WO2011040079A1 - Radiation image pickup device - Google Patents

Radiation image pickup device Download PDF

Info

Publication number
WO2011040079A1
WO2011040079A1 PCT/JP2010/057835 JP2010057835W WO2011040079A1 WO 2011040079 A1 WO2011040079 A1 WO 2011040079A1 JP 2010057835 W JP2010057835 W JP 2010057835W WO 2011040079 A1 WO2011040079 A1 WO 2011040079A1
Authority
WO
WIPO (PCT)
Prior art keywords
integrated circuit
insulating substrate
wirings
wiring
radiation imaging
Prior art date
Application number
PCT/JP2010/057835
Other languages
French (fr)
Japanese (ja)
Inventor
美広 岡田
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2011040079A1 publication Critical patent/WO2011040079A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14665Imagers using a photoconductor layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/30Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming X-rays into image signals

Definitions

  • the present invention relates to a radiographic apparatus, and more particularly, to a radiographic apparatus that captures an image indicated by irradiated radiation.
  • a radiographic apparatus using a radiation imaging device such as an FPD (flat panel detector) capable of directly converting X-ray information into digital data by placing an X-ray sensitive layer on a TFT (Thin film transistor) active matrix substrate. It has become.
  • This radiation imaging device has an advantage that an image can be confirmed instantly and a moving image can be confirmed as compared with a conventional imaging plate, and is rapidly spreading.
  • Patent Document 1 discloses a technique for forming a scanning wiring driving circuit and a signal line driving circuit for driving TFTs in a flexible display substrate in an active matrix organic EL display (organic electroluminescence display). ing. JP 2000-298198 A
  • the scanning wiring driving circuit or the signal line driving circuit is poor in yield, and scanning is performed when the scanning is curved. Disconnections are likely to occur in the wiring in the wiring drive circuit and signal line drive circuit. Therefore, there is a problem that a radiation image cannot be stably taken.
  • the scanning wiring drive circuit can be composed of a shift register having a relatively small circuit scale, even if it is a poly-Si (polysilicon) TFT technology or an a-Si (amorphous silicon) TFT having a low mobility, a TFT array Techniques for forming on a substrate have been proposed.
  • poly-Si TFTs and a-Si TFTs formed by TFT manufacturing equipment have low mobility and a large minimum line width, so a large area is required to realize a drive circuit.
  • the mobility and minimum line width of MOS transistors on silicon are 600 cm2 / V ⁇ s and 0.1-0.5 um, whereas in poly-Si TFT, 10-30 cm2 / V ⁇ s, 3-5 um and a-Si TFT 0.5cm2 / V ⁇ s, 4-6um.
  • the poly-Si TFT requires about 300 times the area of the MOS transistor, and the a-Si TFT requires 12,000 times the area of the MOS transistor.
  • an object of the present invention is to provide a radiation imaging apparatus that can bend and stably capture a radiation image.
  • the radiation imaging apparatus has at least one side or two opposite sides on the outer edge in one direction in plan view, and each is irradiated with radiation to be detected.
  • a plurality of pixels each having a switch element for accumulating the charges generated and reading the charges, and a plurality of scanning wirings through which a control signal for switching each switch element included in each pixel flows;
  • a flexible insulating substrate provided with a plurality of signal wirings through an insulating film through which an electric signal corresponding to the electric charge stored in the pixel flows according to the switching state of each switch element;
  • the first integrated circuit is provided on the insulating substrate for each of the first number of scanning wirings, and outputs the control signal to the first number of scanning wirings.
  • a second integrated circuit that is provided on the insulating substrate for each predetermined second number of the signal wirings and that detects an electrical signal flowing through the second number of signal wirings; and A control circuit which is provided on the one side or two opposite sides and is electrically connected to the first integrated circuit and the second integrated circuit to control operations of the first integrated circuit and the second integrated circuit; It is equipped with.
  • the radiation imaging apparatus of the present invention is generated by irradiating a flexible insulating substrate having at least one side or two opposite sides at one edge in a plan view with radiations to be detected.
  • a plurality of pixels each provided with a switch element for accumulating charges and reading the charges are provided in a matrix.
  • On this insulating substrate a plurality of scanning wirings through which control signals for switching each switch element provided in each pixel flow, and an electrical signal corresponding to the charge accumulated in the pixel according to the switching state of each switch element flow.
  • a plurality of signal wirings are provided via an insulating film.
  • a first integrated circuit that outputs a control signal to each of the predetermined number of scanning wirings is provided on the insulating substrate for each predetermined number of scanning wirings.
  • a second integrated circuit that detects an electrical signal flowing through the second number of signal wirings is provided for each of the predetermined second number of signal wirings.
  • the operation of the first integrated circuit and the second integrated circuit is controlled by being electrically connected to the first integrated circuit and the second integrated circuit on one side or two opposite sides of the insulating substrate.
  • a control circuit is provided.
  • pixels are provided in a matrix, and a plurality of scanning wirings through which control signals for switching the switch elements of the pixels flow and charges accumulated in the pixels according to the switching states of the switch elements
  • a first integrated circuit that outputs a control signal and an electrical signal that flows through the signal wiring are detected on a flexible insulating substrate provided with a plurality of signal wirings through which an electrical signal corresponding to the current flows via an insulating film
  • a control circuit for controlling the operation of the first integrated circuit and the second integrated circuit is provided on one side of the insulating substrate or on the two opposite sides, so that the control circuit is connected to the insulating substrate. Therefore, the insulating substrate can be curved.
  • the insulating substrate does not bend at the first integrated circuit and the second integrated circuit, but is bent at a portion between the first integrated circuit and the second integrated circuit, so that the insulating substrate is bent in the first integrated circuit and the second integrated circuit. Since no disconnection occurs in the wiring, a radiation image can be stably taken.
  • the plurality of signal wirings are provided in parallel in the one direction
  • the plurality of scanning wirings are provided in parallel in a crossing direction with respect to the one direction
  • a plurality of second wirings that are provided in parallel in one direction and are provided via the first wiring and the insulating film, and are connected to the different first wirings through contact holes formed in the insulating film. Also good.
  • the first integrated circuit and the second integrated circuit may be provided on the peripheral portion of the one side or the two opposite sides on the insulating substrate.
  • control circuit includes a first control circuit that controls an operation of the first integrated circuit and a second control circuit that controls an operation of the second integrated circuit, and the first integrated circuit,
  • the first control circuit, the second integrated circuit, and the second control circuit may be provided to face the two sides of the insulating substrate.
  • the plurality of signal lines are provided on the insulating substrate in parallel with the one direction, and the plurality of scanning lines are provided in parallel with the direction intersecting the one direction.
  • the first integrated circuit is provided in the peripheral portion in the cross direction on the insulating substrate, and the connection wiring provided on the insulating substrate or The control circuit may be connected via external wiring outside the insulating substrate.
  • the radiation imaging apparatus of the present invention has an excellent effect of being able to bend and stably capture a radiation image.
  • FIG. 1 shows a detailed configuration of the radiation imaging element 10 according to the present embodiment.
  • the radiation imaging element 10 has a plurality of pixels 20 arranged in a matrix in a radiographic image capturing area E on a flexible insulating substrate 1 having a flat plate rectangular shape.
  • Each pixel 20 includes a sensor unit 103 that accumulates charges generated by light irradiation, and a TFT switch 4 for reading out the charges accumulated in the sensor unit 103.
  • the radiation imaging element 10 includes a plurality of scanning wirings 101 for turning on / off the TFT switch 4 and a plurality of signal wirings 3 for reading out the electric charges accumulated in the sensor unit 103 on the substrate 1. Is provided.
  • the signal wiring 3 is provided in parallel in each pixel column in one direction (lateral direction in FIG. 1) in the matrix arrangement of the plurality of pixels 20 provided. Yes.
  • the first wiring 101 ⁇ / b> A is provided as the scanning wiring 101 in each pixel column in the intersecting direction (vertical direction in FIG. 1) with respect to one direction of the matrix arrangement of the pixels 20.
  • a second wiring 101B is provided in parallel in each pixel column in one direction in the matrix arrangement.
  • Each of the second wirings 101B and each of the first wirings 101A is connected to the first wiring 101A that is different from each of the second wirings 101B on a one-to-one basis.
  • the wiring 101A and the n-th second wiring 101B are connected.
  • a scintillator 30 (see FIG. 3) made of GOS or the like is attached to the surface.
  • the irradiated radiation such as X-rays is converted into light by the scintillator 30 and irradiated to the sensor unit 103.
  • the sensor unit 103 receives the light emitted from the scintillator 30 and accumulates electric charges.
  • Each signal wiring 3 has an electrical signal (image signal) indicating a radiation image in accordance with the amount of charge accumulated in the sensor unit 103 when any TFT switch 4 connected to the signal wiring 3 is turned on. Flows.
  • an amplifier IC (IntegratedIntegrCircuit) 105 is provided side by side for each predetermined first (for example, 256) signal wires 3 on one end side in the signal wiring direction. Yes. Each signal wiring 3 is connected to the amplifier IC 105 for each first number.
  • the gate IC 104 is alternately arranged with the amplifier IC 105 for each predetermined second number (for example, 256) of scanning wirings 101 on one end side in the signal wiring direction. Is provided. Each scanning wiring 101 is connected to the amplifier IC 105 for each second number. In FIG. 1 and FIGS. 8, 11, 13, and 14 to be described later, the connection portion between the signal wiring 3 and the amplifier IC 105 and the connection portion between the scanning wiring 101 and the gate IC 104 are omitted.
  • the gate IC 104 outputs a control signal for turning on / off the TFT switch 4 to each scanning wiring 101.
  • the amplifier IC 105 includes an amplifier circuit for amplifying an input electric signal for each signal wiring 3.
  • the amplifier IC 105 detects the amount of electric charge accumulated in each sensor unit 103 as information of each pixel 20 constituting an image by amplifying and detecting an electric signal input from each signal wiring 3 by an amplifier circuit. .
  • 2 and 3 are a plan view and a side view showing a configuration of the radiation imaging element 10 according to the present embodiment and a control unit 50 for driving the radiation imaging element 10.
  • the radiation imaging element 10 is provided with a male interface (I / F) connector 110 at one end in the signal wiring direction.
  • Each gate IC 104 and each amplifier IC 105 are connected to an I / F connector 110 via an interface (I / F) circuit 112.
  • control unit 50 transforms the control circuit 120 for controlling the operation of each gate IC 104 and each amplifier IC 105, the battery 122, and the electric power charged in the battery 122 to predetermined voltages, respectively.
  • a power supply circuit 124 that supplies the radiation imaging element 10.
  • the control circuit 120 includes a female I / F connector 126 and an output terminal 128, and the I / F connector 110 of the radiation imaging element 10 is connected to the I / F connector 126.
  • the control circuit 120 is electrically connected to each gate IC 104 and each amplifier IC 105 via the I / F connector 126, the I / F connector 110, and the I / F circuit 112.
  • the control circuit 120 performs a predetermined process on the electrical signal detected in each amplifier IC 105 and outputs it from the output terminal 128, and outputs a timing signal indicating the signal detection timing to each amplifier IC 105. In response to this, a timing signal indicating the output timing of a control signal for turning on / off the TFT switch 4 is output.
  • FIG. 4 is a plan view showing the structure of one pixel unit of the radiation imaging element 10 according to the present embodiment
  • FIG. 5 is a sectional view taken along the line AA of FIG. Yes.
  • the radiation imaging element 10 has a second wiring 101 ⁇ / b> B formed on the substrate 1.
  • the wiring layer in which the second wiring 101B is formed (hereinafter this wiring layer is also referred to as “first signal wiring layer”) is formed using Al or Cu, or a laminated film mainly composed of Al or Cu. However, it is not limited to these.
  • a first insulating film 15A is formed on one surface so as to cover the second wiring 101B.
  • the first wiring 101A and the gate electrode 2 are formed on the first insulating film 15A, and the first wiring 101A and the gate electrode 2 are connected (see FIG. 4).
  • the wiring layer in which the first wiring 101A and the gate electrode 2 are formed (hereinafter, this wiring layer is also referred to as “second signal wiring layer”) is made of Al or Cu, or a laminated film mainly composed of Al or Cu. However, the present invention is not limited to these.
  • a contact hole 19 is formed at a position where the nth first wiring 101A and the nth second wiring 101B intersect.
  • the n-th first wiring 101 ⁇ / b> A and the n-th second wiring 101 ⁇ / b> B are connected through the contact hole 19.
  • a second insulating film 15B is formed on one surface so as to cover the first wiring 101A and the gate electrode 2.
  • the portion of the second insulating film 15B located on the gate electrode 2 functions as a gate insulating film in the TFT switch 4.
  • the insulating film 15B is made of, for example, SiN X or the like, and is formed by, for example, CVD (Chemical Vapor Deposition) film formation.
  • the semiconductor active layer 8 is formed in an island shape on the gate electrode 2 on the second insulating film 15B.
  • the semiconductor active layer 8 is a channel portion of the TFT switch 4 and is made of, for example, an amorphous silicon film.
  • a source electrode 9 and a drain electrode 13 are formed on these upper layers.
  • the signal wiring 3 is formed together with the source electrode 9 and the drain electrode 13.
  • the source electrode 9 is connected to the signal wiring 3 (see FIG. 4).
  • the wiring layer in which the signal wiring 3 and the source electrode 9 are formed (hereinafter, this wiring layer is also referred to as “third signal wiring layer”) is made of Al or Cu, or a laminated film mainly composed of Al or Cu. However, it is not limited to these.
  • An impurity doped semiconductor layer (not shown) made of impurity doped amorphous silicon or the like is formed between each of the source electrode 9 and the drain electrode 13 and the semiconductor active layer 8. These constitute the TFT switch 4 for switching.
  • a TFT protective film layer 11 is formed on almost the entire surface of the region on the substrate 1 where the pixels are provided so as to cover the semiconductor active layer 8, the source electrode 9, the drain electrode 13, and the signal wiring 3. Is formed.
  • the TFT protective film layer 11 is made of, for example, SiN X or the like, and is formed by, for example, CVD film formation.
  • a coating type interlayer insulating film 12 is formed on the TFT protective film layer 11.
  • the capacitance between the metals disposed in the upper layer and the lower layer of the interlayer insulating film 12 is suppressed by the interlayer insulating film 12.
  • such a material also has a function as a flattening film, and has an effect of flattening a lower step.
  • a contact hole 16 is formed in the interlayer insulating film 12 and the TFT protective film layer 11 at a position facing the drain electrode 13.
  • a lower electrode 14 of the sensor unit 103 is formed on the interlayer insulating film 12 so as to cover the pixel region while filling the contact hole 16.
  • the lower electrode 14 is connected to the drain electrode 13 of the TFT switch 4.
  • the semiconductor layer 6 described later is as thick as about 1 ⁇ m, the lower electrode 14 has almost no limitation on the material as long as it has conductivity. Therefore, there is no problem if it is formed using a conductive metal such as an Al-based material or ITO (indium tin oxide).
  • the lower electrode 14 is preferably made of an alloy mainly composed of a light shielding metal or a laminated film.
  • a semiconductor layer 6 that functions as a photodiode is formed on the lower electrode 14.
  • a PIN structure photodiode in which an n + layer, an i layer, and a p + layer (n + amorphous silicon, amorphous silicon, and p + amorphous silicon) are stacked is employed as the semiconductor layer 6.
  • n + layer 6A, i layer 6B, and p + layer 6C are sequentially stacked.
  • the i layer 6B generates charges (pairs of free electrons and free holes) when irradiated with light.
  • the n + layer 6A and the p + layer 6C function as contact layers, and electrically connect the lower electrode 14 and an upper electrode 7 (described later) to the i layer 6B.
  • the lower electrode 14 is made larger than the semiconductor layer 6.
  • the semiconductor layer 6 is thin (for example, 0.5 ⁇ m or less)
  • the distance from the channel portion of the TFT switch 4 to the end portion of the lower electrode 14 made of a light shielding metal is set. 5 ⁇ m or more is secured.
  • An upper electrode 7 is formed on the semiconductor layer 6.
  • a material having high light transmittance such as ITO or IZO (zinc oxide indium) is used.
  • a protective insulating film 17 is formed on the interlayer insulating film 12, the semiconductor layer 6, and the upper electrode 7 so as to have an opening 27 ⁇ / b> A in a part corresponding to the upper electrode 7.
  • the protective insulating film 17 is made of, for example, SiNx, like the TFT protective film layer 11, and is formed by, for example, CVD film formation.
  • the common electrode wiring 25 is formed of Al or Cu, or an alloy or laminated film mainly composed of Al or Cu.
  • the common electrode wiring 25 has a contact pad 27 formed in the vicinity of the opening 27 ⁇ / b> A and is electrically connected to the upper electrode 7 through the opening 27 ⁇ / b> A of the protective insulating film 17.
  • a protective film is further formed on the protective insulating film 17 with an insulating material having low light absorption as necessary, and the surface has low light absorption.
  • a scintillator 30 (see FIG. 3) made of GOS or the like is attached using an adhesive resin.
  • the I / F connector 110 is connected to the I / F connector 126 of the control unit 50, and the radiation imaging element 10 is connected to the control unit 50.
  • the radiation imaging element 10 according to the present embodiment is provided with a connection terminal to the outside on one side.
  • the radiation imaging apparatus 100 can easily replace the radiation imaging element 10 and, for example, can be replaced with a radiation imaging element 10 having an optimum sensitivity characteristic according to the subject part.
  • the irradiated X-rays When the radiation imaging element 10 is irradiated with X-rays, the irradiated X-rays are absorbed by the scintillator 30 and converted into visible light. X-rays may be emitted from either the front side or the back side of the radiation imaging element 10. The light converted into visible light by the scintillator 30 is applied to the semiconductor layer 6 of the sensor unit 103 arranged in a matrix on the substrate 1.
  • the radiation imaging element 10 is provided with the semiconductor layer 6 separately for each pixel unit.
  • a predetermined bias voltage is applied to the semiconductor layer 6 from the upper electrode 7 through the common electrode wiring 25, and when light is irradiated, charges are generated inside.
  • the semiconductor layer 6 has a PIN structure in which an n + layer, an i layer, and a p + layer are stacked in this order from the lower layer, a negative bias voltage is applied to the upper electrode 7, and the i layer
  • the applied bias voltage is about ⁇ 5 to ⁇ 10V.
  • an ON signal (+10 to 20 V) is sequentially applied to the gate electrode 2 of the TFT switch 4 via the scanning wiring 101.
  • an electric signal corresponding to the amount of charge accumulated in the lower electrode 14 flows out to the signal wiring 3.
  • the amplifier IC 105 detects the amount of electric charge accumulated in each sensor unit 103 based on the electrical signal that has flowed out to the signal wiring 3 as information of each pixel constituting the image. Thereby, the image information which shows the image shown with the X-ray irradiated to the radiation image pick-up element 10 can be obtained.
  • the pixels 20 are formed in a matrix on the flexible substrate 1, and the gate IC 104 and the amplifier IC 105 are arranged on one side of the substrate 1 in one direction. It is provided in the periphery.
  • the radiation imaging element 10 is connected to the control unit 50 at one side in one direction where the gate IC 104 and the amplifier IC 105 are provided.
  • the gate IC 104, the amplifier IC 105, and the control unit are also used when the radiation imaging device 10 is curved in one direction and the subject S is captured. 50 is not curved. Accordingly, no disconnection occurs in the wiring in the gate IC 104, the amplifier IC 105, and the control unit 50, so that a radiation image can be stably captured.
  • FIG. 8 shows a detailed configuration of the radiation imaging element 10 according to the second embodiment.
  • the same parts as those in the first embodiment (see FIG. 1) are denoted by the same reference numerals, and description thereof is omitted here.
  • the scanning wirings 101 are provided in parallel in each pixel column in the crossing direction (vertical direction in FIG. 8) with respect to one direction of the matrix arrangement of the pixels 20.
  • the radiation imaging element 10 is provided with a gate IC 104 on one end side in the signal wiring direction, and each scanning wiring 101 is connected to a peripheral portion of the substrate 1 or a wiring (not shown) provided on the back surface of the substrate 1. Connected to the gate IC 104.
  • FIG. 9 is a plan view showing the structure of one pixel unit of the radiation imaging element 10 according to the second embodiment.
  • FIG. 10 is a sectional view taken along line AA of FIG. Yes.
  • the same parts as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted here.
  • the first signal wiring layer and the first insulating film 15A are not formed as compared with the first embodiment.
  • the radiation imaging element 10 is constituted by layers higher than the second signal wiring layer.
  • the radiation imaging element 10 has a male I / F connector 110 at one end in the signal wiring direction, as shown in FIGS. Is provided.
  • Each gate IC 104 and each amplifier IC 105 are connected to an I / F connector 110 via an I / F circuit 112, and the I / F connector 110 is connected to an I / F connector 126 of the control unit 50 as shown in FIG. To the control unit 50.
  • the radiation imaging element 10 according to the second embodiment has a connection terminal with the outside on one side, the radiation imaging element 10 can be easily replaced.
  • the gate IC 104 and the amplifier IC 105 are provided on one side of the substrate 1 and are connected to the control unit 50 on the one side, so that the radiation imaging element 10 itself is integrated as shown in FIG. 7.
  • the gate IC 104, the amplifier IC 105, and the control unit 50 are not curved even when the subject S is shot in a curved direction. Accordingly, no disconnection occurs in the wiring in the gate IC 104, the amplifier IC 105, and the control unit 50, so that a radiation image can be stably captured.
  • FIG. 11 shows a detailed configuration of the radiation imaging element 10 according to the third embodiment.
  • the same parts as those in the first embodiment (see FIG. 1) are denoted by the same reference numerals, and description thereof is omitted here.
  • the scanning wirings 101 are provided in parallel in each pixel column in the crossing direction (vertical direction in FIG. 11) with respect to one direction of the matrix arrangement of the pixels 20.
  • the radiation imaging element 10 is provided with a gate IC 104 on one end side in the scanning wiring direction, and each scanning wiring 101 is connected to the gate IC 104.
  • each gate IC 104 is connected to the farthest amplifier IC 105 via a connection wiring 130 provided in the peripheral portion of the substrate 1, and the I / O via the amplifier IC 105 and the interface circuit 112.
  • the F connector 110 is connected.
  • the I / F connector 110 is connected to the I / F connector 126 of the control unit 50 as in the first embodiment.
  • the radiation image sensor 10 is connected to the control unit 50.
  • the radiation imaging element 10 since the connection terminal with the outside is provided on one side, the radiation imaging element 10 can be easily replaced.
  • the gate IC 104 is provided on one end side in the scanning wiring direction, but the substrate 1 has flexibility. As shown in FIG. 7, when imaging is performed by curving the radiation imaging device 10 itself, the substrate 1 between the gate ICs 104 is curved and the gate ICs 104 are not curved. Therefore, since no disconnection occurs in the wiring within the gate IC 104, a radiation image can be stably captured.
  • FIG. 13 shows a detailed configuration of the radiation imaging element 10 according to the fourth embodiment.
  • the same parts as those in the first embodiment (see FIG. 1) are denoted by the same reference numerals, and description thereof is omitted here.
  • the scanning wirings 101 are provided in parallel in the respective pixel columns in the crossing direction (vertical direction in FIG. 13) with respect to one direction of the matrix arrangement of the pixels 20.
  • the radiation imaging element 10 is provided with an amplifier IC 105 on one end side in the scanning wiring direction, and each scanning wiring 101 is connected to the amplifier IC 105.
  • the amplifier IC 105 is provided outside the substrate 1 and connected to the interface circuit 112 via an external wiring 132 such as a printed wiring board, and is connected to the I / F connector 110 via the interface circuit 112.
  • the I / F connector 110 is connected to the I / F connector 126 of the control unit 50 as in the first embodiment.
  • the radiation image sensor 10 is connected to the control unit 50.
  • the radiation imaging element 10 according to the fourth embodiment is provided with a connection terminal on the one side as in the first embodiment, so that the radiation imaging element 10 can be easily replaced. Become.
  • the radiation imaging element 10 is provided with a gate IC 104 on one end side in the scanning wiring direction, but the substrate 1 is flexible. As shown in FIG. 7, when imaging is performed by curving the radiation imaging device 10 itself, the substrate 1 between the gate ICs 104 is curved and the gate ICs 104 are not curved. Therefore, since no disconnection occurs in the wiring within the gate IC 104, a radiation image can be stably captured.
  • the gate IC 104 and the amplifier IC 105 may be provided on two opposite sides of the substrate 1.
  • a gate IC 104 is provided on one side of two opposing sides
  • an amplifier IC 105 is provided on the other side.
  • the control circuit 120 may be provided on one side of the two sides and connected to the other side via an external circuit.
  • the gate control circuit 120 ⁇ / b> A that controls the gate IC 104 and the amplifier control circuit 120 ⁇ / b> B that controls the amplifier IC 105 may be divided and provided on two opposing sides.
  • the present invention is not limited to this.
  • the second wiring 101B and the signal wiring 3 may be formed in the same signal wiring layer.
  • the radiation imaging element 10 of the first embodiment when the second wiring 101B shown in FIG. 5 is formed in the same third signal wiring layer as the signal wiring 3, the first signal wiring layer and the first insulating film 15A are formed. It becomes unnecessary. In this case, it is necessary to ensure insulation between the second wiring 101B and the signal wiring 3.
  • the present invention is not limited to this. Is not to be done.
  • the signal wiring 3 is formed at the end portion of the pixel column in one direction
  • the second wiring 101B is formed at the center portion of the pixel column in one direction so that the distance between the signal wiring 3 and the second wiring 101B is increased. It may be. Thereby, the parasitic capacitance of the signal wiring 3 can be suppressed.
  • FIG. 15 and 16 show an example of another configuration of the radiation imaging element 10 applicable to the first embodiment.
  • FIG. 15 is a plan view showing the structure of one pixel unit of the radiation imaging element 10
  • FIG. 16 is a cross-sectional view taken along the line AA of FIG.
  • the same parts as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted here.
  • the radiation image sensor 10 is not formed with the first signal wiring layer and the first insulating film 15 ⁇ / b> A as compared with the first embodiment.
  • the second signal wiring layer and higher layers are included.
  • the second wiring 101B is formed on the TFT protective film layer 11 and passes through the central portion of the pixel column in one direction.
  • a contact hole 19 (see FIG. 15) is formed at a position where the nth first wiring 101A and the nth second wiring 101B intersect.
  • the n-th first wiring 101 ⁇ / b> A and the n-th second wiring 101 ⁇ / b> B are connected through the contact hole 19. If another wiring layer is formed below the wiring layer on which the gate electrode 2 is formed, problems may occur in alignment between layers, yield, etc., so the second wiring 101B is formed on the TFT protective film layer 11 You may make it do.
  • the present invention when the present invention is applied to the radiation image sensor 10 of the indirect conversion method in which radiation is once converted into light by the scintillator 30 and the converted light is converted into electric charge by the sensor unit 103 and accumulated.
  • the present invention is not limited to this.
  • the present invention may be applied to a direct-conversion radiation imaging element that directly converts radiation into electric charge and stores it in a sensor unit using amorphous selenium or the like.
  • the radiation imaging apparatus 100 may detect a particle beam, other electromagnetic waves (visible light, ultraviolet rays, infrared rays) or the like as radiation.
  • the configuration of the radiation imaging element 10 and the configuration of the radiation imaging apparatus 100 described in the above embodiment are merely examples, and it goes without saying that they can be appropriately changed without departing from the gist of the present invention.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Measurement Of Radiation (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

A flexible insulating substrate (1) is provided with pixels (20) in matrix, and in the insulating substrate, a plurality of scanning wiring lines (101), wherein control signals that switch TFT switches (4) of respective pixels (20) are transmitted, and a plurality of signal wiring lines (3), wherein electrical signals that correspond to charges accumulated in the pixels are transmitted corresponding to the switching state of respective TFT switches (4), are provided with an insulating film between the scanning wiring lines and the signal wiring lines. On the insulating substrate, a gate IC (104), which outputs control signals, and an amplifier IC (105), which detects the electrical signals transmitted in the signal wiring lines, are provided. A control circuit (120) which controls operations of the gate IC (104) and the amplifier IC (105) is provided on one side or facing two sides of the insulating substrate (1). With such configuration, a radiation image pickup device which can be bent and can stably pick up a radiation image is provided.

Description

放射線撮影装置Radiography equipment
 本発明は、放射線撮影装置に係り、特に、照射された放射線により示される画像を撮影する放射線撮影装置に関する。 The present invention relates to a radiographic apparatus, and more particularly, to a radiographic apparatus that captures an image indicated by irradiated radiation.
 近年、TFT(Thin film transistor)アクティブマトリックス基板上にX線感応層を配置し、X線情報を直接デジタルデータに変換できるFPD(flat panel detector)等の放射線撮像素子を用いた放射線撮影装置が実用化されている。この放射線撮像素子は、従来のイメージングプレートに比べて、即時に画像を確認でき、動画も確認できるといったメリットがあり、急速に普及が進んでいる。 In recent years, a radiographic apparatus using a radiation imaging device such as an FPD (flat panel detector) capable of directly converting X-ray information into digital data by placing an X-ray sensitive layer on a TFT (Thin film transistor) active matrix substrate. It has become. This radiation imaging device has an advantage that an image can be confirmed instantly and a moving image can be confirmed as compared with a conventional imaging plate, and is rapidly spreading.
 ところで、放射線撮像素子は、薄型、軽量化を進めていくと、最終的には湾曲も可能なシート形状の実現が求められる。 By the way, as radiation imaging elements are made thinner and lighter, ultimately, it is required to realize a sheet shape that can be bent.
 特許文献1には、アクティブマトリクス型の有機ELディスプレイ(organic electroluminescence display)において、TFTを駆動させる走査配線駆動回路や信号線駆動回路を、可撓性を有するディスプレイ基板内に形成する技術が開示されている。
特開2000-298198号公報
Patent Document 1 discloses a technique for forming a scanning wiring driving circuit and a signal line driving circuit for driving TFTs in a flexible display substrate in an active matrix organic EL display (organic electroluminescence display). ing.
JP 2000-298198 A
 しかしながら、可撓性を有する放射線撮像素子の基板内に走査配線駆動回路や信号線駆動回路を形成した場合、走査配線駆動回路や信号線駆動回路の歩留まりが悪く、また、湾曲させた場合に走査配線駆動回路や信号線駆動回路内の配線に断線が発生しやすい。従って、安定して放射線画像を撮影できない、といった問題がある。例えば、走査配線駆動回路は比較的回路規模が小さいシフトレジスタで構成できるため、poly-Si(ポリシリコン) TFT技術や、あるいは移動度の低いa-Si(アモルファスシリコン) TFTであってもTFTアレイ基板上に形成する技術が、提案されている。しかしながら、シリコン基板上のMOSトランジスタに比べ、TFT製造装置で形成するpoly-Si TFTやa-Si TFTは移動度が低く、最小線幅も大きいため、駆動回路実現のために大きな面積を必要とする。シリコン上MOSトランジスタの移動度と最小線幅が600cm2/V・s、0.1-0.5umであるのに対し、poly-Si TFTでは10-30cm2/V・s、3-5um、a-Si TFTでは0.5cm2/V・s、4-6umである。このため、poly-Si TFTはMOSトランジスタの約300倍の面積が必要となり、a-Si TFTはMOSトランジスタの12000倍の面積が必要となる。具体的には、ゲート1ラインあたり100μm×1000μm前後の面積が必要となる。したがって、可撓性を有する基板に適用した場合、断線による歩留り低下が顕著で、安定してTFTアレイを製造できない、あるいは、安定して放射線画像を撮影できないといった問題があった。 However, when a scanning wiring driving circuit or a signal line driving circuit is formed in the substrate of the radiation imaging element having flexibility, the scanning wiring driving circuit or the signal line driving circuit is poor in yield, and scanning is performed when the scanning is curved. Disconnections are likely to occur in the wiring in the wiring drive circuit and signal line drive circuit. Therefore, there is a problem that a radiation image cannot be stably taken. For example, since the scanning wiring drive circuit can be composed of a shift register having a relatively small circuit scale, even if it is a poly-Si (polysilicon) TFT technology or an a-Si (amorphous silicon) TFT having a low mobility, a TFT array Techniques for forming on a substrate have been proposed. However, compared to MOS transistors on a silicon substrate, poly-Si TFTs and a-Si TFTs formed by TFT manufacturing equipment have low mobility and a large minimum line width, so a large area is required to realize a drive circuit. To do. The mobility and minimum line width of MOS transistors on silicon are 600 cm2 / V · s and 0.1-0.5 um, whereas in poly-Si TFT, 10-30 cm2 / V · s, 3-5 um and a-Si TFT 0.5cm2 / V · s, 4-6um. For this reason, the poly-Si TFT requires about 300 times the area of the MOS transistor, and the a-Si TFT requires 12,000 times the area of the MOS transistor. Specifically, an area of around 100 μm × 1000 μm per gate line is required. Therefore, when it is applied to a flexible substrate, there is a problem that the yield drop due to disconnection is remarkable, and the TFT array cannot be manufactured stably, or the radiation image cannot be stably captured.
 本発明は、上記の事情に鑑み、湾曲可能でかつ安定して放射線画像を撮影できる放射線撮影装置を提供することを目的とする。 In view of the above circumstances, an object of the present invention is to provide a radiation imaging apparatus that can bend and stably capture a radiation image.
 上記目的を達成するために、請求項1記載の発明の放射線撮影装置は、平面視において一方向の外縁に1辺又は対向する2辺を少なくとも有し、各々検出対象とする放射線が照射されることにより発生した電荷を蓄積すると共に当該電荷を読み出すためのスイッチ素子を備えた画素がマトリクス状に複数設けられ、各画素に備えられた各スイッチ素子をスイッチングする制御信号が流れる複数の走査配線と前記各スイッチ素子のスイッチング状態に応じて前記画素に蓄積された電荷に応じた電気信号が流れる複数の信号配線とが絶縁膜を介して設けられた可撓性を有する絶縁性基板と、予め定められた第1本数の前記走査配線毎に前記絶縁性基板上に設けられ、それぞれ当該第1本数の走査配線に対して前記制御信号を出力する第1集積回路と、予め定められた第2本数の前記信号配線毎に前記絶縁性基板上に設けられ、それぞれ当該第2本数の信号配線を流れる電気信号を検出する第2集積回路と、前記絶縁性基板の前記1辺又は対向する2辺側に設けられ、前記第1集積回路及び前記第2集積回路と電気的に接続されて前記第1集積回路及び前記第2集積回路の動作を制御する制御回路と、を備えている。 In order to achieve the above object, the radiation imaging apparatus according to the first aspect of the present invention has at least one side or two opposite sides on the outer edge in one direction in plan view, and each is irradiated with radiation to be detected. A plurality of pixels each having a switch element for accumulating the charges generated and reading the charges, and a plurality of scanning wirings through which a control signal for switching each switch element included in each pixel flows; A flexible insulating substrate provided with a plurality of signal wirings through an insulating film through which an electric signal corresponding to the electric charge stored in the pixel flows according to the switching state of each switch element; The first integrated circuit is provided on the insulating substrate for each of the first number of scanning wirings, and outputs the control signal to the first number of scanning wirings. A second integrated circuit that is provided on the insulating substrate for each predetermined second number of the signal wirings and that detects an electrical signal flowing through the second number of signal wirings; and A control circuit which is provided on the one side or two opposite sides and is electrically connected to the first integrated circuit and the second integrated circuit to control operations of the first integrated circuit and the second integrated circuit; It is equipped with.
 本発明の放射線撮影装置は、平面視において一方向の外縁に1辺又は対向する2辺を少なくとも有する可撓性を有する絶縁性基板に、各々検出対象とする放射線が照射されることにより発生した電荷を蓄積すると共に当該電荷を読み出すためのスイッチ素子を備えた画素がマトリクス状に複数設けられている。この絶縁性基板には、各画素に備えられた各スイッチ素子をスイッチングする制御信号が流れる複数の走査配線と各スイッチ素子のスイッチング状態に応じて画素に蓄積された電荷に応じた電気信号が流れる複数の信号配線とが絶縁膜を介して設けられている。 The radiation imaging apparatus of the present invention is generated by irradiating a flexible insulating substrate having at least one side or two opposite sides at one edge in a plan view with radiations to be detected. A plurality of pixels each provided with a switch element for accumulating charges and reading the charges are provided in a matrix. On this insulating substrate, a plurality of scanning wirings through which control signals for switching each switch element provided in each pixel flow, and an electrical signal corresponding to the charge accumulated in the pixel according to the switching state of each switch element flow. A plurality of signal wirings are provided via an insulating film.
 また、本発明では、絶縁性基板上に、予め定められた第1本数の走査配線毎に、それぞれ当該第1本数の走査配線に対して制御信号を出力する第1集積回路が設けられ、予め定められた第2本数の前記信号配線毎に、それぞれ当該第2本数の信号配線を流れる電気信号を検出する第2集積回路が設けられている。 In the present invention, a first integrated circuit that outputs a control signal to each of the predetermined number of scanning wirings is provided on the insulating substrate for each predetermined number of scanning wirings. A second integrated circuit that detects an electrical signal flowing through the second number of signal wirings is provided for each of the predetermined second number of signal wirings.
 そして、本発明では、絶縁性基板の1辺又は対向する2辺側に、第1集積回路及び第2集積回路と電気的に接続されて第1集積回路及び第2集積回路の動作を制御する制御回路が設けられている。 In the present invention, the operation of the first integrated circuit and the second integrated circuit is controlled by being electrically connected to the first integrated circuit and the second integrated circuit on one side or two opposite sides of the insulating substrate. A control circuit is provided.
 このように、本発明によれば、マトリクス状に画素が設けられ、各画素のスイッチ素子をスイッチングする制御信号が流れる複数の走査配線と各スイッチ素子のスイッチング状態に応じて画素に蓄積された電荷に応じた電気信号が流れる複数の信号配線とが絶縁膜を介して設けられた可撓性を有する絶縁性基板に、制御信号を出力する第1集積回路と信号配線を流れる電気信号を検出する第2集積回路とを設け、絶縁性基板の1辺又は対向する2辺側に、第1集積回路及び第2集積回路の動作を制御する制御回路を設けたことにより、制御回路が絶縁性基板の湾曲の妨げとならないため、絶縁性基板を湾曲させることができる。また、絶縁性基板が、第1集積回路及び第2集積回路部分で湾曲せず、第1集積回路及び第2集積回路の間部分で湾曲することにより第1集積回路及び第2集積回路内で配線に断線が発生しないため、安定して放射線画像を撮影できる。 As described above, according to the present invention, pixels are provided in a matrix, and a plurality of scanning wirings through which control signals for switching the switch elements of the pixels flow and charges accumulated in the pixels according to the switching states of the switch elements A first integrated circuit that outputs a control signal and an electrical signal that flows through the signal wiring are detected on a flexible insulating substrate provided with a plurality of signal wirings through which an electrical signal corresponding to the current flows via an insulating film And a control circuit for controlling the operation of the first integrated circuit and the second integrated circuit is provided on one side of the insulating substrate or on the two opposite sides, so that the control circuit is connected to the insulating substrate. Therefore, the insulating substrate can be curved. In addition, the insulating substrate does not bend at the first integrated circuit and the second integrated circuit, but is bent at a portion between the first integrated circuit and the second integrated circuit, so that the insulating substrate is bent in the first integrated circuit and the second integrated circuit. Since no disconnection occurs in the wiring, a radiation image can be stably taken.
 なお、本発明は、前記複数の信号配線を、前記一方向に並行して設け、前記複数の走査配線を、前記一方向に対する交差方向に並行して設けられた複数の第1配線、及び前記一方向に並行でかつ前記第1配線と絶縁膜を介して設けられ、当該絶縁膜に形成されたコンタクトホールを介してそれぞれ異なる前記第1配線に接続された複数の第2配線により構成してもよい。 In the present invention, the plurality of signal wirings are provided in parallel in the one direction, the plurality of scanning wirings are provided in parallel in a crossing direction with respect to the one direction, A plurality of second wirings that are provided in parallel in one direction and are provided via the first wiring and the insulating film, and are connected to the different first wirings through contact holes formed in the insulating film. Also good.
 また、本発明は、前記第1集積回路及び第2集積回路を、前記絶縁性基板上の前記1辺又は対向する2辺の周辺部に設けてもよい。 In the present invention, the first integrated circuit and the second integrated circuit may be provided on the peripheral portion of the one side or the two opposite sides on the insulating substrate.
 また、本発明は、前記制御回路が、前記第1集積回路の動作を制御する第1制御回路及び前記第2集積回路の動作を制御する第2制御回路を有し、前記第1集積回路及び前記第1制御回路と前記第2集積回路及び前記第2制御回路とを前記絶縁性基板の前記2辺に対向して設けてもよい。 According to the present invention, the control circuit includes a first control circuit that controls an operation of the first integrated circuit and a second control circuit that controls an operation of the second integrated circuit, and the first integrated circuit, The first control circuit, the second integrated circuit, and the second control circuit may be provided to face the two sides of the insulating substrate.
 また、本発明は、前記絶縁性基板に、前記複数の信号配線を前記一方向に並行して設けると共に、前記複数の走査配線を前記一方向に対する交差方向に並行して設け、第2集積回路を、前記絶縁性基板上の前記一方向の周辺部に設け、第1集積回路を、前記絶縁性基板上の前記交差方向の周辺部に設け、前記絶縁性基板上に設けられた接続配線又は当該絶縁性基板外の外部配線を経由して前記制御回路に接続してもよい。 In the present invention, the plurality of signal lines are provided on the insulating substrate in parallel with the one direction, and the plurality of scanning lines are provided in parallel with the direction intersecting the one direction. Is provided in the peripheral portion in the one direction on the insulating substrate, the first integrated circuit is provided in the peripheral portion in the cross direction on the insulating substrate, and the connection wiring provided on the insulating substrate or The control circuit may be connected via external wiring outside the insulating substrate.
 本発明の放射線撮影装置は、湾曲可能でかつ安定して放射線画像を撮影できる、という優れた効果を有する。 The radiation imaging apparatus of the present invention has an excellent effect of being able to bend and stably capture a radiation image.
第1の実施の形態に係る放射線撮像素子の詳細な構成を示す平面図である。It is a top view which shows the detailed structure of the radiation imaging device which concerns on 1st Embodiment. 実施の形態に係る放射線撮影装置の構成を示す平面図である。It is a top view which shows the structure of the radiography apparatus which concerns on embodiment. 実施の形態に係る放射線撮影装置の構成を示す断面図である。It is sectional drawing which shows the structure of the radiography apparatus which concerns on embodiment. 第1の実施の形態に係る放射線撮像素子の1画素単位の構成を示す平面図である。It is a top view which shows the structure of the 1-pixel unit of the radiation image pick-up element which concerns on 1st Embodiment. 第1の実施の形態に係る放射線撮像素子の線断面図である。It is line sectional drawing of the radiation image pick-up element which concerns on 1st Embodiment. 実施の形態に係る放射線撮像素子と制御部とを外した状態を示す斜視図である。It is a perspective view which shows the state which removed the radiation imaging element and control part which concern on embodiment. 実施の形態に係る放射線撮像素子を湾曲させた撮影状態を示す斜視図である。It is a perspective view which shows the imaging state which curved the radiation imaging device which concerns on embodiment. 第2の実施の形態に係る放射線撮像素子の詳細な構成を示す平面図である。It is a top view which shows the detailed structure of the radiation imaging device which concerns on 2nd Embodiment. 第2の実施の形態に係る放射線撮像素子の1画素単位の構成を示す平面図である。It is a top view which shows the structure of 1 pixel unit of the radiation image pick-up element which concerns on 2nd Embodiment. 第2の実施の形態に係る放射線撮像素子の線断面図である。It is a line sectional view of a radiation image sensor concerning a 2nd embodiment. 第3の実施の形態に係る放射線撮像素子の詳細な構成を示す平面図である。It is a top view which shows the detailed structure of the radiation imaging device which concerns on 3rd Embodiment. 第3の実施の形態に係る放射線撮像素子の拡大平面図である。It is an enlarged plan view of a radiation image sensor according to a third embodiment. 第4の実施の形態に係る放射線撮像素子の詳細な構成を示す平面図である。It is a top view which shows the detailed structure of the radiation imaging device which concerns on 4th Embodiment. 他の形態に係る放射線撮像素子の詳細な構成を示す平面図である。It is a top view which shows the detailed structure of the radiation imaging device which concerns on another form. 他の実施の形態に係る放射線撮像素子の1画素単位の構成を示す平面図である。It is a top view which shows the structure of 1 pixel unit of the radiation image pick-up element which concerns on other embodiment. 他の実施の形態に係る放射線撮像素子の線断面図である。It is a sectional view of a radiation imaging element according to another embodiment.
 以下、図面を参照して本発明を、X線などの放射線による放射線画像を撮影する放射線撮影装置100に適用した場合ついて説明する。 Hereinafter, a case where the present invention is applied to a radiation imaging apparatus 100 that captures a radiation image using radiation such as X-rays will be described with reference to the drawings.
 [第1の実施の形態]
 最初に、第1の実施の形態に係る放射線撮影装置100に用いられる放射線撮像素子10について説明する。
[First Embodiment]
First, the radiation imaging element 10 used in the radiation imaging apparatus 100 according to the first embodiment will be described.
 図1には、本実施の形態に係る放射線撮像素子10の詳細な構成が示されている。 FIG. 1 shows a detailed configuration of the radiation imaging element 10 according to the present embodiment.
 放射線撮像素子10は、平板矩形状とされた可撓性を有する絶縁性の基板1上の放射線画像の撮影領域Eに複数の画素20がマトリクス状に設けられている。各画素20は、光が照射されることにより発生した電荷を蓄積するセンサ部103と、センサ部103に蓄積された電荷を読み出すためのTFTスイッチ4と、を含んで構成されている。 The radiation imaging element 10 has a plurality of pixels 20 arranged in a matrix in a radiographic image capturing area E on a flexible insulating substrate 1 having a flat plate rectangular shape. Each pixel 20 includes a sensor unit 103 that accumulates charges generated by light irradiation, and a TFT switch 4 for reading out the charges accumulated in the sensor unit 103.
 また、放射線撮像素子10は、基板1上に、TFTスイッチ4をON/OFFするための複数の走査配線101と、上記センサ部103に蓄積された電荷を読み出すための複数の信号配線3と、が設けられている。 The radiation imaging element 10 includes a plurality of scanning wirings 101 for turning on / off the TFT switch 4 and a plurality of signal wirings 3 for reading out the electric charges accumulated in the sensor unit 103 on the substrate 1. Is provided.
 なお、第1の実施の形態に係る放射線撮像素子10では、複数設けられた画素20のマトリクス配列における一方向(図1の横方向)の各画素列にそれぞれ信号配線3が並列に設けられている。 In the radiation imaging element 10 according to the first embodiment, the signal wiring 3 is provided in parallel in each pixel column in one direction (lateral direction in FIG. 1) in the matrix arrangement of the plurality of pixels 20 provided. Yes.
 また、第1の実施の形態に係る放射線撮像素子10では、走査配線101として、画素20のマトリクス配列の一方向に対する交差方向(図1の縦方向)の各画素列にそれぞれ第1配線101Aが並列に設けられ、マトリクス配列における一方向の各画素列にそれぞれ第2配線101Bが並列に設けられている。各第2配線101Bと各第1配線101Aとは、1対1で、各第2配線101Bに対してそれぞれ異なる第1配線101Aに接続されており、本実施の形態では、n本目の第1配線101Aとn本目の第2配線101Bとが接続されている。 Further, in the radiation imaging element 10 according to the first exemplary embodiment, the first wiring 101 </ b> A is provided as the scanning wiring 101 in each pixel column in the intersecting direction (vertical direction in FIG. 1) with respect to one direction of the matrix arrangement of the pixels 20. A second wiring 101B is provided in parallel in each pixel column in one direction in the matrix arrangement. Each of the second wirings 101B and each of the first wirings 101A is connected to the first wiring 101A that is different from each of the second wirings 101B on a one-to-one basis. The wiring 101A and the n-th second wiring 101B are connected.
 本実施の形態に係る放射線撮像素子10では、表面にGOS等からなるシンチレータ30(図3参照)が貼り付けられている。 In the radiation imaging element 10 according to the present embodiment, a scintillator 30 (see FIG. 3) made of GOS or the like is attached to the surface.
 放射線撮像素子10では、照射されたX線などの放射線はシンチレータ30により光に変換され、センサ部103に照射される。センサ部103は、シンチレータ30から照射された光を受けて電荷を蓄積する。 In the radiation imaging element 10, the irradiated radiation such as X-rays is converted into light by the scintillator 30 and irradiated to the sensor unit 103. The sensor unit 103 receives the light emitted from the scintillator 30 and accumulates electric charges.
 各信号配線3には、当該信号配線3に接続された何れかのTFTスイッチ4がONされることによりセンサ部103に蓄積された電荷量に応じて、放射線画像を示す電気信号(画像信号)が流れる。 Each signal wiring 3 has an electrical signal (image signal) indicating a radiation image in accordance with the amount of charge accumulated in the sensor unit 103 when any TFT switch 4 connected to the signal wiring 3 is turned on. Flows.
 本実施の形態に係る放射線撮像素子10では、信号配線方向の一端側に予め定められた第1本数(例えば256本)の信号配線3毎にアンプIC(Integrated Circuit)105が並んで設けられている。各信号配線3は、当該第1本数毎にアンプIC105に接続されている。また、本実施の形態に係る放射線撮像素子10では、信号配線方向の一端側に、予め定められた第2本数(例えば256本)の走査配線101毎に、上記アンプIC105と交互にゲートIC104が設けられている。各走査配線101は、当該第2本数毎にアンプIC105に接続されている。なお、図1及び後述する図8、図11、図13、図14では、信号配線3とアンプIC105の接続部分、及び走査配線101とゲートIC104の接続部分の図示を省略している。 In the radiation imaging element 10 according to the present embodiment, an amplifier IC (IntegratedIntegrCircuit) 105 is provided side by side for each predetermined first (for example, 256) signal wires 3 on one end side in the signal wiring direction. Yes. Each signal wiring 3 is connected to the amplifier IC 105 for each first number. In the radiation imaging element 10 according to the present embodiment, the gate IC 104 is alternately arranged with the amplifier IC 105 for each predetermined second number (for example, 256) of scanning wirings 101 on one end side in the signal wiring direction. Is provided. Each scanning wiring 101 is connected to the amplifier IC 105 for each second number. In FIG. 1 and FIGS. 8, 11, 13, and 14 to be described later, the connection portion between the signal wiring 3 and the amplifier IC 105 and the connection portion between the scanning wiring 101 and the gate IC 104 are omitted.
 ゲートIC104は、各走査配線101にTFTスイッチ4をON/OFFするための制御信号を出力する。 The gate IC 104 outputs a control signal for turning on / off the TFT switch 4 to each scanning wiring 101.
 アンプIC105は、各信号配線3毎に、入力される電気信号を増幅する増幅回路を内蔵している。アンプIC105は、各信号配線3より入力される電気信号を増幅回路により増幅して検出することにより、画像を構成する各画素20の情報として、各センサ部103に蓄積された電荷量を検出する。 The amplifier IC 105 includes an amplifier circuit for amplifying an input electric signal for each signal wiring 3. The amplifier IC 105 detects the amount of electric charge accumulated in each sensor unit 103 as information of each pixel 20 constituting an image by amplifying and detecting an electric signal input from each signal wiring 3 by an amplifier circuit. .
 図2及び図3には、本実施の形態に係る放射線撮像素子10及び当該放射線撮像素子10を駆動させる制御部50の構成を示す平面図及び側面図が示されている。 2 and 3 are a plan view and a side view showing a configuration of the radiation imaging element 10 according to the present embodiment and a control unit 50 for driving the radiation imaging element 10.
 放射線撮像素子10には、信号配線方向の一端に雄型のインターフェース(I/F)コネクタ110が設けられている。各ゲートIC104及び各アンプIC105は、インターフェース(I/F)回路112を介してI/Fコネクタ110に接続されている。 The radiation imaging element 10 is provided with a male interface (I / F) connector 110 at one end in the signal wiring direction. Each gate IC 104 and each amplifier IC 105 are connected to an I / F connector 110 via an interface (I / F) circuit 112.
 一方、制御部50には、各ゲートIC104及び各アンプIC105の動作を制御するための制御回路120と、バッテリ122と、バッテリ122に充電された電力を各々所定の電圧に変圧して制御回路120及び放射線撮像素子10に供給する電源回路124とが設けられている。 On the other hand, the control unit 50 transforms the control circuit 120 for controlling the operation of each gate IC 104 and each amplifier IC 105, the battery 122, and the electric power charged in the battery 122 to predetermined voltages, respectively. And a power supply circuit 124 that supplies the radiation imaging element 10.
 制御部50では、制御回路120が雌型のI/Fコネクタ126及び出力端子128を備えており、当該I/Fコネクタ126に放射線撮像素子10のI/Fコネクタ110が接続される。制御回路120は、I/Fコネクタ126、I/Fコネクタ110及びI/F回路112を介して各ゲートIC104及び各アンプIC105と電気的に接続される。制御回路120は、各アンプIC105において検出された電気信号に所定の処理を施して出力端子128から出力するとともに、各アンプIC105に対して信号検出のタイミングを示すタイミング信号を出力し、各ゲートIC104に対してTFTスイッチ4をON/OFFするための制御信号の出力のタイミングを示すタイミング信号を出力する。 In the control unit 50, the control circuit 120 includes a female I / F connector 126 and an output terminal 128, and the I / F connector 110 of the radiation imaging element 10 is connected to the I / F connector 126. The control circuit 120 is electrically connected to each gate IC 104 and each amplifier IC 105 via the I / F connector 126, the I / F connector 110, and the I / F circuit 112. The control circuit 120 performs a predetermined process on the electrical signal detected in each amplifier IC 105 and outputs it from the output terminal 128, and outputs a timing signal indicating the signal detection timing to each amplifier IC 105. In response to this, a timing signal indicating the output timing of a control signal for turning on / off the TFT switch 4 is output.
 次に、図4及び図5を参照して、本実施形態に係る放射線撮像素子10についてより詳細に説明する。なお、図4には、本実施形態に係る放射線撮像素子10の1画素単位の構造を示す平面図が示されており、図5には、図4のA-A線断面図が示されている。 Next, the radiation imaging device 10 according to the present embodiment will be described in more detail with reference to FIGS. 4 and 5. 4 is a plan view showing the structure of one pixel unit of the radiation imaging element 10 according to the present embodiment, and FIG. 5 is a sectional view taken along the line AA of FIG. Yes.
 図5に示すように、放射線撮像素子10には、基板1上に、第2配線101Bが形成されている。第2配線101Bが形成された配線層(以下、この配線層を「第1信号配線層」ともいう。)は、Al若しくはCu、又はAl若しくはCuを主体とした積層膜を用いて形成されているが、これらに限定されるものではない。この第2配線101B上には、第2配線101Bを覆い一面に第1絶縁膜15Aが形成されている。 As shown in FIG. 5, the radiation imaging element 10 has a second wiring 101 </ b> B formed on the substrate 1. The wiring layer in which the second wiring 101B is formed (hereinafter this wiring layer is also referred to as “first signal wiring layer”) is formed using Al or Cu, or a laminated film mainly composed of Al or Cu. However, it is not limited to these. On the second wiring 101B, a first insulating film 15A is formed on one surface so as to cover the second wiring 101B.
 この第1絶縁膜15A上には、第1配線101A、ゲート電極2が形成されており、第1配線101Aとゲート電極2は接続されている(図4参照。)。この第1配線101A及びゲート電極2が形成された配線層(以下、この配線層を「第2信号配線層」ともいう。)は、Al若しくはCu、又はAl若しくはCuを主体とした積層膜を用いて形成されているが、これらに限定されるものではない。なお、第1絶縁膜15Aには、n本目の第1配線101Aとn本目の第2配線101Bが交差する位置にコンタクトホール19(図4参照。)が形成される。n本目の第1配線101Aとn本目の第2配線101Bとがコンタクトホール19を介して接続される。 The first wiring 101A and the gate electrode 2 are formed on the first insulating film 15A, and the first wiring 101A and the gate electrode 2 are connected (see FIG. 4). The wiring layer in which the first wiring 101A and the gate electrode 2 are formed (hereinafter, this wiring layer is also referred to as “second signal wiring layer”) is made of Al or Cu, or a laminated film mainly composed of Al or Cu. However, the present invention is not limited to these. In the first insulating film 15A, a contact hole 19 (see FIG. 4) is formed at a position where the nth first wiring 101A and the nth second wiring 101B intersect. The n-th first wiring 101 </ b> A and the n-th second wiring 101 </ b> B are connected through the contact hole 19.
 この第1配線101A及びゲート電極2上には、第1配線101A及びゲート電極2を覆うように、一面に第2絶縁膜15Bが形成されている。第2絶縁膜15Bはゲート電極2上に位置する部位がTFTスイッチ4におけるゲート絶縁膜として作用する。この絶縁膜15Bは、例えば、SiNX 等からなっており、例えば、CVD(Chemical Vapor Deposition)成膜により形成される。 On the first wiring 101A and the gate electrode 2, a second insulating film 15B is formed on one surface so as to cover the first wiring 101A and the gate electrode 2. The portion of the second insulating film 15B located on the gate electrode 2 functions as a gate insulating film in the TFT switch 4. The insulating film 15B is made of, for example, SiN X or the like, and is formed by, for example, CVD (Chemical Vapor Deposition) film formation.
 第2絶縁膜15B上のゲート電極2上には、半導体活性層8が島状に形成されている。この半導体活性層8は、TFTスイッチ4のチャネル部であり、例えば、アモルファスシリコン膜からなる。 The semiconductor active layer 8 is formed in an island shape on the gate electrode 2 on the second insulating film 15B. The semiconductor active layer 8 is a channel portion of the TFT switch 4 and is made of, for example, an amorphous silicon film.
 これらの上層には、ソース電極9、及びドレイン電極13が形成されている。このソース電極9及びドレイン電極13が形成された配線層には、ソース電極9、ドレイン電極13とともに、信号配線3が形成されている。ソース電極9は信号配線3に接続されている(図4参照。)。信号配線3、及びソース電極9が形成された配線層(以下、この配線層を「第3信号配線層」ともいう。)は、Al若しくはCu、又はAl若しくはCuを主体とした積層膜が用いて形成されるが、これらに限定されるものではない。 A source electrode 9 and a drain electrode 13 are formed on these upper layers. In the wiring layer in which the source electrode 9 and the drain electrode 13 are formed, the signal wiring 3 is formed together with the source electrode 9 and the drain electrode 13. The source electrode 9 is connected to the signal wiring 3 (see FIG. 4). The wiring layer in which the signal wiring 3 and the source electrode 9 are formed (hereinafter, this wiring layer is also referred to as “third signal wiring layer”) is made of Al or Cu, or a laminated film mainly composed of Al or Cu. However, it is not limited to these.
 このソース電極9及びドレイン電極13の各々と半導体活性層8との間には不純物添加アモルファスシリコン等による不純物添加半導体層(不図示)が形成されている。これらによりスイッチング用のTFTスイッチ4が構成される。 An impurity doped semiconductor layer (not shown) made of impurity doped amorphous silicon or the like is formed between each of the source electrode 9 and the drain electrode 13 and the semiconductor active layer 8. These constitute the TFT switch 4 for switching.
 これら半導体活性層8、ソース電極9、ドレイン電極13、及び信号配線3を覆うように、基板1上の画素が設けられた領域のほぼ全面(ほぼ全領域)には、TFT保護膜層11が形成されている。このTFT保護膜層11は、例えば、SiNX 等からなっており、例えば、CVD成膜により形成される。 A TFT protective film layer 11 is formed on almost the entire surface of the region on the substrate 1 where the pixels are provided so as to cover the semiconductor active layer 8, the source electrode 9, the drain electrode 13, and the signal wiring 3. Is formed. The TFT protective film layer 11 is made of, for example, SiN X or the like, and is formed by, for example, CVD film formation.
 このTFT保護膜層11上には、塗布型の層間絶縁膜12が形成されている。この層間絶縁膜12は、低誘電率(比誘電率ε=2~4)の感光性の有機材料(例えば、ポジ型感光性アクリル系樹脂:メタクリル酸とグリシジルメタクリレートとの共重合体からなるベースポリマーに、ナフトキノンジアジド系ポジ型感光剤を混合した材料など)により1~4μmの膜厚で形成されている。本実施の形態に係る放射線撮像素子10は、この層間絶縁膜12によって層間絶縁膜12上層と下層に配置される金属間の容量を低く抑えている。また、一般的にこのような材料は平坦化膜としての機能も有しており、下層の段差が平坦化される効果も有する。これにより、上層に配置される半導体層6の形状が平坦化されるため、半導体層6の凹凸による吸収効率の低下や、リーク電流の増加を抑制することができる。この層間絶縁膜12及びTFT保護膜層11には、ドレイン電極13と対向する位置にコンタクトホール16が形成されている。 A coating type interlayer insulating film 12 is formed on the TFT protective film layer 11. The interlayer insulating film 12 is made of a photosensitive organic material having a low dielectric constant (relative dielectric constant ε r = 2 to 4) (for example, a positive photosensitive acrylic resin: a copolymer of methacrylic acid and glycidyl methacrylate). And a base polymer mixed with a naphthoquinonediazide-based positive photosensitive agent, etc.) to a thickness of 1 to 4 μm. In the radiation imaging element 10 according to the present embodiment, the capacitance between the metals disposed in the upper layer and the lower layer of the interlayer insulating film 12 is suppressed by the interlayer insulating film 12. In general, such a material also has a function as a flattening film, and has an effect of flattening a lower step. Thereby, since the shape of the semiconductor layer 6 disposed in the upper layer is flattened, it is possible to suppress a decrease in absorption efficiency due to the unevenness of the semiconductor layer 6 and an increase in leakage current. A contact hole 16 is formed in the interlayer insulating film 12 and the TFT protective film layer 11 at a position facing the drain electrode 13.
 層間絶縁膜12上には、コンタクトホール16を埋めつつ、画素領域を覆うように、センサ部103の下部電極14が形成されており、この下部電極14は、TFTスイッチ4のドレイン電極13と接続されている。この下部電極14は、後述する半導体層6が1μm前後と厚い場合には、導電性があれば材料に制限がほとんどない。このため、Al系材料、ITO(酸化スズインジウム)など導電性の金属を用いて形成すれば問題ない。 A lower electrode 14 of the sensor unit 103 is formed on the interlayer insulating film 12 so as to cover the pixel region while filling the contact hole 16. The lower electrode 14 is connected to the drain electrode 13 of the TFT switch 4. Has been. If the semiconductor layer 6 described later is as thick as about 1 μm, the lower electrode 14 has almost no limitation on the material as long as it has conductivity. Therefore, there is no problem if it is formed using a conductive metal such as an Al-based material or ITO (indium tin oxide).
 一方、半導体層6の膜厚が薄い場合(0.2~0.5μm前後)、半導体層6での光の吸収が十分でなく、TFTスイッチ4への光照射によるリーク電流の増加を防ぐため、下部電極14を、遮光性メタルを主体とする合金、若しくは積層膜とすることが好ましい。 On the other hand, when the semiconductor layer 6 is thin (around 0.2 to 0.5 μm), light absorption by the semiconductor layer 6 is not sufficient, and an increase in leakage current due to light irradiation to the TFT switch 4 is prevented. The lower electrode 14 is preferably made of an alloy mainly composed of a light shielding metal or a laminated film.
 下部電極14上には、フォトダイオードとして機能する半導体層6が形成されている。本実施の形態では、半導体層6として、n層、i層、p層(nアモルファスシリコン、アモルファスシリコン、pアモルファスシリコン)を積層したPIN構造のフォトダイオードを採用しており、下層からn層6A、i層6B、p層6Cを順に積層して形成する。i層6Bは、光が照射されることにより電荷(自由電子と自由正孔のペア)が発生する。n層6A及びp層6Cは、コンタクト層として機能し、下部電極14及び後述する上部電極7とi層6Bをと電気的に接続する。 A semiconductor layer 6 that functions as a photodiode is formed on the lower electrode 14. In the present embodiment, a PIN structure photodiode in which an n + layer, an i layer, and a p + layer (n + amorphous silicon, amorphous silicon, and p + amorphous silicon) are stacked is employed as the semiconductor layer 6. To n + layer 6A, i layer 6B, and p + layer 6C are sequentially stacked. The i layer 6B generates charges (pairs of free electrons and free holes) when irradiated with light. The n + layer 6A and the p + layer 6C function as contact layers, and electrically connect the lower electrode 14 and an upper electrode 7 (described later) to the i layer 6B.
 なお、本実施の形態では、下部電極14を半導体層6よりも大きくしている。半導体層6の膜厚が薄い場合(例えば、0.5μm以下の場合)には、TFTスイッチ4への光入射を防ぐ目的で、遮光性金属を配置してTFTスイッチ4を覆うことが好ましい。 In the present embodiment, the lower electrode 14 is made larger than the semiconductor layer 6. When the semiconductor layer 6 is thin (for example, 0.5 μm or less), it is preferable to cover the TFT switch 4 with a light shielding metal for the purpose of preventing light from entering the TFT switch 4.
 また、本実施の形態では、デバイス内部の光の乱反射によるTFTスイッチ4への光進入を抑制するため、TFTスイッチ4のチャネル部から、遮光性金属からなる下部電極14の端部への間隔を5μm以上確保している。 Further, in this embodiment, in order to suppress light entering the TFT switch 4 due to irregular reflection of light inside the device, the distance from the channel portion of the TFT switch 4 to the end portion of the lower electrode 14 made of a light shielding metal is set. 5 μm or more is secured.
 半導体層6上には、上部電極7が形成されている。この上部電極7には、例えば、ITOやIZO(酸化亜鉛インジウム)などの光透過性の高い材料を用いている。 An upper electrode 7 is formed on the semiconductor layer 6. For the upper electrode 7, for example, a material having high light transmittance such as ITO or IZO (zinc oxide indium) is used.
 層間絶縁膜12、半導体層6及び上部電極7上には、上部電極7に対応する一部で開口27Aを持つように保護絶縁膜17が形成されている。保護絶縁膜17はTFT保護膜層11と同じく、例えば、SiNx等からなっており、例えば、CVD成膜により形成される。 A protective insulating film 17 is formed on the interlayer insulating film 12, the semiconductor layer 6, and the upper electrode 7 so as to have an opening 27 </ b> A in a part corresponding to the upper electrode 7. The protective insulating film 17 is made of, for example, SiNx, like the TFT protective film layer 11, and is formed by, for example, CVD film formation.
 この保護絶縁膜17上には、共通電極配線25が、Al若しくはCu、又はAl若しくはCuを主体とした合金あるいは積層膜で形成されている。共通電極配線25は、開口27A付近にコンタクトパッド27が形成され、保護絶縁膜17の開口27Aを介して上部電極7と電気的に接続される。 On the protective insulating film 17, the common electrode wiring 25 is formed of Al or Cu, or an alloy or laminated film mainly composed of Al or Cu. The common electrode wiring 25 has a contact pad 27 formed in the vicinity of the opening 27 </ b> A and is electrically connected to the upper electrode 7 through the opening 27 </ b> A of the protective insulating film 17.
 このように形成された放射線撮像素子10には、必要に応じて保護絶縁膜17上に光吸収性の低い絶縁性の材料により保護膜がさらに形成されて、その表面に、光吸収性の低い接着樹脂を用いてGOS等からなるシンチレータ30(図3参照)が貼り付けられる。 In the radiation imaging element 10 formed in this way, a protective film is further formed on the protective insulating film 17 with an insulating material having low light absorption as necessary, and the surface has low light absorption. A scintillator 30 (see FIG. 3) made of GOS or the like is attached using an adhesive resin.
 次に、上記構造の放射線撮影装置100の動作原理について説明する。 Next, the operation principle of the radiation imaging apparatus 100 having the above structure will be described.
 本実施の形態に係る放射線撮像素子10では、図6に示すように、I/Fコネクタ110が制御部50のI/Fコネクタ126に接続されて、放射線撮像素子10が制御部50に接続される。 In the radiation imaging element 10 according to the present embodiment, as shown in FIG. 6, the I / F connector 110 is connected to the I / F connector 126 of the control unit 50, and the radiation imaging element 10 is connected to the control unit 50. The
 本実施の形態に係る放射線撮像素子10は、外部との接続端子を1辺に設けている。これにより、放射線撮影装置100は、放射線撮像素子10の交換が容易であり、例えば、被写体部位に応じて最適な感度特性の放射線撮像素子10に交換することも可能となる。 The radiation imaging element 10 according to the present embodiment is provided with a connection terminal to the outside on one side. As a result, the radiation imaging apparatus 100 can easily replace the radiation imaging element 10 and, for example, can be replaced with a radiation imaging element 10 having an optimum sensitivity characteristic according to the subject part.
 放射線撮像素子10は、X線が照射されると、照射されたX線がシンチレータ30に吸収され、可視光に変換される。なお、X線は、放射線撮像素子10の表側、裏側の何れから照射されてもかまわない。シンチレータ30で可視光に変換された光は、基板1上にマトリクス状に配置されたセンサ部103の半導体層6に照射される。 When the radiation imaging element 10 is irradiated with X-rays, the irradiated X-rays are absorbed by the scintillator 30 and converted into visible light. X-rays may be emitted from either the front side or the back side of the radiation imaging element 10. The light converted into visible light by the scintillator 30 is applied to the semiconductor layer 6 of the sensor unit 103 arranged in a matrix on the substrate 1.
 放射線撮像素子10には、半導体層6が各画素単位に分離して備えられている。半導体層6は、共通電極配線25を介して上部電極7から所定のバイアス電圧が印加されており、光が照射されると内部に電荷が発生する。例えば、半導体層6が、下層からn層、i層、p層の順に積層したPIN構造である場合は、上部電極7に負のバイアス電圧が印加されるものとされており、i層6の膜厚が1μm程度の場合、印加されるバイアス電圧が-5~-10V程度である。 The radiation imaging element 10 is provided with the semiconductor layer 6 separately for each pixel unit. A predetermined bias voltage is applied to the semiconductor layer 6 from the upper electrode 7 through the common electrode wiring 25, and when light is irradiated, charges are generated inside. For example, when the semiconductor layer 6 has a PIN structure in which an n + layer, an i layer, and a p + layer are stacked in this order from the lower layer, a negative bias voltage is applied to the upper electrode 7, and the i layer When the film thickness of 6 is about 1 μm, the applied bias voltage is about −5 to −10V.
 半導体層6には、バイアス電圧が印加された状態であって、光が未照射の場合、数pA/mm以下の電流しか流れない。一方、半導体層6には、バイアス電圧が印加された状態で光が照射(1μW/cm)されると、数~数十nA/mm程度の明電流が発生する。この発生した電荷は下部電極14により収集される。下部電極14は、TFTスイッチ4のドレイン電極13と接続されており、TFTスイッチ4のソース電極9は、信号配線3に接続されている。画像検出時には、TFTスイッチ4のゲート電極2に負バイアスが印加されてオフ状態に保持されており、下部電極14に収集された電荷が蓄積される。 When a bias voltage is applied to the semiconductor layer 6 and light is not irradiated, only a current of several pA / mm 2 or less flows. On the other hand, when the semiconductor layer 6 is irradiated with light with a bias voltage applied (1 μW / cm 2 ), a bright current of about several to several tens of nA / mm 2 is generated. The generated charges are collected by the lower electrode 14. The lower electrode 14 is connected to the drain electrode 13 of the TFT switch 4, and the source electrode 9 of the TFT switch 4 is connected to the signal wiring 3. At the time of image detection, a negative bias is applied to the gate electrode 2 of the TFT switch 4 and held in the off state, and the collected charges are accumulated in the lower electrode 14.
 画像読出時には、TFTスイッチ4のゲート電極2に走査配線101を介して順次ON信号(+10~20V)が印加される。これにより、TFTスイッチ4が順次ONされることにより下部電極14に蓄積された電荷量に応じた電気信号が信号配線3に流れ出す。アンプIC105は、信号配線3に流れ出した電気信号に基づいて各センサ部103に蓄積された電荷量を、画像を構成する各画素の情報として検出する。これにより、放射線撮像素子10に照射されたX線により示される画像を示す画像情報を得ることができる。 At the time of image reading, an ON signal (+10 to 20 V) is sequentially applied to the gate electrode 2 of the TFT switch 4 via the scanning wiring 101. As a result, when the TFT switch 4 is sequentially turned on, an electric signal corresponding to the amount of charge accumulated in the lower electrode 14 flows out to the signal wiring 3. The amplifier IC 105 detects the amount of electric charge accumulated in each sensor unit 103 based on the electrical signal that has flowed out to the signal wiring 3 as information of each pixel constituting the image. Thereby, the image information which shows the image shown with the X-ray irradiated to the radiation image pick-up element 10 can be obtained.
 ところで、本実施の形態に係る放射線撮像素子10は、可撓性を有する基板1上に画素20がマトリクス状に形成されており、ゲートIC104及びアンプIC105が、基板1の一方向の1辺の周辺部に設けられている。そして、放射線撮像素子10は、ゲートIC104及びアンプIC105が設けられた一方向の1辺で制御部50と接続される。 Incidentally, in the radiation imaging element 10 according to the present embodiment, the pixels 20 are formed in a matrix on the flexible substrate 1, and the gate IC 104 and the amplifier IC 105 are arranged on one side of the substrate 1 in one direction. It is provided in the periphery. The radiation imaging element 10 is connected to the control unit 50 at one side in one direction where the gate IC 104 and the amplifier IC 105 are provided.
 これにより、本実施の形態に係る放射線撮像素子10では、図7に示すように、放射線撮像素子10自体を一方向に湾曲させて被写体Sの撮影を行う場合もゲートIC104やアンプIC105、制御部50が湾曲しない。従って、ゲートIC104やアンプIC105、制御部50内で配線に断線が発生しないため、安定して放射線画像を撮影できる。 Thereby, in the radiation imaging device 10 according to the present exemplary embodiment, as illustrated in FIG. 7, the gate IC 104, the amplifier IC 105, and the control unit are also used when the radiation imaging device 10 is curved in one direction and the subject S is captured. 50 is not curved. Accordingly, no disconnection occurs in the wiring in the gate IC 104, the amplifier IC 105, and the control unit 50, so that a radiation image can be stably captured.
 [第2の実施の形態]
 次に、第2の実施の形態について説明する。
[Second Embodiment]
Next, a second embodiment will be described.
 図8には、第2の実施の形態に係る放射線撮像素子10の詳細な構成が示されている。なお、上記第1の実施の形態(図1参照)と同一部分については同一の符号を付して、ここでの説明は省略する。 FIG. 8 shows a detailed configuration of the radiation imaging element 10 according to the second embodiment. The same parts as those in the first embodiment (see FIG. 1) are denoted by the same reference numerals, and description thereof is omitted here.
 第2の実施の形態に係る放射線撮像素子10では、画素20のマトリクス配列の一方向に対する交差方向(図8の縦方向)の各画素列にそれぞれ走査配線101が並列に設けられている。 In the radiation imaging element 10 according to the second embodiment, the scanning wirings 101 are provided in parallel in each pixel column in the crossing direction (vertical direction in FIG. 8) with respect to one direction of the matrix arrangement of the pixels 20.
 また、放射線撮像素子10には、信号配線方向の一端側にゲートIC104が設けられており、各走査配線101は、基板1の周辺部又基板1の裏面に設けられた不図示の配線を介してゲートIC104に接続されている。 Further, the radiation imaging element 10 is provided with a gate IC 104 on one end side in the signal wiring direction, and each scanning wiring 101 is connected to a peripheral portion of the substrate 1 or a wiring (not shown) provided on the back surface of the substrate 1. Connected to the gate IC 104.
 図9には、第2の実施形態に係る放射線撮像素子10の1画素単位の構造を示す平面図が示されており、図10には、図9のA-A線断面図が示されている。なお、上記第1の実施の形態(図4及び図5参照)と同一部分については同一の符号を付して、ここでの説明は省略する。 FIG. 9 is a plan view showing the structure of one pixel unit of the radiation imaging element 10 according to the second embodiment. FIG. 10 is a sectional view taken along line AA of FIG. Yes. The same parts as those in the first embodiment (see FIGS. 4 and 5) are denoted by the same reference numerals, and the description thereof is omitted here.
 図10に示すように、第2の実施形態に係る放射線撮像素子10には、上記第1の実施の形態と比較して、第1信号配線層及び第1絶縁膜15Aが形成されておらず、第2信号配線層以上の層によって放射線撮像素子10が構成されている。 As shown in FIG. 10, in the radiation imaging element 10 according to the second embodiment, the first signal wiring layer and the first insulating film 15A are not formed as compared with the first embodiment. The radiation imaging element 10 is constituted by layers higher than the second signal wiring layer.
 第2の実施の形態に係る放射線撮像素子10には、第1の実施の形態と同様に、図2及び図3に示すように、信号配線方向の一端に雄型のI/Fコネクタ110が設けられている。各ゲートIC104及び各アンプIC105は、I/F回路112を介してI/Fコネクタ110に接続されており、図6に示すように、I/Fコネクタ110が制御部50のI/Fコネクタ126に接続されて、制御部50に接続される。 As in the first embodiment, the radiation imaging element 10 according to the second embodiment has a male I / F connector 110 at one end in the signal wiring direction, as shown in FIGS. Is provided. Each gate IC 104 and each amplifier IC 105 are connected to an I / F connector 110 via an I / F circuit 112, and the I / F connector 110 is connected to an I / F connector 126 of the control unit 50 as shown in FIG. To the control unit 50.
 このように第2の実施の形態に係る放射線撮像素子10は、外部との接続端子を1辺に設けているため、放射線撮像素子10の交換が容易となる。 As described above, since the radiation imaging element 10 according to the second embodiment has a connection terminal with the outside on one side, the radiation imaging element 10 can be easily replaced.
 また、放射線撮像素子10では、ゲートIC104やアンプIC105が基板1の1辺に設けられ、当該1辺で制御部50と接続することにより、図7に示すように、放射線撮像素子10自体を一方向に湾曲させて被写体Sの撮影を行う場合もゲートIC104やアンプIC105、制御部50が湾曲しない。従って、ゲートIC104やアンプIC105、制御部50内で配線に断線が発生しないため、安定して放射線画像を撮影できる。 Further, in the radiation imaging element 10, the gate IC 104 and the amplifier IC 105 are provided on one side of the substrate 1 and are connected to the control unit 50 on the one side, so that the radiation imaging element 10 itself is integrated as shown in FIG. 7. The gate IC 104, the amplifier IC 105, and the control unit 50 are not curved even when the subject S is shot in a curved direction. Accordingly, no disconnection occurs in the wiring in the gate IC 104, the amplifier IC 105, and the control unit 50, so that a radiation image can be stably captured.
 [第3の実施の形態]
 次に、第3の実施の形態について説明する。
[Third Embodiment]
Next, a third embodiment will be described.
 図11には、第3の実施の形態に係る放射線撮像素子10の詳細な構成が示されている。なお、上記第1の実施の形態(図1参照)と同一部分については同一の符号を付して、ここでの説明は省略する。 FIG. 11 shows a detailed configuration of the radiation imaging element 10 according to the third embodiment. The same parts as those in the first embodiment (see FIG. 1) are denoted by the same reference numerals, and description thereof is omitted here.
 第3の実施の形態に係る放射線撮像素子10では、画素20のマトリクス配列の一方向に対する交差方向(図11の縦方向)の各画素列にそれぞれ走査配線101が並列に設けられている。 In the radiation imaging element 10 according to the third embodiment, the scanning wirings 101 are provided in parallel in each pixel column in the crossing direction (vertical direction in FIG. 11) with respect to one direction of the matrix arrangement of the pixels 20.
 また、放射線撮像素子10には、走査配線方向の一端側にゲートIC104が設けられており、各走査配線101は、ゲートIC104に接続されている。 The radiation imaging element 10 is provided with a gate IC 104 on one end side in the scanning wiring direction, and each scanning wiring 101 is connected to the gate IC 104.
 各ゲートIC104は、図12に示すように、基板1の周辺部に設けられた接続配線130を介して最も端のアンプIC105に接続されており、当該アンプIC105及びインターフェース回路112を介してI/Fコネクタ110に接続されている。第3の実施の形態に係る放射線撮像素子10では、第1の実施の形態と同様に、図6に示すように、I/Fコネクタ110が制御部50のI/Fコネクタ126に接続されて、放射線撮像素子10が制御部50に接続される。 As shown in FIG. 12, each gate IC 104 is connected to the farthest amplifier IC 105 via a connection wiring 130 provided in the peripheral portion of the substrate 1, and the I / O via the amplifier IC 105 and the interface circuit 112. The F connector 110 is connected. In the radiation imaging element 10 according to the third embodiment, as shown in FIG. 6, the I / F connector 110 is connected to the I / F connector 126 of the control unit 50 as in the first embodiment. The radiation image sensor 10 is connected to the control unit 50.
 このように第3の実施の形態に係る放射線撮像素子10では、外部との接続端子を1辺に設けているため、放射線撮像素子10の交換が容易となる。 Thus, in the radiation imaging element 10 according to the third embodiment, since the connection terminal with the outside is provided on one side, the radiation imaging element 10 can be easily replaced.
 また、放射線撮像素子10では、走査配線方向の一端側にゲートIC104が設けられているが、基板1が可撓性を有している。図7に示すように放射線撮像素子10自体を湾曲させて撮影を行う場合も各ゲートIC104の間の基板1が湾曲してゲートIC104が湾曲しない。従って、ゲートIC104内で配線に断線が発生しないため、安定して放射線画像を撮影できる。 Further, in the radiation imaging element 10, the gate IC 104 is provided on one end side in the scanning wiring direction, but the substrate 1 has flexibility. As shown in FIG. 7, when imaging is performed by curving the radiation imaging device 10 itself, the substrate 1 between the gate ICs 104 is curved and the gate ICs 104 are not curved. Therefore, since no disconnection occurs in the wiring within the gate IC 104, a radiation image can be stably captured.
 [第4の実施の形態]
 次に、第4の実施の形態について説明する。
[Fourth Embodiment]
Next, a fourth embodiment will be described.
 図13には、第4の実施の形態に係る放射線撮像素子10の詳細な構成が示されている。なお、上記第1の実施の形態(図1参照)と同一部分については同一の符号を付して、ここでの説明は省略する。 FIG. 13 shows a detailed configuration of the radiation imaging element 10 according to the fourth embodiment. The same parts as those in the first embodiment (see FIG. 1) are denoted by the same reference numerals, and description thereof is omitted here.
 第4の実施の形態に係る放射線撮像素子10では、画素20のマトリクス配列の一方向に対する交差方向(図13の縦方向)の各画素列にそれぞれ走査配線101が並列に設けられている。 In the radiation imaging element 10 according to the fourth exemplary embodiment, the scanning wirings 101 are provided in parallel in the respective pixel columns in the crossing direction (vertical direction in FIG. 13) with respect to one direction of the matrix arrangement of the pixels 20.
 また、放射線撮像素子10には、走査配線方向の一端側にアンプIC105が設けられており、各走査配線101は、アンプIC105に接続されている。 The radiation imaging element 10 is provided with an amplifier IC 105 on one end side in the scanning wiring direction, and each scanning wiring 101 is connected to the amplifier IC 105.
 アンプIC105は、基板1外に設けられてプリント配線基板などの外部配線132を経由してインターフェース回路112に接続されており、当該インターフェース回路112を介してI/Fコネクタ110に接続されている。第4の実施の形態に係る放射線撮像素子10では、第1の実施の形態と同様に、図6に示すように、I/Fコネクタ110が制御部50のI/Fコネクタ126に接続されて、放射線撮像素子10が制御部50に接続される。 The amplifier IC 105 is provided outside the substrate 1 and connected to the interface circuit 112 via an external wiring 132 such as a printed wiring board, and is connected to the I / F connector 110 via the interface circuit 112. In the radiation imaging element 10 according to the fourth embodiment, as shown in FIG. 6, the I / F connector 110 is connected to the I / F connector 126 of the control unit 50 as in the first embodiment. The radiation image sensor 10 is connected to the control unit 50.
 このように第4の実施の形態に係る放射線撮像素子10は、第1の実施の形態と同様に、外部との接続端子を1辺に設けているため、放射線撮像素子10の交換が容易となる。 As described above, the radiation imaging element 10 according to the fourth embodiment is provided with a connection terminal on the one side as in the first embodiment, so that the radiation imaging element 10 can be easily replaced. Become.
 また、放射線撮像素子10には、走査配線方向の一端側にゲートIC104が設けられているが、基板1が可撓性を有している。図7に示すように放射線撮像素子10自体を湾曲させて撮影を行う場合も各ゲートIC104の間の基板1が湾曲してゲートIC104が湾曲しない。従って、ゲートIC104内で配線に断線が発生しないため、安定して放射線画像を撮影できる。 The radiation imaging element 10 is provided with a gate IC 104 on one end side in the scanning wiring direction, but the substrate 1 is flexible. As shown in FIG. 7, when imaging is performed by curving the radiation imaging device 10 itself, the substrate 1 between the gate ICs 104 is curved and the gate ICs 104 are not curved. Therefore, since no disconnection occurs in the wiring within the gate IC 104, a radiation image can be stably captured.
 なお、上記第1及び第2の実施の形態では、ゲートIC104及びアンプIC105を基板1の1辺に設けた場合について説明したが、本発明はこれに限定されるものではない。例えば、図14に示すように、ゲートIC104及びアンプIC105を基板1の対向する2辺に設けてもよい。図14では、対向する2辺の一方側にゲートIC104が設けられ、他方側にアンプIC105が設けられている。制御回路120では、2辺の一方側に設けて、外部回路を介して他方側と接続してもよい。あるいは、図14に示すように、ゲートIC104を制御するゲート制御回路120Aと、アンプIC105を制御するアンプ制御回路120Bとに分けて、対向する2辺に設けてもよい。 In the first and second embodiments, the case where the gate IC 104 and the amplifier IC 105 are provided on one side of the substrate 1 has been described. However, the present invention is not limited to this. For example, as shown in FIG. 14, the gate IC 104 and the amplifier IC 105 may be provided on two opposite sides of the substrate 1. In FIG. 14, a gate IC 104 is provided on one side of two opposing sides, and an amplifier IC 105 is provided on the other side. The control circuit 120 may be provided on one side of the two sides and connected to the other side via an external circuit. Alternatively, as shown in FIG. 14, the gate control circuit 120 </ b> A that controls the gate IC 104 and the amplifier control circuit 120 </ b> B that controls the amplifier IC 105 may be divided and provided on two opposing sides.
 また、上記第1の実施の形態では、図5に示すように、第1~第3信号配線層に別々に第1配線101A、第2配線101B、信号配線3を形成した場合について説明したが、本発明はこれに限定されるものではない。例えば、第2配線101Bと信号配線3を同じ信号配線層に形成してもよい。第1の実施の形態の放射線撮像素子10では、図5に示す第2配線101Bを、信号配線3と同じ第3信号配線層に形成した場合、第1信号配線層と第1絶縁膜15Aが不要となる。なお、この場合、第2配線101Bと信号配線3間の絶縁を確保する必要がある。 In the first embodiment, as shown in FIG. 5, the case where the first wiring 101A, the second wiring 101B, and the signal wiring 3 are separately formed in the first to third signal wiring layers has been described. However, the present invention is not limited to this. For example, the second wiring 101B and the signal wiring 3 may be formed in the same signal wiring layer. In the radiation imaging element 10 of the first embodiment, when the second wiring 101B shown in FIG. 5 is formed in the same third signal wiring layer as the signal wiring 3, the first signal wiring layer and the first insulating film 15A are formed. It becomes unnecessary. In this case, it is necessary to ensure insulation between the second wiring 101B and the signal wiring 3.
 また、上記第1の実施の形態では、図4に示すように、第2配線101Bと信号配線3を一方向の画素列の端部分に形成した場合について説明したが、本発明はこれに限定されるものではない。例えば、信号配線3を一方向の画素列の端部分に形成し、第2配線101Bを一方向の画素列の中央部分に形成して、信号配線3と第2配線101Bとの距離を離すようにしてもよい。これにより、信号配線3の寄生容量を抑えることができる。 In the first embodiment, the case where the second wiring 101B and the signal wiring 3 are formed at the end portion of the pixel column in one direction as shown in FIG. 4 has been described. However, the present invention is not limited to this. Is not to be done. For example, the signal wiring 3 is formed at the end portion of the pixel column in one direction, and the second wiring 101B is formed at the center portion of the pixel column in one direction so that the distance between the signal wiring 3 and the second wiring 101B is increased. It may be. Thereby, the parasitic capacitance of the signal wiring 3 can be suppressed.
 図15及び図16には、第1の実施形態に適用可能な放射線撮像素子10の別な構成の一例が示されている。なお、図15には、放射線撮像素子10の1画素単位の構造を示す平面図が示されており、図16には、図15のA-A線断面図が示されている。なお、上記第1の実施の形態(図4及び図5参照)と同一部分については同一の符号を付して、ここでの説明は省略する。 15 and 16 show an example of another configuration of the radiation imaging element 10 applicable to the first embodiment. FIG. 15 is a plan view showing the structure of one pixel unit of the radiation imaging element 10, and FIG. 16 is a cross-sectional view taken along the line AA of FIG. The same parts as those in the first embodiment (see FIGS. 4 and 5) are denoted by the same reference numerals, and the description thereof is omitted here.
 図16に示すように、放射線撮像素子10には、上記第1の実施の形態と比較して、第1信号配線層及び第1絶縁膜15Aが形成されておらず、放射線撮像素子10は、第2信号配線層以上の層によって構成されている。 As shown in FIG. 16, the radiation image sensor 10 is not formed with the first signal wiring layer and the first insulating film 15 </ b> A as compared with the first embodiment. The second signal wiring layer and higher layers are included.
 第2配線101Bは、TFT保護膜層11上に形成されており、一方向の画素列の中央部分を通過している。 The second wiring 101B is formed on the TFT protective film layer 11 and passes through the central portion of the pixel column in one direction.
 TFT保護膜層11及び第2絶縁膜15Bには、n本目の第1配線101Aとn本目の第2配線101Bが交差する位置にコンタクトホール19(図15参照。)が形成される。n本目の第1配線101Aとn本目の第2配線101Bとがコンタクトホール19を介して接続される。ゲート電極2が形成される配線層より下層に別な配線層を形成すると、レイヤ間のアライメント、歩留り等に問題が発生する場合があるため、第2配線101BをTFT保護膜層11上に形成するようにしてもよい。 In the TFT protective film layer 11 and the second insulating film 15B, a contact hole 19 (see FIG. 15) is formed at a position where the nth first wiring 101A and the nth second wiring 101B intersect. The n-th first wiring 101 </ b> A and the n-th second wiring 101 </ b> B are connected through the contact hole 19. If another wiring layer is formed below the wiring layer on which the gate electrode 2 is formed, problems may occur in alignment between layers, yield, etc., so the second wiring 101B is formed on the TFT protective film layer 11 You may make it do.
 また、上記各実施の形態では、放射線を一度シンチレータ30で光に変換し、変換した光をセンサ部103で電荷に変換して蓄積する間接変換方式の放射線撮像素子10に本発明を適用した場合について説明したが、本発明はこれに限定されるものではない。例えば、放射線を、アモルファスセレン等を用いたセンサ部で直接、電荷に変換して蓄積する直接変換方式の放射線撮像素子に適用してもよい。 In each of the above embodiments, when the present invention is applied to the radiation image sensor 10 of the indirect conversion method in which radiation is once converted into light by the scintillator 30 and the converted light is converted into electric charge by the sensor unit 103 and accumulated. However, the present invention is not limited to this. For example, the present invention may be applied to a direct-conversion radiation imaging element that directly converts radiation into electric charge and stores it in a sensor unit using amorphous selenium or the like.
 また、上記実施の形態では、放射線としてX線を検出することにより画像を検出する放射線撮影装置100に本発明を適用した場合について説明したが、本発明はこれに限定されるものではない。例えば、放射線撮影装置100は、放射線として粒子線や他の電磁波(可視光や紫外線、赤外線)等を検出してもよい。 In the above embodiment, the case where the present invention is applied to the radiation imaging apparatus 100 that detects an image by detecting X-rays as radiation has been described, but the present invention is not limited to this. For example, the radiation imaging apparatus 100 may detect a particle beam, other electromagnetic waves (visible light, ultraviolet rays, infrared rays) or the like as radiation.
 その他、上記実施の形態で説明した放射線撮像素子10の構成及び放射線撮影装置100の構成は一例であり、本発明の主旨を逸脱しない範囲内において適宜変更可能であることは言うまでもない。 Other than that, the configuration of the radiation imaging element 10 and the configuration of the radiation imaging apparatus 100 described in the above embodiment are merely examples, and it goes without saying that they can be appropriately changed without departing from the gist of the present invention.
1  基板(絶縁性基板)
3  信号配線
4  TFTスイッチ(スイッチ素子)
10 放射線撮像素子
20 画素
50 制御部
100 放射線撮影装置
101 走査配線
101A 第1配線
101B 第2配線
103 センサ部
104 ゲートIC(第1集積回路)
105 アンプIC(第2集積回路)
120 制御回路
120A ゲート制御回路(第1制御回路)
120B アンプ制御回路(第2制御回路)
130 接続配線
132 外部配線
1 Substrate (insulating substrate)
3 Signal wiring 4 TFT switch (switch element)
DESCRIPTION OF SYMBOLS 10 Radiation image sensor 20 Pixel 50 Control part 100 Radiography apparatus 101 Scan wiring 101A 1st wiring 101B 2nd wiring 103 Sensor part 104 Gate IC (1st integrated circuit)
105 Amplifier IC (second integrated circuit)
120 control circuit 120A gate control circuit (first control circuit)
120B Amplifier control circuit (second control circuit)
130 Connection wiring 132 External wiring

Claims (6)

  1.  平面視において一方向の外縁に1辺又は対向する2辺を少なくとも有し、各々検出対象とする放射線が照射されることにより発生した電荷を蓄積すると共に当該電荷を読み出すためのスイッチ素子を備えた画素がマトリクス状に複数設けられ、各画素に備えられた各スイッチ素子をスイッチングする制御信号が流れる複数の走査配線と前記各スイッチ素子のスイッチング状態に応じて前記画素に蓄積された電荷に応じた電気信号が流れる複数の信号配線とが絶縁膜を介して設けられた、可撓性を有する絶縁性基板と、
     予め定められた第1本数の前記走査配線毎に前記絶縁性基板上に設けられ、それぞれ当該第1本数の走査配線に対して前記制御信号を出力する第1集積回路と、
     予め定められた第2本数の前記信号配線毎に前記絶縁性基板上に設けられ、それぞれ当該第2本数の信号配線を流れる電気信号を検出する第2集積回路と、
     前記絶縁性基板の前記1辺又は対向する2辺側に設けられ、前記第1集積回路及び前記第2集積回路と電気的に接続されて前記第1集積回路及び前記第2集積回路の動作を制御する制御回路と、
     を備えた放射線撮影装置。
    It has at least one side or two opposite sides on the outer edge in one direction in a plan view, and includes a switch element for accumulating and reading out the charges generated by irradiation with the radiation to be detected. A plurality of pixels are provided in a matrix, a plurality of scanning wirings through which control signals for switching each switch element provided in each pixel flow, and a charge stored in the pixel according to the switching state of each switch element A flexible insulating substrate provided with a plurality of signal wirings through which an electric signal flows through an insulating film;
    A first integrated circuit provided on the insulating substrate for each predetermined first number of scanning wirings and outputting the control signal to each of the first number of scanning wirings;
    A second integrated circuit that is provided on the insulating substrate for each predetermined second number of the signal wirings and detects an electrical signal flowing through the second number of signal wirings;
    Provided on the one side or two opposite sides of the insulating substrate, and electrically connected to the first integrated circuit and the second integrated circuit to operate the first integrated circuit and the second integrated circuit. A control circuit to control;
    A radiography apparatus comprising:
  2.  前記複数の信号配線は、前記一方向に並行して設けられ、
     前記複数の走査配線は、前記一方向に対する交差方向に並行して設けられた複数の第1配線、及び前記一方向に並行でかつ前記第1配線と絶縁膜を介して設けられ、当該絶縁膜に形成されたコンタクトホールを介してそれぞれ異なる前記第1配線に接続された複数の第2配線により構成された
     請求項1記載の放射線撮影装置。
    The plurality of signal wirings are provided in parallel in the one direction,
    The plurality of scanning wirings are provided in parallel with a plurality of first wirings in a crossing direction with respect to the one direction, and are provided in parallel with the one direction through the first wirings and an insulating film. The radiation imaging apparatus according to claim 1, further comprising a plurality of second wirings connected to different first wirings through contact holes formed in the first and second wirings.
  3.  前記第1集積回路及び第2集積回路は、前記絶縁性基板上の前記1辺又は対向する2辺の周辺部に設けられた
     請求項1又は請求項2記載の放射線撮影装置。
    The radiation imaging apparatus according to claim 1, wherein the first integrated circuit and the second integrated circuit are provided in a peripheral portion of the one side or two opposite sides on the insulating substrate.
  4.  前記制御回路は、前記第1集積回路の動作を制御する第1制御回路及び前記第2集積回路の動作を制御する第2制御回路を有し、
     前記第1集積回路及び前記第1制御回路と前記第2集積回路及び前記第2制御回路とは前記絶縁性基板の前記2辺に対向して設けられた
     請求項1又は請求項2記載の放射線撮影装置。
    The control circuit includes a first control circuit that controls the operation of the first integrated circuit and a second control circuit that controls the operation of the second integrated circuit,
    The radiation according to claim 1, wherein the first integrated circuit, the first control circuit, the second integrated circuit, and the second control circuit are provided to face the two sides of the insulating substrate. Shooting device.
  5.  前記制御回路は、前記第1集積回路の動作を制御する第1制御回路及び前記第2集積回路の動作を制御する第2制御回路を有し、
     前記第1集積回路及び前記第1制御回路と前記第2集積回路及び前記第2制御回路とは前記絶縁性基板の前記2辺に対向して設けられた
     請求項3記載の放射線撮影装置。
    The control circuit includes a first control circuit that controls the operation of the first integrated circuit and a second control circuit that controls the operation of the second integrated circuit,
    The radiation imaging apparatus according to claim 3, wherein the first integrated circuit, the first control circuit, the second integrated circuit, and the second control circuit are provided to face the two sides of the insulating substrate.
  6.  前記絶縁性基板には、前記複数の信号配線が前記一方向に並行して設けられると共に、前記複数の走査配線が前記一方向に対する交差方向に並行して設けられ、
     前記第2集積回路は、前記絶縁性基板上の前記一方向の周辺部に設けられ、
     前記第1集積回路は、前記絶縁性基板上の前記交差方向の周辺部に設けられ、前記絶縁性基板上に設けられた接続配線又は当該絶縁性基板外の外部配線を経由して前記制御回路に接続された
     請求項1記載の放射線撮影装置。
    The insulating substrate is provided with the plurality of signal wirings in parallel with the one direction, and the plurality of scanning wirings are provided in parallel with the crossing direction with respect to the one direction,
    The second integrated circuit is provided in the unidirectional peripheral portion on the insulating substrate,
    The first integrated circuit is provided in a peripheral portion of the crossing direction on the insulating substrate, and is connected to the control circuit via a connection wiring provided on the insulating substrate or an external wiring outside the insulating substrate. The radiation imaging apparatus according to claim 1, connected to the radiographic apparatus.
PCT/JP2010/057835 2009-09-29 2010-05-07 Radiation image pickup device WO2011040079A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009225286A JP2011075327A (en) 2009-09-29 2009-09-29 Radiation image pickup device
JP2009-225286 2009-09-29

Publications (1)

Publication Number Publication Date
WO2011040079A1 true WO2011040079A1 (en) 2011-04-07

Family

ID=43825914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/057835 WO2011040079A1 (en) 2009-09-29 2010-05-07 Radiation image pickup device

Country Status (2)

Country Link
JP (1) JP2011075327A (en)
WO (1) WO2011040079A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111919140A (en) * 2018-03-26 2020-11-10 富士胶片株式会社 Radiographic imaging device
WO2022044715A1 (en) * 2020-08-26 2022-03-03 京セラ株式会社 Radiation detection device
WO2024080346A1 (en) * 2022-10-14 2024-04-18 キヤノン株式会社 Radiography device and radiography system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6818182B2 (en) * 2018-03-26 2021-01-20 富士フイルム株式会社 Radiation imaging device
TWI830720B (en) 2018-03-26 2024-02-01 日商富士軟片股份有限公司 Radiographic imaging device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000353808A (en) * 1999-04-07 2000-12-19 Sharp Corp Active matrix substrate, manufacture thereof, and flat panel image sensor
JP2003014855A (en) * 2001-06-27 2003-01-15 Canon Inc Radiation detector and detecting system
JP2003058080A (en) * 2001-06-05 2003-02-28 Sharp Corp Active matrix board and display device and detecting device
JP2007097693A (en) * 2005-09-30 2007-04-19 Fujifilm Corp Resolution variable x-ray imaging device and x-ray ct apparatus
JP2009032854A (en) * 2007-07-26 2009-02-12 Fujifilm Corp Radiation imaging element
JP2009212162A (en) * 2008-02-29 2009-09-17 Fujifilm Corp Radiation detector
JP2009207570A (en) * 2008-02-29 2009-09-17 Fujifilm Corp Detection signal processor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000353808A (en) * 1999-04-07 2000-12-19 Sharp Corp Active matrix substrate, manufacture thereof, and flat panel image sensor
JP2003058080A (en) * 2001-06-05 2003-02-28 Sharp Corp Active matrix board and display device and detecting device
JP2003014855A (en) * 2001-06-27 2003-01-15 Canon Inc Radiation detector and detecting system
JP2007097693A (en) * 2005-09-30 2007-04-19 Fujifilm Corp Resolution variable x-ray imaging device and x-ray ct apparatus
JP2009032854A (en) * 2007-07-26 2009-02-12 Fujifilm Corp Radiation imaging element
JP2009212162A (en) * 2008-02-29 2009-09-17 Fujifilm Corp Radiation detector
JP2009207570A (en) * 2008-02-29 2009-09-17 Fujifilm Corp Detection signal processor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111919140A (en) * 2018-03-26 2020-11-10 富士胶片株式会社 Radiographic imaging device
CN111919140B (en) * 2018-03-26 2024-04-16 富士胶片株式会社 Radiographic imaging apparatus
WO2022044715A1 (en) * 2020-08-26 2022-03-03 京セラ株式会社 Radiation detection device
WO2024080346A1 (en) * 2022-10-14 2024-04-18 キヤノン株式会社 Radiography device and radiography system

Also Published As

Publication number Publication date
JP2011075327A (en) 2011-04-14

Similar Documents

Publication Publication Date Title
JP5448877B2 (en) Radiation detector
JP5185013B2 (en) Electromagnetic wave detection element
JP5080172B2 (en) Image detection device
US7468531B2 (en) Imaging apparatus and radiation imaging apparatus
US8476596B2 (en) Thin film transistor array substrate for X-ray detector and X-ray detector
US8803210B2 (en) X-ray detector
JP5185014B2 (en) Electromagnetic wave detection element
US20160240581A1 (en) Electromagnetic wave detecting element
US8039809B2 (en) Sensor panel and image detecting device
US20120126126A1 (en) Radiation detection apparatus and radiation detection system
JP2010056396A (en) X-ray detection element
JP2009212120A (en) Electromagnetic wave detection element
US20110174957A1 (en) Radiation detection element
WO2011040079A1 (en) Radiation image pickup device
US20090032719A1 (en) Image detection device
US20110073979A1 (en) Detection element
JP2011109012A (en) Radiation detecting element
JP2010011158A (en) Detection element
JP2010003766A (en) Electromagnetic wave detection element
JP2014122903A (en) Radiation detector and radiation imaging device
JP5456185B2 (en) Electromagnetic wave detection element
JP2011176274A (en) Radiation detection element
JP5502685B2 (en) Radiation detection element
JP2010003849A (en) Electromagnetic wave detection element
JP5388488B2 (en) Electromagnetic wave detection element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10820199

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10820199

Country of ref document: EP

Kind code of ref document: A1