WO2011045842A1 - 永久磁石回転電機 - Google Patents

永久磁石回転電機 Download PDF

Info

Publication number
WO2011045842A1
WO2011045842A1 PCT/JP2009/005390 JP2009005390W WO2011045842A1 WO 2011045842 A1 WO2011045842 A1 WO 2011045842A1 JP 2009005390 W JP2009005390 W JP 2009005390W WO 2011045842 A1 WO2011045842 A1 WO 2011045842A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
array
rotor
permanent
stator
Prior art date
Application number
PCT/JP2009/005390
Other languages
English (en)
French (fr)
Inventor
水野末良
森下明平
三須大輔
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to PCT/JP2009/005390 priority Critical patent/WO2011045842A1/ja
Publication of WO2011045842A1 publication Critical patent/WO2011045842A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets

Definitions

  • the present invention relates to a permanent magnet rotating electric machine having permanent magnets arranged in a Halbach array on a rotor that is rotatably supported by a stator having an armature winding.
  • a permanent magnet rotating electrical machine in which permanent magnets are arranged in a Halbach arrangement is provided with a main magnetic pole magnet in which N poles and S poles are alternately arranged in the radial direction and on both sides of the main magnetic pole magnet in a direction other than the radial direction (for example, circumferential direction).
  • a main magnetic pole magnet in which N poles and S poles are alternately arranged in the radial direction and on both sides of the main magnetic pole magnet in a direction other than the radial direction (for example, circumferential direction).
  • Japanese Patent Documents 1 and 2 which are provided with magnetized auxiliary magnets.
  • the main magnetic pole magnet and the auxiliary magnet of the permanent magnet rotating electrical machine in which the permanent magnets are arranged in the Halbach array are substantially cylindrical as a whole.
  • the rotating electrical machine having the permanent magnets arranged in the Halbach arrangement can achieve high output without increasing the size.
  • FIG. 18 is a magnetic flux density distribution diagram showing a magnetic flux density distribution of a rotating electrical machine having a conventional Halbach array of permanent magnet arrays.
  • the armature winding 4 is wound around the yoke core 15, and a magnetic flux is formed between the permanent magnet 16, the armature winding 4, and the yoke core 15.
  • An object of the present invention is to provide a permanent magnet rotating electrical machine that can reduce the weight by reducing the shape of the rotating electrical machine in the axial direction and can obtain a high output.
  • the permanent magnet rotating electric machine of the present invention is A stator having armature windings;
  • a permanent magnet rotating electrical machine comprising a rotor having permanent magnets that are rotatably supported with respect to the stator and arranged in a Halbach array, Two rows of permanent magnets arranged in a Halbach direction in the circumferential direction from the rotation center of the rotor are provided, and armature windings of the stator are provided between the permanent magnet rows, and the permanent magnet row is a permanent magnet row.
  • the direction of the magnetic poles of the outer permanent magnets and the direction of the magnetic poles of the inner permanent magnets of the permanent magnet array are the same for the radial magnetic poles and the opposite for the circumferential magnetic poles.
  • the permanent magnet array arranged in the Halbach on the rotor is longer in the radial direction than the permanent magnet array arranged outside, or the permanent magnet array arranged outside on the inner side. It is formed longer in the radial direction.
  • the rotor having the permanent magnet array arranged in Halbach is formed of a nonmagnetic metal member or a resin member.
  • the stator is also formed of a nonmagnetic metal member or a resin member.
  • the armature windings arranged on the stator are formed by concentrated windings or printed boards. Further, the armature winding disposed on the stator is formed wider than the width of the permanent magnet surface facing the armature winding.
  • the armature winding placed on the stator uses either carbon wire, superconducting wire or high temperature superconducting wire.
  • the permanent magnet array arranged on the rotor is held by a permanent magnet pressing mechanism made of a nonmagnetic member in the circumferential direction or the axial direction of the rotor, or the permanent magnet is stored in a case formed of a nonmagnetic member. Held.
  • the permanent magnet holding mechanism of the permanent magnet row arranged on the rotor is constituted by a belt-like plate or a wire.
  • the armature winding has a structure in which concentrated winding is performed on a winding member formed of a non-magnetic member, and the concentrated winding member is attached to the stator.
  • the winding wound around the winding member of the winding has a structure in which the concentrated winding member is impregnated with resin and fixed to the stator.
  • the permanent magnets of the permanent magnet array are formed of rare earth magnets (for example, neodymium magnets), or are formed by adding dysprosium to neodymium magnets.
  • the individual permanent magnets of the permanent magnet array are attached to the rotor separately from magnets having magnetic poles oriented in the circumferential direction and magnets having magnetic poles oriented in the radial direction.
  • a magnet mounting support formed of a non-magnetic member at the position where the permanent magnet with the magnetic pole facing in the radial direction is installed. Attach a permanent magnet to the guide.
  • FIG. 1 An axial direction sectional view of an example of a permanent magnet rotary electric machine concerning an embodiment of the invention.
  • the magnetic flux density distribution figure which shows an example of the magnetic flux density distribution of the permanent magnet rotary electric machine concerning embodiment of this invention.
  • the magnetic force line distribution map which shows an example of the magnetic force line distribution of the permanent magnet rotary electric machine concerning embodiment of this invention.
  • FIG. 3 is a partially cutaway radial direction cross-sectional view of a permanent magnet rotating electric machine when armature windings in the embodiment of the present invention are formed by concentrated winding.
  • the axial direction sectional view of the permanent magnet rotary electric machine at the time of forming the armature winding in embodiment of this invention wider than the width
  • the axial direction sectional view of a permanent magnet rotating electrical machine at the time of providing a ferromagnetic member outside the permanent magnet row of the Halbach arrangement arranged on the outside in an embodiment of the invention The axial direction sectional view of the permanent magnet rotating electrical machine at the time of providing a ferromagnetic member inside the permanent magnet row
  • the axial direction sectional view of the permanent magnet rotating electrical machine which has the permanent magnet press mechanism in an embodiment of the invention.
  • the axial sectional view of the permanent magnet rotary electric machine which has the case which stores the permanent magnet in the embodiment of the present invention.
  • the radial direction sectional view of the permanent magnet rotating electrical machine which has the winding member of the permanent magnet and winding in the embodiment of the present invention.
  • the magnetic flux density distribution figure which showed the magnetic flux density distribution of the rotary electric machine which has the permanent magnet row
  • FIG. 1 is an axial sectional view of an example of a permanent magnet rotating electric machine according to an embodiment of the present invention.
  • the permanent magnet rotating electrical machine 1 is configured by forming an armature winding 4 and a shaft 7 on a stator 6 and forming permanent magnet rows 2 and 3 and a bearing 14 on a rotor 5.
  • the stator 6 has a shaft 7 and a convex portion for attaching the armature winding 4 at the center.
  • the armature winding 4 is wound in the order of U phase-V phase-W phase.
  • a bearing 14 is configured between the stator 6 and the rotor 5, and the rotor 5 is configured to rotate on the stator 6.
  • the rotor 5 is provided with two substantially cylindrical permanent magnet rows 2 and 3 formed in a Halbach array in the circumferential direction.
  • the rotor 5 has two rows of convex portions on the side facing the stator 6, the permanent magnet 16 of the permanent magnet row (outside) 2 is provided on the outer convex portion of the rotor 5, and the inner convex portion is provided on the inner convex portion.
  • the permanent magnets 16 of the permanent magnet row (inner side) 3 are attached by, for example, adhesion.
  • the armature winding 4 is arranged between the permanent magnet rows 2 and 3 attached to the rotor 5.
  • FIG. 2 is a radial cross-sectional view of an example of the permanent magnet rotating electric machine according to the embodiment of the present invention.
  • the permanent magnet rows 2 and 3 attached to the rotor 5 have a magnetic pole arrangement as shown in FIG. That is, the magnetic poles magnetized in the radial direction are configured such that the magnetic poles of the outer permanent magnet row 2 and the permanent magnets of the inner permanent magnet row 3 are in the same direction.
  • the magnetic poles magnetized in the circumferential direction between the magnetic poles magnetized in the radial direction the magnetic poles magnetized in the circumferential direction between the magnetic poles magnetized in the radial direction are arranged in opposite directions. To do.
  • FIG. 3 is a magnetic flux density distribution diagram showing an example of the magnetic flux density distribution of the permanent magnet rotating electric machine according to the embodiment of the present invention
  • FIG. 4 is a diagram of the magnetic force line distribution of the permanent magnet rotating electric machine according to the embodiment of the present invention. It is a magnetic force line distribution map which shows an example.
  • FIG. 3 it can be seen that the magnetic fluxes of the permanent magnet arrays 2 and 3 are linked to the armature winding 4.
  • the rotor 5 is rotated by passing, for example, a three-phase alternating current through the armature winding 4.
  • FIGS. 3 and 4 it can be seen that a large amount of magnetic flux is generated in the permanent magnets magnetized in the radial direction. That is, a large torque can be obtained by interlinking with the armature winding 4.
  • the magnetic fluxes of the permanent magnets magnetized in the circumferential direction are opposite to each other in the outer permanent magnet row 2 and the inner permanent magnet row 3 and function to cancel each other's magnetic flux. Comparing the magnetic flux density distribution in the radial direction with FIG.
  • FIG. 18 shows the result of winding the armature winding 4 around the yoke core 15, which causes an increase in mass.
  • the rotor 5 is provided with two substantially cylindrical permanent magnet rows 2 and 3 arranged in a Halbach array, and the armature winding 4 of the stator 6 is disposed between the substantially cylindrical permanent magnet rows 2 and 3.
  • the width of the permanent magnet rotating electrical machine 1 in the axial direction can be reduced.
  • the magnetic flux density is higher than in the conventional example, so that it is possible to increase the output without increasing the shape of the permanent magnet rotating electric machine.
  • FIG. 5 is an axial sectional view of another example of the permanent magnet rotating electric machine according to the embodiment of the present invention.
  • the example shown in FIG. 5 differs from the example shown in FIG. 1 in that the radial dimension of the outer permanent magnet row 2 is set to the inner side in the substantially cylindrical permanent magnet rows 2 and 3 arranged in the Halbach array on the rotor 5.
  • the permanent magnet array 3 is longer than the radial dimension.
  • the magnetic flux density of the permanent magnets 16 of the outer permanent magnet row 2 can be increased.
  • the output (torque) can be increased.
  • FIG. 6 is an axial cross-sectional view of another example of the permanent magnet rotating electric machine according to the embodiment of the present invention.
  • the example shown in FIG. 6 is different from the example shown in FIG. 1 in that the volume of the permanent magnets 16 of the substantially cylindrical permanent magnet arrays 2 and 3 arranged in the Halbach array on the rotor 5 is substantially the same.
  • the dimension in the radial direction of the permanent magnet row 3 is longer than the dimension in the radial direction of the outer permanent magnet row 2.
  • the same elements as those in FIG. 1 are denoted by the same reference numerals, and redundant description is omitted.
  • the rotor 5 in which the permanent magnet rows 2 and 3 arranged in Halbach are arranged is formed of a nonmagnetic metal member or a resin member.
  • the rotor 5 is configured by laminating thin electromagnetic steel plates, but is made of a nonmagnetic metal member or a resin member that can be easily processed to facilitate the attachment of the permanent magnet rows 2 and 3 to the rotor 5. In addition, it will reduce weight and reduce manufacturing costs.
  • the stator 6 on which the armature winding 4 is arranged is also formed of a nonmagnetic metal member or a resin member.
  • the stator 6 is configured by laminating thin electromagnetic steel plates in the same manner as the rotor 5.
  • the stator 6 is a nonmagnetic metal member or a resin member that can be easily processed to reduce the weight and reduce the manufacturing cost.
  • FIG. 7 is a partially cutaway radial sectional view of a permanent magnet rotating electrical machine when the armature winding 4 is formed by concentrated winding.
  • the winding can be accommodated between the permanent magnet row 2 and the permanent magnet row 3.
  • the armature winding 4 does not spread in the axial direction.
  • the axial length of the permanent magnet rotating electrical machine 1 can be reduced.
  • the armature winding 4 can be wound around a bobbin (not shown) and mounted on the stator 6, the manufacturing cost can be reduced.
  • FIG. 8 is a sectional view in the axial direction of a permanent magnet rotating electric machine when the armature winding 4 is formed of a printed board.
  • the weight can be reduced as compared with the copper wire used in the conventional example. Accordingly, the permanent magnet rotating electrical machine can be reduced in size and weight.
  • FIG. 9 is a cross-sectional view in the axial direction of a permanent magnet rotating electrical machine when the armature winding 4 is formed wider than the width of the permanent magnet surface facing it.
  • the length of the armature winding 4 in the axial direction is longer (wider) than the width of the opposing permanent magnet rows 2 and 3.
  • the magnetic fields of the permanent magnet rows 2 and 3 are linked to the armature winding 4. The amount to be performed can be increased, and the magnetic flux of the permanent magnet arrays 2 and 3 can be obtained efficiently. Therefore, the output of the permanent magnet rotating electrical machine 1 can be increased.
  • the armature winding 4 disposed on the stator 6 is formed using any one of carbon wire, superconducting wire, and high temperature superconducting wire.
  • a carbon wire is used as the winding material of the armature winding 4
  • the weight can be reduced compared to the copper wire used in the conventional example, so that the permanent magnet rotating electrical machine can be reduced in weight.
  • FIG. 10 is a sectional view in the axial direction of a permanent magnet rotating electric machine when a superconducting wire or a high-temperature superconducting wire is used for the armature winding 4. As shown in FIG.
  • the armature winding of the superconducting wire or the high-temperature superconducting wire is disposed in the cryo 8, and the cryo tube 8 is connected to the cryo 8.
  • the end of the low-temperature pipe 9 is connected to the refrigerator 10, and the refrigerator 8 is driven so that the inside of the cryo 8 can maintain the superconducting state.
  • FIG. 11 is a sectional view in the axial direction of a permanent magnet rotating electrical machine when the ferromagnetic member 12 is provided outside the permanent magnet row 2 arranged in the Halbach array on the outside. As shown in FIG. 11, the ferromagnetic member 12 is provided outside the permanent magnet row 2 in the Halbach array arranged outside.
  • FIG. 12 is a sectional view in the axial direction of a permanent magnet rotating electrical machine when the ferromagnetic member 13 is provided inside the permanent magnet row 3 arranged in the Halbach array inside. As shown in FIG. 12, the ferromagnetic member 13 is provided inside the permanent magnet row 3 arranged in the Halbach array inside.
  • FIG. 13 shows a permanent magnet rotating electrical machine in which ferromagnetic members 12 and 13 are provided on both the outer side of the permanent magnet row 2 in the Halbach array arranged on the outer side and the inner side of the permanent magnet row 3 in the Halbach array on the inner side.
  • FIG. 13 As shown in FIG. 13, ferromagnetic members 12 and 13 are provided on both the outside of the permanent magnet row 2 arranged in the Halbach array on the outside and the inside of the permanent magnet row 3 arranged in the Halbach array on the inside.
  • the ferromagnetic members 12 and 13 and the permanent magnet arrays 2 and 3 are connected to the rotor 5 by adhesion, for example.
  • FIG. 14 is a sectional view in the axial direction of a permanent magnet rotating electrical machine when a permanent magnet pressing mechanism 17 formed of a nonmagnetic member is provided on the permanent magnets 16 of the Halbach array of permanent magnets 2 and 3.
  • the permanent magnet pressing mechanism 17 is configured by, for example, a belt-like plate or wire formed of a nonmagnetic member.
  • FIG. 15 is an axial cross-sectional view of the permanent magnet rotating electrical machine when the permanent magnets 16 of the Halbach array of permanent magnets 2 and 3 are housed in a case 18 formed of a nonmagnetic member.
  • permanent magnet arrays 2 and 3 in a Halbach array are housed in a case 18 formed of a nonmagnetic member.
  • the case is attached to the rotor 5.
  • the permanent magnet 16 is inserted into the case 18 and manufactured, the manufacturing cost can be reduced. Furthermore, since the case 18 can be easily attached to the rotor 5, the manufacturing cost can be reduced.
  • FIG. 16 is a radial cross-sectional view of a permanent magnet rotating electrical machine showing an example of the arrangement of the permanent magnets 16 of the permanent magnet rows 2 and 3 and the winding member 19 of the winding.
  • the armature winding 4 is concentratedly wound around a winding member 19 formed of a nonmagnetic member in advance, and then attached to the stator 6 to facilitate manufacture and reduce manufacturing costs.
  • the plurality of armature windings 4 that are concentrated and wound may be integrated by impregnating with resin. By being integrated, the handling can be facilitated and the fixing to the stator 6 can be facilitated.
  • the permanent magnets 16 of the permanent magnet arrays 2 and 3 may be formed of rare earth magnets (for example, neodymium magnets). Or you may form with what added dysprosium in the neodymium magnet.
  • a rare earth magnet as the permanent magnet, the magnetic force is increased and a high output can be obtained.
  • dysprosium has a function of increasing the magnetic force of the neodymium magnet, and high output can be achieved by using the permanent magnet 16 in which dysprosium is added to the neodymium magnet.
  • the individual permanent magnets 16 of the permanent magnet arrays 2 and 3 can be manufactured by separately attaching a magnet whose magnetic pole is oriented in the circumferential direction and a magnet whose magnetic pole is oriented in the radial direction to the rotor 5 separately.
  • the permanent magnet 16 having the circumferential direction of the magnetic pole of the permanent magnet 16 is attached to the rotor 5 by adhesion or the like.
  • the radial permanent magnet 16 is attached by bonding or the like. According to this manufacturing method, the permanent magnet 16 can be attached to the rotor 5 without being affected by the magnetic force of the adjacent permanent magnet 16, and the manufacturing cost can be reduced.
  • FIG. 17 is a radial cross-sectional view of a permanent magnet rotating electrical machine showing an example of magnet mounting supports 20 and 21 for mounting the permanent magnet 16 to the rotor 5.
  • an iron core is not used for the rotor 5 and the stator 6 of the permanent magnet rotating electric machine, so that the weight can be reduced.
  • Two rows of substantially cylindrical permanent magnets arranged in Halbach are arranged, and the armature winding 4 is arranged between the permanent magnets 2 and 3, so that the axial width can be reduced.
  • two rows of substantially cylindrical permanent magnets arranged in a Halbach array are arranged to achieve an efficient magnetic flux density distribution, so that high output can be achieved. Since an iron core is not used for the rotor 5 and the stator 6, manufacturing is facilitated and manufacturing cost can be reduced.
  • the present invention can be applied to a permanent magnet rotating electrical machine.
  • SYMBOLS 1 Permanent magnet rotary electric machine, 2 ... Permanent magnet (outside), 3 ... Permanent magnet (inside), 4 ... Armature winding, 5 ... Rotor, 6 ... Stator, 7 ... Shaft, 8 ... Cryo, 9 ... Low temperature piping, 10 ... refrigerator, 11 ... printed circuit board, 12 ... ferromagnetic member (outside), 13 ... ferromagnetic member (inside), 14 ... bearing, 15 ... yoke iron core, 16 ... permanent magnet, 17 ... permanent magnet retainer Mechanism, 18 ... Case, 19 ... Winding member of winding, 20 ... Permanent magnet mounting support (outside), 21 ... Permanent magnet mounting support (inside)

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

 電機子巻線4を有する固定子6と、固定子6に対し回転可能に支持されハルバッハ配列された永久磁石を有する回転子5とからなる永久磁石回転電機において、回転子5の回転中心から周方向にハルバッハ配列された2列の永久磁石列2、3を設け、永久磁石列2、3の間に固定子6の電機子巻線4を設け、永久磁石列2、3は、永久磁石列2、3の外側永久磁石の磁極の向きと永久磁石列の内側永久磁石の磁極の向きとが、径方向の磁極の向きについては同一方向で、周方向の磁極向きについては逆方向に構成されている。

Description

永久磁石回転電機
 本発明は、電機子巻線を有する固定子に対し回転可能に支持された回転子にハルバッハ配列された永久磁石を有する永久磁石回転電機に関する。
 永久磁石をハルバッハ配列した永久磁石回転電機は、径方向にN極とS極とを交互に配置した主磁極磁石と、この主磁極磁石の周方向両面に径方向以外(例えば周方向)に着磁された補助磁石を備えたものである、例えば、以下のような日本国の特許文献1、2を参照方。永久磁石をハルバッハ配列した永久磁石回転電機の主磁極磁石と補助磁石とは、全体で略円筒状をなしており、永久磁石をハルバッハ配列にすると、特定の方向の磁力を強めることができる。このハルバッハ配列された永久磁石を有する回転電機は、大きくすることなく高出力化を図ることが可能になる。
  図18は、従来のハルバッハ配列した永久磁石列を有する回転電機の磁束密度分布を示した磁束密度分布図である。ヨーク鉄心15に電機子巻線4が巻かれており、永久磁石16、電機子巻線4、ヨーク鉄心15の間に磁束が形成される。
特開2006-320109号公報(第1図) 特開2004-350427号公報(第1乃至2図)
  しかし、特許文献1のものでは、固定子や回転子に鉄心を用いているため回転電機の質量が重くなり、高出力を図るには、回転電機の軸方向若しくは径方向に長くする必要がある。また、特許文献2のものにおいても、固定子に鉄心を用いているため回転電機の質量が重くなり、高出力を図るには、回転電機の軸方向若しくは径方向に長くする必要がある。
 本発明の目的は、回転電機の形状を軸方向に薄くし軽量化を図り、しかも高出力が得られる永久磁石回転電機を提供することである。
  本発明の永久磁石回転電機は、
 電機子巻線を有する固定子と、
 前記固定子に対し回転可能に支持されハルバッハ配列された永久磁石を有する回転子とからなる永久磁石回転電機において、
 前記回転子の回転中心から周方向にハルバッハ配列された2列の永久磁石列を設け、前記永久磁石列の間に前記固定子の電機子巻線を設け、前記永久磁石列は、永久磁石列の外側永久磁石の磁極の向きと永久磁石列の内側永久磁石の磁極の向きとが、径方向の磁極の向きについては同一方向で、周方向の磁極向きについては逆方向に向いていることを特徴とする。
 回転子にハルバッハ配列された永久磁石列は、外側に配置した永久磁石列が内側に配置した永久磁石列より径方向に長く、または、内側に配置した永久磁石列が外側に配置した永久磁石列より径方向に長く形成される。
 ハルバッハ配列された永久磁石列を配置した回転子は、非磁性金属部材または樹脂部材で形成される。また、固定子も、非磁性金属部材または樹脂部材で形成される。さらに、固定子に配置した電機子巻線は、集中巻きの巻線またはプリント基板で形成される。また、固定子に配置した電機子巻線は、その電機子巻線に対向する永久磁石面の幅より広く形成される。
 固定子に配置した電機子巻線は、炭素線、超電導線または高温超電導線のいずれかを用いる。外側に配置したハルバッハ配列の永久磁石列の外側、または内側に配置したハルバッハ配列の永久磁石列の内側、または外側に配置したハルバッハ配列の永久磁石列の外側及び内側に配置したハルバッハ配列の永久磁石列の内側の双方に強磁性部材を備える。
  回転子に配置された永久磁石列は、回転子の周方向または軸方向に非磁性部材で構成された永久磁石押さえ機構で保持され、または永久磁石を非磁性部材で形成されたケースに収納して保持される。回転子に配置された永久磁石列の永久磁石押さえ機構は、帯状の板、または、ワイヤーで構成される。
  電機子巻線は、非磁性部材で形成された巻線の巻取り部材に集中巻きされ、集中巻きされた巻取り部材ごと固定子に取付けられる構造である。また、巻線の巻取り部材に集中巻きされた巻線は、集中巻きされた巻取り部材ごと樹脂で含浸し、固定子に固定する構造である。
 永久磁石列の永久磁石は、希土類磁石(例えばネオジム磁石)で形成されていること、または、ネオジム磁石の中にジスプロシウムを添加させたもので形成されている。永久磁石列の個々の永久磁石は、磁極の向きが周方向に向いた磁石と磁極の向きが径方向に向いた磁石とを別々に回転子に取付ける。磁極の向きが周方向に向いた永久磁石を回転子に取付ける場合、磁極の向きが径方向に向いた永久磁石を取付ける位置に非磁性部材で形成された磁石取付けサポートを用い、磁石取付けサポートをガイドに永久磁石を取付ける。
  本発明によれば、回転電機の形状を軸方向に薄くし軽量化を図り、しかも高出力が得られる永久磁石回転電機を提供できる。
本発明の実施の形態に係わる永久磁石回転電機の一例の軸方向断面図。 本発明の実施の形態の永久磁石回転電機の一例の径方向断面図。 本発明の実施の形態に係わる永久磁石回転電機の磁束密度分布の一例を示す磁束密度分布図。 本発明の実施の形態に係わる永久磁石回転電機の磁力線分布の一例を示す磁力線分布図。 本発明の実施の形態に係わる永久磁石回転電機の他の一例の軸方向断面図。 本発明の実施の形態に係わる永久磁石回転電機の別の他の一例の軸方向断面図。 本発明の実施の形態における電機子巻線を集中巻きで形成した場合の永久磁石回転電機の一部切欠径方向断面図。 本発明の実施の形態における電機子巻線をプリント基板で形成した場合の永久磁石回転電機の軸方向断面図。 本発明の実施の形態における電機子巻線をそれに対向する永久磁石面の幅より広く形成した場合の永久磁石回転電機の軸方向断面図。 本発明の実施の形態における電機子巻線に超電導線もしくは高温超電導線を用いた場合の永久磁石回転電機の軸方向断面図。 本発明の実施の形態における外側に配置したハルバッハ配列の永久磁石列の外側に強磁性部材を備えた場合の永久磁石回転電機の軸方向断面図。 本発明の実施の形態における内側に配置したハルバッハ配列の永久磁石列の内側に強磁性部材を備えた場合の永久磁石回転電機の軸方向断面図。 本発明の実施の形態における外側に配置したハルバッハ配列の永久磁石列の外側及び内側に配置したハルバッハ配列の永久磁石列の内側の双方に強磁性部材を備えた場合の永久磁石回転電機の軸方向断面図。 本発明の実施の形態における永久磁石押さえ機構を有する永久磁石回転電機の軸方向断面図。 本発明の実施の形態における永久磁石を収めるケースを有する永久磁石回転電機の軸方向断面図。 本発明の実施の形態における永久磁石と巻線の巻取り部材を有する永久磁石回転電機の径方向断面図。 本発明の実施の形態における永久磁石の製造方法の一例の永久磁石回転電機の径方向断面図。 従来のハルバッハ配列した永久磁石列を有する回転電機の磁束密度分布を示した磁束密度分布図。
 図1は本発明の実施の形態に係わる永久磁石回転電機の一例の軸方向断面図である。永久磁石回転電機1は、固定子6に電機子巻線4及びとシャフト7が形成され、回転子5に永久磁石列2、3及び軸受14が形成されて構成される。
 固定子6には、中心にシャフト7と電機子巻線4を取付けるための凸部とが形成されている。電機子巻線4は、例えば三相交流を用いる場合、U相-V相-W相の順に巻かれている。固定子6と回転子5との間には、軸受14が構成されており、回転子5は固定子6の上で回転する構造になっている。回転子5にはハルバッハの配列で構成された略円筒形状の2列の永久磁石列2、3が周方向に設けられている。回転子5は、固定子6に対向する側に凸部を2列有し、回転子5の外側の凸部には永久磁石列(外側)2の永久磁石16を、内側の凸部には永久磁石列(内側)3の永久磁石16が例えば接着等により取付けられている。そして、回転子5に取り付けられた永久磁石列2、3の間に電機子巻線4を配置するように構成されている。
  図2は、本発明の実施の形態の永久磁石回転電機の一例の径方向断面図である。回転子5に取り付けられた永久磁石列2,3は、図2に示すような磁極の配列とする。つまり、径方向に着磁された磁極については、外側の永久磁石列2の磁極と内側の永久磁石列3の永久磁石の磁極とが同一方向になるように構成する。径方向に着磁された磁極の間にある周方向に着磁された永久磁石については、外側の永久磁石列2の磁極と内側の永久磁石列3の磁極とが反対方向になるように構成する。
  次に、図3は本発明の実施の形態に係わる永久磁石回転電機の磁束密度分布の一例を示す磁束密度分布図、図4は本発明の実施の形態に係わる永久磁石回転電機の磁力線分布の一例を示す磁力線分布図である。
  図3に示すように、永久磁石列2、3の磁束が電機子巻線4を鎖交する様子が分かる。電機子巻線4に例えば三相交流を流すことで回転子5が回転する。図3及び図4から分かるように、径方向に着磁された永久磁石に多くの磁束が発生していることが分かる。つまり、電機子巻線4に鎖交することにより大きなトルクを得ることが可能になる。周方向に着磁された永久磁石の磁束は、外側の永久磁石列2と内側の永久磁石列3とでは反対の向きになり、互いの磁束をキャンセルする働きをする。径方向の磁束密度分布について、従来例の図18と対比すると、図3の磁束密度分布は、図18の磁束密度分布に比べ約2倍の磁束が得られることが分かる。また、図18ではヨーク鉄心15に電機子巻線4を巻いた結果であり、質量増大の要因になっている。
 このように、回転子5にハルバッハ配列した略円筒形状の2列の永久磁石列2、3を設け、略円筒形状の永久磁石列2、3の間に固定子6の電機子巻線4を設けることで、永久磁石回転電機1の軸方向の幅を薄くすることができる。また、ハルバッハ配列した略円筒形状の永久磁石列を2列構成することで、従来例に比べ磁束密度が大きいことから、永久磁石回転電機の形状を大きくすることなく高出力化が可能になる。
 図5は本発明の実施の形態に係わる永久磁石回転電機の他の一例の軸方向断面図である。この図5に示した一例は、図1に示した一例に対し、回転子5にハルバッハ配列した略円筒形状の永久磁石列2、3において、外側の永久磁石列2の径方向の寸法を内側の永久磁石列3の径方向の寸法より長くしたものである。図1と同一要素には同一符号を付し重複する説明は省略する。
  外側の永久磁石列2の径方向の寸法を内側の永久磁石列3の径方向の寸法より長くしたことで、外側の永久磁石列2の永久磁石16の磁束密度を大きくできるため、回転電機の出力(トルク)を大きくすることができる。
  図6は本発明の実施の形態に係わる永久磁石回転電機の別の他の一例の軸方向断面図である。この図6に示した一例は、図1に示した一例に対し、回転子5にハルバッハ配列した略円筒形状の永久磁石列2、3の永久磁石16の体積をほぼ同じになるように内側の永久磁石列3の径方向の寸法を外側の永久磁石列2の径方向の寸法より長くしたものである。図1と同一要素には同一符号を付し重複する説明は省略する。
  回転子5にハルバッハ配列した略円筒形状の永久磁石列2、3の体積をほぼ同じになるようにしたことで、それぞれの永久磁石列2、3のエネルギー密度がほぼ同じになり、電機子巻線4を鎖交する磁束が均一化される。これにより、大きい出力(トルク)を得ることができる。
 次に、ハルバッハ配列された永久磁石列2、3を配置した回転子5は、非磁性金属部材や樹脂部材で形成される。一般的には回転子5は薄い電磁鋼板を積層して構成されるが、加工が容易な非磁性金属部材や樹脂部材とし、回転子5への永久磁石列2、3の取付けを容易にし、さらに軽量化を図るとともに製造コストを削減する。
  また、電機子巻線4を配置した固定子6についても、非磁性金属部材または樹脂部材で形成する。一般的には固定子6は回転子5と同様に薄い電磁鋼板を積層して構成されるが、加工が容易な非磁性金属部材や樹脂部材とし、軽量化を図るとともに製造コストを削減する。
  次に、固定子6に配置した電機子巻線4は、集中巻きの巻線またはプリント基板で形成する。図7は、電機子巻線4を集中巻きで形成した場合の永久磁石回転電機の一部切欠径方向断面図である。図7に示すように、電機子巻線4を集中巻にすることで、巻線を永久磁石列2と永久磁石列3との間に収めることが可能になる。これにより永久磁石回転電機1は電機子巻線4が軸方向に広がらない。また、永久磁石回転電機1の軸方向の長さを薄くすることができる。さらに、予めボビン(図示省略)に電機子巻線4を巻いて置き、固定子6に装着することができるので、製造コストを削減することができる。
  図8は、電機子巻線4をプリント基板で形成した場合の永久磁石回転電機の軸方向断面図である。図8に示すように、電機子巻線4をプリント基板11で形成しているので、従来例で用いられる銅線に比べ軽量化することができる。従って、永久磁石回転電機の小型化や軽量化が図れる。
  また、固定子6に配置した電機子巻線4は、その電機子巻線に対向する永久磁石面の幅より広く形成してもよい。図9は、電機子巻線4をそれに対向する永久磁石面の幅より広く形成した場合の永久磁石回転電機の軸方向断面図である。図9に示すように、電機子巻線4の軸方向長さを対向する永久磁石列2、3面の幅より長く(広く)形成している。電機子巻線4の軸方向長さを対向する永久磁石列2、3面の幅より長く(広く)したことで、電機子巻線4に対し、永久磁石列2、3の磁界が鎖交する量を多くすることができ、永久磁石列2、3の磁束を効率よく得ることができる。従って、永久磁石回転電機1の高出力化が図れる。
  さらに、固定子6に配置した電機子巻線4は、炭素線、超電導線または高温超電導線のいずれかを用いて形成する。電機子巻線4の巻線材料に炭素線を用いた場合には、従来例で用いられる銅線に比べ軽量化することができるため、永久磁石回転電機の軽量化が図れる。図10は電機子巻線4に超電導線もしくは高温超電導線を用いた場合の永久磁石回転電機の軸方向断面図である。図10に示すように、超電導線または高温超電導線の電機子巻線は、クライオ8の中に配置されており、クライオ8には低温配管9が接続されている。低温配管9の端部は冷凍機10に接続され、冷凍機10を駆動することでクライオ8の内部が超電導状態を維持できる構成になっている。電機子巻線4の巻線材料に超電導線もしくは高温超電導線を用いていることで、電機子巻線4の電気抵抗をゼロにでき、電流の損失をなくすことができ、永久磁石回転電機の高出力化が図れる。
 次に、ハルバッハ配列の永久磁石列に漏れ磁束を減少させるための強磁性部材を設けるようにしてもよい。図11は外側に配置したハルバッハ配列の永久磁石列2の外側に強磁性部材12を備えた場合の永久磁石回転電機の軸方向断面図である。図11に示すように、外側に配置したハルバッハ配列の永久磁石列2の外側に強磁性部材12が設けられている。
  図12は内側に配置したハルバッハ配列の永久磁石列3の内側に強磁性部材13を備えた場合の永久磁石回転電機の軸方向断面図である。図12に示すように、内側に配置したハルバッハ配列の永久磁石列3の内側に強磁性部材13が設けられている。
  また、図13は外側に配置したハルバッハ配列の永久磁石列2の外側及び内側に配置したハルバッハ配列の永久磁石列3の内側の双方に強磁性部材12、13を備えた場合の永久磁石回転電機の軸方向断面図である。図13に示すように、外側に配置したハルバッハ配列の永久磁石列2の外側、及び内側に配置したハルバッハ配列の永久磁石列3の内側の双方に強磁性部材12、13が設けられている。強磁性部材12、13及び永久磁石列2、3は、例えば接着により回転子5に接続されている。
  図3に示す磁束密度分布では、外側の永久磁石列2の径方向外側と、内側の永久磁石列2の径方向内側とに、若干ではあるが磁束が発生していることが分かる。つまり、若干ではあるが、漏れ磁束が生じている。そこで、外側強磁性部材12と内側強磁性部材13とを永久磁石列2、3に取付けることで、漏れ磁束は強磁性部材12、13を経由するため、磁束の漏れを減少させることができる。漏れ磁束が減少すれば永久磁石列2、3と電機子巻線4間のギャップ中の磁束を増やすことができる。これにより、漏れ磁束が減少し、ギャップ中の磁束が増加するので、永久磁石回転電機の高出力化が図れる。
  次に、永久磁石列2、3が回転による遠心力で回転子5から剥がれを防止するため非磁性部材で形成した永久磁石押さえ機構17を設けてもよい。図14はハルバッハ配列の永久磁石列2、3の永久磁石16に非磁性部材で形成した永久磁石押さえ機構17を備えた場合の永久磁石回転電機の軸方向断面図である。図14に示すように、ハルバッハ配列の永久磁石列2、3の永久磁石16は非磁性部材で形成した永久磁石押さえ機構17により回転子5に保持されている。永久磁石押さえ機構17は、例えば、非磁性部材で形成された帯状の板もしくはワイヤーで構成されている。これにより、永久磁石回転電機1が回転中に永久磁石16が回転子5から剥がれたりすることを防止でき安定的に高出力が得られる。
  次に、永久磁石列2、3の永久磁石16は、非磁性部材で形成されたケース18の中に収められてもよい。図15はハルバッハ配列の永久磁石列2、3の永久磁石16が非磁性部材で形成されたケース18の中に収められた場合の永久磁石回転電機の軸方向断面図である。図15に示すように、ハルバッハ配列の永久磁石列2、3が非磁性部材で形成されたケース18の中に収められている。ケースは回転子5に取り付けられている。この場合、永久磁石16をケース18に挿入して製造することから製造コストの低減が図れる。さらに、ケース18を容易に回転子5に取付けられるため製造コストの低減が図れる。
  次に、電機子巻線4は、非磁性部材で形成された巻線の巻取り部材19に集中巻きされ、集中巻きされた巻取り部材19ごと固定子6に取付けられるようにしてもよい。図16は永久磁石列2、3の永久磁石16と巻線の巻取り部材19の配置の一例を示した永久磁石回転電機の径方向断面図である。予め電機子巻線4を非磁性部材で形成された巻取り部材19に集中巻きし、その後、固定子6に取付けることで製造が容易になり、製造コストの低減が図れる。
  また、集中巻きされた複数の電機子巻線4は、樹脂で含浸して一体化してもよい。一体化することで取扱いを容易にできるとともに、固定子6への固定も容易にできる。
  次に、永久磁石列2、3の永久磁石16は、希土類磁石(例えばネオジム磁石)で形成してもよい。または、ネオジム磁石の中にジスプロシウムを添加させたもので形成してもよい。永久磁石に希土類磁石を用いることで磁力が増し、高出力を得ることができる。さらにジスプロシウムはネオジム磁石の磁力を高める働きがあり、ネオジム磁石の中にジスプロシウムを添加した永久磁石16を用いることで高出力化が図れる。
  次に、永久磁石列2、3の個々の永久磁石16は、磁極の向きが周方向に向いた磁石と磁極の向きが径方向に向いた磁石を別々に回転子5に取付ける製造方法としてもよい。一例として回転子5に永久磁石16の磁極の向きが周方向の永久磁石16を接着等により取付ける。そして、周方向の永久磁石16が回転子5に取付いた後、径方向の永久磁石16を接着等により取付ける。この製造方法によれば、隣接する永久磁石16の磁力の影響を受けることなく永久磁石16を回転子5に取付けることができ、製造コストの削減が図れる。
  また、一例として、磁極の向きが周方向に向いた永久磁石16を回転子5に取付ける場合、磁極の向きが径方向に向いた永久磁石16を取付ける位置に非磁性部材で形成された磁石取付けサポート20、21を備え、磁石取付けサポート20、21をガイドに永久磁石16を取付ける製造方法としてもよい。図17は永久磁石16を回転子5に取付けるための磁石取付けサポート20、21の一例を示した永久磁石回転電機の径方向断面図である。磁石取付けサポート20、21をガイドに永久磁石16を取付ける製造方法を用いることで隣接する永久磁石16の磁力の影響を受けることなく、容易に永久磁石16を回転子5に取付けることができ、製造コストの削減が図れる。
  本発明の実施の形態によれば、永久磁石回転電機の回転子5と固定子6に鉄心を用いないので軽量化が図れる。ハルバッハ配列された略円筒形状の永久磁石を2列配置し、その永久磁石2、3の間に電機子巻線4を配置するので軸方向の幅を薄くすることができる。また、ハルバッハ配列された略円筒形状の永久磁石を2列配置し、効率の良い磁束密度分布にしたことで高出力化が図れる。回転子5と固定子6に鉄心を用いないので、製造が容易になり製造コストを低減することができる。
 本発明は、永久磁石回転電機に適用できる。
 1…永久磁石回転電機、2…永久磁石(外側)、3…永久磁石(内側)、4…電機子巻線、5…回転子、6…固定子、7…シャフト、8…クライオ、9…低温配管、10…冷凍機、11…プリント基板、12…強磁性部材(外側)、13…強磁性部材(内側)、14…軸受、15…ヨーク鉄心、16…永久磁石、17…永久磁石押さえ機構、18…ケース、19…巻線の巻取り部材、20…永久磁石取付けサポート(外側)、21…永久磁石取付けサポート(内側)

Claims (6)

  1.  電機子巻線を有する固定子と、
     前記固定子に対し回転可能に支持されハルバッハ配列された永久磁石を有する回転子と
    からなる永久磁石回転電機において、
     前記回転子の回転中心から周方向にハルバッハ配列された2列の永久磁石列を設け、前記永久磁石列の間に前記固定子の電機子巻線を設け、前記永久磁石列は、永久磁石列の外側永久磁石の磁極の向きと永久磁石列の内側永久磁石の磁極の向きとが、径方向の磁極の向きについては同一方向で、周方向の磁極向きについては逆方向に向いていることを特徴とする永久磁石回転電機。
  2.  前記回転子にハルバッハ配列された永久磁石列は、外側に配置した永久磁石列が内側に配置した永久磁石列より径方向に長いこと、または、内側に配置した永久磁石列が外側に配置した永久磁石列より径方向に長いことを特徴とする請求項1記載の永久磁石回転電機。
  3.  前記固定子に配置した電機子巻線は、炭素線、超電導線または高温超電導線のいずれかを用いることを特徴とする請求項1記載の永久磁石回転電機。
  4.  前記外側に配置したハルバッハ配列の永久磁石列の外側、または前記内側に配置したハルバッハ配列の永久磁石列の内側、または前記外側に配置したハルバッハ配列の永久磁石列の外側及び前記内側に配置したハルバッハ配列の永久磁石列の内側の双方に強磁性部材を備えたことを特徴とする請求項1記載の永久磁石回転電機。
  5.  前記回転子に配置された永久磁石列は、前記回転子の周方向または軸方向に非磁性部材で構成された永久磁石押さえ機構で保持され、または永久磁石を非磁性部材で形成されたケースに収納して保持されることを特徴とする請求項1乃至4のいずれか1項に記載の永久磁石回転電機。
  6.  前記電機子巻線は、非磁性部材で形成された巻線の巻取り部材に集中巻きされ、集中巻きされた巻取り部材ごと固定子に取付けられる構造であることを特徴とする請求項1乃至4のいずれか1項に記載の永久磁石回転電機。
PCT/JP2009/005390 2009-10-15 2009-10-15 永久磁石回転電機 WO2011045842A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/005390 WO2011045842A1 (ja) 2009-10-15 2009-10-15 永久磁石回転電機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/005390 WO2011045842A1 (ja) 2009-10-15 2009-10-15 永久磁石回転電機

Publications (1)

Publication Number Publication Date
WO2011045842A1 true WO2011045842A1 (ja) 2011-04-21

Family

ID=43875902

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/005390 WO2011045842A1 (ja) 2009-10-15 2009-10-15 永久磁石回転電機

Country Status (1)

Country Link
WO (1) WO2011045842A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105207378A (zh) * 2014-06-27 2015-12-30 仁维国际股份有限公司 旋转电机
JP2019022448A (ja) * 2018-11-08 2019-02-07 Ntn株式会社 回転電機機械

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009201343A (ja) * 2008-01-23 2009-09-03 Toshiba Corp 永久磁石回転電機

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009201343A (ja) * 2008-01-23 2009-09-03 Toshiba Corp 永久磁石回転電機

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105207378A (zh) * 2014-06-27 2015-12-30 仁维国际股份有限公司 旋转电机
JP2019022448A (ja) * 2018-11-08 2019-02-07 Ntn株式会社 回転電機機械

Similar Documents

Publication Publication Date Title
JP2009201343A (ja) 永久磁石回転電機
JP5576246B2 (ja) アキシャルギャップ型ブラシレスモータ
JP5491484B2 (ja) スイッチドリラクタンスモータ
JP2010110128A (ja) 永久磁石回転電機
US20130026864A1 (en) Traversal switched reluctance motor
US7719156B2 (en) Stator module
WO2017094271A1 (ja) アキシャルギャップ型回転電機およびその製造方法
JP2009540788A (ja) リングコイルモータ
US20090009012A1 (en) Assembly and method for magnetization of permanent magnet rotors in electrical machines
US20110163618A1 (en) Rotating Electrical Machine
US20120104892A1 (en) Rotary electric machine
US9356479B2 (en) Hybrid excitation rotating electrical machine
KR101263350B1 (ko) 축 방향 자속 영구자석형 발전기
JP5365074B2 (ja) アキシャルギャップ型回転電機
JP4758703B2 (ja) 超電導装置およびアキシャルギャップ型の超電導モータ
WO2018193969A1 (ja) 回転電気機械
US20100314963A1 (en) Permanently excited electrical machine
JP7259798B2 (ja) アキシャルギャップモータ
WO2011045842A1 (ja) 永久磁石回転電機
GB2475095A (en) Armature arrangement in permanent magnet electrical machines
JP2010284036A (ja) 永久磁石回転電機
JP2016129447A (ja) 回転電機
JP2015130796A (ja) 回転電気機器
JP5894414B2 (ja) 発電機
JP5594660B2 (ja) リラクタンス発電機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09850385

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09850385

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP