WO2011043816A1 - Phosphodiesterase 1-targeting tracers and methods - Google Patents

Phosphodiesterase 1-targeting tracers and methods Download PDF

Info

Publication number
WO2011043816A1
WO2011043816A1 PCT/US2010/002707 US2010002707W WO2011043816A1 WO 2011043816 A1 WO2011043816 A1 WO 2011043816A1 US 2010002707 W US2010002707 W US 2010002707W WO 2011043816 A1 WO2011043816 A1 WO 2011043816A1
Authority
WO
WIPO (PCT)
Prior art keywords
pyrazolo
phosphodiesterase
subject
pdel
pyrimidin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/US2010/002707
Other languages
English (en)
French (fr)
Inventor
Peng Li
Lawrence P. Wennogle
Jun Zhao
Hailin Zheng
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Intra Cellular Therapies Inc
Original Assignee
Intra Cellular Therapies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intra Cellular Therapies Inc filed Critical Intra Cellular Therapies Inc
Priority to EP10822355.3A priority Critical patent/EP2485771A4/en
Priority to US13/500,941 priority patent/US8858911B2/en
Priority to JP2012533137A priority patent/JP2013507360A/ja
Publication of WO2011043816A1 publication Critical patent/WO2011043816A1/en
Anticipated expiration legal-status Critical
Priority to US14/492,879 priority patent/US20150139903A1/en
Ceased legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • A61K51/041Heterocyclic compounds
    • A61K51/044Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine, rifamycins
    • A61K51/0459Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine, rifamycins having six-membered rings with two nitrogen atoms as the only ring hetero atoms, e.g. piperazine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/12Antihypertensives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D473/00Heterocyclic compounds containing purine ring systems
    • C07D473/02Heterocyclic compounds containing purine ring systems with oxygen, sulphur, or nitrogen atoms directly attached in positions 2 and 6
    • C07D473/04Heterocyclic compounds containing purine ring systems with oxygen, sulphur, or nitrogen atoms directly attached in positions 2 and 6 two oxygen atoms
    • C07D473/06Heterocyclic compounds containing purine ring systems with oxygen, sulphur, or nitrogen atoms directly attached in positions 2 and 6 two oxygen atoms with radicals containing only hydrogen and carbon atoms, attached in position 1 or 3
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/161Applications in the field of nuclear medicine, e.g. in vivo counting
    • G01T1/164Scintigraphy
    • G01T1/1641Static instruments for imaging the distribution of radioactivity in one or two dimensions using one or several scintillating elements; Radio-isotope cameras
    • G01T1/1642Static instruments for imaging the distribution of radioactivity in one or two dimensions using one or several scintillating elements; Radio-isotope cameras using a scintillation crystal and position sensing photodetector arrays, e.g. ANGER cameras
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/29Measurement performed on radiation beams, e.g. position or section of the beam; Measurement of spatial distribution of radiation
    • G01T1/2914Measurement of spatial distribution of radiation
    • G01T1/2985In depth localisation, e.g. using positron emitters; Tomographic imaging (longitudinal and transverse section imaging; apparatus for radiation diagnosis sequentially in different planes, steroscopic radiation diagnosis)

Definitions

  • the present invention relates to tracers for use in diagnostic techniques
  • compositions of particular interest are radiolabeled compositions which selectively bind to PDE1, which is associated with conditions of interest in various tissues and organs.
  • PDE1C is enriched in arterial smooth muscle cells
  • Positron emitter-labeled compositions targeting PDE1C would enable PET diagnostic imaging of tissue at risk of functional degradation characteristic of PAH and provide a basis for novel therapies for Central Nervous System (CNS) and Cardiovascular (CV) disorders.
  • CNS Central Nervous System
  • CV Cardiovascular
  • Gamma radiation-based imaging techniques employ tracer compounds that are introduced into the body to be imaged.
  • the tracer compounds contain a
  • radionuclide which directly or indirectly releases photons whose locations of origin within the body are then calculated from intercept data gathered by gamma radiation detectors.
  • Two commonly employed gamma radiation-based imaging techniques are Positron Emission Tomography (referred to as PET) and Single Photon Emission Computed Tomography (referred to as SPECT).
  • PET Positron Emission Tomography
  • SPECT Single Photon Emission Computed Tomography
  • the radionuclide indirectly releases a pair of oppositely directed photons.
  • the PET radionuclide emits a positron, which upon contact with an electron in its immediate vicinity triggers anti-matter annihilation of both particles which event emits the pair of photons.
  • the radionuclide is a direct gamma emitter.
  • isotopes useful in gamma radiation-based imaging include Carbon-11 (referred to as n C or Cll), Fluorine-18 (referred to as 18 F or F18), Technetium-99m (referred to as 99m Tc or Tc99m), Indium-Ill (referred to as m In or Inlll) and Iodine-123
  • the tracer compound comprises a ligand which provides an affinity of the tracer to a selected target associated with one or more tissues, organs or conditions of interest.
  • PDEl is a family of three sub-types PDE1-A, B, and C.
  • PDE1B is primarily located in the brain.
  • PDE1A is expressed in brain and sperm.
  • PDE1C is enriched in arterial smooth muscle cells, myocardium and atherosclerotic lesions as well as other tissues.
  • the inhibitors used in the literature are known to be very unselective.
  • PDEl is capable of hydrolysis of both cAMP and cGMP is another positive aspect that would indicate beneficial effects on both smooth muscle cell proliferation and on pulmonary vascular hypertension.
  • PDEl-specific drug candidates have been developed including several series of agents with nanomolar potencies and remarkable specificities.
  • radiolabeled inhibitors of phosphodiesterase! are provided.
  • PDE1 inhibitors are radiolabeled in the last step of synthesis using chemical methods that are appropriate for the radiochemistry laboratory.
  • a further aspect of the invention provides PET ligands of excellent radiochemical product yield, chemical purity, and specific activity.
  • An additional aspect provides PET ligands useful as diagnostic tools to facilitate the identification and development of novel clinical agents for PAH disease.
  • biomarkers such as novel PET ligands, that will report on the target occupancy of the inhibitors and that will allow a proper estimation of drug action.
  • Another aspect of the invention is to provide new agents for diagnosis and therapy of Pulmonary Arterial Hypertension, Central Nervous System (CNS) and
  • CV Cardiovascular
  • Figure 1 is an illustration of the preparation of a PET ligand.
  • Figure 2 is an illustration of the results of an HPLC separation.
  • phophodiesterase 1 (PDEl), and these PDEl inhibitors and methods of preparation thereof are thoroughly described in co-pending United States Patent Applications, including Serial No. 11/916,761 filed on December 6, 2007, published as US-2008- 0188492-A1 on August 7, 2008; Serial No. 12/303,618 filed on December 5, 2008; PCT/US08/13410, filed on December 6, 2008, based upon Provisional Application Serial No. 61/012,045 filed on December 6, 2007; PCT/US08/13411, filed on December 6, 2008, based upon U.S. Provisional Application Serial No. 61/012,040 filed on December 6, 2007; U.S. Provisional Application Serial No. 61/120,438 filed on December 6, 2008; U.S.
  • each of (i), (ii), (iii) and (iv) are substituted at the 1- or 2- position with C2-9 alkyl, C3-9 cycloalkyl, heteroarylalkyl, or substituted arylalkyl.
  • PDEl inhibitors can be modified by replacing an atom in the structure with a radionuclide while maintaining affinity and selectivity of the molecule for PDEl.
  • the agents are evaluated for inhibition of PDEl in high-throughput PDEl enzyme assays and further evaluated against 11 families of PDE enzymes to identify low nanomolar potency versus PDEl and greater than 10-fold selectivity to other PDE enzyme families.
  • Another aspect is methods of producing particular selective and potent PDEl inhibitors, including radiolabeling, for example in the last step of synthesis, using chemical methods that are appropriate for the PET radiochemistry laboratory.
  • radionuclides are Carbon-11 (referred to as n C or Cll),
  • the agents are evaluated for inhibition of PDEl in high-throughput PDEl enzyme assays and further evaluated against the 11 families of PDE enzymes to identify low nanomolar potency versus PDEl and greater than 10-fold selectivity to other PDE enzyme families.
  • Another aspect is methods of producing multiple series of selective and potent PDEl inhibitors, including radiolabeling in the last step of synthesis - using chemical methods that are appropriate for the PET radiochemistry laboratory.
  • a rapid semi-preparative HPLC separation of precursor and product to support the PET radiolabeling is also provided. Such a rapid separation is ideal for a short-lived radioligand such as 11C.
  • the method implied under this application involves dosing suitable animal species such as rat and baboon and measurement of whole body distribution.
  • the method will entail performing preliminary occupancy studies with unlabeled PDEl inhibitors.
  • animal or human subjects are dosed with the agent and distribution evaluated over time in appropriate organs. Signal to noise ratio is established and the distribution corresponds to the known distribution of PDEl in the pulmonary vasculature.
  • Radiotracers meeting the radiochemistry criteria are evaluated for displacement in the lung by cold specific and potent PDE1 inhibitors.
  • the candidate radiotracers are rank ordered with respect to brain uptake, kinetics, displacement by specific cold inhibitors and a lack of displacement by a non-specific cold inhibitor.
  • Such a ligand will be beneficial in furthering development of novel therapeutic agents and by offering novel PET ligands.
  • Another aspect is a method to evaluate the effect of pharmacological doses of a related PDE1 inhibitor for effect on sheep and rat models of pulmonary arterial hypertension (PAH).
  • triphenylphosphine (42 mg, 0.16 mmol) is added, followed by 7-isobutyl-5-methyl- 3-(phenylamino)-2H-pyrazolo[3,4-d]pyrimidine-4,6(5H,7H)-dione (50 mg, 0.16 mmol).
  • the mixture is cooled to -78 °C, and then DIAD (95%, 50 ⁇ ,) is added slowly. After the reaction is complete, the mixture is purified on a basic alumina column to give 76 mg of product (yield: 81%).
  • MS (ESI) m/z 587.3 [M+H] + .
  • LiAlH 4 is suspended in 2 mL of anhydrous THF at 0 °C, and then tert-butyl 2-(4- (methoxycarbonyl)phenyl)pyrrolidine-l-carboxylate (238 mg, 0.78 mmol) in anhydrous THF (5 mL) is added dropwise over 5 min. The mixture is stirred at 0°C for lh, and then carefully quenched with 1 mL of water. The mixture is diluted with THF and filtered through a layer of celite. The collected filtrate is evaporated to dryness to give 232 mg of product, which is used for the next reaction without further purification.
  • Example 5 Preparation of n C-labeled PET ligand, 7-Isobutyl-5-methyl-2-(4-(l- [ n C]methylpyrrolidin-2-yl)benzyl)-3-(phenylamino)-2H-pyrazolo[3,4- d]pyrimidine-4,6(5H,7H)-dione.
  • the procedure of Example 4 is repeated, except that in place of the final step (el), the following step (e2) is followed.
  • Example 4 The procedure of Example 4 is repeated, except that in place of the final step (el), the following step (e3) is followed. (e3) 7-Isobutyl-5-methyl-2-(4-(l-methylpyrrolidin-2-yl)benzyl]-3-(phenylamino)- 2H-pyrazolo[3,4-d]pyrimidine-4,6(5H,7H)-dione.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Epidemiology (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
PCT/US2010/002707 2009-10-08 2010-10-07 Phosphodiesterase 1-targeting tracers and methods Ceased WO2011043816A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP10822355.3A EP2485771A4 (en) 2009-10-08 2010-10-07 TRACER AND METHODS TAGGED ON PHOSPHODIESTERASE 1
US13/500,941 US8858911B2 (en) 2009-10-08 2010-10-07 Phosphodiesterase 1-targeting tracers and methods
JP2012533137A JP2013507360A (ja) 2009-10-08 2010-10-07 ホスホジエステラーゼ1−標的トレーサーおよび方法
US14/492,879 US20150139903A1 (en) 2009-10-08 2014-09-22 Phosphodiesterase 1-targeting tracers and methods

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US24985509P 2009-10-08 2009-10-08
US61/249,855 2009-10-08

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/500,941 A-371-Of-International US8858911B2 (en) 2009-10-08 2010-10-07 Phosphodiesterase 1-targeting tracers and methods
US14/492,879 Continuation US20150139903A1 (en) 2009-10-08 2014-09-22 Phosphodiesterase 1-targeting tracers and methods

Publications (1)

Publication Number Publication Date
WO2011043816A1 true WO2011043816A1 (en) 2011-04-14

Family

ID=43857046

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2010/002707 Ceased WO2011043816A1 (en) 2009-10-08 2010-10-07 Phosphodiesterase 1-targeting tracers and methods

Country Status (4)

Country Link
US (2) US8858911B2 (enExample)
EP (1) EP2485771A4 (enExample)
JP (2) JP2013507360A (enExample)
WO (1) WO2011043816A1 (enExample)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011153129A1 (en) 2010-05-31 2011-12-08 Intra-Cellular Therapies, Inc. Organic compounds
WO2011153138A1 (en) 2010-05-31 2011-12-08 Intra-Cellular Therapies, Inc. Organic compounds
US8273751B2 (en) 2007-12-06 2012-09-25 Takeda Pharmaceutical Company Limited Organic compounds
US8536159B2 (en) 2008-12-06 2013-09-17 Intra-Cellular Therapies, Inc. Organic compounds
US8633180B2 (en) 2008-12-06 2014-01-21 Intra-Cellular Therapies, Inc. Organic compounds
US8664207B2 (en) 2008-12-06 2014-03-04 Intra-Cellular Therapies, Inc. Organic compounds
WO2014151409A1 (en) 2013-03-15 2014-09-25 Intra-Cellular Therapies, Inc. Organic compounds
US9006258B2 (en) 2006-12-05 2015-04-14 Intra-Cellular Therapies, Inc. Method of treating female sexual dysfunction with a PDE1 inhibitor
WO2015106032A1 (en) 2014-01-08 2015-07-16 Intra-Cellular Therapies, Inc. Products and pharmaceutical compositions
US9469647B2 (en) 2012-06-21 2016-10-18 Intra-Cellular Therapies, Inc. Salt crystals
US9468637B2 (en) 2009-05-13 2016-10-18 Intra-Cellular Therapies, Inc. Organic compounds
US9545406B2 (en) 2013-03-15 2017-01-17 Intra-Cellular Therapies, Inc. Method of treating a CNS injury with a PDE1 inhibitor
US9624230B2 (en) 2005-06-06 2017-04-18 Intra-Cellular Therapies, Inc. Organic compounds
US9630971B2 (en) 2013-06-21 2017-04-25 Intra-Cellular Therapies, Inc. Free base crystals
US9801882B2 (en) 2013-02-17 2017-10-31 Intra-Cellular Therapies, Inc. Phosphodiesterase-1 inhibitors and their use in treatment of cardiovascular diseases
US9884872B2 (en) 2014-06-20 2018-02-06 Intra-Cellular Therapies, Inc. Organic compounds
US10105349B2 (en) 2014-12-06 2018-10-23 Intra-Cellular Therapies, Inc. Organic compounds
US10131671B2 (en) 2014-08-07 2018-11-20 Intra-Cellular Therapies, Inc. Organic compounds
US10150774B2 (en) 2014-09-17 2018-12-11 Intra-Cellular Therapies, Inc. Compounds and methods
US10285992B2 (en) 2014-08-07 2019-05-14 Intra-Cellular Therapies, Inc. Combinations of PDE1 inhibitors and NEP inhibitors and associated methods
US10300064B2 (en) 2014-12-06 2019-05-28 Intra-Cellular Therapies, Inc. Organic compounds
US10561656B2 (en) 2011-06-10 2020-02-18 Intra-Cellular Therapies, Inc. Organic compounds
US10682354B2 (en) 2016-03-28 2020-06-16 Intra-Cellular Therapies, Inc. Compositions and methods
WO2020210614A1 (en) 2019-04-12 2020-10-15 Intra-Cellular Therapies, Inc. Organic compounds
US11291666B2 (en) 2016-09-12 2022-04-05 Intra-Cellular Therapies, Inc. Uses
US11759465B2 (en) 2018-01-31 2023-09-19 Intra-Cellular Therapies, Inc. Uses
US12410175B2 (en) 2019-09-03 2025-09-09 Intra-Cellular Therapies, Inc. Compounds
US12435093B2 (en) 2020-05-06 2025-10-07 Intra-Cellular Therapies, Inc. Free base crystals

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007143705A2 (en) 2006-06-06 2007-12-13 Intra-Cellular Therapies, Inc. Organic compounds
CN101969774A (zh) * 2007-12-06 2011-02-09 细胞内治疗公司 有机化合物
EA201170772A1 (ru) 2008-12-06 2012-03-30 Интра-Селлулар Терапиз, Инк. Органические соединения
US8697710B2 (en) 2008-12-06 2014-04-15 Intra-Cellular Therapies, Inc. Optionally substituted 3-amino-4-(thioxo or imino)-4,5-dihydro-2H-pyrazolo [3,4-d]pyrimidin-6(7H)-ones
CA2740385A1 (en) 2008-12-06 2010-06-10 Intra-Cellular Therapies, Inc. Organic compounds
EP2400970A4 (en) 2009-02-25 2012-07-18 Intra Cellular Therapies Inc PDE-1-HEMMER FOR EYE DRESSING
WO2011153136A1 (en) 2010-05-31 2011-12-08 Intra-Cellular Therapies, Inc. Organic compounds
WO2011153135A1 (en) 2010-05-31 2011-12-08 Intra-Cellular Therapies, Inc. Organic compounds
US9546175B2 (en) 2014-08-07 2017-01-17 Intra-Cellular Therapies, Inc. Organic compounds
US12364695B2 (en) 2020-06-02 2025-07-22 Intra-Cellular Therapies, Inc. Methods of treating inflammatory disease

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080188492A1 (en) * 2005-06-06 2008-08-07 Intra-Cellular Therapies, Inc Organic Compounds
US20100173878A1 (en) * 2006-06-06 2010-07-08 Intra-Cellular Therapies, Inc. Organic compounds

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6334997B1 (en) * 1994-03-25 2002-01-01 Isotechnika, Inc. Method of using deuterated calcium channel blockers
US9198924B2 (en) * 2006-11-13 2015-12-01 Intra-Cellular Therapies, Inc. Organic compounds
US9006258B2 (en) 2006-12-05 2015-04-14 Intra-Cellular Therapies, Inc. Method of treating female sexual dysfunction with a PDE1 inhibitor
MY147330A (en) * 2007-05-11 2012-11-30 Pfizer Amino-heterocyclic compounds
ES2436780T3 (es) 2007-12-06 2014-01-07 Takeda Pharmaceutical Company Limited Compuestos orgánicos
CN101969774A (zh) 2007-12-06 2011-02-09 细胞内治疗公司 有机化合物
US20120070443A1 (en) * 2008-12-02 2012-03-22 University Of Utah Research Foundation Pde1 as a target therapeutic in heart disease
JP5989993B2 (ja) 2008-12-06 2016-09-07 イントラ−セルラー・セラピーズ・インコーポレイテッドIntra−Cellular Therapies, Inc. 有機化合物
EA201170772A1 (ru) 2008-12-06 2012-03-30 Интра-Селлулар Терапиз, Инк. Органические соединения
CN102231953A (zh) 2008-12-06 2011-11-02 细胞内治疗公司 有机化合物
KR20110103949A (ko) 2008-12-06 2011-09-21 인트라-셀룰라 써래피스, 인코퍼레이티드. 유기 화합물
US8697710B2 (en) 2008-12-06 2014-04-15 Intra-Cellular Therapies, Inc. Optionally substituted 3-amino-4-(thioxo or imino)-4,5-dihydro-2H-pyrazolo [3,4-d]pyrimidin-6(7H)-ones
CA2740385A1 (en) 2008-12-06 2010-06-10 Intra-Cellular Therapies, Inc. Organic compounds
EP2400970A4 (en) 2009-02-25 2012-07-18 Intra Cellular Therapies Inc PDE-1-HEMMER FOR EYE DRESSING
JP2012526810A (ja) 2009-05-13 2012-11-01 イントラ−セルラー・セラピーズ・インコーポレイテッド 有機化合物
KR101173440B1 (ko) * 2010-11-05 2012-08-16 (주)토마토시스템 서브그리드의 통합 트랜잭션 처리방법 및 이를 기록한 기록매체

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080188492A1 (en) * 2005-06-06 2008-08-07 Intra-Cellular Therapies, Inc Organic Compounds
US20100173878A1 (en) * 2006-06-06 2010-07-08 Intra-Cellular Therapies, Inc. Organic compounds

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
GULYAS ET AL.: "PET studies on the brain uptake and regional distribution of [11C]vinpocetine in human subjects", ACTA NEUROLOGICA SCANDINAVICA, vol. 106, no. ISS 6, 2002, pages 325 - 332, XP008154683 *
LOURENCO ET AL.: "Characterization of R-[11C]rolipram for PET imaging of phosphodiesterase-4: in vivo binding, metabolism, and dosimetry studies in rats", NUCLEAR MEDICINE AND BIOLOGY, vol. 28, no. ISS 4, 2001, pages 347 - 358, XP008154689 *
See also references of EP2485771A4 *
VAS ET AL.: "Clinical and non-clinical investigations using positron emission tomography, near infrared spectroscopy and transcranial Doppler methods on the neuroprotective drug vinpocetine: A summary of evidences", JOURNAL OF NEUROLOGICAL SCIENCE, vol. 203, 2002, pages 259 - 262, XP008154700 *

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9624230B2 (en) 2005-06-06 2017-04-18 Intra-Cellular Therapies, Inc. Organic compounds
US9006258B2 (en) 2006-12-05 2015-04-14 Intra-Cellular Therapies, Inc. Method of treating female sexual dysfunction with a PDE1 inhibitor
US8829008B2 (en) 2007-12-06 2014-09-09 Takeda Pharmaceutical Company Limited Organic compounds
US8273751B2 (en) 2007-12-06 2012-09-25 Takeda Pharmaceutical Company Limited Organic compounds
US9403836B2 (en) 2007-12-06 2016-08-02 Intra-Cellular Therapies, Inc. Organic compounds
US8633180B2 (en) 2008-12-06 2014-01-21 Intra-Cellular Therapies, Inc. Organic compounds
US8536159B2 (en) 2008-12-06 2013-09-17 Intra-Cellular Therapies, Inc. Organic compounds
US8664207B2 (en) 2008-12-06 2014-03-04 Intra-Cellular Therapies, Inc. Organic compounds
US10238660B2 (en) 2009-05-13 2019-03-26 Intra-Cellular Therapies, Inc. Organic compounds
US9468637B2 (en) 2009-05-13 2016-10-18 Intra-Cellular Therapies, Inc. Organic compounds
US10010553B2 (en) 2009-05-13 2018-07-03 Intra-Cellular Therapies, Inc. Organic compounds
WO2011153129A1 (en) 2010-05-31 2011-12-08 Intra-Cellular Therapies, Inc. Organic compounds
US9763948B2 (en) 2010-05-31 2017-09-19 Intra-Cellular Therapies, Inc. PDE1 inhibitory compounds and methods
WO2011153138A1 (en) 2010-05-31 2011-12-08 Intra-Cellular Therapies, Inc. Organic compounds
US9556185B2 (en) 2010-05-31 2017-01-31 Intra-Cellular Therapies, Inc. Organic compounds
US10561656B2 (en) 2011-06-10 2020-02-18 Intra-Cellular Therapies, Inc. Organic compounds
US9469647B2 (en) 2012-06-21 2016-10-18 Intra-Cellular Therapies, Inc. Salt crystals
US9801882B2 (en) 2013-02-17 2017-10-31 Intra-Cellular Therapies, Inc. Phosphodiesterase-1 inhibitors and their use in treatment of cardiovascular diseases
US10398698B2 (en) 2013-02-17 2019-09-03 Intra-Cellular Therapies, Inc. Uses
WO2014151409A1 (en) 2013-03-15 2014-09-25 Intra-Cellular Therapies, Inc. Organic compounds
US9598426B2 (en) 2013-03-15 2017-03-21 Intra-Cellular Therapies, Inc. Organic compounds
US9556186B2 (en) 2013-03-15 2017-01-31 Intra-Cellular Therapies, Inc. Organic compounds
US10682355B2 (en) 2013-03-15 2020-06-16 Intra-Cellular Therapies, Inc. Uses
US9545406B2 (en) 2013-03-15 2017-01-17 Intra-Cellular Therapies, Inc. Method of treating a CNS injury with a PDE1 inhibitor
US11504372B2 (en) 2013-03-15 2022-11-22 Intra-Cellular Therapies, Inc. Uses
US9073936B2 (en) 2013-03-15 2015-07-07 Intra-Cellular Therapies, Inc. Organic compounds
US10183023B2 (en) 2013-03-15 2019-01-22 Intra-Cellular Therapies, Inc. Uses
US9630971B2 (en) 2013-06-21 2017-04-25 Intra-Cellular Therapies, Inc. Free base crystals
US9849132B2 (en) 2014-01-08 2017-12-26 Intra-Cellular Therapies, Inc. Products and pharmaceutical compositions
WO2015106032A1 (en) 2014-01-08 2015-07-16 Intra-Cellular Therapies, Inc. Products and pharmaceutical compositions
US9884872B2 (en) 2014-06-20 2018-02-06 Intra-Cellular Therapies, Inc. Organic compounds
US10285992B2 (en) 2014-08-07 2019-05-14 Intra-Cellular Therapies, Inc. Combinations of PDE1 inhibitors and NEP inhibitors and associated methods
US10131671B2 (en) 2014-08-07 2018-11-20 Intra-Cellular Therapies, Inc. Organic compounds
US11166956B2 (en) 2014-08-07 2021-11-09 Intra-Cellular Therapies, Inc. Combinations of PDE1 inhibitors and NEP inhibitors
US10150774B2 (en) 2014-09-17 2018-12-11 Intra-Cellular Therapies, Inc. Compounds and methods
US10300064B2 (en) 2014-12-06 2019-05-28 Intra-Cellular Therapies, Inc. Organic compounds
US10543194B2 (en) 2014-12-06 2020-01-28 Intra-Cellular Therapies, Inc. Organic compounds
US10105349B2 (en) 2014-12-06 2018-10-23 Intra-Cellular Therapies, Inc. Organic compounds
US10682354B2 (en) 2016-03-28 2020-06-16 Intra-Cellular Therapies, Inc. Compositions and methods
US11291666B2 (en) 2016-09-12 2022-04-05 Intra-Cellular Therapies, Inc. Uses
US11759465B2 (en) 2018-01-31 2023-09-19 Intra-Cellular Therapies, Inc. Uses
US11839614B2 (en) 2018-01-31 2023-12-12 Intra-Cellular Therapies, Inc. Methods for treating or mitigating cardiotoxicity characterized by inhibition of adenosine A2 signaling and/or adenosine A2 receptor expression
WO2020210614A1 (en) 2019-04-12 2020-10-15 Intra-Cellular Therapies, Inc. Organic compounds
US12410175B2 (en) 2019-09-03 2025-09-09 Intra-Cellular Therapies, Inc. Compounds
US12435093B2 (en) 2020-05-06 2025-10-07 Intra-Cellular Therapies, Inc. Free base crystals

Also Published As

Publication number Publication date
US20120201754A1 (en) 2012-08-09
US20150139903A1 (en) 2015-05-21
JP6224063B2 (ja) 2017-11-01
EP2485771A1 (en) 2012-08-15
US8858911B2 (en) 2014-10-14
JP2016056184A (ja) 2016-04-21
EP2485771A4 (en) 2014-11-12
JP2013507360A (ja) 2013-03-04

Similar Documents

Publication Publication Date Title
US8858911B2 (en) Phosphodiesterase 1-targeting tracers and methods
JP2016056184A5 (enExample)
JP7752201B2 (ja) 放射性標識カンナビノイド受容体2リガンド
TW200804363A (en) Novel radioligands
BRPI0806621A2 (pt) composto, uso de um composto, composição farmacêutica, e, método in vivo para medir depósitos amilóides em um indivìduo
BRPI0808503B1 (pt) Composto, uso de um composto, e, composição farmacêutica
JP5715823B2 (ja) マークされたプリン誘導体の製造方法、該プリン誘導体、およびその使用
Prabhakaran et al. Synthesis, in vitro and in vivo evaluation of [11C] MMTP: a potential PET ligand for mGluR1 receptors
US10865195B2 (en) Pet imaging agents
US20100098631A1 (en) Novel-2-Heteroaryl Substituted Indoles 695
Li et al. Deuterated [18F] fluoroethyl tropane analogs as dopamine transporter probes: Synthesis and biological evaluation
CA2973864A1 (en) Radioactive halogen-labeled pyrido[1,2-a]benzimidazole derivative compound
HK40089266A (zh) 放射性标记的大麻素受体2配体
JP2014218454A (ja) スチリルピリジン誘導体化合物
WO2011124713A1 (en) Labelled huprine derivatives and their use in medical imaging

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10822355

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010822355

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012533137

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13500941

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE