WO2011039809A1 - 高炉ガスからの二酸化炭素分離回収方法 - Google Patents

高炉ガスからの二酸化炭素分離回収方法 Download PDF

Info

Publication number
WO2011039809A1
WO2011039809A1 PCT/JP2009/005045 JP2009005045W WO2011039809A1 WO 2011039809 A1 WO2011039809 A1 WO 2011039809A1 JP 2009005045 W JP2009005045 W JP 2009005045W WO 2011039809 A1 WO2011039809 A1 WO 2011039809A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon dioxide
blast furnace
gas
furnace gas
absorption
Prior art date
Application number
PCT/JP2009/005045
Other languages
English (en)
French (fr)
Inventor
冨崎真
Original Assignee
新日鉄エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鉄エンジニアリング株式会社 filed Critical 新日鉄エンジニアリング株式会社
Priority to PCT/JP2009/005045 priority Critical patent/WO2011039809A1/ja
Priority to KR1020117020139A priority patent/KR101292488B1/ko
Priority to CN2009801577314A priority patent/CN102341508B/zh
Publication of WO2011039809A1 publication Critical patent/WO2011039809A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B1/00Shaft or like vertical or substantially vertical furnaces
    • F27B1/10Details, accessories, or equipment peculiar to furnaces of these types
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/50Carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/06Making pig-iron in the blast furnace using top gas in the blast furnace process
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/002Evacuating and treating of exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/064Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle in combination with an industrial process, e.g. chemical, metallurgical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • F27D17/001Extraction of waste gases, collection of fumes and hoods used therefor
    • F27D17/002Details of the installations, e.g. fume conduits or seals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • F27D17/008Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases cleaning gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/025Other waste gases from metallurgy plants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/20Increasing the gas reduction potential of recycled exhaust gases
    • C21B2100/28Increasing the gas reduction potential of recycled exhaust gases by separation
    • C21B2100/282Increasing the gas reduction potential of recycled exhaust gases by separation of carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/60Process control or energy utilisation in the manufacture of iron or steel
    • C21B2100/62Energy conversion other than by heat exchange, e.g. by use of exhaust gas in energy production
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/60Process control or energy utilisation in the manufacture of iron or steel
    • C21B2100/66Heat exchange
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/32Direct CO2 mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/122Reduction of greenhouse gas [GHG] emissions by capturing or storing CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/32Technologies related to metal processing using renewable energy sources

Definitions

  • the present invention relates to a method for separating and recovering carbon dioxide from blast furnace gas, and to a method for efficiently separating and recovering carbon dioxide from blast furnace gas without supplying heat from the outside.
  • Patent Document 1 discloses a method for separating and recovering carbon dioxide from a by-product gas generated at an ironworks by a chemical absorption method. In this process, carbon dioxide is absorbed from the by-product gas by the chemical absorption liquid, and then the chemical absorption liquid is heated to separate the carbon dioxide. This is a carbon dioxide separation and recovery method for efficiently and inexpensively separating and recovering carbon dioxide discharged from a carbon generation source with a compact facility.
  • This patent document 1 describes a process in which a chemical absorption liquid absorbs carbon dioxide from a by-product gas (BFG, COG, LDG, etc.) generated at a steel mill, and then the chemical absorption liquid is heated to separate the carbon dioxide.
  • a chemical absorption liquid absorbs carbon dioxide from a by-product gas (BFG, COG, LDG, etc.) generated at a steel mill, and then the chemical absorption liquid is heated to separate the carbon dioxide.
  • BFG, COG, LDG, etc. by-product gas generated at a steel mill
  • the blast furnace gas discharged from the blast furnace has a pressure of 0.2 to 0.3 MPa after the dust is removed by the dust collector, it is used for power generation using TRT (Top pressure Recovery Turbine). ing. Thereafter, this blast furnace gas is used as a fuel gas for heating and power generation in the iron making process.
  • TRT Topic pressure Recovery Turbine
  • FIG. 10 is a system diagram of a soot gas turbine power generator using blast furnace gas as fuel.
  • Blast furnace gas A (BFG) is generated from a blast furnace (not shown) and is cleaned by various dust collectors including a dust catcher 1, a first venturi scrubber 2, a second venturi scrubber 3, and a dry dust collector 4. . Thereafter, the blast furnace gas (high pressure cleaning blast furnace gas) is depressurized to near atmospheric pressure by the blast furnace gas decompression means including the TRT 5 or the decompression valve 6 and the sun lens 7 and then stored in the gas holder 8.
  • BFG When BFG is used as a fuel for a gas turbine power generator, it is mixed with coke oven gas (COG) (not shown) to increase the amount of heat necessary for gas turbine combustion, and is compressed by a fuel gas compressor 9-1.
  • COG coke oven gas
  • the compressed fuel gas is mixed with the compressed air leaving the air compressor 9-5 and burned in the combustor 9-2.
  • the blast furnace gas burned in the combustor 9-2 drives the gas turbine 9-3 to become exhaust gas, which is supplied to the steam boiler 9-4 to heat the steam line, thereby generating superheated steam.
  • This superheated steam becomes a power source for the steam turbine 9-7.
  • Reference numeral 9-6 represents a generator
  • reference numeral 9-8 represents a condenser.
  • Patent Document 2 does not disclose any absorption / separation of carbon dioxide in gas. Therefore, the carbon dioxide contained in the exhaust gas from the gas turbine after blast furnace gas combustion cannot be processed.
  • An object of the present invention is to solve the above-mentioned problems of the prior art and improve the power generation efficiency, in a method of generating power by burning a cleaned blast furnace gas in a gas turbine power generator, In addition, a large amount of carbon dioxide can be separated and recovered without arranging new heating means to heat and regenerate the absorption liquid that has absorbed the large amount of carbon dioxide contained in the exhaust gas from the gas turbine after blast furnace gas combustion. Another object of the present invention is to provide a method for separating and recovering carbon dioxide from blast furnace gas.
  • the blast furnace gas taken out from the blast furnace is introduced into an absorption tower, and the carbon dioxide in the blast furnace gas is absorbed into the absorption liquid in the absorption tower, and the carbon dioxide A part of the blast furnace gas from which carbon dioxide has been removed is burned in a steel making process and used as a heat source, and another part of the blast furnace gas from which the carbon dioxide has been removed is introduced into a gas turbine power generator and burned to generate power.
  • the absorption liquid that has absorbed the carbon dioxide in the absorption tower is introduced into the regeneration tower, and the absorption liquid introduced into the regeneration tower is used as heat of exhaust gas from the gas turbine power generation device. Then, the carbon dioxide is removed from the absorption liquid by heating, and the absorption liquid from which the carbon dioxide has been removed is circulated from the regeneration tower to the absorption tower.
  • the blast furnace gas from the blast furnace is used as a fuel for heating in the iron making process, and also used for power generation as a fuel for the gas turbine power generation apparatus after carbon dioxide is removed in the absorption tower.
  • the exhaust gas from the gas turbine is used to regenerate the absorption liquid whose heat was used to remove carbon dioxide in the previous absorption tower. Therefore, carbon dioxide can be separated and recovered efficiently.
  • heat amount as fuel gas becomes high. Therefore, the amount of addition of a flame retardant such as COG can be reduced.
  • the absorption tower may be installed before the blast furnace gas decompression means, and the blast furnace gas may be introduced into the absorption tower in a high pressure state.
  • the blast furnace gas in the absorption tower, can be set to a high pressure before depressurization, and the absorption performance of carbon dioxide into the absorption liquid can be maintained high.
  • the exhaust gas of the gas turbine power generator is introduced into a sub-absorption tower, and the carbon dioxide in the exhaust gas is absorbed by the absorption liquid in the sub-absorption tower.
  • the carbon dioxide contained in the blast furnace gas from the blast furnace is absorbed by the absorption tower described above, and carbon dioxide generated by the subsequent combustion of the blast furnace gas in the gas turbine power generator is sub-absorbed. It can be absorbed by the tower and can be efficiently operated by circulating the absorption liquid while increasing the amount of carbon dioxide separated and recovered.
  • a steam boiler that generates high-pressure steam using the heat of the exhaust gas, a steam turbine that uses high-pressure steam from the steam boiler as power for the gas turbine power generation device, and used steam from the steam turbine to condensate An apparatus having a condenser to be used may be used to heat part of the heat of the exhaust gas of the gas turbine and the heat of the condenser for heating the absorption liquid.
  • the condensate heat that has been discarded by the gas turbine power generation device is used for heating the absorption liquid, the efficiency of using the heat generated by the combustion of the blast furnace gas in the gas turbine power generation device is improved.
  • a new heating means for heating and regenerating the absorbing liquid is not provided, and the blast furnace gas is A large amount of carbon dioxide contained in the exhaust gas from the gas turbine after blast furnace gas combustion can be separated and recovered.
  • FIG. 1 is a block diagram showing a first embodiment of the present invention.
  • FIG. 2 is a block diagram showing a second embodiment of the present invention.
  • FIG. 3 is a block diagram showing a third embodiment of the present invention.
  • FIG. 4 is a block diagram showing a fourth embodiment of the present invention.
  • FIG. 5 is a block diagram showing a fifth embodiment of the present invention.
  • FIG. 6 is a block diagram showing a sixth embodiment of the present invention.
  • FIG. 7 is a block diagram showing a seventh embodiment of the present invention.
  • FIG. 8 is a block diagram showing the eighth embodiment.
  • FIG. 9 is a block diagram showing a ninth embodiment of the present invention.
  • FIG. 10 is a block diagram showing a conventional example.
  • FIG. 1 shows a first embodiment of the present invention.
  • 5 is a TRT (furnace top pressure recovery turbine)
  • 6 is a pressure reducing valve
  • 7 is a silencer
  • the pressure reducing means for the blast furnace gas is configured as described above.
  • 8 is a gas holder
  • 9-1 is a fuel gas compressor
  • 9-2 is a combustor
  • 9-3 is a gas turbine
  • 9-4A ... a heat exchanger for heating carbon dioxide absorption liquid
  • 9-5 is an air compressor
  • 9 -6 indicates each generator.
  • FIG. 9 includes a fuel gas compressor 9-1, a combustor 9-2, a gas turbine 9-3, a heat exchanger 9-4A for heating carbon dioxide absorption liquid, an air compressor 9-5, and a generator. 9-6.
  • Reference numeral 10 denotes an absorption tower, and 12 denotes a regeneration tower.
  • an arrow B is a high-pressure clean blast furnace gas cleaned by various dust collectors (not shown) described in the above-mentioned section of the prior art, a part is branched to the line C, and the other part Is discharged to arrow G via lines E and F.
  • the flow indicated by arrows L and M indicates the circulation flow of the carbon dioxide absorption liquid.
  • Arrow K is the separated carbon dioxide. In the following embodiments, the same symbols are used for the same elements to avoid duplication of explanation.
  • a carbon dioxide separation and absorption method applied to the present invention for example, there is a chemical absorption method using a chemical absorption liquid such as amines.
  • the high-pressure clean blast furnace gas B taken out from the blast furnace and purified is introduced into the absorption tower 10 installed in the preceding stage of the blast furnace gas decompression means.
  • the carbon dioxide in the blast furnace gas is absorbed by the chemical absorption liquid by bringing the blast furnace gas into contact with a chemical absorption liquid that is a carbon dioxide absorption medium at approximately 30 ° C. to 50 ° C.
  • a part of the blast furnace gas from which carbon dioxide has been removed passes through the gas holder 8 and is conveyed to, for example, a coke oven or a heating furnace (not shown) and burned in various iron making processes to be used as a heat source.
  • the other part of the blast furnace gas from which carbon dioxide has been removed is compressed by the fuel gas compressor 9-1.
  • the compressed fuel gas is mixed and burned in the combustor 9-2 with the compressed air exiting the air compressor 9-5 to drive the gas turbine 9-3, and the exhaust gas is used for heating the carbon dioxide absorption liquid. It is discharged into the atmosphere from the chimney via the heat exchanger 9-4A.
  • the absorption liquid having absorbed carbon dioxide in the absorption tower 10 is preliminarily heated by exchanging heat with the absorption liquid M circulated from the regeneration tower to the absorption tower, and then introduced into the regeneration tower 12. It is sprayed from the nozzle located in the upper part of the tower.
  • the absorption liquid left in the bottom of the regeneration tower 12 after the carbon dioxide is removed is continuously extracted from the regeneration tower 12, and the heat exchanger 9-4A for heating the carbon dioxide absorption liquid.
  • the heat exchanger 9-4A contacts the exhaust gas of the gas turbine 9-3, the absorption liquid extracted from the regeneration tower 12 is heated to about 120 ° C. by the heat of the exhaust gas in the heat exchanger 9-4A.
  • the absorption liquid returned into the regeneration tower 12 is vaporized in the regeneration tower 12 and comes into contact with the absorption liquid sprayed from the upper part of the tower to absorb the same. Heat the solution.
  • the heat of the exhaust gas from the gas turbine power generation device 9 is used to regenerate the absorbent used for carbon dioxide removal in the previous absorption tower. Accordingly, carbon dioxide can be separated and recovered efficiently and a large amount of blast furnace gas can be processed without providing new heating means. Since the exhaust gas total heat quantity from the gas turbine 9-3 is all used for heating the carbon dioxide absorption liquid in the heat exchanger 9-4A for heating the carbon oxide absorption liquid, the steam turbine of FIG. It is not necessary to install 9-7, and it is possible to effectively use energy with a simple equipment configuration. Further, since carbon dioxide, which is an incombustible component in the blast furnace gas, is removed, the amount of heat as fuel gas is increased, and the amount of addition of a fuel increasing agent such as COG can be reduced.
  • a fuel increasing agent such as COG
  • the carbon dioxide separated and recovered is, for example, compressed and injected into the ground in a supercritical state, so that carbon dioxide discharged into the atmosphere can be greatly reduced.
  • the blast furnace gas is purified and the absorbing solution does not deteriorate.
  • the absorption tower 10 is installed in the front stage of the blast furnace gas decompression means, and the blast furnace gas is introduced into the absorption tower 10 in a high pressure state. Therefore, in the present invention, in the absorption tower, the blast furnace gas can be set to a high pressure before depressurization, and the absorption performance of carbon dioxide into the absorption liquid can be maintained high.
  • FIG. 2 shows a second embodiment of the present invention.
  • the structural difference of the present embodiment from the first embodiment is that the absorption tower 10 is installed in the subsequent stage of the blast furnace gas pressure reducing means (furnace top pressure recovery turbine 5 and pressure reducing valve 6). It is.
  • the other configuration is the same as that shown in FIG.
  • the effect similar to FIG. 1 is acquired also by such a structure of FIG.
  • the absorption tower 10 is the latter stage of the blast furnace gas decompression means, the absorption performance does not reach that of the first embodiment.
  • FIG. 3 shows a third embodiment of the present invention.
  • the configuration is that a sub-absorption tower 11 is newly provided after the heat exchanger 9-4A for heating the carbon dioxide absorption liquid.
  • the other configuration is the same as that shown in FIG.
  • the exhaust gas from the gas turbine power generation device 9 is discharged out of the system after carbon dioxide is removed from the exhaust gas by contacting the absorption liquid in the sub-absorption tower 11.
  • the absorption liquid that has absorbed carbon dioxide in the sub-absorption tower 11 is introduced into the regeneration tower 12 together with the absorption liquid that has absorbed carbon dioxide in the absorption tower 10, and is sprayed from nozzles arranged in the upper part of the tower.
  • the subsequent carbon dioxide removal process is the same as in the first embodiment.
  • FIG. 4 shows a fourth embodiment of the present invention.
  • the exhaust gas N of the iron making process is introduced into the heat exchanger 9-4A for heating the carbon dioxide absorption liquid and merged with the exhaust gas of the gas turbine power generation device 9. Is a point. Since the other points are the same as those in FIG.
  • the exhaust gas L of the iron making process comes into contact with the absorbing liquid in the sub-absorption tower 11 together with the exhaust gas of the gas turbine power generation device 9, and after carbon dioxide is removed from the exhaust gas, it is discharged out of the system. Further, by mixing the exhaust gas from the gas turbine and the exhaust gas from the iron making process, the gas temperature in the heat exchanger for heating the carbon dioxide absorption liquid is lowered. Therefore, it can prevent that a carbon dioxide absorption liquid degrades by overheating.
  • FIG. 5 shows a fifth embodiment of the present invention.
  • the configuration is such that the absorption tower 10 is installed at the subsequent stage of the blast furnace gas decompression means.
  • the other configuration is the same as that shown in FIG.
  • Such a configuration of FIG. 5 can provide the same effect as that of FIG.
  • the absorption tower 10 is the latter stage of the blast furnace gas decompression means, the absorption performance does not reach that of the first embodiment.
  • FIG. 6 shows a sixth embodiment of the present invention.
  • 9-4 is a steam boiler
  • 9-7 is a steam turbine
  • 9-8 is a condenser for condensing used steam from the steam turbine 9-7.
  • the steam boiler 9-4 two heat exchange pipes 9-4B and 9-4C are provided.
  • One heat exchange line 9-4B is for generating high-pressure steam I and driving the steam turbine 9-7 to generate electric power by the heat of the exhaust gas of the gas turbine 9-3, and the other heat
  • the exchange line 9-4C heats the absorbing liquid left in a predetermined amount at the bottom of the regeneration tower 12.
  • the absorption liquid that has absorbed carbon dioxide in the absorption tower 10 is heat-exchanged with the absorption liquid M circulated from the regeneration tower 12 to the absorption tower 10 and preliminarily heated, and then introduced into the condenser 9-8. .
  • the absorbing liquid introduced into the condenser 9-8 is heated by exchanging heat with the used steam, while the used steam is condensed by exchanging heat with the absorbing liquid.
  • the absorbing liquid that has passed through the condenser 9-8 is introduced into the regeneration tower 12 and sprayed from nozzles disposed in the upper part of the tower.
  • the method of applying the method for separating and recovering carbon dioxide from blast furnace gas having such a configuration is preferably carried out when the amount of heat required for heating the absorption liquid is significantly smaller than the amount of heat of the exhaust gas of the gas turbine 9-7. That is, as the gas turbine power generation device 9, a steam boiler 9-4 that generates high-pressure steam using a part of the heat of the exhaust gas from the gas turbine 9-3, and the high-pressure steam from this steam boiler is used as the gas turbine power generation device 9. A device having a steam turbine 9-7 used as power for the steam and a condenser 9-8 for condensing the used steam from the steam turbine 9-7 is used, and the gas turbine 9- is used for heating the absorption liquid.
  • the gas turbine power generator 9 uses the blast furnace gas. The utilization efficiency of the heat generated by the combustion is improved.
  • FIG. 7 shows a seventh embodiment of the present invention.
  • the sub-absorption tower 11 is provided at the rear stage of the heat exchanger 9-4A for heating the carbon dioxide absorption liquid.
  • the other configuration is the same as that shown in FIG.
  • the exhaust gas from the gas turbine power generation device 9 comes into contact with the absorbing solution in the sub-absorption tower 11, and after carbon dioxide is removed from the exhaust gas, it is discharged out of the system.
  • the absorption liquid that has absorbed carbon dioxide in the sub-absorption tower 11 is introduced into the regeneration tower 12 together with the absorption liquid that has absorbed carbon dioxide in the absorption tower 10, and is sprayed from nozzles arranged in the upper part of the tower.
  • the subsequent carbon dioxide removal process is the same as in the first embodiment.
  • FIG. 8 shows an eighth embodiment of the present invention.
  • the structure is the structure demonstrated in FIG. 6, and the absorption tower 10 is arrange
  • the other configuration is the same as that shown in FIG.
  • FIG. 9 shows a ninth embodiment of the present invention.
  • the configuration is that, in addition to the configuration described in FIG. 8, a sub-absorption tower 11 is newly provided after the heat exchanger 9-4A for heating the carbon dioxide absorption liquid.
  • the other configuration is the same as that shown in FIG.
  • the method for separating and recovering carbon dioxide from blast furnace gas includes a step of generating power by burning purified blast furnace gas in a gas turbine power generator, and exhaust gas from the gas turbine in and after blast furnace gas combustion. It can be used as a process for heating and regenerating an absorbing solution that has absorbed a large amount of carbon dioxide contained therein.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Environmental & Geological Engineering (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Gas Separation By Absorption (AREA)
  • Treating Waste Gases (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

 高炉から取り出された高炉ガスを吸収塔に導入し、前記吸収塔内で吸収液に前記高炉ガス中の二酸化炭素を吸収させ、前記二酸化炭素が除去された前記高炉ガスの一部を製鉄プロセスで燃焼させて熱源として利用し、前記二酸化炭素が除去された前記高炉ガスの他の一部はガスタービン発電装置に導入して燃焼させて発電を行う燃料として利用し、前記吸収塔で前記二酸化炭素を吸収した前記吸収液を再生塔へ導入し、前記再生塔内に導入された前記吸収液を前記ガスタービン発電装置の排ガスの熱を利用して加熱することによって、前記吸収液から前記二酸化炭素を除去し、前記二酸化炭素が除去された前記吸収液を前記再生塔から前記吸収塔へと循環させる高炉ガスからの二酸化炭素分離回収方法。

Description

高炉ガスからの二酸化炭素分離回収方法
 本発明は、高炉ガスからの二酸化炭素分離回収方法に関し、外部から熱を供給することなく高炉ガスから効率よく二酸化炭素を分離回収する方法に関する。
 地球温暖化を防止するため、二酸化炭素の排出削減が重要な課題となっている。そこで、二酸化炭素の分離回収方法については、従来から種々の提案がなされている。
 例えば、特許文献1には、製鉄所で発生する副生ガスなどから化学吸収法にて二酸化炭素を分離回収する方法が開示されている。この方法は、副生ガスから化学吸収液により二酸化炭素を吸収後、化学吸収液を加熱し二酸化炭素を分離させるプロセスにおいて、製鉄所で発生する低品位排熱を活用することにより、大規模二酸化炭素発生源から排出される二酸化炭素を、コンパクトな設備で効率的かつ安価に分離回収する二酸化炭素の分離回収方法である。
 この特許文献1は、製鉄所で発生する副生ガス(BFG、COG、LDGなど)から化学吸収液で二酸化炭素を吸収後、化学吸収液を加熱し二酸化炭素を分離させるプロセスにおいて、製鉄所で発生する例えば、焼結製品クーラーからの排熱(約350℃)、焼結主排気ガス(約280℃)、熱風炉排ガス(約230℃)、焼結主排気ガス(約180℃)、高炉スラグの水砕に用いた排水(約90℃)等の低品位排熱を活用することが開示されている。
 高炉から排出される高炉ガスは、集塵機によりダストを除去した後において0.2~0.3MPaの圧力を有するため、TRT(炉頂圧力回収タービン:Top pressure Recovery Turbine)を用いて発電に利用されている。その後、この高炉ガスは、製鉄プロセスにおける加熱用および発電用の燃料ガスとして使用されている。
 近年、発電効率を向上させるために、高炉ガスをガスタービン発電装置で燃焼させることにより発電を行う方法が採用されている。このような方法は、例えば特許文献2に開示されている。
 図10を用いて、従来技術の概要を説明する。図10は高炉ガスを燃料とする焚ガスタービン発電装置の系統図である。高炉ガスA(BFG)は、図示しない高炉から発生したものであり、ダストキャッチャ1、第1ベンチュリースクラバ2、第2ベンチュリースクラバ3、乾式集塵装置4からなる各種集塵装置により清浄化される。その後、高炉ガス(高圧洗浄高炉ガス)はTRT5または減圧弁6およびサンレンサー7からなる高炉ガスの減圧手段により、大気圧近くまで降圧された後、ガスホルダ8に貯えられる。BFGをガスタービン発電装置用燃料として使用するときは図示していないコークス炉ガス(COG)等と混合されてガスタービン燃焼に必要な熱量まで増燃され、燃料ガス圧縮機9-1によって圧縮される。圧縮された燃料ガスは、空気圧縮機9-5を出た圧縮空気と燃焼器9-2内で混合され燃焼される。燃焼器9-2で燃焼された高炉ガスはガスタービン9-3を駆動し排気ガスとなって、蒸気ボイラ9-4に供給され蒸気のラインを加熱することにより過熱蒸気を生成する。この過熱蒸気は蒸気タービン9-7の動力源となる。なお符号9-6は発電機、符号9-8は復水器をそれぞれ示す。
特開2004-292298号公報 特開平9-79046号公報
 しかし、上記特許文献1のような化学吸収液で二酸化炭素を吸収後、化学吸収液を加熱し二酸化炭素を分離させるプロセスに製鉄所で発生する低品位排熱を利用または活用する技術では、以下の課題を有しており実用技術として利用することができない。
 高炉から排出される高炉ガスの排出量は、極めて多量であるため、その処理量が多量となる。よって、上記のプロセスにおいて、多量の二酸化炭素を吸収した吸収液を加熱・再生するために、製鉄所で発生する低品位排熱を利用する方法では、その加熱エネルギが著しく不足する。よって、多量の高炉ガスを処理するには、吸収液を加熱・再生するための新たな加熱手段を配置する必要があり、実用技術としての実現性が難しい。
 一方、特許文献2では、ガス中の二酸化炭素の吸収・分離については、一切開示がない。よって、高炉ガス燃焼後のガスタービンからの排ガス中に含まれている二酸化炭素を処理することができない。
 本発明の目的は、前述のような従来技術の課題を解決し、発電効率を向上させるため、清浄化された高炉ガスをガスタービン発電装置で燃焼させることにより発電を行う方法において、高炉ガス中および高炉ガス燃焼後のガスタービンからの排ガス中に含まれている多量の二酸化炭素を吸収した吸収液を加熱・再生するための新たな加熱手段を配置することなく、多量の二酸化炭素を分離回収することができる高炉ガスからの二酸化炭素分離回収方法を提供することにある。
 本発明の高炉ガスからの二酸化炭素分離回収方法は、高炉から取り出された高炉ガスを吸収塔に導入し、前記吸収塔内で吸収液に前記高炉ガス中の二酸化炭素を吸収させ、前記二酸化炭素が除去された前記高炉ガスの一部を製鉄プロセスで燃焼させて熱源として利用し、前記二酸化炭素が除去された前記高炉ガスの他の一部はガスタービン発電装置に導入して燃焼させて発電を行う燃料として利用し、前記吸収塔で前記二酸化炭素を吸収した前記吸収液を再生塔へ導入し、前記再生塔内に導入された前記吸収液を前記ガスタービン発電装置の排ガスの熱を利用して加熱することによって、前記吸収液から前記二酸化炭素を除去し、前記二酸化炭素が除去された前記吸収液を前記再生塔から前記吸収塔へと循環させる。
 このような本発明においては、高炉からの高炉ガスは吸収塔において二酸化炭素が除去されたうえ、製鉄プロセスの加熱用燃料として利用されるとともに、ガスタービン発電装置の燃料として発電に利用される。更に、ガスタービンからの排ガスは、その熱を先の吸収塔で二酸化炭素除去に用いた吸収液の再生に利用される。従って、二酸化炭素の分離回収を効率よく行うことができる。また、高炉ガス中の不燃成分である二酸化炭素を除去するため、燃料ガスとしての熱量が高くなる。そのため、COG等の増燃剤の添加量を削減することができる。
 本発明の高炉ガスからの二酸化炭素分離回収方法において、前記吸収塔を前記高炉ガスの減圧手段の前段に設置し、前記高炉ガスを高圧の状態で前記吸収塔に導入してもよい。
 このような本発明では、吸収塔においては高炉ガスを減圧前の高い圧力とすることができ、吸収液への二酸化炭素の吸収性能を高く維持することができる。
 本発明の高炉ガスからの二酸化炭素分離回収方法において、前記ガスタービン発電装置の排ガスを副吸収塔に導入し、前記副吸収塔内で前記吸収液に前記排ガス中の二酸化炭素を吸収させてもよい。
 このような本発明においては、高炉からの高炉ガスに含まれる二酸化炭素は前述した吸収塔で吸収されるとともに、その後にガスタービン発電装置で高炉ガスが燃焼することで発生する二酸化炭素は副吸収塔で吸収することができ、二酸化炭素の分離回収量を増加させつつ吸収液の循環による効率的な運用を行うことができる。
 本発明の高炉ガスからの二酸化炭素分離回収方法において、前記吸収液の加熱に必要な熱量が前記ガスタービンの排ガスの持つ熱量と比較して著しく少ない場合は、前記ガスタービン発電装置として、ガスタービンの排ガスの熱を利用して高圧蒸気を発生する蒸気ボイラと、この蒸気ボイラからの高圧蒸気を前記ガスタービン発電装置の動力として利用する蒸気タービンと、この蒸気タービンからの利用済蒸気を復水する復水器とを有する装置を用い、前記ガスタービンの排ガスの熱の一部と前記復水器の熱を前記吸収液の加熱に利用してもよい。
 このような本発明においては、ガスタービン発電装置の従来捨てていた復水熱を吸収液の加熱に利用するので、ガスタービン発電装置で高炉ガスの燃焼により発生する熱の利用効率が向上する。
 この発明によれば、清浄化された高炉ガスをガスタービン発電装置で燃焼させることにより発電を行う方法において、吸収液を加熱・再生するための新たな加熱手段を配置することなく、高炉ガス中および高炉ガス燃焼後のガスタービンからの排ガス中に含まれている多量の二酸化炭素を分離回収することができる。
図1は、本発明の第1実施形態を示すブロック図である。 図2は、本発明の第2実施形態を示すブロック図である。 図3は、本発明の第3実施形態を示すブロック図である。 図4は、本発明の第4実施形態を示すブロック図である。 図5は、本発明の第5実施形態を示すブロック図である。 図6は、本発明の第6実施形態を示すブロック図である。 図7は、本発明の第7実施形態を示すブロック図である。 図8は、第8実施形態を示すブロック図である。 図9は、本発明の第9実施形態を示すブロック図である。 図10は、従来例を示すブロック図である。
 以下、本発明の好適な実施形態について図面を用いて詳細に説明する。
[第1実施形態]
 図1には、本発明の第1実施形態が示されている。
 図1において、5はTRT(炉頂圧回収タービン)、6は減圧弁、7はサイレンサであり、以上により高炉ガスの減圧手段が構成されている。
 8はガスホルダ、9-1は燃料ガス圧縮機、9-2は燃焼器、9-3はガスタービン、9-4A…二酸化炭素吸収液加熱用熱交換器、9-5は空気圧縮機、9-6は発電機を各々示す。
 9のガスタービン発電装置は、燃料ガス圧縮機9-1、燃焼器9-2、ガスタービン9-3、二酸化炭素吸収液加熱用熱交換器9-4A、空気圧縮機9-5、発電機9-6で構成されている。また、10は吸収塔、12は再生塔を示す。
 図中、矢印Bは、上記の従来技術の項で説明した各種集塵装置(図示省略)により清浄化された高圧清浄高炉ガスであり、一部はラインCへと分岐され、他の一部はラインE,Fを経て矢印Gへ排出される。一方、矢印L,Mで示す流れは、二酸化炭素の吸収液の循環流れを示す。矢印Kは分離された二酸化炭素である。
 なお、以後の各実施形態において、同じ要素については同じ記号を用いることにより説明の重複を避ける。
 本発明に適用する二酸化炭素の分離吸収法としては、例えばアミン類などの化学吸収液を用いる化学吸収法がある。高炉から取り出され清浄化された高圧清浄高炉ガスBは、高炉ガスの減圧手段の前段に設置されている吸収塔10に導入される。該吸収塔10内では、該高炉ガスを、二酸化炭素吸収媒体である化学吸収液に概ね30℃~50℃で接触させることにより、化学吸収液に高炉ガス中の二酸化炭素が吸収される。
 その後記二酸化炭素が除去された高炉ガスの一部は、ガスホルダ8を経て、例えば、図示していないコークス炉、加熱炉などに搬送され各種の製鉄プロセスで燃焼されて熱源として利用される。
 他方、二酸化炭素が除去された高炉ガスの他の一部は、燃料ガス圧縮機9-1によって圧縮される。圧縮された燃料ガスは、空気圧縮機9-5を出た圧縮空気と燃焼器9-2内で混合・燃焼して、ガスタービン9-3を駆動し、排気ガスは二酸化炭素吸収液加熱用熱交換器9-4Aを経て煙突から大気中に放出される。
 この際、吸収塔10で二酸化炭素を吸収した吸収液は、再生塔から吸収塔へ循環される吸収液Mと熱交換することにより予備的に加熱された後、再生塔12内に導入され、塔内上部に配置されたノズルから散布される。
 一方、二酸化炭素が除去された後に再生塔12内底部に所定量残置された吸収液は、その一部が継続的に再生塔12から抽出され、二酸化炭素吸収液加熱用熱交換器9-4Aを通じて再生塔12に戻される。熱交換器9-4Aはガスタービン9-3の排ガスに接触するので、再生塔12から抽出された吸収液は、熱交換器9-4Aにおいて排ガスの熱で120℃前後に加熱される。
 ガスタービン9-3の排ガスの熱で加熱された後、再生塔12内に戻された吸収液は、再生塔12内で気化し、塔内上部から散布される吸収液と接触して同吸収液を加熱する。二酸化炭素を吸収した吸収液が加熱されると、加熱された吸収液から二酸化炭素が分離する。分離された二酸化炭素Kは再生塔12から排出される。一方、二酸化炭素を除去された吸収液は、再生塔12内底部に落下し、所定量を残して再生塔12から吸収塔10に循環される。
 上述の通り、ガスタービン発電装置9からの排ガスは、その熱が先の吸収塔で二酸化炭素除去に用いた吸収液の再生に利用される。従って、新たな加熱手段を設けることなく、二酸化炭素の分離回収を効率よく、且つ多量の高炉ガスの処理が可能となる。
 ガスタービン9-3からの排ガス全熱量は、酸化炭素吸収液加熱用熱交換器9-4Aにて全て、二酸化炭素吸収液加熱用として使用されるため、従来のように、図10の蒸気タービン9-7を設置する必要がなく、簡素な設備構成でエネルギを有効に活用することが可能である。また、高炉ガス中の不燃成分である二酸化炭素を除去するため、燃料ガスとしての熱量が高くなり、COG等の増燃剤の添加量を削減することができる。
 また、上述の通り、分離回収された二酸化炭素は、例えば、圧縮処理され超臨界状態で地中に圧入されるので、大気中に排出される二酸化炭素を大幅に削減することができる。
 さらに、吸収塔10の配設位置を高炉ガスの各種集塵装置の後段にしているため、該高炉ガスは、清浄化されたものであり吸収液が劣化することがない。
 さらに、吸収塔10を高炉ガスの減圧手段の前段に設置し、高炉ガスを高圧の状態で吸収塔10に導入している。よって、本発明では、吸収塔において、高炉ガスを減圧前の高い圧力とすることができ、吸収液への二酸化炭素の吸収性能を高く維持することができる。
[第2実施形態]
 図2には本発明の第2実施形態が示されている。
 図2において、本実施形態の第1実施形態に対するその構成上の相違点は、吸収塔10を高炉ガスの減圧手段(炉頂圧回収タービン5および減圧弁6)の後段に設置していることである。その他の構成は、図1と同じ構成であるので、重複する説明は省略する。
 このような、図2の構成によっても、図1と同様の効果が得られる。但し、吸収塔10を高炉ガスの減圧手段の後段になるため、吸収性能は第1実施形態にはおよばない。
[第3実施形態]
 図3には本発明の第3実施形態が示されている。
 図3において、その構成は図1で説明した構成に加え、二酸化炭素吸収液加熱用熱交換器9-4Aの後段に、新たに副吸収塔11を設けた点である。その他の構成は、図1と同じ構成であるので、重複する説明は省略する。
 ガスタービン発電装置9の排ガスは、副吸収塔11にて、吸収液と接触することにより排ガス中から二酸化炭素が除去された後、系外に排出される。
 一方、副吸収塔11において二酸化炭素を吸収した吸収液は、吸収塔10で二酸化炭素を吸収した吸収液とともに再生塔12内に導入され、塔内上部に配置されたノズルから散布される。以降の二酸化炭素除去のプロセスは第1実施形態と同様である。
[第4実施形態]
 図4には、本発明の第4実施形態が示されている。
 図4において、その構成は図3で説明した構成に加え、製鉄プロセスの排ガスNを二酸化炭素吸収液加熱用熱交換器9-4Aに導入して、ガスタービン発電装置9の排ガスと合流させた点である。その他の点は図3と同じ構成であるので、重複する説明は省略する。
 製鉄プロセスの排ガスLは、ガスタービン発電装置9の排ガスとともに副吸収塔11にて吸収液と接触することにより、排ガス中から、二酸化炭素が除去された後、系外に排出される。また、ガスタービンからの排ガスと製鉄プロセスからの排ガスとを混合することにより、二酸化炭素吸収液加熱用熱交換器でのガス温度が下がる。そのため、二酸化炭素吸収液が過熱されることにより劣化することを防止できる。
[第5実施形態]
 図5には本発明の第5実施形態が示されている。
 図5において、その構成は吸収塔10を高炉ガスの減圧手段の後段に設置している。その他の構成は、図3と同じ構成であるので、重複する説明は省略する。
 このような、図5の構成によっても、図3と同様の効果が得られる。但し、吸収塔10を高炉ガスの減圧手段の後段になるため、吸収性能は第1実施形態にはおよばない。
[第6実施形態]
 図6には本発明の第6実施形態が示されている。
 図6において、9-4は蒸気ボイラ、9-7は蒸気タービン、9-8は蒸気タービン9-7からの利用済みの蒸気を復水する復水器を示す。蒸気ボイラ9-4内には、二つの熱交換管路9-4B、9-4Cが設けられている。ガスタービン9-3の排ガスの熱で、一方の熱交換管路9-4Bは、高圧蒸気Iを発生させ、蒸気タービン9-7を駆動させ、発電を行うためのものであり、他方の熱交換管路9-4Cは、再生塔12内底部に所定量残置された吸収液を加熱するものである。
 吸収塔10で二酸化炭素を吸収した吸収液は、再生塔12から吸収塔10へ循環される吸収液Mと熱交換されて予備的に加熱された後、復水器9-8に導入される。復水器9-8に導入された吸収液は利用済みの蒸気と熱交換することにより加熱される一方、利用済みの蒸気は吸収液と熱交換することにより復水される。復水器9-8を経た吸収液は、再生塔12内に導入され、塔内上部に配置されたノズルから散布される。
 一方、二酸化炭素を除去された後に再生塔12内底部に所定量残置された吸収液は、その一部が継続的に再生塔12から抽出され、熱交換管路9-4Cを通じて再生塔12に戻される。熱交換管路9-4Cはガスタービン9-3の排ガスに接触するので、再生塔12から抽出された吸収液は、熱交換管路9-4Cにおいて排ガスの熱で加熱される。以降の二酸化炭素除去のプロセスは第1実施形態と同様である。
 かかる構成を有する高炉ガスからの二酸化炭素分離回収方法の適用方法は、吸収液の加熱に必要な熱量がガスタービン9-7の排ガスの持つ熱量と比較して著しく少ない場合に実施すると好ましい。
 即ち、ガスタービン発電装置9として、ガスタービン9-3の排ガスの熱の一部を利用して高圧蒸気を発生する蒸気ボイラ9-4と、この蒸気ボイラからの高圧蒸気をガスタービン発電装置9の動力として利用する蒸気タービン9-7と、この蒸気タービン9-7からの利用済蒸気を復水する復水器9-8とを有する装置を用い、吸収液の加熱にはガスタービン9-3の排ガスの熱の一部と復水器9-8での復水熱を利用することが望ましい。
 このような本発明においては、ガスタービン発電装置9を構成する復水器9-8における従来捨無駄にしていた復水熱を吸収液の加熱に利用するので、ガスタービン発電装置9で高炉ガスの燃焼により発生する熱の利用効率が向上する。
[第7実施形態]
 図7には本発明の第7実施形態が示されている。
 図7において、その構成は図6で説明した構成に加え、二酸化炭素吸収液加熱用熱交換器9-4Aの後段に、副吸収塔11を設けている。その他の構成は、図1と同じ構成であるので、重複する説明は省略する。
 ガスタービン発電装置9の排ガスは、副吸収塔11にて吸収液と接触し、排ガス中から、二酸化炭素が除去された後、系外に排出される。
 一方、副吸収塔11において二酸化炭素を吸収した吸収液は、吸収塔10で二酸化炭素を吸収した吸収液とともに再生塔12内に導入され、塔内上部に配置されたノズルから散布される。以降の二酸化炭素除去のプロセスは第1実施形態と同様である。
[第8実施形態]
 図8には本発明の第8実施形態が示されている。
 図8において、その構成は、図6で説明した構成において、吸収塔10を高炉ガスの減圧手段の後段に配設している。
 その他の構成は、図1と同じ構成であるので、重複する説明は省略する。
[第9実施形態]
 図9には本発明の第9実施形態が示されている。
 図9において、その構成は、図8で説明した構成に加え、二酸化炭素吸収液加熱用熱交換器9-4Aの後段に、新たに副吸収塔11を設けた点である。
 その他の構成は、図8と同じ構成であるので、重複する説明は省略する。
 本発明の高炉ガスからの二酸化炭素分離回収方法は、清浄化された高炉ガスをガスタービン発電装置で燃焼させることにより発電を行う工程、および高炉ガス中および高炉ガス燃焼後のガスタービンからの排ガス中に含まれている多量の二酸化炭素を吸収した吸収液を加熱・再生する工程として利用できる。
  1…ダストキャッチャ
  2…第1ベンチュリースクラバ
  3…第2ベンチュリースクラバ
  4…乾式集塵装置
  5…TRT(炉頂圧回収タービン)
  6…減圧弁
  7…サイレンサ
  8…ガスホルダ
  9…ガスタービン発電装置
  9-1…燃料ガス圧縮機
  9-2…燃焼器
  9-3…ガスタービン
  9-4…蒸気ボイラ
  9-4A…二酸化炭素吸収液加熱用熱交換器
  9-5…空気圧縮機
  9-6…発電機
  9-7…蒸気タービン
  9-8…復水器
  10…吸収塔
  11…副吸収塔
  12…再生塔
  A…高炉ガス
  B…高圧清浄高炉ガス
  C…製鉄プロセスの加熱用燃料ガス
  D…コークス炉ガス
  E…ガスタービン発電装置用燃料ガス
  F…空気
  G…排ガス
  H…冷却水
  I…蒸気
  J…オフガス
  K…二酸化炭素
  L…二酸化炭素を吸収した二酸化炭素吸収液
  M…二酸化炭素を吸収する前の二酸化炭素吸収液
  N…製鉄プロセスからの排ガス

Claims (4)

  1.  高炉から取り出された高炉ガスを吸収塔に導入し、
     前記吸収塔内で吸収液に前記高炉ガス中の二酸化炭素を吸収させ、
     前記二酸化炭素が除去された前記高炉ガスの一部を製鉄プロセスで燃焼させて熱源として利用し、
     前記二酸化炭素が除去された前記高炉ガスの他の一部はガスタービン発電装置に導入して燃焼させて発電を行う燃料として利用し、
     前記吸収塔で前記二酸化炭素を吸収した前記吸収液を再生塔へ導入し、
     前記再生塔内に導入された前記吸収液を前記ガスタービン発電装置の排ガスの熱を利用して加熱することによって、前記吸収液から前記二酸化炭素を除去し、
     前記二酸化炭素が除去された前記吸収液を前記再生塔から前記吸収塔へと循環させる高炉ガスからの二酸化炭素分離回収方法。
  2.  請求項1に記載の高炉ガスからの二酸化炭素分離回収方法において、
     前記吸収塔を前記高炉ガスの減圧手段の前段に設置し、前記高炉ガスを高圧の状態で前記吸収塔に導入する高炉ガスからの二酸化炭素分離回収方法。
  3.  請求項1または請求項2に記載の高炉ガスからの二酸化炭素分離回収方法において、
     前記ガスタービン発電装置の排ガスを副吸収塔に導入し、前記副吸収塔内で前記吸収液に前記排ガス中の二酸化炭素を吸収させる高炉ガスからの二酸化炭素分離回収方法。
  4.  請求項1から請求項3までの何れかに記載の高炉ガスからの二酸化炭素分離回収方法において、
     前記ガスタービン発電装置として、ガスタービンの排ガスの熱を利用して高圧蒸気を発生する蒸気ボイラと、この蒸気ボイラからの高圧蒸気を前記ガスタービン発電装置の動力として利用する蒸気タービンと、この蒸気タービンからの利用済蒸気を復水する復水器とを有する装置を用い、前記ガスタービンの排ガスの熱の一部と前記復水器の熱を前記吸収液の加熱に利用する高炉ガスからの二酸化炭素分離回収方法。
PCT/JP2009/005045 2009-09-30 2009-09-30 高炉ガスからの二酸化炭素分離回収方法 WO2011039809A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2009/005045 WO2011039809A1 (ja) 2009-09-30 2009-09-30 高炉ガスからの二酸化炭素分離回収方法
KR1020117020139A KR101292488B1 (ko) 2009-09-30 2009-09-30 고로 가스로부터의 이산화탄소 분리 회수 방법
CN2009801577314A CN102341508B (zh) 2009-09-30 2009-09-30 从高炉气体分离回收二氧化碳的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/005045 WO2011039809A1 (ja) 2009-09-30 2009-09-30 高炉ガスからの二酸化炭素分離回収方法

Publications (1)

Publication Number Publication Date
WO2011039809A1 true WO2011039809A1 (ja) 2011-04-07

Family

ID=43825666

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/005045 WO2011039809A1 (ja) 2009-09-30 2009-09-30 高炉ガスからの二酸化炭素分離回収方法

Country Status (3)

Country Link
KR (1) KR101292488B1 (ja)
CN (1) CN102341508B (ja)
WO (1) WO2011039809A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63166917A (ja) * 1986-12-27 1988-07-11 Nkk Corp 酸素高炉ガス利用方法
JP2004292298A (ja) * 2003-02-04 2004-10-21 Nippon Steel Corp 二酸化炭素の分離回収方法および装置
JP2004309067A (ja) * 2003-04-09 2004-11-04 Nippon Steel Corp 高炉ガスの利用方法
JP2005195283A (ja) * 2004-01-08 2005-07-21 Nippon Steel Corp ステーブクーラの循環冷媒の廃熱を用いた副生ガス中のco2吸収法
JP2009126737A (ja) * 2007-11-22 2009-06-11 Nippon Steel Engineering Co Ltd 高炉ガスからの二酸化炭素の分離回収方法
JP2009221574A (ja) * 2008-03-18 2009-10-01 Nippon Steel Engineering Co Ltd 高炉ガスからの二酸化炭素分離回収方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6227509A (ja) * 1985-07-26 1987-02-05 Nippon Kokan Kk <Nkk> 高炉操業方法
KR100972196B1 (ko) * 2007-12-24 2010-07-23 주식회사 포스코 용철제조장치 및 용철제조방법
JP2009174025A (ja) * 2008-01-28 2009-08-06 Nippon Steel Engineering Co Ltd 高炉ガスの利用方法
CN101519703B (zh) * 2008-02-26 2010-12-08 宝山钢铁股份有限公司 一种低焦比高炉炼铁工艺

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63166917A (ja) * 1986-12-27 1988-07-11 Nkk Corp 酸素高炉ガス利用方法
JP2004292298A (ja) * 2003-02-04 2004-10-21 Nippon Steel Corp 二酸化炭素の分離回収方法および装置
JP2004309067A (ja) * 2003-04-09 2004-11-04 Nippon Steel Corp 高炉ガスの利用方法
JP2005195283A (ja) * 2004-01-08 2005-07-21 Nippon Steel Corp ステーブクーラの循環冷媒の廃熱を用いた副生ガス中のco2吸収法
JP2009126737A (ja) * 2007-11-22 2009-06-11 Nippon Steel Engineering Co Ltd 高炉ガスからの二酸化炭素の分離回収方法
JP2009221574A (ja) * 2008-03-18 2009-10-01 Nippon Steel Engineering Co Ltd 高炉ガスからの二酸化炭素分離回収方法

Also Published As

Publication number Publication date
KR101292488B1 (ko) 2013-08-01
KR20110111514A (ko) 2011-10-11
CN102341508B (zh) 2013-12-25
CN102341508A (zh) 2012-02-01

Similar Documents

Publication Publication Date Title
JP5242207B2 (ja) 高炉ガスの利用プロセスにおける高炉ガスからの二酸化炭素の分離回収方法
JP5465246B2 (ja) 化石燃料発電所設備の排ガスから二酸化炭素を分離するための方法及び装置
JP5184061B2 (ja) 高炉ガスからの二酸化炭素の分離回収方法
JP4542190B1 (ja) 廃棄物の燃焼発電方法及びその燃焼設備
CA2490429A1 (en) Low emission thermal plant
CN101802366A (zh) 涡轮设备和发电设备
JPH03193116A (ja) 燃焼排ガス中のco↓2の除去方法
JP5976812B2 (ja) 排ガス処理システム
JP2012192403A (ja) Co2回収装置
JP2012193909A (ja) 焼結設備用廃熱回収発電プラント
JP5242206B2 (ja) 高炉ガスからの二酸化炭素分離回収方法
CN102859304B (zh) 驱动汽轮机发电设备的方法和由褐煤产生蒸汽的装置
JP2004132183A (ja) 常圧燃焼タービンシステム
WO2011039810A1 (ja) 高炉ガスの利用プロセスにおける高炉ガスからの二酸化炭素の分離回収方法
US9314732B2 (en) Systems and methods for reducing the energy requirements of a carbon dioxide capture plant
JP2013202612A (ja) 排ガス処理システム
KR20100036430A (ko) 배출가스로부터 이산화탄소의 분리회수방법 및 그 장치
WO2011039809A1 (ja) 高炉ガスからの二酸化炭素分離回収方法
JP2005195283A (ja) ステーブクーラの循環冷媒の廃熱を用いた副生ガス中のco2吸収法
CN209221865U (zh) 一种土壤修复废气处理系统
EP2587204A1 (en) Blast furnace top gas treatment
AU2013372962B2 (en) Systems and methods for reducing the energy requirements of a carbon dioxide capture plant
TWI497017B (zh) 鼓風爐設備及其回收能量的方法
JPH07166887A (ja) ガスタービン・蒸気複合式火力発電所においてガスタービンを運転するためのガスを発生するための方法及びこの方法を実施するための装置
JP5790045B2 (ja) 熱風発生装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980157731.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09850000

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117020139

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09850000

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP