WO2011039851A1 - Heat-source-side unit and refrigeration air conditioner - Google Patents

Heat-source-side unit and refrigeration air conditioner Download PDF

Info

Publication number
WO2011039851A1
WO2011039851A1 PCT/JP2009/067007 JP2009067007W WO2011039851A1 WO 2011039851 A1 WO2011039851 A1 WO 2011039851A1 JP 2009067007 W JP2009067007 W JP 2009067007W WO 2011039851 A1 WO2011039851 A1 WO 2011039851A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
heat source
oil
source side
oil tank
Prior art date
Application number
PCT/JP2009/067007
Other languages
French (fr)
Japanese (ja)
Inventor
智基 稲垣
博幸 岡野
修 森本
晋司 岡
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP09850042.4A priority Critical patent/EP2484995B1/en
Priority to JP2011533990A priority patent/JP5583134B2/en
Priority to PCT/JP2009/067007 priority patent/WO2011039851A1/en
Publication of WO2011039851A1 publication Critical patent/WO2011039851A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/02Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat for separating lubricants from the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B45/00Arrangements for charging or discharging refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2345/00Details for charging or discharging refrigerants; Service stations therefor
    • F25B2345/002Collecting refrigerant from a cycle

Definitions

  • the present invention relates to a heat source side unit and a refrigeration air conditioner.
  • the present invention relates to an apparatus that can clean an existing refrigerant pipe and collect foreign matter when installing an air conditioner.
  • existing piping existing refrigerant piping
  • the heat source side unit to be removed and the load side unit are replaced (replaced) with a new heat source side unit (outdoor unit) and a load side unit (indoor unit), and connected to the existing piping to install the apparatus.
  • it is not necessary to newly replace the refrigerant pipe so that labor, cost, and time required for the refrigerant pipe replacement work can be reduced.
  • a large construction is not required for a building or the like where the refrigeration air conditioner is installed, and the reliability of the refrigeration air conditioner is improved.
  • Patent Document 1 When using the existing pipe as described above, in the refrigeration air conditioner, the old refrigerating machine oil (mineral oil) remaining in the existing pipe after replacing the heat source side unit and the load side unit is usually deteriorated. Or the like (hereinafter, referred to as Patent Document 1, for example).
  • a new refrigerant is circulated in a refrigerant circuit that circulates the refrigerant, and foreign substances remaining in the existing piping are washed away by the refrigerant to be recovered (
  • the operation for cleaning and collecting foreign substances is referred to as the recovery operation).
  • a collecting device that captures and collects the washed-out foreign matters by a filter, gravity separation or the like is required.
  • an oil tank for replenishing new refrigeration oil hereinafter referred to as refrigeration oil
  • the recovery unit and oil tank as described above occupy a large volume in the heat source side unit.
  • the recovery unit and the oil tank should remain in the heat source side unit until the next heat source side unit is replaced.
  • the oil tank is provided independently of the refrigerant circuit, and conventionally, piping connection for refilling the compressor oil to the compressor is performed separately from the oil separator (oil separator) in the refrigerant circuit. It was.
  • the recovery unit is provided on a separate pipe connected in parallel with the refrigerant circuit.
  • the refrigerant may accumulate more than necessary in the collector.
  • the amount of refrigerant charged may increase carelessly.
  • the refrigerant is excessively charged to increase the cost, or the excessive refrigerant increases, the refrigerant overflows from the accumulator, the liquid returns to the compressor excessively, and the compressor is damaged. There was a possibility.
  • the present invention has been made in order to solve the above-described problems.
  • the heat source side can be used for efficient use of a tank, perform efficient recovery, etc., and can make the amount of refrigerant appropriate.
  • An object is to provide a unit and a refrigeration air conditioner.
  • a heat source side unit is a heat source side unit that includes a compressor and a heat source side heat exchanger, and forms a refrigerant circuit by pipe connection between the expansion device and the load side heat exchanger.
  • the refrigerant circuit is further provided with an oil tank for sending the refrigerating machine oil deficient due to the above to the compressor for replenishment. Further, it is assumed that the oil tank and the recovery device are integrally formed with a pressure-resistant partition.
  • the oil tank is provided in the refrigerant circuit so as to allow the refrigerant to pass therethrough, so that the refrigerant circuit can be simplified, the workability can be improved, and the manufacturing cost can be reduced. Further, the pulsation of the refrigerant discharged from the compressor can be reduced in the oil tank. Furthermore, by integrally forming the oil tank and the recovery device, it is possible to prevent a temperature drop of the recovery device and to prevent the refrigerant from stagnation in the recovery device. For this reason, it is possible to accurately determine the amount of refrigerant reduced by the recovery operation and replenish an appropriate amount of refrigerant. Therefore, the risk that excess refrigerant returns to the compressor can be reduced, and a highly reliable system can be obtained.
  • FIG. It is a figure showing the structure of the frozen air conditioning apparatus which concerns on Embodiment 1.
  • FIG. It is a figure showing the procedure which concerns on replacement including a collection
  • FIG. 1 is a configuration diagram of a refrigeration air conditioning apparatus according to Embodiment 1 of the present invention.
  • a refrigeration air conditioner that is a refrigeration cycle (heat pump cycle) device will be described.
  • 1 includes a heat source side unit (outdoor unit) 100 and a load side unit (indoor unit) 200, which are connected by a refrigerant pipe to form a refrigerant circuit (hereinafter referred to as a refrigerant circuit).
  • the refrigerant is circulated.
  • a pipe through which a gaseous refrigerant (gas refrigerant) flows is referred to as a gas pipe 300
  • a pipe through which a liquid refrigerant (liquid refrigerant, which may be a gas-liquid two-phase refrigerant) flows is referred to as a liquid pipe 400.
  • the heat source side unit (outdoor unit) 100 and the load side unit (indoor unit) 200 are new units after replacement.
  • the gas pipe 300 and the liquid pipe 400 are existing pipes.
  • the level of pressure is not determined by the relationship with the reference pressure (numerical value). For example, suppose that it represents based on relative height in a refrigerant circuit by pressurization of compressor 101, control of the opening-and-closing state (opening degree) of each throttle device (flow control device), etc. The same applies to temperature.
  • non-azeotropic refrigerant mixture R407C etc.
  • pseudo azeotropic refrigerant mixture R410A, R404A etc.
  • single refrigerant R22, R134a etc.
  • natural refrigerant carbon dioxide, propane etc.
  • Etc. the types of refrigerant before and after the replacement may be the same or different.
  • the heat source side unit 100 of this embodiment includes a compressor 101, an oil separator 102, a four-way valve 103, a heat source side heat exchanger 104, a heat source side fan 105, an accumulator 106, a heat source side expansion device (expansion valve) 107, a first one. 2 heat source side expansion device (expansion valve) 133, on-off valve 134, refrigerant supply on-off valve 108, refrigerant charging port on-off valve 109, oil tank 110, inter-refrigerant heat exchanger 113, and check valves 114 and 115 as refrigerant.
  • the recovery device 111 and the capillary tube 112 are connected by a separate system from the refrigerant circuit. And it has the heat source side control apparatus 120 in order to control each apparatus (means) on a refrigerant circuit.
  • the oil tank 110 and the recovery device 111 are integrally formed via a copper end plate or the like.
  • the compressor 101 includes an inverter circuit, a compressor motor, and the like.
  • the inverter circuit controls the rotation speed of the compressor motor (operating frequency of the compressor 101), compresses the refrigerant used in the refrigeration cycle, and circulates the refrigerant pipe.
  • the oil separator 102 separates the refrigerating machine oil that becomes the lubricating oil mixed with the refrigerant and discharged from the compressor 101 from the refrigerant. Then, the separated refrigerating machine oil is caused to flow to the oil tank 110 through the oil pipe 116 and returned to the compressor 101 via the oil tank 110 to unify the oil return path.
  • the four-way valve 103 switches the refrigerant flow between the cooling operation and the heating operation based on an instruction from the heat source side control device 120.
  • the heat source side heat exchanger 104 performs heat exchange between the refrigerant and air (outdoor air). For example, it functions as an evaporator during heating operation, and performs heat exchange between a low-pressure refrigerant and air, evaporating and evaporating the refrigerant. Further, during the cooling operation, it functions as a condenser and performs heat exchange between the refrigerant compressed in the compressor 101 flowing in from the four-way valve 103 side and air, thereby condensing and liquefying the refrigerant.
  • the heat source side heat exchanger 104 is provided with a heat source side fan 105 in order to efficiently exchange heat between the refrigerant and the air.
  • the heat source side fan 105 may also have an inverter circuit so that the operation frequency of the fan motor is arbitrarily changed to finely change the rotation speed of the fan.
  • the accumulator 106 is means for storing, for example, liquid surplus refrigerant. In the present embodiment, it also serves to separate foreign substances and the like.
  • the heat source side expansion device 107 adjusts, for example, the flow rate and pressure of the refrigerant flowing from the pipe through which the liquid refrigerant mainly flows to the pipe through which the gas refrigerant mainly flows.
  • the second heat source side expansion device 133 mainly adjusts the pressure according to the saturation value based on the detection of the downstream pressure sensor (not shown) according to the pressure resistance of the liquid pipe 400 during cooling. Further, during heating, the amount of liquid back to the accumulator 106 is adjusted by the discharge superheat degree of the compressor 101.
  • the oil tank 110 is filled with refrigerating machine oil.
  • refrigerating machine oil mixed and discharged from the compressor 101 during the collecting operation does not stay in the collecting unit 111 and returns, the oil tank 110 becomes insufficient.
  • the compressor 101 is replenished.
  • the refrigerant inflow pipe port 110A and the refrigerant outflow pipe port 110B are provided, and the oil separator 102 (compressor 101) and the four-way valve 103 (the four-way valve 103 are not provided) on the refrigerant circuit.
  • the oil tank 110 is provided between the heat source side heat exchanger 104 and the heat source side heat exchanger 104).
  • one housing is partitioned by a mirror plate or the like to form two spaces, one space is an oil tank 110, and the other space is a collector 111.
  • an on-off valve is provided so that the refrigeration oil does not leak from the oil tank 110 at the time of shipment. Details of the oil tank 110 and the like will be described later.
  • the collecting device 111 has a filter, sufficient space for lowering (sedimenting) foreign matter by gravity, and is carried along with the refrigerant to collect the foreign matter and the like accumulated at the bottom of the accumulator 106.
  • the flowing refrigerant is returned to the accumulator 106.
  • a recovery circuit different from the refrigerant circuit is formed by the recovery pipe 117 with the accumulator 106.
  • the recovery pipe 117 is provided with a recovery on-off valve 118, which is closed except when the recovery device 111 recovers foreign matter or the like so that the foreign matter or the like does not leak.
  • Capillary tube (capillary tube) 112 adjusts the amount of refrigerating machine oil sent from oil tank 110 to compressor 101 in oil pipe 116 for sending oil from oil tank 110 to the suction side of compressor 101.
  • the amount of refrigerating machine oil may be adjusted using a solenoid valve, a flow rate adjusting device, or the like instead of the capillary tube 112.
  • the capillary tube 112 and the electromagnetic valve are arranged in parallel so that the refrigerating machine oil can be supplied to the compressor 101 by opening the electromagnetic valve in a state where the refrigerating machine oil is insufficient, such as immediately after cleaning. Good.
  • the inter-refrigerant heat exchanger 113 performs heat exchange between the refrigerant flowing in and out of the liquid pipe 400 and the refrigerant flowing in and out of the gas pipe 300.
  • the gas-liquid two-phase refrigerant since the gas-liquid two-phase refrigerant has a higher pipe cleaning effect than the gas or liquid single-phase refrigerant, the gas-liquid two-phase refrigerant is transferred to the liquid pipe 400 by heat exchange during the recovery operation. And let it pass through the gas pipe 300.
  • the liquid refrigerant sent to the load side unit 200 and the refrigerant from the load side unit 200 are heat-exchanged to supercool the liquid refrigerant.
  • the check valves 114 and 115 are provided to bypass the refrigerant flowing from the load-side unit 200 so that the refrigerant does not pass through the inter-refrigerant heat exchanger 113 during normal heating operation.
  • the refrigerant supply opening / closing valve 108 opens to form a refrigerant flow from the discharge side of the compressor 101 to the suction side, and serves as a supply port for charging the refrigerant from the outside (refrigerant cylinder or the like). This is a valve for allowing the refrigerant to flow from the compressor to the compressor 101 suction side.
  • the refrigerant charging port opening / closing valve 109 is a valve for supplying the refrigerant from the refrigerant charging port and charging the refrigerant.
  • the heat source side control device 120 is composed of, for example, a microcomputer. It is possible to perform wired or wireless communication with the load-side control device 204. For example, based on data relating to detection by various detection means (sensors) in the refrigeration air conditioner, the operation frequency control of the compressor 101 by inverter circuit control, Then, the respective units related to the refrigeration air conditioner are controlled to control the operation of the entire refrigeration air conditioner.
  • the discharge temperature sensor 130 and the discharge pressure sensor 131 are temperature detection means for detecting the temperature and pressure of the refrigerant discharged from the compressor 101.
  • the heat source side heat exchange temperature sensor 132 serves as a temperature detection unit that detects the temperature of the refrigerant related to condensation when the heat source side heat exchanger 104 functions as a condenser.
  • the load side unit 200 includes a load side heat exchanger 201, a load side expansion device (expansion valve) 202, a load side fan 203, and a load side control device 204.
  • the load side heat exchanger 201 performs heat exchange between the refrigerant and air. For example, it functions as a condenser during heating operation, performs heat exchange between the refrigerant flowing in from the gas pipe 300 and air, condenses and liquefies the refrigerant (or gas-liquid two-phase), and moves to the liquid pipe 400 side. Spill.
  • the load side unit 200 is provided with a load side fan 203 for adjusting the flow of air for heat exchange.
  • the operating speed of the load-side fan 203 is determined by, for example, user settings.
  • the load side expansion device 202 is provided to adjust the flow rate of the refrigerant by changing the opening, and to adjust the pressure of the refrigerant in the load side heat exchanger 201.
  • the load side control device 210 is also composed of a microcomputer or the like, and can communicate with the heat source side control device 120 by wire or wireless, for example. Based on an instruction from the heat source side control device 120 and an instruction from a resident or the like, for example, each device (means) of the load side unit 200 is controlled so that the room has a predetermined temperature. Further, a signal including data related to detection by the detection means provided in the load side unit 200 is transmitted.
  • the load-side heat exchange temperature sensor 220 is a temperature detection unit that detects the temperature of the refrigerant related to condensation, particularly when the load-side heat exchanger 201 functions as a condenser.
  • an oil tank 110 is provided (in series) in the refrigerant circuit.
  • a muffler is provided between the compressor 101 and the four-way valve 103 to reduce the pulsation of refrigerant discharged from the compressor 101 due to discharge characteristics such as reciprocating motion and periodic motion due to rotation in the compressor 101.
  • refrigerant pulsation may be reduced by expanding a part of the refrigerant piping of the refrigerant circuit or providing a special device.
  • the interior has a space after the recovery operation. A different oil tank 110 is used.
  • the oil tank 110 is configured so that the internal volume becomes 2 liters or more in order to widen a frequency band that can be reduced or the like.
  • the oil tank 110 is already filled with refrigeration oil at the start of the recovery operation, for example, before shipment.
  • the gas refrigerant passes through the oil tank 110, for example, when the distance between the refrigerant outlet and the oil level of the refrigerating machine oil is short, the oil level undulates due to the flow of the flowing refrigerant, etc. A large amount of refrigeration oil may flow out from the refrigerant outlet.
  • the gas refrigerant may cause the oil level to ripple.
  • the internal volume of the oil tank 110 is made sufficiently larger than the required refrigerating machine oil filling amount.
  • the oil tank 110 has a cylindrical shape, and allows the refrigerant to flow along the tangential direction of the cylindrical shape. Thereby, the effect which prevents that a liquid level swells by inflow of a refrigerant
  • coolant is acquired. Even in the initial state (at the start of the recovery operation), a sufficient distance (space) is provided between the oil level of the refrigerating machine oil in the oil tank 110 and the refrigerant inlet pipe port 110A and the refrigerant outlet pipe port 110B.
  • the refrigerant inflow pipe and the refrigerant outflow pipe are provided at positions on the upper surface of the oil tank 110.
  • the distance is desirably at least three times the diameter of the refrigerant inlet pipe port 110A and the refrigerant outlet pipe port 110B, for example.
  • the diameter of the cylindrical oil tank 110 is desirably eight times or more the diameter of the refrigerant inlet pipe port 110A and the refrigerant outlet pipe port 110B.
  • two spaces are formed in one housing, and one is the oil tank 110 and the other is the recovery device 111 so that the heat in the oil tank 110 is transmitted to the recovery device 111.
  • the collector 111 is basically provided in parallel with the refrigerant pipe through which the refrigerant after passing through the gas pipe 300 and the liquid pipe 400 passes. Therefore, if the temperature of the refrigerant is low and the outside air temperature is low, the refrigerant may stagnate. Therefore, as described above, when the high-temperature refrigerant from the compressor 101 passes through the oil tank 110, the heat is transferred to the recovery unit 111 in the same casing, and the recovery unit 111 is warmed to stagnate the refrigerant. Can be prevented.
  • the refrigerant can always be operated in an appropriate state.
  • it is not necessary to supply excessive refrigerant for example, the amount of excess refrigerant that accumulates in the accumulator 106 is reduced, and the risk of liquid return to the compressor 101 is reduced. High system can be obtained.
  • Both the oil separator 102 and the oil tank 110 feed refrigeration oil to the compressor 101. Since the oil tank 110 is used for the recovery operation, the refrigeration oil is sent to the compressor 101 through independent pipes.
  • an oil pipe 116 is connected between the oil separator 102 and the oil tank 110, and the refrigeration oil separated from the refrigerant by the separator 102 is sent to the oil tank 110.
  • refrigeration oil is supplied to the compressor 101 from the oil tank 110 via the capillary tube 112 not only during the recovery operation but also during the normal operation. For this reason, piping can be reduced and simplification can be achieved. Further, the refrigeration oil can be temporarily stored in the oil tank 110. Note that the oil separator 102 may be eliminated and the refrigerating machine oil may be separated and stored only in the oil tank 110.
  • FIG. 2 is a diagram showing a procedure related to replacement including recovery operation.
  • update of the refrigeration air conditioner is started (STEP 1).
  • the existing heat source unit 100 and the like are removed (STEP 2).
  • Install a new unit (STEP 3).
  • the gas pipe 300 and the liquid pipe 400 are connected to the new unit (STEP 4).
  • the refrigerant for the load side unit 200 is charged (STEP 5).
  • the on-off valve (not shown) between the heat source side unit 100, the liquid pipe 400, and the gas pipe 300 is opened to perform a recovery operation (STEP 6).
  • the recovery on-off valve 118 is closed and a test operation of the air conditioning operation is performed (STEP 7), the update is completed (STEP 8).
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 101 reaches the heat source side heat exchanger 104 via the oil separator 102, the oil tank 110, and the four-way valve 103, and is condensed and liquefied.
  • the condensed and liquefied liquid refrigerant is cooled in the inter-refrigerant heat exchanger 113 and becomes a supercooled refrigerant and flows into the liquid pipe 400 through the check valve 114.
  • the gas-liquid two-phase refrigerant that has flowed into the liquid pipe 400 flows to the load-side unit 200 while stripping off foreign matters and the like in the liquid pipe 400 with the flow of the refrigerant.
  • the refrigerant containing foreign matter or the like that has flowed to the load side unit 200 is throttled to a low pressure by the load side expansion device 202, takes heat from the surroundings by the load side heat exchanger 201, and a part of the liquid refrigerant evaporates to be air-conditioned space. , And becomes a gas-liquid two-phase refrigerant, flows out from the load-side unit 200, and flows into the gas pipe 300.
  • the gas-liquid two-phase refrigerant that has flowed to the gas pipe 300 flows to the heat source side unit 100 while stripping off foreign matters and the like in the gas pipe 300.
  • the gas-liquid two-phase refrigerant including the foreign matter and the like that has returned to the heat source side unit 100 undergoes heat exchange with the condensed and liquefied liquid refrigerant, and is completely gasified. Then, the refrigerant is sucked into the compressor 101 via the four-way valve 103 and the accumulator 106, and circulated by being compressed and discharged as described above.
  • the foreign matter or the like is separated from the refrigerant by gravity or the like in the accumulator 106 and settles at the bottom of the accumulator 106.
  • the recovery on-off valve 118 is opened, a part of the dynamic pressure in the refrigerant changes to a static pressure inside the accumulator 106, while the pressure in the recovery device 111 becomes lower than the pressure of the accumulator 106.
  • a flow of foreign matter or the like from 106 to the collector 111 occurs.
  • the foreign matter or the like separated in the accumulator 106 passes through the recovery pipe 117 via the recovery on-off valve 118 and flows to the recovery device 111 and is recovered.
  • the oil separator 102 sends the separated refrigerating machine oil to the oil tank 110 through the oil pipe 116. Further, a shortage of refrigeration oil is sent from the oil tank 110 to the compressor 101 via the capillary tube 112.
  • the heat source side control device 120 controls each device so that the refrigerant flowing through the liquid pipe 400 becomes the liquid refrigerant. Moreover, it controls so that the refrigerant
  • FIG. 3 is a flowchart showing a process relating to charging of the refrigerant into the refrigerant circuit during the recovery operation. It is assumed that the control relating to this process is also performed by the heat source side control device 120.
  • the recovery operation corresponding to STEP 6 described above is started (STEP 11).
  • the refrigerant circuit is filled with only the refrigerant previously charged in the heat source side unit 100 and the refrigerant for the load side unit 200 that has been charged after evacuation. It becomes. Therefore, it is determined whether the temperature value Td of the refrigerant discharged from the compressor 101 detected by the discharge temperature sensor 130 is larger than the preset upper limit value Tdmax of discharge temperature (Td> Tdmax) (STEP 12).
  • the refrigerant supply on-off valve 108 and the refrigerant charging port on-off valve 109 are opened to fill the refrigerant (STEP 14).
  • the refrigerant supply on-off valve 108 and the refrigerant charging port on-off valve 109 are closed (STEP 13). Then, the above-described processing is performed until it is determined that a predetermined time relating to the collection of foreign matters has elapsed (STEP 15).
  • the heat source side control device 120 starts the refrigerant amount adjustment control described above (STEP 16). The process waits until it is determined again that the predetermined time has passed (STEP 17).
  • the saturation temperature Tsat (Pd) is calculated based on the refrigerant discharge pressure Pd detected by the discharge pressure sensor 131 (STEP 18). Then, a difference SC from the refrigerant temperature Tcout flowing out of the heat source side heat exchanger 104 detected by the heat source side heat exchange temperature sensor 132 is calculated (STEP 19). Further, when the difference SC is compared with the target value SCm and it is determined that SC ⁇ SCm (STEP 20), the refrigerant supply on-off valve 108 and the refrigerant charging port on-off valve 109 are closed (STEP 21), and the recovery operation is terminated. (STEP 23).
  • the refrigerant supply on-off valve 108 and the refrigerant charging port on-off valve 109 are opened (STEP 22), the refrigerant is charged for a predetermined time (STEP 16), and again after STEP 17 Process.
  • the refrigerant filling completion condition when it is not satisfied for a predetermined time or longer, it may be displayed on a display means (not shown) included in the heat source side unit 100, a remote controller (not shown), or the like. Further, when the refrigerant charging is completed, the completion may be notified from the heat source side unit 100, the remote controller, or the like. Further, the completion of the refrigerant charging may be stored in a storage unit (not shown) of the heat source side control device 120 so that it can be confirmed later. At this time, it may be stored together with the operating state.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 101 becomes a gas-liquid two-phase refrigerant in the oil separator 102, the oil tank 110, the four-way valve 103, and the inter-refrigerant heat exchanger 113, and the refrigerant flowing into the gas pipe 300 is
  • the foreign matter in the gas pipe 300 flows to the load side unit 200 while being peeled off by the flow of the refrigerant.
  • the refrigerant containing foreign matter and the like that has flowed into the load-side unit 200 dissipates heat around the load-side heat exchanger 201, condenses, heats the air-conditioning target space, and is squeezed to an intermediate pressure by the load-side throttle device 202. It becomes a gas-liquid two-phase refrigerant containing etc., flows out from load side unit 200, and flows into liquid piping 400.
  • the gas-liquid two-phase refrigerant that has flowed to the liquid pipe 400 flows to the heat source side unit 100 while stripping off foreign matters and the like in the liquid pipe 400.
  • the refrigerant evaporated and vaporized in the heat source side heat exchanger 104 is sucked into the compressor 101 via the four-way valve 103 and the accumulator 106, and circulated by being compressed and discharged as described above.
  • the gas-liquid two-phase refrigerant that has flowed to the inter-refrigerant heat exchanger 113 evaporates by exchanging heat with the high-temperature and high-pressure gas refrigerant discharged from the compressor 101 and flows to the refrigerant inflow side of the accumulator 106 via the on-off valve 134. .
  • the refrigerant amount adjustment control is performed so as to be the same as the refrigerant distribution state in the case of performing a normal operation related to heating.
  • the foreign matter or the like separated in the accumulator 106 passes through the recovery pipe 117 via the recovery on-off valve 118 and flows to the recovery device 111 and is recovered.
  • the refrigeration oil a shortage of refrigeration oil is sent from the oil tank 110 to the compressor 101.
  • the processing related to the charging of the refrigerant in the case where heating is performed in the load side unit 200 is basically the same as the processing described based on FIG.
  • the temperature Tcout the temperature of the refrigerant flowing out from the load-side heat exchanger 201 detected by the load-side heat exchange temperature sensor 220 is defined as a temperature Tcout.
  • the average temperature detected by the load-side heat exchange temperature sensor 220 is defined as a temperature Tcout.
  • the amount of refrigerant can be correctly determined and the refrigerant can be charged even when the shape of the existing piping is embedded in a wall or ceiling. Therefore, the construction time can be shortened. Further, since the refrigerant amount can be determined regardless of whether it is cooling or heating, the reliability with respect to the refrigerant amount can be improved regardless of the existing installation.
  • the oil tank 110 that stores the refrigeration oil for replenishing the compressor 101 is provided in series in the refrigerant circuit during the recovery operation, and compressed. Since the gas refrigerant discharged from the machine 101 is allowed to pass therethrough, the refrigerant can be disturbed in the space inside the oil tank 110, so that the muffler can reduce the pulsation of the refrigerant caused by the discharge characteristics of the compressor 101. Thereby, since the pulsation of the refrigerant is not transmitted to other devices of the heat source side unit 100, the load side unit 200, etc., vibration, sound, etc. generated in the device (pipe, equipment) due to the pulsation of the refrigerant can be reduced.
  • the oil tank 110 By making the oil tank 110 a muffler, the oil tank 110 having a large space can be effectively used, and by eliminating the muffler, the heat source side unit 100 can be reduced in volume, reduced in size, and reduced in material cost. Can do. Moreover, since piping can be simplified, productivity can be improved.
  • the oil tank 110 is provided at a position through which the gas refrigerant discharged from the compressor 101 passes regardless of the operation state, heating is performed even when the load side unit 200 is cooling during the recovery operation.
  • the pulsation of the refrigerant can be reduced.
  • the size of the oil tank to a predetermined size (for example, 2 liters) or more, the pulsation of the refrigerant can be reduced corresponding to a wide range of frequencies and wavelengths related to the pulsation.
  • the refrigerant inflow pipe and the refrigerant outflow pipe are provided at a position on the upper surface of the oil tank 110, and when the oil level of the refrigerating machine oil stored in the oil tank 110 is at the highest position (usually before the start of the recovery operation). In this stage), a sufficient distance (space) is provided between the refrigerant inflow pipe port 110A and the refrigerant outflow pipe port 110B and the oil level. Outflow can be prevented. Therefore, a shortage of refrigeration oil in the compressor 101 can be prevented, and a highly reliable refrigeration air conditioner can be obtained. Further, since the volume inside the oil tank 110 is increased in order to secure the space, the effect of reducing the pulsation of the refrigerant can be further enhanced.
  • the heat of the gas refrigerant passing through the oil tank 110 is transmitted to the recovery device 111 during the recovery operation or normal air-conditioning operation, and the recovery device 111 is heated to prevent the refrigerant from stagnation in the recovery device 111. can do. For this reason, the shortage of the amount of refrigerant in the refrigerant circuit can be determined with high accuracy, and inadvertent charging of a large amount of refrigerant can be prevented. For this reason, cost reduction and environmental conservation can be achieved.
  • the refrigeration oil separated by the oil separator 102 is returned to the compressor 101 via the oil tank 110, the piping path related to the oil can be made into one system, and the piping can be simplified. it can. For this reason, cost reduction and productivity improvement can be achieved.
  • Embodiment 2 FIG.
  • the oil tank 110 and the recovery device 111 are defined as two spaces in which one casing is separated by a mirror plate.
  • the heat of the oil tank 110 can be transmitted to the recovery device 111, it is limited to this. It is not a thing.
  • the two tanks of the oil tank 110 and the recovery device 111 may be brought into contact with each other to be integrated.
  • Embodiment 3 demonstrated the frozen air conditioning apparatus which connected the heat-source side unit 100 and the load side unit 200 one each.
  • the present invention is not limited to this, and can also be applied to a multi-type refrigeration air conditioner in which a plurality of heat source side units 100 and load side units 200 are connected.
  • the heat source side unit 100 having a recovery function may be one unit or all units.
  • the four-way valve 103 is provided in order to allow the load-side unit 200 to perform air conditioning.
  • a configuration without the four-way valve 103 may be employed.
  • the oil tank 110 is provided between the oil separator 102 (compressor 101) and the heat source side heat exchanger 104.
  • the load side unit 200 is also described as being replaced.
  • the present invention can also be applied to the case where only the heat source side unit 100 is replaced with a new one.
  • the recovery operation is performed by the refrigerant circuit in which the load side unit 200 is connected by piping.
  • the recovery is performed by connecting the gas piping 300 and the liquid piping 400 by a bypass piping.
  • the load side unit 200 may be connected by piping.
  • the present invention can also be applied to other refrigeration cycle apparatuses that constitute a refrigerant circuit, such as a heat pump apparatus, a refrigeration apparatus, and a refrigeration apparatus.
  • 100 heat source side unit 101 compressor, 102 oil separator, 103 four-way valve, 104 heat source side heat exchanger, 105 heat source side fan, 106 accumulator, 107 heat source side throttle device, 108 refrigerant supply on / off valve, 109 refrigerant filling port On-off valve, 110 oil tank, 110A refrigerant inlet pipe port, 110B refrigerant outlet pipe port, 111 collector, 112 capillary tube, 113 inter-refrigerant heat exchanger, 114, 115 check valve, 116 oil pipe, 117 recovery pipe, 118 Recovery open / close valve, 120 Heat source side control device, 130 Discharge temperature sensor, 131 Discharge pressure sensor, 132 Heat source side heat exchange temperature sensor, 200 Load side unit, 201 Load side heat exchanger, 202 Load side throttle device, 203 load Side fan, 210 load side control device, 2 0 load-side heat exchanger temperature sensor 300 gas piping, 400 liquid pipe.

Abstract

Disclosed are a heat-source-side unit and a refrigeration air conditioner, both of which enable the effective utilization of tanks or the like and also enable highly efficient recovery or the like. Specifically disclosed is a heat-source-side unit (100) which comprises a compressor (101) and a heat-source-side heat exchanger (104), and also comprises a coolant circuit which is formed by the pipe connection between a load-side throttle device (202) and a load-side heat exchanger (201). In the heat-source-side unit (100), the coolant circuit is provided with an oil tank (110) for feeding a refrigerating machine oil that is lost by the washing of the coolant circuit into the compressor (101) to refill the refrigerating machine oil.

Description

熱源側ユニット及び冷凍空気調和装置Heat source unit and refrigeration air conditioner
 本発明は熱源側ユニット及び冷凍空気調和装置に関するものである。特に空気調和装置を設置する際、既設の冷媒配管を洗浄、異物等の回収を行うことができるものに関する。 The present invention relates to a heat source side unit and a refrigeration air conditioner. In particular, the present invention relates to an apparatus that can clean an existing refrigerant pipe and collect foreign matter when installing an air conditioner.
 従来から、いわゆるセパレート型の冷凍サイクル装置である冷凍空気調和装置をビル等の建物に設置する場合、既設の冷媒配管(以下、既設配管という)を利用した設置を行うことがある。例えば、除去する熱源側ユニット、負荷側ユニットを新しい熱源側ユニット(室外ユニット)、負荷側ユニット(室内ユニット)を置き換えて(リプレースして)、既設配管に接続して装置の設置を行う。このような設置では、冷媒配管を新しく交換しなくてすむため、冷媒配管の交換作業に要する手間、費用及び時間を削減することができる。また、熱源側ユニット及び負荷側ユニットをリプレースするだけなので、冷凍空気調和装置が設置されている建物等に対して大幅な工事が不要となり、冷凍空気調和装置の信頼性が向上することになる。 Conventionally, when installing a refrigeration air conditioner, which is a so-called separate type refrigeration cycle apparatus, in a building such as a building, installation using existing refrigerant piping (hereinafter referred to as existing piping) may be performed. For example, the heat source side unit to be removed and the load side unit are replaced (replaced) with a new heat source side unit (outdoor unit) and a load side unit (indoor unit), and connected to the existing piping to install the apparatus. In such an installation, it is not necessary to newly replace the refrigerant pipe, so that labor, cost, and time required for the refrigerant pipe replacement work can be reduced. Moreover, since only the heat source side unit and the load side unit are replaced, a large construction is not required for a building or the like where the refrigeration air conditioner is installed, and the reliability of the refrigeration air conditioner is improved.
 上記のように既設配管を利用する場合、冷凍空気調和装置においては、通常、熱源側ユニット及び負荷側ユニットをリプレースした後に、既設配管内に残留している古い冷凍機油(鉱油)、その劣化物等の異物(以下、異物等)の回収を行う(たとえば、特許文献1参照)。 When using the existing pipe as described above, in the refrigeration air conditioner, the old refrigerating machine oil (mineral oil) remaining in the existing pipe after replacing the heat source side unit and the load side unit is usually deteriorated. Or the like (hereinafter, referred to as Patent Document 1, for example).
特開2004-333121号公報(図2)Japanese Patent Laying-Open No. 2004-333121 (FIG. 2)
 上記のような冷凍空気調和装置においては、例えば冷媒を循環させる冷媒回路に、新たな冷媒を循環させるようにし、既設配管に残留している異物等を冷媒で押し流して洗浄して回収を行う(以下、異物等の洗浄、回収のための運転を回収運転という)。このため、押し流した異物等をフィルタ、重力分離等により捕捉して回収する回収器(回収タンク)が必要となる。また、回収運転において足りなくなった、新たな冷凍機油(以下、冷凍機油という)を補充するためのオイルタンクも必要となる。 In the refrigeration air conditioning apparatus as described above, for example, a new refrigerant is circulated in a refrigerant circuit that circulates the refrigerant, and foreign substances remaining in the existing piping are washed away by the refrigerant to be recovered ( Hereinafter, the operation for cleaning and collecting foreign substances is referred to as the recovery operation). For this reason, a collecting device (collecting tank) that captures and collects the washed-out foreign matters by a filter, gravity separation or the like is required. In addition, an oil tank for replenishing new refrigeration oil (hereinafter referred to as refrigeration oil) that has become insufficient in the recovery operation is also required.
 以上のような回収器、オイルタンクは、熱源側ユニット内において、大きな容積を占める手段であるが、例えば回収運転後も、次の熱源側ユニットに置き換えるまで、熱源側ユニット内に置いておくことが多い。ここで、オイルタンクは、冷媒回路とは独立して設けられており、従来、冷媒回路にある油分離器(オイルセパレータ)とは別に圧縮機に冷凍機油を補充するための配管接続等を行っていた。 The recovery unit and oil tank as described above occupy a large volume in the heat source side unit. For example, after the recovery operation, the recovery unit and the oil tank should remain in the heat source side unit until the next heat source side unit is replaced. There are many. Here, the oil tank is provided independently of the refrigerant circuit, and conventionally, piping connection for refilling the compressor oil to the compressor is performed separately from the oil separator (oil separator) in the refrigerant circuit. It was.
 また、回収器は冷媒回路と並列に接続された別系統の配管上に設けられる。ここで、例えば外気温度が低い場合、冷媒の寝込みが回収器に生じ、回収器に冷媒が必要以上に溜まってしまうことがある。このような状態で、冷媒回路において冷媒が不足していると判断して冷媒を補充すると、冷媒の充填量が不用意に多くなることがあった。この結果、冷媒を過剰に充填してしまうことでコストアップしたり、余剰な冷媒が多くなることでアキュムレータから冷媒があふれてしまい、圧縮機への液戻りが過多となり、圧縮機が破損等する可能性があった。 Also, the recovery unit is provided on a separate pipe connected in parallel with the refrigerant circuit. Here, for example, when the outside air temperature is low, the stagnation of the refrigerant occurs in the collector, and the refrigerant may accumulate more than necessary in the collector. In such a state, if it is determined that the refrigerant is insufficient in the refrigerant circuit and the refrigerant is replenished, the amount of refrigerant charged may increase carelessly. As a result, the refrigerant is excessively charged to increase the cost, or the excessive refrigerant increases, the refrigerant overflows from the accumulator, the liquid returns to the compressor excessively, and the compressor is damaged. There was a possibility.
 本発明は、上記のような課題を解決するためになされたもので、タンクの有効利用等をはかり、効率の良い回収等を行うことができ、また冷媒量を適正にすることができる熱源側ユニット及び冷凍空気調和装置を提供することを目的とする。 The present invention has been made in order to solve the above-described problems. The heat source side can be used for efficient use of a tank, perform efficient recovery, etc., and can make the amount of refrigerant appropriate. An object is to provide a unit and a refrigeration air conditioner.
 本発明に係る熱源側ユニットは、圧縮機及び熱源側熱交換器を有し、絞り装置と負荷側熱交換器との配管接続により冷媒回路を形成する熱源側ユニットであって、冷媒回路の洗浄により不足した冷凍機油を圧縮機に送って補充するためのオイルタンクを、さらに冷媒回路に設ける。また、オイルタンクと回収器とを耐圧性のある仕切りをはさんで一体形成しているものとする。 A heat source side unit according to the present invention is a heat source side unit that includes a compressor and a heat source side heat exchanger, and forms a refrigerant circuit by pipe connection between the expansion device and the load side heat exchanger. The refrigerant circuit is further provided with an oil tank for sending the refrigerating machine oil deficient due to the above to the compressor for replenishment. Further, it is assumed that the oil tank and the recovery device are integrally formed with a pressure-resistant partition.
 本発明によれば、冷媒回路にオイルタンクを設けて冷媒を通過させるようにしたので、冷媒回路を簡素化することができ、工作性を高め、製造コストを低減することができる。また、圧縮機が吐出する冷媒の脈動をオイルタンクにおいて低減等することができる。さらに、オイルタンクと回収器とを一体形成することで、回収器の温度低下を防ぎ、回収器における冷媒の寝込みを防止することができる。このため、回収運転により減った冷媒量を精度良く判定し、適量の冷媒を補充することができる。したがって、余剰な冷媒が圧縮機に液戻りしてしまうリスクを低減し、信頼性の高いシステムとすることができる。 According to the present invention, the oil tank is provided in the refrigerant circuit so as to allow the refrigerant to pass therethrough, so that the refrigerant circuit can be simplified, the workability can be improved, and the manufacturing cost can be reduced. Further, the pulsation of the refrigerant discharged from the compressor can be reduced in the oil tank. Furthermore, by integrally forming the oil tank and the recovery device, it is possible to prevent a temperature drop of the recovery device and to prevent the refrigerant from stagnation in the recovery device. For this reason, it is possible to accurately determine the amount of refrigerant reduced by the recovery operation and replenish an appropriate amount of refrigerant. Therefore, the risk that excess refrigerant returns to the compressor can be reduced, and a highly reliable system can be obtained.
実施の形態1に係る冷凍空気調和装置の構成を表す図である。It is a figure showing the structure of the frozen air conditioning apparatus which concerns on Embodiment 1. FIG. 回収運転を含むリプレースに係る手順を表す図である。It is a figure showing the procedure which concerns on replacement including a collection | recovery driving | operation. 回収運転中の冷媒回路への冷媒の充填に係る処理を表すフローチャートである。It is a flowchart showing the process which concerns on the filling of the refrigerant | coolant to the refrigerant circuit in a collection | recovery driving | operation.
実施の形態1.
 図1は本発明の実施の形態1に係る冷凍空気調和装置の構成図である。本実施の形態は冷凍サイクル(ヒートポンプサイクル)装置である冷凍空気調和装置について説明する。図1の冷凍空気調和装置は、熱源側ユニット(室外機)100と負荷側ユニット(室内機)200とを備え、これらが冷媒配管で連結されて冷媒回路(以下、冷媒回路という)を構成して冷媒を循環させている。冷媒配管のうち、気体の冷媒(ガス冷媒)が流れる配管をガス配管300とし、液体の冷媒(液冷媒。気液二相冷媒の場合もある)が流れる配管を液配管400とする。本実施の形態では、熱源側ユニット(室外機)100及び負荷側ユニット(室内機)200は、リプレースした後の新しいユニットであるものとする。また、ガス配管300及び液配管400が既設配管であるものとする。ここで、圧力の高低については、基準となる圧力(数値)との関係により定められているものではない。例えば圧縮機101の加圧、各絞り装置(流量制御装置)の開閉状態(開度)の制御等により、冷媒回路内において、相対的な高低に基づいて表すものであるとする。温度に関しても同じであるものとする。
Embodiment 1 FIG.
FIG. 1 is a configuration diagram of a refrigeration air conditioning apparatus according to Embodiment 1 of the present invention. In the present embodiment, a refrigeration air conditioner that is a refrigeration cycle (heat pump cycle) device will be described. 1 includes a heat source side unit (outdoor unit) 100 and a load side unit (indoor unit) 200, which are connected by a refrigerant pipe to form a refrigerant circuit (hereinafter referred to as a refrigerant circuit). The refrigerant is circulated. Among the refrigerant pipes, a pipe through which a gaseous refrigerant (gas refrigerant) flows is referred to as a gas pipe 300, and a pipe through which a liquid refrigerant (liquid refrigerant, which may be a gas-liquid two-phase refrigerant) flows is referred to as a liquid pipe 400. In the present embodiment, it is assumed that the heat source side unit (outdoor unit) 100 and the load side unit (indoor unit) 200 are new units after replacement. Further, it is assumed that the gas pipe 300 and the liquid pipe 400 are existing pipes. Here, the level of pressure is not determined by the relationship with the reference pressure (numerical value). For example, suppose that it represents based on relative height in a refrigerant circuit by pressurization of compressor 101, control of the opening-and-closing state (opening degree) of each throttle device (flow control device), etc. The same applies to temperature.
 冷媒回路内を循環させる冷媒については、非共沸混合冷媒(R407C等)、擬似共沸混合冷媒(R410A、R404A等)、単一冷媒(R22、R134a等)、自然冷媒(二酸化炭素、プロパン等)等を用いることができる。ここで、リプレース前後の冷媒の種類は同じでもよいし、異なっていてもよい。 As for the refrigerant circulating in the refrigerant circuit, non-azeotropic refrigerant mixture (R407C etc.), pseudo azeotropic refrigerant mixture (R410A, R404A etc.), single refrigerant (R22, R134a etc.), natural refrigerant (carbon dioxide, propane etc.) ) Etc. can be used. Here, the types of refrigerant before and after the replacement may be the same or different.
 本実施の形態の熱源側ユニット100は、圧縮機101、油分離器102、四方弁103、熱源側熱交換器104、熱源側ファン105、アキュムレータ106、熱源側絞り装置(膨張弁)107、第2の熱源側絞り装置(膨張弁)133、開閉弁134、冷媒供給用開閉弁108、冷媒充填ポート開閉弁109、オイルタンク110、冷媒間熱交換器113、並びに逆止弁114及び115を冷媒回路上に有している。また、冷媒回路と別系統で回収器111、キャピラリチューブ112が接続される。そして、熱源側制御装置120を冷媒回路上の各機器(手段)を制御するために有している。オイルタンク110と回収器111は、銅製の鏡板等を介して、一体に形成されている。 The heat source side unit 100 of this embodiment includes a compressor 101, an oil separator 102, a four-way valve 103, a heat source side heat exchanger 104, a heat source side fan 105, an accumulator 106, a heat source side expansion device (expansion valve) 107, a first one. 2 heat source side expansion device (expansion valve) 133, on-off valve 134, refrigerant supply on-off valve 108, refrigerant charging port on-off valve 109, oil tank 110, inter-refrigerant heat exchanger 113, and check valves 114 and 115 as refrigerant. On the circuit. Further, the recovery device 111 and the capillary tube 112 are connected by a separate system from the refrigerant circuit. And it has the heat source side control apparatus 120 in order to control each apparatus (means) on a refrigerant circuit. The oil tank 110 and the recovery device 111 are integrally formed via a copper end plate or the like.
 圧縮機101は、インバータ回路、圧縮機モータ等で構成される。インバータ回路により圧縮機モータの回転速度(圧縮機101の運転周波数)を制御して、冷凍サイクルに用いる冷媒を圧縮して冷媒配管内を循環させる。また、油分離器102は、冷媒に混じって圧縮機101から吐出された潤滑油となる冷凍機油を冷媒と分離するものである。そして、分離した冷凍機油を油配管116によりオイルタンク110に流し、オイルタンク110を介して圧縮機101に戻すようにして返油の経路を一元化する。 The compressor 101 includes an inverter circuit, a compressor motor, and the like. The inverter circuit controls the rotation speed of the compressor motor (operating frequency of the compressor 101), compresses the refrigerant used in the refrigeration cycle, and circulates the refrigerant pipe. The oil separator 102 separates the refrigerating machine oil that becomes the lubricating oil mixed with the refrigerant and discharged from the compressor 101 from the refrigerant. Then, the separated refrigerating machine oil is caused to flow to the oil tank 110 through the oil pipe 116 and returned to the compressor 101 via the oil tank 110 to unify the oil return path.
 四方弁103は、熱源側制御装置120からの指示に基づいて冷房運転時と暖房運転時とによって冷媒の流れを切り換える。また、熱源側熱交換器104は、冷媒と空気(室外の空気)との熱交換を行う。例えば、暖房運転時においては蒸発器として機能し、低圧の冷媒と空気との熱交換を行い、冷媒を蒸発させ、気化させる。また、冷房運転時においては凝縮器として機能し、四方弁103側から流入した圧縮機101において圧縮された冷媒と空気との熱交換を行い、冷媒を凝縮して液化させる。熱源側熱交換器104には、冷媒と空気との熱交換を効率よく行うため、熱源側ファン105が設けられている。熱源側ファン105もインバータ回路を有してファンモータの運転周波数を任意に変化させてファンの回転速度を細かく変化させるようにしてもよい。 The four-way valve 103 switches the refrigerant flow between the cooling operation and the heating operation based on an instruction from the heat source side control device 120. The heat source side heat exchanger 104 performs heat exchange between the refrigerant and air (outdoor air). For example, it functions as an evaporator during heating operation, and performs heat exchange between a low-pressure refrigerant and air, evaporating and evaporating the refrigerant. Further, during the cooling operation, it functions as a condenser and performs heat exchange between the refrigerant compressed in the compressor 101 flowing in from the four-way valve 103 side and air, thereby condensing and liquefying the refrigerant. The heat source side heat exchanger 104 is provided with a heat source side fan 105 in order to efficiently exchange heat between the refrigerant and the air. The heat source side fan 105 may also have an inverter circuit so that the operation frequency of the fan motor is arbitrarily changed to finely change the rotation speed of the fan.
 アキュムレータ106は例えば液体の余剰冷媒を溜めておく手段である。本実施の形態では、異物等を分離する役割も果たす。熱源側絞り装置107は、例えば主として液冷媒が流れる配管から主としてガス冷媒が流れる配管に流す冷媒の流量、圧力調整を行う。さらに第2の熱源側絞り装置133は、主として、冷房時には、液配管400の耐圧に応じて、下流側圧力センサ(図示せず)の検知に基づく飽和値によって圧力調整を行う。また、暖房時にはアキュムレータ106への液バック量を、圧縮機101の吐出過熱度によって調整する。 The accumulator 106 is means for storing, for example, liquid surplus refrigerant. In the present embodiment, it also serves to separate foreign substances and the like. The heat source side expansion device 107 adjusts, for example, the flow rate and pressure of the refrigerant flowing from the pipe through which the liquid refrigerant mainly flows to the pipe through which the gas refrigerant mainly flows. Further, the second heat source side expansion device 133 mainly adjusts the pressure according to the saturation value based on the detection of the downstream pressure sensor (not shown) according to the pressure resistance of the liquid pipe 400 during cooling. Further, during heating, the amount of liquid back to the accumulator 106 is adjusted by the discharge superheat degree of the compressor 101.
 オイルタンク110には、冷凍機油が充填されており、例えば、回収運転時において圧縮機101から冷媒に混入して吐出された冷凍機油が、回収器111内に留まって戻らず、足りなくなった場合に圧縮機101に補充する。ここで、本実施の形態では、冷媒流入管口110A及び冷媒流出管口110Bを有し、冷媒回路上の、特に油分離器102(圧縮機101)と四方弁103(四方弁103がない場合には熱源側熱交換器104)との間にオイルタンク110を設ける(直列に配管接続する)ようにしている。また、本実施の形態では、1つの筐体を鏡板等で仕切って2つの空間を形成し、一方の空間をオイルタンク110とし、他方の空間を回収器111とする。特に図示していないが、出荷時にオイルタンク110から冷凍機油が漏れないように開閉弁を設けている。オイルタンク110等の詳細については後述する。 The oil tank 110 is filled with refrigerating machine oil. For example, when the refrigerating machine oil mixed and discharged from the compressor 101 during the collecting operation does not stay in the collecting unit 111 and returns, the oil tank 110 becomes insufficient. The compressor 101 is replenished. Here, in the present embodiment, the refrigerant inflow pipe port 110A and the refrigerant outflow pipe port 110B are provided, and the oil separator 102 (compressor 101) and the four-way valve 103 (the four-way valve 103 are not provided) on the refrigerant circuit. The oil tank 110 is provided between the heat source side heat exchanger 104 and the heat source side heat exchanger 104). Further, in the present embodiment, one housing is partitioned by a mirror plate or the like to form two spaces, one space is an oil tank 110, and the other space is a collector 111. Although not shown in particular, an on-off valve is provided so that the refrigeration oil does not leak from the oil tank 110 at the time of shipment. Details of the oil tank 110 and the like will be described later.
 回収器111はフィルタ、重力により異物を降下(沈殿)させるための十分な空間等を有しており、冷媒と共に運ばれ、アキュムレータ106の底部に溜まった異物等を回収し、回収時に異物等と共に流れた冷媒をアキュムレータ106に戻す。このため、アキュムレータ106との間で、冷媒回路と異なる回収用回路を回収用配管117により形成している。また、回収用配管117には回収用開閉弁118を設け、例えば回収器111に異物等を回収させるとき以外は閉止させて異物等が漏れないようにしている。 The collecting device 111 has a filter, sufficient space for lowering (sedimenting) foreign matter by gravity, and is carried along with the refrigerant to collect the foreign matter and the like accumulated at the bottom of the accumulator 106. The flowing refrigerant is returned to the accumulator 106. For this reason, a recovery circuit different from the refrigerant circuit is formed by the recovery pipe 117 with the accumulator 106. Further, the recovery pipe 117 is provided with a recovery on-off valve 118, which is closed except when the recovery device 111 recovers foreign matter or the like so that the foreign matter or the like does not leak.
 キャピラリチューブ(毛細管)112は、オイルタンク110から圧縮機101の吸入側に油を送るための油配管116において、オイルタンク110から圧縮機101に送る冷凍機油の量を調整するものである。ここで、キャピラリチューブ112の代わりに電磁弁、流量調整装置等を用いて冷凍機油の量を調整してもよい。また、キャピラリチューブ112と電磁弁とを並列に配置し、洗浄直後等のように冷凍機油が不足している状態において、電磁弁を開放して圧縮機101に冷凍機油を供給できるようにしてもよい。 Capillary tube (capillary tube) 112 adjusts the amount of refrigerating machine oil sent from oil tank 110 to compressor 101 in oil pipe 116 for sending oil from oil tank 110 to the suction side of compressor 101. Here, the amount of refrigerating machine oil may be adjusted using a solenoid valve, a flow rate adjusting device, or the like instead of the capillary tube 112. Further, the capillary tube 112 and the electromagnetic valve are arranged in parallel so that the refrigerating machine oil can be supplied to the compressor 101 by opening the electromagnetic valve in a state where the refrigerating machine oil is insufficient, such as immediately after cleaning. Good.
 冷媒間熱交換器113は、液配管400を流入出する冷媒とガス配管300を流入出する冷媒との間で熱交換を行う。特に本実施の形態では、気体又は液体の単相の冷媒よりも気液二相冷媒の方が配管洗浄効果が高いことから、回収運転時において、熱交換により気液二相冷媒を液配管400、ガス配管300に通過させるようにする。また、通常の冷房運転時においては、負荷側ユニット200に送り出す液冷媒と負荷側ユニット200側からの冷媒とを熱交換し、液冷媒を過冷却する。そして、逆止弁114、115は、通常の暖房運転時に、負荷側ユニット200から流入する冷媒が冷媒間熱交換器113を通過しないようにバイパスさせるために設けている。 The inter-refrigerant heat exchanger 113 performs heat exchange between the refrigerant flowing in and out of the liquid pipe 400 and the refrigerant flowing in and out of the gas pipe 300. In particular, in the present embodiment, since the gas-liquid two-phase refrigerant has a higher pipe cleaning effect than the gas or liquid single-phase refrigerant, the gas-liquid two-phase refrigerant is transferred to the liquid pipe 400 by heat exchange during the recovery operation. And let it pass through the gas pipe 300. Further, during normal cooling operation, the liquid refrigerant sent to the load side unit 200 and the refrigerant from the load side unit 200 are heat-exchanged to supercool the liquid refrigerant. The check valves 114 and 115 are provided to bypass the refrigerant flowing from the load-side unit 200 so that the refrigerant does not pass through the inter-refrigerant heat exchanger 113 during normal heating operation.
 また、冷媒供給用開閉弁108は、開放することで、圧縮機101吐出側から吸入側への冷媒の流れを形成し、外部(冷媒ボンベ等)から冷媒を充填する供給口となる冷媒充填ポートから圧縮機101吸入側に冷媒を流すようにするための弁である。冷媒充填ポート開閉弁109は冷媒充填ポートから供給を行い、冷媒充填させるための弁である。 The refrigerant supply opening / closing valve 108 opens to form a refrigerant flow from the discharge side of the compressor 101 to the suction side, and serves as a supply port for charging the refrigerant from the outside (refrigerant cylinder or the like). This is a valve for allowing the refrigerant to flow from the compressor to the compressor 101 suction side. The refrigerant charging port opening / closing valve 109 is a valve for supplying the refrigerant from the refrigerant charging port and charging the refrigerant.
 熱源側制御装置120は、例えばマイクロコンピュータ等からなる。負荷側制御装置204と有線又は無線通信することができ、例えば、冷凍空気調和装置内の各種検出手段(センサ)の検知に係るデータに基づいて、インバータ回路制御による圧縮機101の運転周波数制御等、冷凍空気調和装置に係る各手段を制御して冷凍空気調和装置全体の動作制御を行う。 The heat source side control device 120 is composed of, for example, a microcomputer. It is possible to perform wired or wireless communication with the load-side control device 204. For example, based on data relating to detection by various detection means (sensors) in the refrigeration air conditioner, the operation frequency control of the compressor 101 by inverter circuit control, Then, the respective units related to the refrigeration air conditioner are controlled to control the operation of the entire refrigeration air conditioner.
 吐出温度センサ130、吐出圧力センサ131は、圧縮機101が吐出する冷媒の温度、圧力を検出する温度検出手段である。また、熱源側熱交換温度センサ132は、本実施の形態では特に、熱源側熱交換器104が凝縮器として機能する際、凝縮に係る冷媒の温度を検出する温度検出手段となる。 The discharge temperature sensor 130 and the discharge pressure sensor 131 are temperature detection means for detecting the temperature and pressure of the refrigerant discharged from the compressor 101. In the present embodiment, the heat source side heat exchange temperature sensor 132 serves as a temperature detection unit that detects the temperature of the refrigerant related to condensation when the heat source side heat exchanger 104 functions as a condenser.
 一方、負荷側ユニット200は、負荷側熱交換器201、負荷側絞り装置(膨張弁)202、負荷側ファン203及び負荷側制御装置204で構成される。負荷側熱交換器201は冷媒と空気との熱交換を行う。例えば、暖房運転時においては凝縮器として機能し、ガス配管300から流入した冷媒と空気との熱交換を行い、冷媒を凝縮させて液化(又は気液二相化)させ、液配管400側に流出させる。一方、冷房運転時においては蒸発器として機能し、負荷側絞り装置202により低圧状態にされた冷媒と空気との熱交換を行い、冷媒に空気の熱を奪わせて蒸発させて気化させ、ガス配管300側に流出させる。また、負荷側ユニット200には、熱交換を行う空気の流れを調整するための負荷側ファン203が設けられている。この負荷側ファン203の運転速度は、例えば利用者の設定により決定される。負荷側絞り装置202は、開度を変化させることで、冷媒の流量を調整し、負荷側熱交換器201内における冷媒の圧力を調整するために設ける。 On the other hand, the load side unit 200 includes a load side heat exchanger 201, a load side expansion device (expansion valve) 202, a load side fan 203, and a load side control device 204. The load side heat exchanger 201 performs heat exchange between the refrigerant and air. For example, it functions as a condenser during heating operation, performs heat exchange between the refrigerant flowing in from the gas pipe 300 and air, condenses and liquefies the refrigerant (or gas-liquid two-phase), and moves to the liquid pipe 400 side. Spill. On the other hand, during the cooling operation, it functions as an evaporator, performs heat exchange between the refrigerant and the air whose pressure is reduced by the load-side throttle device 202, causes the refrigerant to take heat of the air, evaporates it, and vaporizes it. It flows out to the piping 300 side. In addition, the load side unit 200 is provided with a load side fan 203 for adjusting the flow of air for heat exchange. The operating speed of the load-side fan 203 is determined by, for example, user settings. The load side expansion device 202 is provided to adjust the flow rate of the refrigerant by changing the opening, and to adjust the pressure of the refrigerant in the load side heat exchanger 201.
 また、負荷側制御装置210もマイクロコンピュータ等からなり、例えば熱源側制御装置120と有線又は無線通信することができる。熱源側制御装置120からの指示、居住者等からの指示に基づいて、例えば室内が所定の温度となるように、負荷側ユニット200の各装置(手段)を制御する。また、負荷側ユニット200に設けられた検知手段の検知に係るデータを含む信号を送信する。負荷側熱交換温度センサ220は本実施の形態では特に、負荷側熱交換器201が凝縮器として機能する際、凝縮に係る冷媒の温度を検出する温度検出手段となる。 Further, the load side control device 210 is also composed of a microcomputer or the like, and can communicate with the heat source side control device 120 by wire or wireless, for example. Based on an instruction from the heat source side control device 120 and an instruction from a resident or the like, for example, each device (means) of the load side unit 200 is controlled so that the room has a predetermined temperature. Further, a signal including data related to detection by the detection means provided in the load side unit 200 is transmitted. In the present embodiment, the load-side heat exchange temperature sensor 220 is a temperature detection unit that detects the temperature of the refrigerant related to condensation, particularly when the load-side heat exchanger 201 functions as a condenser.
 本実施の形態は、冷媒回路に(直列に)オイルタンク110を設けるようにしたものである。特に圧縮機101と四方弁103との間に設けるようにし、圧縮機101における往復運動、回転による周期的運動等の吐出特性により、圧縮機101から吐出する冷媒の脈動を低減する等ためのマフラーとして機能させるようにする。従来、冷媒回路の冷媒配管の一部を拡張、特別な装置を設ける等により、冷媒の脈動を低減等させるようにすることがあるが、本実施の形態では、回収運転後に内部が空間を有することとなるオイルタンク110を用いるようにする。 In this embodiment, an oil tank 110 is provided (in series) in the refrigerant circuit. In particular, a muffler is provided between the compressor 101 and the four-way valve 103 to reduce the pulsation of refrigerant discharged from the compressor 101 due to discharge characteristics such as reciprocating motion and periodic motion due to rotation in the compressor 101. To function as. Conventionally, refrigerant pulsation may be reduced by expanding a part of the refrigerant piping of the refrigerant circuit or providing a special device. In this embodiment, the interior has a space after the recovery operation. A different oil tank 110 is used.
 ここで、例えば、オイルタンク110内部の容積が小さすぎると、低減可能な周波数帯域が狭くなる等により、マフラーとしての機能を果たせなくなってしまう。そこで、本実施の形態においては、低減等可能な周波数帯域を広げるために、内部の容積が2リットル以上となるようにオイルタンク110を構成する。 Here, for example, if the volume inside the oil tank 110 is too small, the frequency band that can be reduced becomes narrow, and the function as a muffler cannot be performed. Therefore, in the present embodiment, the oil tank 110 is configured so that the internal volume becomes 2 liters or more in order to widen a frequency band that can be reduced or the like.
 また、オイルタンク110には、回収運転開始時において、例えば出荷前に冷凍機油が既に封入されている。本実施の形態では、オイルタンク110内をガス冷媒が通過するため、例えば、冷媒流出口と冷凍機油の油面との距離が近いと、流入する冷媒の流れ等により油面が波立ち、冷媒に混じって冷凍機油が冷媒流出口から大量に流出する可能性がある。また、冷媒流入口についても、冷凍機油の油面との距離が近いと、例えばガス冷媒が油面を波立たせる可能性がある。 Also, the oil tank 110 is already filled with refrigeration oil at the start of the recovery operation, for example, before shipment. In this embodiment, since the gas refrigerant passes through the oil tank 110, for example, when the distance between the refrigerant outlet and the oil level of the refrigerating machine oil is short, the oil level undulates due to the flow of the flowing refrigerant, etc. A large amount of refrigeration oil may flow out from the refrigerant outlet. In addition, if the refrigerant inlet is close to the oil level of the refrigerating machine oil, for example, the gas refrigerant may cause the oil level to ripple.
 そこで、本実施の形態では、必要となる冷凍機油の充填量よりもオイルタンク110の内部容積を十分に大きくする。また、オイルタンク110は円筒形状とし、冷媒をその円筒形状の接線方向に沿うように流入させる。これにより、冷媒の流入により液面が波立つことを防止する効果が得られる。そして、初期状態(回収運転開始時)においても、オイルタンク110内の冷凍機油の油面と冷媒流入管口110A及び冷媒流出管口110Bとの間に十分な距離(空間)ができるようにするため、冷媒流入管及び冷媒流出管をオイルタンク110の上面となる位置に設けるようにする。ここで、距離としては、例えば冷媒流入管口110A、冷媒流出管口110Bの径の3倍以上あることが望ましい。さらに、円筒形状であるオイルタンク110の径は、冷媒流入管口110A、冷媒流出管口110Bの径の8倍以上であることが望ましい。このことにより、油面が多少波立って油滴が発生しても、重力の影響(自重)で降下してしまうため、冷凍機油の流出を防止することができる。 Therefore, in the present embodiment, the internal volume of the oil tank 110 is made sufficiently larger than the required refrigerating machine oil filling amount. The oil tank 110 has a cylindrical shape, and allows the refrigerant to flow along the tangential direction of the cylindrical shape. Thereby, the effect which prevents that a liquid level swells by inflow of a refrigerant | coolant is acquired. Even in the initial state (at the start of the recovery operation), a sufficient distance (space) is provided between the oil level of the refrigerating machine oil in the oil tank 110 and the refrigerant inlet pipe port 110A and the refrigerant outlet pipe port 110B. For this reason, the refrigerant inflow pipe and the refrigerant outflow pipe are provided at positions on the upper surface of the oil tank 110. Here, the distance is desirably at least three times the diameter of the refrigerant inlet pipe port 110A and the refrigerant outlet pipe port 110B, for example. Furthermore, the diameter of the cylindrical oil tank 110 is desirably eight times or more the diameter of the refrigerant inlet pipe port 110A and the refrigerant outlet pipe port 110B. As a result, even if the oil surface is somewhat waved and oil droplets are generated, the oil drops due to the influence of gravity (self-weight), so that the refrigerating machine oil can be prevented from flowing out.
 そして、本実施の形態の冷凍空気調和装置では、圧縮機101と四方弁103との間にオイルタンク110を設けることで、回収運転中でも負荷側ユニット200において暖房、冷房のいずれも行うことができる。 In the refrigeration air conditioner of the present embodiment, by providing the oil tank 110 between the compressor 101 and the four-way valve 103, heating and cooling can be performed in the load side unit 200 even during the recovery operation. .
 また、本実施の形態では、1つの筐体内に2つの空間を形成し、一方をオイルタンク110とし、他方を回収器111とすることで、オイルタンク110内の熱を回収器111に伝えるようにする。回収器111は、基本的にガス配管300及び液配管400を通過後の冷媒が通過する冷媒配管に並列して設けられる。そのため、冷媒の温度が低く、さらに外気温度も低いと冷媒の寝込みが生じることがある。そこで、前述したように、圧縮機101からの高温の冷媒がオイルタンク110を通過することにより、同じ筐体内の回収器111に熱が伝わるようにして回収器111を暖めることで冷媒の寝込みを防止することができる。これにより、冷媒をいつも適正な状態にして運転することができる。また、冷媒量を精度良く判定することで、冷媒を過剰供給することもなくなるので、例えばアキュムレータ106に溜まる余剰冷媒を少なくし、圧縮機101への液戻りを生じるリスクを低減し、信頼性の高いシステムを得ることができる。 Further, in the present embodiment, two spaces are formed in one housing, and one is the oil tank 110 and the other is the recovery device 111 so that the heat in the oil tank 110 is transmitted to the recovery device 111. To. The collector 111 is basically provided in parallel with the refrigerant pipe through which the refrigerant after passing through the gas pipe 300 and the liquid pipe 400 passes. Therefore, if the temperature of the refrigerant is low and the outside air temperature is low, the refrigerant may stagnate. Therefore, as described above, when the high-temperature refrigerant from the compressor 101 passes through the oil tank 110, the heat is transferred to the recovery unit 111 in the same casing, and the recovery unit 111 is warmed to stagnate the refrigerant. Can be prevented. As a result, the refrigerant can always be operated in an appropriate state. In addition, by accurately determining the amount of refrigerant, it is not necessary to supply excessive refrigerant. For example, the amount of excess refrigerant that accumulates in the accumulator 106 is reduced, and the risk of liquid return to the compressor 101 is reduced. High system can be obtained.
 ここで、油分離器102とオイルタンク110との関係について説明する。油分離器102とオイルタンク110とは、共に冷凍機油を圧縮機101に送り込むものである。オイルタンク110は回収運転に用いるものであるため、それぞれ独立した配管で冷凍機油を圧縮機101に送るようにしていた。 Here, the relationship between the oil separator 102 and the oil tank 110 will be described. Both the oil separator 102 and the oil tank 110 feed refrigeration oil to the compressor 101. Since the oil tank 110 is used for the recovery operation, the refrigeration oil is sent to the compressor 101 through independent pipes.
 本実施の形態では、油分離器102とオイルタンク110との間に油配管116を接続し、分離器102が冷媒から分離した冷凍機油については、オイルタンク110に送るようにする。このため、回収運転中だけでなく、通常運転においてもオイルタンク110からキャピラリチューブ112を介して冷凍機油が圧縮機101に供給されることになる。このため、配管を少なくし、簡素化を図ることができる。また、オイルタンク110内に一時的に冷凍機油を貯留しておくこともできる。なお、油分離器102を廃止し、オイルタンク110でのみ冷凍機油を分離して溜めておくようにしてもよい。この場合、冷凍機油の分離効率が低下することが懸念されるが、あらかじめ分離効率が悪くなり、冷媒回路を循環してしまう(持ち出される)冷凍機油の量を測定し、冷凍機油を多く充填しておくことで、信頼性を確保することができる。 In this embodiment, an oil pipe 116 is connected between the oil separator 102 and the oil tank 110, and the refrigeration oil separated from the refrigerant by the separator 102 is sent to the oil tank 110. For this reason, refrigeration oil is supplied to the compressor 101 from the oil tank 110 via the capillary tube 112 not only during the recovery operation but also during the normal operation. For this reason, piping can be reduced and simplification can be achieved. Further, the refrigeration oil can be temporarily stored in the oil tank 110. Note that the oil separator 102 may be eliminated and the refrigerating machine oil may be separated and stored only in the oil tank 110. In this case, although there is a concern that the separation efficiency of the refrigerating machine oil will be reduced, the amount of refrigerating machine oil that has been deteriorated in advance and circulated through the refrigerant circuit (taken out) is measured and filled with a large amount of refrigerating machine oil The reliability can be secured.
 図2は回収運転を含むリプレースに係る手順を表す図である。まず、冷凍空気調和装置の更新を開始する(STEP1)。既設の熱源側ユニット100等を撤去する(STEP2)。新しいユニットを据え付ける(STEP3)。新しいユニットにガス配管300、液配管400を接続する(STEP4)。液配管400、ガス配管300、負荷側ユニット200について真空引きを行った後、負荷側ユニット200分の冷媒を充填する(STEP5)。そして、熱源側ユニット100と液配管400及びガス配管300との間にある開閉弁(図示せず)を開放して回収運転を行う(STEP6)。回収用開閉弁118を閉止し、冷暖房運転の試運転を行った後(STEP7)、更新を完了する(STEP8)。 FIG. 2 is a diagram showing a procedure related to replacement including recovery operation. First, update of the refrigeration air conditioner is started (STEP 1). The existing heat source unit 100 and the like are removed (STEP 2). Install a new unit (STEP 3). The gas pipe 300 and the liquid pipe 400 are connected to the new unit (STEP 4). After evacuating the liquid pipe 400, the gas pipe 300, and the load side unit 200, the refrigerant for the load side unit 200 is charged (STEP 5). Then, the on-off valve (not shown) between the heat source side unit 100, the liquid pipe 400, and the gas pipe 300 is opened to perform a recovery operation (STEP 6). After the recovery on-off valve 118 is closed and a test operation of the air conditioning operation is performed (STEP 7), the update is completed (STEP 8).
 次に、STEP6の回収運転について説明する。まず、負荷側ユニット200において冷房を行いながら回収運転する場合の動作制御について、冷媒の流れに基づいて説明する。回収運転に係る動作制御は熱源側制御装置120が行うものとする。 Next, the recovery operation of STEP 6 will be described. First, operation control in the case of performing recovery operation while cooling in the load side unit 200 will be described based on the flow of the refrigerant. The operation control related to the recovery operation is performed by the heat source side control device 120.
 圧縮機101を吐出した高温・高圧のガス冷媒は、油分離器102、オイルタンク110、四方弁103を介して、熱源側熱交換器104に至り凝縮・液化する。凝縮・液化した液冷媒は、冷媒間熱交換器113で冷却されて過冷却した冷媒となって逆止弁114を介して液配管400に流れる。 The high-temperature and high-pressure gas refrigerant discharged from the compressor 101 reaches the heat source side heat exchanger 104 via the oil separator 102, the oil tank 110, and the four-way valve 103, and is condensed and liquefied. The condensed and liquefied liquid refrigerant is cooled in the inter-refrigerant heat exchanger 113 and becomes a supercooled refrigerant and flows into the liquid pipe 400 through the check valve 114.
 液配管400に流れた気液二相冷媒は、液配管400内の異物等を冷媒の流れで剥ぎ取りながら負荷側ユニット200に流れる。負荷側ユニット200に流れた異物等を含む冷媒は、負荷側絞り装置202で低圧まで絞られ、負荷側熱交換器201で周囲より熱を奪い、一部の液冷媒が蒸発して空調対象空間を冷房するとともに、気液二相冷媒となって負荷側ユニット200から流出し、ガス配管300に流れる。 The gas-liquid two-phase refrigerant that has flowed into the liquid pipe 400 flows to the load-side unit 200 while stripping off foreign matters and the like in the liquid pipe 400 with the flow of the refrigerant. The refrigerant containing foreign matter or the like that has flowed to the load side unit 200 is throttled to a low pressure by the load side expansion device 202, takes heat from the surroundings by the load side heat exchanger 201, and a part of the liquid refrigerant evaporates to be air-conditioned space. , And becomes a gas-liquid two-phase refrigerant, flows out from the load-side unit 200, and flows into the gas pipe 300.
 ガス配管300に流れた気液二相冷媒は、ガス配管300内の異物等も剥ぎ取りながら熱源側ユニット100に流れる。熱源側ユニット100に戻った異物等を含む気液二相冷媒は、前述したように、凝縮・液化した液冷媒との間で熱交換が行われ、完全にガス化する。そして、四方弁103、アキュムレータ106を介して、圧縮機101に吸入され、前述したように圧縮され吐出することで循環する。 The gas-liquid two-phase refrigerant that has flowed to the gas pipe 300 flows to the heat source side unit 100 while stripping off foreign matters and the like in the gas pipe 300. As described above, the gas-liquid two-phase refrigerant including the foreign matter and the like that has returned to the heat source side unit 100 undergoes heat exchange with the condensed and liquefied liquid refrigerant, and is completely gasified. Then, the refrigerant is sucked into the compressor 101 via the four-way valve 103 and the accumulator 106, and circulated by being compressed and discharged as described above.
 ここで、異物等については、アキュムレータ106内で重力等により冷媒と分離し、アキュムレータ106の底部に沈殿する。回収用開閉弁118を開くと、アキュムレータ106内部では、冷媒における動圧の一部が静圧に変る一方で、回収器111内の圧力がアキュムレータ106の圧力よりも低くなるため、差圧に従ってアキュムレータ106から回収器111への異物等の流れが発生する。これにより、アキュムレータ106内で分離された異物等は、回収用開閉弁118を介して回収用配管117を通過して回収器111に流れて回収される。 Here, the foreign matter or the like is separated from the refrigerant by gravity or the like in the accumulator 106 and settles at the bottom of the accumulator 106. When the recovery on-off valve 118 is opened, a part of the dynamic pressure in the refrigerant changes to a static pressure inside the accumulator 106, while the pressure in the recovery device 111 becomes lower than the pressure of the accumulator 106. A flow of foreign matter or the like from 106 to the collector 111 occurs. As a result, the foreign matter or the like separated in the accumulator 106 passes through the recovery pipe 117 via the recovery on-off valve 118 and flows to the recovery device 111 and is recovered.
 このとき、冷凍機油については、油分離器102は分離した冷凍機油を油配管116を通過させてオイルタンク110に送る。また、オイルタンク110からはキャピラリチューブ112を介して不足分の冷凍機油を圧縮機101に送る。 At this time, for the refrigerating machine oil, the oil separator 102 sends the separated refrigerating machine oil to the oil tank 110 through the oil pipe 116. Further, a shortage of refrigeration oil is sent from the oil tank 110 to the compressor 101 via the capillary tube 112.
 以上の動作を所定時間行わせた後、熱源側制御装置120は、液配管400を流れる冷媒が液冷媒となるように各機器を制御する。また、ガス配管300を流れる冷媒がガス冷媒となるように制御する。このようにして冷房に係る通常の運転を行う場合の冷媒の分布状態と同じになるような冷媒量調整制御を行う。 After performing the above operation for a predetermined time, the heat source side control device 120 controls each device so that the refrigerant flowing through the liquid pipe 400 becomes the liquid refrigerant. Moreover, it controls so that the refrigerant | coolant which flows through the gas piping 300 turns into a gas refrigerant. In this way, the refrigerant amount adjustment control is performed so as to be the same as the refrigerant distribution state in the normal operation related to cooling.
 図3は回収運転中の冷媒回路への冷媒の充填に係る処理を表すフローチャートである。この処理に係る制御も熱源側制御装置120が行うものとする。前述したSTEP6に相当する回収運転を開始する(STEP11)。特に回収運転初期状態では、冷媒回路中にはあらかじめ熱源側ユニット100に充填されている冷媒と、真空引きの後に充填された負荷側ユニット200分の冷媒しか充填されていないため、冷媒が不足気味となる。そこで、吐出温度センサ130が検出した圧縮機101が吐出する冷媒の温度の値Tdがあらかじめ設定した吐出温度の上限値Tdmaxより大きい(Td>Tdmax)かどうかを判断する(STEP12)。 FIG. 3 is a flowchart showing a process relating to charging of the refrigerant into the refrigerant circuit during the recovery operation. It is assumed that the control relating to this process is also performed by the heat source side control device 120. The recovery operation corresponding to STEP 6 described above is started (STEP 11). In particular, in the initial state of the recovery operation, the refrigerant circuit is filled with only the refrigerant previously charged in the heat source side unit 100 and the refrigerant for the load side unit 200 that has been charged after evacuation. It becomes. Therefore, it is determined whether the temperature value Td of the refrigerant discharged from the compressor 101 detected by the discharge temperature sensor 130 is larger than the preset upper limit value Tdmax of discharge temperature (Td> Tdmax) (STEP 12).
 Td>Tdmaxであると判断すると、冷媒供給用開閉弁108及び冷媒充填ポート開閉弁109を開放し、冷媒を充填させる(STEP14)。一方、Td>Tdmaxでないと判断すると、冷媒供給用開閉弁108及び冷媒充填ポート開閉弁109を閉止状態にする(STEP13)。そして、異物等の回収に係る所定時間が経過したと判断するまで、上記の処理を行う(STEP15)。ここで、STEP12における判断に関し、本実施の形態では、回収器111における冷媒寝込みが生じないため、冷媒回路を循環する冷媒量の減少を防ぎ、無駄な冷媒充填を防ぐことができる。 If it is determined that Td> Tdmax, the refrigerant supply on-off valve 108 and the refrigerant charging port on-off valve 109 are opened to fill the refrigerant (STEP 14). On the other hand, if it is determined that Td> Tdmax is not satisfied, the refrigerant supply on-off valve 108 and the refrigerant charging port on-off valve 109 are closed (STEP 13). Then, the above-described processing is performed until it is determined that a predetermined time relating to the collection of foreign matters has elapsed (STEP 15). Here, regarding the determination in STEP 12, in the present embodiment, since the refrigerant stagnation does not occur in the recovery device 111, it is possible to prevent a decrease in the amount of refrigerant circulating in the refrigerant circuit and to prevent unnecessary refrigerant charging.
 所定時間経過すると、熱源側制御装置120は前述した冷媒量調整制御を開始する(STEP16)。再度、定めた時間が経過したと判断するまでするまで処理を待つ(STEP17)。 When the predetermined time has elapsed, the heat source side control device 120 starts the refrigerant amount adjustment control described above (STEP 16). The process waits until it is determined again that the predetermined time has passed (STEP 17).
 そして、吐出圧力センサ131が検出する冷媒の吐出圧力Pdに基づいて飽和温度Tsat(Pd)を算出する(STEP18)。そして、熱源側熱交換温度センサ132が検出する熱源側熱交換器104から流出する冷媒の温度Tcoutとの差SCを算出する(STEP19)。さらに、差SCと目標値SCmを比較しSC≧SCmであると判断すると(STEP20)、冷媒供給用開閉弁108及び冷媒充填ポート開閉弁109を閉止状態にして(STEP21)、回収運転を終了する(STEP23)。SC≧SCmでない(SC<SCmである)と判断すると、冷媒供給用開閉弁108及び冷媒充填ポート開閉弁109を開放し(STEP22)、定めた時間冷媒を充填させ(STEP16)、再度STEP17以降の処理を行う。なお、所定時間以上、冷媒充填完了の条件を満たさない場合には、熱源側ユニット100、リモートコントローラ(図示せず)等が有する表示手段(図示せず)に表示させるようにしてもよい。また、冷媒充填が完了した際にも、熱源側ユニット100、リモートコントローラ等から完了を報知させるようにしてもよい。さらに、冷媒充填が完了したことを熱源側制御装置120の記憶手段(図示せず)に記憶させておき、後に確認できるようにしてもよい。この際、運転状態と共に記憶させるようにしてもよい。 Then, the saturation temperature Tsat (Pd) is calculated based on the refrigerant discharge pressure Pd detected by the discharge pressure sensor 131 (STEP 18). Then, a difference SC from the refrigerant temperature Tcout flowing out of the heat source side heat exchanger 104 detected by the heat source side heat exchange temperature sensor 132 is calculated (STEP 19). Further, when the difference SC is compared with the target value SCm and it is determined that SC ≧ SCm (STEP 20), the refrigerant supply on-off valve 108 and the refrigerant charging port on-off valve 109 are closed (STEP 21), and the recovery operation is terminated. (STEP 23). If it is determined that SC ≧ SCm is not satisfied (SC <SCm), the refrigerant supply on-off valve 108 and the refrigerant charging port on-off valve 109 are opened (STEP 22), the refrigerant is charged for a predetermined time (STEP 16), and again after STEP 17 Process. In addition, when the refrigerant filling completion condition is not satisfied for a predetermined time or longer, it may be displayed on a display means (not shown) included in the heat source side unit 100, a remote controller (not shown), or the like. Further, when the refrigerant charging is completed, the completion may be notified from the heat source side unit 100, the remote controller, or the like. Further, the completion of the refrigerant charging may be stored in a storage unit (not shown) of the heat source side control device 120 so that it can be confirmed later. At this time, it may be stored together with the operating state.
 次に、負荷側ユニット200において暖房を行いながら回収運転する場合の動作制御について、冷媒の流れに基づいて説明する。圧縮機101を吐出した高温・高圧のガス冷媒は、油分離器102、オイルタンク110、四方弁103、冷媒間熱交換器113で気液二相冷媒となり、ガス配管300に流れた冷媒は、ガス配管300内の異物等を冷媒の流れで剥ぎ取りながら負荷側ユニット200に流れる。 Next, operation control when the recovery operation is performed while heating in the load side unit 200 will be described based on the flow of the refrigerant. The high-temperature and high-pressure gas refrigerant discharged from the compressor 101 becomes a gas-liquid two-phase refrigerant in the oil separator 102, the oil tank 110, the four-way valve 103, and the inter-refrigerant heat exchanger 113, and the refrigerant flowing into the gas pipe 300 is The foreign matter in the gas pipe 300 flows to the load side unit 200 while being peeled off by the flow of the refrigerant.
 負荷側ユニット200に流れた異物等を含む冷媒は、負荷側熱交換器201で周囲に放熱し、凝縮して空調対象空間を暖房するとともに、負荷側絞り装置202で中間圧まで絞られ、異物等を含む気液二相冷媒となって負荷側ユニット200から流出し、液配管400に流れる。液配管400に流れた気液二相冷媒は、液配管400内の異物等も剥ぎ取りながら熱源側ユニット100に流れる。 The refrigerant containing foreign matter and the like that has flowed into the load-side unit 200 dissipates heat around the load-side heat exchanger 201, condenses, heats the air-conditioning target space, and is squeezed to an intermediate pressure by the load-side throttle device 202. It becomes a gas-liquid two-phase refrigerant containing etc., flows out from load side unit 200, and flows into liquid piping 400. The gas-liquid two-phase refrigerant that has flowed to the liquid pipe 400 flows to the heat source side unit 100 while stripping off foreign matters and the like in the liquid pipe 400.
 熱源側ユニット100に戻った異物等を含む気液二相冷媒は、逆止弁115を介して一部が熱源側熱交換器104に流入し、残りは冷媒間熱交換器113、開閉弁134を流れ、アキュムレータ106の冷媒流入側(上流側)に流れる。熱源側熱交換器104において蒸発・気化した冷媒は、四方弁103、アキュムレータ106を介して、圧縮機101に吸入され、前述したように圧縮され吐出することで循環する。冷媒間熱交換器113に流れた気液二相冷媒は、圧縮機101が吐出した高温、高圧のガス冷媒と熱交換して蒸発し、開閉弁134を介してアキュムレータ106の冷媒流入側に流れる。以上の動作を所定時間行わせた後、暖房に係る通常の運転を行う場合の冷媒の分布状態と同じになるような冷媒量調整制御を行う。 A part of the gas-liquid two-phase refrigerant including foreign matter and the like that has returned to the heat source side unit 100 flows into the heat source side heat exchanger 104 via the check valve 115, and the rest flows between the refrigerant heat exchanger 113 and the on-off valve 134. And flows to the refrigerant inflow side (upstream side) of the accumulator 106. The refrigerant evaporated and vaporized in the heat source side heat exchanger 104 is sucked into the compressor 101 via the four-way valve 103 and the accumulator 106, and circulated by being compressed and discharged as described above. The gas-liquid two-phase refrigerant that has flowed to the inter-refrigerant heat exchanger 113 evaporates by exchanging heat with the high-temperature and high-pressure gas refrigerant discharged from the compressor 101 and flows to the refrigerant inflow side of the accumulator 106 via the on-off valve 134. . After the above operation is performed for a predetermined time, the refrigerant amount adjustment control is performed so as to be the same as the refrigerant distribution state in the case of performing a normal operation related to heating.
 このとき、前述したように、アキュムレータ106内で分離された異物等は、回収用開閉弁118を介して回収用配管117を通過して回収器111に流れて回収される。また、冷凍機油についてもオイルタンク110から不足分の冷凍機油が圧縮機101に送られる。 At this time, as described above, the foreign matter or the like separated in the accumulator 106 passes through the recovery pipe 117 via the recovery on-off valve 118 and flows to the recovery device 111 and is recovered. As for the refrigeration oil, a shortage of refrigeration oil is sent from the oil tank 110 to the compressor 101.
 また、負荷側ユニット200において暖房を行っている場合に関する冷媒の充填に係る処理についても、基本的には図3に基づいて説明した処理と同じである。ただ、温度Tcoutについては、負荷側熱交換温度センサ220が検出する負荷側熱交換器201から流出する冷媒の温度を温度Tcoutとする。そして、負荷側ユニット200を複数台設置している場合は、負荷側熱交換温度センサ220が検出した温度の平均値を温度Tcoutとする。 Also, the processing related to the charging of the refrigerant in the case where heating is performed in the load side unit 200 is basically the same as the processing described based on FIG. However, regarding the temperature Tcout, the temperature of the refrigerant flowing out from the load-side heat exchanger 201 detected by the load-side heat exchange temperature sensor 220 is defined as a temperature Tcout. When a plurality of load-side units 200 are installed, the average temperature detected by the load-side heat exchange temperature sensor 220 is defined as a temperature Tcout.
 以上のようにして、既設配管を利用して新たなユニットを更新設置する場合に、既設配管の形状が壁や天井に埋設された状態でも、正しく冷媒量を判断し冷媒を充填することができるようになるため、施工時間を短縮することができる。また、冷房、暖房を問わず冷媒量の判定ができるため、既設を問わず冷媒量に対する信頼性を向上させることができる。 As described above, when a new unit is renewed and installed using existing piping, the amount of refrigerant can be correctly determined and the refrigerant can be charged even when the shape of the existing piping is embedded in a wall or ceiling. Therefore, the construction time can be shortened. Further, since the refrigerant amount can be determined regardless of whether it is cooling or heating, the reliability with respect to the refrigerant amount can be improved regardless of the existing installation.
 以上のように、実施の形態1の冷凍空気調和装置によれば、回収運転時において、圧縮機101に補充するための冷凍機油を貯留するオイルタンク110を、冷媒回路に直列的に設け、圧縮機101が吐出するガス冷媒を通過させるようにしたので、オイルタンク110内部の空間で冷媒を攪乱させて、圧縮機101の吐出特性により生じる冷媒の脈動を低減させるマフラーとすることができる。これにより、熱源側ユニット100の他の機器、負荷側ユニット200等に冷媒の脈動が伝達しないので、冷媒の脈動により装置(配管、機器)に発生する振動、音等を低減することができ、破損の防止、長寿命化による信頼性が向上した装置を得ることができる。そして、オイルタンク110をマフラーにすることで、大きな空間を有するオイルタンク110を有効利用し、マフラーを廃止することで、熱源側ユニット100の容積低減、小型化、材料削減によるコスト低減をはかることができる。また、配管を簡素化できるので、生産性を高めることができる。 As described above, according to the refrigeration air conditioning apparatus of Embodiment 1, the oil tank 110 that stores the refrigeration oil for replenishing the compressor 101 is provided in series in the refrigerant circuit during the recovery operation, and compressed. Since the gas refrigerant discharged from the machine 101 is allowed to pass therethrough, the refrigerant can be disturbed in the space inside the oil tank 110, so that the muffler can reduce the pulsation of the refrigerant caused by the discharge characteristics of the compressor 101. Thereby, since the pulsation of the refrigerant is not transmitted to other devices of the heat source side unit 100, the load side unit 200, etc., vibration, sound, etc. generated in the device (pipe, equipment) due to the pulsation of the refrigerant can be reduced. It is possible to obtain a device with improved reliability by preventing breakage and extending the service life. By making the oil tank 110 a muffler, the oil tank 110 having a large space can be effectively used, and by eliminating the muffler, the heat source side unit 100 can be reduced in volume, reduced in size, and reduced in material cost. Can do. Moreover, since piping can be simplified, productivity can be improved.
 また、運転状態にかかわらず、圧縮機101が吐出するガス冷媒が通過する位置にオイルタンク110を設けるようにしたので、回収運転時に、負荷側ユニット200が冷房を行っていても暖房を行っていても、冷媒の脈動を低減することができる。さらに、オイルタンクの大きさを所定の大きさ(例えば2リットル)以上とすることで、脈動に係る幅広い周波数、波長に対応して、冷媒の脈動を低減させることができる。そして、冷媒流入管及び冷媒流出管をオイルタンク110の上面となる位置に設け、オイルタンク110に貯留している冷凍機油の油面が最も高い位置にあるとき(通常、回収運転開始時より前の段階)でも、冷媒流入管口110A及び冷媒流出管口110Bと油面の間に十分な距離(空間)ができるようにしたので、油面位置の過度の変動及び冷媒流出管口110Bからの流出を防止することができる。そのため、圧縮機101における冷凍機油の不足を防止し、信頼性の高い冷凍空気調和装置を得ることができる。また、空間を確保するためにオイルタンク110内部の容積が大きくなるため、冷媒の脈動低減効果をさらに高めることができる。 Further, since the oil tank 110 is provided at a position through which the gas refrigerant discharged from the compressor 101 passes regardless of the operation state, heating is performed even when the load side unit 200 is cooling during the recovery operation. However, the pulsation of the refrigerant can be reduced. Furthermore, by setting the size of the oil tank to a predetermined size (for example, 2 liters) or more, the pulsation of the refrigerant can be reduced corresponding to a wide range of frequencies and wavelengths related to the pulsation. Then, the refrigerant inflow pipe and the refrigerant outflow pipe are provided at a position on the upper surface of the oil tank 110, and when the oil level of the refrigerating machine oil stored in the oil tank 110 is at the highest position (usually before the start of the recovery operation). In this stage), a sufficient distance (space) is provided between the refrigerant inflow pipe port 110A and the refrigerant outflow pipe port 110B and the oil level. Outflow can be prevented. Therefore, a shortage of refrigeration oil in the compressor 101 can be prevented, and a highly reliable refrigeration air conditioner can be obtained. Further, since the volume inside the oil tank 110 is increased in order to secure the space, the effect of reducing the pulsation of the refrigerant can be further enhanced.
 また、回収運転中又は通常の空調運転中にオイルタンク110を通過するガス冷媒の熱を回収器111に伝えるようにし、回収器111を加熱することで、回収器111への冷媒の寝込みを防止することができる。このため、冷媒回路内の冷媒量の不足判断を高精度に行い、不用意に多くの冷媒の充填を防ぐことができる。このため、コスト低減、環境保全をはかることができる。 Further, the heat of the gas refrigerant passing through the oil tank 110 is transmitted to the recovery device 111 during the recovery operation or normal air-conditioning operation, and the recovery device 111 is heated to prevent the refrigerant from stagnation in the recovery device 111. can do. For this reason, the shortage of the amount of refrigerant in the refrigerant circuit can be determined with high accuracy, and inadvertent charging of a large amount of refrigerant can be prevented. For this reason, cost reduction and environmental conservation can be achieved.
 また、油分離器102が分離した冷凍機油をオイルタンク110を介して圧縮機101に戻すようにしたので、油に係る配管経路を1系統とすることができ、配管の簡素化をはかることができる。このため、コスト低減、生産性の向上をはかることができる。 Further, since the refrigeration oil separated by the oil separator 102 is returned to the compressor 101 via the oil tank 110, the piping path related to the oil can be made into one system, and the piping can be simplified. it can. For this reason, cost reduction and productivity improvement can be achieved.
 実施の形態2.
 上述の実施の形態では、1つの筐体内を鏡板で区切った2つの空間をオイルタンク110と回収器111としたが、オイルタンク110の熱を回収器111に伝えることができれば、これに限定するものではない。例えば、オイルタンク110と回収器111の2つのタンクを接触させて一体化するようにしてもよい。
Embodiment 2. FIG.
In the above-described embodiment, the oil tank 110 and the recovery device 111 are defined as two spaces in which one casing is separated by a mirror plate. However, if the heat of the oil tank 110 can be transmitted to the recovery device 111, it is limited to this. It is not a thing. For example, the two tanks of the oil tank 110 and the recovery device 111 may be brought into contact with each other to be integrated.
 実施の形態3.
 上述した実施の形態1では、熱源側ユニット100、負荷側ユニット200を各1台ずつ接続した冷凍空気調和装置について説明した。本発明はこれに限定するものではなく、熱源側ユニット100、負荷側ユニット200をそれぞれ複数台接続したマルチ型の冷凍空気調和装置についても適用することができる。なお、この際、回収機能を有する熱源側ユニット100を1台としてもよいし、全数台としてもよい。
Embodiment 3 FIG.
Embodiment 1 mentioned above demonstrated the frozen air conditioning apparatus which connected the heat-source side unit 100 and the load side unit 200 one each. The present invention is not limited to this, and can also be applied to a multi-type refrigeration air conditioner in which a plurality of heat source side units 100 and load side units 200 are connected. At this time, the heat source side unit 100 having a recovery function may be one unit or all units.
 また、上述の実施の形態では、負荷側ユニット200が冷暖房を行えるようにするために四方弁103を設けているが、四方弁103を有さない構成にすることもできる。このような場合には、オイルタンク110は、油分離器102(圧縮機101)と熱源側熱交換器104との間に設けるようにする。 In the above-described embodiment, the four-way valve 103 is provided in order to allow the load-side unit 200 to perform air conditioning. However, a configuration without the four-way valve 103 may be employed. In such a case, the oil tank 110 is provided between the oil separator 102 (compressor 101) and the heat source side heat exchanger 104.
 また、上述の実施の形態では、負荷側ユニット200も置き換えるものとして説明したが、熱源側ユニット100だけを新しいものに置き換える場合にも適用することができる。 In the above-described embodiment, the load side unit 200 is also described as being replaced. However, the present invention can also be applied to the case where only the heat source side unit 100 is replaced with a new one.
 さらに、上述の実施の形態においては、負荷側ユニット200を配管接続した冷媒回路で回収運転を行うようにしたが、例えば、ガス配管300と液配管400との間をバイパス配管で接続して回収運転を行った後、負荷側ユニット200を配管接続するようにしてもよい。 Furthermore, in the above-described embodiment, the recovery operation is performed by the refrigerant circuit in which the load side unit 200 is connected by piping. For example, the recovery is performed by connecting the gas piping 300 and the liquid piping 400 by a bypass piping. After the operation, the load side unit 200 may be connected by piping.
 上述した実施の形態では、冷凍空気調和装置への適用について説明したが、本発明は、
例えばヒートポンプ装置、冷凍装置、冷蔵装置等、冷媒回路を構成する他の冷凍サイクル装置にも適用することができる。
In the above-described embodiment, the application to the refrigeration air conditioner has been described.
For example, the present invention can also be applied to other refrigeration cycle apparatuses that constitute a refrigerant circuit, such as a heat pump apparatus, a refrigeration apparatus, and a refrigeration apparatus.
 100 熱源側ユニット、101 圧縮機、102 油分離器、103 四方弁、104 熱源側熱交換器、105 熱源側ファン、106 アキュムレータ、107 熱源側絞り装置、108 冷媒供給用開閉弁、109 冷媒充填ポート開閉弁、110 オイルタンク、110A 冷媒流入管口、110B 冷媒流出管口、111 回収器、112 キャピラリチューブ、113 冷媒間熱交換器、114,115 逆止弁、116 油配管、117 回収用配管、118 回収用開閉弁、120 熱源側制御装置、130 吐出温度センサ、131 吐出圧力センサ、132 熱源側熱交換温度センサ、200 負荷側ユニット、201 負荷側熱交換器、202 負荷側絞り装置、203 負荷側ファン、210 負荷側制御装置、220 負荷側熱交換温度センサ300 ガス配管、400 液配管。 100 heat source side unit, 101 compressor, 102 oil separator, 103 four-way valve, 104 heat source side heat exchanger, 105 heat source side fan, 106 accumulator, 107 heat source side throttle device, 108 refrigerant supply on / off valve, 109 refrigerant filling port On-off valve, 110 oil tank, 110A refrigerant inlet pipe port, 110B refrigerant outlet pipe port, 111 collector, 112 capillary tube, 113 inter-refrigerant heat exchanger, 114, 115 check valve, 116 oil pipe, 117 recovery pipe, 118 Recovery open / close valve, 120 Heat source side control device, 130 Discharge temperature sensor, 131 Discharge pressure sensor, 132 Heat source side heat exchange temperature sensor, 200 Load side unit, 201 Load side heat exchanger, 202 Load side throttle device, 203 load Side fan, 210 load side control device, 2 0 load-side heat exchanger temperature sensor 300 gas piping, 400 liquid pipe.

Claims (8)

  1.  圧縮機及び熱源側熱交換器を有し、絞り装置と負荷側熱交換器との配管接続により冷媒回路を形成する前記熱源側ユニットであって、
     前記冷媒回路の洗浄により不足した冷凍機油を圧縮機に送って補充するためのオイルタンクを、さらに前記冷媒回路に設けることを特徴とする熱源側ユニット。
    The heat source side unit having a compressor and a heat source side heat exchanger, and forming a refrigerant circuit by piping connection between the expansion device and the load side heat exchanger,
    The heat source side unit, further comprising an oil tank in the refrigerant circuit for sending and replenishing the refrigerating machine oil which is insufficient due to the washing of the refrigerant circuit to the compressor.
  2.  前記オイルタンクは、前記冷媒回路において前記圧縮機が送り出した気相の冷媒が通過する位置に設けることを特徴とする請求項1記載の熱源側ユニット。 2. The heat source side unit according to claim 1, wherein the oil tank is provided at a position through which the gas phase refrigerant sent from the compressor passes in the refrigerant circuit.
  3.  前記冷媒に含まれる冷凍機油を分離する油分離器をさらに備え、
     前記油分離器が分離した冷凍機油を前記オイルタンクを介して前記圧縮機に送るための配管を、前記油分離器と前記オイルタンクとの間に接続することを特徴とする請求項1又は2記載の熱源側ユニット。
    An oil separator for separating the refrigerating machine oil contained in the refrigerant,
    The piping for sending the refrigerating machine oil separated by the oil separator to the compressor via the oil tank is connected between the oil separator and the oil tank. The heat source side unit described.
  4.  前記オイルタンクの容積が2リットル以上であることを特徴とする請求項1~3のいずれかに記載の熱源側ユニット。 The heat source side unit according to any one of claims 1 to 3, wherein the volume of the oil tank is 2 liters or more.
  5.  前記冷媒回路の洗浄に係る異物を捕捉して回収するための回収器をさらに備え、
    前記回収器を前記オイルタンクに接触させる又は同じ筐体に収容して一体化させることを特徴とする請求項1~4のいずれかに記載の熱源側ユニット。
    A recovery device for capturing and recovering foreign matter related to the cleaning of the refrigerant circuit;
    The heat source side unit according to any one of claims 1 to 4, wherein the recovery unit is brought into contact with the oil tank or integrated in the same casing.
  6.  前記オイルタンクは、前記冷媒の流入管及び流出管を上面に有することを特徴とする請求項1~5のいずれかに記載の熱源側ユニット。 The heat source unit according to any one of claims 1 to 5, wherein the oil tank has an inlet pipe and an outlet pipe for the refrigerant on an upper surface.
  7.  前記流入管口及び前記流出管口と前記オイルタンク内の冷凍機油の油面との距離が管径の3倍以上とすることを特徴とする請求項6記載の熱源側ユニット。 The heat source side unit according to claim 6, wherein the distance between the inlet and outlet pipe ports and the oil level of the refrigeration oil in the oil tank is at least three times the pipe diameter.
  8.  請求項1~7に記載の1又は複数の熱源側ユニットと、
     絞り装置及び負荷側熱交換器を有する1又は複数の負荷側ユニットと
    を配管接続して構成することを特徴とする冷凍空気調和装置。
    One or more heat source side units according to claims 1 to 7,
    A refrigeration air conditioner comprising a throttle device and one or a plurality of load side units having a load side heat exchanger connected by piping.
PCT/JP2009/067007 2009-09-30 2009-09-30 Heat-source-side unit and refrigeration air conditioner WO2011039851A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP09850042.4A EP2484995B1 (en) 2009-09-30 2009-09-30 Heat-source-side unit and refrigeration air conditioner
JP2011533990A JP5583134B2 (en) 2009-09-30 2009-09-30 Heat source unit and refrigeration air conditioner
PCT/JP2009/067007 WO2011039851A1 (en) 2009-09-30 2009-09-30 Heat-source-side unit and refrigeration air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/067007 WO2011039851A1 (en) 2009-09-30 2009-09-30 Heat-source-side unit and refrigeration air conditioner

Publications (1)

Publication Number Publication Date
WO2011039851A1 true WO2011039851A1 (en) 2011-04-07

Family

ID=43825707

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/067007 WO2011039851A1 (en) 2009-09-30 2009-09-30 Heat-source-side unit and refrigeration air conditioner

Country Status (3)

Country Link
EP (1) EP2484995B1 (en)
JP (1) JP5583134B2 (en)
WO (1) WO2011039851A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6191447B2 (en) * 2013-12-25 2017-09-06 株式会社富士通ゼネラル Air conditioner
CN109899940A (en) * 2019-03-21 2019-06-18 珠海格力电器股份有限公司 The control method of air-conditioning system and its coolant quantity

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0727452A (en) * 1993-07-15 1995-01-27 Daikin Ind Ltd Device for filling oil for freezer
JP2003042603A (en) * 2001-08-02 2003-02-13 Mitsubishi Electric Corp Refrigerating cycle apparatus, method for manufacturing the same and method for operating the same
JP2004333121A (en) 2004-07-21 2004-11-25 Daikin Ind Ltd Method for updating air conditioner, and air conditioner
JP2009074756A (en) * 2007-09-21 2009-04-09 Mitsubishi Electric Corp Compressor muffler

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4611799Y1 (en) * 1968-02-01 1971-04-23
NL7302376A (en) * 1972-02-22 1973-08-24
DE3014148C2 (en) * 1980-04-12 1985-11-28 M.A.N. Maschinenfabrik Augsburg-Nürnberg AG, 8000 München Oil separator for compressors in heat pumps and chillers
JPS61161377A (en) * 1985-01-09 1986-07-22 日産自動車株式会社 Recovery device for lubricating oil of compression type refrigeration cycle
DD294771A5 (en) * 1990-05-29 1991-10-10 Maschinenfabrik Halle,De OELSAMMELBEHAELTER
JPH1114199A (en) * 1997-06-24 1999-01-22 Mitsubishi Electric Corp Accumulator
US6640559B1 (en) * 2002-04-11 2003-11-04 York International Corporation Vertical oil separator for a chiller system
JP4140422B2 (en) * 2003-03-31 2008-08-27 三菱電機株式会社 Refrigerating apparatus update method and refrigeration apparatus
JP4940832B2 (en) * 2006-08-30 2012-05-30 ダイキン工業株式会社 Refrigeration equipment
JP2008208733A (en) * 2007-02-23 2008-09-11 Mitsubishi Electric Corp Pressure vessel body of refrigerating cycle device and its manufacturing method, and method for connecting pipe to vessel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0727452A (en) * 1993-07-15 1995-01-27 Daikin Ind Ltd Device for filling oil for freezer
JP2003042603A (en) * 2001-08-02 2003-02-13 Mitsubishi Electric Corp Refrigerating cycle apparatus, method for manufacturing the same and method for operating the same
JP2004333121A (en) 2004-07-21 2004-11-25 Daikin Ind Ltd Method for updating air conditioner, and air conditioner
JP2009074756A (en) * 2007-09-21 2009-04-09 Mitsubishi Electric Corp Compressor muffler

Also Published As

Publication number Publication date
EP2484995A4 (en) 2016-08-31
EP2484995A1 (en) 2012-08-08
JP5583134B2 (en) 2014-09-03
EP2484995B1 (en) 2018-09-19
JPWO2011039851A1 (en) 2013-02-21

Similar Documents

Publication Publication Date Title
JP5011957B2 (en) Air conditioner
JP6366742B2 (en) Air conditioner
JP3852472B2 (en) Air conditioner
JP4270197B2 (en) Air conditioner
WO2004063644A1 (en) Refrigeration system and method for detecting quantity of refrigerant of refrigeration system
JP5130910B2 (en) Air conditioner and refrigerant quantity determination method
KR101074322B1 (en) Air conditioner
EP2017556A1 (en) Air conditioner
KR100960539B1 (en) Air conditioner
US8033123B2 (en) Air conditioner
KR20080081946A (en) Air conditioner
JP5078817B2 (en) Refrigeration cycle equipment
JP3882841B2 (en) Air conditioner, heat source unit, and method of updating air conditioner
JP5436375B2 (en) Air conditioner
JP5138292B2 (en) Air conditioner
JP2008111585A (en) Air conditioner
JP5583134B2 (en) Heat source unit and refrigeration air conditioner
AU2006324598A1 (en) Air conditioner
JP2008025935A (en) Air conditioner
JP5245575B2 (en) Refrigerant amount determination method for air conditioner and air conditioner
JPWO2017094172A1 (en) Air conditioner
JP2008111584A (en) Air conditioner
JP5574638B2 (en) Refrigeration air conditioner
WO2008013089A1 (en) Air conditioner
JP2006183879A (en) Air conditioner and oil quantity equalizing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09850042

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011533990

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2009850042

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE