WO2011045713A1 - Four de verre avec controle de la recirculation secondaire du verre - Google Patents

Four de verre avec controle de la recirculation secondaire du verre Download PDF

Info

Publication number
WO2011045713A1
WO2011045713A1 PCT/IB2010/054521 IB2010054521W WO2011045713A1 WO 2011045713 A1 WO2011045713 A1 WO 2011045713A1 IB 2010054521 W IB2010054521 W IB 2010054521W WO 2011045713 A1 WO2011045713 A1 WO 2011045713A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
recirculation
oven according
adjusting
bath
Prior art date
Application number
PCT/IB2010/054521
Other languages
English (en)
Inventor
François Pahmer
Bertrand Strock
Original Assignee
Fives Stein
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fives Stein filed Critical Fives Stein
Priority to US13/501,287 priority Critical patent/US20120216578A1/en
Priority to BR112012008512A priority patent/BR112012008512A2/pt
Priority to EP10773151A priority patent/EP2488459A1/fr
Publication of WO2011045713A1 publication Critical patent/WO2011045713A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/18Stirring devices; Homogenisation
    • C03B5/182Stirring devices; Homogenisation by moving the molten glass along fixed elements, e.g. deflectors, weirs, baffle plates

Definitions

  • the invention relates to improvements made to the control of the flow of glass in a glass furnace, a furnace of the type comprising:
  • a restriction of width in particular a corset, determining a downstream part and an upstream part in the tank,
  • the secondary recirculation loop is in opposition to the primary recirculation loop located on the side of the charging of raw materials in the furnace.
  • the invention relates more particularly, but not exclusively, to a furnace for clear or extra-clear glass.
  • the secondary recirculation loop also called the secondary belt, creates problems for flat glass manufacturers.
  • the recirculation of the glass in this belt increases the corrosion of the refractories of the inner wall of the furnace, in particular the corner blocks of the corset, which leads to a deterioration of the quality of the glass.
  • the energy consumption of the oven increases with the flow of the belt.
  • the corset a sort of vessel of reduced width relative to the upstream (the furnace) and the downstream (the working pool) parts, aims in particular to reduce the effect of the belt, but the refractory angle blocks located at the entrance of the corset are subject to strong corrosion, harmful to the quality of the glass.
  • the flow of recirculated glass is greatly increased.
  • the glass is on average warmer. Corrosion is then more important because it increases with the speed of the glass and the temperature.
  • the object of the invention is, above all, to improve the control of the flow of the glass in the secondary recirculation loop or belt in order to reduce the corrosion of the refractories, in particular corner blocks, and / or to reduce the energy consumption of the oven while ensuring the quality of the glass.
  • an oven of the kind defined above is characterized in that it comprises a means for adjusting the passage width of the glass in the secondary recirculation loop, the adjustment means being immersed in the bath and extending vertically on part of the depth of the bath.
  • a cross dam perpendicular to the flow of the glass, is commonly implanted in the corset. Its main function is to retain the impurities on the surface of the bath but also influences the flow of the glass, in particular by braking the recirculation go of the secondary recirculation loop. It is installed vertically so as to partially dive into the bath at a reduced depth.
  • the adjustment means according to the invention is located upstream of the dam in the direction of flow of the drawn.
  • the immersed portion of the adjustment means extends, from the surface, to a bath depth corresponding to the drawn and at least a part of the recirculation go, without reaching the recirculation return, so to limit the corrosion at the corner blocks and curb the recirculation go.
  • the distance between the lower edge of the adjustment means and the hearth is greater than the distance between the hearth and the separation line between the recirculation go and the recirculation return.
  • the submerged portion extends about one-third of the depth of the bath, from the surface. This configuration is particularly interesting for operation of the furnace without dam. In the case where a dam is present in the corset, this configuration also makes it possible to limit the corrosion of the refractory at the dam.
  • the immersed portion of the adjustment means extends over a greater bath depth corresponding to the drawn, the recirculation go and at least a part of the recirculation back.
  • the distance between the lower edge of the adjusting means and the sole is less than the distance between the sole and the line of separation between the recirculation go and the recirculation return.
  • the submerged portion extends over at least two thirds of the depth of the bath, from the surface. This configuration makes it possible to limit corrosion at the corner blocks and to slow down the forward and return currents of the recirculation loop.
  • the submerged portion of the adjusting means is constituted, from the surface, of a connecting element without significant action on the movement of the glass, and, in the lower part, of a flat element influencing the flow of the glass.
  • This configuration is advantageously used to brake the return current of the recirculation loop without action at the pull and the forward current.
  • the flat element of the adjustment means extends only on the return recirculation, on at least a part of the return recirculation.
  • the means for adjusting the passage width of the glass is generally located in the upstream zone of the width restriction, in particular at the upstream entrance of the width restriction or the corset.
  • the means for adjusting the passage width of the glass may comprise at least one cooled hollow vertical flat element, in particular with water, immersed permanently in the molten glass bath.
  • the hollow flat element is metallic. It may comprise tubes in which the cooling fluid circulates.
  • the means for adjusting the passage width of the glass may be cooled only a fraction of its height, on the upper part in contact with the drawn and the recirculation go or the deepest part in contact with the recirculation of return of the secondary recirculation loop.
  • the means for adjusting the passage width of the glass comprises at least one vertical plate of refractory material.
  • the means for adjusting the passage width of the glass is vertically adjustable; it is maintained by a moving device vertical.
  • the means for adjusting the passage width of the glass may be adjustable laterally, in particular by rotation around a vertical axis.
  • the adjustment means is constituted by a vertical flat element
  • this flat element may be rotatably mounted about a vertical geometric axis located towards the upstream end of the flat element.
  • at least one means for adjusting the passage width of the glass is disposed on each side of the furnace, the adjustment means being symmetrical to one another with respect to a median longitudinal vertical plane of the furnace.
  • FIG. 1 is a partial longitudinal vertical schematic section at the corset of a flat glass furnace according to the invention
  • FIG. 2 is a schematic view from above, with respect to FIG. 1, of the corset and the molten glass bath.
  • FIG. 1 and 2 of the accompanying drawing there can be seen a portion of a flat glass furnace having a vault 1 and a sole 2 constituting the bottom of a vessel containing a bath 3 of molten glass.
  • the oven comprises a corset 4 of reduced width defining a downstream portion 5 (right in Fig. 1) and an upstream portion 6 (left in Fig.1) in the tank.
  • the direction to consider to define the upstream and downstream is that which goes from the inner zone of the furnace located on the left of Fig .1, towards the exit located on the right.
  • the side walls of the oven converge in zone 7 (FIG. 2) adjacent to the inlet of the corset and diverge in zone 8 (FIG. 2) facing the outlet (not shown) of the oven, through which the glass is evacuated. in fusion.
  • a secondary recirculation loop B of the molten glass is formed between the inner zone of the warmer oven, located on the left of Figs. 1 and 2, and the output being at a lower temperature.
  • the liquid glass circulates in this loop in the clockwise direction for the representation of FIG.
  • the upper layers of the bath composed of the furnace flow and the recirculation flow towards the outlet, that is to say to the right, according to a forward flow of convection F1 schematized by an arrow, while the lower layers, composed of the recirculation, close to the sole 2, move towards the inner zone, that is to say to the left, according to a return convection current F2 schematized by an arrow.
  • An (imaginary) separation line S is between the forward and return currents.
  • the loop B passes through the corset 4.
  • the convection currents back and forth cause corrosion of the inner refractory wall of the furnace, particularly at the corner blocks G, H at the inlet and the outlet of the brace 4. Corrosion increases when the velocity of the currents convection of the glass in the loop B increases, and conversely decreases when this speed decreases.
  • a reduction in the speed of the forward currents F1 and return F2 of the recirculation loop B is created by creating a transverse restriction E (FIG 2) preferably in the entry zone of the brace 4. This restriction transverse allows to control the width of the passage of the glass in the corset 4 and thus to achieve an adaptation to the different colors of glass or production levels of the oven whose corset 4, defined in the design and made of refractory, is not adjustable by definition.
  • the transverse restriction E is made with a means M of adjusting the passage width of the glass, in the secondary recirculation loop B, over a part of the height of the bath (Fig. 1).
  • the submerged portion of the adjusting means extends differently to the depth of the bath depending on whether one wishes to intervene only on the pull and the recirculation go, only on the return recirculation, or drawn and the currents go and return.
  • the distance D (FIG. 1) between the lower edge of the adjustment means M and the hearth 2 is greater than the distance J between the hearth and the separation line S between the recirculation F1 and the recirculation return F2.
  • the adjustment means M plunges only in the drawn and the recirculation go F1.
  • the distance D (FIG. 1) between the lower edge of the adjustment means M and the hearth 2 is smaller than the distance J between the hearth and the separation line S between the forward recirculation F1 and the recirculation return F2.
  • the lower part of the adjustment means M plunges into the return recirculation F2.
  • a regulating means M is disposed on each side of the furnace (FIG 2), the adjustment means M being symmetrical to each other with respect to a median longitudinal vertical plane V of the furnace.
  • Each adjustment means M advantageously comprises at least one hollow vertical flat element 9, diagrammatically shown in FIG. 1 and 2 by a rectangular contour, cooled with water admitted by an inlet pipe 9a and discharged through an outlet pipe 9b to give heat to the outside.
  • the flat element 9 is immersed in the molten glass bath permanently.
  • This flat hollow element 9 is preferably metallic. It can be realized with a series of tubes of parallel vertical axes located in the same plane, in which circulates the cooling water. The cooling of the flat element 9 can be achieved over its entire height or only a part of this height.
  • the means M for adjusting the passage width of the glass may be made in the form of a vertical plate made of refractory material.
  • the introduction of the equipment constituted by the adjusting means M is effected symmetrically in the corset, either by the piers or by the arch.
  • Each adjustment means M is maintained by a mechanical system 10 provided to allow the vertical adjustment of the means M in order to adjust this means M with respect to the separation line S of the forward and return currents.
  • the means M is constituted by a vertical plate-like flat element 9
  • this flat element is rotatably mounted around a vertical geometric axis 1 1 located towards the upstream end of the flat element 9.
  • the rotation of the flat element 9 around this axis 1 1 creates an angle with respect to the flow of the glass and ensures the reduction of the width E between the downstream ends 12 of the flat elements 9. This ensures the reduction of the width of the glass passage section for the drawn and the recirculation go, the drawn, the recirculation go and the recirculation return, or only the recirculation return according to the configuration retained.
  • the flat element 9 is rotatably mounted about a vertical geometric axis 1 1 located towards the downstream end of the flat element 9; the device comprising means for adjusting the lateral position of the vertical geometric axis 1 1.
  • M means width adjustment are preferably placed at the entrance of the brace 4 to ensure the reduction of the glass flow closer to the refractory walls and / or also to reduce the temperature of the glass closer to these same refractories, whose corrosion is thus reduced.
  • the corset 4 is also used to rapidly and strongly cool the glass between the upstream melting-refining zone and the downstream working pond.
  • a transverse dam 13 perpendicular to the flow of the glass may be provided, consisting of a water-cooled metal cooling device installed vertically so as to plunge to a reduced depth in the molten glass bath 3.
  • vertical dam 13 extends along the entire width of the corset 4.
  • the glass Upstream of a dam, the glass is laminated on the height of the bath.
  • the composition of the glass varies with the strata with, for example, a lower concentration of surface NaO resulting from evaporation.
  • the presence of the dam forces the glass to plunge into the bath which breaks the stratification.
  • the solution of the invention advantageously replaces a dam in its function of reducing the forward flow of the recirculation loop because it makes it possible to reduce the secondary recirculation of the glass by reducing the cross section in the corset while preserving a sufficient lamination of the glass.
  • the solution of the invention also reduces the corrosion of the walls and the consumption of the oven. It is particularly interesting for the production of clear or extra-clear glass.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Furnace Details (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)

Abstract

Four de fusion et d'affinage de verre, comprenant : une voûte équipée de moyens de chauffage, une sole (2) constituant le fond d'une cuve contenant un bain (3) de verre en fusion, une restriction de largeur (4), notamment un corset, déterminant une partie aval (5) et une partie amont (6) dans la cuve, une sortie par laquelle est évacué le verre en fusion, une boucle de recirculation secondaire (B) du verre en fusion se formant dans le bain entre une zone interne du four plus chaude et la sortie à une température moindre, cette boucle traversant le corset; le four comporte un moyen (M) de réglage de la largeur de passage du verre dans la boucle de recirculation secondaire, ce moyen de réglage étant plongé dans le bain et s'étendant verticalement sur la majeure partie de la profondeur du bain.

Description

FOUR DE VERRE AVEC CONTROLE DE LA RECIRCULATION SECONDAIRE DU VERRE
L'invention est relative à des perfectionnements apportés au contrôle de l'écoulement du verre dans un four de verre, four du genre de ceux qui comprennent :
- une voûte équipée de moyens de chauffage,
- une sole constituant le fond d'une cuve contenant un bain de verre en fusion,
- une restriction de largeur, notamment un corset, déterminant une partie aval et une partie amont dans la cuve,
- une boucle de recirculation secondaire du verre en fusion se formant dans le bain entre une zone interne du four plus chaude et la partie aval de la cuve à une température moindre, cette boucle traversant la restriction de largeur,
- une sortie par laquelle est évacué le verre en fusion. La boucle de recirculation secondaire est en opposition à la boucle de recirculation primaire située du côté de l'enfournement des matières premières dans le four.
L'invention concerne plus particulièrement, mais non exclusivement, un four pour verre clair ou extra-clair.
La boucle secondaire de recirculation, également appelée courroie secondaire, crée des problèmes aux industriels producteurs de verre plat. La recirculation du verre dans cette courroie, notamment dans les fours de verre flotté, accentue la corrosion des réfractaires de la paroi interne du four, en particulier les blocs d'angle du corset, ce qui conduit à une dégradation de la qualité du verre. De plus, la consommation énergétique du four augmente avec le débit de la courroie. Le corset, sorte de cuve de largeur réduite par rapport aux parties de cuve amont (le four) et aval (le bassin de travail) vise notamment à réduire l'effet de la courroie, mais les blocs d'angle réfractaires situés à l'entrée du corset sont soumis à une forte corrosion, néfaste pour la qualité du verre. En outre, lors de la production de verre clair ou extra-clair, le débit de verre recirculé est fortement augmenté. De plus le verre est en moyenne plus chaud. La corrosion est alors plus importante car elle augmente avec la vitesse du verre et la température.
L'invention a pour but, surtout, d'améliorer le contrôle de l'écoulement du verre dans la boucle ou courroie de recirculation secondaire afin de réduire la corrosion des réfractaires, en particulier des blocs d'angle, et/ou de réduire la consommation énergétique du four tout en assurant la qualité du verre.
Selon l'invention, un four du genre défini précédemment, est caractérisé en ce qu'il comporte un moyen de réglage de la largeur de passage du verre dans la boucle de recirculation secondaire, ce moyen de réglage étant plongé dans le bain et s'étendant verticalement sur une partie de la profondeur du bain.
Un barrage transversal, perpendiculaire à l'écoulement du verre, est communément implanté dans le corset. Il a pour fonction principale de retenir les impuretés qui se trouvent à la surface du bain mais influe également sur l'écoulement du verre, notamment en freinant la recirculation aller de la boucle de recirculation secondaire. Il est installé verticalement de manière à plonger partiellement dans le bain sur une profondeur réduite. Le moyen de réglage selon l'invention est implanté en amont du barrage dans le sens de l'écoulement de la tirée.
Selon un premier exemple d'application, la partie immergée du moyen de réglage s'étend, à partir de la surface, sur une profondeur de bain correspondant à la tirée et au moins une partie de la recirculation aller, sans atteindre la recirculation retour, de sorte de limiter la corrosion au niveau des blocs d'angle et de freiner la recirculation aller. Avantageusement, la distance entre le bord inférieur du moyen de réglage et la sole est supérieure à la distance entre la sole et la ligne de séparation entre la recirculation aller et la recirculation retour. Selon un exemple de réalisation, la partie immergée s'étend sur environ un tiers de la profondeur du bain, à partir de la surface. Cette configuration est notamment intéressante pour un fonctionnement du four sans barrage. Dans le cas où un barrage est présent dans le corset, cette configuration permet également de limiter la corrosion du réfractaire au niveau du barrage.
Selon un autre exemple d'application, la partie immergée du moyen de réglage s'étend sur une profondeur de bain plus importante correspondant à la tirée, la recirculation aller et au moins une partie de la recirculation retour. Avantageusement, la distance entre le bord inférieur du moyen de réglage et la sole est inférieure à la distance entre la sole et la ligne de séparation entre la recirculation aller et la recirculation retour. Selon un exemple de réalisation, la partie immergée s'étend sur au moins deux tiers de la profondeur du bain, à partir de la surface. Cette configuration permet de limiter la corrosion au niveau des blocs d'angle et de freiner les courants aller et retour de la boucle de recirculation. Selon un autre exemple d'application de l'invention, la partie immergée du moyen de réglage est constituée, à partir de la surface, d'un élément de liaison sans action notable sur la circulation du verre, et, en partie inférieure, d'un élément plat influant sur l'écoulement du verre. Cette configuration est avantageusement utilisée pour freiner le courant retour de la boucle de recirculation sans action au niveau de la tirée et du courant aller. Dans ce cas, l'élément plat du moyen de réglage s'étend uniquement sur la recirculation retour, sur au moins une partie de la recirculation retour.
Le moyen de réglage de la largeur de passage du verre est généralement situé dans la zone amont de la restriction de largeur, en particulier à l'entrée amont de la restriction de largeur ou du corset.
Le moyen de réglage de la largeur de passage du verre peut comprendre au moins un élément plat vertical creux refroidi, en particulier à l'eau, plongé en permanence dans le bain de verre en fusion. Avantageusement l'élément plat creux est métallique. Il peut comporter des tubes où circule le fluide de refroidissement.
Le moyen de réglage de la largeur de passage du verre peut n'être refroidi que sur une fraction seulement de sa hauteur, sur la partie supérieure en contact avec la tirée et la recirculation aller ou la partie la plus profonde en contact avec la recirculation de retour de la boucle de recirculation secondaire.
Selon une autre possibilité, le moyen de réglage de la largeur de passage du verre comprend au moins une plaque verticale en matériau réfractaire.
Avantageusement le moyen de réglage de la largeur de passage du verre est réglable verticalement ; il est maintenu par un dispositif de déplacement vertical.
Le moyen de réglage de la largeur de passage du verre peut être réglable latéralement, en particulier par rotation autour d'un axe vertical.
Dans le cas où le moyen de réglage est constitué par un élément plat vertical, cet élément plat peut être monté rotatif autour d'un axe géométrique vertical situé vers l'extrémité amont de l'élément plat . De préférence, au moins un moyen de réglage de la largeur de passage du verre est disposé de chaque côté du four, les moyens de réglage étant symétriques l'un de l'autre par rapport à un plan vertical longitudinal médian du four. Ainsi, selon l'invention, une restriction transversale en largeur de passage de la courroie secondaire est créée. Cela présente l'avantage de permettre de contrôler la largeur du passage du verre dans la restriction de largeur. La réalisation de cette restriction transversale peut se faire avec différents équipements, préférentiellement métalliques et refroidis à l'eau sur tout ou partie de l'équipement, ou en réfractaire.
L'invention consiste, mises à part les dispositions exposées ci-dessus, en un certain nombre d'autres dispositions dont il sera plus explicitement question ci- après à propos d'un exemple de réalisation décrit avec référence au dessin annexé, mais qui n'est nullement limitatif. Sur ce dessin :
Fig. 1 est une coupe schématique verticale longitudinale partielle au niveau du corset d'un four de verre plat selon l'invention, et Fig. 2 est une vue schématique de dessus, par rapport à Fig.1 , du corset et du bain de verre en fusion.
En se reportant à Fig. 1 et 2 du dessin annexé, on peut voir une partie d'un four de verre plat comportant une voûte 1 et une sole 2 constituant le fond d'une cuve contenant un bain 3 de verre en fusion.
Le four comporte un corset 4 de largeur réduite déterminant une partie aval 5 (à droite sur Fig .1 ) et une partie amont 6 (à gauche sur Fig.1 ) dans la cuve. Le sens à considérer pour définir l'amont et l'aval est celui qui va de la zone interne du four située sur la gauche de Fig .1 , vers la sortie située à droite. Les parois latérales du four convergent dans la zone 7 (Fig.2) voisine de l'entrée du corset et divergent dans la zone 8 (Fig.2) tournée vers la sortie (non représentée) du four, par laquelle est évacué le verre en fusion.
Entre la zone interne du four plus chaude, située sur la gauche des Fig. 1 et 2, et la sortie se trouvant à une température moindre, une boucle de recirculation secondaire B du verre en fusion se forme. Le verre liquide circule dans cette boucle selon le sens d'horloge pour la représentation de Fig .1 . Les couches supérieures du bain composées de la tirée du four et de la recirculation se déplacent vers la sortie, c'est-à-dire vers la droite, selon un courant aller de convection F1 schématisé par une flèche, tandis que les couches inférieures, composées de la recirculation, voisines de la sole 2, se déplacent vers la zone interne, c'est-à-dire vers la gauche, selon un courant retour de convection F2 schématisé par une flèche. Une ligne (imaginaire) de séparation S se trouve entre les courants aller et retour. La boucle B traverse le corset 4.
Les courants de convection aller et retour provoquent une corrosion de la paroi réfractaire interne du four, en particulier au niveau des blocs d'angle G, H à l'entrée et à la sortie du corset 4. La corrosion augmente lorsque la vitesse des courants de convection du verre dans la boucle B augmente, et inversement diminue lorsque cette vitesse diminue. Selon l'invention, on provoque une diminution de la vitesse des courants aller F1 et retour F2 de la boucle de recirculation B en créant une restriction transversale E (Fig. 2) de préférence dans la zone d'entrée du corset 4. Cette restriction transversale permet de contrôler la largeur du passage du verre dans le corset 4 et ainsi de réaliser une adaptation aux différentes couleurs de verre ou aux niveaux de production du four dont le corset 4, défini à la conception et réalisé en réfractaire, n'est pas réglable par définition.
La restriction transversale E est réalisée avec un moyen de réglage M de la largeur de passage du verre, dans la boucle B de recirculation secondaire, sur une partie de la hauteur du bain (Fig. 1 ). La partie immergée du moyen de réglage s'étend différemment sur la profondeur du bain selon que l'on souhaite intervenir uniquement sur la tirée et la recirculation aller, uniquement sur la recirculation retour, ou la tirée et les courants aller et retour. Selon un exemple de réalisation, la distance D (Fig .1 ) entre le bord inférieur du moyen de réglage M et la sole 2 est supérieure à la distance J entre la sole et la ligne de séparation S entre la recirculation aller F1 et la recirculation retour F2. II en résulte que le moyen de réglage M plonge uniquement dans la tirée et la recirculation aller F1 .
Selon un autre exemple de réalisation, la distance D (Fig .1 ) entre le bord inférieur du moyen de réglage M et la sole 2 est inférieure à la distance J entre la sole et la ligne de séparation S entre la recirculation aller F1 et la recirculation retour F2. Il en résulte que la partie inférieure du moyen de réglage M plonge dans la recirculation de retour F2.
En général, un moyen de réglage M est disposé de chaque côté du four (Fig. 2), les moyens de réglage M étant symétriques l'un de l'autre par rapport à un plan vertical longitudinal médian V du four.
Chaque moyen de réglage M comprend avantageusement au moins un élément plat vertical creux 9, schématiquement représenté sur Fig. 1 et 2 par un contour rectangulaire, refroidi à l'eau admise par une canalisation d'entrée 9a et évacuée par une canalisation de sortie 9b pour céder sa chaleur à l'extérieur. L'élément plat 9 est plongé dans le bain de verre en fusion en permanence. Cet élément plat 9 creux est de préférence métallique. Il peut être réalisé avec une série de tubes d'axes verticaux parallèles situés dans un même plan, dans lesquels circule l'eau de refroidissement. Le refroidissement de l'élément plat 9 peut être réalisé sur toute sa hauteur ou sur une partie seulement de cette hauteur.
Selon une variante, le moyen M de réglage de la largeur de passage du verre peut être réalisé sous forme d'une plaque verticale en matériau réfractaire.
L'introduction des équipements constitués par les moyens de réglage M s'effectue de manière symétrique dans le corset, soit par les piédroits, soit par la voûte. Chaque moyen de réglage M est maintenu par un système mécanique 10 prévu pour permettre le réglage vertical du moyen M afin d'ajuster ce moyen M par rapport à la ligne de séparation S des courants aller et retour.
De plus, il est important de pouvoir ajuster la position latérale des moyens M par rapport à la cuve. Avantageusement, lorsque le moyen M est constitué par un élément plat 9 vertical, de type plaque, cet élément plat est monté rotatif autour d'un axe géométrique vertical 1 1 situé vers l'extrémité amont de l'élément plat 9. La rotation de l'élément plat 9 autour de cet axe 1 1 crée un angle par rapport à l'écoulement du verre et assure la réduction de la largeur E entre les extrémités aval 12 des éléments plats 9. On assure ainsi la réduction de la largeur de la section de passage du verre pour la tirée et la recirculation aller, la tirée, la recirculation aller et la recirculation retour, ou uniquement la recirculation retour selon la configuration retenue.
Dans une variante de réalisation, l'élément plat 9 est monté rotatif autour d'un axe géométrique vertical 1 1 situé vers l'extrémité aval de l'élément plat 9 ; le dispositif comprenant un moyen d'ajuster la position latérale de l'axe géométrique vertical 1 1 .
Les moyens M de réglage de la largeur sont placés de préférence à l'entrée du corset 4 afin d'assurer la réduction du débit de verre au plus près des parois réfractaires et/ou de réduire aussi la température du verre au plus près de ces mêmes réfractaires, dont la corrosion est ainsi réduite.
L'installation de tels équipements refroidis, préférentiellement à l'eau, n'est pas incompatible avec le fonctionnement général du four de fusion. En effet, le corset 4 est aussi utilisé pour refroidir fortement et rapidement le verre entre la zone de fusion-affinage en amont, et le bassin de travail en aval.
En complément, on peut prévoir un barrage transversal 13, perpendiculaire à l'écoulement du verre constitué par un dispositif refroidisseur métallique refroidi à l'eau et installé verticalement de manière à plonger sur une profondeur réduite dans le bain de verre en fusion 3. Le barrage vertical 13 s'étend suivant toute la largeur du corset 4.
En amont d'un barrage, le verre est stratifié sur la hauteur du bain. La composition du verre varie selon les strates avec, par exemple, une concentration plus faible en NaO en surface résultant de l'évaporation. La présence du barrage force le verre à plonger dans le bain se qui casse la stratification. La solution de l'invention remplace avantageusement un barrage dans sa fonction de réduction du courant aller de la boucle de recirculation car elle permet de réduire la recirculation secondaire du verre en réduisant la section de passage dans le corset tout en préservant une stratification du verre aller suffisante.
La solution de l'invention permet également de réduire la corrosion des parois et la consommation du four. Elle est particulièrement intéressante pour la production de verre clair ou extra-clair.

Claims

REVENDICATIONS
1 . Four de fusion et d'affinage de verre, comprenant :
- une voûte équipée de moyens de chauffage,
- une sole (2) constituant le fond d'une cuve contenant un bain (3) de verre en fusion,
- une restriction de largeur (4), notamment un corset, déterminant une partie aval et une partie amont dans la cuve,
- une boucle de recirculation secondaire (B) du verre en fusion se formant dans le bain entre une zone interne du four plus chaude et la partie aval de la cuve à une température moindre, cette boucle traversant la restriction de largeur,
- une sortie par laquelle est évacué le verre en fusion,
caractérisé en ce qu'il comporte un moyen (M) de réglage de la largeur de passage du verre dans la boucle de recirculation secondaire, ce moyen de réglage étant plongé dans le bain et s'étendant verticalement sur une partie de la profondeur du bain.
2. Four selon la revendication 1 , caractérisé en ce que la partie immergée du moyen (M) de réglage s'étend, à partir de la surface, sur une profondeur de bain (3) correspondant à la tirée et au moins une partie de la recirculation aller.
3. Four selon la revendication 2, caractérisé en ce que la distance (D) entre le bord inférieur du moyen de réglage (M) et la sole (2) est supérieure à la distance (J) entre la sole et la ligne de séparation (S) entre la recirculation aller (F1 ) et la recirculation retour (F2).
4. Four selon la revendication 1 , caractérisé en ce que la partie immergée du moyen (M) de réglage s'étend, à partir de la surface, sur une profondeur de bain (3) correspondant à la tirée, la recirculation aller et au moins une partie du courant retour.
5. Four selon la revendication 4, caractérisé en ce que la distance (D) entre le bord inférieur du moyen de réglage (M) et la sole (2) est inférieure à la distance (J) entre la sole et la ligne de séparation (S) entre la recirculation aller (F1 ) et la recirculation retour (F2).
6. Four selon la revendication 5, caractérisé en ce que la partie la plus profonde (9p) du moyen (M) de réglage est en contact avec la recirculation de retour (F2) de la boucle.
7. Four selon la revendication 1 , caractérisé en ce que l'élément plat (9) du moyen (M) de réglage s'étend uniquement sur la recirculation retour.
8. Four selon l'une quelconque des revendications précédentes, caractérisé en ce que le moyen (M) de réglage de la largeur de passage du verre est situé dans la zone amont de la restriction de largeur (4).
9. Four selon la revendication 8, caractérisé en ce que le moyen (M) de réglage de la largeur de passage du verre est situé à l'entrée amont de la restriction de largeur (4).
10. Four selon l'une quelconque des revendications précédentes, caractérisé en ce que le moyen (M) de réglage de la largeur de passage du verre comprend au moins un élément plat creux vertical (9) refroidi, en particulier à l'eau, plongé en permanence dans le bain de verre en fusion.
1 1 . Four selon la revendication 10, caractérisé en ce que l'élément plat creux (9) est métallique.
12. Four selon la revendication 10 ou 1 1 , caractérisé en ce que le moyen (M) de réglage de la largeur de passage du verre est refroidi sur une fraction seulement de sa hauteur, sur la partie supérieure en contact avec la tirée et la recirculation aller ou la partie la plus profonde en contact avec la recirculation de retour de la boucle de recirculation secondaire.
13. Four selon l'une quelconque des revendications 1 à 9, caractérisé en ce que le moyen (M) de réglage de la largeur de passage du verre comprend au moins une plaque verticale en matériau réfractaire.
14. Four selon l'une quelconque des revendications précédentes, caractérisé en ce que le moyen (M) de réglage de la largeur de passage du verre est réglable verticalement.
15. Four selon l'une quelconque des revendications précédentes, caractérisé en ce que le moyen (M) de réglage de la largeur de passage du verre est réglable latéralement.
16. Four selon la revendication 15, caractérisé en ce que le moyen (M) de réglage de la largeur de passage du verre est réglable latéralement par rotation autour d'un axe vertical (1 1 ).
17. Four selon la revendication 16, dans lequel le moyen (M) de réglage est constitué par un élément plat (9) vertical, caractérisé en ce que cet élément plat (9) est monté rotatif autour d'un axe géométrique vertical (1 1 ) situé vers l'extrémité amont de l'élément plat (9).
18. Four selon l'une quelconque des revendications précédentes, caractérisé en ce qu'au moins un moyen (M) de réglage de la largeur de passage du verre est disposé de chaque côté du four, les moyens (M) de réglage étant symétriques l'un de l'autre par rapport à un plan (V) vertical longitudinal médian du four.
PCT/IB2010/054521 2009-10-14 2010-10-06 Four de verre avec controle de la recirculation secondaire du verre WO2011045713A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/501,287 US20120216578A1 (en) 2009-10-14 2010-10-06 Glass furnace having controlled secondary recirculation of the glass
BR112012008512A BR112012008512A2 (pt) 2009-10-14 2010-10-06 forno de fusão e de refino de vidro
EP10773151A EP2488459A1 (fr) 2009-10-14 2010-10-06 Four de verre avec controle de la recirculation secondaire du verre

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR09/04925 2009-10-14
FR0904925A FR2951156B3 (fr) 2009-10-14 2009-10-14 Perfectionnements apportes au controle de la convection du verre dans un four de verre equipe d'un corset

Publications (1)

Publication Number Publication Date
WO2011045713A1 true WO2011045713A1 (fr) 2011-04-21

Family

ID=43414248

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2010/054521 WO2011045713A1 (fr) 2009-10-14 2010-10-06 Four de verre avec controle de la recirculation secondaire du verre

Country Status (5)

Country Link
US (1) US20120216578A1 (fr)
EP (1) EP2488459A1 (fr)
BR (1) BR112012008512A2 (fr)
FR (1) FR2951156B3 (fr)
WO (1) WO2011045713A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102223423B1 (ko) * 2014-04-29 2021-03-05 쌩-고벵 글래스 프랑스 유리를 용융 및 청징하기 위한 방법 및 장치

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3989497A (en) * 1974-04-26 1976-11-02 Pilkington Brothers Limited Glass melting
JPS5637230A (en) * 1979-09-04 1981-04-10 Central Glass Co Ltd Molten glass tempering method
FR2488593A1 (fr) * 1980-08-18 1982-02-19 Libbey Owens Ford Co Procede de traitement d'un bain de verre fondu dans un four de fusion du type a bassin, et ce four

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US836731A (en) * 1906-02-15 1906-11-27 Amsler Engineering Company Glass-melting furnace.
US1661836A (en) * 1926-03-18 1928-03-06 Pittsburgh Plate Glass Co Glass-melting tank
US1835690A (en) * 1927-09-12 1931-12-08 Hazel Atlas Glass Co Floating bridge wall
US1960164A (en) * 1932-11-11 1934-05-22 Corning Glass Works Cooling bridge walls for glass melting furnaces
FR1300813A (fr) * 1961-06-21 1962-08-10 Saint Gobain Perfectionnement aux fours à bassin pour la fabrication du verre ou autre matière analogue
GB1159011A (en) * 1966-01-06 1969-07-23 Pilkington Brothers Ltd Improvements in or relating to Apparatus for Stirring High Temperature Liquids.
BR6898501D0 (pt) * 1967-05-25 1973-01-23 Glaverbel Aparelho para a fabricacao de vidro em folha
DE1596424B1 (de) * 1967-06-07 1970-12-23 Floatglas Gmbh Vorrichtung zur Homogenisierung einer Glasschmelze
US3498779A (en) * 1967-10-30 1970-03-03 Owens Illinois Inc Apparatus for melting highly corrosive glass compositions
BE794781A (fr) * 1972-02-01 1973-07-31 Ppg Industries Inc Procede pour le faconnage de verre a haut point de fusion
US4029489A (en) * 1976-02-17 1977-06-14 Owens-Corning Fiberglas Corporation Method of and apparatus for melting of glass
US4349376A (en) * 1981-06-08 1982-09-14 Owens-Corning Fiberglas Corporation Liquid cooled skimmer
US5588978A (en) * 1992-11-24 1996-12-31 Imtec Process and apparatus for coloring glass
GB2306467A (en) * 1995-10-28 1997-05-07 Pilkington Plc Method and apparatus for making glass

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3989497A (en) * 1974-04-26 1976-11-02 Pilkington Brothers Limited Glass melting
JPS5637230A (en) * 1979-09-04 1981-04-10 Central Glass Co Ltd Molten glass tempering method
FR2488593A1 (fr) * 1980-08-18 1982-02-19 Libbey Owens Ford Co Procede de traitement d'un bain de verre fondu dans un four de fusion du type a bassin, et ce four

Also Published As

Publication number Publication date
FR2951156B3 (fr) 2011-09-16
US20120216578A1 (en) 2012-08-30
EP2488459A1 (fr) 2012-08-22
FR2951156A3 (fr) 2011-04-15
BR112012008512A2 (pt) 2016-04-05

Similar Documents

Publication Publication Date Title
EP0763503B1 (fr) Dispositif pour la fusion de matières vitrifiables
CA2119619C (fr) Canal d'ecoulement pour le transfert du verre en fusion
EP0167447B1 (fr) Procédé de chauffage d'un canal contenant du verre à l'aide de flammes oxycombustibles
WO2009098363A1 (fr) Installation de galvanisation au trempe d'une bande d'acier
EP2240291B1 (fr) Dispositif d'alimentation en gaz d'une machine de brasage ou etamage a la vague
WO2011045713A1 (fr) Four de verre avec controle de la recirculation secondaire du verre
FR2973797A1 (fr) Four de verre, notamment pour verre clair ou ultra-clair, avec recirculations secondaires laterales
EP1711441B1 (fr) Fabrication de verre plat par flottage sans point fixe
EP3137426B1 (fr) Procédé et dispositif de fusion et d'affinage du verre
EP3006410B1 (fr) Utilisation d'un four pour la fusion de verre, notamment de verre clair ou ultra-clair, avec réduction de la recirculation primaire
BE898270A (fr) Four de fusion pour la vitrification de déchets très radioactifs.
EP0115242B1 (fr) Elément de grille en métal moulé pour échange de chaleur solide-fluide à très haute température, comportant un dispositif d'accrochage intégré à la structure de grille
EP0005389B1 (fr) Installation de bombage et de trempe de feuilles de verre
FR2488593A1 (fr) Procede de traitement d'un bain de verre fondu dans un four de fusion du type a bassin, et ce four
FR2663868A1 (fr) Hotte a parois refroidies.
FR2948929A1 (fr) Four de fusion de matieres premieres vitrifiables avec zone de prechauffage optimisee
EP0031772A1 (fr) Procédé et dispositif pour la fabrication de verre par flottage
FR2601761A1 (fr) Refroidisseur a grilles, notamment destine a refroidir le clinker en cimenterie
BE390095A (fr)
BE406335A (fr)
FR2510542A1 (fr) Procede de production de verre a vitres mince par processus de flottaison de haute qualite
BE452350A (fr)
FR2665653A1 (fr) Procede pour controler l'epaisseur d'une bande metallique couleee en continu sur un cylindre.
FR2851578A1 (fr) Dispositif de purification par degazage d'un metal liquide
FR2485569A1 (fr) Appareil de metallisation par immersion a chaud d'une face d'une bande

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10773151

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010773151

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13501287

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012008512

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012008512

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120411