WO2011043536A1 - 선형진동기 - Google Patents

선형진동기 Download PDF

Info

Publication number
WO2011043536A1
WO2011043536A1 PCT/KR2010/004454 KR2010004454W WO2011043536A1 WO 2011043536 A1 WO2011043536 A1 WO 2011043536A1 KR 2010004454 W KR2010004454 W KR 2010004454W WO 2011043536 A1 WO2011043536 A1 WO 2011043536A1
Authority
WO
WIPO (PCT)
Prior art keywords
case
mass
absorbing member
vibration absorbing
vibration
Prior art date
Application number
PCT/KR2010/004454
Other languages
English (en)
French (fr)
Inventor
이인호
전기영
정세명
Original Assignee
주식회사래모트론
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020090094413A external-priority patent/KR101095568B1/ko
Priority claimed from KR1020090095879A external-priority patent/KR20110038550A/ko
Priority claimed from KR1020090104721A external-priority patent/KR20110047917A/ko
Priority claimed from KR20100044492A external-priority patent/KR101217093B1/ko
Application filed by 주식회사래모트론 filed Critical 주식회사래모트론
Publication of WO2011043536A1 publication Critical patent/WO2011043536A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/04Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with electromagnetism
    • B06B1/045Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with electromagnetism using vibrating magnet, armature or coil system
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • H02K33/16Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with polarised armatures moving in alternate directions by reversal or energisation of a single coil system
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/24Casings; Enclosures; Supports specially adapted for suppression or reduction of noise or vibrations

Definitions

  • the present invention relates to a linear vibrator, and more particularly, to a linear vibrator provided between a mass body and a case to prevent contact between the mass body and the case and to reduce vibrations in a direction different from the direction of movement of the mass body.
  • one of the essential functions of a communication device is an incoming call function.
  • the most common types of incoming calls are vocalizations such as melodies and bells, and vibrations that cause the device to shake.
  • the vibration function is mainly used when the melody or bell is transmitted to the outside through the speaker to avoid any damage to others.
  • a small vibrator is driven to transmit the driving force to the case of the device. It is common for the device to vibrate.
  • a vibrator mounted on a mobile phone or a game machine is required to have a long life, a small size, and excellent vibration performance.
  • FIG. 1 is a cross-sectional view showing a conventional rotary vibrator
  • Figure 2 is a view showing the FPCB of Figure 1
  • Figure 3 is a view showing the rotor of FIG.
  • the method of supplying external power to the coil 25 provided in the moving body 20 in the conventional rotary vibrator 10 is as follows.
  • the lead wire 17 is electrically connected to the FPCB (Flexible Printed Circuit Board) 15 by soldering or the like, and the circuit pattern as shown in FIG. 2 is formed on the FPCB 15 so as to be electrically connected. do.
  • FPCB Flexible Printed Circuit Board
  • the FPCB 15 has a lead wire connecting terminal 15a electrically connected to the lead wire 17 at one end thereof, and a power connector connecting terminal electrically connected to the brush type power connector 19 at the other end thereof. 15b is formed.
  • a coil 25 is located on the moving body 20, and the coil 25 is electrically connected to the circuit board 15.
  • a plurality of commutator patterns 16 are formed on the circuit board 15 such that the power connection 12 may be in electrical sliding contact.
  • the circuit board 15 disposed on the moving body 20 through the FPCB 15 and the brush-type power connection unit 19. Is passed on. Then, the power delivered to the circuit board 13 of the moving body 20 is delivered to the coil 25 electrically connected to the circuit board 15.
  • the moving body 20 and the circuit board 15 are rotated by the electromagnetic force, and vibration is generated.
  • the brush-type power connection unit 19 and the circuit board 15 are electrically connected while performing frictional motion.
  • the circuit board 15 is arranged by dividing the commutator 16 into several pieces so that the rotor 14 properly supplies power to the coil 25 while the rotor 14 properly rectifies.
  • the moving body 20 is supported and rotated about the shaft 21 to reduce noise with high precision of the bearing 23 and the shaft 21, and the bearing 23 between the shaft 21 and the bearing 23.
  • the oil from the) improves lubrication and reduces noise.
  • this structure can reduce the noise when using the shaft 21, but it is very difficult to reduce the noise in the structure without the shaft 21.
  • the reason is that the moving object is in an unstable state because there is no support shaft such as the shaft 21, and a large noise is generated while hitting the upper, lower, left and right surfaces of the case 11 while moving.
  • the present invention has been made to solve the above-mentioned problems of the prior art, provided with a vibration absorbing member between the mass body and the case to reduce the vibration in the direction different from the movement direction of the mass body by the elastic force and to prevent contact between the mass body and the case
  • the purpose is to provide a linear vibrator that can reduce noise.
  • the vibration absorbing member of the present invention comprises a friction member and a vibration guide member is a linear vibrator to reduce the noise by reducing the vibration in the direction different from the movement direction of the mass body by the elastic force and to prevent contact between the mass body and the case
  • the purpose is to provide.
  • the linear vibrator according to the present invention includes a permanent magnet, a coil part, and a circuit board in the case, and is provided between the coil part and the permanent magnet when power is input from the outside through the circuit board.
  • the vibration absorbing member may be formed so that both ends thereof are flat and have at least one convex portion between both ends thereof, and both ends thereof contact the case and the center portion thereof may not be in contact with the case.
  • the vibration absorbing member may be attached to upper and lower surfaces of the case corresponding to the mass body, respectively.
  • the linear vibrator according to the present invention is provided with a permanent magnet and a circuit board, respectively, a pair of masses connected to the case by springs, a coil unit provided between the masses, and the mass body and the mass body provided between the mass body. And a vibration absorbing member for preventing contact between the case and reducing vibration in a direction different from the movement direction of the mass by an elastic force.
  • the vibration absorbing member may be formed to have a flat plate shape and may be attached to upper and lower surfaces of the case corresponding to the mass body.
  • the vibration absorbing member may have a flat surface attached to the case, and a part of the opposite surface may be convex.
  • At least one protrusion may be further formed on the surface of the mass.
  • a groove corresponding to the protrusion and larger in size than the protrusion may be further formed on the convex surface of the vibration absorbing member.
  • the vibration absorbing member is formed such that the friction member attached to the upper and lower surfaces of the case corresponding to the mass body and the spring and both ends thereof are flat and have at least one convex portion between the both ends.
  • the corresponding center portion may include a vibration guide member in which both ends corresponding to the spring contact the friction member without contacting the friction member.
  • the vibration absorbing member is formed to have a friction member and a ball shape attached to the inside of the case corresponding to the mass body and the spring, the vibration is provided so that a portion protrudes in at least one groove formed to have a predetermined size on the mass body It may include a guide member.
  • It may further include an elastic member provided in the groove formed in the mass to be positioned below the vibration guide member to provide an elastic force to the vibration guide member.
  • the vibration absorbing member is formed so that both ends are flat and have convex portions between the both ends, and the convex portions contact the case corresponding to the upper portion of the coil portion, and both ends correspond to the mass body and the spring. It is provided on the vibration guide member and the upper surface of the mass body that does not contact the case to prevent contact between the mass body and the vibration guide member, the case corresponding to the mass body is provided inside the lower surface of the mass body and the case It may further include a friction member for preventing contact of the.
  • the surface of the vibration absorbing member may be formed with a plurality of projections or grooves for reducing the friction surface with the mass.
  • Lubricant or grease may be applied to the vibration absorbing member.
  • the vibration absorbing member may have a space therein and may be sealed with air included in the space.
  • It may further include a reinforcing member provided between the case and the vibration absorbing member.
  • the first damping portion to mitigate the impact of the coil and the left and right sides of the case are attached to the mass while the vibration vibrates the case If the second damping unit to mitigate the impact of the mass; It may further comprise one or more of.
  • a permanent magnet, a coil part, and a circuit board are provided inside the case, and when power is input from the outside through the circuit board, the mass vibrator is vibrated by an electromagnetic force acting between the coil part and the permanent magnet.
  • the mass body and the case it is provided between the mass body and the case to reduce the vibration in the direction different from the movement direction of the mass body by the elastic force and to prevent the contact of the mass body and the case to reduce the noise.
  • the vibration absorbing member is configured to include a friction member and a vibration guide member to reduce the vibration in the direction different from the movement direction of the mass by the elastic force and to prevent the contact of the mass and the case to reduce the noise.
  • FIG. 1 is a cross-sectional view showing a conventional rotary vibrator.
  • FIG. 2 shows the FPCB of FIG. 1.
  • FIG. 3 shows the rotor of FIG. 1.
  • FIG 4 is an exploded perspective view of the linear vibrator according to the first embodiment of the present invention.
  • FIG 5 is a side view of a linear vibrator according to a first embodiment of the present invention.
  • 6 to 8 (a) and (b) are a plan view and a cross-sectional view showing various examples of the vibration absorbing member according to the first embodiment of the invention.
  • FIG. 12 is a front view showing a modified example of the linear vibrator according to the second embodiment of the present invention.
  • FIG. 13 is an exploded perspective view of a linear vibrator according to a third embodiment of the present invention.
  • FIG. 14-16 are top, front and side views of FIG. 13;
  • 17 and 18 are views showing a mold for producing a vibration absorbing member and a vibration absorbing member manufactured through the mold according to the third embodiment of the present invention.
  • Fig. 19 is a graph of the relationship between the vibration distance and the force of the linear vibrator according to the third embodiment of the present invention.
  • FIG. 20 is a perspective view showing a vibration absorbing member according to a third embodiment of the present invention.
  • 21 is a side view showing another example of a linear vibrator according to a third embodiment of the present invention.
  • FIG. 1 A and (b) are front and side views of a linear vibrator according to a fourth embodiment of the present invention.
  • 23 and 24 are a plan view and a front view showing another example of the vibration absorbing member of the linear vibrator according to the fourth embodiment of the present invention.
  • 25 is a front view showing another example of the vibration absorbing member of the linear vibrator according to the fourth embodiment of the present invention.
  • FIG 4 is an exploded perspective view of the linear vibrator according to the first embodiment of the present invention
  • Figure 5 is a side view of the linear vibrator according to the first embodiment of the present invention
  • Figures 6 to 8 (a) and (b) Is a plan view and a cross-sectional view showing various examples of the vibration absorbing member according to the first embodiment of the present invention.
  • the linear vibrator 100 is a mass body provided in the case 110 is provided with a permanent magnet 113, the coil unit 125, the circuit board 115 ( 121a, 121b) and the vibration absorbing member 130 is configured.
  • case 110 has the lower case 111a having the 'c' shape and the upper case 111b alternately coupled with each other, and have an empty space therein.
  • Case 110 according to an embodiment of the present invention preferably has a hexahedral shape having an upper, a lower surface, a front, a rear side, a left, a right side.
  • Permanent magnets 113 are attached to the centers of the upper and lower surfaces facing the case 110, respectively. At this time, the size of the permanent magnet 113 is preferably smaller than the case (110).
  • the circuit boards 115 are attached to the front and rear sides of the case 110, respectively. The circuit board 115 is connected to the circuit pattern 117 formed on the protrusion 116 protruding from one side of the lower case 111a, and the circuit pattern 117 is connected to the lead wire 119 connected from the outside.
  • a first damping part 150 is attached to the circuit board 115 between the pair of springs 123a and 123b connected to the front and rear surfaces of the case 110, so that the coil part 125 is connected to the springs 123a, 123b.
  • the second damping unit 160 may be attached to the left and right surfaces of the case 110, respectively, to mitigate an impact generated when the mass bodies 121a and 121b come into contact with the case 110 during left and right horizontal vibrations.
  • a pair of mass bodies 121a and 121b is provided and connected to the circuit board 115 by springs 123a and 123b provided at both ends.
  • the coil part 125 is provided between a pair of mass bodies 121a and 121b.
  • the coil unit 125 may have a coil wound inside the member having a flat plate shape and may be electrically connected to the mass bodies 121a and 121b by the coil connection unit 127.
  • the mass bodies 121a and 121b vibrate by an electromagnetic force generated between the coil unit 125 and the permanent magnet 113 when power is input from the outside through the lead wire 119. At this time, the mass bodies 121a and 121b may vibrate in up, down, left, and right directions.
  • the materials of the mass bodies 121a and 121b and the springs 123a and 123b are all induced with an electromagnetic force through a conductor through electricity.
  • the vibration absorbing member 130 is provided between the upper and lower surfaces of the mass bodies 121a and 121b facing the case 110. At this time, the vibration absorbing member 130 may be formed to have a flat plate shape. The vibration absorbing member 130 is attached to the case 110 through adhesive tape, bonding or thermocompression bonding.
  • the vibration absorbing member 130 prevents contact between the mass body 121a and the case 110 to reduce noise generated by the mass body 121a hitting the case 110.
  • the mass 121a reciprocates by the spring 123a, the mass 121a serves to reduce vibration in a direction different from the movement direction, in particular, up and down vibration.
  • the mass bodies 121a and 121b In order for the mass bodies 121a and 121b to move freely in the case 110, there must be some distance between the mass bodies 121a and 121b and the case 110. However, due to the gap between the mass bodies 121a and 121b and the case 110, the mass bodies 121a and 121b also vibrate in a direction perpendicular to the central axis of the springs 123a and 123b, ie, in an up and down direction, during the reciprocating motion. Accordingly, the mass bodies 121a and 121b collide with the case 110 to generate noise.
  • the vibration absorbing member 130 prevents the collision between the mass bodies 121a and 121b and the case 110 and reduces the vibration of the mass bodies 121a and 121b in the vertical direction of the movement direction.
  • the vibration absorbing member 130 does not affect the horizontal vibration of the mass bodies 121a and 121b while the vertical vibration of the mass bodies 121a and 121b is such that the strength or amplitude of the vibration is minimized so that the case 110 and the mass body are minimized. Direct collision of the 121a and 121b can be prevented.
  • a through hole 135 may be formed on the surface of the vibration absorbing member 130 to reduce friction with the mass body 121a.
  • Lubricant or grease may be applied to the surface of the vibration absorbing member 130 to reduce friction, and the lubricant applied to the vibration absorbing member 130 in the through-hole 135 formed in the vibration absorbing member 130 or Grease can be filled. Therefore, in addition to the lubricating oil applied to the surface of the vibration absorbing member 130 when the mass body 121a vibrates, the lubricating oil stored in the through hole 135 may be further supplied, thereby reducing wear and noise caused by friction.
  • a groove 136 may be formed on the surface of the vibration absorbing member 130.
  • the groove 136 may store lubricating oil or oil like the through hole 135 shown in FIG. 3.
  • the vibration absorbing member 130 By providing the vibration absorbing member 130 between the case 110 and the mass body 121a, the noise generated by the collision between the case 110 and the mass body 121a can be prevented.
  • FIGS. 10 and 11 (a) to (c) are the second embodiment of the present invention.
  • 12 is a plan view, a side view and a front view of a vibration absorbing member according to the present invention
  • FIG. 12 is a front view showing a modified example of the linear vibrator according to the second embodiment of the present invention.
  • the configuration of the spring 223a is the same as that of the first embodiment.
  • the surface of the vibration absorbing member 230 attached to the case 210 may be flat and the surface facing the mass body 221a and the spring 123a may be convex.
  • the vibration absorbing member 230 may have a space portion in which air is contained therein, and the vibration absorbing member 230 may be sealed in a state in which air is included in the space, and may have elasticity as well as the vibration absorbing member 230 itself.
  • the vibration absorbing member 230 may be mainly made of polyester, polyamide, polypropylene, polystyrene, or the like, and may be coated on a surface to reduce friction and increase lifespan.
  • the second damping unit 260 may also have a convex surface opposite to the surface attached to the case 210 to have a shape similar to that of the vibration absorbing member 230.
  • the convex surface of the vibration absorbing member 230 may form a groove 236 to reduce the friction area, and store the lubricant or grease to reduce the frictional force.
  • the groove 236 is formed in the vibration absorbing member 230 in the longitudinal direction, and the mass 221a also has a shape corresponding to the groove 236 formed in the vibration absorbing member 230. Protrusions 228 may be formed. At this time, even if the mass body 221a vibrates, the groove 236 is preferably formed wider than the protrusion 228 so that the protrusion 228 does not escape from the groove 236, and the mass body 221a may vibrate below a certain intensity. In this case, the mass body 221a and the vibration absorbing member 230 are preferably spaced apart from each other at regular intervals.
  • FIG. 13 is an exploded perspective view of a linear vibrator according to a third embodiment of the present invention
  • FIGS. 14 to 16 are plan, front and side views of FIG. 13.
  • the linear vibrator 300 includes a case 310 provided with a permanent magnet 313, a coil part 325, and a circuit board 315, and mass bodies 321a and 321b provided therein. ) And springs 323a and 323b are the same as in the first and second embodiments.
  • the vibration absorbing member 330 is provided between the upper and lower surfaces of the mass bodies 321a and 321b facing the case 310.
  • both ends of the vibration absorbing member 330 may be flat and the center portion thereof may be convex, and both ends of the vibration absorbing member 330 may be attached to the case 310 and the center portion thereof may not contact the case 310.
  • the convex part in the center is positioned between the masses 321a and 321b and the case 310 so that the masses 321a and 321b and the case 310 are separated from each other without being in contact with each other.
  • the portion where the center portion and the both ends are formed so as not to be perpendicular to each other the elastic force is generated when it comes in contact with the mass (321a, 321b) and can absorb the impact applied from the mass (321a, 321b).
  • the vibration absorbing member 330 is attached to the case 310 through adhesive tape, bonding or thermocompression bonding.
  • the vibration absorbing member 330 is a total of four so that the mass body (321a, 321b) does not collide with the upper and lower surfaces of the case 310 when the mass body (321a, 321b) vibrates in a direction different from the movement direction of the mass (321a, 321b), in particular in the vertical direction It is provided and attached between the mass body 321a, 321b, and the case 310, respectively.
  • the vibration absorbing member 330 has a thin plate spring shape and reduces the vertical amplitude of the masses 321a and 321b to prevent the collision between the masses 321a and 321b and the case 310 and the vertical vibration of the masses 321a and 321b. Reduce noise during
  • 17 and 18 are views illustrating a mold for manufacturing a vibration absorbing member and a vibration absorbing member manufactured through a mold according to a third embodiment of the present invention.
  • the vibration absorbing member 130 illustrated in FIG. 17 is formed with one convex portion among them, and may be manufactured by the following method.
  • the vibration absorbing member 330 may be manufactured by inserting a disc 331 having elasticity into the mold frame 180 and then pressing the mold. Specifically, the disc 331 is inserted between the upper mold 181 having the concave portion and the lower mold 183 formed with the convex portion, and the upper mold 181 and the lower mold 183 are contacted to be spaced apart by the thickness of the necessary vibration absorbing member 330. In close contact with each other, the vibration absorbing member 330 may be molded to correspond to the shape of the mold frame 180.
  • the material of the vibration absorbing member 330 is preferably any one of a resin such as polyethylene naphthalate, polyester, polyamide, polypropylene, polystyrene, or engineering plastic.
  • the vibration absorbing member 330 may extend the life of the vibration absorbing member 330 through a treatment such as coating of the surface and can effectively alleviate the impact when friction with the mass body (321a, 321b).
  • the portion (a) in contact with the mass (321a, 321b) is attached to the case 310 in a planar shape to smooth the friction between the vibration absorbing member 330 and the mass (321a, 321b),
  • the portion c corresponding to the springs 323a and 323b is attached to the case 310 in close contact.
  • a portion (b) forming a curve between the a portion and the c portion is a portion that separates the a portion from the case 310, thereby generating an elastic force of the vibration absorbing member 330.
  • the curvature or the length of the b portion is not limited to this and can be configured in various ways.
  • the vibration absorbing member 330 may be formed to have two convex portions in the middle, as shown in FIG. 18.
  • the vibration absorbing member 330 is formed to have a step so that the contact area is reduced when contacting the mass bodies 321a and 321b to reduce friction.
  • the entire portion a is in contact with the masses 321a and 321b, whereas only the A portion of the vibration absorbing member 330 shown in FIG. 18 is in contact with the masses 321a and 321b. Therefore, frictional force due to contact is reduced.
  • the vibration absorbing member 330 is formed by inserting the disc 331 between the mold 280 composed of the upper mold 281 and the lower mold 283 and pressing the mold.
  • the vibration absorbing member 330 may have a space portion in which air is contained therein, and is sealed in a state in which air is contained in the space, thereby being elastic not only by the vibration absorbing member 330 itself but also by air.
  • a protrusion may be formed on the surface of the vibration absorbing member 330.
  • FIG. 19 is a graph showing the relationship between the vibration distance and the force of the linear vibrator according to the third embodiment of the present invention. This is specifically described in the third embodiment of the present invention, but may be applied to all embodiments without being limited thereto.
  • one section is a case in which the distance between the mass absorbing member 330 and the mass bodies 321a and 321b on the upper and lower surfaces of the case 310 is smaller than the distance between the mass absorbing members 321a and 321b.
  • 321a and 321b may freely vibrate without being affected by the vibration absorbing member 330. At this time, the force that the masses 321a and 321b receive from the vibration absorbing member 330 may be almost zero.
  • the vibration absorbing member 330 provided above and below the mass 321a and 321b is pressed. An elastic force is generated and vibration of the masses 321a and 321b is suppressed, thereby reducing noise.
  • the second section is a section which does not contact the case 310 when the mass bodies 321a and 321b vibrate. In the second section, the larger the amplitude during vibration of the mass bodies 321a and 321b, the greater the elastic force of the vibration absorbing member 330 is generated to suppress the vibration of the mass bodies 321a and 321b.
  • the masses 321a and 321b preferably vibrate to correspond to one section or two sections.
  • FIG. 20 is a perspective view of a vibration absorbing member according to a third exemplary embodiment of the present invention.
  • the surface of the vibration absorbing member 330 may be formed with a groove 333 for reducing the friction surface with the mass.
  • the groove 333 may be filled with lubricating oil 335 or grease to reduce friction between the vibration absorbing member 330 and the mass body, thereby extending the life of the vibration absorbing member 330.
  • 21 is a side view showing another example of a linear vibrator according to a third embodiment of the present invention.
  • the linear vibrator 300 may further include a reinforcing member 340 provided between the case 310 and the vibration absorbing member 330.
  • the upper and lower surfaces of the reinforcing member 340 facing the case 310 are attached.
  • the vibration absorbing member 330 is provided. Minimize the deformation of the linear vibrator 300 is installed to stabilize the function.
  • the reinforcing member 340 normally protects the vibration absorbing member 330 when a sudden situation occurs without affecting the mass body 321a.
  • a linear vibrator according to a fourth embodiment of the present invention will be described with reference to FIGS. 22 through 25.
  • 22A and 22B are front and side views of a linear vibrator according to a fourth embodiment of the present invention.
  • the vibration absorbing member 430 includes a friction member 431 and a vibration guide member 433.
  • the friction member 431 is attached to the upper and lower surfaces of the case 410 corresponding to the mass 421a and the spring 423a provided at both ends of the mass 421a. Therefore, while the mass body 421a collides with the case 410 when the mass body 421a moves in a direction other than the reciprocating motion by the spring 423a, that is, the up-down direction, noise generated by the case 410 can be prevented. Noise can also occur.
  • a vibration guide member 433 is provided between the friction member 431 formed on the upper surface of the case 410 and the mass body 421a.
  • the vibration guide member 433 is a plate member having both ends flat and having at least one convex portion between both ends, both ends corresponding to the spring 423a, and the middle part corresponding to the mass body 431a.
  • the convex portion of the vibration guide member 433 corresponding to the mass body 431a is provided to be in contact with the friction member 431 without contacting the friction member 431.
  • a total of two vibration guide members 433 may be provided, one for each mass body 421a and 421b.
  • the vibration absorbing member 430 including the friction member 431 and the vibration guide member 433 may prevent the noise generated when the mass body 421a collides with the friction member 431. Vibration may be reduced in the vertical direction of the mass body 421a by the elastic force generated by the material or the shape of the 433.
  • the vibration absorbing member 430 including the friction member 431 and the vibration guide member 433 may have various shapes.
  • the vibration absorbing member 430 is a friction member 431 and the vibration guide member 433 It includes, but the vibration guide member 433 is formed to have a ball shape.
  • the friction member 431 is attached to the upper and lower surfaces of the case 410 corresponding to the mass 421a and the spring 423a provided at both ends of the mass 421a.
  • the mass body 421a has a predetermined size for providing a ball-shaped vibration guide member 433 in order to prevent contact between the mass body 421a and the friction member 431.
  • Grooves 426 must be formed.
  • a plurality of grooves 426 are formed in the mass body 421a, and a total of four grooves 426 may be formed in each of the mass body 421a.
  • the vibration guide member 433 preferably has a size protruding to the outside of the groove 426 to prevent contact between the mass body 421a and the friction member 431. Therefore, when the mass body 421a vibrates up and down, the upper surface of the mass body 421a does not contact the friction member 431, but the vibration guide member 433 contacts the friction member 431.
  • the vibration guide member 433 is made of an elastic material to reduce the vibration in the vertical direction of the mass body 421a by elastic force. However, when the vibration guide member 433 is made of an elastic material, the vibration guide member 433 has an elastic force. An elastic member 429 that provides a groove may be provided in the groove 426 to be positioned below the vibration guide member 433.
  • FIG. 25 is a front view showing another example of the vibration absorbing member of the linear vibrator according to the fourth embodiment of the present invention, wherein the vibration absorbing member 430 includes a friction member 431 and a vibration guide member 433, and vibrations
  • the guide member 433 is provided between the upper surface of the case 410 and the permanent magnet 413 attached to the upper surface.
  • the vibration guide member 433 is a plate member formed so that both ends thereof are flat and have convex portions between both ends.
  • the vibration guide member 433 corresponds to the mass body 421a and the spring 423a, and the convex portion corresponds to the coil portion 425. do.
  • the vibration guide member 433 corresponds to the coil part 425, and the convex part is attached to the case 410, and both ends thereof are attached so as not to contact the case 410. Therefore, even if the mass body 421a vibrates up and down and collides with the vibration guide member 433, the vibration guide member 433 is spaced apart from the case 410, thereby reducing noise generated by the case 410. have.
  • the friction member 431 is provided on the upper surface of the mass body 421a to prevent contact between the mass body 421a and the vibration guide member 433, and the inside of the lower surface of the case 410 corresponding to the mass body 421a. It is provided to prevent contact between the mass body 421a and the case 410.
  • protrusions are also formed on the mass body 421a of the linear vibrator 400 according to the fourth embodiment of the present invention to reduce the contact area between the mass body 421a and the friction member 431.
  • the linear vibrator according to the present invention may be provided with a vibration absorbing member between the mass body and the case to prevent contact between the mass body and the case and to reduce vibration in a direction different from the movement direction of the mass body. As a result, noise generated during vibration can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)

Abstract

본 발명은 선형진동기에 관한 것으로, 케이스의 내부에 영구자석, 코일부 및 회로기판을 구비하고, 회로기판을 통해 외부로부터 전원이 입력되면 코일부와 영구자석 사이에 작용하는 전자기력에 의해 질량체가 진동하는 선형 진동기에 있어서, 질량체와 케이스 사이에 구비되어 질량체와 케이스의 접촉을 방지하고, 탄성력에 의해 질량체의 운동방향과 다른 방향의 진동을 저감시키는 진동흡수부재를 포함하여 질량체의 진동 시 케이스와의 접촉에 의해 발생하는 소음을 완화할 수 있는 효과를 얻을 수 있다.

Description

선형진동기
본 발명은 선형진동기에 관한 것으로, 보다 상세하게는 질량체와 케이스 사이에 구비되어 질량체와 케이스의 접촉을 방지하고, 질량체의 운동방향과 다른 방향의 진동을 저감시키는 선형진동기에 관한 것이다.
일반적으로 통신기기에서 반드시 필요한 기능 중의 하나가 착신기능이다. 이러한 착신기능으로 많이 사용되는 유형은 멜로디나 벨과 같은 발성 기능과 기기를 떨게 하는 진동기능이 있다. 이 중 특히 진동기능은 스피커를 통해 멜로디나 벨이 외부로 전달되어 타인에게 피해를 입히지 않고자 하는 경우 주로 사용되는데, 이러한 진동을 위해서는 소형의 진동기를 구동시켜, 그 구동력이 기기의 케이스로 전달되도록 하여 기기가 진동을 할 수 있도록 하는 것이 일반적이다.
또한, 최근에는 터치스크린 휴대폰의 보급이 늘어나면서 진동기는 단순히 멜로디를 대신한 착신기능을 넘어 가상의 터치감을 사용자에게 제공하는 기능이 요구되고 있다.
이와 같이 휴대폰 또는 게임기에 착장된 진동기는 긴 수명, 작은 사이즈, 우수한 진동성능이 요구되고 있다.
도 1은 종래의 회전형 진동기를 나타내는 단면도이고, 도 2는 도 1의 FPCB를 나타내는 도면이고, 도 3은 도 1의 회전자를 나타내는 도면이다.
도면을 참조하면, 종래의 회전형 진동기(10)에서 운동체(20)에 구비된 코일(25)에 외부전원을 공급하는 방법은 다음과 같다.
먼저 케이스(11)에 고정되어 있는 리드선(17)을 통해 회전형 진동기(10)에 전원이 공급된다. 리드선(17)은 FPCB(유연성 인쇄회로기판(Flexible Printed Circuit Board), 15)에 납땜 등의 방법으로 전기적으로 연결되어 있으며, FPCB(15)에는 전기가 연결될 수 있도록 도 2와 같은 회로패턴이 형성된다.
도 2를 참조하면 FPCB(15)는 일단에 리드선(17)과 전기적으로 연결되는 리드선 연결단자(15a)가 형성되고, 타단에 브러쉬 타입의 전원연결부(19)와 전기적으로 연결되는 전원연결부 연결단자(15b)가 형성된다.
한편 운동체(20)에는 코일(25)이 위치해 있고, 코일(25)은 회로기판(15)과 전기적으로 연결되어 있다. 도 3을 참조하면 회로기판(15)은 전원연결부(12)가 전기적으로 미끄럼 접촉을 할 수 있도록 복수의 정류자 패턴(16)이 형성되어 있다.
이와 같이 구성된 종래의 회전형 진동기(10)는 외부전원이 리드선(17)을 통해 공급되면 FPCB(15)와 브러쉬 타입의 전원연결부(19)를 통해 운동체(20)에 배치된 회로기판(15)에 전달된다. 그리고, 운동체(20)의 회로기판(13)에 전달된 전원은 회로기판(15)에 전기적으로 연결된 코일(25)로 전달되게 된다. 외부에서 전원이 인가되면 전자기력에 의해 운동체(20) 및 회로기판(15)이 회전하면서 진동이 발생되며 브러쉬 타입의 전원연결부(19)와 회로기판(15)은 마찰 운동을 하면서 전기적으로 연결된다.
회로기판(15)은 회전자(14)가 회전 시 적절히 정류작용을 하면서 코일(25)에 전원을 적절히 공급할 수 있도록 정류자(16)가 몇 개의 조각으로 나누어서 배치되어 있다. 그리고 종래에는 운동체(20)가 샤프트(21)를 중심으로 지지되어 회전함으로써 베어링(23)과 샤프트(21)의 높은 정밀도로 소음을 감소시키고 샤프트(21)와 베어링(23) 사이에 베어링(23)에서 나온 오일로 윤활을 좋게 하고 소음을 줄였다.
그러나 이런 구조는 샤프트(21)를 사용하는 경우에는 소음을 줄일 수 있으나 샤프트(21)가 없는 구조에서는 소음을 줄이는 것이 매우 어렵다. 그 이유는 운동하는 물체가 샤프트(21) 등의 지지축이 없음으로써 불안정한 상태에 있고 움직이면서 케이스(11)의 상, 하, 좌 우 면에 부딪치면서 소음을 크게 발생시키기 때문이다.
따라서, 지지축을 구비하지 않으면서도 소음을 방지할 수 있는 선형진동기의 개발이 필요한 시점이다.
본 발명은 상술한 종래 기술의 문제점을 해결하기 위하여 안출된 것으로, 질량체와 케이스 사이에 진동흡수부재를 구비하여 탄성력에 의해 질량체의 운동방향과 다른 방향의 진동을 저감시키고 질량체와 케이스의 접촉을 방지하여 소음을 줄일 수 있는 선형진동기를 제공하는데 그 목적이 있다.
또한, 본 발명의 진동흡수부재는 마찰부재와 진동가이드부재를 포함하여 구성되어 탄성력에 의해 질량체의 운동방향과 다른 방향의 진동을 저감시키고 질량체와 케이스의 접촉을 방지하여 소음을 줄일 수 있는 선형진동기를 제공하는데 그 목적이 있다.
이러한 목적을 달성하기 위하여, 본 발명에 따른 선형진동기는 케이스의 내부에 영구자석, 코일부 및 회로기판을 구비하고, 상기 회로기판을 통해 외부로부터 전원이 입력되면 상기 코일부와 상기 영구자석 사이에 작용하는 전자기력에 의해 질량체가 진동하는 선형 진동기에 있어서, 상기 질량체와 상기 케이스 사이에 구비되어 상기 질량체와 상기 케이스의 접촉을 방지하고, 탄성력에 의해 상기 질량체의 운동방향과 다른 방향의 진동을 저감시키는 진동흡수부재를 포함할 수 있다.
상기 진동흡수부재는 양단이 평평하고 양단의 사이에 적어도 하나의 볼록한 부분을 갖도록 형성되며, 상기 양단이 상기 케이스에 접촉하고 상기 가운데 부분은 상기 케이스와 접촉하지 않도록 상기 케이스에 부착될 수 있다.
상기 진동흡수부재는 상기 질량체에 대응하는 상기 케이스의 마주보는 상, 하부면에 각각 부착될 수 있다.
본 발명에 따른 선형진동기는 영구자석 및 회로기판이 각각 구비되는 케이스, 스프링으로 상기 케이스에 연결되는 한 쌍의 질량체, 상기 질량체 사이에 구비되는 코일부 및 상기 질량체와 상기 케이스 사이에 구비되어 상기 질량체와 상기 케이스의 접촉을 방지하고, 탄성력에 의해 상기 질량체의 운동방향과 다른 방향의 진동을 저감시키는 진동흡수부재를 포함할 수 있다.
상기 진동흡수부재는 평평한 판 형상을 갖도록 형성되며, 상기 질량체에 대응하는 상기 케이스의 마주보는 상, 하부면에 부착될 수 있다.
상기 진동흡수부재는 상기 케이스에 부착되는 면은 평평하고, 그 반대면의 일부는 볼록하게 형성될 수 있다.
상기 질량체의 표면에는 적어도 하나의 돌기가 더 형성될 수 있다.
상기 돌기에 대응하며 상기 돌기보다 크기가 큰 홈이 상기 진동흡수부재의 볼록한 면에 더 형성될 수 있다.
상기 진동흡수부재는, 상기 질량체 및 스프링에 대응하는 상기 케이스의 마주보는 상, 하부면에 부착되는 마찰부재 및 양단이 평평하고 상기 양단의 사이에 적어도 하나의 볼록한 부분을 갖도록 형성되며, 상기 질량체에 대응하는 가운데 부분은 상기 마찰부재에 접촉하지 않고 상기 스프링에 대응하는 양단이 상기 마찰부재에 접촉하는 진동가이드부재를 포함할 수 있다.
상기 진동흡수부재는, 상기 질량체 및 스프링에 대응하는 상기 케이스의 내부에 부착되는 마찰부재 및 볼 형상을 갖도록 형성되며, 상기 질량체에 일정 크기를 갖도록 형성된 적어도 하나의 홈에 일부가 돌출되도록 구비되는 진동가이드부재를 포함할 수 있다.
상기 진동가이드부재의 아래에 위치하도록 상기 질량체에 형성된 홈에 구비되어 상기 진동가이드부재에 탄성력을 제공하는 탄성부재를 더 포함할 수 있다.
상기 진동흡수부재는, 양단이 평평하고 상기 양단의 사이에 볼록한 부분을 갖도록 형성되며, 상기 볼록한 부분은 코일부의 상부에 대응하는 상기 케이스에 접촉하고 상기 양단은 상기 질량체 및 상기 스프링에 대응하며 상기 케이스에 접촉하지 않는 진동가이드부재 및 상기 질량체의 상부면에 구비되어 상기 질량체와 상기 진동가이드부재의 접촉을 방지하고, 상기 질량체에 대응하는 상기 케이스에 하부면의 내부에 구비되어 상기 질량체와 상기 케이스의 접촉을 방지하는 마찰부재를 더 포함할 수 있다.
상기 진동흡수부재의 표면에는 상기 질량체와의 마찰면을 줄이기 위한 복수의 돌기 또는 홈이 형성될 수 있다.
상기 진동흡수부재에는 윤활유 또는 그리스(grease)가 도포될 수 있다.
상기 진동흡수부재는 내부에 공간부를 갖고 상기 공간부에 공기가 포함된 상태로 밀폐될 수 있다.
상기 케이스와 상기 진동흡수부재 사이에 구비되는 보강부재를 더 포함할 수 있다.
상기 케이스의 전, 후면에 부착되어 상기 코일부와 상기 케이스와 충돌하는 경우 상기 코일부의 충격을 완화하는 제1 댐핑부 및 상기 케이스의 좌, 우측면에 부착되어 상기 질량체가 진동하면서 상기 케이스와 충돌하는 경우 상기 질량체의 충격을 완화하는 제2 댐핑부; 중 하나 이상을 더 포함할 수 있다.
본 발명에 따르면, 케이스의 내부에 영구자석, 코일부 및 회로기판을 구비하고, 회로기판을 통해 외부로부터 전원이 입력되면 코일부와 영구자석 사이에 작용하는 전자기력에 의해 질량체가 진동하는 선형 진동기에 있어서, 질량체와 케이스 사이에 구비되어 탄성력에 의해 질량체의 운동방향과 다른 방향의 진동을 저감시키고 질량체와 케이스의 접촉을 방지하여 소음을 줄일 수 있는 효과가 있다.
또한, 진동흡수부재는 마찰부재와 진동가이드부재를 포함하여 구성되어 탄성력에 의해 질량체의 운동방향과 다른 방향의 진동을 저감시키고 질량체와 케이스의 접촉을 방지하여 소음을 줄일 수 있는 효과가 있다.
도 1은 종래의 회전형 진동기를 나타내는 단면도.
도 2는 도 1의 FPCB를 나타내는 도면.
도 3은 도 1의 회전자를 나타내는 도면.
도 4는 본 발명의 제1 실시예에 따른 선형진동기의 분해사시도.
도 5는 본 발명의 제1 실시예에 따른 선형진동기의 측면도.
도 6 내지 도 8의 (a) 및 (b)는 발명의 제1 실시예에 따른 진동흡수부재의 다양한 예를 보여주는 평면도 및 단면도.
도 9의 (a) 및 (b)는 본 발명의 제2 실시예에 따른 선형진동기의 정면도 및 측면도.
도 10 및 도 11의 (a) 내지 (c)는 본 발명의 제2 실시예에 따른 진동흡수부재의 평면도, 측면도 및 정면도.
도 12는 본 발명의 제2 실시예에 따른 선형진동기의 변형된 예를 나타내는 정면도.
도 13은 본 발명의 제3 실시예에 따른 선형진동기의 분해사시도.
도 14 내지 도 16은 도 13의 평면도, 정면도 및 측면도.
도 17 및 도 18은 본 발명의 제3 실시예에 따른 진동흡수부재를 제조하는 금형 및 금형을 통해 제조된 진동흡수부재를 나타내는 도면.
도 19는 본 발명의 제3 실시예에 따른 선형진동기의 진동 거리와 힘 사이의 관계그래프.
도 20은 본 발명의 제3 실시예에 따른 진동흡수부재를 나타내는 사시도.
도 21은 본 발명의 제3 실시예에 따른 선형진동기의 다른 예를 보여주는 측면도.
도 22의 (a) 및 (b)는 본 발명의 제4 실시예에 따른 선형진동기의 정면도 및 측면도.
도 23 및 도 24는 본 발명의 제4 실시예에 따른 선형진동기의 진동흡수부재의 다른 예를 보여주는 평면도 및 정면도.
도 25는 본 발명의 제4 실시예에 따른 선형진동기의 진동흡수부재의 다른 예를 보여주는 정면도.
<도면의 주요 부분에 대한 부호의 설명>
100 : 선형진동기
110 : 케이스 121a, 121b : 질량체
123a, 123b : 스프링 130 : 진동흡수부재
140 : 보강부재 150 : 제1 댐핑부
160 : 제2 댐핑부
이하, 첨부한 도면들을 참조하여 본 발명의 실시예를 상세히 설명한다.
본 발명의 제1 실시예에 따른 선형진동기는 도 4 내지 도 8을 참조하여 설명하면 다음과 같다.
도 4는 본 발명의 제1 실시예에 따른 선형진동기의 분해사시도이고, 도 5는 본 발명의 제1 실시예에 따른 선형진동기의 측면도이고, 도 6 내지 도 8의 (a) 및 (b)는 발명의 제1 실시예에 따른 진동흡수부재의 다양한 예를 보여주는 평면도 및 단면도이다.
도면을 참조하면, 본 발명의 제1 실시예에 따른 선형진동기(100)는 영구자석(113), 코일부(125), 회로기판(115)이 구비된 케이스(110) 내부에 구비되는 질량체(121a, 121b) 및 진동흡수부재(130)를 포함하여 구성된다.
구체적으로 케이스(110)는 'ㄷ'자 형상을 갖는 하부 케이스(111a)와 상부 케이스(111b)가 서로 엇갈리게 결합되고 내부에 빈 공간을 갖는다. 본 발명의 실시예에 의한 케이스(110)는 상, 하부면, 전, 후측면, 좌, 우측면을 갖는 육면체 형상을 갖는 것이 바람직하다.
케이스(110)의 마주보는 상, 하부면의 중앙부에는 영구자석(113)이 각각 부착된다. 이때, 영구자석(113)의 크기는 케이스(110)보다 더 작은 것이 바람직하다. 그리고 케이스(110)의 마주보는 전, 후측면에는 회로기판(115)이 각각 부착된다. 회로기판(115)은 하부 케이스(111a)의 일측에 돌출된 돌출부(116)에 형성된 회로패턴(117)과 연결되고, 회로패턴(117)은 외부로부터 연결된 리드선(119)과 연결된다.
한편, 케이스(110)의 전, 후면에 연결된 한 쌍의 스프링(123a, 123b) 사이에는 각각 제1 댐핑부(150)가 회로기판(115)에 부착되어 코일부(125)가 스프링(123a, 123b)의 중심축 방향으로 수평진동 시 케이스(110)에 접촉할 때 생기는 충격을 완화할 수 있다.
그리고 케이스(110)의 좌, 우측면에는 각각 제2 댐핑부(160)가 부착되어 질량체(121a, 121b)가 좌, 우 수평진동 시 케이스(110)에 접촉할 때 생기는 충격을 완화할 수 있다.
질량체(121a, 121b)는 한 쌍이 구비되며 양단에 구비된 스프링(123a, 123b)에 의해 회로기판(115)에 연결된다. 코일부(125)는 한 쌍의 질량체(121a, 121b) 사이에 구비된다. 코일부(125)는 평평한 판 형상을 갖는 부재 내부에 코일이 감겨 있을 수 있으며 코일 연결부(127)에 의해 질량체(121a, 121b)와 전기적으로 연결된다.
질량체(121a, 121b)는 리드선(119)을 통해 외부로부터 전원이 입력되면 코일부(125)와 영구자석(113) 사이에 발생하는 전자기력에 의해 진동한다. 이때, 질량체(121a, 121b)는 상하, 좌우, 전후 방향으로 모두 진동할 수 있다.
구체적으로, 리드선(119)에 연결된 돌출부(116)의 회로패턴(117)을 통해 선형진동기(100)에 전원이 입력되면 전기신호가 회로기판(115)을 통해 스프링(123a)과 질량체(121a)에 전달되고, 질량체(121a)에 연결된 코일부(125)에 전달된다. 다음으로 코일부(125)의 반대편 질량체(121b) 및 스프링(123b)를 통해 회로기판(115)과 연결됨으로써 전자기력이 발생하며 이에 따라 질량체(121a, 121b)가 진동한다.
이때, 질량체(121a, 121b), 스프링(123a, 123b)의 재질은 모두 전기를 통하는 도체로 전자기력이 유도되는 것이 바람직하다.
진동흡수부재(130)는 질량체(121a, 121b)와 케이스(110)의 마주보는 상, 하부면의 사이에 구비된다. 이때, 진동흡수부재(130)는 평평한 판 형상을 갖도록 형성될 수 있다. 진동흡수부재(130)는 점착성 테이프, 본딩 또는 열 압착을 통해 케이스(110)에 부착된다.
진동흡수부재(130)는 질량체(121a)와 케이스(110)의 접촉을 방지하여 질량체(121a)가 케이스(110)에 부딪힘으로써 발생하는 소음을 줄여준다. 그리고 질량체(121a)가 스프링(123a)에 의해 왕복 운동할 때 운동방향과 다른 방향으로의 진동, 특히 상하진동을 줄여주는 역할을 한다.
질량체(121a, 121b)가 케이스(110) 내에서 자유롭게 운동을 하기 위해서 질량체(121a, 121b)와 케이스(110) 사이에는 어느 정도 간격이 있어야 한다. 그러나 질량체(121a, 121b)와 케이스(110) 사이의 간격 때문에 질량체(121a, 121b)는 왕복운동 시 스프링(123a, 123b)의 중심축과 수직한 방향 즉, 상, 하 방향으로도 진동하게 되고, 이에 따라 질량체(121a, 121b)가 케이스(110)와 충돌하여 소음이 발생한다.
진동흡수부재(130)는 질량체(121a, 121b)와 케이스(110)의 충돌을 방지하고, 질량체(121a, 121b)가 운동방향의 수직한 방향으로 진동하는 것을 줄여준다.
이와 같이 진동흡수부재(130)는 질량체(121a, 121b)의 수평진동에는 영향을 미치지 않으면서 질량체(121a, 121b)의 수직방향 진동은 진동의 세기 또는 진폭이 최소화되도록 하여 케이스(110)와 질량체(121a, 121b)의 직접 충돌을 방지할 수 있다.
도 6을 참조하면, 진동흡수부재(130)의 표면에는 질량체(121a)와의 마찰을 줄이기 위한 관통홀(135)이 형성될 수 있다. 진동흡수부재(130)의 표면에는 마찰을 줄이기 위해 윤활유 또는 그리스(grease)가 도포될 수 있는데, 진동흡수부재(130)에 형성된 관통홀(135)에 진동흡수부재(130)에 도포한 윤활유 또는 그리스가 채워질 수 있다. 따라서 질량체(121a)가 진동할 때 진동흡수부재(130)의 표면에 도포된 윤활유 외에도 관통홀(135)에 저장된 윤활유가 더 공급될 수 있으므로 마찰에 의한 마모 및 소음을 줄일 수 있다.
도 7 및 도 8을 참조하면, 진동흡수부재(130)의 표면에는 홈(136)이 형성될 수 있다. 홈(136)은 도 3에 도시된 관통홀(135)과 마찬가지로 윤활유 또는 오일을 저장할 수 있다.
이와 같은 진동흡수부재(130)를 케이스(110)와 질량체(121a) 사이에 구비함으로써 케이스(110)와 질량체(121a)가 충돌하여 발생하는 소음을 방지할 수 있다.
도 9의 (a) 및 (b)는 본 발명의 제2 실시예에 따른 선형진동기의 정면도 및 측면도이고, 도 10 및 도 11의 (a) 내지 (c)는 본 발명의 제2 실시예에 따른 진동흡수부재의 평면도, 측면도 및 정면도이고, 도 12는 본 발명의 제2 실시예에 따른 선형진동기의 변형된 예를 나타내는 정면도이다.
도면을 참조하면, 본 발명의 제2 실시예에 따른 선형진동기(200)의 영구자석(213), 코일부(225), 회로기판(215)이 구비된 케이스(210)와 질량체(221a) 및 스프링(223a)의 구성은 제1 실시예와 동일하다.
진동흡수부재(230)는 케이스(210)에 부착되는 면은 평평하고 그 반대면인 질량체(221a) 및 스프링(123a)을 향하는 면은 볼록하게 형성될 수 있다.
진동흡수부재(230)는 내부에 공기가 내포되는 공간부를 가질 수 있고, 공간부에 공기가 포함된 상태로 밀폐되어 진동흡수부재(230) 자체 뿐만 아니라 공기에 의해서도 탄성을 가질 수 있다.
진동흡수부재(230)는 주로 폴리에스테르, 폴리아미드, 폴리프로필렌, 폴리스틸렌 등으로 제조될 수 있으며 마찰을 줄이고 수명을 늘이기 위해 표면에 코팅 등의 처리를 할 수 있다.
이때, 제2 댐핑부(260)도 진동흡수부재(230)의 형상과 유사한 형상을 갖도록 케이스(210)에 부착되는 면의 반대면이 볼록하게 형성될 수 있다.
또한, 도 10 및 도 11에 도시된 바와 같이 진동흡수부재(230)의 볼록한 면에는 홈(236)을 형성하여 마찰되는 면적을 줄이고, 윤활유 또는 그리스를 저장하여 마찰력을 감소시킬 수 있다.
한편, 도 12에 도시된 바와 같이 진동흡수부재(230)에 길이 방향으로 홈(236)이 형성되고, 질량체(221a)에도 진동흡수부재(230)에 형성된 홈(236)에 대응하는 형상을 갖는 돌기(228)가 형성될 수 있다. 이때, 질량체(221a)가 진동하더라도 돌기(228)가 홈(236)에서 벗어나지 않도록 홈(236)은 돌기(228)보다 더 넓게 형성되는 것이 바람직하며, 질량체(221a)가 일정 세기 이하로 진동할 때에는 질량체(221a)와 진동흡수부재(230)가 충돌하지 않도록 일정 간격 이격되어 있는 것이 바람직하다.
본 발명의 제3 실시예에 따른 선형진동기는 도 13 내지 도 21을 참조하여 설명하면 다음과 같다.
도 13은 본 발명의 제3 실시예에 따른 선형진동기의 분해사시도이고, 도 14 내지 도 16은 도 13의 평면도, 정면도 및 측면도이다.
본 발명의 제3 실시예에 따른 선형진동기(300)는 영구자석(313), 코일부(325), 회로기판(315)이 구비된 케이스(310)와 그 내부에 구비되는 질량체(321a, 321b) 및 스프링(323a, 323b)의 구성은 제1 및 제2 실시예와 동일하다.
진동흡수부재(330)는 질량체(321a, 321b)와 케이스(310)의 마주보는 상, 하부면의 사이에 구비된다. 이때, 진동흡수부재(330)는 양단이 평평하고 가운데 부분은 볼록하게 형성될 수 있으며, 평평한 양단은 케이스(310)에 접촉하고 가운데 부분은 케이스(310)에 접촉하지 않도록 부착된다. 이때 가운데의 볼록한 부분이 질량체(321a, 321b)와 케이스(310) 사이에 위치하여 질량체(321a, 321b)와 케이스(310)가 서로 접촉되지 않고 이격된다.
특히, 가운데 부분과 양단이 이어지는 부분은 직각이 되지 않도록 형성되어 질량체(321a, 321b)와 접촉할 때 탄성력이 발생하고 질량체(321a, 321b)로부터 가해지는 충격을 흡수할 수 있다. 이때에도 진동흡수부재(330)는 점착성 테이프, 본딩 또는 열 압착을 통해 케이스(310)에 부착된다.
진동흡수부재(330)는 질량체(321a, 321b)가 질량체(321a, 321b)의 운동방향과 다른방향, 특히 수직방향으로 진동할 때 케이스(310)의 상, 하부면과 충돌하지 않도록 총 4개가 구비되어 질량체(321a, 321b)과 케이스(310)의 사이에 각각 부착된다. 진동흡수부재(330)는 박판 스프링 형상을 가지며 질량체(321a, 321b)의 수직방향의 진폭을 줄여 질량체(321a, 321b)와 케이스(310)의 충돌을 방지하고 질량체(321a, 321b)의 수직진동 시 소음을 완화시킨다.
도 17 및 도 18은 본 발명의 제3 실시예에 따른 진동흡수부재를 제조하는 금형 및 금형을 통해 제조된 진동흡수부재를 나타내는 도면이다.
도 17에 도시된 진동흡수부재(130)는 가운데 하나의 볼록한 부분이 형성된 것으로, 다음과 같은 방법으로 제조될 수 있다.
진동흡수부재(330)는 금형틀(180)에 탄성을 갖는 원판(331)을 삽입한 후 압착하는 방법을 통해 제조될 수 있다. 구체적으로 오목부가 형성된 상형(181) 및 볼록부가 형성된 하형(183) 사이에 원판(331)을 삽입하고, 상형(181) 및 하형(183)을 필요한 진동흡수부재(330)의 두께만큼 이격되게 접하도록 밀착시켜 금형틀(180)의 형상에 대응하도록 진동흡수부재(330)를 성형할 수 있다. 진동흡수부재(330)의 재질은 폴리에틸렌 나프탈레이트, 폴리에스테르, 폴리아미드, 플리프로필렌, 플리스틸렌 또는 엔지니어링 플라스틱 등 수지 중 어느 하나인 것이 바람직하다.
또한 진동흡수부재(330)는 표면의 코팅 등의 처리를 통해 진동흡수부재(330)의 수명을 연장시키고 질량체(321a, 321b)와의 마찰 시 효과적으로 충격을 완화할 수 있도록 할 수 있다.
이때, 질량체(321a, 321b)와 접촉하는 부분(a)은 평면 형상으로 케이스(310)에 이격되게 부착되어 진동흡수부재(330)와 질량체(321a, 321b) 사이의 마찰을 원활하게 하도록 하고, 스프링(323a, 323b)에 대응하는 부분(c)은 케이스(310)에 밀착되게 부착된다. 또한, a 부분과 c 부분 사이의 곡선을 이루는 부분(b)은 a 부분을 케이스(310)로부터 이격되게 하는 부분으로 이로 인해 진동흡수부재(330)의 탄성력이 발생된다. b 부분의 곡률이나 길이 등은 이에 한정되지 않고 다양하게 구성할 수 있다.
한편, 진동흡수부재(330)는 도 18에 도시된 바와 같이 가운데 두 개의 볼록한 부분을 갖도록 형성될 수 있다. 도 18을 참조하면 진동흡수부재(330)는 단차를 갖도록 성형되어 질량체(321a, 321b)와의 접촉 시 접촉 면적이 줄어들어 마찰을 줄일 수 있다. 도 17에 도시된 진동흡수부재(330)는 a 부분 전체가 질량체(321a, 321b)와 접촉하는 반면, 도 18에 도시된 진동흡수부재(330)의 A 부분만 질량체(321a, 321b)와 접촉하므로 접촉에 의한 마찰력이 감소된다.
이때에도 진동흡수부재(330)는 원판(331)을 상형(281) 및 하형(283)으로 구성되는 금형틀(280) 사이에 삽입하여 압착함으로써 성형된다.
또한, 도시되지는 않았으나 진동흡수부재(330)는 내부에 공기가 내포되는 공간부를 가질 수 있고, 공간부에 공기가 포함된 상태로 밀폐되어 진동흡수부재(330) 자체 뿐만 아니라 공기에 의해서도 탄성을 가질 수 있다. 또한 도시되지는 않았으나 진동흡수부재(330)의 표면에는 돌기가 돌출 형성될 수도 있다.
도 19는 본 발명의 제3 실시예에 따른 선형진동기의 진동 거리와 힘 사이의 관계그래프이다. 이는 본 발명의 제3 실시예에서 구체적으로 설명되지만 이에 국한되지 않고 모든 실시예에 적용될 수 있다.
도면을 참조하면, 1구간은 케이스(310)의 상, 하부면에 설치된 진동흡수부재(330)와 질량체(321a, 321b) 사이의 간격보다 질량체(321a, 321b)가 움직이는 거리가 작은 경우로 질량체(321a, 321b)는 진동흡수부재(330)의 영향을 받지 않고 자유롭게 진동운동을 할 수 있다. 이때, 질량체(321a, 321b)가 진동흡수부재(330)로부터 받는 힘은 거의 '0'이라고 볼 수 있다.
그리고 2구간은 질량체(321a, 321b)가 수직방향으로 진동하는 힘이 커져서 질량체(321a, 321b)의 위, 아래에 구비된 진동흡수부재(330)를 누르게 되는 경우로 진동흡수부재(330)로부터 탄성력이 발생하여 질량체(321a, 321b)의 진동이 억제됨으로써 소음을 줄이게 된다. 그러나 아직 2구간은 질량체(321a, 321b)의 진동 시 케이스(310)에 접촉하지는 않는 구간이다. 2구간에서는 질량체(321a, 321b)의 진동 시 진폭이 클수록 진동흡수부재(330)의 탄성력이 더 크게 발생하여 질량체(321a, 321b)의 진동을 억제한다.
질량체(321a, 321b)가 수직방향으로 진동하는 힘이 더 커져서 진동흡수부재(330)의 탄성력보다 더 커지게 되면 질량체(321a, 321b)는 결국 케이스(310)와 닿게 되어 케이스(310)가 질량체(321a, 321b)의 운동을 억제하게 된다. 이때에는 질량체(321a, 321b)와 케이스(310)의 접촉에 의해 소음이 발생한다.
따라서, 질량체(321a, 321b)의 진동 시 소음을 줄이기 위해 가능하면 질량체(321a, 321b)는 1구간이나 2구간에 해당되도록 진동하는 것이 바람직하다.
도 20은 본 발명의 제3 실시예에 따른 진동흡수부재를 나타내는 사시도이다.
도면을 참조하면 진동흡수부재(330)의 표면에는 질량체와의 마찰면을 줄이기 위한 홈(333)이 형성될 수 있다. 이때, 홈(333)에는 윤활유(335) 또는 그리스(grease)가 채워져 진동흡수부재(330)와 질량체 사이의 마찰력을 줄일 수 있고 이에 따라 진동흡수부재(330)의 수명을 연장할 수 있다.
도 21은 본 발명의 제3 실시예에 따른 선형진동기의 다른 예를 보여주는 측면도이다.
도면을 참조하면 본 발명의 제3 실시예에 따른 선형진동기(300)는 케이스(310)와 진동흡수부재(330) 사이에 구비되는 보강부재(340)를 더 포함할 수 있다. 보강부재(340)의 케이스(310)의 마주보는 상, 하부면에 부착된다. 보강부재(340)는 낙하 또는 외부 충격 등에 의해 갑자기 질량체(321a)가 진동흡수부재(330)에 충격을 주어 그 충격으로 진동흡수부재(330)의 변형이 야기되는 경우, 진동흡수부재(330)의 변형을 최소화하여 선형진동기(300)의 기능을 안정화하도록 설치된다. 보강부재(340)는 평상시에는 질량체(321a)에 영향을 주지 않고 돌발 상황이 발생하는 경우 진동흡수부재(330)를 보호한다.
본 발명의 제4 실시예에 따른 선형진동기를 도 22 내지 도 25를 참조하여 설명하면 다음과 같다.
도 22의 (a) 및 (b)는 본 발명의 제4 실시예에 따른 선형진동기의 정면도 및 측면도이다.
도면을 참조하면, 본 발명의 제4 실시예에 따른 진동흡수부재(430)는 마찰부재(431) 및 진동가이드부재(433)를 포함하여 구성된다.
마찰부재(431)는 질량체(421a)와 질량체(421a)의 양단에 구비된 스프링(423a)에 대응하는 케이스(410)의 마주보는 상, 하부면에 부착된다. 따라서, 질량체(421a)가 스프링(423a)에 의한 왕복 운동 외에 다른 방향 즉, 상하 방향으로 운동 할 때 케이스(410)와 충돌함으로써 발생하는 소음은 방지할 수 있지만, 마찰부재(431)와의 충돌에 의해서도 소음이 발생할 수 있다.
질량체(421a)와 마찰부재(431)와의 소음을 방지하기 위해 케이스(410)의 상부면에 형성된 마찰부재(431)와 질량체(421a) 사이에 진동가이드부재(433)를 구비한다.
진동가이드부재(433)는 양단이 평평하고 양단의 사이에 적어도 하나의 볼록한 부분을 갖는 판부재로, 양단은 스프링(423a)에 대응하고, 가운데 부분은 질량체(431a)에 대응한다. 질량체(431a)에 대응하는 진동가이드부재(433)의 볼록한 부분은 마찰부재(431)와 접촉하지 않고, 양단이 마찰부재(431)에 접촉하도록 구비된다. 진동가이드부재(433)는 각 질량체(421a, 421b)에 하나씩 총 2개가 구비될 수 있다.
이와 같이 마찰부재(431)와 진동가이드부재(433)를 포함하는 진동흡수부재(430)는 질량체(421a)가 마찰부재(431)와 충돌하여 발생하는 소음을 방지할 수 있으며, 진동가이드부재(433)의 재질 또는 형상으로 인해 발생하는 탄성력으로 질량체(421a)의 상하 방향으로 진동을 저감시킬 수 있다.
마찰부재(431)와 진동가이드부재(433)를 포함하는 진동흡수부재(430)는 그 형상이 다양하다.
도 23 및 도 24는 본 발명의 제4 실시예에 따른 선형진동기의 진동흡수부재의 다른 예를 보여주는 평면도 및 정면도로, 진동흡수부재(430)는 마찰부재(431)와 진동가이드부재(433)를 포함하되, 진동가이드부재(433)는 볼 형상을 갖도록 형성된다.
마찰부재(431)는 질량체(421a)와 질량체(421a)의 양단에 구비된 스프링(423a)에 대응하는 케이스(410)의 마주보는 상, 하부면에 부착된다.
진동가이드부재(433)가 볼 형상을 가지면서 질량체(421a)와 마찰부재(431)의 접촉을 방지하기 위해 질량체(421a)에는 볼 형상의 진동가이드부재(433)가 구비되기 위한 일정 크기를 갖는 홈(426)이 형성되어야 한다.
홈(426)은 질량체(421a)에 복수개 형성되는 것이 바람직하며 대칭적으로 하나의 질량체(421a)에 두 개씩 총 4개가 형성될 수 있다.
진동가이드부재(433)는 질량체(421a)와 마찰부재(431)와의 접촉을 방지하기 위해 홈(426)의 외부로 돌출되는 크기를 갖는 것이 바람직하다. 따라서, 질량체(421a)가 상하방향으로 진동할 때 질량체(421a)의 윗면이 마찰부재(431)에 접촉하지 않고 진동가이드부재(433)가 마찰부재(431)에 접촉한다.
진동가이드부재(433)는 탄성이 있는 재질로 제조되어 탄성력에 의해 질량체(421a)의 상하방향으로의 진동을 저감시키는 것이 바람직하나, 탄성이 없는 재질로 제조되는 경우 진동가이드부재(433)에 탄성력을 제공하는 탄성부재(429)가 진동가이드부재(433)의 아래에 위치하도록 홈(426)에 구비될 수 있다.
도 25는 본 발명의 제4 실시예에 따른 선형진동기의 진동흡수부재의 다른 예를 보여주는 정면도로, 진동흡수부재(430)는 마찰부재(431)와 진동가이드부재(433)를 포함하되, 진동가이드부재(433)는 케이스(410)의 상부면과 상부면에 부착된 영구자석(413) 사이에 구비된다.
진동가이드부재(433)는 양단이 평평하고 양단의 사이에 볼록한 부분을 갖도록 형성되는 판부재로, 평평한 양단은 질량체(421a) 및 스프링(423a)에 대응하고 볼록한 부분은 코일부(425)에 대응한다.
진동가이드부재(433)는 코일부(425)에 대응하는 가운데 볼록한 부분은 케이스(410)에 접촉하고, 양단은 케이스(410)에 접촉하지 않도록 부착된다. 따라서, 질량체(421a)가 상하방향으로 진동하여 진동가이드부재(433)와 충돌하더라도 진동가이드부재(433)가 케이스(410)와 이격되어 있으므로 케이스(410)와 충돌하여 발생하는 소음을 저감시킬 수 있다.
마찰부재(431)는 질량체(421a)의 상부면에 구비되어 질량체(421a)와 진동가이드부재(433)의 접촉을 방지하고, 질량체(421a)에 대응하는 케이스(410)의 하부면의 내부에 구비되어 질량체(421a)와 케이스(410)의 접촉을 방지한다.
또한, 도시된 바와 같이 본 발명의 제4 실시예에 따른 선형진동기(400)의 질량체(421a)에도 역시 돌기가 형성되어 질량체(421a)와 마찰부재(431)의 접촉 면적을 줄일 수 있다.
이아 같이 본 발명에 따른 선형진동기는 질량체와 케이스 사이에 진동흡수부재를 구비하여 질량체와 케이스의 접촉을 방지하고 질량체의 운동방향과 다른 방향의 진동을 저감시킬 수 있다. 이에 따라 진동 시에 발생하는 소음을 줄일 수 있다.
이상에서, 본 발명의 구성 및 동작을 상기한 설명 및 도면에 따라 도시하였지만 이는 예를 들어 설명한 것에 불과하며, 본 발명의 기술적 사상 및 범위를 벗어나지 않는 범위 내에서 다양한 변화 및 변경이 가능함은 물론이다.

Claims (17)

  1. 케이스의 내부에 영구자석, 코일부 및 회로기판을 구비하고, 상기 회로기판을 통해 외부로부터 전원이 입력되면 상기 코일부와 상기 영구자석 사이에 작용하는 전자기력에 의해 질량체가 진동하는 선형 진동기에 있어서,
    상기 질량체와 상기 케이스 사이에 구비되어 상기 질량체와 상기 케이스의 접촉을 방지하고, 탄성력에 의해 상기 질량체의 운동방향과 다른 방향의 진동을 저감시키는 진동흡수부재;를 포함하는 것을 특징으로 하는 선형진동기.
  2. 제1항에 있어서,
    상기 진동흡수부재는 양단이 평평하고 양단의 사이에 적어도 하나의 볼록한 부분을 갖도록 형성되며, 상기 양단이 상기 케이스에 접촉하고 상기 가운데 부분은 상기 케이스와 접촉하지 않도록 상기 케이스에 부착되는 것을 특징으로 하는 선형진동기.
  3. 제2항에 있어서,
    상기 진동흡수부재는 상기 질량체에 대응하는 상기 케이스의 마주보는 상, 하부면에 각각 부착되는 것을 특징으로 하는 진동흡수부재를 갖는 선형진동기.
  4. 제1항에 있어서,
    영구자석 및 회로기판이 각각 구비되는 케이스;
    스프링으로 상기 케이스에 연결되는 한 쌍의 질량체;
    상기 질량체 사이에 구비되는 코일부; 및
    상기 질량체와 상기 케이스 사이에 구비되어 상기 질량체와 상기 케이스의 접촉을 방지하고, 탄성력에 의해 상기 질량체의 운동방향과 다른 방향의 진동을 저감시키는 진동흡수부재;를 포함하는 것을 특징으로 하는 선형진동기.
  5. 제1항에 있어서,
    상기 진동흡수부재는 평평한 판 형상을 갖도록 형성되며, 상기 질량체에 대응하는 상기 케이스의 마주보는 상, 하부면에 부착되는 것을 특징으로 하는 선형진동기.
  6. 제1항에 있어서,
    상기 진동흡수부재는 상기 케이스에 부착되는 면은 평평하고, 그 반대면의 일부는 볼록하게 형성되는 것을 특징으로 하는 선형진동기.
  7. 제1항에 있어서,
    상기 질량체의 표면에는 적어도 하나의 돌기가 더 형성되는 것을 특징으로 하는 선형진동기.
  8. 제7항에 있어서,
    상기 돌기에 대응하며 상기 돌기보다 크기가 큰 홈이 상기 진동흡수부재의 볼록한 면에 더 형성되는 것을 특징으로 하는 선형진동기.
  9. 제1항에 있어서,
    상기 진동흡수부재는,
    상기 질량체 및 스프링에 대응하는 상기 케이스의 마주보는 상, 하부면에 부착되는 마찰부재; 및
    양단이 평평하고 상기 양단의 사이에 적어도 하나의 볼록한 부분을 갖도록 형성되며, 상기 질량체에 대응하는 가운데 부분은 상기 마찰부재에 접촉하지 않고 상기 스프링에 대응하는 양단이 상기 마찰부재에 접촉하는 진동가이드부재;를 포함하는 것을 특징으로 하는 선형진동기.
  10. 제1항에 있어서,
    상기 진동흡수부재는,
    상기 질량체 및 스프링에 대응하는 상기 케이스의 내부에 부착되는 마찰부재; 및
    볼 형상을 갖도록 형성되며, 상기 질량체에 일정 크기를 갖도록 형성된 적어도 하나의 홈에 일부가 돌출되도록 구비되는 진동가이드부재;를 포함하는 것을 특징으로 하는 선형진동기.
  11. 제10항에 있어서,
    상기 진동가이드부재의 아래에 위치하도록 상기 질량체에 형성된 홈에 구비되어 상기 진동가이드부재에 탄성력을 제공하는 탄성부재;를 더 포함하는 것을 특징으로 하는 선형진동기.
  12. 제1항에 있어서,
    상기 진동흡수부재는,
    양단이 평평하고 상기 양단의 사이에 볼록한 부분을 갖도록 형성되며, 상기 볼록한 부분은 코일부의 상부에 대응하는 상기 케이스에 접촉하고 상기 양단은 상기 질량체 및 상기 스프링에 대응하며 상기 케이스에 접촉하지 않는 진동가이드부재; 및
    상기 질량체의 상부면에 구비되어 상기 질량체와 상기 진동가이드부재의 접촉을 방지하고, 상기 질량체에 대응하는 상기 케이스에 하부면의 내부에 구비되어 상기 질량체와 상기 케이스의 접촉을 방지하는 마찰부재;를 포함하는 것을 특징으로 하는 선형진동기.
  13. 제1항 내지 제7항 중 어느 한 항에 있어서,
    상기 진동흡수부재의 표면에는 상기 질량체와의 마찰면을 줄이기 위한 복수의 돌기 또는 홈이 형성된 것을 특징으로 하는 선형진동기.
  14. 제1항 내지 제12항 중 어느 한 항에 있어서,
    상기 진동흡수부재에는 윤활유 또는 그리스(grease)가 도포된 것을 특징으로 하는 선형진동기.
  15. 제1항 내지 제7항 중 어느 한 항에 있어서,
    상기 진동흡수부재는 내부에 공간부를 갖고 상기 공간부에 공기가 포함된 상태로 밀폐되는 것을 특징으로 하는 선형진동기.
  16. 제1항 내지 제4항 중 어느 한 항에 있어서,
    상기 케이스와 상기 진동흡수부재 사이에 구비되는 보강부재;
    를 더 포함하는 것을 특징으로 하는 선형진동기.
  17. 제1항 내지 제12항 중 어느 한 항에 있어서,
    상기 케이스의 전, 후면에 부착되어 상기 코일부와 상기 케이스와 충돌하는 경우 상기 코일부의 충격을 완화하는 제1 댐핑부; 및
    상기 케이스의 좌, 우측면에 부착되어 상기 질량체가 진동하면서 상기 케이스와 충돌하는 경우 상기 질량체의 충격을 완화하는 제2 댐핑부; 중 하나 이상을 더 포함하는 것을 특징으로 하는 진동흡수부재를 갖는 선형진동기.
PCT/KR2010/004454 2009-10-05 2010-07-08 선형진동기 WO2011043536A1 (ko)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
KR1020090094413A KR101095568B1 (ko) 2009-10-05 2009-10-05 저소음 선형 진동기의 구조
KR10-2009-0094413 2009-10-05
KR10-2009-0095879 2009-10-08
KR1020090095879A KR20110038550A (ko) 2009-10-08 2009-10-08 선형진동기의 노이즈 감쇄 장치
KR10-2009-0104721 2009-10-31
KR1020090104721A KR20110047917A (ko) 2009-10-31 2009-10-31 선형진동기의 노이즈 감쇄 장치
KR20100044492A KR101217093B1 (ko) 2010-05-12 2010-05-12 진동흡수부재를 갖는 선형진동기
KR10-2010-0044492 2010-05-12

Publications (1)

Publication Number Publication Date
WO2011043536A1 true WO2011043536A1 (ko) 2011-04-14

Family

ID=43856970

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/004454 WO2011043536A1 (ko) 2009-10-05 2010-07-08 선형진동기

Country Status (1)

Country Link
WO (1) WO2011043536A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018538594A (ja) * 2015-10-13 2018-12-27 ダヴ タクト・インターフェースモジュールのアクチュエータ、タクト・インターフェースモジュール、及び触覚フィードバックを生成する方法
WO2020245467A1 (en) 2019-06-07 2020-12-10 Syndermix Ag Vibration generator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050122101A (ko) * 2004-06-23 2005-12-28 삼성전기주식회사 수직진동자
JP2006007161A (ja) * 2004-06-29 2006-01-12 Namiki Precision Jewel Co Ltd 振動リニアアクチュエータ
JP2007252195A (ja) * 2006-03-17 2007-09-27 Lg Innotek Co Ltd 線形振動器
KR100892318B1 (ko) * 2006-07-06 2009-04-08 엘지이노텍 주식회사 선형 진동기
KR100902920B1 (ko) * 2008-06-24 2009-06-15 최재수 진동발전기

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050122101A (ko) * 2004-06-23 2005-12-28 삼성전기주식회사 수직진동자
JP2006007161A (ja) * 2004-06-29 2006-01-12 Namiki Precision Jewel Co Ltd 振動リニアアクチュエータ
JP2007252195A (ja) * 2006-03-17 2007-09-27 Lg Innotek Co Ltd 線形振動器
KR100892318B1 (ko) * 2006-07-06 2009-04-08 엘지이노텍 주식회사 선형 진동기
KR100902920B1 (ko) * 2008-06-24 2009-06-15 최재수 진동발전기

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018538594A (ja) * 2015-10-13 2018-12-27 ダヴ タクト・インターフェースモジュールのアクチュエータ、タクト・インターフェースモジュール、及び触覚フィードバックを生成する方法
WO2020245467A1 (en) 2019-06-07 2020-12-10 Syndermix Ag Vibration generator

Similar Documents

Publication Publication Date Title
US8288899B2 (en) Horizontal linear vibrator
WO2010123288A2 (en) Linear vibrator
WO2016010180A1 (ko) 햅틱 엑추에이터
US8410642B2 (en) Flat linear vibrator
WO2016021834A1 (ko) 햅틱 액추에이터
WO2012036425A2 (ko) 진동 발생기 및 그 제조방법
WO2015069017A1 (ko) 선형 진동 발생장치
US20140054983A1 (en) Linear vibrator
CN106208605A (zh) 一种线性振动马达
KR100992264B1 (ko) 리니어 진동 모터
WO2019164174A1 (ko) 스틱형 진동 드라이버
KR101184545B1 (ko) 선형 진동모터
WO2021137619A1 (ko) 수평형 리니어 진동발생장치
WO2011043536A1 (ko) 선형진동기
KR101184502B1 (ko) 선형 진동자
KR20140128525A (ko) 리니어 액추에이터
WO2015115754A1 (ko) 선형 진동모터
KR101095565B1 (ko) 수평 선형 진동기
CN109256928B (zh) 线性振动器
KR101217093B1 (ko) 진동흡수부재를 갖는 선형진동기
WO2017061740A1 (ko) 진동 발생기 및 그 제조 방법
KR20120033038A (ko) 수평 선형 진동기
CN215580855U (zh) 一种y向线性振动马达
KR20120051504A (ko) 선형 진동기
WO2018038408A1 (ko) 진동 발생 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10822181

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10822181

Country of ref document: EP

Kind code of ref document: A1