JP4045362B2 - Multistage positive displacement vacuum pump - Google Patents

Multistage positive displacement vacuum pump Download PDF

Info

Publication number
JP4045362B2
JP4045362B2 JP2001327229A JP2001327229A JP4045362B2 JP 4045362 B2 JP4045362 B2 JP 4045362B2 JP 2001327229 A JP2001327229 A JP 2001327229A JP 2001327229 A JP2001327229 A JP 2001327229A JP 4045362 B2 JP4045362 B2 JP 4045362B2
Authority
JP
Japan
Prior art keywords
vacuum pump
stage
exhaust
dry vacuum
exhaust pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001327229A
Other languages
Japanese (ja)
Other versions
JP2003155988A (en
Inventor
浩司 柴山
祐一 山下
充 矢作
孝彦 田島
純一 相川
智成 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2001327229A priority Critical patent/JP4045362B2/en
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to PCT/JP2002/009048 priority patent/WO2003023229A1/en
Priority to KR1020047002269A priority patent/KR100876318B1/en
Priority to CNB028157117A priority patent/CN100348865C/en
Priority to US10/486,189 priority patent/US20040173312A1/en
Priority to TW091120409A priority patent/TWI267581B/en
Publication of JP2003155988A publication Critical patent/JP2003155988A/en
Application granted granted Critical
Publication of JP4045362B2 publication Critical patent/JP4045362B2/en
Priority to US12/070,265 priority patent/US20080145238A1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/126Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with radially from the rotor body extending elements, not necessarily co-operating with corresponding recesses in the other rotor, e.g. lobes, Roots type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C25/00Adaptations of pumps for special use of pumps for elastic fluids
    • F04C25/02Adaptations of pumps for special use of pumps for elastic fluids for producing high vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2220/00Application
    • F04C2220/10Vacuum

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はドライ真空ポンプ、特に省エネルギー型のドライ真空ポンプに関する。
【0002】
【従来の技術】
図6は従来例の多段式ルーツ型のドライ真空ポンプ1を示すものであるが、図において本体2内にはモータ3の回転軸によって回転駆動されるロータ5、6、7、8、9、10が図7及び図8で示すように一対で成るが、これらが相反する方向に駆動される。最終段のロータ10が排気する最後段の排気空間には、サイレンサ12備えた排気配管11が接続されており、この排気配管11の大気側端部には逆止弁13が設けられている。公知のように、各ロータ1乃至10の各対が相反する方向に回することにより、吸気口4に接続される不図示の真空室を排気し、排気ガスは排気配管11を通り逆止弁13を開弁させて大気に吐出される。ロータは前段から後段に向かうにつれて容積を小さくし、また後段の2つのロータ9、10は図7に示すように五葉とされている。このように後段のロータを小さくすることにより、この多段式ルーツ型のドライ真空ポンプ1の消費電力を小としている。すなわち、後段側では必要な排気容量が前段より小さくなっているので、排気容量に合わせてロータを小さくして消費電力を小さくしている。
【0003】
これにつき更に説明すれば、図9に示すように各ロータが同じ大きさであれば、図12示すように吸入圧力に対し排気速度は曲線aのように変化するが、図10示すように前段の2つのロータは同じ大きさとし、中の2つをこれより小さく、後段の2つを更に小さくすれば、吸入圧力と排気速度との関係は曲線bのように変化する。更に図11で示すように、段の2つのロータを一層小さくすれば、図12において曲線cで示すように排気速度は変化する。図13はこれら図9、10及び図11の場合の吸入圧力に対する消費電力を示しているが、曲線c′、b′、a′で示すように、消費電力は図11の場合が最も小さく、次いで図10が続き、図9が最も大きい。
【0004】
以上のようにして消費電力を小さくし、省エネルギーが行われるのであるが、消費電力を小さくする別の方式としては、モータ3を排気容量に応じて制御することにより消費電力を小さくすることも考えられている。
【0005】
【発明が解決しようとする課題】
本発明は上述のような方法で得られる省エネルギー効果にとどまらず、より一層の省エネルギー効果が得られるドライ真空ポンプを提供することを課題とする。
【0006】
【課題を解決するための手段】
上記課題は、最終段のロータが排気する最後段の排気空間に接続された主排気配管に大気への方向を順方向とする逆止弁を設けた多段式容積移送型ドライ真空ポンプにおいて、大気圧に近い中間段の排気空間または前記最後段の排気空間のいずれかに連なる副排気配管を設け、該副排気配管に接続され前記ドライ真空ポンプの運転中に前記排気空間を排気する補助ポンプであって、排気速度が前記ドライ真空ポンプの1〜2%である補助ポンプを前記逆止弁に並列に設けたことを特徴とする多段式容積移送型ドライ真空ポンプ、によって解決される。
【0007】
【発明の実施の形態】
以下、本発明の実施の形態について図1〜図5を参照し説明する。なお、これら図においては従来例でその構造を明示したのでロータ等は簡略化して示す。
すなわち、図1に示す第1の実施の形態では、多段式ルーツ型のドライ真空ポンプ20の本体21内には、モータ22により回転駆動されるそれぞれ一対のロータR1、R2、R3、R4、R5及びR6(例えば図8で示す形状とする)が設けられている。また本体21の左端上壁部には吸口23が設けられており、最終段のロータR6が排気する最後段の排気空間24は、サイレンサ26および逆止弁28を備えた排気配管25が接続されている。この逆止弁28は大気側への方向を順方向としている。そして本発明の第1の実施の形態によれば、最後段の排気空間24に接続された副排気配管27にダイアフラムポンプで成る補助ポンプ30が逆止弁28と並列するように設けられている。
【0008】
本発明の第1の実施の形態である多段式ルーツ型のドライ真空ポンプ20は以上のように構成されるのであるが、次にこの作用について説明する。モータ22を駆動すると、上述したように各ロータR1乃至R6により、それぞれが受け持つ排気空間の圧力の流体を下流側へと移送させる。よって、吸気口23に接続された不図示の真空室は排気される。最後段の排気空間24の圧力は大気圧に最も近いのであるが、本発明によれば排気空間24の圧力は補助ポンプ30の駆動により減圧され、最終段のロータR6による排気作用の負担は大幅に軽減される。すなわち、モータ22の消費電力を従来よりも大幅に小とすることができる。例えば、定格消費電力3.7kWのドライ真空ポンプ20であれば、補助ポンプ30の排気速度はこのドライ真空ポンプ20の1%以下でも充分に上述の省エネルギー効果を得ることができる。もっともドライ真空ポンプ20の使用条件によって異なり、例えばパージガスの流量やプロセスガスの流量によって上述の範囲内で変更される。なお、ドライ真空ポンプ20の排気速度が1000L/min(60m3 /hr)であるとすると、補助ポンプ30の排気速度は10乃至20L/minですむ。この程度のダイアフラムポンプの定格電力は100W程度である。図6の多段式ルーツ型のドライ真空ポンプ1を用いた場合には、定格消費電力を1.4乃至1.5kW程度まで小さくできるが、補助ポンプ30を設けた本実施の形態である多段式ルーツ型のドライ真空ポンプ20では、消費電力を約500Wにまで低下させることができた。
【0009】
図2は本発明の第2の実施の形態の多段式ルーツ型のドライ真空ポンプ20′を示すものであるが、第1の実施の形態に対応する部分については同一の符号を付し、その詳細な説明は省略する。
【0010】
すなわち本実施の形態によれば、第1の実施の形態と同様に最後段の排気空間24は、サイレンサ26および逆止弁28を備えた主排気配管25が接続されて大気へと連なる。更に、サイレンサ26および逆止弁28のバイパスとなるように主排気配管25に副排気配管27が接続され、補助ポンプ30が逆止弁28と並列に設けられる。この補助ポンプ30の吐出口は配管41を介して逆止弁28の大気側に接続される。この実施の形態においては、補助ポンプ30は排気配管25の逆止弁28に並列して設けられているので、大容量のガスを排気する時は排気配管25に流れ、補助ポンプ30が故障してもドライ真空ポンプ20の性能は維持される。また、第1の実施の形態と同様な省エネルギー効果が得られることは明らかである。
【0011】
図3は本発明の第3の実施の形態の多段式ルーツ型のドライ真空ポンプ20′を示すものであるが、上記実施の形態に対応する部分については同一の符号を付し、その詳細な説明は省略する。すなわち、本実施の形態によれば、逆止弁28のバイパスとな るように主排気配管25に副排気配管27が接続され、補助ポンプ30は逆止弁28に並列に設けられる。排気空間24には、主排気配管25を介して逆止弁28および補助ポンプ30が並列に接続されているので、上記実施の形態と同様な効果を奏することは明らかである。
【0012】
図4に示す第4の実施の形態では、多段式ルーツ型のドライ真空ポンプ20Aの本体21A内には、モータ22により回転駆動されるそれぞれ一対のロータR1、R2、R3、R4、R5及びR6が設けられている。また本体21Aの左端上壁部には吸口23が設けられており、最終段のロータR6が排気する最後段の排気空間24は、サイレンサ26および逆止弁28を備えた排気配管25が接続されている。この逆止弁28は大気側への方向を順方向としている。そして本発明の第4の実施の形態によれば、中間段の排気空間24′に接続された副排気配管27′にダイアフラムポンプで成る補助ポンプ30′が逆止弁28と並列するように設けられている。すなわち本体21Aには主排気配管25とは別に副排気配管27′接続されている。なお、更に上流側の排気空間24″に対応して副排気配管27″を接続するようにしてもよい。
【0013】
本発明の第4の実施の形態は以上のように構成されるのであるが、次にこの作用について説明する。モータ22を駆動すると、上述したように各ロータR1乃至R6により、それぞれが受け持つ排気空間の圧力の流体を下流側へ移送する。よって、吸口23に接続された真空室は排気される。中間段の排気空間24′の圧力は大気圧に近いのであるが、本発明の実施の形態でも補助ポンプ30′の駆動により中間段の排気空間24′が減圧される。よって、中間段のロータR5 以降の排気作用の負担は軽減される。すなわち、モータ22の消費電力従来より大幅に小とすることができる。
【0014】
図5に示す第5の実施の形態では、多段式ルーツ型のドライ真空ポンプ20Bの本体21B内には、モータ22により回転駆動されるそれぞれ一対のロータR1、R2、R3、R4、R5及びR6が設けられている。また本体21Bの左端上壁部には吸口23が設けられており、最終段のロータR6が排気する最後段の排気空間24は、サイレンサ26および逆止弁28を備えた排気配管25が接続されている。この逆止弁28は大気側への方向を順方向としている。そして本発明の第5の実施の形態によれば、中間段の排気空間24′に接続された副排気配管27′にダイアフラムポンプで成る補助ポンプ30′が逆止弁28と並列するように設けられている。すなわち本体21Bには主排気配管25とは別に副排気配管27′が接続されている。
【0015】
本発明の第5の実施の形態は以上のように構成されるのであるが、次にこの作用について説明する。モータ22を駆動すると、上述したように各ロータR1乃至R6 、それぞれが受け持つ排気空間の圧力の流体を下流側へと移送する。よって、吸口23に接続された真空室は排気される。中間段の排気空間24′の圧力は上流側より大気圧に近いのであるが、本発明の第5の実施の形態によれば補助ポンプ30′の駆動により減圧される。よって、中間段のロータR4 以降の排気作用の負担は大幅に軽減される。すなわち、モータ22の消費電力従来より大幅に小とすることができる。
【0016】
以上、本発明の各実施の形態について説明したが、勿論、本発明はこれらに限定されることなく、本発明の技術的思想に基づいて種々の変形が可能である。
【0017】
例えば以上の実施の形態では、それぞれ対をなすロータR1乃至R6は全て同型同大としたが、これに代えて図6及び図10、11に示すように前段から後段に向かうにつれてロータの容積を小さくしてもよい。この場合には、以上の実施の形態よりも更に消費電力を小さくできることは明らかである。また、多段式ルーツ型のドライ真空ポンプに限らず、容積移送型のドライ真空ポンプ、例えばスクリュー型やクロー型でも同様の効果が得られる。
【0018】
更にまた、以上の実施の形態では、補助ポンプとしてダイアフラムポンプを説明したが、これに限ることなく他のドライポンプ、例えばベーンポンプ、ピストンポンプ、スクロールポンプ等を用いてもよい。
【0019】
また以上の実施の形態では、補助ポンプ30、30′は本体21、21′、21A、21Bの周壁に形成した排気孔に配管を介して接続されたが、配管を介することなく、単に排気孔のみ形成し、本体内部に補助ポンプ機構を設けるようにしてもよい。
【0020】
【発明の効果】
以上述べたように本発明の多段式容積移送型ドライ真空ポンプによれば、従来より大幅省エネルギー効果を得ることができる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態による多段式ルーツ型のドライ真空ポンプとその関連部分を示す模式図である。
【図2】本発明の第2の実施の形態による多段式ルーツ型のドライ真空ポンプとその関連部分を示す模式図である。
【図3】本発明の第3の実施の形態による多段式ルーツ型のドライ真空ポンプとその関連部分を示す模式図である。
【図4】本発明の第4の実施の形態による多段式ルーツ型のドライ真空ポンプとその関連部分を示す模式図である。
【図5】本発明の第5の実施の形態による多段式ルーツ型のドライ真空ポンプとその関連部分を示す模式図である。
【図6】従来例の多段式ルーツ型のドライ真空ポンプの部分破断側面図である。
【図7】図6における[7]−[7]線方向断面図である。
【図8】図6における[8]−[8]線方向断面図である。
【図9】多段のロータの大きさが等しい場合を示す模式図である。
【図10】前段、中間段、後段とでロータの大きさを変えた場合の模式図である。
【図11】前段、中間段及び後段において図10に比べ更に後段の2つのロータを小さくした場合を示す模式図である。
【図12】図9、図10及び図11のロータを用いた場合の多段式ルーツ型のドライ真空ポンプの吸入圧力と排気速度との関係を示す特性図である。
【図13】同吸入圧力と消費電力との関係を示すチャートである。
【符号の説明】
20、20′、20”、20A、20B・・・ドライ真空ポンプ、
22・・・モータ、
24・・・最後段の排気空間、
24′、24″・・・中間段の排気空間、
25・・・主排気配管
27、27′・・・副排気配管
R1、R2、R3、R4、R5、R6・・・ロータ、
30、30′・・・補助ポンプ、
[0001]
BACKGROUND OF THE INVENTION
The present invention is a dry vacuum pump, more particularly an energy saving type dry vacuum pump.
[0002]
[Prior art]
FIG. 6 shows a conventional multi-stage roots type dry vacuum pump 1, in which a rotor 5, 6, 7, 8, 9, 10 and 10 are paired as shown in FIGS. 7 and 8, but they are driven in opposite directions. An exhaust pipe 11 provided with a silencer 12 is connected to the last exhaust space exhausted by the last rotor 10, and a check valve 13 is provided at an end of the exhaust pipe 11 on the atmosphere side . . As is known, by each pair of the rotors 1 to 10 is rotating in the opposite direction, the vacuum chamber (not shown) connected to the intake port 4 and the exhaust, the exhaust gas passes through the non-return exhaust pipe 11 The valve 13 is opened and discharged to the atmosphere. The rotor has a smaller volume as it goes from the front stage to the rear stage, and the two rotors 9 and 10 in the rear stage have five leaves as shown in FIG. Thus, the power consumption of the multi-stage roots type dry vacuum pump 1 is reduced by reducing the rotor at the rear stage. That is, since the required exhaust capacity is smaller on the rear stage side than on the front stage, the rotor is made smaller in accordance with the exhaust capacity to reduce the power consumption.
[0003]
If further described per this, if the rotor is the same size as shown in FIG. 9, the pumping speed with respect to the suction pressure as shown in FIG. 12 will vary as shown by curve a, as shown in FIG. 10 front two rotors same size Satoshi, two interstage medium less than this, if two of the rear stage even smaller, the relationship between the suction pressure and the pumping speed is varied as shown by the curve b in . As further shown in Figure 11, if even smaller two rotors of the rear-stage exhaust speed as shown by a curve c in FIG. 12 is changed. FIG. 13 shows the power consumption with respect to the suction pressure in the cases of FIGS. 9, 10 and 11. As shown by the curves c ′, b ′ and a ′, the power consumption is the smallest in the case of FIG. FIG. 10 then continues and FIG. 9 is the largest.
[0004]
To reduce the power consumption as described above, although the energy saving is made, as another method of reducing power consumption, also possible to reduce the power consumption by controlling in accordance with the motor 3 to the exhaust volume It is considered.
[0005]
[Problems to be solved by the invention]
This invention makes it a subject to provide the dry vacuum pump which can obtain the further energy saving effect not only in the energy saving effect obtained by the above methods .
[0006]
[Means for Solving the Problems]
The above-mentioned problem is large in a multi-stage positive displacement dry vacuum pump in which a check valve whose forward direction is the atmosphere is provided in the main exhaust pipe connected to the last exhaust space exhausted by the last stage rotor. An auxiliary pump that is connected to either the intermediate exhaust space close to the atmospheric pressure or the last exhaust space and that is connected to the auxiliary exhaust piping and exhausts the exhaust space during operation of the dry vacuum pump. The problem is solved by a multistage positive displacement dry vacuum pump characterized in that an auxiliary pump whose exhaust speed is 1 to 2% of that of the dry vacuum pump is provided in parallel with the check valve.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to FIGS. In these drawings, since the structure is clearly shown in the conventional example, the rotor and the like are shown in a simplified manner.
That is, in the first embodiment shown in FIG. 1, a multi-stage In the main body 21 of the Roots-type dry vacuum pump 20, the rotor R 1 of the pair, respectively Re their Ru is rotated by the motor 22, R 2, R 3 , R 4 , R 5 and R 6 (for example, the shape shown in FIG. 8) are provided. Further and air intake port 23 is provided on the left upper wall portion of the body 21, the exhaust space 24 of the last stage rotor R 6 in the final stage to exhaust, main exhaust pipe provided with a silencer 26 and a check valve 28 25 is connected . The check valve 28 has a forward direction toward the atmosphere. And according to a first embodiment of the present invention, provided we are as auxiliary pump 30 comprising a diaphragm pump to a secondary exhaust pipe 27 connected to the top rear stage of the exhaust space 24 is parallel with the check valve 28 Yes.
[0008]
The multi-stage roots type dry vacuum pump 20 according to the first embodiment of the present invention is configured as described above. Next, this operation will be described. When the motor 22 is driven, as described above, the rotors R 1 to R 6 transfer the fluid of the pressure of the exhaust space that each of the rotors R 1 to R 6 has to the downstream side. Therefore, a vacuum chamber (not shown) connected to the intake port 23 is exhausted. Although the pressure in the last exhaust space 24 is closest to the atmospheric pressure, according to the present invention, the pressure in the exhaust space 24 is reduced by driving the auxiliary pump 30, and the burden of exhaust action by the last rotor R 6 is reduced. It is greatly reduced. That is, the power consumption of the motor 22 can be significantly reduced as compared with the conventional case. For example, if the dry vacuum pump 20 has a rated power consumption of 3.7 kW, the above-described energy saving effect can be sufficiently obtained even if the pumping speed of the auxiliary pump 30 is 1% or less of the dry vacuum pump 20. However, it varies depending on the use conditions of the dry vacuum pump 20, and is changed within the above-mentioned range depending on, for example, the flow rate of the purge gas or the flow rate of the process gas. If the exhaust speed of the dry vacuum pump 20 is 1000 L / min (60 m 3 / hr), the exhaust speed of the auxiliary pump 30 can be 10 to 20 L / min. The rated power of the diaphragm pump of this level is about 100W. When the multi-stage roots type dry vacuum pump 1 of FIG. 6 is used, the rated power consumption can be reduced to about 1.4 to 1.5 kW, but the multi-stage type according to the present embodiment provided with the auxiliary pump 30 is used. With the roots type dry vacuum pump 20, the power consumption could be reduced to about 500W.
[0009]
FIG. 2 shows a multi-stage roots-type dry vacuum pump 20 'according to a second embodiment of the present invention. The parts corresponding to the first embodiment are denoted by the same reference numerals, and Detailed description is omitted.
[0010]
That is, according to the present embodiment, as in the first embodiment, the exhaust gas space 24 at the last stage is connected to the main exhaust pipe 25 having the silencer 26 and the check valve 28 connected to the atmosphere. Further, the sub-exhaust pipe 27 is connected to the main exhaust pipe 25 so as to bypass the silencer 26 and the check valve 28, the auxiliary pump 30 is found provided in parallel with the check valve 28. The discharge port of the auxiliary pump 30 is connected to the atmosphere side of the check valve 28 via a pipe 41. In this embodiment, since the auxiliary pump 30 is found provided in parallel to the check valve 28 of the main exhaust pipe 25, when evacuating the large gas flows to the main exhaust pipe 25, the auxiliary pump 30 Even if a failure occurs, the performance of the dry vacuum pump 20 is maintained. Further, it is clear that the same energy saving effect as that of the first embodiment can be obtained.
[0011]
FIG. 3 shows a multi-stage roots type dry vacuum pump 20 'according to a third embodiment of the present invention. The parts corresponding to those of the above-mentioned embodiment are denoted by the same reference numerals and detailed description thereof is omitted. Description is omitted. That is, according to this embodiment, the main exhaust pipe 25 auxiliary exhaust pipe 27 is connected to so that such a bypass check valve 28, the auxiliary pump 30 is found connected in parallel with the check valve 28. Since the check valve 28 and the auxiliary pump 30 are connected in parallel to the exhaust space 24 via the main exhaust pipe 25, it is obvious that the same effect as that of the above embodiment can be obtained.
[0012]
Figure In the fourth embodiment shown in 4, multistage In the main body 21A of the Roots dry vacuum pump 20A, the rotor R 1 of the pair, respectively Re their Ru is rotated by the motor 22, R 2, R 3 , R 4 , R 5 and R 6 are provided. Further and air intake port 23 is provided on the left upper wall portion of the main body 21A, the exhaust space 24 of the last stage rotor R 6 in the final stage to exhaust, main exhaust pipe provided with a silencer 26 and a check valve 28 25 is connected . The check valve 28 has a forward direction toward the atmosphere. And according to the fourth embodiment of the present invention, provided such auxiliary pump 30 comprising a diaphragm pump to a 'secondary exhaust pipe 27 connected to the' exhaust space 24 of the intermediate stage 'is parallel with the check valve 28 are et al. That is, a sub exhaust pipe 27 ′ is connected to the main body 21 </ b> A separately from the main exhaust pipe 25. Further, a sub exhaust pipe 27 "may be connected corresponding to the upstream exhaust space 24".
[0013]
The fourth embodiment of the present invention is configured as described above. Next, this operation will be described. When the motor 22 is driven, the fluid of the pressure in the exhaust space that each of the rotors R 1 to R 6 has is transferred to the downstream side as described above. Thus, a vacuum chamber connected to the air intake port 23 is evacuated. Although the pressure in the intermediate-stage exhaust space 24 'is close to atmospheric pressure, the intermediate-stage exhaust space 24' is decompressed by driving the auxiliary pump 30 'in the embodiment of the present invention. Therefore, the burden of the exhaust action after the intermediate stage rotor R 5 is reduced. That is, the power consumption of the motor 22 than the prior art can be significantly small.
[0014]
Figure In the fifth embodiment shown in 5, the main body 21B of the dry vacuum pump 20B of the multistage roots-type, a pair of rotors R 1, respectively Re their Ru is rotated by the motor 22, R 2, R 3 , R 4 , R 5 and R 6 are provided. Further and air intake port 23 is provided on the left upper wall portion of the main body 21B, the exhaust space 24 of the last stage rotor R 6 in the final stage to exhaust, main exhaust pipe provided with a silencer 26 and a check valve 28 25 is connected . The check valve 28 has a forward direction toward the atmosphere. According to the fifth embodiment of the present invention, the auxiliary pump 30 'formed of a diaphragm pump is provided in parallel with the check valve 28 in the auxiliary exhaust pipe 27' connected to the intermediate exhaust space 24 '. are et al. That is, a sub exhaust pipe 27 ′ is connected to the main body 21 B separately from the main exhaust pipe 25.
[0015]
The fifth embodiment of the present invention is configured as described above. Next, this operation will be described. When the motor 22 is driven, as described above, each of the rotors R 1 to R 6 transfers the fluid of the pressure in the exhaust space that each of the rotors R 1 to R 6 has to the downstream side. Thus, a vacuum chamber connected to the air intake port 23 is evacuated. Exhaust space 24 of the intermediate stage 'pressure is is closer than upstream side to atmospheric pressure, if the auxiliary pump 30 according to a fifth embodiment of the present invention' by Ri is reduced to drive the. Therefore, the burden of exhaust action after the intermediate stage rotor R 4 is greatly reduced. That is, the power consumption of the motor 22 than the prior art can be significantly small.
[0016]
As mentioned above, although each embodiment of this invention was described, of course, this invention is not limited to these, A various deformation | transformation is possible based on the technical idea of this invention.
[0017]
For example, in the above embodiment, the rotors R 1 to R 6 that make a pair are all the same type and size, but instead of this, as shown in FIGS. The volume may be reduced. In this case, it is clear that the power consumption can be further reduced as compared with the above embodiment. The same effect can be obtained not only with a multi-stage roots type dry vacuum pump but also with a volume transfer type dry vacuum pump such as a screw type or a claw type.
[0018]
Furthermore, in the above embodiment, the diaphragm pump has been described as the auxiliary pump. However, the present invention is not limited to this, and other dry pumps such as a vane pump, a piston pump, and a scroll pump may be used.
[0019]
In the above embodiment, the auxiliary pumps 30 and 30 'are connected to the exhaust holes formed in the peripheral walls of the main bodies 21, 21', 21A, and 21B through the pipes. Only an auxiliary pump mechanism may be provided inside the main body.
[0020]
【The invention's effect】
As described above, according to the multi-stage positive displacement type dry vacuum pump of the present invention, it is possible than before to obtain significant energy saving effect.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a multistage roots type dry vacuum pump and related parts according to a first embodiment of the present invention.
FIG. 2 is a schematic diagram showing a multi-stage roots-type dry vacuum pump and related parts according to a second embodiment of the present invention.
FIG. 3 is a schematic diagram showing a multi-stage roots type dry vacuum pump and related parts according to a third embodiment of the present invention.
FIG. 4 is a schematic diagram showing a multi-stage roots-type dry vacuum pump and related parts according to a fourth embodiment of the present invention.
FIG. 5 is a schematic diagram showing a multistage roots type dry vacuum pump and related parts according to a fifth embodiment of the present invention.
FIG. 6 is a partially cutaway side view of a conventional multi-stage roots type dry vacuum pump.
7 is a cross-sectional view taken along the line [7]-[7] in FIG. 6;
8 is a cross-sectional view taken along the line [8]-[8] in FIG.
FIG. 9 is a schematic diagram showing a case where multistage rotors have the same size.
FIG. 10 is a schematic view when the size of the rotor is changed between the front stage, the intermediate stage, and the rear stage.
FIG. 11 is a schematic diagram showing a case where two rotors at the rear stage are further reduced in the front stage, the intermediate stage, and the rear stage as compared with FIG. 10;
12 is a characteristic diagram showing the relationship between the suction pressure and the exhaust speed of a multi-stage roots type dry vacuum pump when the rotors of FIGS. 9, 10 and 11 are used. FIG.
FIG. 13 is a chart showing a relationship between the suction pressure and power consumption.
[Explanation of symbols]
20, 20 ', 20 ", 20A, 20B ... dry vacuum pump,
22 ... motor,
24: exhaust space at the last stage,
24 ', 24 "... exhaust space in the middle stage,
25 ... main exhaust pipe ,
27, 27 '... sub exhaust pipe ,
R1, R2, R3, R4, R5, R6 ... rotor,
30, 30 '... auxiliary pump,

Claims (4)

最終段のロータが排気する最後段の排気空間に接続された主排気配管に大気への方向を順方向とする逆止弁を設けた多段式容積移送型ドライ真空ポンプにおいて、
大気圧に近い中間段の排気空間または前記最後段の排気空間のいずれかに連なる副排気配管を設け、該副排気配管に接続され前記ドライ真空ポンプの運転中に前記排気空間を排気する補助ポンプであって、排気速度が前記ドライ真空ポンプの1〜2%である補助ポンプを前記逆止弁に並列に設けたことを特徴とする多段式容積移送型ドライ真空ポンプ。
In the multistage positive displacement dry vacuum pump provided with a check valve whose forward direction is to the atmosphere on the main exhaust pipe connected to the last exhaust space exhausted by the last stage rotor,
Auxiliary pump for providing a sub exhaust pipe connected to either the intermediate stage exhaust space close to atmospheric pressure or the last stage exhaust space, and exhausting the exhaust space during operation of the dry vacuum pump connected to the sub exhaust pipe A multi-stage volumetric transfer type dry vacuum pump, wherein an auxiliary pump having an exhaust speed of 1 to 2% of the dry vacuum pump is provided in parallel with the check valve.
前記副排気配管を前記最後段の排気空間または前記主排気配管に接続して設けたことを特徴とする請求項1記載の多段式容積移送型ドライ真空ポンプ。  2. The multistage positive displacement dry vacuum pump according to claim 1, wherein the sub exhaust pipe is connected to the last exhaust space or the main exhaust pipe. 前記副排気配管の大気側の端部を前記主排気配管に設けられた前記逆止弁の大気側に接続したことを特徴とする請求項1または請求項2のいずれか1項記載の多段式容積移送型ドライ真空ポンプ。  The multistage system according to any one of claims 1 and 2, wherein an end portion on the atmosphere side of the auxiliary exhaust pipe is connected to an atmosphere side of the check valve provided in the main exhaust pipe. Volumetric dry vacuum pump. 前記多段式容積移送型ドライ真空ポンプの後段部の少なくとも1個のロータを前段部のロータより小さくして前記後段部の排気空間の容積を前記前段部の排気空間の容積より小さくしたことを特徴とする請求項1乃至請求項3のいずれか1項記載の多段式容積移送型ドライ真空ポンプ。  At least one rotor in the rear stage of the multistage positive displacement vacuum pump is made smaller than the rotor in the front stage so that the volume of the exhaust space in the rear stage is smaller than the volume of the exhaust space in the front stage. The multistage volumetric transfer type dry vacuum pump according to any one of claims 1 to 3.
JP2001327229A 2001-09-06 2001-10-25 Multistage positive displacement vacuum pump Expired - Lifetime JP4045362B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2001327229A JP4045362B2 (en) 2001-09-06 2001-10-25 Multistage positive displacement vacuum pump
KR1020047002269A KR100876318B1 (en) 2001-09-06 2002-09-05 Operation method of vacuum exhaust device and vacuum exhaust device
CNB028157117A CN100348865C (en) 2001-09-06 2002-09-05 Vacuum exhaust appts. and drive method of vacuum appts.
US10/486,189 US20040173312A1 (en) 2001-09-06 2002-09-05 Vacuum exhaust apparatus and drive method of vacuum apparatus
PCT/JP2002/009048 WO2003023229A1 (en) 2001-09-06 2002-09-05 Vacuum pumping system and method of operating vacuum pumping system
TW091120409A TWI267581B (en) 2001-09-06 2002-09-09 Vacuum exhaust device and method for operating such vacuum exhaust device
US12/070,265 US20080145238A1 (en) 2001-09-06 2008-02-15 Vacuum exhaust apparatus and drive method of vacuum exhaust apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-269742 2001-09-06
JP2001269742 2001-09-06
JP2001327229A JP4045362B2 (en) 2001-09-06 2001-10-25 Multistage positive displacement vacuum pump

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007229036A Division JP2008008302A (en) 2001-09-06 2007-09-04 Energy saving method of multistage system volume transfer type dry vacuum pump

Publications (2)

Publication Number Publication Date
JP2003155988A JP2003155988A (en) 2003-05-30
JP4045362B2 true JP4045362B2 (en) 2008-02-13

Family

ID=26621744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001327229A Expired - Lifetime JP4045362B2 (en) 2001-09-06 2001-10-25 Multistage positive displacement vacuum pump

Country Status (1)

Country Link
JP (1) JP4045362B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4745779B2 (en) * 2005-10-03 2011-08-10 神港精機株式会社 Vacuum equipment
JP4718302B2 (en) * 2005-11-04 2011-07-06 株式会社アルバック Vacuum exhaust device
JP2017531125A (en) * 2014-09-26 2017-10-19 アテリエ ビスク ソシエテ アノニムAtelier Busch SA Pumping system for generating vacuum and pumping method using the pumping system
JP2017031892A (en) * 2015-08-03 2017-02-09 アルバック機工株式会社 Vacuum evacuation device and its operation method

Also Published As

Publication number Publication date
JP2003155988A (en) 2003-05-30

Similar Documents

Publication Publication Date Title
KR100876318B1 (en) Operation method of vacuum exhaust device and vacuum exhaust device
US8702407B2 (en) Multistage roots vacuum pump having different tip radius and meshing clearance from inlet stage to exhaust stage
JP5147954B2 (en) Scroll wall structure for scroll compressor
WO2010029750A1 (en) Vacuum evacuation device
JP4180265B2 (en) Operation method of vacuum exhaust system
JP4365059B2 (en) Operation method of vacuum exhaust system
JPH0925876A (en) Quick exhausting device for vacuum chamber
JPH08232870A (en) Vacuum pump stand
JP2001207984A (en) Evacuation device
CN103842657B (en) Claw pumps
JP2005155540A (en) Multistage dry-sealed vacuum pump
KR102561996B1 (en) Pumping unit and application
JP2008088879A (en) Evacuation apparatus
JP4045362B2 (en) Multistage positive displacement vacuum pump
JP2005505697A (en) Multi-chamber apparatus for processing an object under vacuum, method for evacuating such multi-chamber apparatus, and evacuation system therefor
JP4718302B2 (en) Vacuum exhaust device
JP4879746B2 (en) Gate system for vacuum equipment
JP2013501886A (en) Vacuum system
JP6615132B2 (en) Vacuum pump system
WO2011039812A1 (en) Positive displacement dry vacuum pump
JP3992176B2 (en) Vacuum exhaust method and vacuum exhaust device
CN219366316U (en) Multistage Roots vacuum pump
KR102178373B1 (en) Vacuum pump housing for preventing overpressure and vacuum pump having the same
JP2008008302A (en) Energy saving method of multistage system volume transfer type dry vacuum pump
JPS61123777A (en) Vacuum pump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071031

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20071101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071102

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4045362

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131130

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term