WO2011040428A1 - 抗腫瘍剤およびそのスクリーニング方法 - Google Patents

抗腫瘍剤およびそのスクリーニング方法 Download PDF

Info

Publication number
WO2011040428A1
WO2011040428A1 PCT/JP2010/066890 JP2010066890W WO2011040428A1 WO 2011040428 A1 WO2011040428 A1 WO 2011040428A1 JP 2010066890 W JP2010066890 W JP 2010066890W WO 2011040428 A1 WO2011040428 A1 WO 2011040428A1
Authority
WO
WIPO (PCT)
Prior art keywords
ccl19
cells
tumor
ccl21
positive
Prior art date
Application number
PCT/JP2010/066890
Other languages
English (en)
French (fr)
Inventor
千恵 工藤
河上 裕
Original Assignee
学校法人慶應義塾
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人慶應義塾 filed Critical 学校法人慶應義塾
Priority to JP2011534262A priority Critical patent/JP5801202B2/ja
Publication of WO2011040428A1 publication Critical patent/WO2011040428A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/24Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against cytokines, lymphokines or interferons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/73Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation

Definitions

  • the present invention relates to an antitumor agent and a screening method thereof.
  • the chemokines CCL19 and CCL21 are specifically expressed in stromal cells in lymph nodes (see Seminar of Immunology, 2003, 15: 271-276), and their receptors CCR7 and CCR10 (The Journal of Immunology) , 2000, 164: 2851-2856)), which expresses mature dendritic cells and T cells (see Nature Immunology, 2005, 5: 617-628), and has the function of proliferating and activating. Therefore, using this function, attempts have been made to obtain an antitumor effect by expressing CCL19 and CCL21 in tumors and attracting mature dendritic cells and T cells (British Journal of Cancer, 2006, 94: 1029-1034). However, the effect was divided among experts (see JNCI, 2008, 100: 502-512).
  • An object of the present invention is to provide an antitumor agent containing an inhibitor of CCL19 or CCL21 and a screening method thereof.
  • the present inventors have demonstrated that a neutralizing antibody that suppresses the functions of CCL19 and CCL21 has an antitumor effect by suppressing tumor metastasis or alleviating immunosuppression by tumor cells in a mouse tumor model. As a result, the present invention has been completed.
  • One embodiment of the present invention is an antitumor agent, and the antitumor agent contains an inhibitor that inhibits the function of CCL19 or CCL21.
  • One embodiment of the present invention is a method of using an inhibitor that inhibits the function of CCL19 or CCL21 in the production of an antitumor agent.
  • One embodiment of the present invention is a method for treating a tumor patient, wherein an inhibitor that inhibits the function of CCL19 or CCL21 is administered to the patient.
  • the inhibitor may be an anti-CCL19 antibody or a partial antibody thereof, an anti-CCL21 antibody or a partial antibody thereof, a dominant negative mutant of CCL19, or a dominant negative mutant of CCL21.
  • one embodiment of the present invention is a screening method for identifying an antitumor agent, comprising the step of examining whether a candidate compound inhibits the function of CCL19 or CCL21.
  • Example of this invention it is a figure which shows the result of having investigated the immunosuppression by the culture supernatant of a tumor cell, the recovery
  • mouth In one Example of this invention, it is a figure which shows the cancellation
  • mouth In one Example of this invention, it is a figure which shows the cancellation
  • mouth In one Example of this invention, it is a figure which shows
  • Example of this invention it is a figure which shows the cancellation
  • CCL19 also called MIP-3 ⁇ (macrophage inflammatory protein-3 ⁇ ) or ELC
  • CCL21 MIP-2 (macrophage inflammatory protein-2, SLC (secondary lymph chemokine)
  • 6Ckine or an inhibitor that inhibits the function of Exodus-2
  • CCL19 and CCL21 are chemokines belonging to the CC chemokine family.
  • human CCL19 protein it is described in Swiss-Prot Q99731
  • human CCL21 protein it is described in Swiss-Prot ⁇ ⁇ ⁇ ⁇ O00585 and the like.
  • the origin of CCL19 and CCL21 is not particularly limited and may be a homolog or ortholog of an animal other than a human, but is preferably the same animal species as the subject animal species to which the antitumor agent is administered.
  • the inhibitor that inhibits the function of CCL19 or CCL21 is not particularly limited as long as it can inhibit the function, but it inhibits the binding function with receptors such as CCR7 and CCR10 outside the cell or CCL19 in the cell. It is efficient to inhibit the function by suppressing the expression of the gene or CCL21 gene.
  • the function inhibitory substance include neutralizing antibodies such as polyclonal antibodies and monoclonal antibodies, low molecular compounds, antagonists, dominant negative mutants, aptamers such as nucleic acid aptamers and peptide aptamers, and the like.
  • the neutralizing antibody is not particularly limited as long as the function can be inhibited, and may be an artificial antibody such as a chimeric antibody or a humanized antibody, or a partial antibody containing an antigen-binding site, such as an F (ab ′) 2 fragment or Fab. It may be a fragment.
  • antisense RNA, shRNA, siRNA, miRNA, ribozyme and the like can be exemplified.
  • what is necessary is just to determine the arrangement
  • the shape, components, administration method and the like of the antitumor agent are not particularly limited, and any known one or method suitable for the active ingredient may be used.
  • an antitumor agent that inhibits the function of CCL19 or CCL21 can be administered systemically regardless of whether it functions extracellularly or intracellularly. Administration to the tumor is preferred.
  • the antitumor agent of the present invention not only suppresses the growth of tumor cells, but also can cancel host immune suppression by tumor cells, so it can also be used as a tumor growth inhibitor, a host immune suppression release agent, It can be suitably used not only for tumors with strong proliferation ability but also for tumors with strong host immunosuppression ability.
  • the type of tumor to be treated is not particularly limited. Neuroma, renal cancer, liver cancer, pancreatic cancer, sarcoma, colon cancer, melanoma, lung cancer, esophageal cancer, uterine cancer, testicular cancer, ovarian cancer, leukemia, lymphoma, myeloma Solid tumors or blood cancers may be used, but tumors expressing CCL19 or CCL21 are preferred, and colon cancer and pancreatic cancer are particularly preferred.
  • the screening method for identifying an antitumor agent comprises a step of examining whether a candidate compound inhibits the function of CCL19 or CCL21.
  • the step of examining whether a candidate compound inhibits the function of CCL19 or CCL21 is not particularly limited, but for example, a known method of whether the compound inhibits the binding function with a receptor such as CCR7 or CCR10 extracellularly Specifically, the method described in US Pat. No. 6,153,441 can be used. In addition, it may be examined whether the expression of CCL19 gene or CCL21 gene is suppressed in the cell. In that case, RT-PCR shows gene expression by ELISA, Western blotting, or flow cytometry using antibodies. For example, protein expression can be examined.
  • PBMC mononuclear cell fraction
  • the culture supernatant was collected after culturing for 5 days in MIAPaca tumor cells bottom area 25 cm 1x10 2 culture flasks five seeding 10% fetal bovine serum-containing D-MEM medium 10 mL (Invitrogen Corporation) PBMC containing 0.5 mL of this culture supernatant (finally diluted 2-fold) and each antibody (anti-CCL19 antibody, anti-CCL21 antibody, Goat IgG as a control antibody are all manufactured by R & D, final concentration is 5 ⁇ g / mL) 0.5 mL of suspension (1x10 6 ) was mixed 1: 1 and co-cultured using a 24-well plate (FALCON) for 5 days.
  • FALCON 24-well plate
  • PBMCs were collected, reacted with anti-CD4 antibody, anti-NKG2D antibody, anti-DNAM1 antibody, anti-FOXP3 antibody (all manufactured by BD Pharmingen) and analyzed for the cell population by FACS.
  • PBMCs were cultured in the culture supernatant of MIAPaca tumor cells for 5 days as described above, and then CD4 positive (partially FOXP3 positive), CD56 positive ( Some FOXP3-positive cells or CD4 / CD56 co-positive (mostly FOXP3-positive) cell groups were separated with antibody-coupled MACS magnetic beads (Miltenyi), and their immunosuppressive activity was examined.
  • CD4 positive or CD8 positive T cells (2 ⁇ 10 5 cells) separated from PBMC separately separated using antibody-coupled MACS magnetic beads (Miltenyi), anti-CD3 antibody (1 ⁇ g / mL, Biolegend),
  • MACS magnetic beads Mononuclear cells (1x10 5 ) inactivated by MMC treatment as PBMC as antigen presenting cells.
  • CD4 positive or CD8 positive T cells The growth rate was examined.
  • FOXP3 expression in CD4-positive CD56-positive cells tended to increase more than CCL19 and CCL21 alone when similarly cultured using both recombinant proteins CCL19 and CCL21 (bottom right, peak in Fig. 2). . That is, the combination of the recombinant proteins CCL19 and CCL21 tends to increase the CD4 low-expressing CD56-positive FOXP3-positive cell group.
  • analysis of FIG. 1C and D was performed using PBMC extract
  • CCL19 and CCL21 produced in the culture supernatant by tumor cells contribute to the promotion of proliferation of regulatory T cells, and by inhibiting the function of CCL19 or CCL21 secreted by tumor cells, tumor cells Can inhibit immunosuppression.
  • CT26 cells (1 ⁇ 10 6 cells) were transplanted subcutaneously into the right flank of BALB / c mice, and 10 ⁇ g of neutralizing antibody specific for CCL19 or CCL21 was added to the tumor mass formed after 5 days from the transplanted cells. Vaccinated.
  • the control group was inoculated with 10 ⁇ g of isotype goat IgG.
  • both antibodies suppressed tumor growth (FIG. 3A), but a stronger therapeutic effect was obtained particularly when the anti-CCL19 antibody was administered.
  • tumor tissue is collected from each mouse, and after first being broken apart with surgical scissors, the tumor infiltrating cells are leaked into the liquid by crushing them with a disposable syringe piston in RPMI medium.
  • the mouse NK cell marker DX5-positive and CD25-positive and CD4 low-expressing cell groups were detected, as in the in vitro test results using MIAPaca cells.
  • This cell group was decreased in the tumor administered with the anti-CCL19 antibody (FIG. 3B). Therefore, it is considered that the anti-CCL19 antibody released antitumor immune suppression by the tumor.
  • CD4 expressing FOXP3 was compared with the control group when anti-CCL19 antibody was administered.
  • the sputum in which the number of positive cells was reduced (FIG. 3B bottom). That is, it is presumed that the number of helper type anti-tumor effector type CD4 T cells that do not show suppressive activity and assist the function of CD8 positive cells and the like is increasing.
  • the growth of tumor cells can be suppressed by inhibiting the function of CCL19 or CCL21 secreted by the tumor cells.
  • siRNA was administered to a tumor mass formed by transplanting mouse colon cancer cell line CT26 cells into mice, and CCL19 expression was observed. It is shown that a tumor growth inhibitory effect can be obtained in vivo by inhibiting.
  • siRNA-CCL19s (sense): GGAACATCGTGAAAGCCTT (SEQ ID NO: 1) siRNA-CCL19as (antisense): AAGGCUUUCACGAUGUUCCTT (SEQ ID NO: 2) Control siRNAs (sense): CCAGAAGUACUACCGCAAU (SEQ ID NO: 3) Control siRNAas (antisense): AUUGCGGUAGUACUUCUGG (SEQ ID NO: 4)
  • the tumor volume after 10 days after cell transplantation was significantly smaller than the non-treatment group (No (treatment in the figure) and the control group (Control in the figure) (P ⁇ 0.01, FIG. 4A).
  • CCL19 function inhibitory substances including siRNA-CCL19 have a tumor growth inhibitory action, that is, an antitumor action.
  • the CT26 cell line was transplanted subcutaneously into the right flank of the mouse, and siRNA-CCL19 was injected into the tumor mass. 15 days after cell transplantation, the tumor tissue and the inguinal lymph node were removed, and each tumor cell infiltrating cells or lymphocytes were leaked into the liquid by crushing them with a disposable syringe piston in RPMI medium. These cells were analyzed by flow cytometry using antibodies.
  • Anti-CD25 antibody, anti-CD4 antibody, anti-CD8 antibody, anti-FOXP3 antibody, anti-CD11c antibody, anti-IA (d) antibody are purchased from BD Pharmingen, anti-NKG2DBD antibody is purchased from eBioscience, and H-2L (d) restricted Sex AH1 tetramer (CT26 tumor antigen, peptide sequence: SPSYVYHQF) was purchased from MBL.
  • the tumor-infiltrating cells collected from siRNA-CCL19 administered to the tumor mass were negative for CD25, a suppressor T cell marker, compared to the non-administered group (13.38%) and the control group (14.35%).
  • the number of CD4 positive cells was remarkably large (10.45%, FIG. 5A top).
  • the number of NKG2D positive and CD4 positive cells that are activated NK cell markers was significantly lower in the siRNA-CCL19 administration group than in the non-administration group (15.38%) and the control group (14.82%) (6.21%, FIG. 5A). Bottom).
  • siRNA-CCL19 by administering siRNA-CCL19 to mouse tumor tissue, anti-tumor immune suppression such as decreased CD4 low-expressing cells, decreased FOXP3-positive cells, increased CD8-positive fine cells in tumor tissues and lymph nodes The effect of cancellation is obtained. Therefore, CCL19 function inhibitory substances including siRNA-CCL19 have an antitumor effect.
  • CD8 positive T cells by specifically inhibiting the expression of CCL19 as shown in (3), CD8 positive T cells (CTL) in the spleen It shows that the effect of enhancing tumor cytotoxic activity and increasing interferon / gamma production is obtained.
  • CT26 cells were transplanted subcutaneously into the right flank of the mouse, and siRNA-CCL19 was injected into the tumor. 15 days after cell transplantation, the spleen was removed and spleen cells were collected by crushing in RPMI medium using a disposable syringe piston.
  • MBL Immunocyto Cytotoxicity Detection Kit
  • CD8 in each test group having a CT26 tumor cell to CD8 positive T cell ratio of 1:10 to 1:40 was compared with the non-administration group and the control group.
  • the rate of tumor cytotoxicity increased significantly with increasing proportion of positive T cells (p ⁇ 0.05).
  • CD8 positive T cells (2 ⁇ 10 5 cells) were inactivated with AH1 peptide (1 ⁇ g / ml) and mitomycin C (10 ⁇ g / ml, 37 ° C., 2 hours) spleen cells (2 ⁇ 10 6 ) were added as antigen-presenting cells, and cultured in RPMI medium containing 10% fetal bovine serum at 37 ° C. for 24 hours. Thereafter, the interferon gamma value contained in the culture supernatant was measured using a Cytometric Bead Array kit (BD Biosciences) according to the attached protocol.
  • the CD8 positive T cells obtained from the mice in the siRNA-CCL19 administration group had a significantly higher amount of interferon than the CD8 positive T cells obtained from the mice in the non-administration group and the control group. • Produced gamma (p ⁇ 0.01).
  • CCL19 function inhibitors such as siRNA-CCL19 have antitumor activity.
  • the present invention can provide an antitumor agent containing a CCL19 or CCL21 function inhibitor and a screening method therefor.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oncology (AREA)
  • Hematology (AREA)
  • Biochemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

 本発明の目的は、抗腫瘍剤およびそのスクリーニング方法を提供することである。抗腫瘍剤は、CCL19またはCCL21の機能を阻害する阻害物質を含有することとする。また、抗腫瘍剤の候補となる化合物が、CCL19またはCCL21の機能を阻害するかどうかを調べることにより、抗腫瘍剤を同定する。

Description

抗腫瘍剤およびそのスクリーニング方法
 本発明は、抗腫瘍剤およびそのスクリーニング方法に関する。
 ケモカインであるCCL19やCCL21は、リンパ節などに存在するストローマ細胞に特異的に発現し(Seminar of Immunology, 2003, 15: 271-276 参照)、その受容体であるCCR7やCCR10(The Journal of Immunology, 2000, 164: 2851-2856 参照)を発現した成熟樹状細胞やT細胞を呼び寄せ(Nature Review Immunology, 2005, 5: 617-628 参照)、増殖させたり活性化させたりする機能を有する。そこで、この機能を利用して、CCL19やCCL21を腫瘍内で発現させ、成熟樹状細胞やT細胞を呼び寄せることによって、抗腫瘍効果を得ようとする試みがなされてきた(British Journal of Cancer, 2006, 94: 1029-1034 参照)。しかしながら、その効果については、専門家の間でも議論が分かれていた(JNCI, 2008, 100: 502-512 参照)。
 本発明は、CCL19やCCL21の阻害物質を含有する抗腫瘍剤およびそのスクリーニング方法を提供することを目的とする。
 本発明者らは、CCL19やCCL21の機能を抑制する中和抗体が、マウス腫瘍モデルにおいて、腫瘍転移を抑制したり、腫瘍細胞による免疫抑制を緩和したりすることにより、抗腫瘍作用を有することを見出し、本発明の完成に至った。
 本発明の一実施形態は抗腫瘍剤であって、この抗腫瘍剤は、CCL19またはCCL21の機能を阻害する阻害物質を含有する。また、本発明の一実施形態は、抗腫瘍剤の製造における、CCL19またはCCL21の機能を阻害する阻害物質の使用方法である。また、本発明の一実施形態は、腫瘍患者の治療方法であって、前記患者に、CCL19またはCCL21の機能を阻害する阻害物質を投与する。これらいずれの実施形態においても、前記阻害物質が、抗CCL19抗体またはその部分抗体、抗CCL21抗体またはその部分抗体、CCL19のドミナント・ネガティブ変異体、またはCCL21のドミナント・ネガティブ変異体であってもよい。
 さらに、本発明の一実施形態は、抗腫瘍剤を同定するためのスクリーニング方法であって、候補となる化合物が、CCL19またはCCL21の機能を阻害するかどうかを調べる工程を含有する。
 ==クロスリファレンス==
 本出願は、2009年9月29日付で出願した日本国特許出願2009-225034に基づく優先権を主張するものであり、当該基礎出願を引用することにより、本明細書に含めるものとする。
本発明の一実施例において、腫瘍細胞の培養上清による免疫抑制と、CCL19またはCCL21の阻害による回復、また、リコンビナントタンパク質CCL19またはCCL21による免疫抑制を調べた結果を示す図である。 本発明の一実施例において、リコンビナントタンパク質CCL19、CCL21、または、その組み合わせによる免疫抑制を調べた結果を示す図である。 本発明の一実施例において、CCL19またはCCL21の阻害による腫瘍体積増加抑制効果と、そのときの抗腫瘍免疫抑制の解除効果を調べた結果を示す図である。 本発明の一実施例において、マウスの腫瘍塊にsiRNA-CCL19を注入することによってCCL19の発現を抑制した場合の、腫瘍体積増加抑制効果を示す図である。 本発明の一実施例において、マウスの腫瘍塊にsiRNA-CCL19を注入することによってCCL19の発現を抑制した場合の、抗腫瘍免疫抑制の解除効果を示す図である。 本発明の一実施例において、マウスの腫瘍塊にsiRNA-CCL19を注入することによってCCL19の発現を抑制した場合の、リンパ節における抗腫瘍免疫抑制の解除効果を示す図である。 本発明の一実施例において、マウスの腫瘍塊にsiRNA-CCL19を注入することによってCCL19の発現を抑制した場合の、脾臓における抗腫瘍免疫抑制の解除効果を示す図である。
 以下、実施例を挙げながら、本発明の実施形態を詳細に述べる。実施の形態及び実施例に特に説明がない場合には、J. Sambrook, E. F. Fritsch & T. Maniatis (Ed.), Molecular cloning, a laboratory manual (3rd edition), Cold Spring Harbor Press, Cold Spring Harbor, New York (2001); F. M. Ausubel, R. Brent, R. E. Kingston, D. D. Moore, J.G. Seidman, J. A. Smith, K. Struhl (Ed.), Current Protocols in Molecular Biology, John Wiley & Sons Ltd.などの標準的なプロトコール集に記載の方法、あるいはそれを修飾したり、改変した方法を用いる。また、市販の試薬キットや測定装置を用いる場合には、特に説明が無い場合、それらに添付のプロトコールを用いる。
 なお、本発明の目的、特徴、利点、及びそのアイデアは、本明細書の記載により、当業者には明らかであり、本明細書の記載から、当業者であれば、容易に本発明を再現できる。以下に記載された発明の実施の形態及び具体的に実施例などは、本発明の好ましい実施態様を示すものであり、例示又は説明のために示されているのであって、本発明をそれらに限定するものではない。本明細書で開示されている本発明の意図並びに範囲内で、本明細書の記載に基づき、様々な改変並びに修飾ができることは、当業者にとって明らかである。
==抗腫瘍剤==
 本発明にかかる抗腫瘍剤は、CCL19(MIP-3β(マクロファージ炎症性タンパク質-3β)、またはELCとも呼ばれる)、CCL21(MIP-2(マクロファージ炎症性タンパク質-2、SLC(二次リンパケモカイン)、6Ckine、またはエクソダス-2とも呼ばれる)の機能を阻害する阻害物質を含有し、CCL19またはCCL21の機能を阻害することにより効果を発揮する。
 CCL19及びCCL21は、CCケモカイン・ファミリーに属するケモカインであって、例えば、ヒトCCL19タンパク質の場合、Swiss-Prot Q99731などに記載され、ヒトCCL21タンパク質の場合、Swiss-Prot O00585などに記載されているが、本明細書では、CCL19及びCCL21の由来は特に限定されず、ヒト以外の動物のホモログでもオーソログでもよいが、抗腫瘍剤を投与する対象の動物種と同じ動物種であることが好ましい。
 CCL19またはCCL21の機能を阻害する阻害物質は、それらの機能を阻害することができれば特に限定されないが、細胞外でCCR7やCCR10などの受容体との結合機能を阻害するか、細胞内でのCCL19遺伝子またはCCL21遺伝子の発現を抑制することによって機能を阻害することが効率的である。前者の場合、機能阻害物質として、ポリクローナル抗体・モノクローナル抗体等の中和抗体、低分子化合物、アンタゴニスト、ドミナント・ネガティブ変異体、核酸アプタマー・ペプチドアプタマー等のアプタマー等が例示できる。中和抗体は、機能阻害ができれば特に限定されず、キメラ抗体・ヒト化抗体等の人工抗体や、抗原結合部位が含まれる部分抗体であってもよく、例えばF(ab')2フラグメントやFabフラグメントでもよい。また、後者の場合、アンチセンスRNA、shRNA、siRNA、miRNA、リボザイムなどを例示できる。なお、これらの核酸の配列は、公知の方法に従って決定すればよい。
 抗腫瘍剤の形状、成分、投与方法等は、有効成分に適した公知のものまたは方法を用いればよく、特に限定されない。例えば、CCL19またはCCL21の機能を阻害する抗腫瘍剤は、細胞外で機能するものであっても、細胞内で機能するものであっても、全身投与することができるが、注入などによって、直接腫瘍に投与するのが好ましい。
 本発明の抗腫瘍剤は、腫瘍細胞の増殖を抑制するだけでなく、腫瘍細胞による宿主免疫抑制を解除することができるので、腫瘍増殖抑制剤、宿主免疫抑制解除剤としても用いることができ、増殖能の強い腫瘍だけでなく、宿主免疫抑制能の強い腫瘍に対しても、好適に用いることができる。
 治療対象となる腫瘍の種類は特に限定されず、神経腫、腎癌、肝癌、膵癌、肉腫、大腸癌、メラノーマ、肺癌、食道癌、子宮癌、精巣癌、卵巣癌、白血病、リンパ腫、骨髄腫など、固形癌でも血液のがんでもかまわないが、CCL19またはCCL21を発現している腫瘍であることが好ましく、特に、大腸癌や膵臓癌が好ましい。
==抗腫瘍剤のスクリーニング方法==
 本発明にかかる、抗腫瘍剤を同定するためのスクリーニング方法は、候補となる化合物が、CCL19またはCCL21の機能を阻害するかどうかを調べる工程を含有する。
 候補化合物がCCL19またはCCL21の機能を阻害するかどうかを調べる工程は特に限定されないが、例えば、その化合物が細胞外でCCR7やCCR10などの受容体との結合機能を阻害するかどうかを公知の方法で調べればよく、具体的には米国特許6,153,441に記載の方法を利用できる。また、細胞内でのCCL19遺伝子またはCCL21遺伝子の発現を抑制するかどうかを調べてもよく、その場合、RT-PCRでは遺伝子発現を、抗体を用いたELISA法やウエスタンブロッティング法、フローサイトメトリー法などではタンパク発現を調べることができる。
 その後、CCL19またはCCL21の機能を阻害する化合物を選択し、抗腫瘍剤としての薬理活性や安全性を調べる。例えば、in vitroにおいて、細胞増殖抑制活性や細胞障害活性を調べる。
(1)腫瘍細胞の培養上清による免疫抑制と、CCL19またはCCL21の阻害による回復
 本実施例では、MIAPaca腫瘍細胞の培養上清が、免疫細胞に対して機能抑制することと、CCL19タンパク質またはCCL21タンパク質の作用を抑制することによって、腫瘍細胞による免疫抑制を阻害することができることを示す。
 まず、健常人から採取した血液に1/10量の4%クエン酸ナトリウムを加え、Ficoll-Paque (Amersham社)に重層して遠心(1500rpm、20分、室温)して、その中間層に分離された単核球分画(PBMC)を単離した。一方、MIAPaca腫瘍細胞を底面積25 cm2の培養フラスコに1x105個播種して10mLの10%牛胎児血清含有D-MEM培地 (Invitrogen社)で5日間培養した後の培養上清を回収し、この培養上清0.5mL (最終的に2倍希釈)と各抗体(抗CCL19抗体、抗CCL21抗体、対照抗体としてのGoat IgGは全てR&D社製、最終濃度は5 μg/mL)を含むPBMC浮遊液0.5mL (1x106個)を1:1で混合して24穴プレート (FALCON社)を用いて5日間共培養した。
 その後、PBMCを回収し、抗CD4抗体、抗NKG2D抗体、抗DNAM1抗体、抗FOXP3抗体(全てBD Pharmingen社製)と反応させ、FACSで細胞群の解析を行ったところ、CD4の発現に関し、CD4高発現群とCD4低発現群の2群が出現し、そのうちCD4低発現群は、MIAPaca腫瘍細胞の上清を加えない細胞(図ではNo stimulantと示す)では6%であるのに対し、MIAPaca腫瘍細胞の上清で培養した細胞(図ではGoat IgGと示す)では24%となり、MIAPaca腫瘍細胞の上清で培養することにより、顕著に増加した (図1A:No stimulantでは6%、Goat IgGは24%)。このCD4低発現群の細胞は、活性化NK細胞マーカーであるNKG2DやDNAM1および強い免疫抑制活性を示すことで知られる制御性T細胞のマスター分子であるFOXP3を共発現していた (図1A)。(なお、図中では、右上の数字が、それぞれのマーカーを発現するCD4低発現細胞群の割合(%)を示す。)
 この培養系に、CCL19またはCCL21に特異的な中和抗体(BD Pharmingen社)をそれぞれ添加すると(図ではそれぞれ、Anti-CCL19およびAnti-CCL21と示す)、どちらの場合もそれらCD4低発現細胞群の増加が抑制された (図1A)。
 さらに、CD4低発現群の細胞の性質を調べるため、PBMCを上述のようにMIAPaca腫瘍細胞の培養上清で5日間培養した後、その培養系からCD4陽性 (一部FOXP3陽性)、CD56陽性 (一部FOXP3陽性)、または、CD4/CD56共陽性(ほとんどがFOXP3陽性)の細胞群を抗体結合MACS磁気ビーズ(Miltenyi社)で分離し、その免疫抑制活性を調べた。すなわち、別途分離したPBMCから抗体結合MACS磁気ビーズ(Miltenyi社)を用いて分離したCD4陽性またはCD8陽性のT細胞(2x105個)と、抗CD3抗体 (1 μg/mL, Biolegend社)と、抗原提示細胞としてPBMCをMMC処理で不活化した単核球(1x105個)とを加えた10%牛胎児血清含有RPMI培地 (Invitrogen社)を用いて培養するT細胞増殖反応系において、MMCで不活性化したCD4陽性、CD56陽性、または、CD4/CD56共陽性の細胞をそれぞれ2x105個加え、96穴プレートを用いて3日間培養し(200μL/穴)、CD4陽性またはCD8陽性のT細胞の増殖率を調べた。その結果、腫瘍細胞の上清で培養しなかった場合(図ではNoneと示す)に比較し、MIAPaca腫瘍細胞の培養上清で5日間培養したPBMCから分離したどの細胞群もT細胞の増殖を抑制し、特に、CD4/CD56共陽性細胞による抑制が最も強く検出された(図1B)。
 一方、リコンビナントタンパク質CCL19またはCCL21(20 ng/mL、R&D社)で5日間刺激培養した場合(図では、それぞれCCL19及びCCL21と示す)も、MIAPaca腫瘍細胞の培養上清の場合(図では、Tumor supと示す)と同様、CD4低発現CD56陽性FOXP3陽性の細胞群の増加が観察された (図1C)。また、リコンビナントタンパク質CCL19とCCL21の両方を用いて同様に刺激培養した場合、CCL19およびCCL21単独よりもCD4低発現CD56陽性細胞群がさらに増加する傾向がみられた(図2 上段)。CD4陽性CD56陽性細胞におけるFOXP3発現については、リコンビナントタンパク質CCL19とCCL21の両方を用いて同様に刺激培養した場合、CCL19およびCCL21単独よりも増加する傾向がみられた(図2下段、右のピーク)。つまり、リコンビナントタンパク質CCL19とCCL21の併用により、CD4低発現CD56陽性FOXP3陽性細胞群が増加する傾向がある。なお、図1CとDの解析は、異なる健常人から採取したPBMCを用いて行った。
 このように、腫瘍細胞によって培養上清に産生されたCCL19及びCCL21が、制御性T細胞の増殖促進に寄与しており、腫瘍細胞が分泌するCCL19またはCCL21の機能を阻害することにより、腫瘍細胞による免疫抑制を阻害することができる。
(2)CCL19またはCCL21の阻害による抗腫瘍効果
 本実施例では、MIAPaca細胞と同様にCCL19とCCL21を産生するマウス大腸癌細胞株CT26細胞をマウスに移植し、in vivoにおいてCCL19またはCCL21を阻害することによって抗腫瘍効果が得られることを示す。
 すなわち、BALB/cマウス右腹側部皮下にCT26細胞 (1x106個)を移植し、5日後に形成された移植細胞による腫瘍塊に、CCL19またはCCL21に特異的な中和抗体をそれぞれ10 μg接種した。対照群には、アイソタイプであるgoat IgGを10 μg接種した。移植2週間後に腫瘍体積を測定したところ、どちらの抗体も腫瘍増殖を抑制した(図3A)が、特に、抗CCL19抗体を投与した場合の方が強い治療効果が得られた。
 また、各マウスから腫瘍組織を採取し、まずは外科用はさみでばらばらに破壊した後、RPMI培養液中でディスポ注射器ピストンを用いて押し潰すことで腫瘍内浸潤細胞を液内に漏出させ、この細胞についてBD Pharmingen社より購入した各抗体を用いてフローサイトメトリーで解析した。その結果、対照群(図ではControlと示す)ではMIAPaca細胞を用いたin vitro試験結果と同様に、マウスNK細胞のマーカーであるDX5陽性かつCD25陽性でCD4低発現の細胞群が検出されたが、抗CCL19抗体を投与した腫瘍内ではこの細胞群が減少していた(図3B)。従って、抗CCL19抗体が、腫瘍による抗腫瘍免疫抑制を解除したと考えられる。
 また、CD4陽性分画に位置する細胞群にゲートを設定し、その細胞群が発現するFOXP3について解析したところ、抗CCL19抗体を投与した場合に、対照群と比較して、FOXP3を発現するCD4陽性細胞数が減少していた (図3B 下段)。つまり、抑制活性を示さない、CD8陽性細胞などの働きを補助するヘルパー系の抗腫瘍エフェクタータイプのCD4 T細胞が増加していると推測される。
 このように、腫瘍細胞が分泌するCCL19またはCCL21の機能を阻害することにより、腫瘍細胞の増殖を抑制することができる。
(3)siRNAを用いたCCL19発現の阻害による抗腫瘍効果
 本実施例では、マウス大腸癌細胞株CT26細胞をマウスに移植することで形成された腫瘍塊に対してsiRNAを投与し、CCL19の発現を阻害することによって、in vivoで腫瘍増殖抑制効果が得られることを示す。
 まず、BALB/cマウス右腹側部皮下にCT26細胞 (1x106個)を移植した。そして、以下に示す配列を有するオリゴヌクレオチドをアニーリングさせたCCL19特異的siRNA(siRNA-CCL19)あるいは対照siRNA(Invitrogen社)に対し、polyethylenimine(Polyplus Transfection 社)を用いて脂質複合体を形成し、細胞の移植5日後に形成された移植細胞による腫瘍塊に、個体あたり3 μgのsiRNAを注入した(非投与、対照、siRNA投与各群においてN=3)。細胞の移植から7、11、15日目に腫瘍体積を測定した。 
 siRNA-CCL19s(センス):GGAACATCGTGAAAGCCTT(配列番号1)
 siRNA-CCL19as(アンチセンス):AAGGCUUUCACGAUGUUCCTT(配列番号2)
 対照siRNAs(センス): CCAGAAGUACUACCGCAAU(配列番号3)
 対照siRNAas(アンチセンス): AUUGCGGUAGUACUUCUGG(配列番号4)
 その結果、siRNA-CCL19投与群では、非投与群(図ではNo treatment)および対照群(図ではControl)と比較して、細胞移植後10日目以降の腫瘍体積が有意に小さかった(P<0.01、図4A)。
 この結果は、腫瘍細胞が分泌するCCL19の発現を特異的に抑制することにより、腫瘍細胞の増殖を抑制できることを示している。このように、siRNA-CCL19をはじめとするCCL19機能阻害物質は、腫瘍増殖抑制作用、すなわち抗腫瘍作用を有している。
(4)siRNAを用いた抗腫瘍免疫抑制の解除効果
 本実施例では、(3)で示したように腫瘍細胞によるCCL19の発現を特異的に抑制することにより、抗腫瘍免疫抑制を解除する効果が得られることを示す。
 (3)の記載と同様にして、マウス右腹側部皮下にCT26細胞株を移植し、腫瘍塊にsiRNA-CCL19を注入した。細胞の移植15日後に腫瘍組織と鼠径リンパ節を摘出し、それぞれRPMI培養液中でディスポ注射器ピストンを用いて押し潰すことで、腫瘍内浸潤細胞あるいはリンパ球を液内に漏出させた。これらの細胞について抗体を用いてフローサイトメトリーで解析した。なお、抗CD25抗体、抗CD4抗体、抗CD8抗体、抗FOXP3抗体、抗CD11c抗体、抗I-A(d)抗体はBD Pharmingen社、抗NKG2DBD抗体はeBioscience社から購入し、H-2L(d)拘束性AH1テトラマー(CT26腫瘍抗原、ペプチド配列:SPSYVYHQF)はMBL社から購入した。
 その結果、siRNA-CCL19を腫瘍塊に投与した個体から採取した腫瘍内浸潤細胞では、非投与群(13.38%)および対照群(14.35%)に比較して、抑制性T細胞マーカーであるCD25陰性、かつCD4陽性の細胞数が顕著に多かった(10.45%、図5A 上段)。活性化NK細胞マーカーであるNKG2D陽性かつCD4陽性細胞数はsiRNA-CCL19投与群では、非投与群(15.38%)および対照群(14.82%)と比較して顕著に少なかった(6.21%、図5A 下段)。また、CD4陽性分画に位置する細胞群にゲートを設定し、その細胞群が発現するFOXP3について解析したところ、制御性T細胞のマスター分子であるFOXP3を発現するCD4陽性細胞数は、siRNA-CCL19を投与した腫瘍内浸潤細胞において対照群(41.15%)と比較して顕著に少なかった(35.26%、図5B)。すなわち、siRNA-CCL19の投与により、免疫抑制に関与する制御性T細胞が減少し、CD4陰性細胞が減少し、そしてCD4陽性細胞が増加した。さらに、siRNA-CCL19投与群の腫瘍浸潤細胞では、CT26腫瘍抗原であるAH1テトラマー(図ではTetramer)に結合するCD3陽性成熟T細胞数が、非投与群(4.61%)および対照群(3.39%)と比較して顕著に多かった(14.87%、図5C)。
 鼠径リンパ節から採取したリンパ球については、細胞傷害性T細胞のマーカーであるCD8陽性かつCD4陽性の細胞数が、非投与群(21.13%)および対照群(20.96%)と比較してsiRNA-CCL19投与群で顕著に多く(30.56%、図6A)、また、CD11cおよびI-A(d)(MHCクラスII)陽性細胞数が非投与群(2.59%)、対照群(1.90%)比較して顕著に多かった(14.85%、図6B)。
 このように、siRNA-CCL19をマウス腫瘍組織に投与することで、腫瘍組織およびリンパ節においてCD4低発現細胞の減少、FOXP3陽性細胞の減少、CD8陽性細細胞の増加、といった、抗腫瘍免疫抑制の解除の効果が得られる。従って、siRNA-CCL19をはじめとするCCL19機能阻害物質は、抗腫瘍効果を有している。
(5)siRNAを用いた脾臓CD8陽性T細胞の活性化
 本実施例では、(3)で示したようにCCL19の発現を特異的に阻害することにより、脾臓におけるCD8陽性T細胞(CTL)による腫瘍細胞傷害活性の増強、および、インターフェロン・ガンマ産生量増加の効果が得られることを示す。
 (3)の記載に従い、マウス右腹側部皮下にCT26細胞を移植し、siRNA-CCL19を腫瘍に注入した。細胞の移植15日後に脾臓を摘出し、RPMI培養液中でディスポ注射器ピストンを用いて押し潰すことで、脾臓細胞を採取した。
 まず脾臓組織から得られた全脾臓細胞を、AH1ペプチド(1 μg/ml)を添加した20mlの10%ウシ胎児血清含有RPMI培地(Invitrogen社)において6日間培養した(N=3)。その後、MACSビーズ法(Miltenyl Biotec社)で単離したCD8陽性T細胞を用いて細胞傷害活性試験を行った。具体的には、CT26腫瘍細胞と、単離したCD8陽性T細胞とを1:40、1:20、1:10、1:5、1:2.5、1:1.25の比で10%ウシ胎仔血清含有RPMI培地に播種し、4時間、37℃で培養し、その後、Immunocyto Cytotoxicity Detection Kit(MBL社)を用いて、CD8陽性T細胞により殺傷されたCT26腫瘍細胞を検出した。腫瘍特異的殺傷率は、キットに添付のプロトコールに従って算出した。
 その結果、図7Aに示すように、siRNA-CCL19投与群では、非投与群および対照群に比較して、CT26腫瘍細胞対CD8陽性T細胞比1:10~1:40の各試験群でCD8陽性T細胞の割合の増加に伴って有意に腫瘍細胞傷害率が上昇した(p<0.05)。
 また、CD8陽性T細胞(2×105個)に、AH1ペプチド(1 μg/ml)、および、マイトマイシンCで不活性化(10 μg/ml、37℃、2時間)した脾臓細胞(2×106個)を抗原提示細胞として加え、10%ウシ胎児血清含有RPMI培地において37℃で24時間培養した。その後、培養上清に含まれるインターフェロン・ガンマ値をCytometric Bead Arrayキット(BD Biosciences社)を用い、添付プロトコールに従って測定した。
 その結果、図7Bに示すように、非投与群および対照群のマウスから得られたCD8陽性T細胞より、siRNA-CCL19投与群のマウスから得られたCD8陽性T細胞は、有意に多量のインターフェロン・ガンマを産生した(p<0.01)。
 このように、腫瘍細胞が分泌するCCL19の発現を特異的に阻害することにより、脾臓由来CD8陽性T細胞の腫瘍細胞傷害活性の増強、および、インターフェロン・ガンマ産生活性増強、という効果が得られる。従って、siRNA-CCL19をはじめとするCCL19の機能阻害物質は抗腫瘍作用を有している。
 本発明によって、CCL19やCCL21の機能阻害物質を含有する抗腫瘍剤およびそのスクリーニング方法を提供することができる。

Claims (3)

  1.  CCL19またはCCL21の機能を阻害する阻害物質を含有する抗腫瘍剤であって、
     前記阻害物質が、抗CCL19抗体またはその部分抗体、抗CCL21抗体またはその部分抗体、またはsiRNAであることを特徴とする抗腫瘍剤。
  2.  抗腫瘍剤の製造における、CCL19またはCCL21の機能を阻害する阻害物質の使用方法であって、
     前記阻害物質が、抗CCL19抗体またはその部分抗体、またはsiRNAであることを特徴とする、使用方法。
  3.  抗腫瘍剤を同定するためのスクリーニング方法であって、
     候補となる化合物が、CCL19またはCCL21の機能を阻害するかどうかを調べる工程を含有する方法。
PCT/JP2010/066890 2009-09-29 2010-09-29 抗腫瘍剤およびそのスクリーニング方法 WO2011040428A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011534262A JP5801202B2 (ja) 2009-09-29 2010-09-29 抗腫瘍剤およびそのスクリーニング方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009225034 2009-09-29
JP2009-225034 2009-09-29

Publications (1)

Publication Number Publication Date
WO2011040428A1 true WO2011040428A1 (ja) 2011-04-07

Family

ID=43826244

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/066890 WO2011040428A1 (ja) 2009-09-29 2010-09-29 抗腫瘍剤およびそのスクリーニング方法

Country Status (2)

Country Link
JP (1) JP5801202B2 (ja)
WO (1) WO2011040428A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002091996A2 (en) * 2001-05-11 2002-11-21 Schering Corporation Methods for treating cancer
WO2004045526A2 (en) * 2002-11-15 2004-06-03 Morehouse School Of Medicine Anti-chemokine and associated receptors antibodies for inhibition of growth of neoplasms
EP1640018A1 (en) * 2004-09-24 2006-03-29 Universität Zürich Combinational therapy for treating cancer
WO2007003426A1 (en) * 2005-07-06 2007-01-11 Universidad Autónoma de Madrid Anti-ccr7 receptor antibodies for the treatment of cancer
WO2007075592A2 (en) * 2005-12-23 2007-07-05 The Regents Of The University Of Michigan Materials and methods for treating chronic fibrotic disease

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002091996A2 (en) * 2001-05-11 2002-11-21 Schering Corporation Methods for treating cancer
WO2004045526A2 (en) * 2002-11-15 2004-06-03 Morehouse School Of Medicine Anti-chemokine and associated receptors antibodies for inhibition of growth of neoplasms
EP1640018A1 (en) * 2004-09-24 2006-03-29 Universität Zürich Combinational therapy for treating cancer
WO2007003426A1 (en) * 2005-07-06 2007-01-11 Universidad Autónoma de Madrid Anti-ccr7 receptor antibodies for the treatment of cancer
WO2007075592A2 (en) * 2005-12-23 2007-07-05 The Regents Of The University Of Michigan Materials and methods for treating chronic fibrotic disease

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DING, Y. ET AL.: "Association of CC chemokine receptor 7 with lymph node metastasis of esophageal squamous cell carcinoma", CLINICAL CANCER RESEARCH, vol. 9, 2003, pages 3406 - 3412 *
WILEY, H.E. ET AL.: "Expression of CC chemokine receptor-7 and regional lymph node metastasis of B16 murine melanoma", JOURNAL OF THE NATIONAL CANCER INSTITUTE, vol. 93, no. 21, 2001, pages 1638 - 1643, XP009149768 *
ZHAO, Z-J ET AL.: "Effect of chemokine receptor 7 small interfering RNA on proliferation and invasion of squamous cell carcinoma of head and neck", CHIN. J. STOMATOL., vol. 44, no. 1, January 2009 (2009-01-01), pages 5 - 10 *

Also Published As

Publication number Publication date
JP5801202B2 (ja) 2015-10-28
JPWO2011040428A1 (ja) 2013-02-28

Similar Documents

Publication Publication Date Title
Ronchetti et al. Glucocorticoid-induced tumour necrosis factor receptor-related protein: a key marker of functional regulatory T cells
de Almeida et al. Anti-VEGF treatment enhances CD8+ T-cell antitumor activity by amplifying hypoxia
JP2023178302A (ja) 能動的細胞免疫療法のためのサイトカイン組成物を用いたリンパ球の増殖
Staudt et al. Interferon-regulatory factor 4 is essential for the developmental program of T helper 9 cells
JP5641599B2 (ja) 腫瘍細胞による免疫抑制の解除剤とそれを用いた抗腫瘍剤
Morandi et al. A novel mechanism of soluble HLA-G mediated immune modulation: downregulation of T cell chemokine receptor expression and impairment of chemotaxis
Dixon et al. Remodeling of the tumor microenvironment via disrupting Blimp1+ effector Treg activity augments response to anti-PD-1 blockade
KR20230016183A (ko) 키메라 항원 수용체를 발현하는 바이러스 특이적 면역 세포
Ellis et al. Induced CD8+ FoxP3+ Treg cells in rheumatoid arthritis are modulated by p38 phosphorylation and monocytes expressing membrane tumor necrosis factor α and CD86
Kang et al. Targeted knock down of CCL22 and CCL17 by siRNA during DC differentiation and maturation affects the recruitment of T subsets
JP2020524514A (ja) T細胞の増殖方法及び用途
JP5801202B2 (ja) 抗腫瘍剤およびそのスクリーニング方法
Muraoka et al. Signal-transducing adaptor protein-2 promotes generation of functional long-term memory CD8+ T cells by preventing terminal effector differentiation
Thangavadivel et al. CCR10/CCL27 crosstalk contributes to failure of proteasome-inhibitors in multiple myeloma
Sun et al. A dendritic/tumor fusion cell vaccine enhances efficacy of nanobody-based CAR-T cells against solid tumor
US20230406944A1 (en) Il-23r antagonists to reprogram intratumoral t regulatory cells into effector cells
Mise-Omata et al. SOCS3 deletion in effector T cells confers an anti-tumorigenic role of IL-6 to the pro-tumorigenic cytokine
Halvorsen Recruitment, phenotype and function of tumour-infiltrating regulatory T cells in the lung microenvironment
US20210145830A1 (en) Materials and methods for treating cancer
Peng et al. Preclinical specificity and activity of a fully human 4-1BB expressing anti-CD19 CART therapy for treatment-resistant autoimmune disease
Toffoli et al. J Immunother Cancer. 2023 Dec 6; 11 (12): e007554.* authors contributed equally
Li et al. NK-92MI Cells Engineered with Anti-claudin-6 Chimeric Antigen Receptors in Immunotherapy for Ovarian Cancer
Khan Targeting therapeutic T cells to the bone marrow niche
Sun et al. Tumor Induced PD-L1 on Neutrophils Suppress the Antitumor Immunity of NK Cells via PD-L1/PD-1 Axis
WO2023141530A2 (en) Receptors providing targeted costimulation for adoptive cell therapy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10820543

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2011534262

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10820543

Country of ref document: EP

Kind code of ref document: A1