WO2011039812A1 - Positive displacement dry vacuum pump - Google Patents

Positive displacement dry vacuum pump Download PDF

Info

Publication number
WO2011039812A1
WO2011039812A1 PCT/JP2009/005055 JP2009005055W WO2011039812A1 WO 2011039812 A1 WO2011039812 A1 WO 2011039812A1 JP 2009005055 W JP2009005055 W JP 2009005055W WO 2011039812 A1 WO2011039812 A1 WO 2011039812A1
Authority
WO
WIPO (PCT)
Prior art keywords
pump
communication path
chamber
dry vacuum
type dry
Prior art date
Application number
PCT/JP2009/005055
Other languages
French (fr)
Japanese (ja)
Inventor
小沢修
花岡隆
岩根松美
Original Assignee
樫山工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 樫山工業株式会社 filed Critical 樫山工業株式会社
Priority to PCT/JP2009/005055 priority Critical patent/WO2011039812A1/en
Priority to TW098136158A priority patent/TW201111634A/en
Publication of WO2011039812A1 publication Critical patent/WO2011039812A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B37/00Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
    • F04B37/10Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use
    • F04B37/14Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use to obtain high vacuum
    • F04B37/16Means for nullifying unswept space
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C25/00Adaptations of pumps for special use of pumps for elastic fluids
    • F04C25/02Adaptations of pumps for special use of pumps for elastic fluids for producing high vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/02Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids specially adapted for several pumps connected in series or in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/06Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids specially adapted for stopping, starting, idling or no-load operation
    • F04C28/065Capacity control using a multiplicity of units or pumping capacities, e.g. multiple chambers, individually switchable or controllable
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/123Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with radially or approximately radially from the rotor body extending tooth-like elements, co-operating with recesses in the other rotor, e.g. one tooth

Definitions

  • the present invention relates to a single-stage or multi-stage positive displacement dry vacuum pump, and more particularly to an improved technique for reducing the power consumption without using an auxiliary pump.
  • Root-type, screw-type and claw-type types are known as volume transfer type dry vacuum pumps.
  • these positive displacement vacuum pumps the following three methods are mainly employed in order to reduce power consumption.
  • the pump elements are multistaged, and the exhaust volume of the pump elements is sequentially reduced according to the compression performance of each stage from the intake port side to the exhaust port side. Since the pump element in the final stage placed in the pressure environment on the atmospheric pressure side (exhaust port side) has a smaller power consumption as the exhaust volume of the pump rotor is smaller, the power consumption can be reduced as a whole.
  • Patent Document 1 Japanese Patent No. 4045362.
  • the second method is to reduce the power consumption of the entire pump by reducing the pressure on the rear stage side (exhaust port side, atmosphere port side) of the pump with a separately prepared auxiliary pump.
  • a method using a mechanical vacuum pump as an auxiliary pump is disclosed in FIGS.
  • a method of reducing the power consumption of the entire pump by reducing the exhaust space in the final stage of the pump by using an ejector pump which is an injection pump instead of the mechanical vacuum pump has been proposed. This method is disclosed in Patent Document 2 (Japanese Patent Laid-Open No. 2007-100562).
  • the former method using a mechanical vacuum pump is advantageous in reducing the power consumption compared to other methods, but it is necessary to prepare another pump, which increases the cost of the vacuum system, and the pump There is a drawback that the necessity of maintenance of itself occurs. Also, in the method of reducing the power consumption of the entire pump by depressurizing the exhaust space in the final stage of the pump using the latter ejector pump, in order to drive the ejector pump separately from the pump system, a predetermined flow rate is required. It is necessary to prepare a compressed driving gas (for example, nitrogen gas).
  • a compressed driving gas for example, nitrogen gas
  • the third method is to reduce power consumption by controlling the motor current, voltage, and rotation speed in a complex manner corresponding to the load using a pump drive source.
  • This method has a drawback that the control power supply (device) becomes expensive.
  • An object of the present invention is to provide a positive displacement dry vacuum pump capable of reducing power consumption during operation at low cost and effectively without using an auxiliary pump or a complicated drive control method, and drive control thereof. To propose a method.
  • the present invention provides: The gas sucked from the intake port is transferred to the exhaust port while being compressed via the pump chamber, and is discharged from the exhaust port to the atmosphere side through the exhaust path.
  • a vacuum chamber In a single-stage positive displacement dry vacuum pump to which a check valve is attached in order to prevent backflow of gas toward the mouth, A vacuum chamber; A first communication path having one end communicating with the decompression chamber and the other end communicating with a portion on the exhaust side of the pump chamber; A second communication path having one end communicating with the decompression chamber and the other end communicating with a portion on the intake side of the pump chamber; And a switching mechanism that switches each of the first communication path and the second communication path between a communication state and a cutoff state.
  • the suction port side is brought into a predetermined reduced pressure state.
  • the decompression chamber is evacuated by the pump chamber through the second communication path, and the decompression chamber becomes a predetermined decompression state.
  • the exhaust side portion of the pump chamber communicating with the decompression chamber is evacuated by the decompression chamber.
  • the multistage type volume transfer type dry vacuum pump to which the present invention is applied,
  • the gas sucked from the intake port is transferred toward the exhaust port while being sequentially compressed through a plurality of pump chambers connected in series, and is discharged from the exhaust port to the atmosphere side through the exhaust path.
  • a check valve is attached to prevent a back flow of gas from the atmosphere side toward the exhaust port.
  • a first communication path having one end communicating with the decompression chamber and the other end communicating with a portion on the exhaust side of the first pump chamber that is one of the plurality of pump chambers;
  • One end communicates with the decompression chamber, and the other end is one of the pump chambers disposed on the intake side of the first pump chamber or on the inlet side of the first pump chamber.
  • a second communication passage communicating with the suction side portion of the second pump chamber, And a switching mechanism that switches each of the first communication path and the second communication path between a communication state and a cutoff state.
  • the suction port side is brought into a predetermined reduced pressure state.
  • the decompression chamber is evacuated by the second pump chamber via the second communication path, and the decompression chamber becomes a predetermined decompression state.
  • the exhaust side portion of the first pump chamber communicating with the decompression chamber is evacuated by the decompression chamber.
  • a first on-off valve inserted in the first communication path and a second on-off valve inserted in the second communication path can be used.
  • the switching mechanism When the first communication path and the second communication path are selectively opened, the switching mechanism includes a first position that opens only the first communication path, a second position that opens only the second communication path, A three-way switching valve that can be switched to a third position that blocks both the first communication path and the second communication path can be used.
  • the second communication passage is prevented from flowing back to the decompression chamber via the second communication passage. It is desirable that a check valve is attached.
  • the first pump chamber to which the first communication path is connected can be the final pump chamber communicating with the exhaust port.
  • the first communication passage can be connected to a portion upstream of the check valve in the exhaust passage communicating with the exhaust side of the first pump chamber.
  • the first communication path can be connected to the upstream side of the check valve in the exhaust path.
  • the present invention is a drive control method for a single-stage or multi-stage volumetric transfer type dry vacuum pump configured as described above, A first step of driving the volume transfer type dry vacuum pump in a state where the first and second communication passages are held in a shut-off state; After the predetermined decompression state is formed at the intake port, only the second communication path is switched to the communication state, and the decompression chamber is continued for a predetermined time or until the decompression chamber is in the predetermined decompression state.
  • a process, The second step, the third step, and the fourth step are repeatedly performed.
  • a decompression chamber that can be evacuated by a pump body comprising a single-stage or multi-stage pump chamber is attached. After the vacuum chamber is evacuated, the pump body side is evacuated using the vacuum of the vacuum chamber to reduce the driving load. Therefore, power consumption can be reduced with a simple configuration as compared with the case where an auxiliary pump such as a mechanical vacuum pump or an ejector pump is provided. In addition, since it is only necessary to repeatedly switch the decompression chamber and the pump chamber on the pump body side between the communication state and the shut-off state, power consumption can be reduced without requiring complicated drive control.
  • FIG. 1 It is a schematic diagram which shows the structure of the multistage type volume transfer type dry vacuum pump which concerns on embodiment of this invention.
  • (A) is a partial cross-sectional side view showing a partial cross section of the pump body of the multi-stage Roots type dry vacuum pump of FIG. 1, and (b) is a schematic cross-sectional view of a portion cut along the line AA. .
  • FIG. 1 is a schematic diagram showing the configuration of a multi-stage roots type dry vacuum pump to which the present invention is applied.
  • 2A and 2B are a partial cross-sectional side view showing the pump body in a partial cross section and a schematic cross-sectional view taken along the line AA.
  • the Roots type dry vacuum pump 1 includes a pump body 2, a decompression chamber 3 attached to the pump body 2, and an airtight connection between the pump body 2 and the decompression chamber 3.
  • the first hose 4 (first communication path) and the second hose 5 (second communication path), the first vacuum valve 6 (first open / close valve) inserted in the first hose 4, and the second hose 5 It has the inserted 2nd vacuum valve 7 (2nd on-off valve).
  • a check valve 8 is also inserted in the second hose 5.
  • the pump main body 2 includes a cylindrical case 11 having a substantially elliptical cross section.
  • the cylindrical case 11 has one intake side end in the direction of the central axis 2a.
  • An intake port 12 is formed on the outer peripheral surface of 11a, and an exhaust port 13 is formed on the outer peripheral surface of the other exhaust side end portion 11b.
  • the pump chambers 14 to 18 of each stage constitute an energy-saving pump main body 2 that is arranged so that the exhaust volume gradually decreases from the intake port 12 side to the exhaust port 13 side.
  • a pair of root rotors R1, R2, R3, R4 and R5 are arranged in each pump chamber 14-18. These roots rotors R1 to R5 are rotationally driven by a motor 19 attached to the end surface of the cylindrical case 11 on the exhaust port side.
  • an exhaust side portion 18b defined by a roots rotor R5 disposed therein communicates with the exhaust port 13.
  • the main exhaust pipe 20 (exhaust passage) is connected to the exhaust port 13, and the front end of the main exhaust pipe 20 is opened to the atmosphere side via a check valve 21.
  • the check valve 21 prevents the backflow of gas flowing from the atmosphere side to the exhaust port 13 side. In other words, the check valve 21 is attached so that the direction toward the atmosphere side is the forward direction.
  • the decompression chamber 3 is a sealed container having a fixed volume, and one ends 4a and 5a of the first hose 4 and the second hose 5 are connected to the decompression chamber 3, respectively.
  • the other end 4b of the first hose 4 communicates with a portion 18b on the exhaust side of the fifth-stage pump chamber 18 (first pump chamber).
  • the main exhaust pipe 20 communicates with a portion upstream of the check valve 21.
  • the other end 5b of the other second hose 5 is connected to a portion 18a on the intake side of the fifth-stage pump chamber 18 or a pump chamber 14 to a front-stage side (intake port side) of the fifth-stage pump chamber 18. 17 communicates with a portion on the intake side. In this example, it communicates with the portion 16a on the intake side in the third-stage pump chamber 16 (second pump chamber) which is the middle stage.
  • the second vacuum valve 7 inserted in the second hose 5 is opened, the decompression chamber 3 and the suction side portion 16a of the third-stage pump chamber 16 are in communication with each other, and the second vacuum valve 7 is closed. And between these, it will be in the state interrupted
  • the second vacuum valve 7 can also be a fluid pressure drive type or an electromagnetic type. Further, the check valve 8 inserted in the second hose 5 is located between the end 5b and the second vacuum valve 7, and enters the decompression chamber 3 from the third-stage pump chamber 16 side. The flow of the gas which goes is blocked.
  • the first and second vacuum valves 6 and 7 are two-way valves, but a three-way valve can be used instead of these. In this case, only the first hose 6 is opened at the first switching position in the three-way valve, only the second hose 7 is opened at the second switching position, and the first and second hoses 6 are opened at the third switching position. , 7 can be blocked.
  • the exhaust port 22 a of the vacuum vessel 22 is connected to the intake port 12 of the multi-stage roots type dry vacuum pump 1 through the main intake pipe 23.
  • a main vacuum valve 24 is inserted in the main intake pipe 23.
  • the second vacuum valve 7 By opening the second vacuum valve 7 for a predetermined time (for example, about 30 seconds), the pressure in the decompression chamber 3 is reduced from 101.08 kPa which is atmospheric pressure. When the pressure in the decompression chamber 3 reaches a predetermined decompressed state (for example, when the pressure is reduced to 13.30 kPa), the second vacuum valve 7 is closed.
  • a predetermined decompressed state for example, when the pressure is reduced to 13.30 kPa
  • the first vacuum valve 6 inserted in the first hose 4 (for example, an inner diameter of 10 mm and a length of 60 cm) connecting the exhaust-side portion 18b of the pump final stage and the decompression chamber 3 is opened.
  • the inside of the decompression chamber 3 communicates with the portion 18b on the exhaust side.
  • the exhaust-side portion 18b is depressurized by the differential pressure between them.
  • FIG. 3 is a graph showing an example of the results of experiments conducted by the present inventors using the multi-stage roots type dry vacuum pump 1 having the above-described configuration, and shows the elapsed time and power consumption during energy-saving operation performed during steady operation. It shows a change.
  • the power consumption during steady operation with the standard roots-type dry vacuum pump 1 was 5.78 kW (time points t1 to t2 in FIG. 3).
  • the second vacuum valve is opened for approximately 30 seconds (time t2 in FIG. 3), the decompression chamber 3 in the atmospheric pressure state is decompressed to 13.30 kPa, and the second vacuum valve 7 is closed (in FIG. 3). Time t3).
  • the first vacuum valve 6 is opened, and the exhaust side portion 18b of the fifth pump chamber 18 of the first final stage is communicated with the decompression chamber 3 (internal pressure: 13.30 kPa) to decompress the exhaust side portion 18b. did.
  • the electric power immediately after depressurization when the first vacuum valve 6 was opened was 1.83 kW, which is about 32% of the electric power in the steady state (time point t4).
  • the gas on the exhaust side of the pump chamber 18 at the final stage flows into the decompression chamber 3, so that the pressure in the decompression chamber 3 increases with time.
  • the power consumption after 4.4 hours (time t5) was 4.42 kW. This is 77% of the steady state power, and it was confirmed that the energy saving operation is still maintained. That is, the average energy saving effect in one hour was about 50%.
  • the amount of power required to depressurize the 21 L decompression chamber 3 from atmospheric pressure (101.80 kPa) to 13.30 kPa was about 0.125 kW.
  • S0 indicates the amount of power during steady operation
  • the hatched portion S1 indicates the power saving amount
  • the vertical line portion S2 indicates the amount of increase in power for decompression of the decompression chamber 3.
  • the amount of power consumption that can be reduced depending on the amount of gas flowing in from the inlet of the pump may differ from the above-mentioned values.
  • FIG. 4 is a graph showing another example of the experimental results performed by the present inventors using the multi-stage roots type dry vacuum pump 1 having the above-described configuration, and the decompression operation of the decompression chamber 3 is constant after steady operation. It shows changes in elapsed time and power consumption when repeated at intervals of.
  • the decompression operation of the decompression chamber 3 was performed by switching between opening and closing of the second vacuum valve 7 and the first vacuum valve 6 every 23 minutes.
  • the decompression time of the decompression chamber 3 was 0.25 minutes (15 seconds).
  • S0 indicates the amount of power during steady operation
  • S2 (1) indicates the initial pressure of the decompression chamber 3.
  • the electric power increase amount at the time of exhaust is shown, and S2 (2), S2 (3), S2 (4).
  • FIG. 4 it was confirmed that the energy saving operation of 50% or more can be continued intermittently when the operating power of the standard pump is 100%.
  • FIG. 5 is a schematic diagram showing a modification of the multi-stage roots type dry vacuum pump 1.
  • the basic configuration of the multi-stage roots type dry vacuum pump 1A is the same as that of the multi-stage roots type dry vacuum pump 1. Accordingly, the corresponding parts are denoted by the same reference numerals, and description of those parts is omitted.
  • the decompression chamber 3 can communicate with a portion 17a on the intake side of the fourth-stage pump chamber 17 via the second hose 5 and the second vacuum valve 7. Also in this case, the effect of reducing power consumption can be obtained as in the case of the multi-stage roots type dry vacuum pump 1 described above.
  • a portion 14a on the intake side of the first-stage pump chamber 14 or the second stage It may be a portion 15 a on the intake side of the pump chamber 15. Further, in some cases, it may be the intake side portion 18a of the fifth-stage pump chamber 18.
  • the pump chamber (the connection destination of the first hose 4) to be evacuated by the decompression chamber 3 is not limited to the exhaust-side portion 18b of the fifth-stage pump chamber 18 in the final stage.
  • the exhaust-side portion 17b of the fourth-stage pump chamber 17 can be used.
  • the second hose 5 is connected to the intake side portion 17a of the fourth-stage pump chamber 17 or the intake-side portions 14a to 16a of the pump chambers 14 to 16 before the fourth stage. That's fine.
  • the connection destination of the first hose 4 is the exhaust-side portion 16b of the third-stage pump chamber 16
  • the connection destination of the second hose 5 is the intake-side portion of the third-stage pump chamber 16.
  • 16a or the portions 14a and 15a on the intake side of the pump chambers 14 and 15 in the preceding stage may be used.
  • the embodiment of the present invention has been described by taking the multi-stage root type dry vacuum pump as an example.
  • the method of the present invention for reducing the power consumption of the pump by reducing the pressure in the exhaust side space of the pump using the pressure difference with the decompression chamber is a screw type that is a volume transfer type dry vacuum pump of another type.
  • the present invention can be similarly applied to a claw-type dry vacuum pump, and the same effect can be obtained.
  • FIG. 6 is an explanatory view showing an example of a single-stage roots type dry vacuum pump to which the present invention is applied.
  • the single-stage roots-type dry vacuum pump 1B has the same configuration as that of the multi-stage roots-type dry vacuum pump 1 shown in FIG. 1 except that the pump body 2A includes a single-stage pump chamber 30. Accordingly, in FIG. 6, the corresponding parts are denoted by the same reference numerals.
  • the roots type dry vacuum pump 1B includes a pump body 2A having a single-stage pump chamber 30, a decompression chamber 3 attached to the pump body 2A, and an airtight first connecting the pump body 2A and the decompression chamber 3.
  • a second vacuum valve 7 (second on-off valve).
  • a check valve 8 is inserted in the second hose 5.
  • a pair of roots rotor R is disposed in the pump chamber 30. The roots rotor R is rotationally driven by a motor 19.
  • an intake side portion 30 a defined by a roots rotor R disposed therein communicates with the intake port 12, and an exhaust side portion 30 b communicates with the exhaust port 13.
  • a main exhaust pipe 20 exhaust passage
  • the check valve 21 prevents the backflow of gas flowing from the atmosphere side to the exhaust port 13 side.
  • the decompression chamber 3 is connected to one ends 4a and 5a of the first hose 4 and the second hose 5, respectively.
  • the other end 4 b of the first hose 4 communicates with a portion 30 b on the exhaust side of the pump chamber 30.
  • the main exhaust pipe 20 communicates with a portion upstream of the check valve 21.
  • the other end 5 b of the other second hose 5 communicates with a portion 30 a on the intake side of the pump chamber 30.
  • the decompression chamber 3 and the portion 30a on the intake side of the pump chamber 30 are in communication with each other, and when the second vacuum valve 7 is closed, these The space is shut off in an airtight state.
  • the check valve 8 inserted in the second hose 5 is located between the end 5b and the second vacuum valve 7, and prevents the flow of gas from the pump chamber 30 toward the decompression chamber 3. To do.
  • the single-stage roots-type dry vacuum pump 1B having this configuration also alternately performs vacuuming of the decompression chamber 3 and vacuuming of the site on the exhaust side of the pump chamber 30 by the decompression chamber 3.
  • power consumption can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

A decompression chamber (3) of a positive displacement dry vacuum pump (1) can be communicated with a site (16a) of the suction side of a third-stage pump chamber (16) of a pump body (2) through a second hose (5) and a second vacuum valve (7), and can be communicated with a site (18b) of the exhaust side of a final-stage pump chamber (18) through a first hose (4) and a first vacuum valve (6). During the drive, the second vacuum valve (7) is opened only for a predetermined time period to evacuate the decompression chamber (3), and the first vacuum valve (6) is then opened to evacuate the pump body (2) side using the decompression of the decompression chamber (3), causing the drive load to be reduced. Pump power consumption can be reduced without the need for an auxiliary pump by repeating the evacuation of the decompression chamber (3), and the evacuation of the pump body (2) side using the decompression chamber (3).

Description

容積移送型ドライ真空ポンプVolumetric dry vacuum pump
 本発明は単段式あるいは多段式の容積移送型ドライ真空ポンプに関し、特に、その消費電力を補助ポンプを用いることなく低減可能にするための改良技術に関する。 The present invention relates to a single-stage or multi-stage positive displacement dry vacuum pump, and more particularly to an improved technique for reducing the power consumption without using an auxiliary pump.
 容積移送型ドライ真空ポンプとしては、ルーツ型、スクリュー型、クロー型のものが知られている。これらの容積移送型ドライ真空ポンプでは、その消費電力を低減するため、主に以下の3つの方法が採用されている。 Root-type, screw-type and claw-type types are known as volume transfer type dry vacuum pumps. In these positive displacement vacuum pumps, the following three methods are mainly employed in order to reduce power consumption.
 第一の方法は、ポンプ要素を多段化すると共に、吸気口側から排気口側に向かって各段の圧縮性能に応じて、ポンプ要素の排気容積を順次に小さくするものである。大気圧側(排気口側)の圧力環境におかれる最終段のポンプ要素は、ポンプロータの排気容積が小さいほど消費電力も小さくなるので、全体として消費電力を低減することができる。この方法は、特許文献1(特許第4045362号公報)の従来技術の欄、図7~図13に開示されている。 In the first method, the pump elements are multistaged, and the exhaust volume of the pump elements is sequentially reduced according to the compression performance of each stage from the intake port side to the exhaust port side. Since the pump element in the final stage placed in the pressure environment on the atmospheric pressure side (exhaust port side) has a smaller power consumption as the exhaust volume of the pump rotor is smaller, the power consumption can be reduced as a whole. This method is disclosed in FIG. 7 to FIG. 13 in the column of the prior art in Patent Document 1 (Japanese Patent No. 4045362).
 第二の方法は、ポンプの後段側(排気口側、大気口側)を、別に用意した補助ポンプで減圧することにより、ポンプ全体の消費電力を低減するものである。補助ポンプとして機械式真空ポンプを用いた方法は特許文献1の図1~図6に開示されている。機械式真空ポンプの代わりに、噴射式ポンプであるエゼクタ・ポンプを用いて、ポンプ最終段の排気空間を減圧してポンプ全体の消費電力を低減する方法も提案されている。この方法は特許文献2(特開2007-100562号公報)に開示されている。 The second method is to reduce the power consumption of the entire pump by reducing the pressure on the rear stage side (exhaust port side, atmosphere port side) of the pump with a separately prepared auxiliary pump. A method using a mechanical vacuum pump as an auxiliary pump is disclosed in FIGS. A method of reducing the power consumption of the entire pump by reducing the exhaust space in the final stage of the pump by using an ejector pump which is an injection pump instead of the mechanical vacuum pump has been proposed. This method is disclosed in Patent Document 2 (Japanese Patent Laid-Open No. 2007-100562).
 前者の機械式真空ポンプを用いる方法は、消費電力の低減効果は他の方法に比べて有利であるが、別のポンプを用意する必要があるので、真空システムとしてのコストが上昇し、そのポンプ自体のメンテナンスの必要性が発生するという難点がある。また、後者のエゼクタ・ポンプを利用してポンプ最終段の排気空間を減圧してポンプ全体の消費電力を低減する方法においても、ポンプシステムとは別にエゼクタ・ポンプを駆動するために、所定流量の圧縮駆動ガス(例えば窒素ガス)を用意する必要がある。 The former method using a mechanical vacuum pump is advantageous in reducing the power consumption compared to other methods, but it is necessary to prepare another pump, which increases the cost of the vacuum system, and the pump There is a drawback that the necessity of maintenance of itself occurs. Also, in the method of reducing the power consumption of the entire pump by depressurizing the exhaust space in the final stage of the pump using the latter ejector pump, in order to drive the ejector pump separately from the pump system, a predetermined flow rate is required. It is necessary to prepare a compressed driving gas (for example, nitrogen gas).
 第三の方法は、ポンプの駆動源を用いて、モータの電流、電圧、回転数を負荷に対応して複雑に制御することにより消費電力の低減を図るものである。この方法は、制御電源(機器)が高価となる難点がある。 The third method is to reduce power consumption by controlling the motor current, voltage, and rotation speed in a complex manner corresponding to the load using a pump drive source. This method has a drawback that the control power supply (device) becomes expensive.
特許第4045362号公報Japanese Patent No. 4045362 特開2007-100562号公報JP 2007-1000056
 本発明の課題は、補助ポンプあるいは複雑な駆動制御方法を用いることなく、従来技術に比べて安価で効果的に運転時の消費電力を低減することのできる容積移送型ドライ真空ポンプおよびその駆動制御方法を提案することにある。 SUMMARY OF THE INVENTION An object of the present invention is to provide a positive displacement dry vacuum pump capable of reducing power consumption during operation at low cost and effectively without using an auxiliary pump or a complicated drive control method, and drive control thereof. To propose a method.
 上記の課題を解決するために、本発明は、
 吸気口から吸引された気体がポンプ室を経由して圧縮されながら排気口に向けて移送され、当該排気口から排気路を介して大気側に排出され、当該排気路には大気側から前記排気口へ向かう気体の逆流を防止するために逆止弁が取り付けられている単段式の容積移送型ドライ真空ポンプにおいて、
 減圧チャンバと、
 一端が前記減圧チャンバに連通し、他端が、前記ポンプ室の排気側の部位に連通している第1連通路と、
 一端が前記減圧チャンバに連通し、他端が、前記ポンプ室の吸気側の部位に連通している第2連通路と、
 前記第1連通路および前記第2連通路のそれぞれを連通状態および遮断状態に切り替える切替機構とを有していることを特徴としている。
In order to solve the above problems, the present invention provides:
The gas sucked from the intake port is transferred to the exhaust port while being compressed via the pump chamber, and is discharged from the exhaust port to the atmosphere side through the exhaust path. In a single-stage positive displacement dry vacuum pump to which a check valve is attached in order to prevent backflow of gas toward the mouth,
A vacuum chamber;
A first communication path having one end communicating with the decompression chamber and the other end communicating with a portion on the exhaust side of the pump chamber;
A second communication path having one end communicating with the decompression chamber and the other end communicating with a portion on the intake side of the pump chamber;
And a switching mechanism that switches each of the first communication path and the second communication path between a communication state and a cutoff state.
 切替機構によって第1、第2連通路を共に遮断状態に保持した状態で、容積移送型ドライ真空ポンプを駆動すると吸引口の側が所定の減圧状態になる。この後に、第2連通路のみを開くと(連通状態に切り替えると)、減圧チャンバが第2連通路を介してポンプ室によって真空引きされ、当該減圧チャンバが所定の減圧状態になる。この後に、第2連通路を遮断し、第1連通路を開くと、当該減圧チャンバに連通しているポンプ室の排気側の部位が当該減圧チャンバによって真空引きされる。ポンプ室による減圧チャンバの真空引きと、減圧チャンバによるポンプ室の真空引きとを交互に行うことにより、容積移送型ドライ真空ポンプ全体としての消費電力を低減することができる。 When the volume transfer type dry vacuum pump is driven in a state where both the first and second communication paths are held in the shut-off state by the switching mechanism, the suction port side is brought into a predetermined reduced pressure state. After that, when only the second communication path is opened (switched to the communication state), the decompression chamber is evacuated by the pump chamber through the second communication path, and the decompression chamber becomes a predetermined decompression state. Thereafter, when the second communication path is shut off and the first communication path is opened, the exhaust side portion of the pump chamber communicating with the decompression chamber is evacuated by the decompression chamber. By alternately performing evacuation of the decompression chamber by the pump chamber and evacuation of the pump chamber by the decompression chamber, the power consumption of the whole volume transfer type dry vacuum pump can be reduced.
 また、本発明を適用した多段式の容積移送型ドライ真空ポンプは、
 吸気口から吸引された気体が、直列に接続されている複数のポンプ室を順次に経由して圧縮されながら排気口に向けて移送され、当該排気口から排気路を介して大気側に排出され、当該排気路には大気側から前記排気口へ向かう気体の逆流を防止するために逆止弁が取り付けられているものにおいて、
 減圧チャンバと、
 一端が前記減圧チャンバに連通し、他端が、前記複数のポンプ室のうちの一つである第1ポンプ室の排気側の部位に連通している第1連通路と、
 一端が前記減圧チャンバに連通し、他端が、前記第1ポンプ室の吸気側の部位あるいは当該第1ポンプ室よりも前記吸気口の側に配置されている前記複数のポンプ室のうちの一つである第2ポンプ室の吸引側の部位に連通している第2連通路と、
 前記第1連通路および前記第2連通路のそれぞれを連通状態および遮断状態に切り替える切替機構とを有していることを特徴とする。
In addition, the multistage type volume transfer type dry vacuum pump to which the present invention is applied,
The gas sucked from the intake port is transferred toward the exhaust port while being sequentially compressed through a plurality of pump chambers connected in series, and is discharged from the exhaust port to the atmosphere side through the exhaust path. In the exhaust passage, a check valve is attached to prevent a back flow of gas from the atmosphere side toward the exhaust port.
A vacuum chamber;
A first communication path having one end communicating with the decompression chamber and the other end communicating with a portion on the exhaust side of the first pump chamber that is one of the plurality of pump chambers;
One end communicates with the decompression chamber, and the other end is one of the pump chambers disposed on the intake side of the first pump chamber or on the inlet side of the first pump chamber. A second communication passage communicating with the suction side portion of the second pump chamber,
And a switching mechanism that switches each of the first communication path and the second communication path between a communication state and a cutoff state.
 切替機構によって第1、第2連通路を共に遮断状態に保持した状態で、容積移送型ドライ真空ポンプを駆動すると吸引口の側が所定の減圧状態になる。この後に、第2連通路のみを開くと(連通状態に切り替えると)、減圧チャンバが第2連通路を介して第2ポンプ室によって真空引きされ、当該減圧チャンバが所定の減圧状態になる。この後に、第2連通路を遮断し、第1連通路を開くと、当該減圧チャンバに連通している第1ポンプ室の排気側の部位が当該減圧チャンバによって真空引きされる。第1ポンプ室による減圧チャンバの真空引きと、減圧チャンバによる第1ポンプの排気側あるいは第2ポンプ室の真空引きとを交互に行うことにより、容積移送型ドライ真空ポンプ全体としての消費電力を低減することができる。 When the volume transfer type dry vacuum pump is driven in a state where both the first and second communication paths are held in the shut-off state by the switching mechanism, the suction port side is brought into a predetermined reduced pressure state. After that, when only the second communication path is opened (switched to the communication state), the decompression chamber is evacuated by the second pump chamber via the second communication path, and the decompression chamber becomes a predetermined decompression state. Thereafter, when the second communication path is shut off and the first communication path is opened, the exhaust side portion of the first pump chamber communicating with the decompression chamber is evacuated by the decompression chamber. By alternately evacuating the decompression chamber by the first pump chamber and evacuating the first pump by the decompression chamber or evacuating the second pump chamber, the power consumption of the whole volume transfer type dry vacuum pump is reduced. can do.
 ここで、前記切替機構として、前記第1連通路に介挿した第1開閉弁と、前記第2連通路に介挿した第2開閉弁を用いることができる。 Here, as the switching mechanism, a first on-off valve inserted in the first communication path and a second on-off valve inserted in the second communication path can be used.
 また、第1連通路および第2連通路を選択的に開く場合には、前記切替機構として、前記第1連通路のみを開く第1位置、前記第2連通路のみを開く第2位置、前記第1連通路および前記第2連通路の双方を遮断する第3位置に切替可能な三方切替弁を用いることができる。 When the first communication path and the second communication path are selectively opened, the switching mechanism includes a first position that opens only the first communication path, a second position that opens only the second communication path, A three-way switching valve that can be switched to a third position that blocks both the first communication path and the second communication path can be used.
 さらに、第2連通路を通って気体が減圧チャンバに逆流することを防止するために、前記第2連通路には、当該第2連通路を介して前記減圧チャンバに向かう気体の逆流を防止するための逆止弁が取り付けられていることが望ましい。 Further, in order to prevent the gas from flowing back to the decompression chamber through the second communication passage, the second communication passage is prevented from flowing back to the decompression chamber via the second communication passage. It is desirable that a check valve is attached.
 多段式の容積移送型ドライ真空ポンプにおいて、第1連通路が接続される前記第1ポンプ室を、前記排気口に連通している最終段のポンプ室とすることができる。この場合には、前記第1連通路を、前記第1ポンプ室の排気側に連通している前記排気路における前記逆止弁よりも上流側の部位に接続することができる。 In a multistage positive displacement vacuum pump, the first pump chamber to which the first communication path is connected can be the final pump chamber communicating with the exhaust port. In this case, the first communication passage can be connected to a portion upstream of the check valve in the exhaust passage communicating with the exhaust side of the first pump chamber.
 また、単段式の容積移送型ドライ真空ポンプにおいても、第1連通路を、前記排気路における前記逆止弁よりも上流側の部位に接続することができる。 Also in the single-stage positive displacement dry vacuum pump, the first communication path can be connected to the upstream side of the check valve in the exhaust path.
 次に、本発明は、上記構成の単段式あるいは多段式の容積移送型ドライ真空ポンプの駆動制御方法であって、
 前記第1、第2連通路を遮断状態に保持した状態で、前記容積移送型ドライ真空ポンプを駆動する第1工程と、
 前記吸気口において所定の減圧状態が形成された後は、前記第2連通路のみを連通状態に切り替えて、所定時間の間、あるいは、前記減圧チャンバが所定の減圧状態になるまで、当該減圧チャンバを真空引きしする第2工程と、
 しかる後に、前記第2連通路を遮断すると共に前記第1連通路を開く第3工程と、
 前記減圧チャンバと前記第1ポンプ室(単段式のポンプの場合には、そのポンプ室)の排出側の部位との間の差圧を利用して、当該排出側の部位を減圧する第4工程とを有し、
 前記第2工程、前記第3工程および前記第4工程を繰り返し行うことを特徴としている。
Next, the present invention is a drive control method for a single-stage or multi-stage volumetric transfer type dry vacuum pump configured as described above,
A first step of driving the volume transfer type dry vacuum pump in a state where the first and second communication passages are held in a shut-off state;
After the predetermined decompression state is formed at the intake port, only the second communication path is switched to the communication state, and the decompression chamber is continued for a predetermined time or until the decompression chamber is in the predetermined decompression state. A second step of evacuating
Thereafter, a third step of blocking the second communication path and opening the first communication path;
A fourth pressure reducing the pressure on the discharge side using the pressure difference between the pressure reduction chamber and the discharge side of the first pump chamber (in the case of a single-stage pump). A process,
The second step, the third step, and the fourth step are repeatedly performed.
 本発明の容積移送型ドライ真空ポンプにおいては、単段あるいは多段のポンプ室からなるポンプ本体によって真空引きすることのできる減圧チャンバが付設されている。減圧チャンバが真空引きされた後は、当該減圧チャンバの減圧を利用してポンプ本体側を真空引きして駆動負荷を低減している。したがって、機械式真空ポンプ、エゼクタ・ポンプなどの補助ポンプを設ける場合に比べて、簡単な構成で消費電力を低減することができる。また、減圧チャンバとポンプ本体側のポンプ室とを繰り返し連通状態および遮断状態に切り替えるだけでよいので複雑な駆動制御を必要とすることなく消費電力を低減することができる。 In the positive displacement vacuum pump of the present invention, a decompression chamber that can be evacuated by a pump body comprising a single-stage or multi-stage pump chamber is attached. After the vacuum chamber is evacuated, the pump body side is evacuated using the vacuum of the vacuum chamber to reduce the driving load. Therefore, power consumption can be reduced with a simple configuration as compared with the case where an auxiliary pump such as a mechanical vacuum pump or an ejector pump is provided. In addition, since it is only necessary to repeatedly switch the decompression chamber and the pump chamber on the pump body side between the communication state and the shut-off state, power consumption can be reduced without requiring complicated drive control.
本発明の実施の形態に係る多段式の容積移送型ドライ真空ポンプの構成を示す模式図である。It is a schematic diagram which shows the structure of the multistage type volume transfer type dry vacuum pump which concerns on embodiment of this invention. (a)は図1の多段のルーツ型ドライ真空ポンプのポンプ本体を一部断面で示す部分断面側面図であり、(b)は、そのA-A線で切断した部分の概略断面図である。(A) is a partial cross-sectional side view showing a partial cross section of the pump body of the multi-stage Roots type dry vacuum pump of FIG. 1, and (b) is a schematic cross-sectional view of a portion cut along the line AA. . 図1のルーツ型ドライ真空ポンプによる消費電力の特性を示すグラフである。It is a graph which shows the characteristic of the power consumption by the roots type dry vacuum pump of FIG. 図1のルーツ型ドライ真空ポンプによる消費電力の特性を示すグラフである。It is a graph which shows the characteristic of the power consumption by the roots type dry vacuum pump of FIG. 本発明の変形例に係る多段式の容積移送型ドライ真空ポンプの構成を示す模式図である。It is a schematic diagram which shows the structure of the multistage type volume transfer type dry vacuum pump which concerns on the modification of this invention. 本発明を適用した単段式の容積移送型ドライ真空ポンプの構成を示す模式図である。It is a schematic diagram which shows the structure of the single stage type volume transfer type dry vacuum pump to which this invention is applied.
 以下に、図面を参照して本発明を適用した実施の形態を説明する。 Embodiments to which the present invention is applied will be described below with reference to the drawings.
 図1は、本発明を適用した多段式のルーツ型ドライ真空ポンプの構成を示す模式図である。図2(a)および(b)は、そのポンプ本体を一部断面で示す部分断面側面図およびA-Aで切断した部分の概略断面図である。 FIG. 1 is a schematic diagram showing the configuration of a multi-stage roots type dry vacuum pump to which the present invention is applied. 2A and 2B are a partial cross-sectional side view showing the pump body in a partial cross section and a schematic cross-sectional view taken along the line AA.
(構成の説明)
 これらの図を参照して説明すると、ルーツ型ドライ真空ポンプ1は、ポンプ本体2と、当該ポンプ本体2に付設した減圧チャンバ3と、これらポンプ本体2および減圧チャンバ3の間を繋ぐ気密性の第1ホース4(第1連通路)および第2ホース5(第2連通路)と、第1ホース4に介挿した第1真空バルブ6(第1開閉弁)と、第2ホース5に介挿した第2真空バルブ7(第2開閉弁)とを有している。また、本例では第2ホース5には逆止弁8も介挿されている。
(Description of configuration)
Referring to these drawings, the Roots type dry vacuum pump 1 includes a pump body 2, a decompression chamber 3 attached to the pump body 2, and an airtight connection between the pump body 2 and the decompression chamber 3. The first hose 4 (first communication path) and the second hose 5 (second communication path), the first vacuum valve 6 (first open / close valve) inserted in the first hose 4, and the second hose 5 It has the inserted 2nd vacuum valve 7 (2nd on-off valve). In this example, a check valve 8 is also inserted in the second hose 5.
 ポンプ本体2は、図2に示すように、略楕円状の断面を備えた筒状ケース11を備えており、この筒状ケース11には、その中心軸線2aの方向の一方の吸気側端部11aの外周面に吸気口12が形成されており、他方の排気側端部11bの外周面に排気口13が形成されている。筒状ケース11の内部には、吸気口12の側から排気口13の側に向かって複数段のポンプ室、本例では5段のポンプ室14~18が同軸状態に形成されており、これらは直列に接続されている。また、各段のポンプ室14~18は吸気口12の側から排気口13の側に向かって排気容積が順次に小さくなるように配置された省エネルギー型のポンプ本体2を構成している。 As shown in FIG. 2, the pump main body 2 includes a cylindrical case 11 having a substantially elliptical cross section. The cylindrical case 11 has one intake side end in the direction of the central axis 2a. An intake port 12 is formed on the outer peripheral surface of 11a, and an exhaust port 13 is formed on the outer peripheral surface of the other exhaust side end portion 11b. Inside the cylindrical case 11, a plurality of pump chambers, in this example, five pump chambers 14 to 18 are formed coaxially from the inlet 12 side to the exhaust port 13 side. Are connected in series. The pump chambers 14 to 18 of each stage constitute an energy-saving pump main body 2 that is arranged so that the exhaust volume gradually decreases from the intake port 12 side to the exhaust port 13 side.
 各ポンプ室14~18には、それぞれ、一対のルーツロータR1、R2、R3、R4およびR5が配置されている。これらのルーツロータR1~R5は、筒状ケース11の排気口側の端面に取り付けたモータ19によって回転駆動される。第1段のポンプ室14は、そこに配置したルーツロータR1によって区画される吸気側の部位14aが吸気口12に連通している。第5段(最終段)のポンプ室18は、そこに配置したルーツロータR5によって区画される排気側の部位18bが排気口13に連通している。 A pair of root rotors R1, R2, R3, R4 and R5 are arranged in each pump chamber 14-18. These roots rotors R1 to R5 are rotationally driven by a motor 19 attached to the end surface of the cylindrical case 11 on the exhaust port side. In the first-stage pump chamber 14, an intake side portion 14 a partitioned by a roots rotor R <b> 1 disposed there communicates with the intake port 12. In the pump chamber 18 of the fifth stage (final stage), an exhaust side portion 18b defined by a roots rotor R5 disposed therein communicates with the exhaust port 13.
 排気口13には主排気配管20(排気路)が接続されており、当該主排気配管20の先端は逆止弁21を介して大気側に開放されている。逆止弁21は、大気側から排気口13の側に流入する気体の逆流を防止する。換言すると、逆止弁21は大気側への方向が順方向となるように取り付けられている。 The main exhaust pipe 20 (exhaust passage) is connected to the exhaust port 13, and the front end of the main exhaust pipe 20 is opened to the atmosphere side via a check valve 21. The check valve 21 prevents the backflow of gas flowing from the atmosphere side to the exhaust port 13 side. In other words, the check valve 21 is attached so that the direction toward the atmosphere side is the forward direction.
 次に、減圧チャンバ3は一定の容積の密閉容器であり、この減圧チャンバ3には第1ホース4および第2ホース5の一方の端4aおよび5aがそれぞれ接続されている。第1ホース4の他方の端4bは第5段のポンプ室18(第1ポンプ室)の排気側の部位18bに連通している。本例では、主排気配管20における逆止弁21よりも上流側の部位に連通している。第1ホース4に介挿されている第1真空バルブ6を開くと、減圧チャンバ3と第5段のポンプ室18の排気側の部位18bが連通した状態になり、第1真空バルブ6を閉じると、これらの間が気密状態で遮断された状態になる。第1真空バルブ6は流体圧駆動式あるいは電磁式のものを用いることができる。 Next, the decompression chamber 3 is a sealed container having a fixed volume, and one ends 4a and 5a of the first hose 4 and the second hose 5 are connected to the decompression chamber 3, respectively. The other end 4b of the first hose 4 communicates with a portion 18b on the exhaust side of the fifth-stage pump chamber 18 (first pump chamber). In this example, the main exhaust pipe 20 communicates with a portion upstream of the check valve 21. When the first vacuum valve 6 inserted in the first hose 4 is opened, the decompression chamber 3 and the exhaust side portion 18b of the fifth-stage pump chamber 18 are in communication with each other, and the first vacuum valve 6 is closed. And between these, it will be in the state interrupted | blocked by the airtight state. The first vacuum valve 6 can be a fluid pressure drive type or an electromagnetic type.
 他方の第2ホース5の他方の端5bは、第5段のポンプ室18の吸気側の部位18aあるいは、当該第5段のポンプ室18よりも前段側(吸気口側)のポンプ室14~17における吸気側の部位に連通している。本例では、中段である第3段のポンプ室16(第2ポンプ室)における吸気側の部位16aに連通している。第2ホース5に介挿されている第2真空バルブ7を開くと、減圧チャンバ3と第3段のポンプ室16の吸気側の部位16aが連通した状態になり、第2真空バルブ7を閉じると、これらの間が気密状態で遮断された状態になる。第2真空バルブ7も流体圧駆動式、電磁式のものを用いることができる。また、第2ホース5に介挿されている逆止弁8は、その端5bと第2真空バルブ7との間に位置しており、第3段のポンプ室16の側から減圧チャンバ3に向かう気体の流れを阻止するものである。 The other end 5b of the other second hose 5 is connected to a portion 18a on the intake side of the fifth-stage pump chamber 18 or a pump chamber 14 to a front-stage side (intake port side) of the fifth-stage pump chamber 18. 17 communicates with a portion on the intake side. In this example, it communicates with the portion 16a on the intake side in the third-stage pump chamber 16 (second pump chamber) which is the middle stage. When the second vacuum valve 7 inserted in the second hose 5 is opened, the decompression chamber 3 and the suction side portion 16a of the third-stage pump chamber 16 are in communication with each other, and the second vacuum valve 7 is closed. And between these, it will be in the state interrupted | blocked by the airtight state. The second vacuum valve 7 can also be a fluid pressure drive type or an electromagnetic type. Further, the check valve 8 inserted in the second hose 5 is located between the end 5b and the second vacuum valve 7, and enters the decompression chamber 3 from the third-stage pump chamber 16 side. The flow of the gas which goes is blocked.
 なお、第1、第2真空バルブ6、7は二方弁であるが、これらを用いる代わりに三方弁を用いることもできる。この場合には、三方弁における第1の切替位置において、第1ホース6のみを開き、第2の切替位置において第2ホース7のみを開き、第3の切替位置において第1、第2ホース6、7の双方を遮断できるようにすればよい。 The first and second vacuum valves 6 and 7 are two-way valves, but a three-way valve can be used instead of these. In this case, only the first hose 6 is opened at the first switching position in the three-way valve, only the second hose 7 is opened at the second switching position, and the first and second hoses 6 are opened at the third switching position. , 7 can be blocked.
(運転動作の説明)
 この構成の多段ルーツ型ドライ真空ポンプ1を用いて、図1において一点鎖線で示す真空容器22の真空引きを行う場合の動作を説明する。真空容器22の排気口22aが、主吸気配管23を介して、多段ルーツ型ドライ真空ポンプ1の吸気口12に接続される。主吸気配管23には主真空バルブ24が介挿される。
(Description of operation)
The operation in the case of evacuating the vacuum vessel 22 indicated by the alternate long and short dash line in FIG. 1 using the multistage roots type dry vacuum pump 1 having this configuration will be described. The exhaust port 22 a of the vacuum vessel 22 is connected to the intake port 12 of the multi-stage roots type dry vacuum pump 1 through the main intake pipe 23. A main vacuum valve 24 is inserted in the main intake pipe 23.
 第1、第2真空バルブ6、7を閉じた状態でモータ19を駆動すると、吸気口12を介して、例えば、8000L/分の排気速度で吸引が行われるものとする。モータ19を駆動して真空容器22の気体の吸引が開始されると、吸引された気体はポンプ本体2内を、第1段のポンプ室14から第5段のポンプ室18に向けて、ルーツロータR1~R5の回転により圧縮されながら移送される。最終段の第5段のポンプ室18の排気側の部位18bに送り出された気体は、主排気配管20および逆止弁21を介して大気側に排出される。 When the motor 19 is driven in a state where the first and second vacuum valves 6 and 7 are closed, for example, suction is performed through the air inlet 12 at an exhaust speed of 8000 L / min. When the motor 19 is driven and the suction of the gas in the vacuum vessel 22 is started, the sucked gas flows through the pump body 2 from the first-stage pump chamber 14 to the fifth-stage pump chamber 18, and the roots rotor. It is transferred while being compressed by the rotation of R1 to R5. The gas sent to the exhaust-side portion 18 b of the final-stage fifth-stage pump chamber 18 is exhausted to the atmosphere side through the main exhaust pipe 20 and the check valve 21.
 この時、減圧チャンバ3(例えば、チャンバ容積21L)とポンプ本体2の第3段のポンプ室16の間を連通可能な第2ホース5の第2真空バルブ7を開くと、気密性の第2ホース5(例えば、内径が10mm,長さ60cm)を経由して、減圧チャンバ3内の気体が排気される。 At this time, when the second vacuum valve 7 of the second hose 5 capable of communicating between the decompression chamber 3 (for example, the chamber volume 21L) and the third-stage pump chamber 16 of the pump body 2 is opened, an airtight second The gas in the decompression chamber 3 is exhausted through the hose 5 (for example, the inner diameter is 10 mm and the length is 60 cm).
 ここで、真空容器14を排気する際には、大量の気体がポンプ本体2の吸引口12へ流入して一時的に減圧チャンバ3より圧力が高くなり、気体が第3段のポンプ室16の吸気側から減圧チャンバ3に向けて逆流する可能性がある。本例では、第2ホース5に取り付けてある逆止弁8によって気体の逆流が防止される。 Here, when the vacuum vessel 14 is evacuated, a large amount of gas flows into the suction port 12 of the pump body 2 and temporarily becomes higher in pressure than the decompression chamber 3, so that the gas flows into the third stage pump chamber 16. There is a possibility of backflow from the intake side toward the decompression chamber 3. In this example, the backflow of gas is prevented by the check valve 8 attached to the second hose 5.
 第2真空バルブ7を所定時間の間だけ(例えば、約30秒間)開くことによって、減圧チャンバ3内の圧力は大気圧である101.08kPaから減圧される。減圧チャンバ3の圧力が所定の減圧状態に到達した時点(例えば、13.30kPaへと減圧された時点)において、第2真空バルブ7を閉じる。 By opening the second vacuum valve 7 for a predetermined time (for example, about 30 seconds), the pressure in the decompression chamber 3 is reduced from 101.08 kPa which is atmospheric pressure. When the pressure in the decompression chamber 3 reaches a predetermined decompressed state (for example, when the pressure is reduced to 13.30 kPa), the second vacuum valve 7 is closed.
 次に、ポンプ最終段の排気側の部位18bと減圧チャンバ3の間を接続している第1ホース4(例えば、内径10mm、長さ60cm)に介挿されている第1真空バルブ6を開き、減圧チャンバ3内と排気側の部位18bを連通する。この結果、これらの間の差圧によって、排気側の部位18bが減圧される。排気側の部位18bが減圧されることにより、最終段である第5段のポンプ室18におけるルーツロータR5の気体の圧縮・移送仕事の負担が大幅に軽減される。 Next, the first vacuum valve 6 inserted in the first hose 4 (for example, an inner diameter of 10 mm and a length of 60 cm) connecting the exhaust-side portion 18b of the pump final stage and the decompression chamber 3 is opened. The inside of the decompression chamber 3 communicates with the portion 18b on the exhaust side. As a result, the exhaust-side portion 18b is depressurized by the differential pressure between them. By reducing the pressure on the exhaust-side portion 18b, the burden of the work of compressing and transferring the gas in the roots rotor R5 in the fifth-stage pump chamber 18 which is the final stage is greatly reduced.
 図3は、上記構成の多段ルーツ型ドライ真空ポンプ1を用いて本発明者等が行った実験結果の一例を示すグラフであり、定常運転中に行った省エネルギー運転時の経過時間と消費電力の変化を示すものである。 FIG. 3 is a graph showing an example of the results of experiments conducted by the present inventors using the multi-stage roots type dry vacuum pump 1 having the above-described configuration, and shows the elapsed time and power consumption during energy-saving operation performed during steady operation. It shows a change.
 まず、標準仕様のルーツ型ドライ真空ポンプ1での定常運転時の消費電力が5.78kWであった(図3の時点t1~t2)。 First, the power consumption during steady operation with the standard roots-type dry vacuum pump 1 was 5.78 kW (time points t1 to t2 in FIG. 3).
 この状態において、第2真空バルブを略30秒間だけ開き(図3の時点t2)、大気圧状態の減圧チャンバ3を13.30kPaまで減圧して当該第2真空バルブ7を閉じた(図3の時点t3)。同時に、第1真空バルブ6を開いて第1最終段の第5段のポンプ室18の排気側の部位18bを減圧チャンバ3(内圧:13.30kPa)に連通させて排気側の部位18bを減圧した。第1真空バルブ6を開いた減圧直後の電力は1.83kWへと定常時の約32%の電力となった(時点t4)。 In this state, the second vacuum valve is opened for approximately 30 seconds (time t2 in FIG. 3), the decompression chamber 3 in the atmospheric pressure state is decompressed to 13.30 kPa, and the second vacuum valve 7 is closed (in FIG. 3). Time t3). At the same time, the first vacuum valve 6 is opened, and the exhaust side portion 18b of the fifth pump chamber 18 of the first final stage is communicated with the decompression chamber 3 (internal pressure: 13.30 kPa) to decompress the exhaust side portion 18b. did. The electric power immediately after depressurization when the first vacuum valve 6 was opened was 1.83 kW, which is about 32% of the electric power in the steady state (time point t4).
 この状態を維持すると、最終段のポンプ室18の排気側の気体が減圧チャンバ3内に流入するため、減圧チャンバ3の圧力が時間と共に上昇する。この実施例では1時間後(時点t5)での消費電力は4.42kWとなった。これは定常状態の電力に比べ77%であり、依然として、省エネルギー運転が維持され続けていることが確認された。つまり、1時間での平均省エネルギー効果は約50%となった。 If this state is maintained, the gas on the exhaust side of the pump chamber 18 at the final stage flows into the decompression chamber 3, so that the pressure in the decompression chamber 3 increases with time. In this example, the power consumption after 4.4 hours (time t5) was 4.42 kW. This is 77% of the steady state power, and it was confirmed that the energy saving operation is still maintained. That is, the average energy saving effect in one hour was about 50%.
 この実施例においては容量21Lの減圧チャンバ3が大気圧状態の圧力に戻るまでに、約90分間の時間を要することが確認された(図3の時点t6)。したがって、21Lの減圧チャンバ3を13.30kPaまで減圧することにより、補助ポンプなどの他の動力を必要とすることなく、最大で約90分間の省エネルギー運転を行うことができることが確認された。 In this example, it was confirmed that it took about 90 minutes for the decompression chamber 3 with a capacity of 21 L to return to the atmospheric pressure (time t6 in FIG. 3). Therefore, it was confirmed that by reducing the pressure of the 21 L decompression chamber 3 to 13.30 kPa, an energy saving operation of about 90 minutes at the maximum can be performed without the need for other power such as an auxiliary pump.
 ここで、21Lの減圧チャンバ3を大気圧(101.80kPa)から13.30kPaまで減圧するのに要した電力量は約0.125kWであった。図3のグラフにおいて、S0は定常運転時の電力量を示し、斜線部S1は省電力量を示し、縦線部S2は減圧チャンバ3の減圧のための電力増加量を示してある。 Here, the amount of power required to depressurize the 21 L decompression chamber 3 from atmospheric pressure (101.80 kPa) to 13.30 kPa was about 0.125 kW. In the graph of FIG. 3, S0 indicates the amount of power during steady operation, the hatched portion S1 indicates the power saving amount, and the vertical line portion S2 indicates the amount of increase in power for decompression of the decompression chamber 3.
 なお、ポンプの吸気口より流入する気体の量によっては削減できる消費電力量が上述の数値と異なることがある。 Note that the amount of power consumption that can be reduced depending on the amount of gas flowing in from the inlet of the pump may differ from the above-mentioned values.
 次に、図4は、上記構成の多段ルーツ型ドライ真空ポンプ1を用いて本発明者等が行った実験結果の別の例を示すグラフであり、定常運転後に減圧チャンバ3の減圧操作を一定の間隔で繰り返し行った場合の経過時間と消費電力の変化を示すものである。この例では、23分毎に、第2真空バルブ7と第1真空バルブ6の開閉を切り替えることにより、減圧チャンバ3の減圧操作を行った。また、減圧チャンバ3の減圧時間は0.25分間(15秒間)とした。図において、S0は定常運転時の電力量を示し、斜線部S1(1)、S1(2)、S1(3)・・・は省電力量を示し、S2(1)は減圧チャンバ3の初回排気時の電力増加量を示し、S2(2)、S2(3)、S2(4)・・・は2回以降の減圧チャンバ3の排気時の電力増加量を示す。図4から分かるように、標準ポンプの運転電力を100%とした場合に、50%以上の省エネルギー運転を間欠的に継続できることが確認された。 Next, FIG. 4 is a graph showing another example of the experimental results performed by the present inventors using the multi-stage roots type dry vacuum pump 1 having the above-described configuration, and the decompression operation of the decompression chamber 3 is constant after steady operation. It shows changes in elapsed time and power consumption when repeated at intervals of. In this example, the decompression operation of the decompression chamber 3 was performed by switching between opening and closing of the second vacuum valve 7 and the first vacuum valve 6 every 23 minutes. The decompression time of the decompression chamber 3 was 0.25 minutes (15 seconds). In the figure, S0 indicates the amount of power during steady operation, hatched portions S1 (1), S1 (2), S1 (3)... Indicate the power saving amount, and S2 (1) indicates the initial pressure of the decompression chamber 3. The electric power increase amount at the time of exhaust is shown, and S2 (2), S2 (3), S2 (4). As can be seen from FIG. 4, it was confirmed that the energy saving operation of 50% or more can be continued intermittently when the operating power of the standard pump is 100%.
(変形例)
 図5は、多段ルーツ型ドライ真空ポンプ1の変形例を示す模式図である。この多段ルーツ型ドライ真空ポンプ1Aの基本構成は多段ルーツ型ドライ真空ポンプ1と同様である。したがって、対応する部位には同一の符号を付し、それらの部位の説明は省略するものとする。
(Modification)
FIG. 5 is a schematic diagram showing a modification of the multi-stage roots type dry vacuum pump 1. The basic configuration of the multi-stage roots type dry vacuum pump 1A is the same as that of the multi-stage roots type dry vacuum pump 1. Accordingly, the corresponding parts are denoted by the same reference numerals, and description of those parts is omitted.
 多段ルーツ型ドライ真空ポンプ1Aでは、第2ホース5および第2真空バルブ7を介して、減圧チャンバ3が第4段のポンプ室17の吸気側の部位17aに連通可能となっている。この場合においても、上記の多段ルーツ型ドライ真空ポンプ1の場合と同様に消費電力の削減効果を得ることができる。 In the multi-stage roots-type dry vacuum pump 1A, the decompression chamber 3 can communicate with a portion 17a on the intake side of the fourth-stage pump chamber 17 via the second hose 5 and the second vacuum valve 7. Also in this case, the effect of reducing power consumption can be obtained as in the case of the multi-stage roots type dry vacuum pump 1 described above.
 ここで、減圧チャンバ3を真空引きするために当該減圧チャンバ3に連通させるポンプ室としては、図4において破線で示すように、第1段のポンプ室14の吸気側の部位14aあるいは第2段のポンプ室15の吸気側の部位15aであってもよい。また、場合によっては、第5段のポンプ室18の吸気側の部位18aとすることも可能である。 Here, as a pump chamber communicating with the decompression chamber 3 in order to evacuate the decompression chamber 3, as shown by a broken line in FIG. 4, a portion 14a on the intake side of the first-stage pump chamber 14 or the second stage It may be a portion 15 a on the intake side of the pump chamber 15. Further, in some cases, it may be the intake side portion 18a of the fifth-stage pump chamber 18.
 一方、減圧チャンバ3による真空引きの対象となるポンプ室(第1ホース4の接続先)は、最終段の第5段のポンプ室18の排気側の部位18bに限定されるものではない。例えば、第4段のポンプ室17の排気側の部位17bとすることができる。この場合には、第2ホース5の接続先は、第4段のポンプ室17の吸気側の部位17a、あるいは、これよりも前段のポンプ室14~16の吸気側の部位14a~16aにすればよい。同様に、第1ホース4の接続先を第3段のポンプ室16の排気側の部位16bにした場合には、第2ホース5の接続先を第3段のポンプ室16の吸気側の部位16a、あるいは、それよりも前段のポンプ室14、15の吸気側の部位14a、15aにすればよい。 On the other hand, the pump chamber (the connection destination of the first hose 4) to be evacuated by the decompression chamber 3 is not limited to the exhaust-side portion 18b of the fifth-stage pump chamber 18 in the final stage. For example, the exhaust-side portion 17b of the fourth-stage pump chamber 17 can be used. In this case, the second hose 5 is connected to the intake side portion 17a of the fourth-stage pump chamber 17 or the intake-side portions 14a to 16a of the pump chambers 14 to 16 before the fourth stage. That's fine. Similarly, when the connection destination of the first hose 4 is the exhaust-side portion 16b of the third-stage pump chamber 16, the connection destination of the second hose 5 is the intake-side portion of the third-stage pump chamber 16. 16a or the portions 14a and 15a on the intake side of the pump chambers 14 and 15 in the preceding stage may be used.
(その他の実施の形態)
 以上、本発明の実施の形態として多段のルーツ型ドライ真空ポンプを例に挙げて説明した。減圧チャンバとの圧力差を利用してポンプの排気口側空間の圧力を低減することによりポンプの消費電力を削減する本発明の方法は、他の方式の容積移送型ドライ真空ポンプであるスクリュー型、クロー型のドライ真空ポンプに同様に適用でき、同様な効果が得られる。
(Other embodiments)
As described above, the embodiment of the present invention has been described by taking the multi-stage root type dry vacuum pump as an example. The method of the present invention for reducing the power consumption of the pump by reducing the pressure in the exhaust side space of the pump using the pressure difference with the decompression chamber is a screw type that is a volume transfer type dry vacuum pump of another type. The present invention can be similarly applied to a claw-type dry vacuum pump, and the same effect can be obtained.
 また、本発明は、各方式による単段の容積移送型ドライ真空ポンプに対しても同様に適用可能である。図6は本発明を適用した単段のルーツ型ドライ真空ポンプの一例を示す説明図である。単段のルーツ型ドライ真空ポンプ1Bは、ポンプ本体2Aが単段のポンプ室30から構成されている以外は、図1に示す多段のルーツ型ドライ真空ポンプ1と同様な構成を備えている。したがって図6においては、対応する部位には同一の符号を付してある。 Also, the present invention can be similarly applied to a single-stage positive displacement dry vacuum pump according to each method. FIG. 6 is an explanatory view showing an example of a single-stage roots type dry vacuum pump to which the present invention is applied. The single-stage roots-type dry vacuum pump 1B has the same configuration as that of the multi-stage roots-type dry vacuum pump 1 shown in FIG. 1 except that the pump body 2A includes a single-stage pump chamber 30. Accordingly, in FIG. 6, the corresponding parts are denoted by the same reference numerals.
 ルーツ型ドライ真空ポンプ1Bは、単段のポンプ室30を備えたポンプ本体2Aと、当該ポンプ本体2Aに付設した減圧チャンバ3と、これらポンプ本体2Aおよび減圧チャンバ3の間を繋ぐ気密性の第1ホース4(第1連通路)および第2ホース5(第2連通路)と、第1ホース4に介挿した第1真空バルブ6(第1開閉弁)と、第2ホース5に介挿した第2真空バルブ7(第2開閉弁)とを有している。第2ホース5には逆止弁8が介挿されている。ポンプ室30には一対のルーツロータRが配置されている。ルーツロータRはモータ19によって回転駆動される。ポンプ室30は、そこに配置したルーツロータRによって区画される吸気側の部位30aが吸気口12に連通しており、その排気側の部位30bが排気口13に連通している。排気口13には主排気配管20(排気路)が接続されており、当該主排気配管20の先端は逆止弁21を介して大気側に開放されている。逆止弁21は、大気側から排気口13の側に流入する気体の逆流を防止する。 The roots type dry vacuum pump 1B includes a pump body 2A having a single-stage pump chamber 30, a decompression chamber 3 attached to the pump body 2A, and an airtight first connecting the pump body 2A and the decompression chamber 3. 1 hose 4 (first communication path) and 2nd hose 5 (second communication path), a first vacuum valve 6 (first on-off valve) interposed in the first hose 4, and a second hose 5. And a second vacuum valve 7 (second on-off valve). A check valve 8 is inserted in the second hose 5. A pair of roots rotor R is disposed in the pump chamber 30. The roots rotor R is rotationally driven by a motor 19. In the pump chamber 30, an intake side portion 30 a defined by a roots rotor R disposed therein communicates with the intake port 12, and an exhaust side portion 30 b communicates with the exhaust port 13. A main exhaust pipe 20 (exhaust passage) is connected to the exhaust port 13, and the front end of the main exhaust pipe 20 is opened to the atmosphere side via a check valve 21. The check valve 21 prevents the backflow of gas flowing from the atmosphere side to the exhaust port 13 side.
 減圧チャンバ3には第1ホース4および第2ホース5の一方の端4aおよび5aがそれぞれ接続されている。第1ホース4の他方の端4bはポンプ室30の排気側の部位30bに連通している。本例では、主排気配管20における逆止弁21よりも上流側の部位に連通している。第1ホース4に介挿されている第1真空バルブ6を開くと、減圧チャンバ3とポンプ室30の排気側の部位30bが連通した状態になり、第1真空バルブ6を閉じると、これらの間が気密状態で遮断された状態になる。 The decompression chamber 3 is connected to one ends 4a and 5a of the first hose 4 and the second hose 5, respectively. The other end 4 b of the first hose 4 communicates with a portion 30 b on the exhaust side of the pump chamber 30. In this example, the main exhaust pipe 20 communicates with a portion upstream of the check valve 21. When the first vacuum valve 6 inserted in the first hose 4 is opened, the decompression chamber 3 and the exhaust side portion 30b of the pump chamber 30 are in communication with each other, and when the first vacuum valve 6 is closed, these The space is shut off in an airtight state.
 他方の第2ホース5の他方の端5bは、ポンプ室30の吸気側の部位30aに連通している。第2ホース5に介挿されている第2真空バルブ7を開くと、減圧チャンバ3とポンプ室30の吸気側の部位30aが連通した状態になり、第2真空バルブ7を閉じると、これらの間が気密状態で遮断された状態になる。第2ホース5に介挿されている逆止弁8は、その端5bと第2真空バルブ7との間に位置しており、ポンプ室30の側から減圧チャンバ3に向かう気体の流れを阻止するものである。 The other end 5 b of the other second hose 5 communicates with a portion 30 a on the intake side of the pump chamber 30. When the second vacuum valve 7 inserted in the second hose 5 is opened, the decompression chamber 3 and the portion 30a on the intake side of the pump chamber 30 are in communication with each other, and when the second vacuum valve 7 is closed, these The space is shut off in an airtight state. The check valve 8 inserted in the second hose 5 is located between the end 5b and the second vacuum valve 7, and prevents the flow of gas from the pump chamber 30 toward the decompression chamber 3. To do.
 この構成の単段のルーツ型ドライ真空ポンプ1Bによっても多段型の場合と同様に、減圧チャンバ3の真空引きと、減圧チャンバ3によるポンプ室30の排気側の部位の真空引きとを交互に行うことにより、消費電力を削減することが可能である。 Similarly to the multi-stage type, the single-stage roots-type dry vacuum pump 1B having this configuration also alternately performs vacuuming of the decompression chamber 3 and vacuuming of the site on the exhaust side of the pump chamber 30 by the decompression chamber 3. Thus, power consumption can be reduced.
1、1A、1B ルーツ型ドライ真空ポンプ
2、2A ポンプ本体
3  減圧チャンバ
4  第1ホース
4a,4b 端部
5  第2ホース
5a,5b 端部
6  第1真空バルブ
7  第2真空バルブ
8  逆止弁
11 筒状ケース
12 吸気口
13 排気口
14 第1段のポンプ室
15 第2段のポンプ室
16 第3段のポンプ室
17 第4段のポンプ室
18 第5段のポンプ室
14a,15a,16a,17a,18a 吸気側の部位
14b,15b,16b,17b,18b 排気側の部位
19 モータ
20 主排気配管
21 逆止弁
22 真空容器
23 主吸気配管
24 主真空バルブ
30 ポンプ室
30a 吸気側の部位
30b 排気側の部位
S0 定常運転時の電力量
S1、S1(1)、S1(2)、S1(3) 省電力量
S2、S2(1)、S2(2)、S2(3)、S2(4) 減圧チャンバ排気時の電力増加量
DESCRIPTION OF SYMBOLS 1, 1A, 1B Roots type dry vacuum pump 2, 2A Pump main body 3 Decompression chamber 4 1st hose 4a, 4b End 5 Second hose 5a, 5b End 6 First vacuum valve 7 Second vacuum valve 8 Check valve DESCRIPTION OF SYMBOLS 11 Cylindrical case 12 Intake port 13 Exhaust port 14 1st stage pump chamber 15 2nd stage pump chamber 16 3rd stage pump chamber 17 4th stage pump chamber 18 5th stage pump chambers 14a, 15a, 16a , 17a, 18a Inlet part 14b, 15b, 16b, 17b, 18b Exhaust part 19 Motor 20 Main exhaust pipe 21 Check valve 22 Vacuum vessel 23 Main intake pipe 24 Main vacuum valve 30 Pump chamber 30a Inlet part 30b Exhaust-side part S0 Electricity amount S1, S1 (1), S1 (2), S1 (3) during steady operation Power saving amount S2, S2 (1), S2 (2), S2 (3), S2 ( 4) Increase in power when evacuating chamber

Claims (12)

  1.  吸気口(12)から吸引された気体がポンプ室(30)を経由して圧縮されながら排気口(13)に向けて移送され、当該排気口(13)から排気路(20)を介して大気側に排出され、当該排気路(20)には大気側から前記排気口(13)へ向かう気体の逆流を防止するために逆止弁(21)が取り付けられている容積移送型ドライ真空ポンプ(1B)において、
     減圧チャンバ(3)と、
     一端(4a)が前記減圧チャンバ(3)に連通し、他端(4b)が、前記ポンプ室(30)の排気側の部位(30b)に連通している第1連通路(4)と、
     一端(5a)が前記減圧チャンバ(3)に連通し、他端(5b)が、前記ポンプ室(30)の吸気側の部位(30a)に連通している第2連通路(5)と、
     前記第1連通路(4)および前記第2連通路(5)のそれぞれを連通状態および遮断状態に切り替える切替機構(6,7)とを有していることを特徴とする容積移送型ドライ真空ポンプ(1B)。
    The gas sucked from the intake port (12) is transferred toward the exhaust port (13) while being compressed via the pump chamber (30), and the atmosphere is discharged from the exhaust port (13) through the exhaust path (20). A volume transfer type dry vacuum pump in which a check valve (21) is attached to the exhaust passage (20) to prevent backflow of gas from the atmosphere side toward the exhaust port (13). 1B)
    A vacuum chamber (3);
    A first communication path (4) having one end (4a) communicating with the decompression chamber (3) and the other end (4b) communicating with an exhaust side portion (30b) of the pump chamber (30);
    A second communication path (5) having one end (5a) communicating with the decompression chamber (3) and the other end (5b) communicating with a portion (30a) on the intake side of the pump chamber (30);
    A volume transfer type dry vacuum comprising a switching mechanism (6, 7) for switching each of the first communication path (4) and the second communication path (5) between a communication state and a blocking state. Pump (1B).
  2.  請求項1において、
     前記切替機構は、前記第1連通路(4)に介挿した第1開閉弁(6)と、前記第2連通路(5)に介挿した第2開閉弁(7)であることを特徴とする容積移送型ドライ真空ポンプ(1)。
    In claim 1,
    The switching mechanism includes a first on-off valve (6) inserted in the first communication path (4) and a second on-off valve (7) inserted in the second communication path (5). A volume transfer type dry vacuum pump (1).
  3.  請求項1において、
     前記切替機構は、前記第1連通路(4)のみを開く第1位置、前記第2連通路(5)のみを開く第2位置、前記第1連通路(4)および前記第2連通路(5)の双方を遮断する第3位置に切替可能な三方切替弁であることを特徴とする容積移送型ドライ真空ポンプ(1B)。
    In claim 1,
    The switching mechanism includes a first position that opens only the first communication path (4), a second position that opens only the second communication path (5), the first communication path (4), and the second communication path ( 5) A volume transfer type dry vacuum pump (1B), characterized in that it is a three-way switching valve that can be switched to a third position that shuts off both.
  4.  請求項1において、
     前記第2連通路(5)には、当該第2連通路(5)を介して前記減圧チャンバ(3)に向かう気体の逆流を防止するための逆止弁(8)が取り付けられていることを特徴とする容積移送型ドライ真空ポンプ(1B)。
    In claim 1,
    A check valve (8) for preventing a back flow of gas toward the decompression chamber (3) through the second communication path (5) is attached to the second communication path (5). A volume transfer type dry vacuum pump (1B).
  5.  請求項1において、
     前記第1連通路(4)は前記ポンプ室(30)の排気側に連通している前記排気路(20)における前記逆止弁(21)よりも上流側の部位に連通していることを特徴とする容積移送型ドライ真空ポンプ(1B)。
    In claim 1,
    The first communication passage (4) communicates with a portion upstream of the check valve (21) in the exhaust passage (20) communicating with the exhaust side of the pump chamber (30). The volume transfer type dry vacuum pump (1B) characterized.
  6.  請求項1ないし5のうちのいずれかの項に記載の容積移送型ドライ真空ポンプ(1B)の駆動制御方法であって、
     前記第1、第2連通路(4,5)を遮断状態に保持した状態で、前記容積移送型ドライ真空ポンプ(1,1A,1B)を駆動する第1工程と、
     前記第2連通路(5)のみを連通状態に切り替えて、所定時間の間、あるいは、前記減圧チャンバ(3)が所定の減圧状態になるまで、当該減圧チャンバ(3)を真空引きする第2工程と、
     前記第2連通路(5)を遮断すると共に前記第1連通路(4)を開く第3工程と、
     前記減圧チャンバ(3)と前記ポンプ室(30)の排出側の部位(30b)との間の差圧を利用して、当該排出側の部位(30b)を減圧する第4工程とを有し、
     前記第2工程、前記第3工程および前記第4工程を繰り返すことを特徴とする容積移送型ドライ真空ポンプ(1B)の駆動制御方法。
    A drive control method for a positive displacement dry vacuum pump (1B) according to any one of claims 1 to 5,
    A first step of driving the volume transfer type dry vacuum pump (1, 1A, 1B) in a state where the first and second communication passages (4, 5) are held in a shut-off state;
    The second decompression chamber (3) is evacuated by switching only the second communication path (5) to a communication state and evacuating the decompression chamber (3) for a predetermined time or until the decompression chamber (3) is in a predetermined decompression state. Process,
    A third step of blocking the second communication path (5) and opening the first communication path (4);
    A fourth step of depressurizing the discharge side portion (30b) using a pressure difference between the pressure reduction chamber (3) and the discharge side portion (30b) of the pump chamber (30). ,
    A drive control method for a volume transfer type dry vacuum pump (1B), wherein the second step, the third step and the fourth step are repeated.
  7.  吸気口(12)から吸引された気体が、直列に接続されている複数のポンプ室(14~18)を順次に経由して圧縮されながら排気口(13)に向けて移送され、当該排気口(13)から排気路(20)を介して大気側に排出され、当該排気路(20)には大気側から前記排気口(13)へ向かう気体の逆流を防止するために逆止弁(21)が取り付けられている容積移送型ドライ真空ポンプ(1、1A)において、
     減圧チャンバ(3)と、
     一端(4a)が前記減圧チャンバ(3)に連通し、他端(4b)が、前記複数のポンプ室のうちの一つである第1ポンプ室(14~18)の排気側の部位(14b~18b)に連通している第1連通路(4)と、
     一端(5a)が前記減圧チャンバ(3)に連通し、他端(5b)が、前記第1ポンプ室の吸気側の部位(14a~18a)あるいは当該第1ポンプ室よりも前記吸気口の側に配置されている前記複数のポンプ室のうちの一つである第2ポンプ室の吸気側の部位(14a~18a)に連通している第2連通路(5)と、
     前記第1連通路(4)および前記第2連通路(5)のそれぞれを連通状態および遮断状態に切り替える切替機構(6,7)とを有していることを特徴とする容積移送型ドライ真空ポンプ(1,1A)。
    The gas sucked from the intake port (12) is transferred to the exhaust port (13) while being sequentially compressed through the plurality of pump chambers (14 to 18) connected in series. (13) is discharged to the atmosphere side through the exhaust path (20), and a check valve (21) is provided in the exhaust path (20) in order to prevent a backflow of gas from the atmosphere side toward the exhaust port (13). ) Is attached to the volume transfer type dry vacuum pump (1, 1A),
    A vacuum chamber (3);
    One end (4a) communicates with the decompression chamber (3), and the other end (4b) is an exhaust side portion (14b) of the first pump chamber (14 to 18) which is one of the plurality of pump chambers. To a first communication path (4) communicating with 18b),
    One end (5a) communicates with the decompression chamber (3), and the other end (5b) is located on the intake side of the first pump chamber (14a to 18a) or closer to the intake port than the first pump chamber. A second communication path (5) communicating with an intake side portion (14a to 18a) of a second pump chamber which is one of the plurality of pump chambers disposed in
    A volume transfer type dry vacuum comprising a switching mechanism (6, 7) for switching each of the first communication path (4) and the second communication path (5) between a communication state and a blocking state. Pump (1, 1A).
  8.  請求項7において、
     前記切替機構は、前記第1連通路(4)に介挿した第1開閉弁(6)と、前記第2連通路(5)に介挿した第2開閉弁(7)であることを特徴とする容積移送型ドライ真空ポンプ(1、1A)。
    In claim 7,
    The switching mechanism includes a first on-off valve (6) inserted in the first communication path (4) and a second on-off valve (7) inserted in the second communication path (5). A volume transfer type dry vacuum pump (1, 1A).
  9.  請求項7において、
     前記切替機構は、前記第1連通路(4)のみを開く第1位置、前記第2連通路(5)のみを開く第2位置、前記第1連通路(4)および前記第2連通路(5)の双方を遮断する第3位置に切替可能な三方切替弁であることを特徴とする容積移送型ドライ真空ポンプ(1、1A)。
    In claim 7,
    The switching mechanism includes a first position that opens only the first communication path (4), a second position that opens only the second communication path (5), the first communication path (4), and the second communication path ( 5) A volume transfer type dry vacuum pump (1, 1A), characterized in that it is a three-way switching valve that can be switched to a third position that shuts off both.
  10.  請求項7において、
     前記第2連通路(5)には、当該第2連通路(5)を介して前記減圧チャンバ(3)に向かう気体の逆流を防止するための逆止弁(8)が取り付けられていることを特徴とする容積移送型ドライ真空ポンプ(1,1A)。
    In claim 7,
    A check valve (8) for preventing a back flow of gas toward the decompression chamber (3) through the second communication path (5) is attached to the second communication path (5). A volume transfer type dry vacuum pump (1, 1A).
  11.  請求項7において、
     前記第1ポンプ室は前記排気口(13)に連通している最終段のポンプ室(18)であり、
     前記第1連通路(4)は前記第1ポンプ室(18)の排気側に連通している前記排気路(20)における前記逆止弁(21)よりも上流側の部位に連通していることを特徴とする容積移送型ドライ真空ポンプ(1、1A)。
    In claim 7,
    The first pump chamber is a final pump chamber (18) communicating with the exhaust port (13),
    The first communication passage (4) communicates with a portion upstream of the check valve (21) in the exhaust passage (20) communicating with the exhaust side of the first pump chamber (18). A volume transfer type dry vacuum pump (1, 1A).
  12.  請求項7ないし11のうちのいずれかの項に記載の容積移送型ドライ真空ポンプ(1,1A)の駆動制御方法であって、
     前記第1、第2連通路(4,5)を遮断状態に保持した状態で、前記容積移送型ドライ真空ポンプ(1,1A)を駆動する第1工程と、
     前記第2連通路(5)のみを連通状態に切り替えて、所定時間の間、あるいは、前記減圧チャンバ(3)が所定の減圧状態になるまで、当該減圧チャンバ(3)を真空引きする第2工程と、
     前記第2連通路(5)を遮断すると共に前記第1連通路(4)を開く第3工程と、
     前記減圧チャンバ(3)と前記第1ポンプ室(18)の排出側の部位(18b)との間の差圧を利用して、当該排出側の部位(18b)を減圧する第4工程とを有し、
     前記第2工程、前記第3工程および前記第4工程を繰り返すことを特徴とする容積移送型ドライ真空ポンプ(1、1A)の駆動制御方法。
    A drive control method for a volume transfer type dry vacuum pump (1, 1A) according to any one of claims 7 to 11,
    A first step of driving the volume transfer type dry vacuum pump (1, 1A) in a state in which the first and second communication passages (4, 5) are held in an interrupted state;
    The second decompression chamber (3) is evacuated by switching only the second communication path (5) to a communication state and evacuating the decompression chamber (3) for a predetermined time or until the decompression chamber (3) is in a predetermined decompression state. Process,
    A third step of blocking the second communication path (5) and opening the first communication path (4);
    A fourth step of reducing the pressure on the discharge side portion (18b) using a pressure difference between the pressure reduction chamber (3) and the discharge side portion (18b) of the first pump chamber (18); Have
    A drive control method for a volume transfer type dry vacuum pump (1, 1A), wherein the second step, the third step and the fourth step are repeated.
PCT/JP2009/005055 2009-09-30 2009-09-30 Positive displacement dry vacuum pump WO2011039812A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2009/005055 WO2011039812A1 (en) 2009-09-30 2009-09-30 Positive displacement dry vacuum pump
TW098136158A TW201111634A (en) 2009-09-30 2009-10-26 Positive displacement dry vacuum pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/005055 WO2011039812A1 (en) 2009-09-30 2009-09-30 Positive displacement dry vacuum pump

Publications (1)

Publication Number Publication Date
WO2011039812A1 true WO2011039812A1 (en) 2011-04-07

Family

ID=43825669

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/005055 WO2011039812A1 (en) 2009-09-30 2009-09-30 Positive displacement dry vacuum pump

Country Status (2)

Country Link
TW (1) TW201111634A (en)
WO (1) WO2011039812A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2626562A2 (en) 2012-02-08 2013-08-14 Edwards Limited Pump
JP2018173026A (en) * 2017-03-31 2018-11-08 株式会社荏原製作所 Roots type vacuum pump and operation method of roots type vacuum pump
CN110506163A (en) * 2017-04-07 2019-11-26 普发真空公司 Pumping unit and application thereof
WO2021130117A1 (en) * 2019-12-23 2021-07-01 Edwards, S.R.O. Multi-stage vacuum pump

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6173939B2 (en) * 2014-02-07 2017-08-02 株式会社東芝 Vibration suppressor for jet pump and jet pump

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004052759A (en) * 2002-05-31 2004-02-19 Boc Group Plc:The Vacuum pump system and its control method
JP2007502932A (en) * 2003-08-18 2007-02-15 ザ ビーオーシー グループ ピーエルシー Reduced exhaust pump pulsation
JP2007056764A (en) * 2005-08-24 2007-03-08 Kashiyama Kogyo Kk Multi-stage root type pump
JP2009534574A (en) * 2006-04-18 2009-09-24 エドワーズ リミテッド Vacuum exhaust system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004052759A (en) * 2002-05-31 2004-02-19 Boc Group Plc:The Vacuum pump system and its control method
JP2007502932A (en) * 2003-08-18 2007-02-15 ザ ビーオーシー グループ ピーエルシー Reduced exhaust pump pulsation
JP2007056764A (en) * 2005-08-24 2007-03-08 Kashiyama Kogyo Kk Multi-stage root type pump
JP2009534574A (en) * 2006-04-18 2009-09-24 エドワーズ リミテッド Vacuum exhaust system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2626562A2 (en) 2012-02-08 2013-08-14 Edwards Limited Pump
GB2499217A (en) * 2012-02-08 2013-08-14 Edwards Ltd Vacuum pump with recirculation valve
US9869317B2 (en) 2012-02-08 2018-01-16 Edwards Limited Pump
JP2018173026A (en) * 2017-03-31 2018-11-08 株式会社荏原製作所 Roots type vacuum pump and operation method of roots type vacuum pump
CN110506163A (en) * 2017-04-07 2019-11-26 普发真空公司 Pumping unit and application thereof
TWI735764B (en) * 2017-04-07 2021-08-11 法商普發真空公司 Pumping unit and use thereof
WO2021130117A1 (en) * 2019-12-23 2021-07-01 Edwards, S.R.O. Multi-stage vacuum pump

Also Published As

Publication number Publication date
TW201111634A (en) 2011-04-01

Similar Documents

Publication Publication Date Title
WO2011039812A1 (en) Positive displacement dry vacuum pump
WO2003023229A1 (en) Vacuum pumping system and method of operating vacuum pumping system
JP3822675B2 (en) Equipment for evacuating the vacuum chamber quickly
US10982662B2 (en) Pumping system
JP2006291952A (en) Rapidly pumping out enclosure while limiting energy consumption
WO2010029750A1 (en) Vacuum evacuation device
JP4365059B2 (en) Operation method of vacuum exhaust system
JP2005155540A (en) Multistage dry-sealed vacuum pump
JP2009228596A (en) Multi-stage vacuum pump and method for operating the same
JP4180265B2 (en) Operation method of vacuum exhaust system
JP2007100562A (en) Vacuum device
JP2008088879A (en) Evacuation apparatus
JP5640089B2 (en) Vacuum system
JP6615132B2 (en) Vacuum pump system
JP4451615B2 (en) Vacuum pump system and control method thereof
CN105829723A (en) Vacuum pump system and method for operating a vacuum pump system
US20080206072A1 (en) Vacuum Apparatus
JP2008088880A (en) Evacuation apparatus
KR102178373B1 (en) Vacuum pump housing for preventing overpressure and vacuum pump having the same
JP2004144088A (en) Multistage piston vacuum pump and its operating method
JP4045362B2 (en) Multistage positive displacement vacuum pump
JP2013142293A (en) Evacuation system
JP2009091919A (en) Multistage vacuum pump device
JP2008008302A (en) Energy saving method of multistage system volume transfer type dry vacuum pump
TW202138681A (en) Surge protection in a multi-stage vacuum pump

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09850003

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09850003

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP