 are connected to the pin terminal 10 on the stem 7 by the wire bond 12.
  • the photodiode 2 is fixed to the stem 7 to which the laser diode 1 or the like is fixed by gold tin solder through the photodiode subcarrier 5.
  • Photodiode 2 is mounted by specifying coordinates with reference to the stripe electrode of laser diode 1 already mounted by an automatic mounting machine, and gold-tin solder is used for fixing.
  • the mounting accuracy of photodiode 2 is less than ⁇ 25 ⁇ with a yield of 99% or more with respect to the stripe of laser diode 1.
  • a receiver IC transimpedance-amplifier: TIA
  • a chip capacitor 15 for cutting power noise are mounted on an automatic mounting machine, fixed with adhesive, and connected between the pin terminal 9 and the receiver IC 14, etc. Connect the required terminals with wire bond 12
  • the WDM filter 3 is fixed to the filter subcarrier 6 with an adhesive. After fixing, the filter subcarrier 6 is inserted into the space between the laser diode 1 and the photodiode 2 and aligned by the visual alignment shown in FIGS. After alignment, fix WDM filter 3 together with filter subcarrier 6 on stem 7 by YAG welding 16.
  • the laser diode side optical path 32 which is the optical path between the laser diode 1 and the optical fiber 21 (see Fig. 7)
  • the photodiode side optical path 33 which is the optical path between the photodiode 2 and the optical fiber 21, are partially shared.
  • the common optical path 34 is provided, and superposition can be realized.
  • the lens cap 17 is placed on the stem 7 on which all components have been mounted and fixed by resistance welding.
  • the lens 17a used may be an aspherical lens or a ball lens.
  • a sleeve 19 containing a 1.55 zm cut filter 18 is placed on the lens cap 17 and fixed by welding 16 using a YAG laser.
  • the laser diode 1 is energized to emit light, the bigtilever fiber 21 covered with the fiber collar 20 is actively aligned, and the fiber collar 20 is welded and fixed to the sleeve 19 with a YAG laser 16.
  • Figures 8 and 9 show the reception characteristics (symbol error rate characteristics) and transmission waveforms of the transceiver module fabricated by the above process.
  • the photosensitivity was 28.7 dBm even when operating simultaneously with the laser diode, which satisfied the high speed passive optical network (HSPN) standard.
  • the transmission waveform passes the mask test of high-speed optical LAN (Local Area Network), which is one of LAN communication standards. From the above results, it is clear that the optical transmission / reception module according to the present embodiment has a commercial level performance.
  • the second example of the present invention will be described by taking a specific embodiment as an example.
  • a buried waveguide type DFB-laser diode with an oscillation wavelength of 1310 nm ridge processing is used as the laser diode, and a photodiode with a light receiving diameter of 60 xm is used as the optical signal receiving element.
  • Embodiments and effects will be described by taking as an example the case where the WDM filter and the WDM filter are fixed on the same subcarrier and the photodiode is fixed on another subcarrier.
  • the optical path length from the WDM filter to the photodiode is 0.55.
  • the optical path length from the WDM filter to the laser diode is designed to be 0 ⁇ 55 ⁇ 0.lm m (maximum optical path length difference: 0.2mm).
  • FIGS. 10 to 13 show the assembly process of the optical transceiver module of the present embodiment.
  • the same members as those shown in FIGS. 1 to 7 and described above will be described using the same reference numerals.
  • [0053] Laser diode subcarrier fabrication
  • the laser diode 1 and the monitoring photodiode 13 are fixed on the subcarrier 22 with gold-tin solder.
  • the laser diode 1 can be mounted by an automatic mounting machine, and the mounting accuracy can be mounted with a yield of almost 100% within ⁇ 50 zm with respect to the specified coordinates on the subcarrier 22.
  • the WDM filter 3 is inserted into the V-groove 22a of the subcarrier 22 and fixed with an adhesive.
  • the photodiode 2 is fixed on the stem 7 through the photodiode subcarrier 5 with gold tin solder.
  • the mounting of the photodiode 2 is performed by an automatic mounting machine, and the mounting accuracy is good within a circle of radius 100 xm centered on the specified coordinates on the stem 7 and this accuracy can be achieved with almost 100% yield.
  • the receiving IC 14 and the power source noise cut chip capacitor 15 are mounted by an automatic mounting machine, and fixed using an adhesive.
  • the terminals that need to be electrically connected are connected by wire bonds.
  • the subcarrier 22 on which the laser diode 1, the monitoring photodiode 13 and the WDM filter 3 are mounted is aligned by the visual alignment shown in FIGS. Secure with solder. With the above alignment process, a partial overlap of the optical path between the laser diode 1 and the optical fiber 21 (see FIG. 13) and the photodiode 2 and the optical fiber 21 can be realized.
  • the lens cap 17 is placed on the stem 7 where all the parts have been mounted and fixed by resistance welding.
  • the lens 17a used may be an aspherical lens or a ball lens.
  • a sleeve 19 incorporating a 1.55 zm cut filter 18 is placed on the lens cap 17 and fixed by welding with a YAG laser.
  • the laser diode 1 is energized to emit light
  • the pigtail fiber 21 covered with the fiber collar 20 is actively aligned
  • the fiber collar 20 is fixed to the sleeve 19 by welding with a YAG laser.
  • the optical transceiver module manufactured by the above steps is similar to that of the first embodiment shown in FIGS. Good transmission / reception characteristics as shown in Fig. 9 are shown.
  • a surface emitting laser diode with an oscillation wavelength of 1310 nm is used as the laser diode, and a photodiode with a light receiving diameter of 60 zm is used as the optical signal receiving element.
  • the photodiode and the WDM filter are the same subcarrier. Embodiments and effects will be described by taking the case where the laser diode is fixed on another subcarrier as an example.
  • the optical path length to the photodiode with the WDM filter is
  • the optical path length from the WDM filter to the laser diode is designed to be 0 ⁇ 55 ⁇ 0.lm m (maximum optical path length difference: 0.2mm).
  • FIGS. 14 to 17 show the assembly process of the optical transceiver module of the present embodiment.
  • the same members as those shown in FIGS. 1 to 7 and described above will be described using the same reference numerals.
  • the photodiode 2 is fixed onto the subcarrier 22 with gold-tin solder.
  • the photodiode 2 is mounted by an automatic mounting machine, and the mounting accuracy can be mounted within approximately ⁇ 50 zm with respect to the specified coordinates on the subcarrier 22 with a yield of almost 100%.
  • the WDM filter 3 is inserted into the V groove portion 22a of the subcarrier 22 and fixed with an adhesive.
  • a surface emitting laser diode 23 and a monitoring photodiode (hereinafter referred to as monitoring photodiode) 13 are fixed on a subcarrier 24 with gold-tin solder.
  • the surface-emitting laser diode 23 can be mounted by an automatic mounting machine, and each chip can be mounted with a yield of almost 100% within ⁇ 30 ⁇ m with respect to the specified coordinates on the subcarrier 24.
  • the surface emitting laser diode 23 and the monitoring photodiode 13 are connected to the pin terminal 9 on the stem 7 with a wire bond 12.
  • the subkey with photodiode 2 and WDM filter 3 is installed.
  • the carrier 22 is aligned with the visual alignment shown in FIGS. 1 to 3 and fixed with gold-tin solder or by YAG laser.
  • the reflected image 41 (see FIG. 2) of the laser diode 1 end face is observed, but in this embodiment, the transmitted image of the exit end face of the surface emitting laser diode 23 is observed. 44 will be observed through the WDM filter.
  • the periphery of the emission position of the emission end face of the surface emitting laser diode 23 is a ridge type, the emission position can be confirmed more accurately.
  • the filter transmission image 42 see FIG.
  • a cap 17 with a lens is placed on the stem 7 on which all parts have been mounted and fixed by resistance welding.
  • the lens 17a to be used may be an aspherical lens or a ball lens.
  • a sleeve 19 containing a 1.55 / im cut filter 18 is placed on the lens cap 17 and fixed by welding with a YAG laser.
  • the laser diode 1 is energized to emit light, the big fiber 21 covered with the fiber collar 20 is actively aligned, and the fiber collar 20 is fixed to the sleeve 19 by welding with a YAG laser.
  • the optical transmission / reception module manufactured by the above steps exhibits good transmission / reception characteristics as shown in FIGS. 8 and 9 as in the first embodiment.
  • the fourth example of the present invention will be described using a specific embodiment as an example.
  • a surface emitting laser diode having an oscillation wavelength of 1290 nm is used as the laser diode, and a photodiode having a light receiving diameter of 80 / m is used as the optical signal receiving element.
  • the embodiments and effects of the present invention will be described by taking as an example the case where the surface emitting laser diode and the photodiode are fixed on the same subcarrier and the WDM filter is fixed on another subcarrier.
  • the optical path length from the WDM filter to the photodiode is 0.45.
  • the optical path length from the WDM filter to the laser diode is 0.5 ⁇ 0. lmm (maximum optical path length difference: 0.25 mm) 0
  • FIGS. 18 to 21 show the assembly process of the optical transceiver module of the present embodiment.
  • the surface emitting laser diode 23 and the monitoring photodiode 13 are fixed on the subcarrier 24 with gold-tin solder.
  • the photodiode 2 is mounted on the designated coordinates on the subcarrier.
  • the subcarrier 24 on which the surface emitting laser diode 23, the monitoring photodiode 13 and the photodiode 2 are mounted is fixed on the stem 7 with gold-tin solder.
  • the subcarrier 24 is mounted by an automatic mounting machine. Its mounting accuracy can be achieved with a yield of almost 100%, which is better within a circle with a radius of 100 / im centered on the exponential coordinate on the stem 7.
  • the receiving IC 14 and the chip capacitor 15 for cutting the power source noise are mounted on the stem 7 by an automatic mounting machine, and fixed using an adhesive.
  • wire bonds 12 are used to connect the terminals that require electrical continuity.
  • the filter subcarrier 6 As shown in Fig. 20, it is bonded and fixed on the filter subcarrier 6 on which the WDM filter 3 is mounted. Thereafter, the filter-fixed subcarrier 24 is mounted on the stem 7, and the visual alignment shown in FIGS. 1 to 3 described above, that is, in this embodiment, the light transmitted through the WDM filter 3 of the photodiode 2 is transmitted through the filter.
  • the YAG laser is aligned by superimposing the image and the reflection image 43 of the surface emitting laser diode 23. Secure with weld 16.
  • the lens cap 17 is placed on the stem 7 where all the parts have been mounted and fixed by resistance welding.
  • the lens 17a used may be an aspherical lens or a ball lens.
  • a sleeve 19 containing a 1.55 zm cut filter 18 is placed on the lens cap 17 and fixed by welding 16 using a YAG laser.
  • the laser diode 1 is energized to emit light, the bigtil fiber 21 covered with the fiber collar 20 is actively aligned, and the fiber collar 20 is fixed to the sleeve 19 by welding with a YAG laser 16.
  • the optical transmission / reception module manufactured by the above steps exhibits good transmission / reception characteristics as shown in FIGS. 8 and 9 as in the first embodiment.
  • the present embodiment is an embodiment in which the characteristics of the WDM filter 3 are limited in the first to fourth embodiments described above.
  • FIG. 22 is a diagram showing an example of the light transmission characteristics of the WDM filter according to this example.
  • the transmittance is set to 10% or more and 90% or less in the 860 nm region.
  • the transmittance of the WDM filter 3 is set to the above value, when the centering is performed by the visual alignment shown in FIGS. Since both the reflected image 41 of the laser diode 1 end face can be made into an image in the visible light region, it is possible to align S from the force S that cannot be confirmed visually or with a CCD camera. . Further, as can be seen from FIG.
  • the transmittance of the WDM filter 3 can be set to 20% or more and 70% or less in a part of the visible light region (for example, a region where the wavelength of light is 760 nm to 860 nm).
  • 20% or more and 70% or less means a filter that has passed through the WDM filter 3 of the photodiode receiver 2a when aligning with the visual alignment shown in Figs.
  • the transmitted image 42 and the reflected image 41 of the end face of the laser diode 1 are substantially equal and can be observed with light intensity.
  • the present invention can be used for a single-fiber bidirectional optical transmission / reception module mounted as an optical transmission / reception function unit in an optical signal transmission / reception terminal device, which is a component of an optical communication network, and a manufacturing method thereof.

Abstract

A single-core bidirectional optical transmitting/receiving module is formed as follows. One laser diode, one photo diode, and at least one WDM filter are mounted on a stem. An emission end face of the laser diode has a shape capable of identifying the emission position of the laser beam. The difference between the optical path length from the emission end face of the laser diode to the optical fiber and the optical path length from the photo diode to the optical fiber is made small. The laser diode, the photo diode, and the WDM filter are arranged in such a manner that the optical path between the laser diode and the optical fiber and the optical path between the photo diode and the optical fiber are partially overlapped and they are sealed by a lens cap having a light transmission portion formed by a light collection lens. An optical fiber is attached to the outside of the lens cap.

Description

明 細 書  Specification
一心双方向光送受信モジュール及びその製造方法  Single fiber bidirectional optical transceiver module and manufacturing method thereof
技術分野  Technical field
[0001] 本発明は、光通信網の構成要素である光信号送受信用端末装置内に光送受信機 能部として搭載される一心双方向光送受信モジュール及びその製造方法に関する。 背景技術  TECHNICAL FIELD [0001] The present invention relates to a single-fiber bidirectional optical transmission / reception module mounted as an optical transmission / reception function unit in an optical signal transmission / reception terminal device, which is a component of an optical communication network, and a method for manufacturing the same. Background art
[0002] 送信用と受信用の異なる 2つの波長の光信号を一本の光ファイバを用いて伝送す る一心双方向光送受信モジュールでは、従来 BIDI (bi— directional)型と呼ばれる 光送受信モジュールが用いられてきた (例えば、非特許文献 1参照)。この BIDI型モ ジュールの構成を図 23に示す。  In a single-fiber bidirectional optical transceiver module that transmits optical signals of two different wavelengths for transmission and reception using a single optical fiber, an optical transceiver module conventionally called a BIDI (bi-directional) type is used. Have been used (for example, see Non-Patent Document 1). Fig. 23 shows the configuration of this BIDI module.
[0003] 図 23に示すように、 BIDI型モジュールにおいては、レーザダイオード 112を搭載し た送信用 TO (トランジスタ アウトライン)— CAN101、フォトダイオード 122を搭載し た受信用 TO— CAN102、及び光ファイバ 141を、 WDMフィルター 103が内蔵され た BIDI筐体 100に調芯固定している。送信用 TO— CAN101及び光ファイバ 141 は、 BIDI筐体 100の互いに対向する端面に固定され、受信用 TO— CAN102は送 信用 TO— CAN101及び光ファイバ 141が固定された端面と直交する面に固定され ている。なお、 TO— CANとは回路素子を収納する円筒状の金属筐体であり、図 23 に示した TO— CAN101 , 102はレンズを内蔵した状態のものである。  As shown in FIG. 23, in the BIDI type module, a transmitting TO (transistor outline) equipped with a laser diode 112—CAN101, a receiving TO equipped with a photodiode 122—CAN102, and an optical fiber 141 Is aligned and fixed to the BIDI housing 100 in which the WDM filter 103 is built. The transmitting TO—CAN101 and optical fiber 141 are fixed to the opposite end faces of the BIDI housing 100, and the receiving TO—CAN102 is fixed to the plane orthogonal to the end face to which the transmitting TO—CAN101 and optical fiber 141 are fixed. It has been. Note that TO-CAN is a cylindrical metal housing that houses circuit elements, and TO-CAN 101 and 102 shown in FIG. 23 have a built-in lens.
[0004] 具体的には、送信用 TO— CAN101はステム 111にレーザダイオード 112と共に モニタ用フォトダイオード 113を搭載し、レンズキャップ 114で封止している。受信用 T O— CAN102はステム 121にフォトダイオード 122と共に受信 IC123を搭載し、レン ズキャップ 124で封止している。光信号は、送信する場合は実線で示した矢印方向 へ進行し、受信する場合は破線で示した矢印方向へと進行する構成となっている。 そのため、 BIDI型モジュールでは、コストの高いアクティブ調芯工程が少なくとも 2回 必要となる。  Specifically, the transmission TO-CAN 101 includes a monitor photodiode 113 mounted on a stem 111 together with a laser diode 112 and is sealed with a lens cap 114. The receiving T O—CAN 102 has a receiving IC 123 mounted on a stem 121 together with a photodiode 122 and is sealed with a lens cap 124. The optical signal travels in the direction indicated by the solid line when transmitting, and proceeds in the direction indicated by the broken line when receiving. For this reason, the BIDI module requires at least two active alignment processes.
非特許文献 1 :「PON用光デバイス(E-PON,B-PON,GE-PON)」、 [online], 2004年 1 月、富士通株式会社、 [平成 18年 3月検索]、インターネット〈URL : http:〃 telecom.fuji tsu. com/ jp/ roducts/ device/ df/ on_bidi_i.pdf) Non-Patent Document 1: "Optical device for PON (E-PON, B-PON, GE-PON)" [online], January 2004, Fujitsu Limited, [March 2006 search], Internet <URL : http: 〃 telecom.fuji tsu.com/jp/roducts/device/df/on_bidi_i.pdf)
非特許文献 2 : H.Tanaka et.al, IEEE Photonics Technology Letters, Vol.10, No.3, 1 998  Non-Patent Document 2: H. Tanaka et.al, IEEE Photonics Technology Letters, Vol. 10, No. 3, 1 998
非特許文献 3 : Y.Kuhara et.al, Journal of Lightwave Technology, Vol.16, No.2、 1998 非特許文献 4 : H.L.Althaus et.al, IEEE Trans. On Components, Packaging, andManu facturing Technology part B, Vol.21, No.2、 1998  Non-Patent Document 3: Y. Kuhara et.al, Journal of Lightwave Technology, Vol. 16, No. 2, 1998 Non-Patent Document 4: HLAlthaus et.al, IEEE Trans. On Components, Packaging, and Manufacturing faction Technology part B , Vol.21, No.2, 1998
非特許文献 5 : H.Yoon et.al, IEEE Photonics Technology Letters, Vol.16, No.8、 200 4  Non-Patent Document 5: H. Yoon et.al, IEEE Photonics Technology Letters, Vol. 16, No. 8, 200 4
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] 図 23に示したように、従来の BIDI型モジュールでは、送信用 TO— CAN101と受 信用 TO— CAN102が独立しているため、光ファイバとの間に少なくとも 2回のァクテ イブ調芯工程が必須である。さらに、 2個の TO— CAN筐体 101, 102の他に BIDI 筐体 100が必要となるなど部品点数が多ぐコスト削減及び小型化が困難であった。  [0005] As shown in Fig. 23, in the conventional BIDI type module, since the transmitting TO-CAN101 and the receiving TO-CAN102 are independent, at least two active alignments with the optical fiber are required. A process is essential. In addition to the two TO-CAN casings 101 and 102, the BIDI casing 100 is required, which makes it difficult to reduce costs and reduce size.
[0006] 一方、近年 BIDI型モジュールの機能を 1個の TO— CANに集積することで、低コス ト化を図る技術的な試みも種々提案されている。代表的な例として非特許文献 2, 3, 4, 5を挙げる。  [0006] On the other hand, in recent years, various technical attempts have been made to reduce the cost by integrating the functions of the BIDI type module into one TO-CAN. Non-patent documents 2, 3, 4, and 5 are given as typical examples.
[0007] 非特許文献 2では、受信用フォトダイオードの表面にハーフミラーを設け、このハー フミラーによってレーザダイオードから出射された送信光の 50%を反射し、ロッドレン ズを介して光ファイバと結合する構成を提案している。この構成では、レーザダイォー ドと光ファイバ間光路がフォトダイオード上のハーフミラーを経由するため、 1回のァク ティブ調芯によりレーザダイオードと光ファイバ間、フォトダイオードと光ファイバ間の 調芯が実現できる利点がある。反面、この構成には以下の欠点があり、アクセス系光 通信システムへの適用には適してレ、なレ、。  [0007] In Non-Patent Document 2, a half mirror is provided on the surface of a receiving photodiode, 50% of the transmitted light emitted from the laser diode is reflected by this half mirror, and is coupled to an optical fiber via a rod lens. Proposed configuration. In this configuration, since the optical path between the laser diode and the optical fiber passes through the half mirror on the photodiode, alignment between the laser diode and the optical fiber and between the photodiode and the optical fiber is achieved by one active alignment. There are advantages you can do. On the other hand, this configuration has the following disadvantages and is suitable for application to access optical communication systems.
[0008] 1)ハーフミラーを用いており、信号送信時には送信光の 50%程度がフォトダイオード に入射するため、信号送信時に他所力も送られてくる信号を受信することができない 。そのため、現在普及している GE— PON等の通信システムには適用できない。  [0008] 1) Since a half mirror is used and about 50% of the transmitted light is incident on the photodiode during signal transmission, it is impossible to receive a signal that is sent by other powers during signal transmission. Therefore, it cannot be applied to communication systems such as GE-PON that are currently popular.
2)ハーフミラーが他所から送られてくる光信号の 50%程度を反射してしまうため、受 信感度の 3dBの劣化は原理的に避けられない。 2) The half mirror reflects about 50% of the optical signal sent from other places. In principle, a 3 dB deterioration in sensitivity is inevitable.
[0009] 非特許文献 3は、非特許文献 2のハーフミラー付きフォトダイオードの代わりに、半 透明フォトダイオード (HT— PD)を用いることを提案している。この提案も文献 2と同 様の利点と欠点を持ち合わせており、実システムへの適用には不適である。  [0009] Non-Patent Document 3 proposes to use a translucent photodiode (HT-PD) in place of the photodiode with a half mirror of Non-Patent Document 2. This proposal also has the same advantages and disadvantages as document 2, and is not suitable for application to an actual system.
[0010] 非特許文献 4は、フォトプロセスを用いて高精度に加工した Si基板をレーザダイォ ード、フォトダイオード、フィルター、レンズ等の支持体に用いる構成を提案している。 この構成では、支持体の高い加工精度と部品の高精度な搭載により、安価なパッシ ブ調芯のみによる光路調芯により低コストィ匕を狙っている。しかし、この提案の要求す る部品搭載精度は ± 2 μ m以下であり、大量生産時にこのような高精度を実現するこ とは極めて困難である。実際、文献 4の提案より 8年経た現在においても、この提案に 基づく量産品はできていない。  [0010] Non-Patent Document 4 proposes a configuration in which a Si substrate processed with high precision using a photo process is used as a support such as a laser diode, a photodiode, a filter, or a lens. In this configuration, the high processing accuracy of the support and the high-precision mounting of parts aim at low cost by optical path alignment using only inexpensive passive alignment. However, the component mounting accuracy required by this proposal is ± 2 μm or less, and it is extremely difficult to achieve such high accuracy during mass production. In fact, even now, eight years after the proposal in Reference 4, no mass-produced product based on this proposal has been made.
[0011] 非特許文献 5は、 BIDI筐体を小さくして、 T〇_ CANの内部に搭載することを提案 している。この提案では、 BIDI筐体を小型化するために金属製の BIDI筐体を用い ず、セラミック板の上にレンズやフィルターを接着剤で固定している。しかしながら平 面状に形成されたセラミック板の上に球体のレンズを接着剤で固定する場合、セラミ ック板とレンズとは点接触となるため高い接着強度は望めず、実用に耐え得るだけの 信頼性を確保することは困難である。また、用いるレンズの個数も BIDI型モジュール よりも多レ、 3個であるなど、コスト削減効果も期待できない。さらに、非特許文献 5には 、非特許文献 2, 3, 4と異なり、レーザダイオードと光ファイバ間、フォトダイオードと光 ファイバ間の 2つの光路の一部を重ね合わせるための技術的な裏付けが無レ、。実際 のフォトダイオード、レーザダイオード、セラミック基板、ボールレンズ、フィルタ一等の 加工精度を熟知した技術者であれば、非特許文献 5の構造の実現は技術的な見地 力 困難であると判断できる。  [0011] Non-Patent Document 5 proposes that the BIDI housing be made smaller and mounted inside T0_CAN. In this proposal, in order to reduce the size of the BIDI housing, a metal BIDI housing is not used, but a lens and a filter are fixed on the ceramic plate with an adhesive. However, when a spherical lens is fixed on a flat ceramic plate with an adhesive, the ceramic plate and the lens are in point contact with each other, so high adhesive strength cannot be expected. It is difficult to ensure reliability. In addition, the number of lenses used is three more than the BIDI type module, and cost reduction effects cannot be expected. Furthermore, Non-Patent Document 5, unlike Non-Patent Documents 2, 3, and 4, provides technical support for overlapping parts of the two optical paths between the laser diode and the optical fiber and between the photodiode and the optical fiber. No, ... An engineer who is familiar with the processing accuracy of actual photodiodes, laser diodes, ceramic substrates, ball lenses, filters, etc. can determine that the realization of the structure of Non-Patent Document 5 is difficult technically.
[0012] このように、非特許文献 2〜5に記載されるような BIDI型モジュールの機能を 1個の TO— CANに集積するための従来の技術提案や発明では、コストや製造時間を抑 制しつつレーザダイオードと光ファイバ間及びフォトダイオードと光ファイバ間の光路 の一部を高い歩留まりで一致させることが困難であった。そのため、未だに BIDI型モ ジュールが広く流通している。 [0013] 以上のことから、レーザダイオード一光ファイバ間の光路とフォトダイオード一光ファ ィバ間の光路を一致させるための簡易なパッシブ調芯法 (以下、他のパッシブ調芯 法との混同を避けるため、ビジュアルァライメントと呼ぶ)を新たに発明することで、上 述した BIDI型および従来の CAN型送受信モジュールの問題点を解決し、小型で低 コストな CAN型送受信モジュールを実現することが可能になると考えられる。 As described above, the conventional technical proposal and invention for integrating the functions of the BIDI module as described in Non-Patent Documents 2 to 5 in one TO-CAN can reduce the cost and the manufacturing time. However, it was difficult to match a part of the optical path between the laser diode and the optical fiber and between the photodiode and the optical fiber with high yield. For this reason, BIDI-type modules are still widely distributed. [0013] From the above, a simple passive alignment method (hereinafter, confusion with other passive alignment methods) for matching the optical path between a laser diode and an optical fiber with the optical path between a photodiode and an optical fiber. In order to solve this problem, the above-mentioned problems of the BIDI type and the conventional CAN type transmission / reception module are solved, and a small and low-cost CAN type transmission / reception module is realized. Will be possible.
[0014] 本発明の目的は、部品点数及び製造工数が少なく低コストな一心双方向光送受信 モジュールを提供することにある。  [0014] An object of the present invention is to provide a single-fiber bidirectional optical transceiver module with a small number of parts and manufacturing steps and a low cost.
課題を解決するための手段  Means for solving the problem
[0015] 上記の課題を解決するための本発明の請求項 1に係る一心双方向光送受信モジ ユールは、円筒状又は円柱状の金属部材に集光レンズからなる光透過部を有するレ ンズキャップを固着してなる収納体の内部に 1個の半導体光送信素子、 1個の光信 号受信素子、および少なくとも 1個の波長選別フィルターを搭載し、該収納体の外側 に 1本の光ファイバを取り付けた構成を有する一心双方向光送受信モジュールにお いて、前記半導体光送信素子の共振器の出射端面又は前記半導体光送信素子の 出射端面がレーザ光の出射位置を特定できる形状を有し、前記半導体光送信素子 の前記出射端面から前記光ファイバまでの光路長と、前記光信号受信素子受光面 力 前記光ファイバまでの光路長との差が僅少であり、前記半導体光送信素子、前 記光信号受信素子及び前記波長選別フィルターが、前記半導体光送信素子及び前 記光ファイバ間の光路と、前記光信号受信素子及び前記光ファイバ間の光路とがー 部重なり合う位置に、それぞれ異なる支持体を介して前記金属部材に固定されること を特徴とする。 [0015] A single-fiber bidirectional optical transmission / reception module according to claim 1 of the present invention for solving the above-mentioned problem is a lens cap having a light transmission part made of a condensing lens on a cylindrical or columnar metal member. A single semiconductor optical transmitter, one optical receiver, and at least one wavelength selection filter are mounted inside the container that is fixedly attached to the container, and one optical fiber is placed outside the container. In the single-fiber bidirectional optical transceiver module having the attached configuration, the emission end face of the resonator of the semiconductor optical transmission element or the emission end face of the semiconductor optical transmission element has a shape capable of specifying the emission position of the laser beam, The difference between the optical path length from the emitting end face of the semiconductor optical transmitting element to the optical fiber and the optical path length of the optical signal receiving element is small, and the optical path length to the optical fiber is small. The signal receiving element and the wavelength selecting filter have different supports at positions where the optical path between the semiconductor optical transmitting element and the optical fiber and the optical path between the optical signal receiving element and the optical fiber overlap each other. It is fixed to the metal member through.
[0016] 上記の課題を解決するための本発明の請求項 2に係る一心双方向光送受信モジ ユールは、円筒状又は円柱状の金属部材に集光レンズからなる光透過部を有するレ ンズキャップを固着してなる収納体の内部に 1個の半導体光送信素子、 1個の光信 号受信素子、および少なくとも 1個の波長選別フィルターを搭載し、該収納体の外側 に 1本の光ファイバを取り付けた構成を有する一心双方向光送受信モジュールにお いて、前記半導体光送信素子の共振器の出射端面又は前記半導体光送信素子の 出射端面がレーザ光の出射位置を特定できる形状を有し、前記半導体光送信素子 の前記出射端面から前記光ファイバまでの光路長と、前記光信号受信素子受光面 力 前記光ファイバまでの光路長との差が僅少であり、前記半導体光送信素子、前 記光信号受信素子及び前記波長選別フィルターが、前記半導体光送信素子及び前 記光ファイバ間の光路と、前記光信号受信素子及び前記光ファイバ間の光路とがー 部重なり合う位置に配置され、前記半導体光送信素子及び前記光信号受信素子が 共通の支持体を介して前記金属部材に固定され、前記波長選別フィルターが他の 支持体を介して前記金属部材に固定されることを特徴とする。 [0016] A single-fiber bidirectional optical transmission / reception module according to claim 2 of the present invention for solving the above-mentioned problem is a lens cap having a light transmission part made of a condensing lens on a cylindrical or columnar metal member. A single semiconductor optical transmitter, one optical receiver, and at least one wavelength selection filter are mounted inside the container that is fixedly attached to the container, and one optical fiber is placed outside the container. In the single-fiber bidirectional optical transceiver module having the attached configuration, the emission end face of the resonator of the semiconductor optical transmission element or the emission end face of the semiconductor optical transmission element has a shape capable of specifying the emission position of the laser beam, Semiconductor optical transmitter The difference between the optical path length from the emission end face to the optical fiber and the optical signal receiving element light receiving surface force is small, and the semiconductor optical transmitting element, the optical signal receiving element, and The wavelength selecting filter is disposed at a position where the optical path between the semiconductor optical transmission element and the optical fiber and the optical path between the optical signal receiving element and the optical fiber partially overlap, and the semiconductor optical transmission element and the optical fiber The optical signal receiving element is fixed to the metal member via a common support, and the wavelength selection filter is fixed to the metal member via another support.
[0017] 上記の課題を解決するための本発明の請求項 3に係る一心双方向光送受信モジ ユールは、円筒状又は円柱状の金属部材に集光レンズからなる光透過部を有するレ ンズキャップを固着してなる収納体の内部に 1個の半導体光送信素子、 1個の光信 号受信素子、および少なくとも 1個の波長選別フィルターを搭載し、該収納体の外側 に 1本の光ファイバを取り付けた構成を有する一心双方向光送受信モジュールにお いて、前記半導体光送信素子の共振器の出射端面又は前記半導体光送信素子の 出射端面がレーザ光の出射位置を特定できる形状を有し、前記半導体光送信素子 の前記出射端面から前記光ファイバまでの光路長と、前記光信号受信素子受光面 力 前記光ファイバまでの光路長との差が僅少であり、前記半導体光送信素子、前 記光信号受信素子及び前記波長選別フィルターが、前記半導体光送信素子及び前 記光ファイバ間の光路と、前記光信号受信素子及び前記光ファイバ間の光路とがー 部重なり合う位置に配置され、前記半導体光送信素子及び前記波長選別フィルター が共通の支持体を介して前記金属部材に固定され、前記光信号受信素子が他の支 持体を介して前記金属部材に固定されることを特徴とする。  [0017] A single-fiber bidirectional optical transmission / reception module according to claim 3 of the present invention for solving the above-mentioned problem is a lens cap having a light transmission part made of a condensing lens on a cylindrical or columnar metal member. A single semiconductor optical transmitter, one optical receiver, and at least one wavelength selection filter are mounted inside the container that is fixedly attached to the container, and one optical fiber is placed outside the container. In the single-fiber bidirectional optical transceiver module having the attached configuration, the emission end face of the resonator of the semiconductor optical transmission element or the emission end face of the semiconductor optical transmission element has a shape capable of specifying the emission position of the laser beam, The difference between the optical path length from the emitting end face of the semiconductor optical transmitting element to the optical fiber and the optical path length of the optical signal receiving element is small, and the optical path length to the optical fiber is small. The optical signal receiving element and the wavelength selecting filter are disposed at a position where the optical path between the semiconductor optical transmitting element and the optical fiber and the optical path between the optical signal receiving element and the optical fiber overlap each other, and The transmitting element and the wavelength selection filter are fixed to the metal member via a common support, and the optical signal receiving element is fixed to the metal member via another support.
[0018] 上記の課題を解決するための本発明の請求項 4に係る一心双方向光送受信モジ ユールは、円筒状又は円柱状の金属部材に集光レンズからなる光透過部を有するレ ンズキャップを固着してなる収納体の内部に 1個の半導体光送信素子、 1個の光信 号受信素子、および少なくとも 1個の波長選別フィルターを搭載し、該収納体の外側 に 1本の光ファイバを取り付けた構成を有する一心双方向光送受信モジュールにお いて、前記半導体光送信素子の共振器の出射端面又は前記半導体光送信素子の 出射端面がレーザ光の出射位置を特定できる形状を有し、前記半導体光送信素子 の前記出射端面から前記光ファイバまでの光路長と、前記光信号受信素子受光面 力 前記光ファイバまでの光路長との差が僅少であり、前記半導体光送信素子、前 記光信号受信素子及び前記波長選別フィルターが、前記半導体光送信素子及び前 記光ファイバ間の光路と、前記光信号受信素子及び前記光ファイバ間の光路とがー 部重なり合う位置に配置され、前記波長選別フィルター及び前記光信号受信素子が 共通の支持体を介して前記金属部材に固定され、前記半導体光送信素子が他の支 持体を介して前記金属部材に固定されることを特徴とする。 [0018] A single-fiber bidirectional optical transmission / reception module according to claim 4 of the present invention for solving the above-described problem is a lens cap having a light transmission portion made of a condensing lens on a cylindrical or columnar metal member. A single semiconductor optical transmitter, one optical receiver, and at least one wavelength selection filter are mounted inside the container that is fixedly attached to the container, and one optical fiber is placed outside the container. In the single-fiber bidirectional optical transceiver module having the attached configuration, the emission end face of the resonator of the semiconductor optical transmission element or the emission end face of the semiconductor optical transmission element has a shape capable of specifying the emission position of the laser beam, Semiconductor optical transmitter The difference between the optical path length from the emission end face to the optical fiber and the optical signal receiving element light receiving surface force is small, and the semiconductor optical transmitting element, the optical signal receiving element, and The wavelength selection filter is disposed at a position where an optical path between the semiconductor optical transmission element and the optical fiber and an optical path between the optical signal reception element and the optical fiber partially overlap, and the wavelength selection filter and the optical path The signal receiving element is fixed to the metal member via a common support, and the semiconductor optical transmission element is fixed to the metal member via another support.
[0019] 上記の課題を解決するための本発明の請求項 5に係る一心双方向光送受信モジ ユールは、請求項 1乃至請求項 3のいずれかに記載の一心双方向光送受信モジュ ールを製造する方法であって、前記波長選別フィルタ一は、少なくとも可視光領域の 一部において透過率が 10%以上、 90%以下であることを特徴とする。  [0019] A single-fiber bidirectional optical transmission / reception module according to claim 5 of the present invention for solving the above-described problems is the single-fiber bidirectional optical transmission / reception module according to any one of claims 1 to 3. In the manufacturing method, the wavelength selection filter has a transmittance of 10% or more and 90% or less in at least a part of the visible light region.
[0020] 上記の課題を解決するための本発明の請求項 6に係る一心双方向光送受信モジ ユールの製造方法は、請求項 1乃至請求項 5のいずれかに記載の一心双方向光送 受信モジュールを製造する方法であって、各々前記支持体に固定された前記半導 体光送信素子、前記光信号受信素子及び前記波長選別フィルターを前記金属部材 に固定する際、少なくとも前記光信号受信素子が固定された支持体を前記金属部材 に固着した後、少なくとも前記波長選別フィルターが固定された支持体を前記波長 選別フィルターを介して観察される前記半導体光送信素子の出射端面の反射像と、 前記波長選別フィルターを介して透過される前記光信号受信素子の受光面とが重な り合う位置に配置し、前記少なくとも波長選別フィルターが固定された支持体を前記 金属部材に固着することを特徴とする。  [0020] A method for manufacturing a single-fiber bidirectional optical transmission / reception module according to claim 6 of the present invention for solving the above-described problem is a single-fiber bidirectional optical transmission / reception according to any one of claims 1 to 5. A method of manufacturing a module, wherein at least the optical signal receiving element is fixed when the semiconductor optical transmitting element, the optical signal receiving element, and the wavelength selection filter, each fixed to the support, are fixed to the metal member. After fixing the support body fixed to the metal member, at least the support body to which the wavelength selection filter is fixed is reflected through the wavelength selection filter and the reflection image of the emission end face of the semiconductor optical transmission element; The support having the at least wavelength selection filter fixed thereto is disposed at a position where the light receiving surface of the optical signal receiving element transmitted through the wavelength selection filter overlaps. It is fixed to a metal member.
[0021] 上記の課題を解決するための本発明の請求項 7に係る一心双方向光送受信モジュ ールは、請求項 4に記載の一心双方向光送受信モジュールを製造する方法であつ て、前記波長選別フィルタ一は、少なくとも可視光領域の一部において透過率が 10 %以上、 90%以下であることを特徴とする。  [0021] A single-fiber bidirectional optical transceiver module according to claim 7 of the present invention for solving the above-described problem is a method of manufacturing the single-fiber bidirectional optical transceiver module according to claim 4, The wavelength selection filter has a transmittance of 10% or more and 90% or less in at least a part of the visible light region.
[0022] 上記の課題を解決するための本発明の請求項 8に係る一心双方向光送受信モジュ ールの製造方法は、請求項 4又は 7に記載の一心双方向光送受信モジュールを製 造する方法であって、各々前記支持体に固定された前記半導体光送信素子、前記 光信号受信素子及び前記波長選別フィルターを前記金属部材に固定する際、少な くとも前記光信号受信素子及び前記波長選別フィルターが固定された支持体を前記 波長選別フィルターを介して観察される前記半導体光送信素子の出射端面の透過 像と、前記波長選別フィルターを介して観察される前記光信号受信素子の受光面の 反射像とが重なり合う位置に配置し、前記少なくとも波長選別フィルターが固定され た支持体を前記金属部材に固着することを特徴とする。 [0022] A method for manufacturing a single-fiber bidirectional optical transmission / reception module according to claim 8 of the present invention for solving the above-mentioned problems manufactures the single-fiber bidirectional optical transmission / reception module according to claim 4 or 7. A method, wherein each of the semiconductor optical transmission elements is fixed to the support, When the optical signal receiving element and the wavelength selection filter are fixed to the metal member, at least the support on which the optical signal receiving element and the wavelength selection filter are fixed is observed through the wavelength selection filter. A support in which at least the wavelength selection filter is fixed, the transmission image of the emission end face of the optical transmission element and the reflection image of the light receiving surface of the optical signal reception element observed through the wavelength selection filter overlap. A body is fixed to the metal member.
[0023] なお、上述において記載した「前記半導体光送信素子の前記出射端面から前記光 ファイバまでの光路長と、前記光信号受信素子受光面から前記光ファイバまでの光 路長との差が僅少」であるとは、半導体光送信素子の出射端面から光ファイバまでの 光路長と、光信号受信素子受光面から光ファイバまでの光路長との差 Dが、以下の 不等式を満たす範囲内であることをいう。  It should be noted that “the difference between the optical path length from the emitting end face of the semiconductor optical transmission element to the optical fiber and the optical path length from the light receiving surface of the optical signal receiving element to the optical fiber” is small. The difference D between the optical path length from the emitting end surface of the semiconductor optical transmission element to the optical fiber and the optical path length from the light receiving surface of the optical signal receiving element to the optical fiber is within a range satisfying the following inequality. That means.
D< d÷NA (1)  D <d ÷ NA (1)
ここで、 dは用いる光信号受信素子の受光面の直径、 NAは用いる集光用レンズの 開口数である。  Here, d is the diameter of the light receiving surface of the optical signal receiving element used, and NA is the numerical aperture of the condensing lens used.
発明の効果  The invention's effect
[0024] 本発明に係る一心双方向光送受信モジュールを用いることで、 BIDI型モジュール の有する光信号送受信機能を一つの収納体内に容易に集積化できる。そして、 BID I型モジュールの機能を 1つの収納体に搭載することが可能となったことにより、 BIDI 型に比べて部品点数を 30%程度削減することができる。  [0024] By using the single-fiber bidirectional optical transceiver module according to the present invention, the optical signal transmission / reception function of the BIDI type module can be easily integrated in one storage body. In addition, since the functions of the BID I-type module can be mounted in one storage body, the number of parts can be reduced by about 30% compared to the BIDI type.
[0025] また、本発明に係る一心双方向光送受信モジュールの製造方法によれば、レーザ ダイオード等の半導体光送信素子と光ファイバ間の光路と、フォトダイオード等の光 信号受信素子と光ファイバ間の光路を容易に重ね合わせることができるため、半導 体光送信素子、光信号受信素子およびこれらの支持体の加工および搭載精度を緩 和することができる。そして、簡易に半導体光送信素子一光ファイバ間の光路と、光 信号受信素子一光ファイバ間の光路を一致させることができることにより、アクティブ 調芯の回数を 1回に削減できる。  [0025] Further, according to the method for manufacturing a single-fiber bidirectional optical transceiver module according to the present invention, an optical path between a semiconductor optical transmission element such as a laser diode and an optical fiber, and an optical signal reception element such as a photodiode and an optical fiber. Therefore, the processing and mounting accuracy of the semiconductor optical transmission element, the optical signal receiving element, and their supports can be relaxed. The number of active alignments can be reduced to one by simply matching the optical path between the optical fiber of the semiconductor optical transmission element and the optical fiber of the optical signal receiving element.
[0026] その結果、製造歩留まりが向上し、部品点数や工数削減の効果と合わせて、当該 光モジュールの低コスト化が一層促進される。 図面の簡単な説明 As a result, the manufacturing yield is improved, and the cost reduction of the optical module is further promoted together with the effect of reducing the number of parts and man-hours. Brief Description of Drawings
[図 1]本発明の実施形態における一心双方向光送受信モジュールを示す概略図で ある。 FIG. 1 is a schematic diagram showing a single-fiber bidirectional optical transceiver module in an embodiment of the present invention.
[図 2]図 2 (a)は本発明の実施形態における観察光路を示す模式図、図 2 (b)は本発 明の実施形態における WDMフィルター表面を示す模式図である。  FIG. 2 (a) is a schematic diagram showing an observation optical path in an embodiment of the present invention, and FIG. 2 (b) is a schematic diagram showing a WDM filter surface in an embodiment of the present invention.
[図 3]本発明の実施形態における WDMフィルターの移動による調芯方法を示す模 式図である。 FIG. 3 is a schematic diagram showing an alignment method by movement of a WDM filter in an embodiment of the present invention.
[図 4]本発明の実施例 1におけるレーザダイオード搭載の例を示す模式図である。  FIG. 4 is a schematic view showing an example of mounting a laser diode in Example 1 of the present invention.
[図 5]本発明の実施例 1における受信部作製の例を示す模式図である。  FIG. 5 is a schematic diagram showing an example of manufacturing a receiving unit according to the first embodiment of the present invention.
[図 6]本発明の実施例 1における WDMフィルター調芯固定の例を示す模式図である  FIG. 6 is a schematic diagram showing an example of WDM filter alignment fixing in Example 1 of the present invention.
[図 7]本発明の実施例 1におけるレンズ付きキャップによる封止及び光ファイバ調芯 固定の例を示す模式図である。 FIG. 7 is a schematic diagram showing an example of sealing with a cap with a lens and optical fiber alignment fixing in Example 1 of the present invention.
[図 8]本発明の実施例 1に係る光送受信モジュールによる符号誤り率特性を示すダラ フである。  FIG. 8 is a graph showing code error rate characteristics of the optical transceiver module according to Embodiment 1 of the present invention.
[図 9]本発明の実施例 1に係る光送受信モジュールによるレーザダイオード送信信号 波形を示すグラフである。  FIG. 9 is a graph showing waveforms of laser diode transmission signals by the optical transceiver module according to Embodiment 1 of the present invention.
[図 10]本発明の実施例 2におけるレーザダイオードキャリア作製の例を示す模式図で ある。  FIG. 10 is a schematic diagram showing an example of manufacturing a laser diode carrier in Example 2 of the present invention.
[図 11]本発明の実施例 2における受信部作製の例を示す模式図である。  FIG. 11 is a schematic diagram showing an example of manufacturing a receiving unit according to the second embodiment of the present invention.
[図 12]本発明の実施例 2における WDMフィルター調芯固定の例を示す模式図であ る。  FIG. 12 is a schematic diagram showing an example of WDM filter alignment fixing in Example 2 of the present invention.
[図 13]本発明の実施例 2におけるレンズ付きキャップによる封止及び光ファイバ調芯 固定の例を示す模式図である。  FIG. 13 is a schematic diagram showing an example of sealing with a cap with a lens and optical fiber alignment fixing in Example 2 of the present invention.
[図 14]本発明の実施例 3におけるサブキャリア作製の例を示す模式図である。  FIG. 14 is a schematic diagram showing an example of subcarrier production in Example 3 of the present invention.
[図 15]本発明の実施例 3におけるレーザダイオード搭載の例を示す模式図である。 FIG. 15 is a schematic diagram showing an example of mounting a laser diode in Example 3 of the present invention.
[図 16]本発明の実施例 3における WDMフィルター調芯固定の例を示す模式図であ る。 [図 17]本発明の実施例 3におけるレンズ付きキャップによる封止及び光ファイバ調芯 固定の例を示す模式図である。 FIG. 16 is a schematic diagram showing an example of WDM filter alignment fixing in Example 3 of the present invention. FIG. 17 is a schematic diagram showing an example of sealing with a cap with a lens and optical fiber alignment fixing in Example 3 of the present invention.
[図 18]本発明の実施例 4におけるサブキャリア作製の例を示す模式図である。  FIG. 18 is a schematic diagram showing an example of subcarrier fabrication in Example 4 of the present invention.
[図 19]本発明の実施例 4における部品搭載の例を示す模式図である。  FIG. 19 is a schematic diagram showing an example of component mounting in Example 4 of the present invention.
[図 20]本発明の実施例 4における WDMフィルター調芯固定の例を示す模式図であ る。  FIG. 20 is a schematic diagram showing an example of WDM filter alignment fixing in Example 4 of the present invention.
[図 21]本発明の実施例 4におけるレンズ付きキャップによる封止及び光ファイバ調芯 固定の例を示す模式図である。  FIG. 21 is a schematic diagram showing an example of sealing with a cap with a lens and optical fiber alignment fixing in Example 4 of the present invention.
[図 22]本発明の実施例 5における WDMフィルターの光透過特性の一例を示した図 である。  FIG. 22 is a diagram showing an example of light transmission characteristics of a WDM filter in Example 5 of the present invention.
[図 23]従来の BIDI型モジュールの構造を示す模式図である。  FIG. 23 is a schematic diagram showing the structure of a conventional BIDI type module.
符号の説明  Explanation of symbols
[0028] 図面において使用されている符号は、以下の通りである。 1 レーザダイオード素子、  [0028] Symbols used in the drawings are as follows. 1 Laser diode element,
2 フォトダイオード素子、 2a フォトダイオード受光部、 3 WDMフィルター、 4 レー ザダイオードサブキャリア(支持体)、 5 フォトダイオードサブキャリア(支持体)、 6 フ ィルターサブキャリア(支持体)、 7 ステム、 9 ピン端子、 10 ピン端子、 12 ワイヤ ボンド、 13 モニタ用フォトダイオード、 14 受信 IC、 15 チップコンデンサ、 17 レン ズ付キャップ、 21 ピグティルファイバ、 22 サブキャリア、 22a V溝部、 23 面発光 型レーザダイオード、 24 サブキャリア(支持体)、 41 レーザダイオード端面の反射 像、 42 フォトダイオード受光部のフィルター透過像、 43 面発光型レーザダイォー ドの反射像 44 面発光型レーザダイオードの反射像  2 Photodiode element, 2a Photodiode receiver, 3 WDM filter, 4 Laser diode subcarrier (support), 5 Photodiode subcarrier (support), 6 Filter subcarrier (support), 7 Stem, 9 Pin terminal, 10-pin terminal, 12 wire bond, 13 monitor photodiode, 14 receiver IC, 15 chip capacitor, 17 cap with lens, 21 pigtil fiber, 22 subcarrier, 22a V groove, 23 surface emitting laser diode , 24 Subcarrier (support), 41 Reflected image of laser diode end face, 42 Filter transmission image of photodiode receiver, 43 Reflected image of surface emitting laser diode 44 Reflected image of surface emitting laser diode
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0029] 本発明の実施形態は、円筒状の金属部材としてのステムに集光レンズからなる光 透過部を有するレンズキャップを固着してなる収納体としてのパッケージの内部に 1 個の半導体光送信素子としてのレーザダイオード、 1個の光信号受信素子としてのフ オトダイオード、および少なくとも 1個の波長選別フィルターとしての WDMフィルター を搭載し、且つパッケージの外側に 1本の光ファイバを取り付けた構成を有するもの であり、すなわち、光信号送受信機能を一つのパッケージ内に容易に集積化できる パッケージの構造 (One— Canタイプ)及びその製造方法である。 In the embodiment of the present invention, one semiconductor optical transmitter is provided inside a package as a storage body in which a lens cap having a light transmitting portion made of a condenser lens is fixed to a stem as a cylindrical metal member. A configuration in which a laser diode as an element, a photodiode as an optical signal receiving element, and a WDM filter as at least one wavelength selection filter are mounted, and one optical fiber is attached to the outside of the package. In other words, the optical signal transmission / reception function can be easily integrated in one package. The package structure (One—Can type) and its manufacturing method.
[0030] レーザダイオードの共振器の端面はレーザ光の出射位置を特定できる形状を有す るものとし、レーザダイオードの出射端面から前記光ファイバまでの光路長と、フォト ダイオードの受光面から光ファイバまでの光路長との差を僅少、すなわち、上述した( 1)式を満たす値 Dの範囲内とすることにより、フォトダイオード受光部の WDMフィノレ ターを透過したフィルター透過像とレーザダイオード光出射部の反射像とを同時に観 察できる。そして、レーザダイオード、フォトダイオード及び WDMフィルタ一力 レー ザダイオード及び前記光ファイバ間の光路と、フォトダイオード及び光ファイバ間の光 路とが一部重なり合うように配置されるものである。  [0030] The end face of the resonator of the laser diode has a shape capable of specifying the emission position of the laser beam, the optical path length from the emission end face of the laser diode to the optical fiber, and the light receiving face of the photodiode to the optical fiber. The difference between the optical path length and the optical path length is small, that is, within the range of the value D that satisfies the above-mentioned equation (1), so that the filter transmission image transmitted through the WDM finator of the photodiode light receiving part and the laser diode light emitting part You can observe the reflected image at the same time. The optical path between the laser diode, the photodiode, the WDM filter, the laser diode and the optical fiber, and the optical path between the photodiode and the optical fiber are arranged so as to partially overlap.
[0031] 図 1〜図 3に基づいて本実施形態において重要であるビジュアルァライメントの一 例の概要を示す。ここでは、初めにレーザダイオード 1とフォトダイオード 2を円筒状の 金属部材であるステム 7上に各々のサブキャリア 4, 5を介して固定した後に、 WDM フィルター 3を固定する場合を例として説明する。図 1〜図 3では、ステム 7は、円筒状 の金属部材で構成されてレ、るが、円柱状の金属部材であってもよレ、。  An outline of an example of visual alignment that is important in the present embodiment will be described based on FIGS. 1 to 3. Here, an example will be described in which the laser diode 1 and the photodiode 2 are fixed on the stem 7 which is a cylindrical metal member via the subcarriers 4 and 5 and then the WDM filter 3 is fixed. . In FIGS. 1 to 3, the stem 7 is made of a cylindrical metal member, but may be a columnar metal member.
[0032] 図 1に示すように、レーザダイオード 1とフォトダイオード 2の固定後、レーザダイォー ド 1とフォトダイオード 2間のスペースに、矢印で示すように WDMフィルター 3を搭載 したサブキャリア 6を挿入する。  [0032] As shown in FIG. 1, after fixing laser diode 1 and photodiode 2, subcarrier 6 with WDM filter 3 mounted is inserted into the space between laser diode 1 and photodiode 2 as indicated by the arrow. .
[0033] その際、実体顕微鏡もしくは CCDカメラ 11により、図 2 (a)に示す観察光路 31で W DMフィルター 3を介して図 2 (b)に示すようなレーザダイオード 1端面の反射像 41が 観察できる。このときレーザダイオード 1がリッジもしくはメサ型等の共振器端面に凹 凸のある光導波路構造を有していると、通電することなく図 2 (b)中に破線で囲んだレ 一ザダイオード光の出射位置が正確に確認できる。なお、図 2 (b)に示した反射像 4 1は、リッジ導波路の例を示している。図 2では、レーザダイオード 1の共振器の出射 端面の反射像 41が WDMフィルター 3に写っている例を示している力 レーザダイォ ード 1に代えて、例えば、面発光型レーザダイオードを適用する場合には、レーザダ ィオードの出射端面の反射像を観察するようにしてもょレ、。  At this time, a reflected image 41 of the end face of the laser diode 1 as shown in FIG. 2 (b) is passed through the WDM filter 3 in the observation optical path 31 shown in FIG. Observe. At this time, if the laser diode 1 has an optical waveguide structure with a concave or convex surface on the resonator end face such as a ridge or mesa type, the laser diode light surrounded by the broken line in FIG. Can be confirmed accurately. The reflected image 41 shown in FIG. 2B shows an example of a ridge waveguide. In FIG. 2, force 41 shows an example in which the reflection image 41 of the exit end face of the resonator of laser diode 1 is reflected in the WDM filter 3. For example, instead of laser diode 1, a surface emitting laser diode is applied. Or, you can observe the reflected image of the laser diode's exit end face.
[0034] さらに、実体顕微鏡もしくは CCDカメラ 11からフォトダイオード 2までの光路長と、図 2 (a)に示した観察光路 31長との差 Dを 0. 5mm以下に光学設計し、図 2 (a) (b)に 示すようにフィルターサブキャリア 6をフォトダイオード 2側へと移動させると、図 3に示 すように光信号受信素子の受光面としてのフォトダイオード受光部 2aの WDMフィル ター 3を透過したフィルター透過像 42とレーザダイオード 1の光出射部の反射像 41を 同時に観察できる。そして、これら 2つの像 41, 42を重ね合わせることで、レーザダイ オード 1 _光ファイバ間の光路とフォトダイオード 2_光ファイバ間の光路の一部が一 致する。 [0034] Furthermore, the optical design of the difference D between the optical path length from the stereomicroscope or CCD camera 11 to the photodiode 2 and the observation optical path length 31 shown in Fig. 2 (a) is 0.5 mm or less, and Fig. 2 ( a) (b) As shown in Fig. 3, when the filter subcarrier 6 is moved to the photodiode 2 side, the filter transmission image that has passed through the WDM filter 3 of the photodiode receiver 2a as the light receiving surface of the optical signal receiving element is shown. 42 and the reflected image 41 of the light emitting part of the laser diode 1 can be observed simultaneously. Then, by superimposing these two images 41 and 42, the optical path between the laser diode 1 and the optical fiber and the optical path between the photodiode 2 and the optical fiber coincide.
[0035] このように、本実施形態におけるビジュアルァライメントではレーザダイオード 1の光 出射部の反射像 41とフォトダイオード受光部 2aのフィルター透過像 42を直接観察し ながら位置合わせできるため、部材の加工精度やレーザダイオード 1、フォトダイォー ド 2の搭載精度によらず、ほぼ 100%の歩留まりでレーザダイオード 1 _フォトダイォ ード 2間の光路調芯が簡便に実施できる。なお、本実施形態においては、一般的な 光学系材料を用いる場合の例を示した。  Thus, in the visual alignment according to the present embodiment, since the reflected image 41 of the light emitting portion of the laser diode 1 and the filter transmission image 42 of the photodiode light receiving portion 2a can be aligned while being directly observed, the processing of the member is performed. Regardless of the accuracy and the mounting accuracy of laser diode 1 and photodiode 2, optical path alignment between laser diode 1 and photodiode 2 can be easily performed with a yield of almost 100%. In the present embodiment, an example in which a general optical system material is used is shown.
[0036] 上述したように本実施形態によれば、部材精度やチップ搭載精度によらずに、レー ザダイオード一フォトダイオード間の光路調芯が可能となる。そしてこのビジュアルァ ライメントを行うために必要な条件は、レーザダイオード 1が共振器端面に光出射位 置が特定できる凹凸のある光導波路構造、例えばリッジもしくはメサ型導波路構造を 有する端面発光レーザダイオード又は面発光型レーザダイオード (VCSEL)を有し てレ、ることと、レーザダイオード 1端面の反射像 41とフォトダイオード受光部 2aの透過 像 42のピントが同時に合うことの二つだけである。  As described above, according to the present embodiment, the optical path alignment between the laser diode and the photodiode can be performed regardless of the member accuracy and the chip mounting accuracy. The condition necessary for performing this visual alignment is that the laser diode 1 has an uneven optical waveguide structure that can specify the light emission position on the end face of the resonator, for example, an edge emitting laser diode having a ridge or mesa waveguide structure. Or, there are only two, that is, a surface-emitting laser diode (VCSEL) is provided and the reflected image 41 on the end face of the laser diode 1 and the transmitted image 42 of the photodiode light receiving portion 2a are in focus at the same time.
[0037] 上記二つの条件のうち、レーザダイオード 1の共振器端面構造については、リッジ 加工を施したタイプのレーザダイオードチップを選択すればよぐ特に問題はない。 一方、ピントの両立、すなわちレーザダイオード 1端面の反射像 41とフォトダイオード 受光部 2aの透過像 42のピントを同時に合わせるためには、 WDMフィルター 3表面 力、らレーザダイオード 1表面までの光路長と WDMフィルター 3表面力、らフォトダイォ ード 2までの光路長との差 Dを、上述した(1)に示す不等式を満たす範囲内、例えば 、一般的な光学系材料を用いる場合であれば 0. 5mm以下にする等、光学系材料 等に応じてフォトダイオード受光部 2aの WDMフィルター 3を透過したフィルター透過 像 42とレーザダイオード 1の光出射部の反射像 41とを同時に観察できる値に設定す る光学設計を行うものとする。これにより、レーザダイオード 1一光ファイバ間の光路と フォトダイオード 2—光ファイバ間の光路の一部を一致させることが可能となる。 [0037] Of the above two conditions, the resonator end face structure of the laser diode 1 is not particularly problematic as long as a ridge-processed type laser diode chip is selected. On the other hand, in order to achieve both focus, that is, to focus the reflected image 41 on the end face of the laser diode 1 and the transmitted image 42 of the photodiode receiver 2a at the same time, The difference D between the surface power of the WDM filter 3 and the optical path length to the photodiode 2 is within the range satisfying the inequality shown in the above (1), for example, when using a general optical system material. Depending on the optical system material, etc., the filter transmission image 42 that has passed through the WDM filter 3 of the photodiode light receiving part 2a and the reflection image 41 of the light emitting part of the laser diode 1 are set to values that can be observed simultaneously. Optical design shall be performed. As a result, the optical path between the laser diode 1 and the optical fiber can be matched with a part of the optical path between the photodiode 2 and the optical fiber.
[0038] なお、上述したレーザダイオード 1の共振器端面に光出射位置が特定できる凹凸 のある光導波路構造としては、埋め込み導波路型であって、容量を減らす等の理由 によりリッジもしくはメサを追加工したレーザダイオードも含まれる。  [0038] It should be noted that the optical waveguide structure having an unevenness that can specify the light emitting position on the resonator end face of the laser diode 1 described above is an embedded waveguide type, and a ridge or mesa is added for reasons such as reducing the capacitance. Also included are engineered laser diodes.
[0039] 本実施形態に係る一心双方向光送受信モジュール及びその製造方法によれば、 ビジュアルァライメント法を用いることにより、レーザダイオード 1 _光ファイバ間の光 路とフォトダイオード 2_光ファイバ間の光路の重ね合わせに必要な、レーザダイォ ード 1、フォトダイオード 2およびこれらのサブキャリア 3, 4の加工精度および搭載精 度を緩和することが可能となる。その結果、製造歩留まりが向上し、部品点数や工数 削減の効果による光モジュールの小型化と合わせて、当該光モジュールの低コスト 化が一層促進される。  [0039] According to the single-fiber bidirectional optical transceiver module and the manufacturing method thereof according to the present embodiment, by using the visual alignment method, the optical path between the laser diode 1_optical fiber and the photodiode 2_optical fiber It is possible to reduce the processing accuracy and mounting accuracy of laser diode 1, photodiode 2 and their subcarriers 3 and 4, which are necessary for superimposing the optical paths. As a result, the manufacturing yield is improved, and the cost reduction of the optical module is further promoted together with the downsizing of the optical module due to the effect of reducing the number of parts and man-hours.
[0040] このように、レーザダイオード 1側とフォトダイオード 2側の光路長差を定量的に取り 入れて光学設計する点が、上述した非特許文献 2〜5に記載された発明との差異で ある。  [0040] In this way, the optical design by quantitatively taking in the optical path length difference between the laser diode 1 side and the photodiode 2 side is the difference from the inventions described in Non-Patent Documents 2 to 5 described above. is there.
実施例 1  Example 1
[0041] 以下に、本発明の第 1の実施例を具体的な実施態様を例にして説明する。なお、 本実施例は、本発明の効果を示す一つの例であり、本発明の主旨を逸脱しない範囲 内で種々の変更を行い得ることは言うまでもない。  [0041] In the following, the first example of the present invention will be described by taking a specific embodiment as an example. Note that this embodiment is an example showing the effect of the present invention, and it goes without saying that various modifications can be made without departing from the spirit of the present invention.
[0042] 本実施例においては、レーザダイオードとして発振波長 1310nmのリッジ導波路型 FP_レーザダイオードを用レ、、受信素子として受光径 80 μ mの InGaAs系 pin型フ オトダイオード(以下、単にフォトダイオードという)を用レ、るものとし、半導体光送信素 子としてのレーザダイオード、光信号受信素子としてのフォトダイオード、波長選別フ ィルターとしての WDMフィルターがそれぞれ異なるサブキャリア上に固定されている 場合を例として実施形態及び効果を説明する。  In this embodiment, a ridge waveguide type FP_laser diode having an oscillation wavelength of 1310 nm is used as a laser diode, and an InGaAs pin type photodiode (hereinafter simply referred to as a photo diode) having a light receiving diameter of 80 μm as a receiving element. When a laser diode as a semiconductor optical transmission element, a photodiode as an optical signal receiving element, and a WDM filter as a wavelength selection filter are fixed on different subcarriers, respectively. The embodiment and the effect will be described by taking as an example.
[0043] なお、本実施例においては、 WDMフィルタ一力もフォトダイオードまでの光路長を 0. 65 ± 0. lmm、 WDMフィルターからレーザダイオードまでの光路長を 0· 6 ± 0. lmmとして設計している(最大光路長差: 0. 25mm)。 [0044] 本実施例における光送信モジュールの組立工程を図 4〜図 7に示す。 [0043] In this embodiment, the power of the WDM filter is designed to be 0.65 ± 0. lmm, and the optical path length from the WDM filter to the laser diode is 0.6 · 0. lmm. (Maximum optical path length difference: 0.25 mm). [0044] FIGS. 4 to 7 show an assembly process of the optical transmission module in the present embodiment.
[0045] 1. レーザダイオード搭載  [0045] 1. Laser diode mounted
図 4に示すように、初めにレーザダイオード 1およびレーザダイオード出力モニタ用 フォトダイオード(以下モニタ用フォトダイオード) 13をレーザダイオードサブキャリア 4 を介してステム 7上に金錫ハンダにより固定する。レーザダイオード 1の搭載は自動搭 載機により行レ、、その搭載精度は、ステム 7上の指定した座標を中心とした半径 100 z mの円内で良ぐほぼ 100。/oの歩留まりで精度を満足することができる。次いで、レ 一ザダイオード 1とモニタ用フォトダイオード 13をステム 7上のピン端子 10にワイヤボ ンド 12で接続する。  As shown in FIG. 4, first, a laser diode 1 and a laser diode output monitoring photodiode (hereinafter referred to as a monitoring photodiode) 13 are fixed onto a stem 7 via a laser diode subcarrier 4 by gold tin solder. Laser diode 1 is mounted by an automatic mounting machine, and the mounting accuracy is almost 100 in a circle with a radius of 100 zm centered on the specified coordinates on stem 7. The accuracy can be satisfied with the yield of / o. Next, the laser diode 1 and the monitoring photodiode 13 are connected to the pin terminal 10 on the stem 7 by the wire bond 12.
[0046] 2.受信部作製  [0046] 2. Receiving part production
図 5に示すように、レーザダイオード 1等を固定したステム 7上にフォトダイオード 2を フォトダイオードサブキャリア 5を介して金錫ハンダにより固定する。フォトダイオード 2 の搭載は、 自動搭載機により搭載済みのレーザダイオード 1のストライプ電極を基準 に座標指定して行い、固定には金錫ハンダを用いる。フォトダイオード 2の搭載精度 は、レーザダイオード 1のストライプに対して 99%以上の歩留まりで ± 25 μ ΐη以下に 収まっている。次いで、受信 IC (transimpedance— amplifier :TIAともいう) 14と電 源ノイズカット用のチップコンデンサ 15を自動搭載機で搭載し、接着剤を用いて固定 し、ピン端子 9と受信 IC14間など、導通の必要な端子間をワイヤボンド 12で接続する  As shown in FIG. 5, the photodiode 2 is fixed to the stem 7 to which the laser diode 1 or the like is fixed by gold tin solder through the photodiode subcarrier 5. Photodiode 2 is mounted by specifying coordinates with reference to the stripe electrode of laser diode 1 already mounted by an automatic mounting machine, and gold-tin solder is used for fixing. The mounting accuracy of photodiode 2 is less than ± 25 μΐη with a yield of 99% or more with respect to the stripe of laser diode 1. Next, a receiver IC (transimpedance-amplifier: TIA) 14 and a chip capacitor 15 for cutting power noise are mounted on an automatic mounting machine, fixed with adhesive, and connected between the pin terminal 9 and the receiver IC 14, etc. Connect the required terminals with wire bond 12
[0047] 3.フィルター搭載 [0047] 3. With filter
図 6に示すように、 WDMフィルター 3をフィルター用サブキャリア 6に接着剤で固定 する。固定後、フィルター用サブキャリア 6をレーザダイオード 1とフォトダイオード 2の 間のスペースに揷入し、図 1〜3に示し上述したビジュアルァライメントにより調芯する 。調芯後、 YAG溶接 16によりステム 7上にフィルター用サブキャリア 6ごと WDMフィ ルター 3を固定する。この工程により、レーザダイオード 1 _光ファイバ 21 (図 7参照) 間の光路であるレーザダイオード側光路 32と、フォトダイオード 2_光ファイバ 21間 の光路であるフォトダイオード側光路 33とが一部共通した共通光路 34を有することと なり、重ね合わせが実現できる。 [0048] 4.レンズキャップ封止とファイバ調芯 As shown in Fig. 6, the WDM filter 3 is fixed to the filter subcarrier 6 with an adhesive. After fixing, the filter subcarrier 6 is inserted into the space between the laser diode 1 and the photodiode 2 and aligned by the visual alignment shown in FIGS. After alignment, fix WDM filter 3 together with filter subcarrier 6 on stem 7 by YAG welding 16. Through this process, the laser diode side optical path 32, which is the optical path between the laser diode 1 and the optical fiber 21 (see Fig. 7), and the photodiode side optical path 33, which is the optical path between the photodiode 2 and the optical fiber 21, are partially shared. The common optical path 34 is provided, and superposition can be realized. [0048] 4. Lens cap sealing and fiber alignment
図 7に示すように、全ての部品搭載の終わったステム 7上にレンズ付キャップ 17を 被せて抵抗溶接により固定する。このとき、用いるレンズ 17aは非球面レンズであって もボールレンズであっても良レ、。次いで、レンズキャップ 17の上に、 1. 55 z mカット フィルター 18を内蔵したスリーブ 19を被せて YAGレーザにより溶接固定 16する。さ らにレーザダイオード 1に通電して発光させ、ファイバカラー 20を被せたビグティルフ アイバ 21をアクティブ調芯してファイバカラー 20をスリーブ 19に YAGレーザにより溶 接固定 16する。  As shown in Fig. 7, the lens cap 17 is placed on the stem 7 on which all components have been mounted and fixed by resistance welding. At this time, the lens 17a used may be an aspherical lens or a ball lens. Next, a sleeve 19 containing a 1.55 zm cut filter 18 is placed on the lens cap 17 and fixed by welding 16 using a YAG laser. Furthermore, the laser diode 1 is energized to emit light, the bigtilever fiber 21 covered with the fiber collar 20 is actively aligned, and the fiber collar 20 is welded and fixed to the sleeve 19 with a YAG laser 16.
[0049] 5.送受信特性  [0049] 5.Transmission / reception characteristics
以上の工程により作製した送受信モジュールによる受信特性 (符号誤り率特性)及 び送信波形をそれぞれ図 8及び図 9に示す。なお、受光感度はレーザダイオードとの 同時動作時にも— 28. 7dBmとなり、高速'パッシブ.オプティカル.ネットワーク(High speed Passive Optical Network : HSP〇N)の規格を満足するものであった。また、図 9に示すように、送信波形は LAN用通信規格の一つである高速光 LAN (Local Ar ea Network)のマスクテストをパスしている。以上の結果より、本実施例に係る光送 受信モジュールは商用レベルの性能を有することが明らかである。  Figures 8 and 9 show the reception characteristics (symbol error rate characteristics) and transmission waveforms of the transceiver module fabricated by the above process. The photosensitivity was 28.7 dBm even when operating simultaneously with the laser diode, which satisfied the high speed passive optical network (HSPN) standard. As shown in FIG. 9, the transmission waveform passes the mask test of high-speed optical LAN (Local Area Network), which is one of LAN communication standards. From the above results, it is clear that the optical transmission / reception module according to the present embodiment has a commercial level performance.
実施例 2  Example 2
[0050] 以下に、本発明の第 2の実施例を具体的な実施態様を例にして説明する。本実施 例においては、レーザダイオードとして発振波長 1310nmリッジ加工を施した坦め込 み導波路型 DFB—レーザダイオードを用い、光信号受信素子として受光径 60 x m のフォトダイオードを用いるものとし、レーザダイオードと WDMフィルターが同一のサ ブキャリア上に固定され、フォトダイオードが別なサブキャリア上に固定されている場 合を例として実施形態及び効果を説明する。  [0050] In the following, the second example of the present invention will be described by taking a specific embodiment as an example. In this example, a buried waveguide type DFB-laser diode with an oscillation wavelength of 1310 nm ridge processing is used as the laser diode, and a photodiode with a light receiving diameter of 60 xm is used as the optical signal receiving element. Embodiments and effects will be described by taking as an example the case where the WDM filter and the WDM filter are fixed on the same subcarrier and the photodiode is fixed on another subcarrier.
[0051] 本実施例においては、 WDMフィルタ一力、らフォトダイオードまでの光路長を 0. 55  [0051] In this example, the optical path length from the WDM filter to the photodiode is 0.55.
± 0· lmm、 WDMフィルターからレーザダイオードまでの光路長を 0· 55 ± 0. lm mとして設計している(最大光路長差: 0. 2mm)。  The optical path length from the WDM filter to the laser diode is designed to be 0 · 55 ± 0.lm m (maximum optical path length difference: 0.2mm).
[0052] 本実施の光送受信モジュールの組立工程を図 10〜図 13に示す。以下、図 1〜7 に示し上述した部材と同一の部材については同符号を用いて説明するものとする。 [0053] 1. レーザダイオードサブキャリア作製 [0052] FIGS. 10 to 13 show the assembly process of the optical transceiver module of the present embodiment. Hereinafter, the same members as those shown in FIGS. 1 to 7 and described above will be described using the same reference numerals. [0053] 1. Laser diode subcarrier fabrication
図 10に示すように、初めにレーザダイオード 1およびモニタ用フォトダイオード 13を サブキャリア 22上に金錫ハンダにより固定する。レーザダイオード 1の搭載は自動搭 載機により行レ、、その搭載精度は、サブキャリア 22上の指定座標に対して ± 50 z m 以内にほぼ 100%の歩留まりで搭載可能である。その後、サブキャリア 22の V溝部 2 2aに WDMフィルター 3を揷入し、接着剤により固定する。  As shown in FIG. 10, first, the laser diode 1 and the monitoring photodiode 13 are fixed on the subcarrier 22 with gold-tin solder. The laser diode 1 can be mounted by an automatic mounting machine, and the mounting accuracy can be mounted with a yield of almost 100% within ± 50 zm with respect to the specified coordinates on the subcarrier 22. Thereafter, the WDM filter 3 is inserted into the V-groove 22a of the subcarrier 22 and fixed with an adhesive.
[0054] 2.受信部作製  [0054] 2. Production of receiver
図 11に示すように、ステム 7上に、フォトダイオードサブキャリア 5を介してフォトダイ オード 2を金錫ハンダにより固定する。フォトダイオード 2の搭載は、 自動搭載機により 行レ、、その搭載精度は、ステム 7上の指定座標を中心とした半径 100 x mの円内で 良ぐほぼ 100%の歩留まりでこの精度を達成できる。次いで、受信 IC14と電源ノィ ズカット用のチップコンデンサ 15を自動搭載機で搭載し、接着剤を用いて固定する。 最後に、導通の必要な各端子間をワイヤボンドで接続する。  As shown in FIG. 11, the photodiode 2 is fixed on the stem 7 through the photodiode subcarrier 5 with gold tin solder. The mounting of the photodiode 2 is performed by an automatic mounting machine, and the mounting accuracy is good within a circle of radius 100 xm centered on the specified coordinates on the stem 7 and this accuracy can be achieved with almost 100% yield. . Next, the receiving IC 14 and the power source noise cut chip capacitor 15 are mounted by an automatic mounting machine, and fixed using an adhesive. Finally, the terminals that need to be electrically connected are connected by wire bonds.
[0055] 3. レーザダイオードサブキャリア調芯固定  [0055] 3. Laser diode subcarrier alignment fixed
図 12に示すように、レーザダイオード 1、モニタ用フォトダイオード 13と WDMフィル ター 3が搭載されているサブキャリア 22を図 1〜図 3に示し上述したビジュアルァライ メントにより調芯し、金錫ハンダで固定する。以上の調芯工程により、レーザダイォー ド 1—光ファイバ 21 (図 13参照)とフォトダイオード 2—光ファイバ 21間の光路の一部 重ね合わせが実現できる。  As shown in FIG. 12, the subcarrier 22 on which the laser diode 1, the monitoring photodiode 13 and the WDM filter 3 are mounted is aligned by the visual alignment shown in FIGS. Secure with solder. With the above alignment process, a partial overlap of the optical path between the laser diode 1 and the optical fiber 21 (see FIG. 13) and the photodiode 2 and the optical fiber 21 can be realized.
[0056] 4. レンズキャップ封止と光ファイバ調芯固定  [0056] 4. Lens cap sealing and optical fiber alignment fixing
図 13に示すように、全ての部品搭載の終わったステム 7上にレンズ付キャップ 17を 被せて抵抗溶接により固定する。このとき、用いるレンズ 17aは非球面レンズであって もボールレンズであっても良レ、。次いで、レンズキャップ 17の上に、 1. 55 z mカット フィルター 18を内蔵したスリーブ 19を被せて YAGレーザにより溶接固定する。さらに レーザダイオード 1に通電して発光させ、ファイバカラー 20を被せたピグティルフアイ バ 21をアクティブ調芯して、ファイバカラー 20をスリーブ 19に YAGレーザにより溶接 固定する。  As shown in Fig. 13, the lens cap 17 is placed on the stem 7 where all the parts have been mounted and fixed by resistance welding. At this time, the lens 17a used may be an aspherical lens or a ball lens. Next, a sleeve 19 incorporating a 1.55 zm cut filter 18 is placed on the lens cap 17 and fixed by welding with a YAG laser. Further, the laser diode 1 is energized to emit light, the pigtail fiber 21 covered with the fiber collar 20 is actively aligned, and the fiber collar 20 is fixed to the sleeve 19 by welding with a YAG laser.
[0057] 以上の工程により作製した光送受信モジュールは、実施例 1と同様に図 8および図 9に示すような良好な送受信特性を示している。 The optical transceiver module manufactured by the above steps is similar to that of the first embodiment shown in FIGS. Good transmission / reception characteristics as shown in Fig. 9 are shown.
実施例 3  Example 3
[0058] 以下に、本発明の第 3の実施例を具体的な実施態様を例にして説明する。本実施 例においては、レーザダイオードとして発振波長 1310nmの面発光型レーザダイォ ードを用い、光信号受信素子として受光径 60 z mのフォトダイオードを用いるものと し、フォトダイオードと WDMフィルターが同一のサブキャリア上に固定され、レーザダ ィオードが別なサブキャリア上に固定されている場合を例として実施形態及び効果を 説明する。  [0058] Hereinafter, the third example of the present invention will be described by way of a specific embodiment. In this embodiment, a surface emitting laser diode with an oscillation wavelength of 1310 nm is used as the laser diode, and a photodiode with a light receiving diameter of 60 zm is used as the optical signal receiving element. The photodiode and the WDM filter are the same subcarrier. Embodiments and effects will be described by taking the case where the laser diode is fixed on another subcarrier as an example.
[0059] 本実施例においては、 WDMフィルタ一力 フォトダイオードまでの光路長を 0· 55  [0059] In this example, the optical path length to the photodiode with the WDM filter is
± 0· lmm、 WDMフィルターからレーザダイオードまでの光路長を 0· 55 ± 0. lm mとして設計している(最大光路長差: 0. 2mm)。  The optical path length from the WDM filter to the laser diode is designed to be 0 · 55 ± 0.lm m (maximum optical path length difference: 0.2mm).
[0060] 本実施の光送受信モジュールの組立工程を図 14〜図 17に示す。以下、図 1〜7 に示し上述した部材と同一の部材については同符号を用いて説明するものとする。  [0060] FIGS. 14 to 17 show the assembly process of the optical transceiver module of the present embodiment. Hereinafter, the same members as those shown in FIGS. 1 to 7 and described above will be described using the same reference numerals.
[0061] 1.受光部サブキャリア作製  [0061] 1. Photosensitive subcarrier fabrication
図 14に示すように、初めにフォトダイオード 2をサブキャリア 22上に金錫ハンダによ り固定する。フォトダイオード 2の搭載は自動搭載機により行い、その搭載精度は、サ ブキャリア 22上の指定座標に対して ± 50 z m以内にほぼ 100%の歩留まりで搭載 可能である。その後、サブキャリア 22の V溝部 22aに WDMフィルター 3を揷入し、接 着剤により固定する。  As shown in FIG. 14, first, the photodiode 2 is fixed onto the subcarrier 22 with gold-tin solder. The photodiode 2 is mounted by an automatic mounting machine, and the mounting accuracy can be mounted within approximately ± 50 zm with respect to the specified coordinates on the subcarrier 22 with a yield of almost 100%. Thereafter, the WDM filter 3 is inserted into the V groove portion 22a of the subcarrier 22 and fixed with an adhesive.
[0062] 2. レーザダイオード搭載  [0062] 2. Laser diode mounted
図 15に示すように、初めに面発光型レーザダイオード 23とモニタ用フォトダイォー ド(以下モニタ用フォトダイオード) 13をサブキャリア 24上に金錫ハンダにより固定す る。面発光型レーザダイオード 23搭載は自動搭載機により行レ、、各チップはサブキ ャリア 24上の指定座標に対して ± 30 μ m以内にほぼ 100%の歩留まりで搭載可能 である。次いで、面発光型レーザダイオード 23とモニタ用フォトダイオード 13をステム 7上のピン端子 9にワイヤボンド 12で接続する。  As shown in FIG. 15, first, a surface emitting laser diode 23 and a monitoring photodiode (hereinafter referred to as monitoring photodiode) 13 are fixed on a subcarrier 24 with gold-tin solder. The surface-emitting laser diode 23 can be mounted by an automatic mounting machine, and each chip can be mounted with a yield of almost 100% within ± 30 μm with respect to the specified coordinates on the subcarrier 24. Next, the surface emitting laser diode 23 and the monitoring photodiode 13 are connected to the pin terminal 9 on the stem 7 with a wire bond 12.
[0063] 3. レーザダイオードサブキャリア調芯固定  [0063] 3. Laser diode subcarrier alignment fixed
図 16に示すように、フォトダイオード 2と WDMフィルター 3が搭載されているサブキ ャリア 22を図 1〜図 3に示し上述したビジュアルァライメントにより調芯し、金錫ハンダ で固定するか、又は YAGレーザにより溶接固定する。但し、図 1から図 3では、レー ザダイオード 1端面の反射像 41 (図 2を参照。)を観察することとしているが、本実施 形態では、面発光型レーザダイオード 23の出射端面の透過像 44を WDMフィルタ 一 3を介して観察することとする。ここで、面発光型レーザダイオード 23の出射端面の 出射位置の周囲をリッジ型にすると、より正確に出射位置を確認できる。また、フォト ダイオード受光部 2aの WDMフィルター 3を透過したフィルター透過像 42 (図 3を参 照。)を観察することとしているが、本実施形態では、フォトダイオード 2のフォトダイォ ード受光部(不図示)の WDMフィルター 3で反射した反射像(不図示)を観察するこ ととする。以上の調芯工程により、面発光型レーザダイオード 23 _光ファイバ 21 (図 1 7参照)とフォトダイオード 2_光ファイバ 21間の光路の一部重ね合わせが実現できる 。その後、受信 IC14と電源ノイズカット用のチップコンデンサ 15を自動搭載機で搭載 し、接着剤を用いて固定し、ピン端子 10と受信 IC14間など、導通の必要な端子間を ワイヤボンドで接続する。 As shown in Fig. 16, the subkey with photodiode 2 and WDM filter 3 is installed. The carrier 22 is aligned with the visual alignment shown in FIGS. 1 to 3 and fixed with gold-tin solder or by YAG laser. However, in FIGS. 1 to 3, the reflected image 41 (see FIG. 2) of the laser diode 1 end face is observed, but in this embodiment, the transmitted image of the exit end face of the surface emitting laser diode 23 is observed. 44 will be observed through the WDM filter. Here, when the periphery of the emission position of the emission end face of the surface emitting laser diode 23 is a ridge type, the emission position can be confirmed more accurately. In addition, although the filter transmission image 42 (see FIG. 3) transmitted through the WDM filter 3 of the photodiode light receiving unit 2a is observed, in this embodiment, the photodiode light receiving unit (non-detection) of the photodiode 2 is not observed. The reflected image (not shown) reflected by the WDM filter 3 in the figure is observed. Through the alignment process described above, a partial overlap of the optical path between the surface emitting laser diode 23_optical fiber 21 (see FIG. 17) and the photodiode 2_optical fiber 21 can be realized. After that, mount the receiving IC14 and the chip capacitor 15 for power supply noise reduction with an automatic mounting machine, fix them with adhesive, and connect the terminals that require conduction, such as between the pin terminal 10 and the receiving IC14, with wire bonds. .
[0064] 4. レンズキャップ封止と光ファイバ調芯固定 [0064] 4. Lens cap sealing and optical fiber alignment fixing
図 17に示すように、全ての部品搭載の終わったステム 7上にレンズ付キャップ 17を 被せて抵抗溶接により固定する。このとき、用いるレンズ 17aは非球面レンズであって もボールレンズであっても良い。次いで、レンズキャップ 17の上に、 1. 55 /i mカット フィルター 18を内蔵したスリーブ 19を被せて YAGレーザにより溶接固定する。さらに レーザダイオード 1に通電して発光させ、ファイバカラー 20を被せたビグティルフアイ バ 21をアクティブ調芯して、ファイバカラー 20をスリーブ 19に YAGレーザにより溶接 固定する。  As shown in Fig. 17, a cap 17 with a lens is placed on the stem 7 on which all parts have been mounted and fixed by resistance welding. At this time, the lens 17a to be used may be an aspherical lens or a ball lens. Next, a sleeve 19 containing a 1.55 / im cut filter 18 is placed on the lens cap 17 and fixed by welding with a YAG laser. Further, the laser diode 1 is energized to emit light, the big fiber 21 covered with the fiber collar 20 is actively aligned, and the fiber collar 20 is fixed to the sleeve 19 by welding with a YAG laser.
[0065] 以上の工程により作製した光送受信モジュールは、実施例 1と同様に図 8および図 9に示すような良好な送受信特性を示している。  The optical transmission / reception module manufactured by the above steps exhibits good transmission / reception characteristics as shown in FIGS. 8 and 9 as in the first embodiment.
実施例 4  Example 4
[0066] 以下に、本発明の第 4の実施例を具体的な実施態様を例にして説明する。本実施 例においては、レーザダイオードとして発振波長 1290nmの面発光型レーザダイォ ードを用い、光信号受信素子として受光径 80 / mのフォトダイオードを用いるものと し、面発光型レーザダイオードとフォトダイオードが同一のサブキャリア上に固定され 、WDMフィルターが別なサブキャリア上に固定されている場合を例として本発明の 実施形態と効果を説明する。 [0066] Hereinafter, the fourth example of the present invention will be described using a specific embodiment as an example. In this example, a surface emitting laser diode having an oscillation wavelength of 1290 nm is used as the laser diode, and a photodiode having a light receiving diameter of 80 / m is used as the optical signal receiving element. The embodiments and effects of the present invention will be described by taking as an example the case where the surface emitting laser diode and the photodiode are fixed on the same subcarrier and the WDM filter is fixed on another subcarrier.
[0067] 本実施例においては、 WDMフィルタ一力、らフォトダイオードまでの光路長を 0. 45 [0067] In this example, the optical path length from the WDM filter to the photodiode is 0.45.
± 0. lmm、 WDMフィルターからレーザダイオードまでの光路長を 0. 5 ± 0. lmm として設計している(最大光路長差: 0. 25mm) 0 Designed to be ± 0. lmm, and the optical path length from the WDM filter to the laser diode is 0.5 ± 0. lmm (maximum optical path length difference: 0.25 mm) 0
[0068] 本実施の光送受信モジュールの組立工程を図 18〜図 21に示す。 FIGS. 18 to 21 show the assembly process of the optical transceiver module of the present embodiment.
[0069] 1.サブキャリア上への面発光型レーザダイオードとフォトダイオードの搭載 [0069] 1. Mounting of surface-emitting laser diode and photodiode on subcarrier
図 18に示すように、初めに面発光型レーザダイオード 23とモニタ用フォトダイォー ド 13をサブキャリア 24上に金錫ハンダにより固定する。次に、面発光型レーザダイォ ード 23の発光部を基準座標として、指定したサブキャリア上の座標にフォトダイォー ド 2を搭載する。これらのチップ搭載は自動搭載機により行レ、、各チップはサブキヤリ ァ 24上の指定座標に対して ± 30 μ ΐη以内にほぼ 100%の歩留まりで搭載可能であ る。  As shown in FIG. 18, first, the surface emitting laser diode 23 and the monitoring photodiode 13 are fixed on the subcarrier 24 with gold-tin solder. Next, with the light emitting part of the surface emitting laser diode 23 as a reference coordinate, the photodiode 2 is mounted on the designated coordinates on the subcarrier. These chips can be mounted by an automatic mounting machine, and each chip can be mounted with a yield of almost 100% within ± 30 μΐη with respect to the specified coordinates on the subcarrier 24.
[0070] 2.ステム上への部品搭載  [0070] 2. Mounting parts on the stem
図 19に示すように、ステム 7上に面発光型レーザダイオード 23、モニタ用フォトダイ オード 13、フォトダイオード 2を搭載済みのサブキャリア 24を金錫ハンダにより固定す る。サブキャリア 24の搭載は、 自動搭載機により行う。その搭載精度は、ステム 7上の 指数座標を中心とした半径 100 /i mの円内で良ぐほぼ 100%の歩留まりでこの精 度を達成できる。次いで、受信 IC14と電源ノイズカット用のチップコンデンサ 15を自 動搭載機でステム 7上に搭載し、接着剤を用いて固定する。最後に、導通の必要な 各端子間をワイヤボンド 12で接続する。  As shown in FIG. 19, the subcarrier 24 on which the surface emitting laser diode 23, the monitoring photodiode 13 and the photodiode 2 are mounted is fixed on the stem 7 with gold-tin solder. The subcarrier 24 is mounted by an automatic mounting machine. Its mounting accuracy can be achieved with a yield of almost 100%, which is better within a circle with a radius of 100 / im centered on the exponential coordinate on the stem 7. Next, the receiving IC 14 and the chip capacitor 15 for cutting the power source noise are mounted on the stem 7 by an automatic mounting machine, and fixed using an adhesive. Finally, wire bonds 12 are used to connect the terminals that require electrical continuity.
[0071] 3. WDMフィルターの調芯固定  [0071] 3. Alignment fixing of WDM filter
図 20に示すように、 WDMフィルター 3を搭載されているフィルター用サブキャリア 6 上に接着固定する。その後、フィルター固定済みサブキャリア 24をステム 7上に載せ 、図 1〜図 3に示し上述したビジュアルァライメント、すなわち本実施例においてはフ オトダイオード 2の受光部の WDMフィルター 3を透過したフィルター透過像と面発光 型レーザダイオード 23の反射像 43とを重ね合わせることにより調芯し、 YAGレーザ 溶接 16で固定する。以上の調芯工程により、レーザダイオード 1一光ファイバ 21 (図 21参照)とフォトダイオード 2—光ファイバ 21間の光路の重ね合わせが実現できる。 As shown in Fig. 20, it is bonded and fixed on the filter subcarrier 6 on which the WDM filter 3 is mounted. Thereafter, the filter-fixed subcarrier 24 is mounted on the stem 7, and the visual alignment shown in FIGS. 1 to 3 described above, that is, in this embodiment, the light transmitted through the WDM filter 3 of the photodiode 2 is transmitted through the filter. The YAG laser is aligned by superimposing the image and the reflection image 43 of the surface emitting laser diode 23. Secure with weld 16. Through the alignment process described above, the optical paths between the laser diode 1 and the optical fiber 21 (see FIG. 21) and the photodiode 2 and the optical fiber 21 can be realized.
[0072] 4.レンズキャップ封止とファイバ調芯 [0072] 4. Lens cap sealing and fiber alignment
図 21に示すように、全ての部品搭載の終わったステム 7上にレンズ付キャップ 17を 被せて抵抗溶接により固定する。このとき、用いるレンズ 17aは非球面レンズであって もボールレンズであっても良レ、。次いで、レンズキャップ 17の上に、 1. 55 z mカット フィルター 18を内蔵したスリーブ 19を被せて YAGレーザによつて溶接固定 16する。 さらにレーザダイオード 1に通電して発光させ、ファイバカラー 20を被せたビグティル ファイバ 21をアクティブ調芯して、ファイバカラー 20をスリーブ 19に YAGレーザによ り溶接固定 16する。  As shown in Fig. 21, the lens cap 17 is placed on the stem 7 where all the parts have been mounted and fixed by resistance welding. At this time, the lens 17a used may be an aspherical lens or a ball lens. Next, a sleeve 19 containing a 1.55 zm cut filter 18 is placed on the lens cap 17 and fixed by welding 16 using a YAG laser. Further, the laser diode 1 is energized to emit light, the bigtil fiber 21 covered with the fiber collar 20 is actively aligned, and the fiber collar 20 is fixed to the sleeve 19 by welding with a YAG laser 16.
[0073] 以上の工程により作製した光送受信モジュールは、実施例 1と同様に図 8および図 9に示すような良好な送受信特性を示している。  The optical transmission / reception module manufactured by the above steps exhibits good transmission / reception characteristics as shown in FIGS. 8 and 9 as in the first embodiment.
実施例 5  Example 5
[0074] 以下に、第 5の実施例を具体的な実施態様を例にして説明する。本実施例は、前 述の第 1乃至第 4の実施例において WDMフィルター 3の特性を限定した実施例であ る。  Hereinafter, the fifth example will be described by taking a specific embodiment as an example. The present embodiment is an embodiment in which the characteristics of the WDM filter 3 are limited in the first to fourth embodiments described above.
[0075] 図 22は、本実施例に係る WDMフィルターの光透過特性の一例を示した図である  FIG. 22 is a diagram showing an example of the light transmission characteristics of the WDM filter according to this example.
[0076] 本実施例では、前述の第 1乃至第 4の実施例で説明した WDMフィルター 3 (図 1から 図 3参照。)について、少なくとも可視光領域の一部(例えば、光の波長が 760nmか ら 860nmの領域)において透過率が 10%以上、 90%以下とした。 WDMフィルター 3の透過率を上記の値にすると、図 1から図 3に示し上述したビジュアルァライメントに より調芯する際、フォトダイオード受光部 2aの WDMフィルター 3を透過したフィルタ 一透過像 42及びレーザダイオード 1端面の反射像 41をいずれも可視光領域の像と することができるため、透過像 42及び反射像 41をともに視覚や CCDカメラで確認し な力 Sら調芯すること力 Sできる。また、図 22から分かるように、 WDMフィルター 3の透過 率を可視光領域の一部(例えば、光の波長が 760nmから 860nmの領域)において 20%以上、 70%以下にすることもできる。このように、 WDMフィルター 3の透過率を 可視光領域の一部において 20%以上、 70%以下とすることは、図 1から図 3に示し 上述したビジュアルァライメントにより調芯する際、フォトダイオード受光部 2aの WDM フィルター 3を透過したフィルター透過像 42及びレーザダイオード 1端面の反射像 41 を略等しレ、光強度で観察できるためより望ましレ、。 In this embodiment, at least a part of the visible light region (for example, the wavelength of light is 760 nm) with respect to the WDM filter 3 (see FIGS. 1 to 3) described in the first to fourth embodiments. Therefore, the transmittance is set to 10% or more and 90% or less in the 860 nm region). When the transmittance of the WDM filter 3 is set to the above value, when the centering is performed by the visual alignment shown in FIGS. Since both the reflected image 41 of the laser diode 1 end face can be made into an image in the visible light region, it is possible to align S from the force S that cannot be confirmed visually or with a CCD camera. . Further, as can be seen from FIG. 22, the transmittance of the WDM filter 3 can be set to 20% or more and 70% or less in a part of the visible light region (for example, a region where the wavelength of light is 760 nm to 860 nm). In this way, the transmittance of WDM filter 3 In part of the visible light region, 20% or more and 70% or less means a filter that has passed through the WDM filter 3 of the photodiode receiver 2a when aligning with the visual alignment shown in Figs. The transmitted image 42 and the reflected image 41 of the end face of the laser diode 1 are substantially equal and can be observed with light intensity.
産業上の利用可能性 Industrial applicability
本発明は、光通信網の構成要素である光信号送受信用端末装置内に光送受信機 能部として搭載される一心双方向光送受信モジュール及びその製造方法に利用可 能である。  INDUSTRIAL APPLICABILITY The present invention can be used for a single-fiber bidirectional optical transmission / reception module mounted as an optical transmission / reception function unit in an optical signal transmission / reception terminal device, which is a component of an optical communication network, and a manufacturing method thereof.

Claims

請求の範囲 The scope of the claims
[1] 円筒状又は円柱状の金属部材に集光レンズからなる光透過部を有するレンズキヤ ップを固着してなる収納体の内部に 1個の半導体光送信素子、 1個の光信号受信素 子、および少なくとも 1個の波長選別フィルターを搭載し、該収納体の外側に 1本の 光ファイバを取り付けた構成を有する一心双方向光送受信モジュールにおレ、て、前 記半導体光送信素子の共振器の出射端面又は前記半導体光送信素子の出射端面 がレーザ光の出射位置を特定できる形状を有し、前記半導体光送信素子の前記出 射端面から前記光ファイバまでの光路長と、前記光信号受信素子受光面から前記光 ファイバまでの光路長との差が僅少であり、前記半導体光送信素子、前記光信号受 信素子及び前記波長選別フィルターが、前記半導体光送信素子及び前記光フアイ バ間の光路と、前記光信号受信素子及び前記光ファイバ間の光路とがー部重なり合 う位置に、それぞれ異なる支持体を介して前記金属部材に固定されることを特徴とす る一心双方向光送受信モジュール。  [1] One semiconductor optical transmitting element and one optical signal receiving element in a housing formed by fixing a lens cap having a light transmitting portion made of a condenser lens to a cylindrical or columnar metal member And a single-fiber bidirectional optical transceiver module having a configuration in which at least one wavelength selection filter is mounted and one optical fiber is attached to the outside of the housing. The emission end face of the resonator or the emission end face of the semiconductor optical transmission element has a shape that can specify the emission position of the laser beam, the optical path length from the emission end face of the semiconductor optical transmission element to the optical fiber, and the light The difference between the optical path length from the light receiving surface of the signal receiving element to the optical fiber is small, and the semiconductor optical transmitting element, the optical signal receiving element, and the wavelength selection filter are formed of the semiconductor optical transmitting element and the optical fiber. A single-core bidirectional characterized in that the optical path between the optical signal receiving element and the optical path between the optical fibers is fixed to the metal member via different supports at positions where the optical paths between the optical signal receiving element and the optical fiber overlap each other. Optical transceiver module.
[2] 円筒状又は円柱状の金属部材に集光レンズからなる光透過部を有するレンズキヤ ップを固着してなる収納体の内部に 1個の半導体光送信素子、 1個の光信号受信素 子、および少なくとも 1個の波長選別フィルターを搭載し、該収納体の外側に 1本の 光ファイバを取り付けた構成を有する一心双方向光送受信モジュールにおレ、て、前 記半導体光送信素子の共振器の出射端面又は前記半導体光送信素子の出射端面 がレーザ光の出射位置を特定できる形状を有し、前記半導体光送信素子の前記出 射端面から前記光ファイバまでの光路長と、前記光信号受信素子受光面から前記光 ファイバまでの光路長との差が僅少であり、前記半導体光送信素子、前記光信号受 信素子及び前記波長選別フィルターが、前記半導体光送信素子及び前記光フアイ バ間の光路と、前記光信号受信素子及び前記光ファイバ間の光路とがー部重なり合 う位置に配置され、前記半導体光送信素子及び前記光信号受信素子が共通の支持 体を介して前記金属部材に固定され、前記波長選別フィルターが他の支持体を介し て前記金属部材に固定されることを特徴とする一心双方向光送受信モジュール。  [2] One semiconductor optical transmitting element and one optical signal receiving element in a housing formed by fixing a lens cap having a light transmitting portion made of a condensing lens to a cylindrical or columnar metal member And a single-fiber bidirectional optical transceiver module having a configuration in which at least one wavelength selection filter is mounted and one optical fiber is attached to the outside of the housing. The emission end face of the resonator or the emission end face of the semiconductor optical transmission element has a shape that can specify the emission position of the laser beam, the optical path length from the emission end face of the semiconductor optical transmission element to the optical fiber, and the light The difference between the optical path length from the light receiving surface of the signal receiving element to the optical fiber is small, and the semiconductor optical transmitting element, the optical signal receiving element, and the wavelength selection filter are formed of the semiconductor optical transmitting element and the optical fiber. And the optical path between the optical signal receiving element and the optical fiber are arranged at positions where the optical paths between the optical signal receiving element and the optical fiber overlap each other, and the semiconductor optical transmitting element and the optical signal receiving element are connected to the metal via a common support. A single-fiber bidirectional optical transceiver module, wherein the optical filter is fixed to a member, and the wavelength selection filter is fixed to the metal member via another support.
[3] 円筒状又は円柱状の金属部材に集光レンズからなる光透過部を有するレンズキヤ ップを固着してなる収納体の内部に 1個の半導体光送信素子、 1個の光信号受信素 子、および少なくとも 1個の波長選別フィルターを搭載し、該収納体の外側に 1本の 光ファイバを取り付けた構成を有する一心双方向光送受信モジュールにおレ、て、前 記半導体光送信素子の共振器の出射端面又は前記半導体光送信素子の出射端面 がレーザ光の出射位置を特定できる形状を有し、前記半導体光送信素子の前記出 射端面から前記光ファイバまでの光路長と、前記光信号受信素子受光面から前記光 ファイバまでの光路長との差が僅少であり、前記半導体光送信素子、前記光信号受 信素子及び前記波長選別フィルターが、前記半導体光送信素子及び前記光フアイ バ間の光路と、前記光信号受信素子及び前記光ファイバ間の光路とがー部重なり合 う位置に配置され、前記半導体光送信素子及び前記波長選別フィルターが共通の 支持体を介して前記金属部材に固定され、前記光信号受信素子が他の支持体を介 して前記金属部材に固定されることを特徴とする一心双方向光送受信モジュール。 [3] One semiconductor optical transmitting element and one optical signal receiving element inside a storage body in which a lens cap having a light transmitting portion made of a condensing lens is fixed to a cylindrical or columnar metal member. And a single-fiber bidirectional optical transceiver module having a configuration in which at least one wavelength selection filter is mounted and one optical fiber is attached to the outside of the housing. The emission end face of the resonator or the emission end face of the semiconductor optical transmission element has a shape that can specify the emission position of the laser beam, the optical path length from the emission end face of the semiconductor optical transmission element to the optical fiber, and the light The difference between the optical path length from the light receiving surface of the signal receiving element to the optical fiber is small, and the semiconductor optical transmitting element, the optical signal receiving element, and the wavelength selection filter are the semiconductor optical transmitting element and the optical fiber. And the optical signal receiving element and the optical path between the optical fibers are disposed at positions where the optical paths overlap each other, and the semiconductor optical transmitting element and the wavelength selection filter are shared in common. A single-fiber bidirectional optical transceiver module, wherein the optical signal receiving element is fixed to the metal member via another support, and the optical signal receiving element is fixed to the metal member via a holder.
[4] 円筒状又は円柱状の金属部材に集光レンズからなる光透過部を有するレンズキヤ ップを固着してなる収納体の内部に 1個の半導体光送信素子、 1個の光信号受信素 子、および少なくとも 1個の波長選別フィルターを搭載し、該収納体の外側に 1本の 光ファイバを取り付けた構成を有する一心双方向光送受信モジュールにおレ、て、前 記半導体光送信素子の共振器の出射端面又は前記半導体光送信素子の出射端面 がレーザ光の出射位置を特定できる形状を有し、前記半導体光送信素子の前記出 射端面から前記光ファイバまでの光路長と、前記光信号受信素子受光面から前記光 ファイバまでの光路長との差が僅少であり、前記半導体光送信素子、前記光信号受 信素子及び前記波長選別フィルターが、前記半導体光送信素子及び前記光フアイ バ間の光路と、前記光信号受信素子及び前記光ファイバ間の光路とがー部重なり合 う位置に配置され、前記波長選別フィルター及び前記光信号受信素子が共通の支 持体を介して前記金属部材に固定され、前記半導体光送信素子が他の支持体を介 して前記金属部材に固定されることを特徴とする一心双方向光送受信モジュール。  [4] One semiconductor optical transmitting element and one optical signal receiving element in a housing formed by fixing a lens cap having a light transmitting portion made of a condensing lens to a cylindrical or columnar metal member And a single-fiber bidirectional optical transceiver module having a configuration in which at least one wavelength selection filter is mounted and one optical fiber is attached to the outside of the housing. The emission end face of the resonator or the emission end face of the semiconductor optical transmission element has a shape that can specify the emission position of the laser beam, the optical path length from the emission end face of the semiconductor optical transmission element to the optical fiber, and the light The difference between the optical path length from the light receiving surface of the signal receiving element to the optical fiber is small, and the semiconductor optical transmitting element, the optical signal receiving element, and the wavelength selection filter are formed of the semiconductor optical transmitting element and the optical fiber. The optical path between the optical signal receiving element and the optical fiber is disposed at a position where the optical path overlaps, and the wavelength selection filter and the optical signal receiving element are connected to the metal via a common support. A single-fiber bidirectional optical transmission / reception module, wherein the optical fiber transmission / reception module is fixed to a member, and the semiconductor optical transmission element is fixed to the metal member via another support.
[5] 請求項 1乃至請求項 3のいずれかに記載の一心双方向光送受信モジュールを製 造する方法であって、前記波長選別フィルタ一は、少なくとも可視光領域の一部にお レ、て透過率が 10%以上、 90%以下であることを特徴とする一心双方向光送受信モ ジュール。 [5] A method of manufacturing the single-fiber bidirectional optical transceiver module according to any one of claims 1 to 3, wherein the wavelength selection filter is at least partially in a visible light region. A single-fiber bidirectional optical transceiver module characterized by having a transmittance of 10% or more and 90% or less.
[6] 請求項 1乃至請求項 5のいずれかに記載の一心双方向光送受信モジュールを製 造する方法であって、各々前記支持体に固定された前記半導体光送信素子、前記 光信号受信素子及び前記波長選別フィルターを前記金属部材に固定する際、少な くとも前記光信号受信素子が固定された支持体を前記金属部材に固着した後、少な くとも前記波長選別フィルターが固定された支持体を前記波長選別フィルターを介し て観察される前記半導体光送信素子の出射端面の反射像と、前記波長選別フィル ターを介して透過される前記光信号受信素子の受光面とが重なり合う位置に配置し 、前記少なくとも波長選別フィルターが固定された支持体を前記金属部材に固着す ることを特徴とする一心双方向光送受信モジュールの製造方法。 [6] A method for manufacturing the single-fiber bidirectional optical transceiver module according to any one of claims 1 to 5, wherein the semiconductor optical transmitter element and the optical signal receiver element are each fixed to the support. And, when fixing the wavelength selection filter to the metal member, after fixing at least the support on which the optical signal receiving element is fixed to the metal member, at least the support on which the wavelength selection filter is fixed. Is disposed at a position where the reflection image of the emission end face of the semiconductor optical transmission element observed through the wavelength selection filter and the light receiving surface of the optical signal reception element transmitted through the wavelength selection filter overlap. A method for producing a single-fiber bidirectional optical transceiver module, comprising: fixing a support on which at least the wavelength selection filter is fixed to the metal member.
[7] 請求項 4に記載の一心双方向光送受信モジュールを製造する方法であって、前記 波長選別フィルタ一は、少なくとも可視光領域の一部において透過率が 10%以上、 90%以下であることを特徴とする一心双方向光送受信モジュール。  [7] The method of manufacturing the single fiber bidirectional optical transceiver module according to claim 4, wherein the wavelength selection filter has a transmittance of 10% or more and 90% or less in at least a part of the visible light region. A single-fiber bidirectional optical transceiver module characterized by the above.
[8] 請求項 4又は 7に記載の一心双方向光送受信モジュールを製造する方法であって 、各々前記支持体に固定された前記半導体光送信素子、前記光信号受信素子及び 前記波長選別フィルターを前記金属部材に固定する際、少なくとも前記光信号受信 素子及び前記波長選別フィルターが固定された支持体を前記波長選別フィルターを 介して観察される前記半導体光送信素子の出射端面の透過像と、前記波長選別フ ィルターを介して観察される前記光信号受信素子の受光面の反射像とが重なり合う 位置に配置し、前記少なくとも波長選別フィルターが固定された支持体を前記金属 部材に固着することを特徴とする一心双方向光送受信モジュールの製造方法。  [8] The method for manufacturing the single-fiber bidirectional optical transceiver module according to claim 4 or 7, wherein each of the semiconductor optical transmitter element, the optical signal receiver element, and the wavelength selection filter fixed to the support is provided. At the time of fixing to the metal member, at least the optical signal receiving element and the support on which the wavelength selection filter is fixed are transmitted through the transmission end image of the semiconductor optical transmission element observed through the wavelength selection filter, and It is arranged at a position where the reflection image of the light receiving surface of the optical signal receiving element observed through the wavelength selection filter overlaps, and the support body on which the at least wavelength selection filter is fixed is fixed to the metal member. A manufacturing method of a single-fiber bidirectional optical transceiver module.
PCT/JP2007/055769 2006-04-06 2007-03-20 Single-core bidirectional optical transmitting/receiving module and its manufacturing method WO2007114053A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008508507A JP5144498B2 (en) 2006-04-06 2007-03-20 Single fiber bidirectional optical transceiver module and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006104943 2006-04-06
JP2006-104943 2006-04-06

Publications (1)

Publication Number Publication Date
WO2007114053A1 true WO2007114053A1 (en) 2007-10-11

Family

ID=38563322

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/055769 WO2007114053A1 (en) 2006-04-06 2007-03-20 Single-core bidirectional optical transmitting/receiving module and its manufacturing method

Country Status (2)

Country Link
JP (1) JP5144498B2 (en)
WO (1) WO2007114053A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011046004A1 (en) * 2009-10-13 2011-04-21 株式会社Qdレーザ Optical transmission/reception device
US8992100B2 (en) 2010-04-07 2015-03-31 Electronics And Telecommunications Research Institute Bidirectional optical transmission and receiving device
US20150372759A1 (en) * 2014-06-18 2015-12-24 Electronics And Telecommunications Research Institute Bidirectional optical transceiver module and method of aligning the same
EP2402804A4 (en) * 2009-02-25 2017-12-27 Yazaki Corporation Optical communication module and optical communication connector
WO2023180294A1 (en) * 2022-03-24 2023-09-28 Ams-Osram International Gmbh Optoelectronic semiconductor laser component

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07159659A (en) * 1993-12-07 1995-06-23 Matsushita Electron Corp Method for aligning optical semiconductor device
JPH09127378A (en) * 1995-08-31 1997-05-16 Fujitsu Ltd Method and device for manufacturing optical module assembly
JPH1039181A (en) * 1996-07-22 1998-02-13 Sony Corp Light transmitter/receiver
JPH1039179A (en) * 1996-07-26 1998-02-13 Mitsubishi Electric Corp Manufacture of optical semiconductor device
JP2000260058A (en) * 1999-03-04 2000-09-22 Nec Corp Method and device for assembling optical module
JP2003322770A (en) * 2002-05-07 2003-11-14 Matsushita Electric Ind Co Ltd Optical transmission and reception module and mounting method thereof
JP2004133463A (en) * 2002-10-10 2004-04-30 Samsung Electronics Co Ltd Bi-directional optical communication module having double cap structure
JP2004295097A (en) * 2003-03-07 2004-10-21 Sumitomo Electric Ind Ltd Optical module and manufacturing method therefor
JP2005202156A (en) * 2004-01-15 2005-07-28 Tdk Corp Optical module
JP2005202157A (en) * 2004-01-15 2005-07-28 Tdk Corp Optical module
JP2005234464A (en) * 2004-02-23 2005-09-02 Tdk Corp Optical transceiver and optical module used therefor

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07159659A (en) * 1993-12-07 1995-06-23 Matsushita Electron Corp Method for aligning optical semiconductor device
JPH09127378A (en) * 1995-08-31 1997-05-16 Fujitsu Ltd Method and device for manufacturing optical module assembly
JPH1039181A (en) * 1996-07-22 1998-02-13 Sony Corp Light transmitter/receiver
JPH1039179A (en) * 1996-07-26 1998-02-13 Mitsubishi Electric Corp Manufacture of optical semiconductor device
JP2000260058A (en) * 1999-03-04 2000-09-22 Nec Corp Method and device for assembling optical module
JP2003322770A (en) * 2002-05-07 2003-11-14 Matsushita Electric Ind Co Ltd Optical transmission and reception module and mounting method thereof
JP2004133463A (en) * 2002-10-10 2004-04-30 Samsung Electronics Co Ltd Bi-directional optical communication module having double cap structure
JP2004295097A (en) * 2003-03-07 2004-10-21 Sumitomo Electric Ind Ltd Optical module and manufacturing method therefor
JP2005202156A (en) * 2004-01-15 2005-07-28 Tdk Corp Optical module
JP2005202157A (en) * 2004-01-15 2005-07-28 Tdk Corp Optical module
JP2005234464A (en) * 2004-02-23 2005-09-02 Tdk Corp Optical transceiver and optical module used therefor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2402804A4 (en) * 2009-02-25 2017-12-27 Yazaki Corporation Optical communication module and optical communication connector
WO2011046004A1 (en) * 2009-10-13 2011-04-21 株式会社Qdレーザ Optical transmission/reception device
US8992100B2 (en) 2010-04-07 2015-03-31 Electronics And Telecommunications Research Institute Bidirectional optical transmission and receiving device
US20150372759A1 (en) * 2014-06-18 2015-12-24 Electronics And Telecommunications Research Institute Bidirectional optical transceiver module and method of aligning the same
US9541714B2 (en) 2014-06-18 2017-01-10 Electronics And Telecommunications Research Institute Bidirectional optical transceiver module and method of aligning the same
WO2023180294A1 (en) * 2022-03-24 2023-09-28 Ams-Osram International Gmbh Optoelectronic semiconductor laser component

Also Published As

Publication number Publication date
JP5144498B2 (en) 2013-02-13
JPWO2007114053A1 (en) 2009-08-13

Similar Documents

Publication Publication Date Title
CN100479197C (en) Optical receiver package
JP3434895B2 (en) Optical module for bidirectional transmission
US6217231B1 (en) Optical fiber assembly, optical module including an optical fiber assembly, and a manufacturing process thereof
JPH1010373A (en) Receptacle type optical transmitter-receiver and production therefor
KR20170012339A (en) Vision-based passive alignment of an optical fiber subassembly to an optoelectronic device
JP2005234052A (en) Optical transmission and reception module
JP2010225824A (en) Optical module and wavelength multiplex optical module
JP2003329892A (en) Optical transmission/reception module and optical communication system using the same
TW200428057A (en) Photo module
JP2004020851A (en) Optical module
JP2004226845A (en) Optical transmission and reception module and its manufacturing method
US8162547B2 (en) Optical subassembly manufacturing method
US20110170831A1 (en) Optical module and manufacturing method of the module
JP5144498B2 (en) Single fiber bidirectional optical transceiver module and manufacturing method thereof
JP2007121920A (en) Optical module, optical communication module, and optical communication device
JP4433730B2 (en) Optical filter holding member and optical transmission / reception module
CA2844968A1 (en) Optical subassembly and method of manufacturing the same
JP2004191396A (en) Optical transmitter-receiver
JP2003279808A (en) Optical transmission/reception module
JPH09211267A (en) Optical semiconductor module
JP2009253086A (en) Light-emitting module
JP2004233687A (en) Optical waveguide substrate and optical module
JP6494094B2 (en) Optical module
JP2008083281A (en) Single core bi-directional transmission/reception module
JP2008197459A (en) Optical transmission/reception module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07739212

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008508507

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07739212

Country of ref document: EP

Kind code of ref document: A1