WO2011039390A2 - Mutants of dna polymerase mu - Google Patents

Mutants of dna polymerase mu Download PDF

Info

Publication number
WO2011039390A2
WO2011039390A2 PCT/ES2010/000402 ES2010000402W WO2011039390A2 WO 2011039390 A2 WO2011039390 A2 WO 2011039390A2 ES 2010000402 W ES2010000402 W ES 2010000402W WO 2011039390 A2 WO2011039390 A2 WO 2011039390A2
Authority
WO
WIPO (PCT)
Prior art keywords
seq
dna polymerase
ροΐμ
mutants
mutated
Prior art date
Application number
PCT/ES2010/000402
Other languages
Spanish (es)
French (fr)
Other versions
WO2011039390A8 (en
WO2011039390A3 (en
Inventor
Luis BLANCO DÁVILA
Raquel JUÁRES SANTOS
Original Assignee
X-Pol Biotech, S.L
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by X-Pol Biotech, S.L filed Critical X-Pol Biotech, S.L
Publication of WO2011039390A2 publication Critical patent/WO2011039390A2/en
Publication of WO2011039390A8 publication Critical patent/WO2011039390A8/en
Publication of WO2011039390A3 publication Critical patent/WO2011039390A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1241Nucleotidyltransferases (2.7.7)
    • C12N9/1252DNA-directed DNA polymerase (2.7.7.7), i.e. DNA replicase

Definitions

  • the present invention relates to the identification of mutants of the human mu DNA polymerase ( ⁇ ) and the uses thereof. These mutants have improved characteristics with respect to the wild version of said polymerase that improve its potential as a molecular tool. BACKGROUND OF THE INVENTION
  • TdT terminal deoxynucleotidyl transferase
  • TdT is a 58 kDa enzyme that is normally only present in immature B and T lymphocytes. This enzyme catalyzes the addition of deoxynucleotides at the 3 ⁇ terminal end of the oligonucleotide chains without the need for a strand of template DNA (terminal deoxynucleotidyl transferase activity), thus generating diversity in the antigen receptors of the aforementioned immune system defense cells . This activity of TdT has allowed this polymerase to have been widely used as a molecular tool, especially in DNA mapping techniques.
  • TUNEL assay is based on the principle that TdT incorporates labeled deoxyuridine (eg dUTP-biotin) at the 3 ⁇ ends of breaks in double and single strands of DNA.
  • labeled deoxyuridine eg dUTP-biotin
  • the incorporation of labeled dUTP acts as a signal that can be easily detected, for example, through fluorescence techniques. The more breaks the DNA has, the greater the resulting signal will be.
  • This technique allows, among other applications, to identify samples that are undergoing apoptotic processes or measure the quality of a biological sample.
  • the authors of the present invention have developed ⁇ mutants that exhibit a higher terminal deoxynucleotidyl transferase activity than the wild-type enzyme ( ⁇ wt: UniProtKB / Swiss-Prot Q9NP87: SEQ ID NO: 17) and even that TdT itself.
  • the invention provides several ⁇ mutants with a high terminal deoxynucleotidyl transferase activity, superior to that of ⁇ wt, which can be used, among others, in polynucleotide or blunt end assembly techniques (End joining).
  • mutants of the invention which have at least about 10% more terminal deoxynucleotidyl transferase activity than ⁇ wt, preferably human ⁇ .
  • said activity is at least about 25%, 50%, 75%, 100%, 200%, 300%, 400%, 500% higher than that of the ⁇ wt.
  • the mutants of the invention also have a terminal deoxynucleotidyl transferase activity equal to or greater than that of the R387K mutant (hereinafter, also referred to as an R mutant), preferably said activity is at least about 10% higher and, more preferably, at least about 25%, 50%, 75%, 100%, 200%, 300% higher.
  • R mutants in combination or individually are capable of being used as molecular tools, preferably, in any of the techniques in which TdT is used, either as substitutes for it or in combination with it.
  • a polynucleotide sequence (hereinafter, polynucleotide sequence or polynucleotide of the invention) encoding any of the mutants of the invention.
  • any part of the invention is also part of: i) vector comprising the polynucleotide of the invention or ii) host cell comprising the polynucleotide sequence of the invention or a vector according to the invention.
  • the invention relates to a method for the production of the mutants of the invention that preferably comprises: i) the cultivation of a host cell according to the invention and ii) the isolation of the produced mutant.
  • a fourth aspect of the invention refers to the use of the mutants of the invention as a molecular tool, preferably, in all those techniques where TdT participates, either as substitutes for it or in combination with it. More specifically, the mutants of the invention in combination or individually are capable of being used in tests of: i) single-stranded (single-stranded or homopolymer) and double-stranded polynucleotide endpoints (ii) protruding or blunt ends, ii) gathering of protuberant and blunt ends, iii) mold-dependent or independent polymerization, iv) gaps or void filling (gap-filling), v) DNA breakage detection (mismatch detection; eg TUNEL), vi) mutagenesis or generation of variability, etc.
  • kits comprising any of the mutants of the invention, preferably, for carrying out any of the tests referred to in the preceding paragraph. Additionally, in addition to the components necessary to launch the corresponding assay (eg buffers, primers, dNTPs, ddNTPs, markers, etc.), the kits may comprise TdT or mutants thereof.
  • the components necessary to launch the corresponding assay eg buffers, primers, dNTPs, ddNTPs, markers, etc.
  • the kits may comprise TdT or mutants thereof.
  • kits for the aforementioned applications for example, in tests of: i) single-stranded (single-stranded or homopolymer) and double-stranded polynucleotide ends (protruding or blunt ends), ii) protruding ends and blunt, iii) mold-dependent or independent polymerization, iv) filling gaps or gaps (gap-filling), v) DNA break detection (mismatch detection; eg TUNEL), vi) mutagenesis or generation of variability, etc., constitutes an additional aspect of this invention
  • terminal deoxynucleotidyl transferase activity or “terminal transferase activity” is defined as the ability to carry out template independent polymerization reactions, adding nucleotides to a 3 ⁇ end without being selected by any criteria of base complementarity. This activity can be measured by different tests on different types of substrates, preferably on homopolymeric single stranded DNA (see Examples 1 and 3). Throughout the description, when it is indicated that this activity is increased or improved, it implies that it is at least 10% higher than that of ⁇ wt, preferably that of human ⁇ . Preferably, said activity is at least about 25%, 50%, 75%, 100%, 200%, 300%, 400%, 500% higher than that of ⁇ wt, preferably that of human ⁇ .
  • identity refers to two or more sequences or sub-sequences that have in common a specific percentage of amino acids or nucleotides, when they are compared and aligned to find maximum correspondence between the two. .
  • This parameter can be measured by sequence comparison techniques well known in the state of the art, preferably by BLAST or FASTA algorithms, using the parameters loaded by default.
  • vector refers to a linear or circular polynucleotide (e.g. plasmids, bacterial chromosome) comprising a polynucleotide sequence, wherein said vector is preferably adapted for amplification, replication and / or expression of said polynucleotide.
  • these vectors may contain regions that allow the amplification, expression and / or replication of the polynucleotide to be controlled or enhanced, as well as others that facilitate or promote the excretion or capture of the polypeptides resulting from the expression of the polynucleotide.
  • host cell refers to a cell or group of cells (eukaryotic or prokaryotic) that contains a vector or polynucleotide according to the present invention.
  • polynucleotides refers to both double and single stranded DNA and RNA polymers. Both polymers when in double chain form can have blunt or protruding ends.
  • nucleotides refers to ribonucleotides, deoxyribonucleotides (dNTPs) or dideoxynucleotides (ddNTPs) that, preferably, are labeled or modified to allow their identification and / or monitoring.
  • nucleotide mapping is performed with fluorophores (eg Cy3, Cy5, fluorescein) or biotin.
  • fluorophores eg Cy3, Cy5, fluorescein
  • biotin e.g Cy3, Cy5, fluorescein
  • nucleotides are labeled with fluorophores, they are referred to as fluorescent nucleotides.
  • nucleotide analogs refers to compounds or molecules that, for a specific application, behave in a similar or analogous way to a nucleotide and that do not have a particular or specific structure, although preferably their structure allows the detection of their incorporation into polynucleotides and / or stopping the polymerization reaction. Examples of these compounds can be found in other applications such as WO95 / 07920, WO2005 / 051530, WO2008 / 016909.
  • ortholog refers to proteins or genes encoding said proteins, with terminal transferase activity, which share at least about 40% identity with the ⁇ wt, preferably with the human ⁇ , and in successively more preferred embodiments. at least about 50%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 100%.
  • mutation preferably refers to substitutions, insertions or deletions that occur at the level of polypeptides or polynucleotides that express said polypeptides. These mutations when they occur at the level of a single amino acid or triplet that encodes it are referred to as point. Within the point mutations can be differentiated between conservative and non-conservative, the former being understood as those that occur when an amino acid is replaced by another of similar characteristics, according to Table 1. Table 1
  • substantially refers to the variation between ⁇ 10% that a given value (eg activity) may present, preferably between ⁇ 5% and more preferably ⁇ one%.
  • fragments refer to portions of polypeptides or polynucleotides encoding said polypeptides, which maintain the increased or substantially increased terminal transferase activity.
  • Figure 1 shows the terminal transferase activity of each of the mutants [ ⁇ - ⁇ 387 ⁇ - F389G, ⁇ ( ⁇ 275 ⁇ , ⁇ 387 ⁇ - (2275 ⁇ , ⁇ .387 ⁇ - ⁇ 1 ⁇ 1, ⁇ - ⁇ 457 ⁇ , ⁇ -8458 ⁇ and ⁇ - ⁇ 457 ⁇ -8458 ⁇ (Example 1)], compared to that of the ⁇ wt and that of the commercial TdT.
  • Figure 2 shows the terminal transferase activity of the double mutants ⁇ -R387K / Q275M and ⁇ - ⁇ 1387 ⁇ : ⁇ 1) at decreasing doses of polymerase (400 nM, 200 nM and 100 nM).
  • Figure 3 shows the terminal transferase activity of the double mutants ⁇ -R387K / Q275M and ⁇ - ⁇ 387 ⁇ / ⁇ 1 ⁇ 1) and of the simple mutants ( ⁇ - ⁇ 1387 ⁇ , ⁇ -Chloopl and ⁇ - (3275 ⁇ and compared to that of ⁇ wt, with each of the 4 dNTPs separately
  • Figure 4 shows the terminal transferase activity of the double mutants ⁇ -R387K / F389G, ⁇ - ⁇ 087 ⁇ / ⁇ ) 275 ⁇ and ⁇ - ⁇ 387 ⁇ / ⁇ 1 ⁇ 1) and of the simple mutants ( ⁇ - ⁇ 387 ⁇ and ⁇ - ⁇ > 275 ⁇ ), compared to that of ⁇ wt, with each 4 dNTPS in the presence of Co 2+ as the activating metal.
  • Figure 6 shows the mold dependence of the double mutants (M3 and M7) and the simple mutants (R, Ch and M2) in the context of a 1 nucleotide DNA gap with phosphate.
  • Figure 7 shows the results of the fluorescent derivative assay of DNA or ddNTPs, with the indicated mutants of ⁇ (M1-M7), together with ⁇ wt and TdT on single chain polynucleotides.
  • Figure 8 shows the results of the fluorescent derivative assay of DNA or ddNTPs, with the indicated mutants of ⁇ (R, Ch, M2, M3 and M7), on single chain polynucleotides.
  • Figure 9 shows the results of the fluorescent derivative assay of DNA or ddNTPs, with the indicated mutants of ⁇ (R, Ch, M2, M3 and M7), on single chain polynucleotides.
  • Figure 10 shows the results of the fluorescent derivative assay of DNA or ddNTPs, with the indicated mutants of ⁇ (R, Ch, M2, M3 and M7), on single chain polynucleotides.
  • Figure 11 shows how the tidal reaction with M3 and M7 is highly effective with the 4 fluorescent ddNTPs, both in the presence of Mn 2+ and Co 2+ .
  • Figure 12 shows the alignment of the ipe ⁇ wt polypeptide sequences of Mus musculus, Rattus norvegicus and Bos taurus with the M3 mutant. At the top, the arrow indicates amino acid 275 of human ⁇ wt. At the bottom, the arrow indicates amino acid 387 of human ⁇ wt.
  • Figure 13 shows the alignment of the human ⁇ wt polypeptide sequences and the TdT of human, murine and bovine origin.
  • the arrows show the position of amino acids 275, 387, 457 and 458 in human ⁇ wt.
  • Figure 14 shows the three-dimensional structure of the human ⁇ wt.
  • A) the arrow indicates the position of amino acid R387
  • B) the arrow indicates the position of amino acid Q275
  • C) the arrow indicates the position of amino acid N457
  • D) the arrow indicates the position of amino acid S458.
  • the TdT enzyme also known as terminal deoxynucleotidyl transferase or terminal transferase, is a specialized DNA polymerase that is primarily expressed in immature B and T lymphocytes, in addition to certain types of tumors.
  • TdT was the only known polymerase with the ability to add or bind nucleotides to an end 3 ⁇ of polynucleotides without requiring a template chain.
  • the low terminal deoxynucleotidyl transferase activity of ⁇ wt compared to TdT has made it impossible for this enzyme to date to become a viable alternative to TdT.
  • mutants that increase the terminal deoxynucleotidyl transferase activity of wild ⁇ and even TdT.
  • said mutants are derived from or derived from human ⁇ wt, although they can also be obtained from the ⁇ of other vertebrates (orthologous ras ⁇ de ⁇ polymerases), preferably mammals, such as Mus musculus, Rattus norvegicus, Bos taurus, among others .
  • mutants from orthologous polymerases to human ⁇ wt (or the gene that encodes them) and the teaching of the present invention, can be carried out simply by a person skilled in the art, as is explained in Example 12. Similarly, new mutants with increased terminal transferase activity, as with the mutants of the present invention, can also be easily obtained, as shown in Example 13. ⁇ mutants and polynucleotides of the invention
  • TdT and ⁇ wt are two enzymes that belong to the X family of DNA polymerase that are characterized by being small (between 39 and 66 KDa), both being generally quite inaccurate during DNA synthesis. They are distributive enzymes with little capacity to synthesize more than a few bases before dissociating from DNA. In addition to belonging to the same family and having terminal deoxynucleotidyl transferase activity, these polymerases have a BRCT domain (C-terminal domain of BRCA1), involved in the protein-protein interaction, which is not present in other members of family X like beta polymerase ( ⁇ ). When this domain is eliminated together with the rest of the amino terminus (NH2-BRCT-) and even with part of the 8 KDa domain (NH2-BRCT-KDa-) the TdT activity of these enzymes is not affected (see table 2).
  • the 8 KDa domain is also characteristic of the enzymes of this family, being present in both ⁇ wt and TdT. This domain gives these polymerases the ability to anchor the gaps that occur in the DNA, allowing them to effectively perform their biological activity. Even, the distribution of amino acids between the different domains of these two enzymes is quite similar, as can be seen in Table 2.
  • the mutants of the invention have at least about 10% more terminal deoxynucleotidyl transferase activity than ⁇ wt, preferably human ⁇ wt.
  • said activity is at least about 25%, 50%, 75%, 100%, 200%, 300%, 400%, 500% higher than that of the ⁇ wt.
  • the mutants of the invention also have a terminal deoxynucleotidyl transferase activity equal to or greater than that of the R mutant, preferably said activity is at least about 10% higher and, more preferably, at least about 25% , 50%, 75%, 100%, 200%, 300% higher.
  • mutants in combination or individually, are likely to be used as molecular tools, preferably, in any of the techniques in which TdT is used, as substitutes for it or in combination with it.
  • the mutants comprise at least two mutations.
  • the ⁇ mutants comprise a polypeptide sequence with at least 60% identity with the sequence SEQ ID NO: 17 ( ⁇ wt: UniProtKB / Swiss-Prot Q9NP87), or with any of its SEQ ID NO sub-sequences : 1 and SEQ ⁇ ) NO: 2, or with fragments thereof, wherein said mutants comprise at least two mutations and maintain an increased terminal transferase activity.
  • said mutations are (i) a first point mutation at position 387 and (ii) a second mutation consisting of:
  • the degree of identity of the ⁇ mutants with the sequence Q9NP87, any of its sub-sequences SEQ ID NO: l and SEQ ID NO: 2, or fragments thereof is about at least 65, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%.
  • the first point mutation (i) of the ⁇ mutants consists in replacing the amino acid found at position 387 with any of the amino acids selected from the group comprising: Glutamine, Asparagine, Cistern, Threonine, Serine, Methionine, Lysine, Arginine, Histidine or the like thereof, although even more preferably said point mutation consists of R387K substitution or reversal (non-conservative mutation).
  • the second mutation (ii) corresponding to the point mutation (a) is located at position 275.
  • this mutation consists in replacing the amino acid found in said position (275) with any of the amino acids selected from the group comprising: Glutamine, Asparagine, Cysteine, Threonine, Serine, Methionine or the like thereof, although even more preferably said point mutation consists of the Q275M substitution (conservative mutation).
  • the second mutation (ii) consists of (b) a mutation in the loop-1 subdomain, such as the replacement or modification of the loop-1 subdomain or fragments thereof by: i) a sequence with at least about 10% identity with SEQ ID NO: 3 (loop-1 of ⁇ ), preferably, with at least about 15%, 20%, 25%, 30%, 50%, 60%, 70% , 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or ii) by a sequence with at least about 10% identity with SEQ ID NO: 4 (loop -1 of TdT), preferably, with at least about 15%, 20%, 25%, 30%, 50%, 60%, 70%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%.
  • said sequence is SEQ ID NO: 4, which shares about 20% identity with SEQ ID NO: 3.
  • the mutants of the invention have the sequences SEQ ID NO: 5, which comprises the point mutations R387K and Q275M (hereinafter, mutant M3), or SEQ ID NO: 6, which comprises the point mutation R387K and the insertion of the loop-1 of TdT in the place of loop-1 of ⁇ (hereinafter, mutant M7).
  • the invention also comprises fragments or sub-sequences of the sequences SEQ ED NO: 5 or SEQ ID NO: 6 comprising said mutations and, preferably, substantially maintaining their increased terminal deoxynucleotidyl transferase activity.
  • said fragments have the sequences SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9, or SEQ ID NO: 10.
  • an imitant comprising a polypeptide sequence with at least 60% identity with the sequence Q9NP87 (human w ⁇ wt: SEQ ID NO: 17) and at least one point mutation at position 275, wherein said mutant has an enhanced or increased terminal deoxynucleotidyl transferase activity.
  • This activity is at least about 10%, 25%, 50%, 75%, 100%, 200%, 300% higher than that of the ⁇ wt.
  • said mutation at position 275 consists in the substitution of the amino acid found in said position by Glutamine, Asparagine, Cysteine, Threonine, Serine, Glycine, Alanine, Valine, Leucine, Isoleucine, Methionine, Proline, Phenylalanine and Tryptophan, although even more preferably said point mutation consists in the Q275M substitution. More specifically, this mutant has the sequence SEQ ID NO: 11 (hereinafter, mutant M2) or fragments thereof that comprise the mutation at position 275 and, preferably, substantially maintain its increased terminal transferase activity. Examples of these fragments or subsequences are the sequences SEQ ID NO: 12 and SEQ ID NO: 13.
  • a second aspect of the invention provides a polynucleotide sequence encoding any of the walls of the invention.
  • they also form part of the invention: (i) a vector, comprising any of the polynucleotide sequences according to the invention, and (ii) a host cell comprising any of the polynucleotide sequences or vectors of the invention.
  • the polynucleotide sequence of the invention comprises any of the sequences SEQ ID NO: 14, SEQ ID NO: 15, or SEQ ID NO: 16, which encode respectively for the mimics M3, M7 and M2.
  • any sequence with at least about 40% identity with any of SEQ ID NO: 14, SEQ ID NO: 15 and SEQ ID NO: 16 that preferably does not modify are also part of the present invention. its activity or do not modify it substantially.
  • said identity is at least about 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 99%.
  • a third aspect of the invention also relates to a method for the production of the mutants of the invention comprising: i) the cultivation of a host cell comprising any of the polynucleotides or vectors of the invention and ii) the isolation of the mutant produced.
  • the cell flow is performed under conditions that promote the growth of the host cell and / or the expression of the polynucleolide of the invention.
  • the invention also comprises the expression or production of the mutants of the invention by chemical synthesis or other cell-free expression systems ("Cell-Free Expression Systems") well known in the state of the art. Uses of the mutants ⁇
  • a fourth aspect of the invention relates to the use of the mutants of the invention as a molecular tool, preferably, in all those techniques where TdT is used. Mutants can be used in these types of techniques, as substitutes for TdT or in combination with it. More specifically, the mutants of the invention, in combination or individually, are likely to be used preferably in: i) single-stranded polynucleotide (heteropolymer or homopolymer) and double-stranded (double-ended (bulging or blunt), ii) assembly tests protuberant and blunt ends, iii) mold-dependent or independent polymerization, iv) gaps filling (gap-filling), v) DNA break detection mismatch detection; e.g. TUNEL), vi) mutagenesis, etc.
  • this aspect provides a method for elongation of a target polynucleotide comprising: i) contacting a target polynucleotide with the mutant of the invention and nucleotides or nucleotide analogs (reaction mixture) and ii) subjecting the reaction mixture at conditions that favor the insertion of at least one nucleotide or nucleotide analogs at the 3 ⁇ end of the target polynucleotide.
  • the number of nucleotides or nucleotide analogs inserted is at least 1, 2, 3, 4 or 5 nucleotides and in successively more preferred embodiments between 1 and 20, 3 and 20, 5 and 20, 1 and 10, 3 and 10, 5 and 10.
  • the invention also provides methods for polynucleotide mapping comprising i) contacting a target polynucleotide with the mutant of the invention and labeled nucleotides or nucleotide analogs (reaction mixture), ii) subjecting the reaction mixture at conditions that favor the insertion of at least one nucleotide or analogue thereof at the 3 ⁇ end of the target polynucleotide, and iii) detect the presence or not of insertion.
  • the number of nucleotides or labeled nucleotide analogs inserted is at least 1, 2, 3, 4 or 5 nucleotides and in successively more preferred embodiments between 1 and 20, 3 and 20, 5 and 20, 1 and 10 , 3 and 10, 5 and 10.
  • the mutants of the invention are also capable of being employed in gap filing methods or techniques comprising: i) contacting a target polynucleotide, comprising at least one gap or gap of at least one nucleotide, with the mutant of the invention and nucleotides or nucleotide analogs (reaction mixture), and ii) subjecting the reaction mixture to conditions that favor the insertion of at least one nucleotide or nucleotide analog at the 3 ⁇ end of the gap.
  • this method comprises iii) detecting whether or not the gap has been filled in and / or iv) the addition of enzymes (eg nucleases, ligases), which bind to nucleotides or nucleotide analogs introduced into the target polynucleotide, or Hydrolyze the target polynucleotide.
  • enzymes eg nucleases, ligases
  • the gap size is at least 1, 2, 3, 4 or 5 nucleotides and, more preferably, between 1 and 10 nucleotides.
  • the mutants of the invention have the ability to incorporate nucleotides independently of template, they are excellent candidates for use in end-gathering techniques, whether they are bulging or blunt.
  • the invention also provides a method for gathering double-stranded polynucleotide ends comprising: i) contacting a double-stranded target polynucleotide with the mutant of the invention and at least two complementary nucleotides or nucleotide analogs ( reaction mixture), and ii) placing the reaction mixture under conditions that favor the introduction of a sufficient number of nucleotides or nucleotide analogs at each end of the target polynucleotide for the meeting to occur.
  • this method comprises iii) the addition of enzymes (eg ligases) that bind the ends once they are together.
  • enzymes eg ligases
  • the number of nucleotides or nucleotide analogs inserted is at least 1, 2, 3, 4 or 5 nucleotides and in successively more preferred embodiments between 1 and 20, 3 and 20, 5 and 20, 1 and 10, 3 and 10, 5 and 10.
  • Another important application of the TdT activity is its use in the TUNEL assays (TdT-mediated dUTP-biotin nick end labeling) that allow the detection of biological samples that are undergoing apoptosis (Gavrieli, Y . et al. (1992) Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J.
  • the present invention provides a method for the detection of apoptotic samples, preferably in their early stages.
  • Said method comprises i) contacting a sample, containing genetic material of potentially apoptotic cells, with the mutant of the invention and at least one nucleotide or nucleotide analogue (reaction mixture), ii) subjecting the reaction mixture to conditions that favor the insertion of nucleotides or analogs thereof, and iii) detect the presence or not of insertion, preferably by fluorescence, where the detection of insertion is indicative of the presence of fragmented genetic material and, consequently, of the beginning of the apoptotic process In the sample.
  • This same method can also be used in techniques aimed at checking the viability of a biological sample, such as sperm analysis in assisted reproduction techniques, where in the sperm with normal DNA only background fluorescence is detected, while the Sperm with fragmented DNA (multiple 3 ⁇ terminals) are stained with intense fluorescence.
  • the fluorescence can be detected, preferably, both by flow cytometry and by fluorescent microscopy.
  • the samples to be labeled or detected are compared with control samples, so that the test sample is considered positive when it has at least about 5% more insertion than the control sample and in successively more preferred embodiments at least about 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%.
  • the mutants of the invention can be found in combination with TdT or mutants thereof, as a way to improve the efficiency of the techniques. Even several mutants of the invention can be combined with TdT for the same purpose.
  • Another way to increase the efficiency of the mentioned methods comprises the addition of ions, preferably Mn 2+ or Co 2+ 'to the reaction mixtures, since these are capable of increasing the catalytic efficiency of the mutants of the invention.
  • kits that incorporate any of the mutants of the invention, preferably, to carry out any of the methods mentioned above. Additionally, in addition to the components necessary to launch the corresponding assay (eg buffers, primers, dNTPs, ddNTPs, hNTPs, nucleotide analogs, ions, etc.), the kits may also comprise TdT or mutants thereof as a way to improve the efficiency of such tests.
  • the components necessary to launch the corresponding assay eg buffers, primers, dNTPs, ddNTPs, hNTPs, nucleotide analogs, ions, etc.
  • kits for the aforementioned applications for example, in tests of: i) single-stranded (single-stranded or homopolymer) and double-stranded polynucleotide ends (protruding or blunt ends), ii) protruding ends and blunt, iii) mold-dependent or independent polymerization, iv) filling gaps or gaps (gap-fdling), v) DNA breakage detection ⁇ mismatch detection; e.g. TUNEL), vi) mutagenesis or generation of variability, etc., constitutes an additional aspect of this invention
  • This assay shows the terminal transferase activity of each of the mutants, compared to the human ⁇ wt [SEQ ED NO: 17] and the commercial TdT of Promega (Fig. 1). The maximum extent is analyzed with each of the 4 dNTPS separately, on a 3 ⁇ end of single-chain homopolymeric DNA (PoliT). Initially, those mutants that produced a striking stimulation of the terminal transferase activity with respect to ⁇ wt were selected for the conduct of DNA 3-end labeling assays. Materials and methods
  • the fluorescent oligonucleotide used to evaluate terminal transferase activity was PoliT-Cy5 (PoliT15-CY5), which was purchased from Sigma.
  • the dNTPs (dATP, dCTP, dGTP and dTTP) were purchased from GE Healthcare.
  • the polymerization reactions were carried out in a volume of 10 ⁇ , in the presence of 1 mM MnC ⁇ , 50 mM TrisHCl (pH 7.5), 1 mM dithiothreitol (DTT), 4% glycerol, 0.1 mg / ml bovine serum albumin (BSA), 20 nM of the fluorescent oligonucleotide indicated in each case, 100 ⁇ of the dNTP indicated in each case, and 600 nM of the protein indicated in each case, except for the commercial TdT of Promega (1 unit).
  • the combined mutant R387 -F389G (MI) has greatly reduced the intrinsic terminal transferase activity of ⁇ wt.
  • R387K-Q275M (M3) and R387K-Chloopl (M7) are the truly spectacular ones, since they consume the entire starting substrate (which is very applicable to 3 ⁇ end marking as it can be a near tidal efficiency 100%) and extend to large sizes (which can be applied in "tailing" reactions).
  • N457D (M4), S458N (M5) and their combination also stimulate terminal transferase activity.
  • the point mutations Q275M, N457D, S458N and R387K correspond to reversals (substitutions) towards the amino acid that is conserved in TdT as can be seen in Figure 13.
  • the first three mutations are conservative mutations, since the amino acid to which reversed belongs to the same group (see Table 1), and instead the R387K mutation is non-conservative.
  • Example 2 A reaction similar to that of Example 1 was carried out, but at decreasing doses of polymerase (400 nM, 200 nM and 100 nM). At 400 nM protein, the extension of about 100% of the original starting substrate was maintained. At lower doses of protein, although terminal transferase activity remained strongly stimulated, the extent of the original starting substrate was not as effective (Figure 2).
  • the fluorescent oligonucleotide used to evaluate terminal transferase activity was PoliT-Cy5 (PoliT15-CY5), which was purchased from Sigma.
  • the dNTPs were purchased from GE Healthcare.
  • the polymerization reactions were carried out in a volume of 10 ⁇ , in the presence of 1 mM MnCl 2 , 50 mM TrisHCl (pH 7.5), 1 mM DTT, 4% glycerol, 0.1 mg / ml BSA, 20 nM of the fluorescent oligonucleotide indicated in each case, 100 ⁇ of the dNTP indicated in each case, and the protein dose indicated in each case.
  • the fluorescent oligonucleotide used to evaluate terminal transferase activity was PoliT-Cy5 (PoliT15-CY5), which was purchased from Sigma.
  • the dNTPs were purchased from GE Healthcare.
  • the polymerization reactions were carried out in a volume of 10 ⁇ , in the presence of 1 mM MnCl 2 , 50 mM TrisHCl (pH 7.5), 1 mM DTT, 4% glycerol, 0.1 mg / ml BSA, 20 nM of the fluorescent oligonucleotide indicated in each case, 100 ⁇ of the dNTP indicated in each case, and 600 nM of the protein indicated in each case, except for the commercial TdT of Promega (1 unit).
  • the simple mutant R387K (R) achieves an effective increase in the intrinsic terminal transferase activity of ⁇ wt, especially with dT and dC. However, it is far from reaching the levels reached by any of the combined mutants (M3 and M7).
  • the simple mutant ⁇ -Chloopl (Ch) achieves a change in the pattern of insertion of dNTPs with respect to ⁇ w ⁇ , but does not imply a special call for its terminal transferase activity.
  • the Q275M mutant (M2) achieves a certain stimulus of terminal transferase activity compared to ⁇ wt.
  • the fluorescent oligonucleotide used to evaluate terminal transferase activity was PoliT-Cy5 (PoliT15-CY5), which was purchased from Sigma.
  • the dNTPs were purchased from GE Healthcare.
  • the polymerization reactions were carried out in a volume of 10 ⁇ , in the presence of 100 mM of cacodylate buffer (pH 6.8), 1 mM CoCl 2 , 0.1 mM DTT, 20 nM of the fluorescent oligonucleotide indicated in each case, 100 ⁇ of the dNTP indicated in each case, and 600 nM of the protein indicated in each case, with the exception of the commercial TdT of Promega (1 unit).
  • the fluorescent oligonucleotide SP1C-FLO (GATCACAGTGAGTAC-FLO) was hybridized with oligonucleotide TI 3 (G) (AGAAGTGTATCTGGTACTCACTGTGATC) to generate the DNA substrate indicated in the upper part of Figure 5.
  • G oligonucleotide TI 3
  • Both oligonucleotides were bought from Sigma.
  • the dNTPs were purchased from GE Healthcare.
  • the polymerization reactions were carried out in a volume of 10 ⁇ , in the presence of 2.5 mM MgCl 2 , 50 mM TrisHCl (pH 7.5), 1 mM DTT, 4% glycerol, 0.1 mg / ml BSA , 10 nM of the fluorescent DNA hybrid, the dose of dNTP / dNTPs indicated in each case, and 100 nM of the protein indicated in each case. After a 30 min incubation at 37 ° C, the reactions were stopped by adding 5.6 ⁇ of loading buffer (95% formamide, 10 mM EDTA). These samples were analyzed by electrophoresis in 20% polyacrylamide gels and 8 M urea and subsequent fluorescent signal reading using Typhoon 9410 (GE Healthcare) equipment. Results
  • the 4 dNTPs are supplied, in order to try to verify the maximum extent that the protein can carry out on the DNA substrate indicated in the upper part.
  • Only the simple Chloopl mutation seems to produce a small decrease in elongation, without the polymerization capacity disappearing.
  • the M7 mutant, which contains the Chloopl mutation is also affected to the same degree.
  • the M2 and M3 mutants even seem to improve the elongation capacity of ⁇ wt itself, which is very positive.
  • a similar reaction is carried out on the right side of Figure 5, but supplying only the complementary nucleotide to the first position in the mold. The step to +1 is done very efficiently with all cases.
  • the fluorescent oligonucleotide SP1C-FLO (GATCACAGTGAGTAC-FLO) was hybridized with oligonucleotide TI 3 (G) (AGAAGTGTATCTGGTACTCACTGTGATC) and Dgl-P (AGATACACTTCT-P) to generate the DNA substrate indicated in the upper part of Figure 6.
  • the oligonucleotides were purchased from Sigma.
  • the dNTP was purchased from GE Healthcare
  • the polymerization reactions were carried out in a volume of 10 ⁇ , in the presence of 2.5 mM MgCl 2 , 50 mM TrisHCl (pH 7.5), 1 mM DTT, 4% glycerol, 0.1 mg / ml BSA , 10 nM of the fluorescent DNA hybrid, the dose of dNTP / dNTPs indicated in each case, and 100 nM of the protein indicated in each case.
  • the reactions were stopped by adding 5.6 ⁇ of loading buffer (95% formamide, 10 mM EDTA). These samples were analyzed by electrophoresis in 20% polyacrylamide gels and 8 M urea and subsequent fluorescent signal reading using Typhoon 9410 (GE Healthcare) equipment. Results
  • the complete series of mutants of ⁇ was tested, together with ⁇ wt and TdT in a 3 ma end reaction reaction of a single stranded oligonucleotide.
  • a single chain oligonucleotide labeled with Cy5 at its 5 'end was used as a substrate for monitoring.
  • Fluorescein-labeled ddATP (FLO) capable of being incorporated by polymerase at the 30H 'end of the DNA was supplied.
  • the DNA channel allows to track the original DNA, and check the proportion of oligo that has been marked (position +1) against the unmarked remainder (position 0).
  • the ddNTP channel allows you to check the entry at position +1 of the ddNTP marked with FLO.
  • the fluorescent oligonucleotide used was: SPlC-Cy5 (GATCACAGTGAGTAC-Cy5), which was purchased from Sigma.
  • the ddATP -Cy5 was purchased from Perkin-Elmer.
  • the reactions were carried out in a volume of 10 ⁇ , in the presence of 1 mM ( ⁇ (3 ⁇ 4 50 mM TrisHCl (pH 7.5), 1 mM DTT, 4% glycerol and 0.1 mg / ml BSA (except the channel of TdT, which carried 100 mM of cacodylate buffer, 1 mM CoCl 2 and 0.1 mM DTT), 10 nM of the fluorescent DNA oligo, 1 ⁇ ddATP-FLO, and 600 nM of the indicated protein in each case.
  • ⁇ wt is capable of marking around 50% of the oligo supplied.
  • the mutants M4, M5 and M6 ( ⁇ - ⁇ 457 ⁇ -8458 ⁇ ) have a similar behavior.
  • the mutant MI sees its ability to mareaje very low compared to ⁇ wt.
  • the mutant M2 represents an improvement over ⁇ wt although it does not reach 100% of the starting substrate.
  • the M3 and M7 are capable of marking 100% of the original starting substrate, even exceeding the levels achieved with the commercial TdT of Promega.
  • the fluorescent oligonucleotide used was: SPlC-Cy5 (GATCACAGTGAGTAC-Cy5), which was purchased from Sigma.
  • the ddATP-Cy5 was purchased from Perkin-Elmer.
  • the reactions were carried out in a volume of 10 ⁇ , in the presence of 1 mM MnC ⁇ , 50 mM TrisHCl (pH 7.5), 1 mM DTT, 4% glycerol and 0.1 mg / ml BSA (except the channel of TdT, which carried 100 mM of cacodylate buffer, 1 mM C0CI 2 and 0.1 mM DTT), 10 nM of the fluorescent DNA oligo, ⁇ ⁇ ddATP-FLO, and 600 nM of the indicated protein in each case.
  • the simple mutations R387 (R) and Ch-loop-1 (Ch) do not achieve any improvement over ⁇ wt in such reactions.
  • the mutant M2 does mean an improvement since it is capable of destroying almost the entire starting substrate, although not 100%.
  • M3 and M7 do not achieve 100% marking of the starting substrate.
  • the fluorescent oligonucleotide used was: PoliT-Cy5 (PoliT15-Cy5), which was purchased from Sigma.
  • the ddATP-Cy5 was purchased from Perkin-Elmer.
  • the reactions were carried out in a volume of 10 ⁇ , in the presence of 1 mM MnCl 2 , 50 mM TrisHCl (pH 7.5), 1 mM DTT, 4% glycerol and 0.1 mg / ml BSA (except the channel of TdT, which carried 100 mM of cacodylate buffer, 1 mM CoCl 2 and 0.1 mM DTT), 10 nM of the fluorescent DNA oligo, 1 ⁇ ddATP-FLO, and 600 nM of the indicated protein in each case.
  • the simple mutant Ch does not achieve any improvement over ⁇ wt in such reactions.
  • the mutant R in this particular case improves slightly with respect to ⁇ wt, which may be due to a sequence effect.
  • the mutant M2 does mean an improvement, but it does not achieve 100% marking of the starting substrate, as it does in the cases of M3 and
  • the fluorescent oligonucleotide used was: PoliA-Cy5 (PoliA15-Cy5), which was purchased from Sigma.
  • the ddATP-Cy5 was purchased from Perkin-Elmer.
  • the reactions were carried out in a volume of 10 ⁇ , in the presence of 1 mM MnCl 2 , 50 mM TrisHCl (pH 7.5), 1 mM DTT, 4% glycerol and 0.1 mg / ml BSA (except the channel of TdT, which carried 100 mM of cacodylate buffer, 1 mM CoCl 2 and 0.1 mM DTT), 10 nM of the fluorescent DNA oligo, 1 ⁇ ddATP-FLO, and 600 nM of the indicated protein in each case.
  • the mutant M2 does mean an improvement, but it does not achieve 100% marking of the starting substrate, as it does in cases of
  • the fluorescent oligonucleotide used was: SPlC-Cy5 (GATCACAGTGAGTAC-Cy5), which It was bought from Sigma. Fluorescent dideoxynucleotides (ddATP-FLO, ddUTP-FLO, ddCTP-FLO, ddGTP-FLO) were purchased from Perkin-Elmer.
  • the reactions were carried out in a volume of 10 ⁇ , in the presence of 1 mM MnC, 50 mM TrisHCl (pH 7.5), 1 mM DTT, 4% glycerol and 0.1 mg / ml BSA (in the case of reactions with ImM Mn 2+ ) and 100 mM of cacodylate buffer, 1 mM C0CI 2 and 0.1 mM DTT (in the case of reactions with ImM Co 2+ ), 10 nM of the fluorescent DNA oligo, 1 ⁇ ddATP-FLO , and 600 nM of the protein indicated in each case.
  • the structural data of ⁇ wt used conveniently can be used to obtain new mutants with increased terminal transferase activity, by identifying and mutating amino acids that are at or near the catalytic site of the enzyme, preferably on the surface, this It is, in direct interaction with DNA.
  • the three-dimensional analysis of the polymerase structure can lead to the identification of residues that allow the creation of a salt bridge, the introduction of a hydrophobic group or the creation of any other type of interaction that allows a better interaction. with the DNA in order to obtain mutants with increased terminal transferase activity.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

The invention relates to mutants of DNA polymerase mu (Polμ) which have greater terminal deoxynucleotidyl transferase activity than the wild enzyme (wt) and which improve the potential thereof as a molecular tool. Said mutants can be used, inter alia, in polynucleotide labelling techniques and for joining overhangs and blunt ends.

Description

MUT ANTES DE LA ADN POLIMERASA MU  MUT BEFORE MU POLYMERASE DNA
CAMPO DE LA INVENCIÓN La presente invención se refiere a la identificación de mutantes de la ADN polimerasa mu humana (Ροΐμ) y a los usos de los mismos. Estos mutantes presentan características mejoradas respecto a la versión silvestre de dicha polimerasa que mejoran su potencialidad como herramienta molecular. ANTECEDENTES DE LA INVENCIÓN FIELD OF THE INVENTION The present invention relates to the identification of mutants of the human mu DNA polymerase (Ροΐμ) and the uses thereof. These mutants have improved characteristics with respect to the wild version of said polymerase that improve its potential as a molecular tool. BACKGROUND OF THE INVENTION
La estabilidad de la información genética no sólo depende de la fiabilidad de los sistemas de replicación sino también de la existencia de múltiples sistemas de reparación, que corrigen la mayoría de los tipos de daños que se producen en el ADN. Además de estos sistemas de reparación, es evidente la existencia de reacciones enzimáticas alternativas que de algún modo contrarrestan los efectos de los primeros, generando variabilidad en el ADN. Una de las enzimas implicadas en este tipo de procesos es la desoxinucleotidil-transferasa terminal (TdT) involucrada en los procesos de generación de diversidad y que selectivamente actúa sobre aquellos genes codificantes de receptores de antígenos {Komori et al. (1993). Science, 261, 1171-1175). The stability of genetic information depends not only on the reliability of replication systems but also on the existence of multiple repair systems, which correct most types of damage that occur in DNA. In addition to these repair systems, the existence of alternative enzymatic reactions that somehow counteract the effects of the former is evident, generating variability in the DNA. One of the enzymes involved in this type of processes is the terminal deoxynucleotidyl transferase (TdT) involved in the processes of generating diversity and selectively acting on those genes encoding antigen receptors {Komori et al. (1993). Science, 261, 1171-1175).
La TdT es una enzima de 58 kDa que normalmente sólo se encuentra presente en linfocitos B y T inmaduros. Esta enzima cataliza la adición de desoxinucleótidos en el extremo 3ΌΗ terminal de las cadenas de oligonucleótidos sin necesidad de una hebra de ADN molde (actividad deoxinucleotidil-transferasa terminal), generando así diversidad en los receptores de antígenos de las referidas células de defensa del sistema inmune. Esta actividad de TdT ha permitido que esta polimerasa haya sido ampliamente utilizada como herramienta molecular, especialmente, en técnicas de mareaje de ADN. Una de estas técnicas de mareaje es el ensayo TUNEL que se basa en el principio de que la TdT incorpora desoxiuridina marcada (e.g. dUTP-biotina) en los extremos 3ΌΗ de roturas de cadenas dobles y simples del ADN. La incorporación de dUTP marcada actúa como una señal que puede ser detectada fácilmente, por ejemplo, a través de técnicas de fluorescencia. Cuantas más roturas tenga el ADN mayor será la señal resultante. Esta técnica permite, entre otras aplicaciones, identificar muestras que están sufriendo procesos apoptóticos o medir la calidad de una muestra biológica. Desde el descubrimiento de la TdT, han sido pocas las enzimas con actividad deoxinucleotidil- transferasa terminal encontradas en la naturaleza y, actualmente, ésta es la única que se comercializa a gran escala (e.g. Roche Applied Science, Promega, Invitrogen). TdT is a 58 kDa enzyme that is normally only present in immature B and T lymphocytes. This enzyme catalyzes the addition of deoxynucleotides at the 3ΌΗ terminal end of the oligonucleotide chains without the need for a strand of template DNA (terminal deoxynucleotidyl transferase activity), thus generating diversity in the antigen receptors of the aforementioned immune system defense cells . This activity of TdT has allowed this polymerase to have been widely used as a molecular tool, especially in DNA mapping techniques. One of these marking techniques is the TUNEL assay, which is based on the principle that TdT incorporates labeled deoxyuridine (eg dUTP-biotin) at the 3ΌΗ ends of breaks in double and single strands of DNA. The incorporation of labeled dUTP acts as a signal that can be easily detected, for example, through fluorescence techniques. The more breaks the DNA has, the greater the resulting signal will be. This technique allows, among other applications, to identify samples that are undergoing apoptotic processes or measure the quality of a biological sample. Since the discovery of TdT, there have been few enzymes with terminal deoxynucleotidyl transferase activity found in nature and, currently, this is the only one that is marketed on a large scale (eg Roche Applied Science, Promega, Invitrogen).
En el año 2000, una nueva polimerasa con actividad deoxinucleotidil-transferasa terminal y perteneciente a la familia X de las ADN polimerasas, la polimerasa mu (Ροΐμ), fue identificada y secuenciada por primera vez (Domínguez et al, (2000) Embo J, 19, 1731-1742). Sin embargo, aunque se puede decir que existe una amplia similitud estructural entre Ροΐμ y TdT, la actividad desoxinucleotidil-transferasa terminal de esta nueva enzima es comparativamente muy inferior a la de la TdT. Este hecho ha imposibilitado su incorporación al mercado como una alternativa viable a la TdT, siendo todavía necesario el descubrimiento o desarrollo de nuevas enzimas que presenten esta actividad mejorada o incrementada. Hasta la fecha, únicamente el mutante simple de Ροΐμ humana, R387 , presenta una actividad deoxinucleotidil-transferasa terminal superior a 'la polimerasa silvestre y similar a la de la TdT (María José Martín et al. Gordon Research Conference on Mutagenesis 07/20/2008 - 07/25/2008 at Magdalen College in Oxford. "Rate limited terminal transferase activity of human Pol μ: contribution to imprecise end-joining of non-complementary ends "). BREVE DESCRIPCIÓN DE LA INVENCIÓN In 2000, a new polymerase with terminal deoxynucleotidyl transferase activity and belonging to the X family of DNA polymerases, polymerase mu (Ροΐμ), was identified and sequenced for the first time (Domínguez et al, (2000) Embo J, 19, 1731-1742). However, although it can be said that there is a wide structural similarity between Ροΐμ and TdT, the terminal deoxynucleotidyl transferase activity of this new enzyme is comparatively much lower than that of TdT. This fact has made it impossible to enter the market as a viable alternative to TdT, with the discovery or development of new enzymes that have this activity improved or increased. To date, only the human tanteοΐμ simple mutant, R387, has a terminal deoxynucleotidyl transferase activity superior to 'wild polymerase and similar to that of TdT (María José Martín et al. Gordon Research Conference on Mutagenesis 07/20 / 2008 - 07/25/2008 at Magdalen College in Oxford. "Rate limited terminal transferase activity of human Pol μ: contribution to imprecise end-joining of non-complementary ends"). BRIEF DESCRIPTION OF THE INVENTION
Los autores de la presente invención han desarrollado mutantes de Ροΐμ que presentan una mayor actividad deoxinucleotidil-transferasa terminal que la enzima silvestre o wildtype (Ροΐμ wt: UniProtKB/Swiss-Prot Q9NP87: SEQ ID NO:17) e incluso que la propia TdT. Concretamente, la invención proporciona varios mutantes de Ροΐμ con una elevada actividad deoxinucleotidil-transferasa terminal, superior a la de la Ροΐμ wt, que pueden ser empleados, entre otras, en técnicas de mareaje de polinucleótidos o de reunión de extremos protuberantes y romos (End joining). Así, en un primer aspecto de la presente invención, se proporcionan mutantes de Ροΐμ (en adelante, mutantes de la invención) que tienen al menos alrededor de un 10% más de actividad desoxinucleotidil-transferasa terminal que la Ροΐμ wt, preferentemente la Ροΐμ humana. Preferentemente, dicha actividad es al menos alrededor de un 25%, 50%, 75%, 100%, 200%, 300%, 400%, 500% superior a la de la Ροΐμ wt. Del mismo modo, los mutantes de la invención también tienen una actividad desoxinucleotidil-transferasa terminal igual o superior a la del mutante R387K (en adelante, también referido como mutante R), preferentemente dicha actividad es al menos alrededor de un 10% superior y, más preferentemente, al menos alrededor de un 25%, 50%, 75%, 100%, 200%, 300% superior. Estos mutantes en combinación o individualmente son susceptibles de ser empleados como herramientas moleculares, preferentemente, en cualquiera de las técnicas en que se utiliza la TdT, bien como sustitutivos de ésta o en combinación con la misma. The authors of the present invention have developed Ροΐμ mutants that exhibit a higher terminal deoxynucleotidyl transferase activity than the wild-type enzyme (Ροΐμ wt: UniProtKB / Swiss-Prot Q9NP87: SEQ ID NO: 17) and even that TdT itself. Specifically, the invention provides several Ροΐμ mutants with a high terminal deoxynucleotidyl transferase activity, superior to that of Ροΐμ wt, which can be used, among others, in polynucleotide or blunt end assembly techniques (End joining). Thus, in a first aspect of the present invention, Ροΐμ mutants (hereinafter, mutants of the invention) are provided which have at least about 10% more terminal deoxynucleotidyl transferase activity than Ροΐμ wt, preferably human Ροΐμ . Preferably, said activity is at least about 25%, 50%, 75%, 100%, 200%, 300%, 400%, 500% higher than that of the Ροΐμ wt. Similarly, the mutants of the invention also have a terminal deoxynucleotidyl transferase activity equal to or greater than that of the R387K mutant (hereinafter, also referred to as an R mutant), preferably said activity is at least about 10% higher and, more preferably, at least about 25%, 50%, 75%, 100%, 200%, 300% higher. These mutants in combination or individually are capable of being used as molecular tools, preferably, in any of the techniques in which TdT is used, either as substitutes for it or in combination with it.
En un segundo aspecto de la invención se proporciona una secuencia polinucleotídica (en adelante, secuencia polinucleotídica o polinucleótido de la invención) que codifica cualquiera de los mutantes de la invención. Del mismo modo, también forman parte de la invención cualquier: i) vector que comprenda al polinucleótido de la invención o ii) célula huésped que comprenda la secuencia polinucleotídica de la invención o un vector de acuerdo con la invención. In a second aspect of the invention there is provided a polynucleotide sequence (hereinafter, polynucleotide sequence or polynucleotide of the invention) encoding any of the mutants of the invention. Similarly, any part of the invention is also part of: i) vector comprising the polynucleotide of the invention or ii) host cell comprising the polynucleotide sequence of the invention or a vector according to the invention.
En un tercer aspecto, la invención se refiere a un método para la producción de los mutantes de la invención que preferentemente comprende: i) el cultivo de una célula huésped de acuerdo con la invención y ii) el aislamiento del muíante producido. In a third aspect, the invention relates to a method for the production of the mutants of the invention that preferably comprises: i) the cultivation of a host cell according to the invention and ii) the isolation of the produced mutant.
Un cuarto aspecto de la invención se refiere al empleo de los mutantes de la invención como herramienta molecular, preferentemente, en todas aquellas técnicas donde participa la TdT, bien como sustitutivos de ésta o en combinación con la misma. Más concretamente, los mutantes de la invención en combinación o individualmente son susceptibles de ser empleados en ensayos de: i) mareaje de extremos de polinucleótidos de cadena simple (heteropolímeros u homopolímeros) y cadena doble (extremos protuberantes o romos), ii) reunión de extremos protuberantes y romos, iii) polimerización dependiente o independiente de molde, iv) rellenado de gaps o huecos (gap-filling), v) detección de roturas de ADN (mismatch detection; e.g. TUNEL), vi) mutagénesis o generación de variabilidad, etc. A fourth aspect of the invention refers to the use of the mutants of the invention as a molecular tool, preferably, in all those techniques where TdT participates, either as substitutes for it or in combination with it. More specifically, the mutants of the invention in combination or individually are capable of being used in tests of: i) single-stranded (single-stranded or homopolymer) and double-stranded polynucleotide endpoints (ii) protruding or blunt ends, ii) gathering of protuberant and blunt ends, iii) mold-dependent or independent polymerization, iv) gaps or void filling (gap-filling), v) DNA breakage detection (mismatch detection; eg TUNEL), vi) mutagenesis or generation of variability, etc.
Un quinto aspecto de la invención proporciona kits que comprenden cualquiera de los mutantes de la invención, preferentemente, para llevar a cabo cualquiera de los ensayos referidos en el párrafo anterior. Adicionalmente, además de los componentes necesarios para poner en marcha el correspondiente ensayo (e.g. tampones, cebadores, dNTPs, ddNTPs, marcadores, etc.), los kits pueden comprender TdT o mutantes de la misma. El empleo de dichos kits para las aplicaciones previamente mencionadas, por ejemplo, en ensayos de: i) mareaje de extremos de polinucleótidos de cadena simple (heteropolímeros u homopolímeros) y cadena doble (extremos protuberantes o romos), ii) reunión de extremos protuberantes y romos, iii) polimerización dependiente o independiente de molde, iv) rellenado de gaps o huecos {gap-filling), v) detección de roturas de ADN (mismatch detection; e.g. TUNEL), vi) mutagénesis o generación de variabilidad, etc., constituye un aspecto adicional de esta invención A fifth aspect of the invention provides kits comprising any of the mutants of the invention, preferably, for carrying out any of the tests referred to in the preceding paragraph. Additionally, in addition to the components necessary to launch the corresponding assay (eg buffers, primers, dNTPs, ddNTPs, markers, etc.), the kits may comprise TdT or mutants thereof. The use of such kits for the aforementioned applications, for example, in tests of: i) single-stranded (single-stranded or homopolymer) and double-stranded polynucleotide ends (protruding or blunt ends), ii) protruding ends and blunt, iii) mold-dependent or independent polymerization, iv) filling gaps or gaps (gap-filling), v) DNA break detection (mismatch detection; eg TUNEL), vi) mutagenesis or generation of variability, etc., constitutes an additional aspect of this invention
Definiciones Definitions
El término "actividad deoxinucleotidil-transferasa terminal" o "actividad transferasa terminal" se define como la capacidad de llevar a cabo reacciones de polimerización independiente de molde, añadiendo nucleótidos a un extremo 3ΌΗ sin ser éstos seleccionados por ningún criterio de complementariedad de bases. Esta actividad puede ser medida mediante diferentes ensayos sobre diferentes tipos de sustratos, preferentemente, sobre ADN de cadena simple homopoliméricas (ver Ejemplos 1 y 3). A lo largo de la descripción, cuando se indica que esta actividad se encuentra incrementada o mejorada implica que ésta es al menos un 10% más elevada que la de la Ροΐμ wt, preferentemente que la de la Ροΐμ humana. Preferentemente, dicha actividad es al menos alrededor de un 25%, 50%, 75%, 100%, 200%, 300%, 400%, 500% superior a la de Ροΐμ wt, preferentemente que la de la Ροΐμ humana. The term "terminal deoxynucleotidyl transferase activity" or "terminal transferase activity" is defined as the ability to carry out template independent polymerization reactions, adding nucleotides to a 3ΌΗ end without being selected by any criteria of base complementarity. This activity can be measured by different tests on different types of substrates, preferably on homopolymeric single stranded DNA (see Examples 1 and 3). Throughout the description, when it is indicated that this activity is increased or improved, it implies that it is at least 10% higher than that of Ροΐμ wt, preferably that of human Ροΐμ. Preferably, said activity is at least about 25%, 50%, 75%, 100%, 200%, 300%, 400%, 500% higher than that of Ροΐμ wt, preferably that of human Ροΐμ.
El término "identidad" o "tanto por ciento (%) de identidad" hace referencia a dos o más secuencias o subsecuencias que tienen en común un porcentaje específico de aminoácidos o nucleótidos, cuando éstas son comparadas y alineadas para encontrar la máxima correspondencia entre ambas. Este parámetro puede ser medido mediante técnicas de comparación de secuencia sobradamente conocidas en el estado de la técnica, preferentemente mediante los algoritmos BLAST o FASTA, empleando los parámetros cargados por defecto. The term "identity" or "percentage of identity (%)" refers to two or more sequences or sub-sequences that have in common a specific percentage of amino acids or nucleotides, when they are compared and aligned to find maximum correspondence between the two. . This parameter can be measured by sequence comparison techniques well known in the state of the art, preferably by BLAST or FASTA algorithms, using the parameters loaded by default.
El término "vector" hace referencia a un polinucleótido lineal o circular (e.g. plásmidos, cromosoma bacteriano) que comprende una secuencia polinucleotídica, donde preferentemente dicho vector está adaptado para la amplificación, replicación y/o expresión de dicho polinucleótido. Además, estos vectores pueden contener regiones que permitan controlar o potencien la amplificación, expresión y/o replicación del polinucleótido, así como otras que faciliten o promuevan la excreción o captura de los polipéptidos resultantes de la expresión del polinucleótido. The term "vector" refers to a linear or circular polynucleotide (e.g. plasmids, bacterial chromosome) comprising a polynucleotide sequence, wherein said vector is preferably adapted for amplification, replication and / or expression of said polynucleotide. In addition, these vectors may contain regions that allow the amplification, expression and / or replication of the polynucleotide to be controlled or enhanced, as well as others that facilitate or promote the excretion or capture of the polypeptides resulting from the expression of the polynucleotide.
El término "célula huésped" hace referencia a una célula o grupo de células (eucariota o procariota) que contiene un vector o polinucleótido según la presente invención. El término "polinucleótidos" hace referencia tanto a polímeros de ADN como de ARN de cadena doble o simple. Ambos polímeros cuando están en forma de cadena doble pueden tener extremos romos o protuberantes. El término "nucleótidos" hace referencia a ribonucleótidos, desoxirribonucleótidos (dNTPs) o didesoxinucleótidos (ddNTPs) que, preferentemente, se encuentran marcados o modificados para permitir su identificación y/o seguimiento. Preferentemente, el mareaje de los nucleótidos es realizado con fluoróforos (e.g. Cy3, Cy5, fluoresceína) o biotina. A lo largo de la descripción cuando los nucleótidos están marcados con fluoróforos, éstos son referidos como nucleótidos fluorescentes. The term "host cell" refers to a cell or group of cells (eukaryotic or prokaryotic) that contains a vector or polynucleotide according to the present invention. The term "polynucleotides" refers to both double and single stranded DNA and RNA polymers. Both polymers when in double chain form can have blunt or protruding ends. The term "nucleotides" refers to ribonucleotides, deoxyribonucleotides (dNTPs) or dideoxynucleotides (ddNTPs) that, preferably, are labeled or modified to allow their identification and / or monitoring. Preferably, nucleotide mapping is performed with fluorophores (eg Cy3, Cy5, fluorescein) or biotin. Throughout the description when nucleotides are labeled with fluorophores, they are referred to as fluorescent nucleotides.
El término "análogos de nucleótido" hace referencia a compuestos o moléculas que, para una aplicación concreta, se comportan de una manera similar o análoga a un nucleótido y que no tienen una estructura particular o específica, aunque preferentemente su estructura permite la detección de su incorporación a polinucleótidos y/o la parada de la reacción de polimerización. Ejemplos de estos compuestos pueden ser encontrados en otras solicitudes como WO95/07920, WO2005/051530, WO2008/016909. The term "nucleotide analogs" refers to compounds or molecules that, for a specific application, behave in a similar or analogous way to a nucleotide and that do not have a particular or specific structure, although preferably their structure allows the detection of their incorporation into polynucleotides and / or stopping the polymerization reaction. Examples of these compounds can be found in other applications such as WO95 / 07920, WO2005 / 051530, WO2008 / 016909.
El término "ortólogo" hace referencia a proteínas o genes que codifican para dichas proteínas, con actividad transferasa terminal, que comparten al menos alrededor de un 40% de identidad con la Ροΐμ wt, preferentemente con la Ροΐμ humana, y en realizaciones sucesivamente más preferidas al menos alrededor de un 50%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 100%. El término "mutación" preferentemente hace referencia a sustituciones, inserciones o deleciones que se producen a nivel de polipéptidos o polinucleótidos que expresan dichos polipéptidos. Estas mutaciones cuando se producen a nivel de un único aminoácido o triplete que lo codifica son denominadas como puntuales. Dentro las mutaciones puntuales se puede diferenciar entre las conservativas y las no conservativas, entendiéndose a las primeras como aquéllas que se producen cuando un aminoácido es sustituido por otro de similares características, según la Tabla 1. Tabla 1 The term "ortholog" refers to proteins or genes encoding said proteins, with terminal transferase activity, which share at least about 40% identity with the Ροΐμ wt, preferably with the human Ροΐμ, and in successively more preferred embodiments. at least about 50%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 100%. The term "mutation" preferably refers to substitutions, insertions or deletions that occur at the level of polypeptides or polynucleotides that express said polypeptides. These mutations when they occur at the level of a single amino acid or triplet that encodes it are referred to as point. Within the point mutations can be differentiated between conservative and non-conservative, the former being understood as those that occur when an amino acid is replaced by another of similar characteristics, according to Table 1. Table 1
Figure imgf000007_0001
Figure imgf000007_0001
La expresión "alrededor de", tal y como se usa a lo largo de la descripción, hace referencia a la variación de entre el ± 5% que puede presentar un valor dado (e.g., identidad o actividad), preferentemente entre el ± 3% y más preferentemente ± 1%. The expression "around", as used throughout the description, refers to the variation of between ± 5% that a given value (eg, identity or activity) may present, preferably between ± 3% and more preferably ± 1%.
El término "sustancialmente", tal y como se usa a lo largo de la descripción, hace referencia a la variación de entre el ± 10% que puede presentar un valor dado (e.g. actividad), preferentemente entre el ± 5% y más preferentemente ± 1%. The term "substantially", as used throughout the description, refers to the variation between ± 10% that a given value (eg activity) may present, preferably between ± 5% and more preferably ± one%.
Los términos "fragmentos" o "subsecuencias" hacen referencia porciones de polipéptidos o polinucleótidos que codifican para dichos polipéptidos, que mantienen la actividad transferasa terminal incrementada o sustancialmente incrementada. The terms "fragments" or "subsequences" refer to portions of polypeptides or polynucleotides encoding said polypeptides, which maintain the increased or substantially increased terminal transferase activity.
BREVE DESCRIPCION DE LAS FIGURAS BRIEF DESCRIPTION OF THE FIGURES
La figura 1 muestra la actividad transferasa terminal de cada uno de los mutantes [μ-Κ387Κ- F389G, μ(}275Μ, μΚ387Κ-(2275Μ, μΚ.387Κ-Οι1οορ1 , μ-Ν457ϋ, μ-8458Ν y μ-Ν457ϋ-8458Ν (Ejemplo 1)], en comparación con la de la Ροΐμ wt y la de la TdT comercial. Figure 1 shows the terminal transferase activity of each of the mutants [μ-Κ387Κ- F389G, μ (} 275Μ, μΚ387Κ- (2275Μ, μΚ.387Κ-Οι1οορ1, μ-Ν457ϋ, μ-8458Ν and μ-Ν457ϋ-8458Ν (Example 1)], compared to that of the Ροΐμ wt and that of the commercial TdT.
La figura 2 muestra la actividad transferasa terminal de los mutantes dobles ^-R387K/Q275M y μ-Ι1387ΚΛΐ:ΐύοορ1) a dosis decrecientes de polimerasa (400 nM, 200 nM y 100 nM). La figura 3 muestra la actividad transferasa terminal de los mutantes dobles ^-R387K/Q275M y μ-Ρν387Κ/Οη1οορ1) y de los mutantes simples (μ-Ι1387Κ, μ-Chloopl y μ-(3275Μ y en comparación con la de la Ροΐμ wt, con cada uno de los 4 dNTPs por separado. La figura 4 muestra la actividad transferasa terminal de los mutantes dobles ^-R387K/F389G, μ-ί087Κ/ς)275Μ y μ-Κ387Κ/Οη1οορ1) y de los mutantes simples (μ-Ρν387Κ y μ-ς>275Μ), en comparación con la de la Ροΐμ wt, con cada uno los 4 dNTPS en presencia de Co2+ como metal activador. La figura 5 muestra los resultados del ensayo realizado para comparar si los mutantes dobles
Figure imgf000008_0001
; M2= μ-Ρ275Μ) tienen afectada su capacidad de polimerización dependiente de molde respecto a la de Ροΐμ wt. La figura 6 muestra la dependencia de molde de los mutantes dobles (M3 y M7) y de los mutantes simples (R, Ch y M2) en el contexto de un gap de ADN de 1 nucleótido con fosfato.
Figure 2 shows the terminal transferase activity of the double mutants ^ -R387K / Q275M and μ-Ι1387ΚΛΐ: ΐύοορ1) at decreasing doses of polymerase (400 nM, 200 nM and 100 nM). Figure 3 shows the terminal transferase activity of the double mutants ^ -R387K / Q275M and μ-Ρν387Κ / Οη1οορ1) and of the simple mutants (μ-Ι1387Κ, μ-Chloopl and μ- (3275Μ and compared to that of Ροΐμ wt, with each of the 4 dNTPs separately Figure 4 shows the terminal transferase activity of the double mutants ^ -R387K / F389G, μ-ί087Κ / ς) 275Μ and μ-Κ387Κ / Οη1οορ1) and of the simple mutants ( μ-Ρν387Κ and μ-ς> 275Μ), compared to that of Ροΐμ wt, with each 4 dNTPS in the presence of Co 2+ as the activating metal. Figure 5 shows the results of the test performed to compare whether the double mutants
Figure imgf000008_0001
; M2 = μ-Ρ275Μ) have a mold-dependent polymerization capacity with respect to that of Ροΐμ wt. Figure 6 shows the mold dependence of the double mutants (M3 and M7) and the simple mutants (R, Ch and M2) in the context of a 1 nucleotide DNA gap with phosphate.
La figura 7 muestra los resultados del ensayo de mareaje con derivados fluorescentes del DNA o de ddNTPs, con los mutantes indicados de Ροΐμ (M1-M7), junto con Ροΐμ wt y TdT sobre polinucleótidos de cadena sencilla. Figure 7 shows the results of the fluorescent derivative assay of DNA or ddNTPs, with the indicated mutants of Ροΐμ (M1-M7), together with Ροΐμ wt and TdT on single chain polynucleotides.
La figura 8 muestra los resultados del ensayo de mareaje con derivados fluorescentes del DNA o de ddNTPs, con los mutantes indicados de Ροΐμ (R, Ch, M2, M3 y M7), sobre polinucleótidos de cadena sencilla. Figure 8 shows the results of the fluorescent derivative assay of DNA or ddNTPs, with the indicated mutants of Ροΐμ (R, Ch, M2, M3 and M7), on single chain polynucleotides.
La figura 9 muestra los resultados del ensayo de mareaje con derivados fluorescentes del DNA o de ddNTPs, con los mutantes indicados de Ροΐμ (R, Ch, M2, M3 y M7), sobre polinucleótidos de cadena sencilla. La figura 10 muestra los resultados del ensayo de mareaje con derivados fluorescentes del DNA o de ddNTPs, con los mutantes indicados de Ροΐμ (R, Ch, M2, M3 y M7), sobre polinucleótidos de cadena sencilla. Figure 9 shows the results of the fluorescent derivative assay of DNA or ddNTPs, with the indicated mutants of Ροΐμ (R, Ch, M2, M3 and M7), on single chain polynucleotides. Figure 10 shows the results of the fluorescent derivative assay of DNA or ddNTPs, with the indicated mutants of Ροΐμ (R, Ch, M2, M3 and M7), on single chain polynucleotides.
La figura 11 muestra cómo la reacción de mareaje con M3 y M7 es altamente eficaz con los 4 ddNTPs fluorescentes, tanto en presencia de Mn2+ como de Co2+. La figura 12 muestra el alineamiento de las secuencias polipeptídicas de Ροΐμ wt de Mus musculus, Rattus norvegicus y Bos taurus con el muíante M3. En la parte superior, la flecha indica el aminoácido 275 de Ροΐμ wt humana. En la parte inferior, la flecha indica el aminoácido 387 de Ροΐμ wt humana. Figure 11 shows how the tidal reaction with M3 and M7 is highly effective with the 4 fluorescent ddNTPs, both in the presence of Mn 2+ and Co 2+ . Figure 12 shows the alignment of the ipeοΐμ wt polypeptide sequences of Mus musculus, Rattus norvegicus and Bos taurus with the M3 mutant. At the top, the arrow indicates amino acid 275 of human Ροΐμ wt. At the bottom, the arrow indicates amino acid 387 of human Ροΐμ wt.
La figura 13 muestra el alineamiento de las secuencias polipeptídicas de Ροΐμ wt humana y la TdT de origen humano, murino y bovino. Las flechas muestran la posición de los aminoácidos 275, 387, 457 y 458 en la Ροΐμ wt humana. Figure 13 shows the alignment of the human Ροΐμ wt polypeptide sequences and the TdT of human, murine and bovine origin. The arrows show the position of amino acids 275, 387, 457 and 458 in human Ροΐμ wt.
La figura 14 muestra la estructura tridimensional de la Ροΐμ wt humana. A) la flecha indica la posición del aminoácido R387, B) la flecha indica la posición del aminoácido Q275, C) la flecha indica la posición del aminoácido N457 y D) la flecha indica la posición del aminoácido S458. Figure 14 shows the three-dimensional structure of the human Ροΐμ wt. A) the arrow indicates the position of amino acid R387, B) the arrow indicates the position of amino acid Q275, C) the arrow indicates the position of amino acid N457 and D) the arrow indicates the position of amino acid S458.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN DETAILED DESCRIPTION OF THE INVENTION
La enzima TdT, también conocida como deoxinucleotidil-transferasa terminal o transferasa terminal, es una ADN polimerasa especializada que se expresa fundamentalmente en linfocitos B y T inmaduros, además de en determinados tipos de tumores. Hasta el descubrimiento de la Ροΐμ en el año 2000 por el laboratorio del Dr. Luis Blanco {Domínguez et al., (2000), citado supra), la TdT era la única polimerasa conocida con capacidad de adicionar o unir nucleótidos a un extremo 3ΌΗ de polinucleótidos sin requerir una cadena molde. Sin embargo, tal y como se ha mencionado anteriormente, la baja actividad deoxinucleotidil transferasa terminal de Ροΐμ wt en comparación con la TdT ha imposibilitado que, hasta la fecha, esta enzima haya podido convertirse en una alternativa viable a la TdT. The TdT enzyme, also known as terminal deoxynucleotidyl transferase or terminal transferase, is a specialized DNA polymerase that is primarily expressed in immature B and T lymphocytes, in addition to certain types of tumors. Until the discovery of Ροΐμ in 2000 by the laboratory of Dr. Luis Blanco {Domínguez et al., (2000), cited above), TdT was the only known polymerase with the ability to add or bind nucleotides to an end 3ΌΗ of polynucleotides without requiring a template chain. However, as mentioned above, the low terminal deoxynucleotidyl transferase activity of Ροΐμ wt compared to TdT has made it impossible for this enzyme to date to become a viable alternative to TdT.
En la presente invención se presentan una serie de mutantes de Ροΐμ wt que aumentan la actividad deoxinucleotidil transferasa terminal de la Ροΐμ silvestre e incluso de la TdT. Preferentemente, dichos mutantes proceden o se derivan de la Ροΐμ wt humana, aunque también pueden ser obtenidos a partir de la Ροΐμ de otros vertebrados (polimerasas ortólogas de Ροΐμ), preferentemente mamíferos, tales como Mus musculus, Rattus norvegicus, Bos taurus, entre otros. In the present invention, a series of Ροΐμ wt mutants are presented that increase the terminal deoxynucleotidyl transferase activity of wild Ροΐμ and even TdT. Preferably, said mutants are derived from or derived from human Ροΐμ wt, although they can also be obtained from the Ροΐμ of other vertebrates (orthologous rasο deμ polymerases), preferably mammals, such as Mus musculus, Rattus norvegicus, Bos taurus, among others .
La obtención de mutantes, a partir de polimerasas ortólogas a la Ροΐμ wt humana (o del gen que las codifica) y la enseñaza de la presente invención, puede ser llevada a cabo de manera simple por un experto en la materia, tal y como se explica en el Ejemplo 12. Del mismo modo, nuevos mutantes con la actividad transferasa terminal incrementada, tal como sucede con los mutantes de la presente invención, pueden ser también obtenidos fácilmente, tal y como se muestra en el Ejemplo 13. Mutantes de Ροΐμ y polinucleótidos de la invención Obtaining mutants, from orthologous polymerases to human Ροΐμ wt (or the gene that encodes them) and the teaching of the present invention, can be carried out simply by a person skilled in the art, as is explained in Example 12. Similarly, new mutants with increased terminal transferase activity, as with the mutants of the present invention, can also be easily obtained, as shown in Example 13. Ροΐμ mutants and polynucleotides of the invention
TdT y Ροΐμ wt son dos enzimas que pertenecen a la familia X de ADN polimerasa que se caracterizan por ser de pequeño tamaño (entre 39 y 66 KDa), siendo ambas en general bastante imprecisas durante la síntesis de ADN. Son enzimas distributivas con poca capacidad para sintetizar más que unas pocas bases antes de disociarse del ADN. Además de pertenecer a la misma familia y tener actividad deoxinucleotidil-transferasa terminal, estas polimerasas presentan un dominio BRCT (Dominio C-terminal de BRCA1), implicado en la interacción proteína-proteína, que no se encuentra presente en otros miembros de la familia X como la polimerasa beta (Ροΐβ). Cuando este dominio es eliminado junto con el resto del extremo amino (NH2- BRCT-) e incluso con parte del dominio 8 KDa (NH2- BRCT- KDa-) la actividad TdT de estas enzimas no se ve afectada (ver tabla 2). TdT and Ροΐμ wt are two enzymes that belong to the X family of DNA polymerase that are characterized by being small (between 39 and 66 KDa), both being generally quite inaccurate during DNA synthesis. They are distributive enzymes with little capacity to synthesize more than a few bases before dissociating from DNA. In addition to belonging to the same family and having terminal deoxynucleotidyl transferase activity, these polymerases have a BRCT domain (C-terminal domain of BRCA1), involved in the protein-protein interaction, which is not present in other members of family X like beta polymerase (Ροΐβ). When this domain is eliminated together with the rest of the amino terminus (NH2-BRCT-) and even with part of the 8 KDa domain (NH2-BRCT-KDa-) the TdT activity of these enzymes is not affected (see table 2).
El dominio de 8 KDa es también característico de las enzimas de esta familia, encontrándose presente tanto en Ροΐμ wt como en TdT. Este dominio confiere a estas polimerasas la capacidad de anclaje a los gaps que se producen en el ADN, permitiéndoles realizar de manera efectiva su actividad biológica. Incluso, la distribución de aminoácidos entre los diferentes dominios de estas dos enzimas es bastante similar, tal y como se puede ver en la Tabla 2. The 8 KDa domain is also characteristic of the enzymes of this family, being present in both Ροΐμ wt and TdT. This domain gives these polymerases the ability to anchor the gaps that occur in the DNA, allowing them to effectively perform their biological activity. Even, the distribution of amino acids between the different domains of these two enzymes is quite similar, as can be seen in Table 2.
Figure imgf000010_0001
Figure imgf000010_0001
A pesar de las claras similitudes estructurales existentes entre ambas proteínas, el grado de identidad que comparten se encuentra en torno al 40% y, por tanto, presentan un gran número de aminoácidos diferentes o no conservados (aproximadamente 300). Mediante alineamiento y comparación de secuencias entre TdT y Ροΐμ wt, los autores de la presente invención identificaron y seleccionaron un grupo de aminoácidos conservados en Ροΐμ wt y TdT, pero diferentes entre ambas enzimas. Dichos aminoácidos se revertieron en Ροΐμ wt hacia el aminoácido de TdT para así obtener una serie de mutantes simples y dobles con una potencial mejor actividad desoxinucleotidil-transferasa terminal. Además de estos mutantes puntuales, se generó otro muíante que comprendía una mutación puntual y la sustitución del subdominio loop-1 por el mismo subdominio de TdT (ver Tabla 2). El ensayo de estos mutantes ha ofrecido resultados sorprendentes en cuanto a su actividad desoxinucleotidil-transferasa terminal, de tal modo que la presente invención aporta una serie de mutantes de Ροΐμ que presentan una mayor actividad transferasa terminal que Ροΐμ wt e incluso que la propia TdT. Despite the clear structural similarities between the two proteins, the degree of identity they share is around 40% and, therefore, they have a large number of different or non-conserved amino acids (approximately 300). By aligning and comparing sequences between TdT and Ροΐμ wt, the authors of the present invention identified and selected a group of amino acids conserved in Ροΐμ wt and TdT, but different between both enzymes. These amino acids were reversed in Ροΐμ wt towards the amino acid of TdT in order to obtain a series of single and double mutants with a potential better terminal deoxynucleotidyl transferase activity. In addition to these point mutants, another mutant was generated that included a point mutation and the substitution of the loop-1 subdomain with the same TdT subdomain (see Table 2). The assay of these mutants has offered surprising results in terms of their terminal deoxynucleotidyl transferase activity, such that the present invention provides a series of ΐοΐμ mutants that exhibit a greater terminal transferase activity than Ροΐμ wt and even that TdT itself.
Así en un primer aspecto de la presente invención, los mutantes de la invención tienen al menos alrededor de un 10% más de actividad desoxinucleotidil-transferasa terminal que la Ροΐμ wt, preferentemente que la Ροΐμ wt humana. Preferentemente, dicha actividad es al menos alrededor de un 25%, 50%, 75%, 100%, 200%, 300%, 400%, 500% superior a la de la Ροΐμ wt. Del mismo modo, los mutantes de la invención también tienen una actividad desoxinucleotidil- transferasa terminal igual o superior a la del mutante R, preferentemente dicha actividad es al menos alrededor de un 10% superior y, más preferentemente, al menos alrededor de un 25%, 50%, 75%, 100%, 200%, 300% superior. Estos mutantes, en combinación o individualmente, son susceptibles de ser empleados como herramientas moleculares, preferentemente, en cualquiera de las técnicas en las que se utiliza TdT, como sustitutivos de ésta o en combinación con la misma. En una realización preferida de este aspecto de la invención los mutantes comprenden al menos dos mutaciones. Thus, in a first aspect of the present invention, the mutants of the invention have at least about 10% more terminal deoxynucleotidyl transferase activity than Ροΐμ wt, preferably human Ροΐμ wt. Preferably, said activity is at least about 25%, 50%, 75%, 100%, 200%, 300%, 400%, 500% higher than that of the Ροΐμ wt. Similarly, the mutants of the invention also have a terminal deoxynucleotidyl transferase activity equal to or greater than that of the R mutant, preferably said activity is at least about 10% higher and, more preferably, at least about 25% , 50%, 75%, 100%, 200%, 300% higher. These mutants, in combination or individually, are likely to be used as molecular tools, preferably, in any of the techniques in which TdT is used, as substitutes for it or in combination with it. In a preferred embodiment of this aspect of the invention the mutants comprise at least two mutations.
En una realización preferida, los mutantes de Ροΐμ comprenden una secuencia polipeptídica con al menos un 60% de identidad con la secuencia SEQ ID NO: 17 (Ροΐμ wt: UniProtKB/Swiss- Prot Q9NP87), o con cualquiera de sus subsecuencias SEQ ID NO: 1 y SEQ Π) NO:2, o con fragmentos de las mismas, donde dichos mutantes comprenden al menos dos mutaciones y mantienen una actividad transferasa terminal incrementada. Preferentemente, dichas mutaciones son (i) una primera mutación puntual en la posición 387 y (ii) una segunda mutación que consiste en: In a preferred embodiment, the Ροΐμ mutants comprise a polypeptide sequence with at least 60% identity with the sequence SEQ ID NO: 17 (Ροΐμ wt: UniProtKB / Swiss-Prot Q9NP87), or with any of its SEQ ID NO sub-sequences : 1 and SEQ Π) NO: 2, or with fragments thereof, wherein said mutants comprise at least two mutations and maintain an increased terminal transferase activity. Preferably, said mutations are (i) a first point mutation at position 387 and (ii) a second mutation consisting of:
a) una mutación puntual en un aminoácido conservado de Ροΐμ, donde preferentemente dicha mutación puntual consiste en una reversión hacia el aminoácido homólogo presente en TdT, o  a) a point mutation in a conserved amino acid of Ροΐμ, where preferably said point mutation consists of a reversal towards the homologous amino acid present in TdT, or
b) una mutación en el subdominio loop-1. En realizaciones más preferidas el grado de identidad de los mutantes de Ροΐμ con la secuencia Q9NP87, cualquiera de sus subsecuencias SEQ ID NO:l y SEQ ID NO:2, o fragmentos de las mismas es alrededor de al menos un 65,% 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, o del 100%. b) a mutation in the subdomain loop-1. In more preferred embodiments the degree of identity of the Ροΐμ mutants with the sequence Q9NP87, any of its sub-sequences SEQ ID NO: l and SEQ ID NO: 2, or fragments thereof is about at least 65, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%.
También, preferentemente, la primera mutación puntual (i) de los mutantes de Ροΐμ consiste en la sustitución del aminoácido que se encuentra en la posición 387 por cualquiera de los aminoácidos seleccionados del grupo que comprende: Glutamina, Asparragina, Cisterna, Treonina, Serina, Metionina, Lisina, Arginina, Histidina o análogos de los mismos, aunque todavía más preferentemente dicha mutación puntual consiste en la sustitución o reversión R387K (mutación no conservativa). Also, preferably, the first point mutation (i) of the Ροΐμ mutants consists in replacing the amino acid found at position 387 with any of the amino acids selected from the group comprising: Glutamine, Asparagine, Cistern, Threonine, Serine, Methionine, Lysine, Arginine, Histidine or the like thereof, although even more preferably said point mutation consists of R387K substitution or reversal (non-conservative mutation).
Preferentemente, la segunda mutación (ii) correspondiente a la mutación puntual (a) se localiza en la posición 275. Preferentemente, esta mutación consiste en la sustitución del aminoácido que se encuentra en dicha posición (275) por cualquiera de los aminoácidos seleccionados del grupo que comprende: Glutamina, Asparragina, Cisteína, Treonina, Serina, Metionina o análogos de los mismos, aunque todavía más preferentemente dicha mutación puntual consiste en la sustitución Q275M (mutación conservativa). En otra realización también preferida, la segunda mutación (ii) consiste en (b) una mutación en el subdominio loop-1, tal como la sustitución o modificación del subdominio loop-1 o fragmentos del mismo por: i) una secuencia con al menos alrededor de un 10% de identidad con la SEQ ID NO: 3 (loop-1 de Ροΐμ), preferentemente, con al menos alrededor de un 15%, 20%, 25%, 30%, 50%, 60%, 70%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, o ii) por una secuencia con al menos alrededor de un 10% de identidad con la SEQ ID NO: 4 (loop-1 de TdT), preferentemente, con al menos alrededor de un 15%, 20%, 25%, 30%, 50%, 60%, 70%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%. En una realización particular, dicha secuencia es la SEQ ID NO:4, la cual comparte alrededor de un 20% de identidad con la SEQ ID NO:3. Más específicamente, los mutantes de la invención tienen las secuencias SEQ ID NO:5, que comprende las mutaciones puntuales R387K y Q275M (en adelante, mutante M3), o SEQ ID NO: 6, que comprende la mutación puntual R387K y la inserción del loop-1 de TdT en el lugar del loop-1 de Ροΐμ (en adelante, mutante M7). Del mismo modo, la invención también comprende fragmentos o subsecuencias de las secuencias SEQ ED NO:5 o SEQ ID NO:6 que comprenden las referidas mutaciones y, preferentemente, mantienen sustancialmente su actividad deoxinucleotidil-transferasa terminal incrementada. Preferentemente dichos fragmentos tienen las secuencias SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, o SEQ ID NO: 10. Preferably, the second mutation (ii) corresponding to the point mutation (a) is located at position 275. Preferably, this mutation consists in replacing the amino acid found in said position (275) with any of the amino acids selected from the group comprising: Glutamine, Asparagine, Cysteine, Threonine, Serine, Methionine or the like thereof, although even more preferably said point mutation consists of the Q275M substitution (conservative mutation). In another also preferred embodiment, the second mutation (ii) consists of (b) a mutation in the loop-1 subdomain, such as the replacement or modification of the loop-1 subdomain or fragments thereof by: i) a sequence with at least about 10% identity with SEQ ID NO: 3 (loop-1 of Ροΐμ), preferably, with at least about 15%, 20%, 25%, 30%, 50%, 60%, 70% , 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or ii) by a sequence with at least about 10% identity with SEQ ID NO: 4 (loop -1 of TdT), preferably, with at least about 15%, 20%, 25%, 30%, 50%, 60%, 70%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%. In a particular embodiment, said sequence is SEQ ID NO: 4, which shares about 20% identity with SEQ ID NO: 3. More specifically, the mutants of the invention have the sequences SEQ ID NO: 5, which comprises the point mutations R387K and Q275M (hereinafter, mutant M3), or SEQ ID NO: 6, which comprises the point mutation R387K and the insertion of the loop-1 of TdT in the place of loop-1 of Ροΐμ (hereinafter, mutant M7). Similarly, the invention also comprises fragments or sub-sequences of the sequences SEQ ED NO: 5 or SEQ ID NO: 6 comprising said mutations and, preferably, substantially maintaining their increased terminal deoxynucleotidyl transferase activity. Preferably said fragments have the sequences SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9, or SEQ ID NO: 10.
De acuerdo con la invención, ésta también proporciona un imitante que comprende una secuencia polipeptídica con al menos un 60% de identidad con la secuencia Q9NP87 (Ροΐμ wt humana: SEQ ID NO: 17) y al menos una mutación puntual en la posición 275, donde dicho mutante presenta una actividad deoxinucleotidil-transferasa terminal mejorada o incrementada. Esta actividad es al menos alrededor de un 10%, 25%, 50%, 75%, 100%, 200%, 300% superior a la de la Ροΐμ wt. Preferentemente, dicha mutación en la posición 275 consiste en la sustitución del aminoácido que se encuentra en dicha posición por Glutamina, Asparragina, Cisteína, Treonina, Serina, Glicina, Alanina, Valina, Leucina, Isoleucina, Metionina, Prolina, Fenilalanina y Triptófano, aunque todavía más preferentemente dicha mutación puntual consiste en la sustitución Q275M. Más específicamente, este mutante tiene la secuencia SEQ ID NO: 11 (en adelante, mutante M2) o fragmentos de la misma que comprendan la mutación en la posición 275 y, preferentemente, mantengan sustancialmente su actividad transferasa terminal incrementada. Ejemplos de estos fragmentos o subsecuencias son las secuencias SEQ ID NO: 12 y la SEQ ID NO: 13. According to the invention, it also provides an imitant comprising a polypeptide sequence with at least 60% identity with the sequence Q9NP87 (human wοΐμ wt: SEQ ID NO: 17) and at least one point mutation at position 275, wherein said mutant has an enhanced or increased terminal deoxynucleotidyl transferase activity. This activity is at least about 10%, 25%, 50%, 75%, 100%, 200%, 300% higher than that of the Ροΐμ wt. Preferably, said mutation at position 275 consists in the substitution of the amino acid found in said position by Glutamine, Asparagine, Cysteine, Threonine, Serine, Glycine, Alanine, Valine, Leucine, Isoleucine, Methionine, Proline, Phenylalanine and Tryptophan, although even more preferably said point mutation consists in the Q275M substitution. More specifically, this mutant has the sequence SEQ ID NO: 11 (hereinafter, mutant M2) or fragments thereof that comprise the mutation at position 275 and, preferably, substantially maintain its increased terminal transferase activity. Examples of these fragments or subsequences are the sequences SEQ ID NO: 12 and SEQ ID NO: 13.
Un segundo aspecto de la invención proporciona una secuencia polinucleotídica que codifica cualquiera de los murantes de la invención. Del mismo modo, también forman parte de la invención: (i) un vector, que comprende cualquiera de las secuencias polinucleotídicas de acuerdo con la invención, y (ii) una célula huésped que comprende cualquiera de las secuencias polinucleótidicas o vectores de la invención. Más concretamente, la secuencia polinucleotídica de la invención comprende cualquiera de las secuencias SEQ ID NO: 14, SEQ ID NO: 15, o SEQ ID NO: 16, las cuales codifican respectivamente para los imitantes M3, M7 y M2. También forman parte de la invención las subsecuencias o fragmentos de la secuencia polinucleotídica de la invención que codifique para cualquiera de las subsecuencias o fragmentos de los imitantes de la invención. Todas estas secuencias y subsecuencias pueden ser modificadas mediante mutaciones silenciosas (e.g. mutaciones puntuales, deleciones, inserciones o sustituciones) que no tengan efecto sobre la actividad del mutante en cuestión o no modifiquen su actividad sustancialmente o que, simplemente, debido a la degeneración del código genético, no modifiquen su secuencia y consecuentemente tampoco su actividad. De este modo, también forman parte de la presente invención cualquier secuencia con al menos alrededor de un 40% de identidad con cualquiera de las SEQ ID NO: 14, SEQ ID NO: 15 y SEQ ID NO: 16 que, preferentemente, no modifique su actividad o no la modifiquen sustancialmente. Preferentemente, dicha identidad es de al menos alrededor de un 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 99%. A second aspect of the invention provides a polynucleotide sequence encoding any of the walls of the invention. Likewise, they also form part of the invention: (i) a vector, comprising any of the polynucleotide sequences according to the invention, and (ii) a host cell comprising any of the polynucleotide sequences or vectors of the invention. More specifically, the polynucleotide sequence of the invention comprises any of the sequences SEQ ID NO: 14, SEQ ID NO: 15, or SEQ ID NO: 16, which encode respectively for the mimics M3, M7 and M2. Also part of the invention are the sub-sequences or fragments of the polynucleotide sequence of the invention that codes for any of the sub-sequences or fragments of the mimics of the invention. All these sequences and sub-sequences can be modified by silent mutations (eg point mutations, deletions, insertions or substitutions) that have no effect on the activity of the mutant in question or do not modify its activity substantially or that, simply, due to the degeneracy of the code Genetic, do not modify its sequence and consequently its activity. Thus, any sequence with at least about 40% identity with any of SEQ ID NO: 14, SEQ ID NO: 15 and SEQ ID NO: 16 that preferably does not modify are also part of the present invention. its activity or do not modify it substantially. Preferably, said identity is at least about 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 99%.
Métodos de producción de los mutantes de Ροΐμ Production methods of Ροΐμ mutants
Con el objeto de producir los mutantes de la invención, las secuencias polinucleotídicas de la invención son preferentemente incorporadas en un vector que comprende una secuencia promotora o reguladora operativamente relacionada con la secuencia que codifica para el muíante de la invención. De este modo, un tercer aspecto de la invención también se refiere a un método para la producción de los mutantes de la invención que comprende: i) el cultivo de una célula huésped que comprende cualquiera de los polinucleótidos o vectores de la invención y ii) el aislamiento del muíante producido. Preferentemenle, el cullivo de la célula es realizado bajo condiciones que promuevan el crecimiento de la célula huésped y/o la expresión del polinucleólido de la invención. Prácíicamenle cualquier célula huésped que permila la expresión del polinucleólido de la invención puede ser utilizada (e.g., bacterias, levaduras, etc.). Del mismo modo, la invención también comprende la expresión o producción de los mutantes de la invención mediante síntesis química u otros sistemas de expresión in vitro libres de células ("Cell-Free Expression Systems ") sobradamente conocidos en el estado de la técnica. Usos de los mutantes Ροΐμ In order to produce the mutants of the invention, the polynucleotide sequences of the invention are preferably incorporated into a vector comprising a promoter or regulatory sequence operatively related to the sequence encoding the mutant of the invention. Thus, a third aspect of the invention also relates to a method for the production of the mutants of the invention comprising: i) the cultivation of a host cell comprising any of the polynucleotides or vectors of the invention and ii) the isolation of the mutant produced. Preferably, the cell flow is performed under conditions that promote the growth of the host cell and / or the expression of the polynucleolide of the invention. Practically any host cell that allows the expression of the polynucleolide of the invention can be used (e.g., bacteria, yeasts, etc.). Similarly, the invention also comprises the expression or production of the mutants of the invention by chemical synthesis or other cell-free expression systems ("Cell-Free Expression Systems") well known in the state of the art. Uses of the mutants Ροΐμ
Un cuarto aspecto de la invención se refiere al empleo de los mutantes de la invención como herramienta molecular, preferentemente, en todas aquellas técnicas donde se emplea la TdT. Los mutantes pueden ser empleados en este tipo de técnicas, como sustitutivos de la TdT o en combinación con la misma. Más concretamente, los mutantes de la invención en combinación o individualmente son susceptibles de ser empleados preferentemente en: i) ensayos de mareaje de extremos de polinucleótidos de cadena simple (heteropolímeros u homopolímeros) y cadena doble (extremos protuberantes o romos), ii) reunión de extremos protuberantes y romos, iii) polimerización dependiente o independiente de molde, iv) rellenado de gaps (gap-filling), v) detección de roturas de ADN mismatch detection; e.g. TUNEL), vi) mutagénesis, etc. A fourth aspect of the invention relates to the use of the mutants of the invention as a molecular tool, preferably, in all those techniques where TdT is used. Mutants can be used in these types of techniques, as substitutes for TdT or in combination with it. More specifically, the mutants of the invention, in combination or individually, are likely to be used preferably in: i) single-stranded polynucleotide (heteropolymer or homopolymer) and double-stranded (double-ended (bulging or blunt), ii) assembly tests protuberant and blunt ends, iii) mold-dependent or independent polymerization, iv) gaps filling (gap-filling), v) DNA break detection mismatch detection; e.g. TUNEL), vi) mutagenesis, etc.
De este modo, este aspecto proporciona un método para la elongación de un polinucleótido diana que comprende: i) poner en contacto a un polinucleótido diana con el mutante de la invención y nucleótidos o análogos de nucleótidos (mezcla de reacción) y ii) someter la mezcla de reacción a condiciones que favorezcan la inserción de al menos un nucleótido o análogos de nucleótidos en el extremo 3ΌΗ del polinucleótido diana. En una realización preferida el número de nucleótidos o análogos de nucleótidos insertado es de al menos 1 , 2, 3, 4 ó 5 nucleótidos y en realizaciones sucesivamente más preferidas entre 1 y 20, 3 y 20, 5 y 20, 1 y 10, 3 y 10, 5 y 10. La invención también proporciona métodos para el mareaje de polinucleótidos que comprende i) poner en contacto a un polinucleótido diana con el mutante de la invención y nucleótidos o análogos de nucleótidos marcados (mezcla de reacción), ii) someter la mezcla de reacción a condiciones que favorezcan la inserción de al menos un nucleótido o análogo del mismo en el extremo 3ΌΗ del polinucleótido diana, y iii) detectar la presencia o no de inserción. En una realización preferida el número de nucleótidos o análogos de nucleótidos marcados insertado es de al menos 1, 2, 3, 4 ó 5 nucleótidos y en realizaciones sucesivamente más preferidas entre 1 y 20, 3 y 20, 5 y 20, 1 y 10, 3 y 10, 5 y 10. Thus, this aspect provides a method for elongation of a target polynucleotide comprising: i) contacting a target polynucleotide with the mutant of the invention and nucleotides or nucleotide analogs (reaction mixture) and ii) subjecting the reaction mixture at conditions that favor the insertion of at least one nucleotide or nucleotide analogs at the 3ΌΗ end of the target polynucleotide. In a preferred embodiment the number of nucleotides or nucleotide analogs inserted is at least 1, 2, 3, 4 or 5 nucleotides and in successively more preferred embodiments between 1 and 20, 3 and 20, 5 and 20, 1 and 10, 3 and 10, 5 and 10. The invention also provides methods for polynucleotide mapping comprising i) contacting a target polynucleotide with the mutant of the invention and labeled nucleotides or nucleotide analogs (reaction mixture), ii) subjecting the reaction mixture at conditions that favor the insertion of at least one nucleotide or analogue thereof at the 3ΌΗ end of the target polynucleotide, and iii) detect the presence or not of insertion. In a preferred embodiment the number of nucleotides or labeled nucleotide analogs inserted is at least 1, 2, 3, 4 or 5 nucleotides and in successively more preferred embodiments between 1 and 20, 3 and 20, 5 and 20, 1 and 10 , 3 and 10, 5 and 10.
Los mutantes de la invención también son susceptibles de ser empleados en métodos o técnicas de gap filing que comprenden: i) poner en contacto a un polinucleótido diana, que comprende al menos un gap o hueco de al menos un nucleótido, con el mutante de la invención y nucleótidos o análogos de nucleótidos (mezcla de reacción), y ii) someter la mezcla de reacción a condiciones que favorezcan la inserción de al menos un nucleótido o análogo de nucleótido en el extremo 3ΌΗ del gap. Adicionalmente, este método comprende iii) detectar si se ha producido o no el rellenado del gap y/o iv) la adición de enzimas (e.g. nucleasas, ligasas), que liguen a los nucleótidos o análogos de nucleótidos introducidos en el polinucleótido diana, o hidrolicen al polinucleótido diana. En una realización más preferida el tamaño del gap es de al menos 1, 2, 3, 4 ó 5 nucleótidos y, más preferentemente, entre 1 y 10 nucleótidos. Estas reacciones pueden favorecerse además mediante la presencia de un grupo fosfato en las regiones 5'P del polinucleótido diana. The mutants of the invention are also capable of being employed in gap filing methods or techniques comprising: i) contacting a target polynucleotide, comprising at least one gap or gap of at least one nucleotide, with the mutant of the invention and nucleotides or nucleotide analogs (reaction mixture), and ii) subjecting the reaction mixture to conditions that favor the insertion of at least one nucleotide or nucleotide analog at the 3ΌΗ end of the gap. Additionally, this method comprises iii) detecting whether or not the gap has been filled in and / or iv) the addition of enzymes (eg nucleases, ligases), which bind to nucleotides or nucleotide analogs introduced into the target polynucleotide, or Hydrolyze the target polynucleotide. In a more preferred embodiment the gap size is at least 1, 2, 3, 4 or 5 nucleotides and, more preferably, between 1 and 10 nucleotides. These reactions can be further enhanced by the presence of a phosphate group in the 5'P regions of the target polynucleotide.
Debido a que los mutantes de la invención tienen la capacidad de incorporar nucleótidos independientemente de molde son excelentes candidatos para ser empleados en técnicas de reunión de extremos, tanto si estos son protuberantes como si son romos. Así, la invención también proporciona un método para la reunión de extremos de polinucleótidos de doble cadena que comprende: i) poner en contacto a un polinucleótido diana de doble cadena con el mutante de la invención y al menos dos nucleótidos o análogos de nucleótidos complementarios (mezcla de reacción), y ii) poner la mezcla de reacción bajo condiciones que favorezcan la introducción de un número suficiente de nucleótidos o análogos de nucleótido en cada uno de los extremos del polinucleótido diana para que se produzca la reunión. Adicionalmente, este método comprende iii) la adición de enzimas (e.g. ligasas) que liguen los extremos una vez están reunidos. En una realización preferida el número de nucleótidos o análogos de nucleótidos insertado es de al menos 1, 2, 3, 4 ó 5 nucleótidos y en realizaciones sucesivamente más preferidas entre 1 y 20, 3 y 20, 5 y 20, 1 y 10, 3 y 10, 5 y 10. Otra de las importantes aplicaciones de la actividad TdT es su uso en los ensayos TUNEL (TdT- mediated dUTP-biotin nick end labeling) que permiten la detección de muestras biológicas que están sufriendo apoptosis (Gavrieli, Y. et al. (1992) Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J. Cell. Biol. 119, 493.501). Cuando las señales de apoptosis se disparan en la célula se produce un proceso de rotura o fragmentación del ADN. Una polimerasa con actividad deoxinucleotidil transferasa terminal tiene la capacidad de introducir nucleótidos o análogos de nucleótidos en dichas roturas haciendo así visible el proceso apoptótico. Así, la presente invención proporciona un método para la detección de muestras apoptóticas, preferentemente en sus estadios tempranos. Dicho método comprende i) poner en contacto una muestra, que contiene material genético de células potencialmente apoptóticas, con el mutante de la invención y al menos un nucleótido o análogo de nucleótido (mezcla de reacción), ii) someter la mezcla de reacción a condiciones que favorezcan la inserción de nucleótidos o análogos de los mismos, y iii) detectar la presencia o no de inserción, preferentemente mediante fluorescencia, donde la detección de inserción es indicativa de la presencia de material genético fragmentado y, consecuentemente, del comienzo del proceso apoptótico en la muestra. Este mismo método puede emplearse también en técnicas destinadas a comprobar la viabilidad de una muestra biológica, como es el caso de los análisis de esperma en técnicas de reproducción asistida, donde en los espermatozoides con ADN normal sólo se detecta fluorescencia de fondo, mientras que los espermatozoides con ADN fragmentado (múltiples 3ΌΗ terminales) se tiñen con una fluorescencia intensa. La fluorescencia puede detectarse, preferentemente, tanto por citometría de flujo como a través de microscopía fluorescente. Because the mutants of the invention have the ability to incorporate nucleotides independently of template, they are excellent candidates for use in end-gathering techniques, whether they are bulging or blunt. Thus, the invention also provides a method for gathering double-stranded polynucleotide ends comprising: i) contacting a double-stranded target polynucleotide with the mutant of the invention and at least two complementary nucleotides or nucleotide analogs ( reaction mixture), and ii) placing the reaction mixture under conditions that favor the introduction of a sufficient number of nucleotides or nucleotide analogs at each end of the target polynucleotide for the meeting to occur. Additionally, this method comprises iii) the addition of enzymes (eg ligases) that bind the ends once they are together. In a preferred embodiment the number of nucleotides or nucleotide analogs inserted is at least 1, 2, 3, 4 or 5 nucleotides and in successively more preferred embodiments between 1 and 20, 3 and 20, 5 and 20, 1 and 10, 3 and 10, 5 and 10. Another important application of the TdT activity is its use in the TUNEL assays (TdT-mediated dUTP-biotin nick end labeling) that allow the detection of biological samples that are undergoing apoptosis (Gavrieli, Y . et al. (1992) Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J. Cell. Biol. 119, 493.501). When apoptosis signals are triggered in the cell, a process of DNA breakage or fragmentation occurs. A polymerase with terminal deoxynucleotidyl transferase activity has the ability to introduce nucleotides or nucleotide analogs into such breaks thus making the apoptotic process visible. Thus, the present invention provides a method for the detection of apoptotic samples, preferably in their early stages. Said method comprises i) contacting a sample, containing genetic material of potentially apoptotic cells, with the mutant of the invention and at least one nucleotide or nucleotide analogue (reaction mixture), ii) subjecting the reaction mixture to conditions that favor the insertion of nucleotides or analogs thereof, and iii) detect the presence or not of insertion, preferably by fluorescence, where the detection of insertion is indicative of the presence of fragmented genetic material and, consequently, of the beginning of the apoptotic process In the sample. This same method can also be used in techniques aimed at checking the viability of a biological sample, such as sperm analysis in assisted reproduction techniques, where in the sperm with normal DNA only background fluorescence is detected, while the Sperm with fragmented DNA (multiple 3ΌΗ terminals) are stained with intense fluorescence. The fluorescence can be detected, preferably, both by flow cytometry and by fluorescent microscopy.
En cualquiera de los métodos mencionados en los que es necesario detectar la presencia o ausencia de inserción de nucleótidos o análogos de los mismos, esta detección se puede hacer por múltiples metodologías sobradamente conocidas en el estado de la técnica, como puede ser la fluorescencia. Preferentemente, las muestras a marcar o detectar son comparadas con muestras control, de tal forma que la muestra problema es considerada positiva cuando presenta al menos alrededor de un 5% más de inserción que la muestra control y en realizaciones sucesivamente más preferidas al menos alrededor de un 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%. Tal y como se ha mencionado anteriormente, en cualquiera de los métodos descritos los mutantes de la invención pueden encontrarse en combinación con TdT o mutantes de la misma, como una forma de mejorar la eficiencia de las técnicas. Incluso varios mutantes de la invención pueden ser combinados con TdT con la misma finalidad. Otra forma de aumentar la eficiencia de los métodos mencionados comprende la adición de iones, preferentemente Mn2+ o Co2+' a las mezclas de reacción, ya que éstos son capaces de aumentar la eficiencia catalítica de los mutantes de la invención. In any of the mentioned methods in which it is necessary to detect the presence or absence of insertion of nucleotides or analogs thereof, this detection can be done by multiple methodologies well known in the state of the art, such as fluorescence. Preferably, the samples to be labeled or detected are compared with control samples, so that the test sample is considered positive when it has at least about 5% more insertion than the control sample and in successively more preferred embodiments at least about 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%. As mentioned above, in any of the methods described the mutants of the invention can be found in combination with TdT or mutants thereof, as a way to improve the efficiency of the techniques. Even several mutants of the invention can be combined with TdT for the same purpose. Another way to increase the efficiency of the mentioned methods comprises the addition of ions, preferably Mn 2+ or Co 2+ 'to the reaction mixtures, since these are capable of increasing the catalytic efficiency of the mutants of the invention.
Kits Kits
Un quinto aspecto de la invención se relaciona con kits que incorporan cualquiera de los mutantes de la invención, preferentemente, para llevar a cabo cualquiera de los métodos mencionados anteriormente. Adicionalmente, además de los componentes necesarios para poner en marcha el correspondiente ensayo (e.g. tampones, cebadores, dNTPs, ddNTPs, hNTPs, análogos de nucleótidos, iones, etc.), los kits pueden también comprender la TdT o mutantes de la misma como una forma de mejorar así la eficiencia de dichos ensayos. A fifth aspect of the invention relates to kits that incorporate any of the mutants of the invention, preferably, to carry out any of the methods mentioned above. Additionally, in addition to the components necessary to launch the corresponding assay (eg buffers, primers, dNTPs, ddNTPs, hNTPs, nucleotide analogs, ions, etc.), the kits may also comprise TdT or mutants thereof as a way to improve the efficiency of such tests.
El empleo de dichos kits para las aplicaciones previamente mencionadas, por ejemplo, en ensayos de: i) mareaje de extremos de polinucleótidos de cadena simple (heteropolímeros u homopolímeros) y cadena doble (extremos protuberantes o romos), ii) reunión de extremos protuberantes y romos, iii) polimerización dependiente o independiente de molde, iv) rellenado de gaps o huecos (gap-fdling), v) detección de roturas de ADN {mismatch detection; e.g. TUNEL), vi) mutagénesis o generación de variabilidad, etc., constituye un aspecto adicional de esta invención The use of such kits for the aforementioned applications, for example, in tests of: i) single-stranded (single-stranded or homopolymer) and double-stranded polynucleotide ends (protruding or blunt ends), ii) protruding ends and blunt, iii) mold-dependent or independent polymerization, iv) filling gaps or gaps (gap-fdling), v) DNA breakage detection {mismatch detection; e.g. TUNEL), vi) mutagenesis or generation of variability, etc., constitutes an additional aspect of this invention
EJEMPLO 1 EXAMPLE 1
Reacción de transferasa terminal  Terminal Transferase Reaction
Este ensayo muestra la actividad transferasa terminal de cada uno de los mutantes, en comparación con la Ροΐμ humana wt [SEQ ED NO: 17] y la TdT comercial de Promega (Fig. l). Se analiza la extensión máxima con cada uno de los 4 dNTPS por separado, sobre un extremo 3ΌΗ de ADN homopolimérico de cadena sencilla (PoliT). En un primer momento, se seleccionaron aquéllos mutantes que produjeron una estimulación llamativa de la actividad transferasa terminal respecto a Ροΐμ wt, para la realización de ensayos de mareaje del extremo 3ΌΗ del ADN. Materiales y métodos This assay shows the terminal transferase activity of each of the mutants, compared to the human Ροΐμ wt [SEQ ED NO: 17] and the commercial TdT of Promega (Fig. 1). The maximum extent is analyzed with each of the 4 dNTPS separately, on a 3ΌΗ end of single-chain homopolymeric DNA (PoliT). Initially, those mutants that produced a striking stimulation of the terminal transferase activity with respect to Ροΐμ wt were selected for the conduct of DNA 3-end labeling assays. Materials and methods
El oligonucleótido fluorescente utilizado para evaluar la actividad transferasa terminal fue PoliT-Cy5 (PoliT15-CY5), que fue comprado a Sigma. Los dNTPs (dATP, dCTP, dGTP y dTTP) fueron comprados a GE Healthcare. Las reacciones de polimerización se llevaron a cabo en un volumen de 10 μΐ, en presencia de 1 mM MnC^, 50 mM TrisHCl (pH 7,5), 1 mM ditiotreitol (DTT), 4% glicerol, 0.1 mg/ml seroalbúmina bovina (BSA), 20 nM del oligonucleótido fluorescente indicado en cada caso, 100 μΜ del dNTP indicado en cada caso, y 600 nM de la proteína indicada en cada caso, a excepción de la TdT comercial de Promega (1 unidad). Tras una incubación de 30 min a 37°C, las reacciones se pararon añadiendo 5,6 μΐ de tampón de carga (95% formamida, 10 mM EDTA (ácido etilendiaminotetraacético)). Estas muestras se analizaron mediante electroforesis en geles de poliacrilamida al 20% y urea 8 M y posterior lectura de señal fluorescente utilizando un equipo Typhoon 9410 (GE Healthcare). Resultados (ver Figura 1 ) The fluorescent oligonucleotide used to evaluate terminal transferase activity was PoliT-Cy5 (PoliT15-CY5), which was purchased from Sigma. The dNTPs (dATP, dCTP, dGTP and dTTP) were purchased from GE Healthcare. The polymerization reactions were carried out in a volume of 10 μΐ, in the presence of 1 mM MnC ^, 50 mM TrisHCl (pH 7.5), 1 mM dithiothreitol (DTT), 4% glycerol, 0.1 mg / ml bovine serum albumin (BSA), 20 nM of the fluorescent oligonucleotide indicated in each case, 100 μΜ of the dNTP indicated in each case, and 600 nM of the protein indicated in each case, except for the commercial TdT of Promega (1 unit). After a 30 min incubation at 37 ° C, the reactions were stopped by adding 5.6 μΐ of loading buffer (95% formamide, 10 mM EDTA (ethylenediaminetetraacetic acid)). These samples were analyzed by electrophoresis in 20% polyacrylamide gels and 8 M urea and subsequent fluorescent signal reading using Typhoon 9410 (GE Healthcare) equipment. Results (see Figure 1)
El mutante combinado R387 -F389G (MI) tiene muy reducida la actividad transferasa terminal intrínseca de Ροΐμ wt. The combined mutant R387 -F389G (MI) has greatly reduced the intrinsic terminal transferase activity of Ροΐμ wt.
La mutación Q275M (M2) por sí sola parece estimular ligeramente la transferasa terminal respecto a Ροΐμ wt.  The Q275M (M2) mutation alone seems to slightly stimulate the terminal transferase with respect to Ροΐμ wt.
- Los cambios R387K-Q275M (M3) y R387K-Chloopl (M7) son los verdaderamente espectaculares, ya que consumen todo el sustrato de partida (lo cual es muy aplicable a mareaje del extremo 3 ΌΗ ya que puede suponer una eficiencia de mareaje cercana al 100%) y elongan hasta grandes tamaños (lo cual puede tener aplicación en reacciones de "tailing").  - The changes R387K-Q275M (M3) and R387K-Chloopl (M7) are the truly spectacular ones, since they consume the entire starting substrate (which is very applicable to 3 ΌΗ end marking as it can be a near tidal efficiency 100%) and extend to large sizes (which can be applied in "tailing" reactions).
Los cambios N457D (M4), S458N (M5) y su combinación también logra estimular la actividad transferasa terminal.  The changes N457D (M4), S458N (M5) and their combination also stimulate terminal transferase activity.
Las mutaciones puntuales Q275M, N457D, S458N y R387K se corresponden a reversiones (sustituciones) hacia el aminoácido que se encuentra conservado en TdT tal como se puede apreciar en la Figura 13. Las tres primeras mutaciones son mutaciones conservativas, puesto que el aminoácido al que se revierte pertenece al mismo grupo (ver Tabla 1), y en cambio la mutación R387K es no conservativa. EJEMPLO 2 The point mutations Q275M, N457D, S458N and R387K correspond to reversals (substitutions) towards the amino acid that is conserved in TdT as can be seen in Figure 13. The first three mutations are conservative mutations, since the amino acid to which reversed belongs to the same group (see Table 1), and instead the R387K mutation is non-conservative. EXAMPLE 2
Prueba comparativa de transferasa terminal entre los dos mutantes dobles de la serie: u- Comparative terminal transferase test between the two double mutants of the series: u-
R387K Q275M y u-R387K/Chloopl R387K Q275M and u-R387K / Chloopl
Se llevó a cabo una reacción similar a la del Ejemplo 1, pero a dosis decrecientes de polimerasa (400 nM, 200 nM y 100 nM). A 400 nM de proteína se mantuvo la extensión de cerca del 100% del sustrato original de partida. A dosis inferiores de proteína, si bien la actividad transferasa terminal siguió estando fuertemente estimulada, la extensión del sustrato original de partida no fue tan eficaz (Figura 2). A reaction similar to that of Example 1 was carried out, but at decreasing doses of polymerase (400 nM, 200 nM and 100 nM). At 400 nM protein, the extension of about 100% of the original starting substrate was maintained. At lower doses of protein, although terminal transferase activity remained strongly stimulated, the extent of the original starting substrate was not as effective (Figure 2).
Materiales y métodos Materials and methods
El oligonucleótido fluorescente utilizado para evaluar la actividad transferasa terminal fue PoliT-Cy5 (PoliT15-CY5), que fue comprado a Sigma. Los dNTPs fueron comprados a GE Healthcare. Las reacciones de polimerización se llevaron a cabo en un volumen de 10 μΐ, en presencia de 1 mM MnCl2, 50 mM TrisHCl (pH 7,5), 1 mM DTT, 4% glicerol, 0, 1 mg/ml BSA, 20 nM del oligonucleótido fluorescente indicado en cada caso, 100 μΜ del dNTP indicado en cada caso, y la dosis de proteína indicada en cada caso. Tras una incubación de 30 min a 37°C, las reacciones se pararon añadiendo 5,6 μΐ de tampón de carga (95% formamida, 10 mM EDTA). Estas muestras se analizaron mediante electroforesis en geles de poliacrilamida al 20% y urea 8 M y posterior lectura de señal fluorescente utilizando un equipo Typhoon 9410 (GE Healthcare). The fluorescent oligonucleotide used to evaluate terminal transferase activity was PoliT-Cy5 (PoliT15-CY5), which was purchased from Sigma. The dNTPs were purchased from GE Healthcare. The polymerization reactions were carried out in a volume of 10 μΐ, in the presence of 1 mM MnCl 2 , 50 mM TrisHCl (pH 7.5), 1 mM DTT, 4% glycerol, 0.1 mg / ml BSA, 20 nM of the fluorescent oligonucleotide indicated in each case, 100 μΜ of the dNTP indicated in each case, and the protein dose indicated in each case. After a 30 min incubation at 37 ° C, the reactions were stopped by adding 5.6 μΐ of loading buffer (95% formamide, 10 mM EDTA). These samples were analyzed by electrophoresis in 20% polyacrylamide gels and 8 M urea and subsequent fluorescent signal reading using Typhoon 9410 (GE Healthcare).
EJEMPLO 3 EXAMPLE 3
Ensayo de actividad transferasa terminal de los mutantes dobles (u-R387K/Q275M y u- R387K/Chloopl) en comparación con los mutantes simples de cada uno de ellos  Test of terminal transferase activity of double mutants (u-R387K / Q275M and u-R387K / Chloopl) compared to the simple mutants of each of them
Se analiza la extensión máxima con cada uno de los 4 dNTPS por separado sobre un extremo 3 ΌΗ de ADN homopolimérico de cadena sencilla (Poli T). Se determina si las mutaciones sencillas son suficientes por sí solas para estimular la actividad transferasa terminal en la medida en que se ha comprobado, o bien es necesaria la combinación de varias mutaciones para lograr la potente actividad alcanzada en los ensayos anteriores. The maximum extent is analyzed with each of the 4 dNTPS separately on a 3 extremo end of single-stranded homopolymeric DNA (Poly T). It is determined whether simple mutations alone are sufficient to stimulate terminal transferase activity to the extent that it has been proven, or the combination of several mutations is necessary to achieve the potent activity achieved in the previous tests.
Materiales y métodos El oligonucleótido fluorescente utilizado para evaluar la actividad transferasa terminal fue PoliT-Cy5 (PoliT15-CY5), que fue comprado a Sigma. Los dNTPs fueron comprados a GE Healthcare. Las reacciones de polimerización se llevaron a cabo en un volumen de 10 μΐ, en presencia de 1 mM MnCl2, 50 mM TrisHCl (pH 7,5), 1 mM DTT, 4% glicerol, 0,1 mg/ml BSA, 20 nM del oligonucleótido fluorescente indicado en cada caso, 100 μΜ del dNTP indicado en cada caso, y 600 nM de la proteína indicada en cada caso, a excepción de la TdT comercial de Promega (1 unidad). Tras una incubación de 30 min a 37°C, las reacciones se pararon añadiendo 5,6 μΐ de tampón de carga (95% formamida, 10 mM EDTA). Estas muestras se analizaron mediante electroforesis en geles de poliacrilamida al 20% y urea 8 M y posterior lectura de señal fluorescente utilizando un equipo Typhoon 9410 (GE Healthcare). Materials and methods The fluorescent oligonucleotide used to evaluate terminal transferase activity was PoliT-Cy5 (PoliT15-CY5), which was purchased from Sigma. The dNTPs were purchased from GE Healthcare. The polymerization reactions were carried out in a volume of 10 μΐ, in the presence of 1 mM MnCl 2 , 50 mM TrisHCl (pH 7.5), 1 mM DTT, 4% glycerol, 0.1 mg / ml BSA, 20 nM of the fluorescent oligonucleotide indicated in each case, 100 μΜ of the dNTP indicated in each case, and 600 nM of the protein indicated in each case, except for the commercial TdT of Promega (1 unit). After a 30 min incubation at 37 ° C, the reactions were stopped by adding 5.6 μΐ of loading buffer (95% formamide, 10 mM EDTA). These samples were analyzed by electrophoresis in 20% polyacrylamide gels and 8 M urea and subsequent fluorescent signal reading using Typhoon 9410 (GE Healthcare) equipment.
Resultados (ver Figura 3) Results (see Figure 3)
El muíante simple R387K (R) logra un aumento eficaz de la actividad transferasa terminal intrínseca de Ροΐμ wt, especialmente con dT y dC. Sin embargo dista mucho de llegar a los niveles alcanzados por cualquiera de los mutantes combinados (M3 y M7). The simple mutant R387K (R) achieves an effective increase in the intrinsic terminal transferase activity of Ροΐμ wt, especially with dT and dC. However, it is far from reaching the levels reached by any of the combined mutants (M3 and M7).
El muíante simple μ-Chloopl (Ch) logra un cambio en el patrón de inserción de dNTPs respecto a Ροΐμ wí, pero no supone un eslímulo especialmenle llamalivo de su actividad transferasa terminal.  The simple mutant μ-Chloopl (Ch) achieves a change in the pattern of insertion of dNTPs with respect to Ροΐμ wí, but does not imply a special call for its terminal transferase activity.
El mutante Q275M (M2) logra un cierto estímulo de la actividad transferasa terminal en comparación con Ροΐμ wt.  The Q275M mutant (M2) achieves a certain stimulus of terminal transferase activity compared to Ροΐμ wt.
La combinación de las dos mutaciones que componen cada mutante seleccionado (μ- R387K/Q275M y μ^387Κ/01ι1οορ1) da lugar a niveles espectaculares de actividad transferasa terminal. Cada una de las mutaciones simples por separado supone una cierta mejora respecto a Ροΐμ wt en este sentido. The combination of the two mutations that make up each selected mutant (μ- R387K / Q275M and μ ^ 387Κ / 01ι1οορ1) results in spectacular levels of terminal transferase activity. Each of the simple mutations separately assumes a certain improvement over respectoοΐμ wt in this regard.
EJEMPLO 4 EXAMPLE 4
Ensayo de actividad transferasa terminal de los mutantes dobles (u-R387K/0275M y n- R387K/Chloopl) en comparación con los mutantes simples de cada uno de ellos y en presencia de Co2+ como metal activador Test of terminal transferase activity of the double mutants (u-R387K / 0275M and n-R387K / Chloopl) in comparison with the simple mutants of each of them and in the presence of Co 2+ as activating metal
En este caso, aunque el patrón de inserción de dNTPs es algo diferente respecto al de Mn2+, y en general está menos avanzado, resulta evidente que los mutantes dobles ^-R387K/Q275M y μ- R387K/Chloopl) destacan claramente respecto a los mutantes simples en cuanto a actividad transferasa terminal. In this case, although the insertion pattern of dNTPs is somewhat different from that of Mn 2+ , and in general it is less advanced, it is evident that the double mutants ^ -R387K / Q275M and μ- R387K / Chloopl) clearly stand out with respect to simple mutants in terms of terminal transferase activity.
Materiales y métodos Materials and methods
El oligonucleótido fluorescente utilizado para evaluar la actividad transferasa terminal fue PoliT-Cy5 (PoliT15-CY5), que fue comprado a Sigma. Los dNTPs fueron comprados a GE Healthcare. Las reacciones de polimerización se llevaron a cabo en un volumen de 10 μΐ, en presencia de 100 mM de tampón cacodilato (pH 6,8), 1 mM CoCl2, 0.1 mM DTT, 20 nM del oligonucleótido fluorescente indicado en cada caso, 100 μΜ del dNTP indicado en cada caso, y 600 nM de la proteína indicada en cada caso, a excepción de la TdT comercial de Promega (1 unidad). Tras una incubación de 30 min a 37°C, las reacciones se pararon añadiendo 5,6 μΐ de tampón de carga (95% formamida, 10 mM EDTA). Estas muestras se analizaron mediante electroforesis en geles de poliacrilamida al 20% y urea 8 M y posterior lectura de señal fluorescente utilizando un equipo Typhoon 9410 (GE Healthcare). The fluorescent oligonucleotide used to evaluate terminal transferase activity was PoliT-Cy5 (PoliT15-CY5), which was purchased from Sigma. The dNTPs were purchased from GE Healthcare. The polymerization reactions were carried out in a volume of 10 μΐ, in the presence of 100 mM of cacodylate buffer (pH 6.8), 1 mM CoCl 2 , 0.1 mM DTT, 20 nM of the fluorescent oligonucleotide indicated in each case, 100 μΜ of the dNTP indicated in each case, and 600 nM of the protein indicated in each case, with the exception of the commercial TdT of Promega (1 unit). After a 30 min incubation at 37 ° C, the reactions were stopped by adding 5.6 μΐ of loading buffer (95% formamide, 10 mM EDTA). These samples were analyzed by electrophoresis in 20% polyacrylamide gels and 8 M urea and subsequent fluorescent signal reading using Typhoon 9410 (GE Healthcare).
Resultados (ver Figura 4) Results (see Figure 4)
La combinación de las dos mutaciones que componen cada mutante seleccionado (μ- R387K/Q275M y μ-¾387Κ/Οι1οορ1) logra niveles espectaculares de actividad transferasa terminal. Cada una de las mutaciones simples por separado supone una cierta mejora respecto a Ροΐμ wt en este sentido. The combination of the two mutations that make up each selected mutant (μ- R387K / Q275M and μ-¾387Κ / Οι1οορ1) achieves spectacular levels of terminal transferase activity. Each of the simple mutations separately assumes a certain improvement over respectoοΐμ wt in this regard.
EJEMPLO 5 EXAMPLE 5
Ensayo de dependencia de molde  Mold Dependency Test
Con este ensayo se comprueba si los mutantes dobles han visto afectada su capacidad de polimerización dependiente de molde respecto a Ροΐμ wt. Resulta conveniente que esta actividad se mantenga dentro de unos determinados niveles, ya que esto permitiría su aplicación en reacciones de mareaje con sustratos de ADN de cadena doble o con molde. With this test it is checked if the double mutants have been affected by their ability to mold dependent polymerization with respect to Ροΐμ wt. It is convenient that this activity be maintained within certain levels, since this would allow its application in dizzying reactions with double-stranded DNA templates or with template.
Materiales y métodos Materials and methods
El oligonucleótido fluorescente SP1C-FLO (GATCACAGTGAGTAC-FLO) fue hibridado con el oligonucleótido TI 3(G) (AGAAGTGTATCTGGTACTCACTGTGATC) para generar el sustrato de ADN indicado en la parte superior de la Figura 5. Ambos oligonucleótidos fueron comprados a Sigma. Los dNTPs fueron comprados a GE Healthcare. Las reacciones de polimerización se llevaron a cabo en un volumen de 10 μΐ, en presencia de 2,5 mM MgCl2, 50 mM TrisHCl (pH 7,5), 1 mM DTT, 4% glicerol, 0, 1 mg/ml BSA, 10 nM del híbrido fluorescente de ADN, la dosis de dNTP/dNTPs indicada en cada caso, y 100 nM de la proteína indicada en cada caso. Tras una incubación de 30 min a 37°C, las reacciones se pararon añadiendo 5,6 μΐ de tampón de carga (95% formamida, 10 mM EDTA). Estas muestras se analizaron mediante electroforesis en geles de poliacrilamida al 20% y urea 8 M y posterior lectura de señal fluorescente utilizando un equipo Typhoon 9410 (GE Healthcare). Resultados The fluorescent oligonucleotide SP1C-FLO (GATCACAGTGAGTAC-FLO) was hybridized with oligonucleotide TI 3 (G) (AGAAGTGTATCTGGTACTCACTGTGATC) to generate the DNA substrate indicated in the upper part of Figure 5. Both oligonucleotides were bought from Sigma. The dNTPs were purchased from GE Healthcare. The polymerization reactions were carried out in a volume of 10 μΐ, in the presence of 2.5 mM MgCl 2 , 50 mM TrisHCl (pH 7.5), 1 mM DTT, 4% glycerol, 0.1 mg / ml BSA , 10 nM of the fluorescent DNA hybrid, the dose of dNTP / dNTPs indicated in each case, and 100 nM of the protein indicated in each case. After a 30 min incubation at 37 ° C, the reactions were stopped by adding 5.6 μΐ of loading buffer (95% formamide, 10 mM EDTA). These samples were analyzed by electrophoresis in 20% polyacrylamide gels and 8 M urea and subsequent fluorescent signal reading using Typhoon 9410 (GE Healthcare) equipment. Results
Tal y como se aprecia en la parte izquierda de la Figura 5 se suministran los 4 dNTPs, para tratar de comprobar la extensión máxima que puede llevar a cabo la proteína sobre el sustrato de ADN indicado en la parte superior. Únicamente la mutación simple Chloopl parece producir una pequeña disminución en la elongación, sin que desaparezca la capacidad de polimerización. El mutante M7, que contiene la mutación Chloopl también se ve afectado en el mismo grado. Los mutantes M2 y M3 incluso parecen mejorar la propia capacidad de elongación de Ροΐμ wt, lo cual resulta muy positivo. En la parte derecha de la Figura 5 se lleva a cabo una reacción similar, pero suministrando sólo el nucleótido complementario a la primera posición en el molde. El paso a +1 se realiza de modo muy eficiente con todos los casos. As can be seen in the left part of Figure 5, the 4 dNTPs are supplied, in order to try to verify the maximum extent that the protein can carry out on the DNA substrate indicated in the upper part. Only the simple Chloopl mutation seems to produce a small decrease in elongation, without the polymerization capacity disappearing. The M7 mutant, which contains the Chloopl mutation is also affected to the same degree. The M2 and M3 mutants even seem to improve the elongation capacity of Ροΐμ wt itself, which is very positive. A similar reaction is carried out on the right side of Figure 5, but supplying only the complementary nucleotide to the first position in the mold. The step to +1 is done very efficiently with all cases.
EJEMPLO 6 EXAMPLE 6
Ensayo de dependencia de molde  Mold Dependency Test
En este ensayo se comprobó la dependencia de molde con los mutantes de dobles (M3 y M7) (ver Figura 6) y los mutantes simples en el contexto de un gap de ADN de 1 nucleótido con fosfato. In this assay, mold dependence was verified with double mutants (M3 and M7) (see Figure 6) and simple mutants in the context of a 1 nucleotide DNA gap with phosphate.
Materiales y métodos Materials and methods
El oligonucleótido fluorescente SP1C-FLO (GATCACAGTGAGTAC-FLO) fue hibridado con el oligonucleótido TI 3(G) (AGAAGTGTATCTGGTACTCACTGTGATC) y Dgl-P (AGATACACTTCT-P) para generar el sustrato de ADN indicado en la parte superior de la Figura 6. Los oligonucleótidos fueron comprados a Sigma. El dNTP fue comprado a GE Healthcare. Las reacciones de polimerización se llevaron a cabo en un volumen de 10 μΐ, en presencia de 2,5 mM MgCl2, 50 mM TrisHCl (pH 7,5), 1 mM DTT, 4% glicerol, 0,1 mg/ml BSA, 10 nM del híbrido fluorescente de ADN, la dosis de dNTP/dNTPs indicada en cada caso, y 100 nM de la proteína indicada en cada caso. Tras una incubación de 30 min a 37°C, las reacciones se pararon añadiendo 5,6 μΐ de tampón de carga (95% formamida, 10 mM EDTA). Estas muestras se analizaron mediante electroforesis en geles de poliacrilamida al 20% y urea 8 M y posterior lectura de señal fluorescente utilizando un equipo Typhoon 9410 (GE Healthcare). Resultados The fluorescent oligonucleotide SP1C-FLO (GATCACAGTGAGTAC-FLO) was hybridized with oligonucleotide TI 3 (G) (AGAAGTGTATCTGGTACTCACTGTGATC) and Dgl-P (AGATACACTTCT-P) to generate the DNA substrate indicated in the upper part of Figure 6. The oligonucleotides were purchased from Sigma. The dNTP was purchased from GE Healthcare The polymerization reactions were carried out in a volume of 10 μΐ, in the presence of 2.5 mM MgCl 2 , 50 mM TrisHCl (pH 7.5), 1 mM DTT, 4% glycerol, 0.1 mg / ml BSA , 10 nM of the fluorescent DNA hybrid, the dose of dNTP / dNTPs indicated in each case, and 100 nM of the protein indicated in each case. After a 30 min incubation at 37 ° C, the reactions were stopped by adding 5.6 μΐ of loading buffer (95% formamide, 10 mM EDTA). These samples were analyzed by electrophoresis in 20% polyacrylamide gels and 8 M urea and subsequent fluorescent signal reading using Typhoon 9410 (GE Healthcare) equipment. Results
Tal y como se puede apreciar en la Figura 6, en este tipo de contexto de ADN todos los mutantes muestran una eficiencia de inserción similar. EJEMPLO 7 As can be seen in Figure 6, in this type of DNA context all mutants show similar insertion efficiency. EXAMPLE 7
Prueba de mareaje de extremo 3 ΌΗ  3 ΌΗ End Tide Test
Se probó la serie completa de mutantes de Ροΐμ, junto con Ροΐμ wt y TdT en una reacción de mareaje en el extremo 3 ΌΗ de un oligonucleótido de cadena sencilla. Se utilizó como sustrato un oligonucleótido de cadena sencilla marcado con Cy5 en su extremo 5 ' para su seguimiento. Se suministró ddATP marcado con fluoresceína (FLO) susceptible de ser incorporado por la polimerasa en el extremo 30H' del ADN. El canal ADN permite realizar el seguimiento del ADN original, y comprobar la proporción de oligo que ha sido marcada (posición +1) frente al resto no marcado (posición 0). El canal del ddNTP permite comprobar la entrada en la posición +1 del ddNTP marcado con FLO. The complete series of mutants of Ροΐμ was tested, together with Ροΐμ wt and TdT in a 3 ma end reaction reaction of a single stranded oligonucleotide. A single chain oligonucleotide labeled with Cy5 at its 5 'end was used as a substrate for monitoring. Fluorescein-labeled ddATP (FLO) capable of being incorporated by polymerase at the 30H 'end of the DNA was supplied. The DNA channel allows to track the original DNA, and check the proportion of oligo that has been marked (position +1) against the unmarked remainder (position 0). The ddNTP channel allows you to check the entry at position +1 of the ddNTP marked with FLO.
Materiales y métodos Materials and methods
El oligonucleótido fluorescente utilizado fue: SPlC-Cy5 (GATCACAGTGAGTAC-Cy5), que fue comprado a Sigma. El ddATP -Cy5 fue comprado a Perkin-Elmer. Las reacciones se llevaron a cabo en un volumen de 10 μΐ, en presencia de 1 mM Μη(¾ 50 mM TrisHCl (pH 7,5), 1 mM DTT, 4% glicerol y 0, 1 mg/ml BSA (excepto el canal de TdT, que llevaba 100 mM de tampón cacodilato, 1 mM CoCl2 y 0,1 mM DTT), 10 nM del oligo fluorescente de ADN, 1 μΜ ddATP -FLO, y 600 nM de la proteína indicada en cada caso. Tras una incubación de 30 min a 37°C, las reacciones se pararon añadiendo 5,6 μΐ de tampón de carga (95% formamida, 10 mM EDTA). Estas muestras se analizaron mediante electroforesis en geles de poliacrilamida al 20% y urea 8 M y posterior lectura de señal fluorescente utilizando un equipo Typhoon 9410 (GE Healthcare). The fluorescent oligonucleotide used was: SPlC-Cy5 (GATCACAGTGAGTAC-Cy5), which was purchased from Sigma. The ddATP -Cy5 was purchased from Perkin-Elmer. The reactions were carried out in a volume of 10 μΐ, in the presence of 1 mM (η (¾ 50 mM TrisHCl (pH 7.5), 1 mM DTT, 4% glycerol and 0.1 mg / ml BSA (except the channel of TdT, which carried 100 mM of cacodylate buffer, 1 mM CoCl 2 and 0.1 mM DTT), 10 nM of the fluorescent DNA oligo, 1 μΜ ddATP-FLO, and 600 nM of the indicated protein in each case. 30 min incubation at 37 ° C, the reactions were stopped by adding 5.6 μΐ of loading buffer (95% formamide, 10 mM EDTA) These samples were analyzed by electrophoresis in polyacrylamide gels at 20% and 8 M urea and subsequent fluorescent signal reading using a Typhoon 9410 (GE Healthcare).
Resultados Results
Tal y como puede apreciarse en la Figura 7, Ροΐμ wt es capaz de marcar en torno al 50% del oligo suministrado. Los mutantes M4, M5 y M6 (μ-Ν457ϋ-8458Ν) presentan un comportamiento similar. El mutante MI ve muy reducida su capacidad de mareaje respecto a Ροΐμ wt. El mutante M2 supone una mejora respecto a Ροΐμ wt aunque no llega a marcar el 100% del sustrato de partida. Los M3 y M7 son capaces de marcar el 100% del sustrato original de partida, superando incluso los niveles logrados con la TdT comercial de Promega. As can be seen in Figure 7, Ροΐμ wt is capable of marking around 50% of the oligo supplied. The mutants M4, M5 and M6 (μ-Ν457ϋ-8458Ν) have a similar behavior. The mutant MI sees its ability to mareaje very low compared to Ροΐμ wt. The mutant M2 represents an improvement over Ροΐμ wt although it does not reach 100% of the starting substrate. The M3 and M7 are capable of marking 100% of the original starting substrate, even exceeding the levels achieved with the commercial TdT of Promega.
EJEMPLO 8 EXAMPLE 8
Prueba de mareaje de extremo 3ΌΗ  3 ma end tide test
Ensayo similar al realizado en el Ejemplo 7, en el que se compara la eficacia de los mutantes M3 y M7 en reacciones de mareaje, respecto a las mutaciones simples que componen cada uno de los mutantes. Materiales y métodos Test similar to that performed in Example 7, in which the efficacy of the M3 and M7 mutants in mareaje reactions is compared, with respect to the simple mutations that make up each of the mutants. Materials and methods
El oligonucleótido fluorescente utilizado fue: SPlC-Cy5 (GATCACAGTGAGTAC-Cy5), que fue comprado a Sigma. El ddATP-Cy5 fue comprado a Perkin-Elmer. Las reacciones se llevaron a cabo en un volumen de 10 μΐ, en presencia de 1 mM MnC^, 50 mM TrisHCl (pH 7,5), 1 mM DTT, 4% glicerol y 0, 1 mg/ml BSA (excepto el canal de TdT, que llevaba 100 mM de tampón cacodilato, 1 mM C0CI2 y 0, 1 mM DTT), 10 nM del oligo fluorescente de ADN, Ι μΜ ddATP-FLO, y 600 nM de la proteína indicada en cada caso. Tras una incubación de 30 minutos a 37°C, las reacciones se pararon añadiendo 5,6 μΐ de tampón de carga (95% formamida, 10 mM EDTA). Estas muestras se analizaron mediante electroforesis en geles de poliacrilamida al 20% y urea 8 M y posterior lectura de señal fluorescente utilizando un equipo Typhoon 9410 (GE Healthcare). The fluorescent oligonucleotide used was: SPlC-Cy5 (GATCACAGTGAGTAC-Cy5), which was purchased from Sigma. The ddATP-Cy5 was purchased from Perkin-Elmer. The reactions were carried out in a volume of 10 μΐ, in the presence of 1 mM MnC ^, 50 mM TrisHCl (pH 7.5), 1 mM DTT, 4% glycerol and 0.1 mg / ml BSA (except the channel of TdT, which carried 100 mM of cacodylate buffer, 1 mM C0CI 2 and 0.1 mM DTT), 10 nM of the fluorescent DNA oligo, Ι μΜ ddATP-FLO, and 600 nM of the indicated protein in each case. After a 30 minute incubation at 37 ° C, the reactions were stopped by adding 5.6 µΐ of loading buffer (95% formamide, 10 mM EDTA). These samples were analyzed by electrophoresis in 20% polyacrylamide gels and 8 M urea and subsequent fluorescent signal reading using Typhoon 9410 (GE Healthcare) equipment.
Resultados (ver Figura 8) Results (see Figure 8)
Las mutaciones simples R387 (R) y Ch-loop-1 (Ch) no logran ninguna mejora respecto a Ροΐμ wt en ese tipo de reacciones. El mutante M2, como ya se vio en la figura 7, sí supone una mejora puesto que es capaz de acabar con casi todo el sustrato de partida, aunque no con el 100%. The simple mutations R387 (R) and Ch-loop-1 (Ch) do not achieve any improvement over Ροΐμ wt in such reactions. The mutant M2, as already seen in Figure 7, does mean an improvement since it is capable of destroying almost the entire starting substrate, although not 100%.
M3 y M7 no logran el mareaje del 100% del sustrato de partida.  M3 and M7 do not achieve 100% marking of the starting substrate.
EJEMPLO 9 EXAMPLE 9
Prueba de mareaje de extremo 3ΌΗ  3 ma end tide test
Ensayo similar al realizado en el ejemplo 8, en el que se compara la eficacia de los mutantes M3 y M7 en reacciones de mareaje, respecto a las mutaciones simples que componen cada uno de los mutantes. En este caso se utiliza un sustrato de ADN de cadena sencilla diferente (PoliT) para descartar que el resultado sea dependiente de secuencia. Test similar to that performed in Example 8, in which the efficacy of the M3 and M7 mutants in mareaje reactions is compared, with respect to the simple mutations that make up each of the mutants. In this case, a different single stranded DNA (PoliT) substrate is used to rule out that the result is sequence dependent.
Materiales y métodos El oligonucleótido fluorescente utilizado fue: PoliT-Cy5 (PoliT15-Cy5), que fue comprado a Sigma. El ddATP-Cy5 fue comprado a Perkin-Elmer. Las reacciones se llevaron a cabo en un volumen de 10 μΐ, en presencia de 1 mM MnCl2, 50 mM TrisHCl (pH 7,5), 1 mM DTT, 4% glicerol y 0,1 mg/ml BSA (excepto el canal de TdT, que llevaba 100 mM de tampón cacodilato, 1 mM CoCl2 y 0, 1 mM DTT), 10 nM del oligo fluorescente de ADN, 1 μΜ ddATP-FLO, y 600 nM de la proteína indicada en cada caso. Tras una incubación de 30 min a 37°C, las reacciones se pararon añadiendo 5,6 μΐ de tampón de carga (95% formamida, 10 mM EDTA). Estas muestras se analizaron mediante electroforesis en geles de poliacrilamida al 20% y urea 8 M y posterior lectura de señal fluorescente utilizando un equipo Typhoon 9410 (GE Healthcare). Resultados (ver Figura 9) Materials and methods The fluorescent oligonucleotide used was: PoliT-Cy5 (PoliT15-Cy5), which was purchased from Sigma. The ddATP-Cy5 was purchased from Perkin-Elmer. The reactions were carried out in a volume of 10 μΐ, in the presence of 1 mM MnCl 2 , 50 mM TrisHCl (pH 7.5), 1 mM DTT, 4% glycerol and 0.1 mg / ml BSA (except the channel of TdT, which carried 100 mM of cacodylate buffer, 1 mM CoCl 2 and 0.1 mM DTT), 10 nM of the fluorescent DNA oligo, 1 μΜ ddATP-FLO, and 600 nM of the indicated protein in each case. After a 30 min incubation at 37 ° C, the reactions were stopped by adding 5.6 μΐ of loading buffer (95% formamide, 10 mM EDTA). These samples were analyzed by electrophoresis in 20% polyacrylamide gels and 8 M urea and subsequent fluorescent signal reading using Typhoon 9410 (GE Healthcare) equipment. Results (see Figure 9)
El mutante simple Ch no logra ninguna mejora respecto a Ροΐμ wt en ese tipo de reacciones. The simple mutant Ch does not achieve any improvement over Ροΐμ wt in such reactions.
El mutante R en este caso particular mejora levemente respecto a Ροΐμ wt, lo cual puede deberse a un efecto de secuencia.  The mutant R in this particular case improves slightly with respect to Ροΐμ wt, which may be due to a sequence effect.
El mutante M2, como ya se vio en la figura 8, sí supone una mejora, pero no logra el mareaje del 100% del sustrato de partida, como sí ocurre en los casos de M3 y The mutant M2, as already seen in Figure 8, does mean an improvement, but it does not achieve 100% marking of the starting substrate, as it does in the cases of M3 and
M7. M7
EJEMPLO 10 EXAMPLE 10
Prueba de mareaje de extremo 3 OH En este ensayo, similar al mostrado en el Ejemplo 9, se compara la eficacia de los mutantes M3 y M7 en reacciones de mareaje, respecto a las mutaciones simples que componen cada uno de los mutantes. En este caso se utiliza un sustrato de ADN de cadena sencilla diferente (PoliA) para contrastar con los anteriores. End OH 3 tide test In this test, similar to that shown in Example 9, the efficacy of the M3 and M7 mutants in mareaje reactions is compared with respect to the simple mutations that make up each of the mutants. In this case, a different single-stranded DNA (PolyA) substrate is used to contrast with the previous ones.
Materiales y métodos Materials and methods
El oligonucleótido fluorescente utilizado fue: PoliA-Cy5 (PoliA15-Cy5), que fue comprado a Sigma. El ddATP-Cy5 fue comprado a Perkin-Elmer. Las reacciones se llevaron a cabo en un volumen de 10 μΐ, en presencia de 1 mM MnCl2, 50 mM TrisHCl (pH 7,5), 1 mM DTT, 4% glicerol y 0, 1 mg/ml BSA (excepto el canal de TdT, que llevaba 100 mM de tampón cacodilato, 1 mM CoCl2 y 0, 1 mM DTT), 10 nM del oligo fluorescente de ADN, 1 μΜ ddATP-FLO, y 600 nM de la proteína indicada en cada caso. Tras una incubación de 30 min a 37°C, las reacciones se pararon añadiendo 5,6 μΐ de tampón de carga (95% formamida, 10 mM EDTA). Estas muestras se analizaron mediante electroforesis en geles de poliacrilamida al 20% y urea 8 M y posterior lectura de señal fluorescente utilizando un equipo Typhoon 9410 (GE Healthcare). The fluorescent oligonucleotide used was: PoliA-Cy5 (PoliA15-Cy5), which was purchased from Sigma. The ddATP-Cy5 was purchased from Perkin-Elmer. The reactions were carried out in a volume of 10 μΐ, in the presence of 1 mM MnCl 2 , 50 mM TrisHCl (pH 7.5), 1 mM DTT, 4% glycerol and 0.1 mg / ml BSA (except the channel of TdT, which carried 100 mM of cacodylate buffer, 1 mM CoCl 2 and 0.1 mM DTT), 10 nM of the fluorescent DNA oligo, 1 μΜ ddATP-FLO, and 600 nM of the indicated protein in each case. After a 30 min incubation at 37 ° C, the reactions were stopped by adding 5.6 μΐ of loading buffer (95% formamide, 10 mM EDTA). These samples were analyzed by electrophoresis in 20% polyacrylamide gels and 8 M urea and subsequent fluorescent signal reading using Typhoon 9410 (GE Healthcare) equipment.
Resultados (ver Figura 10) Results (see Figure 10)
Los mutantes simples R y Ch no logran ninguna mejora respecto a Ροΐμ wt en ese tipo de reacciones. Parece confirmarse que el efecto de mejora con R que se veía en la figura anterior era dependiente de secuencia. The simple mutants R and Ch do not achieve any improvement over Ροΐμ wt in such reactions. It seems to be confirmed that the effect of improvement with R seen in the previous figure was sequence dependent.
El muíante M2, como ya se vio en ejemplos anteriores, sí supone una mejora, pero no logra el mareaje del 100% del sustrato de partida, como sí ocurre en los casos de The mutant M2, as already seen in previous examples, does mean an improvement, but it does not achieve 100% marking of the starting substrate, as it does in cases of
M3 y M7. M3 and M7.
EJEMPLO 11 EXAMPLE 11
Prueba de mareaje de extremo 3 ' con los 4 ddNTPs fluorescentes 3 ' end mareaje test with the 4 fluorescent ddNTPs
Este ensayo muestra que la reacción de mareaje con M3 y M7 es altamente eficaz con los 4 ddNTPs fluorescentes, tanto en presencia de Mn como de Co2+ (Fig. 11). This test shows that the reaction of M3 and M7 is highly effective with the 4 fluorescent ddNTPs, both in the presence of Mn and Co 2+ (Fig. 11).
Materiales y métodos Materials and methods
El oligonucleótido fluorescente utilizado fue: SPlC-Cy5 (GATCACAGTGAGTAC-Cy5), que fue comprado a Sigma. Los dideoxinucleótidos fluorescentes (ddATP-FLO, ddUTP-FLO, ddCTP-FLO, ddGTP-FLO) fueron comprados a Perkin-Elmer. Las reacciones se llevaron a cabo en un volumen de 10 μΐ, en presencia de 1 mM MnC , 50 mM TrisHCl (pH 7,5), 1 mM DTT, 4% glicerol y 0,1 mg/ml BSA (en el caso de reacciones con ImM Mn2+) y 100 mM de tampón cacodilato, 1 mM C0CI2 y 0,1 mM DTT (en el caso de reacciones con ImM Co2+), 10 nM del oligo fluorescente de ADN, 1 μΜ ddATP-FLO, y 600 nM de la proteína indicada en cada caso. Tras una incubación de 30 min a 37°C, las reacciones se pararon añadiendo 5,6 μΐ de tampón de carga (95% formamida, 10 mM EDTA). Estas muestras se analizaron mediante electroforesis en geles de poliacrilamida al 20% y urea 8 M y posterior lectura de señal fluorescente utilizando un equipo Typhoon 9410 (GE Healthcare). The fluorescent oligonucleotide used was: SPlC-Cy5 (GATCACAGTGAGTAC-Cy5), which It was bought from Sigma. Fluorescent dideoxynucleotides (ddATP-FLO, ddUTP-FLO, ddCTP-FLO, ddGTP-FLO) were purchased from Perkin-Elmer. The reactions were carried out in a volume of 10 μΐ, in the presence of 1 mM MnC, 50 mM TrisHCl (pH 7.5), 1 mM DTT, 4% glycerol and 0.1 mg / ml BSA (in the case of reactions with ImM Mn 2+ ) and 100 mM of cacodylate buffer, 1 mM C0CI 2 and 0.1 mM DTT (in the case of reactions with ImM Co 2+ ), 10 nM of the fluorescent DNA oligo, 1 μΜ ddATP-FLO , and 600 nM of the protein indicated in each case. After a 30 min incubation at 37 ° C, the reactions were stopped by adding 5.6 μΐ of loading buffer (95% formamide, 10 mM EDTA). These samples were analyzed by electrophoresis in 20% polyacrylamide gels and 8 M urea and subsequent fluorescent signal reading using Typhoon 9410 (GE Healthcare) equipment.
EJEMPLO 12 EXAMPLE 12
Obtención de nuevos mutantes homólogos Tal y como se muestra en la Figura 12, el alineamiento por FASTA, empleando los parámetros establecidos por defecto, de las secuencias correspondientes a las Ροΐμ wt de diferentes mamíferos, más concretamente, Mus musculus, Rattus norvegicu y Bos taurus con el mutante M3, proporciona aquellos aminoácidos homólogos al 275 y 387 de M3 (o Ροΐμ wt humana). La mutación de los aminoácidos homólogos de la Ροΐμ wt de Mus musculus, Rattus norvegicu y Bos taurus correspondientes a las posiciones 275 y 387 de M3, daría lugar a la obtención de nuevos mutantes, que potencialmente tendrían la actividad desoxinucleotidil-transferasa terminal mejorada debido al elevado grado de identidad existente entre las diferentes polimerasas (Tabla 3). Tal y como se puede comprobar a partir de la Figura 12, los aminoácidos homólogos no necesariamente se encuentran en la misma posición en relación con su secuencia. Obtaining new homologous mutants As shown in Figure 12, the alignment by FASTA, using the parameters established by default, of the sequences corresponding to the Ροΐμ wt of different mammals, more specifically, Mus musculus, Rattus norvegicu and Bos taurus with the M3 mutant, it provides those amino acids homologous to 275 and 387 of M3 (or human Ροΐμ wt). The mutation of the homologous amino acids of the Ροΐμ wt of Mus musculus, Rattus norvegicu and Bos taurus corresponding to positions 275 and 387 of M3, would result in obtaining new mutants, which would potentially have enhanced deoxynucleotidyl transferase activity due to high degree of identity existing between the different polymerases (Table 3). As can be seen from Figure 12, homologous amino acids are not necessarily in the same position in relation to their sequence.
Tabla 3 Table 3
Figure imgf000027_0001
Figure imgf000027_0001
EJEMPLO 13 EXAMPLE 13
Obtención de nuevos mutantes con actividad transferasa terminal incrementada Los datos estructurales de Ροΐμ wt utilizados convenientemente pueden ser empleados para la obtención de nuevos mutantes con actividad transferasa terminal incrementada, mediante la identificación y mutación de aminoácidos que se encuentren en el sitio catalítico de la enzima o cercanos a éste, preferentemente en superficie, esto es, en interacción directa con el ADN. Así por ejemplo, el análisis tridimensional de la estructura de la polimerasa puede dar lugar a la identificación de residuos que permitan la creación de un puente salino, la introducción de un grupo hidrofóbico o la creación de cualquier otro tipo de interacción que posibilite una mejor interacción con el ADN con el objetivo de obtener mutantes con actividad transferasa terminal incrementada. Obtaining new mutants with increased terminal transferase activity The structural data of Ροΐμ wt used conveniently can be used to obtain new mutants with increased terminal transferase activity, by identifying and mutating amino acids that are at or near the catalytic site of the enzyme, preferably on the surface, this It is, in direct interaction with DNA. Thus, for example, the three-dimensional analysis of the polymerase structure can lead to the identification of residues that allow the creation of a salt bridge, the introduction of a hydrophobic group or the creation of any other type of interaction that allows a better interaction. with the DNA in order to obtain mutants with increased terminal transferase activity.
Para la identificación de los aminoácidos candidatos son sobradamente conocidas determinadas técnicas de laboratorio, como por ejemplo la cristalografía por rayos X y la resonancia magnética nuclear (RMN), que permiten conocer la estructura tridimensional de las proteínas. Además de este tipo de técnicas, existen multitud de programas informáticos que posibilitan, a partir de la estructura primaria de la enzima, predecir cual es su configuración espacial (e.g. Swiss PDB Viewer). De este modo, resulta sencillo mediante la inspección visual de las estructuras determinar qué aminoácidos pueden ser candidatos para su mutación. El empleo de este tipo de técnicas en combinación con la comparación de las estructuras primarias de enzimas homologas y/o con actividades similares permite incluso afinar aún más en la selección de aquellos mutantes que potencialmente van a tener una actividad incrementada. A modo de ejemplo, la recopilación de todas las secuencias conocidas de Ροΐμ y TdT de diferentes especies, su alineamiento y comparación de la estructura primaria permite la identificación de aquellos aminoácidos que se encuentran conservados en ambas familias de polimerasas y que sean diferentes entre sí. Cuando se realiza este proceso, algunos de los aminoácidos candidatos de Ροΐμ que podrían seleccionarse son los Q275, R387, N457 y S458, los cuales tras un análisis visual de la estructura tridimensional de la enzima se comprueba que se encuentran en superficie y cercanos al centro catalítico (Figura 14). La mutación de estos aminoácidos hacia el aminoácido homólogo de TdT (Q275M, R387K, N457D y S458N) y, opcionalmente, la combinación de estas mutaciones da lugar a la obtención de mutantes de Ροΐμ con una actividad transferasa terminal incrementada, tal y como se puede comprobar a lo largo de la descripción. Certain laboratory techniques are well known for the identification of candidate amino acids, such as X-ray crystallography and nuclear magnetic resonance imaging (NMR), which make it possible to know the three-dimensional structure of proteins. In addition to this type of techniques, there are many computer programs that make it possible, based on the primary structure of the enzyme, to predict its spatial configuration (e.g. Swiss PDB Viewer). Thus, it is easy by visual inspection of the structures to determine which amino acids may be candidates for mutation. The use of these types of techniques in combination with the comparison of the primary structures of homologous enzymes and / or similar activities allows even further refinement in the selection of those mutants that are potentially going to have increased activity. As an example, the collection of all known sequences of Ροΐμ and TdT of different species, their alignment and comparison of the primary structure allows the identification of those amino acids that are conserved in both families of polymerases and that are different from each other. When this process is performed, some of the candidate amino acids of Ροΐμ that could be selected are Q275, R387, N457 and S458, which after a visual analysis of the three-dimensional structure of the enzyme is found to be on the surface and close to the center catalytic (Figure 14). The mutation of these amino acids to the homologous amino acid of TdT (Q275M, R387K, N457D and S458N) and, optionally, the combination of these mutations results in obtaining Ροΐμ mutants with an increased terminal transferase activity, as can be Check throughout the description.

Claims

REIVINDICACIONES
1. ADN polimerasa mu (Ροΐμ) mutada que presenta una actividad desoxinucleotidil- transferasa terminal al menos alrededor de un 10% superior a la actividad desoxinucleotidil- transferasa terminal de la ADN polimerasa mu mutada R387 . 1. Mutated mu (Ροΐμ) DNA polymerase exhibiting terminal deoxynucleotidyl transferase activity at least about 10% higher than the terminal deoxynucleotidyl transferase activity of mutated R387 mutated DNA polymerase.
2. ADN polimerasa mu mutada según la reivindicación 1, que comprende al menos dos mutaciones. 2. Mutated DNA polymerase according to claim 1, comprising at least two mutations.
3. ADN polimerasa mu mutada según cualquiera de las reivindicaciones 1 ó 2, que comprende una secuencia con al menos un 60% de identidad con la SEQ ID NO: 17, o con cualquiera de sus subsecuencias SEQ ID NO: l y SEQ ID NO:2, o con un fragmento de cualquiera de dichas secuencias. 3. Mutated DNA polymerase according to any one of claims 1 or 2, comprising a sequence with at least 60% identity with SEQ ID NO: 17, or with any of its sub-sequences SEQ ID NO: l and SEQ ID NO: 2, or with a fragment of any of said sequences.
4. ADN polimerasa mu mutada según la reivindicación 3, que comprende al menos dos mutaciones que consisten en (i) una primera mutación puntual en la posición 387 y (ii) una segunda mutación que consiste en: 4. Mutated DNA polymerase according to claim 3, comprising at least two mutations consisting of (i) a first point mutation at position 387 and (ii) a second mutation consisting of:
(a) una mutación puntual en un aminoácido conservado de Ροΐμ wt y distinto al aminoácido homólogo presente en la enzima TdT, o  (a) a point mutation in a conserved amino acid of Ροΐμ wt and other than the homologous amino acid present in the TdT enzyme, or
(b) una mutación en el subdominio loop-1 de Ροΐμ.  (b) a mutation in the loop-1 subdomain of Ροΐμ.
5. ADN polimerasa mu mutada según la reivindicación 4, donde la primera mutación puntual (i) en la posición 387 consiste en la sustitución del aminoácido que se encuentra dicha posición por cualquiera de los aminoácidos seleccionados del siguiente grupo: Glutamina, Asparragina, Cisteína, Treonina, Serina, Metionina, Lisina, Arginina, Histidina o análogos de los mismos. 5. Mutated DNA polymerase according to claim 4, wherein the first point mutation (i) at position 387 consists of the substitution of the amino acid found in that position by any of the amino acids selected from the following group: Glutamine, Asparagine, Cysteine, Threonine, Serine, Methionine, Lysine, Arginine, Histidine or the like thereof.
6. ADN polimerasa mu mutada según la reivindicación 5, donde la segunda mutación puntual (a) es una mutación puntual en el aminoácido que se encuentra en la la posición 275 y consiste en la sustitución del aminoácido que se encuentra en dicha posición por cualquiera de los aminoácidos seleccionados del siguiente grupo: Glutamina, Asparragina, Cisteína, Treonina, Serina, Metionina o análogos de los mismos. 6. Mutated DNA polymerase according to claim 5, wherein the second point mutation (a) is a point mutation in the amino acid that is in position 275 and consists of the substitution of the amino acid that is in that position by any of the amino acids selected from the following group: Glutamine, Asparagine, Cysteine, Threonine, Serine, Methionine or the like thereof.
7. ADN polimerasa mu mutada según cualquiera de las reivindicaciones anteriores, donde. la segunda mutación (b) consiste en la deleción y sustitución del loop-1 de Ροΐμ o de un fragmento del mismo por: i) una secuencia con al menos alrededor de un 10% de identidad con la SEQ ID NO: 3 (loop-1 de Po^), o 7. Mutated DNA polymerase according to any of the preceding claims, wherein. The second mutation (b) consists of the deletion and replacement of loop-1 of Ροΐμ or a fragment thereof by: i) a sequence with at least about 10% identity with SEQ ID NO: 3 (loop-1 of Po ^), or
ii) por una secuencia con al menos alrededor de un 10% de identidad con la SEQ ID NO: 4 (loop-1 de TdT).  ii) by a sequence with at least about 10% identity with SEQ ID NO: 4 (loop-1 of TdT).
8. ADN polimerasa mutada según cualquiera de las reivindicaciones anteriores, cuya secuencia es seleccionada el grupo formado por SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, fragmentos o subsecuencias de las mismas que mantengan sustancialmente su actividad transferasa terminal. 8. Mutated DNA polymerase according to any of the preceding claims, whose sequence is selected from the group consisting of SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 10, fragments or sub-sequences thereof that substantially maintain their terminal transferase activity.
9. Polinucleótido que codifica una ADN polimerasa mu mutada, o un fragmento o subsecuencia de la misma, de acuerdo a cualquiera de las reivindicaciones 1 a 8. 9. Polynucleotide encoding a mutated mutated DNA polymerase, or a fragment or sub-sequence thereof, according to any one of claims 1 to 8.
10. Polinucleótido según la reivindicación 9, donde su secuencia es seleccionada del grupo que comprende las secuencias SEQ ID NO:14 y SEQ ID NO:15. 10. Polynucleotide according to claim 9, wherein its sequence is selected from the group comprising the sequences SEQ ID NO: 14 and SEQ ID NO: 15.
1 1. Vector que comprende un polinucleótido según cualquiera de las reivindicaciones 9 ó 10. 1 1. Vector comprising a polynucleotide according to any of claims 9 or 10.
12. Célula huésped que comprende un polinucleótido según cualquiera de las reivindicaciones 9 ó 10, o un vector según la reivindicación 1 1. 12. Host cell comprising a polynucleotide according to any one of claims 9 or 10, or a vector according to claim 1 1.
13. Método para la producción de una ADN polimerasa mu mutada según cualquiera de las reivindicaciones 1 a 8, que comprende: i) el cultivo de una célula huésped según la reivindicación 12 bajo condiciones que promuevan la expresión del polinucleótido según cualquiera de las reivindicaciones 9 ó 10, y ii) el aislamiento del mutante producido. 13. A method for the production of a mutated mu DNA polymerase according to any one of claims 1 to 8, comprising: i) culturing a host cell according to claim 12 under conditions that promote the expression of the polynucleotide according to any of claims 9 or 10, and ii) isolation of the mutant produced.
14. Método para la elongación de un polinucleótido diana que comprende: i) poner en contacto al polinucleótido diana con la ADN polimerasa mu mutada según cualquiera de las reivindicaciones 1 a 8 y nucleótidos o análogos de nucleótidos (mezcla de reacción), y ii) someter la mezcla de reacción a condiciones que favorezcan la inserción de al menos un nucleótido o un análogo del mismo en el extremo 3ΌΗ del polinucleótido diana. 14. Method for elongation of a target polynucleotide comprising: i) contacting the target polynucleotide with the mutated mu DNA polymerase according to any one of claims 1 to 8 and nucleotides or nucleotide analogs (reaction mixture), and ii) subject the reaction mixture to conditions that favor the insertion of at least one nucleotide or an analogue thereof at the 3 extremo end of the target polynucleotide.
15. Método para el rellenado de huecos que comprende: i) poner en contacto a un polinucleótido diana, que comprende al menos un gap o hueco de al menos un nucleótido, con la ADN polimerasa mu mutada según cualquiera de las reivindicaciones 1 a 8 y nucleótidos o análogos de nucleótidos (mezcla de reacción), y ii) someter la mezcla de reacción a condiciones que favorezcan la inserción de al menos un nucleótido o análogo de nucleótido en el extremo 3ΌΗ de gap. 15. Method for filling voids comprising: i) contacting a target polynucleotide, comprising at least one gap or gap of at least one nucleotide, with the mutated DNA polymerase according to any one of claims 1 to 8 and nucleotides or nucleotide analogs (reaction mixture), and ii) subjecting the reaction mixture to conditions that favor the insertion of at least one nucleotide or nucleotide analogue at the 3ΌΗ end of the gap.
16. Método para la detección de muestras apoptóticas que comprende: i) poner en contacto una muestra, que contiene material genético de células potencialmente apoptóticas, con la ADN polimerasa mu mutada según cualquiera de las reivindicaciones 1 a 8 y al menos un nucleótido o análogo de nucleótido (mezcla de reacción), ii) someter la mezcla de reacción a condiciones que favorezcan la inserción de nucleótidos o análogos de los mismos, y iii) detectar la presencia o no de inserción, donde la detección de inserción es indicativa de que la muestra es apoptótica. 16. Method for the detection of apoptotic samples comprising: i) contacting a sample, containing genetic material of potentially apoptotic cells, with the mutated mutated DNA polymerase according to any of claims 1 to 8 and at least one nucleotide or analogue nucleotide (reaction mixture), ii) subject the reaction mixture to conditions that favor the insertion of nucleotides or analogs thereof, and iii) detect the presence or not of insertion, where the detection of insertion is indicative that the Sample is apoptotic.
PCT/ES2010/000402 2009-10-02 2010-10-02 Mutants of dna polymerase mu WO2011039390A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP200901943 2009-10-02
ES200901943A ES2364010B1 (en) 2009-10-02 2009-10-02 MUTANTS OF MU POLYMERASE DNA

Publications (3)

Publication Number Publication Date
WO2011039390A2 true WO2011039390A2 (en) 2011-04-07
WO2011039390A8 WO2011039390A8 (en) 2011-06-03
WO2011039390A3 WO2011039390A3 (en) 2011-07-21

Family

ID=43826709

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2010/000402 WO2011039390A2 (en) 2009-10-02 2010-10-02 Mutants of dna polymerase mu

Country Status (2)

Country Link
ES (1) ES2364010B1 (en)
WO (1) WO2011039390A2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001064909A1 (en) * 2000-03-03 2001-09-07 Consejo Superior De Investigaciones Cientificas Dna polymerase mu and uses thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001064909A1 (en) * 2000-03-03 2001-09-07 Consejo Superior De Investigaciones Cientificas Dna polymerase mu and uses thereof

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
ANDRADE, P. ET AL.: 'Limited terminal transferase in human DNA polymerase mu defines the required balance between accuracy and efficiency in NHEJ.' PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA vol. 106, no. 38, September 2009, ISSN 0027-8424 pages 16203 - 16208 *
DOMINGUEZ, O. ET AL.: 'DNA polymerase mu (Pol mu), homologous to TdT, could act as a DNA mutator in eukaryotic cthels.' THE EUROPEAN MOLECULAR BIOLOGY ORGANIZATION JOURNAL vol. 19, no. 7, 2000, ISSN 0261-4189 pages 1731 - 1742 *
JUAREZ, R ET AL.: 'A specific loop in human DNA polymerase mu allows switching between creative and DNA-instructed synthesis.' NUCLEIC ACIDS RESEARCH vol. 34, no. 16, 2006, ISSN 0305-1048 pages 4572 - 4582 *
MOON, A.F. ET AL.: 'Structural insight into the substrate specificity of DNA Polymerase mu' NATURE STRUCTURAL & MOLECULAR BIOLOGY vol. 14, no. 1, 2007, ISSN 1545-9985 pages 45 - 53 *
MOON, A.F. ET AL.: 'The X family portrait: structural insights into biological functions of X family polymerases.' DNA REPAIR vol. 6, no. 12, 2007, ISSN 1568-7864 pages 1709 - 1725 *
ROMAIN, F. ET AL.: 'Conferring a template-dependent polymerase activity to terminal deoxynucleotidyltransferase by mutations in the Loop1 region.' NUCLEIC ACIDS RESEARCH vol. 37, no. 14, August 2009, ISSN 0305-1048 pages 4642 - 4656 *

Also Published As

Publication number Publication date
WO2011039390A8 (en) 2011-06-03
WO2011039390A3 (en) 2011-07-21
ES2364010B1 (en) 2012-06-20
ES2364010A1 (en) 2011-08-23

Similar Documents

Publication Publication Date Title
ES2788949T3 (en) Modified polymerases for improved incorporation of nucleotide analogs
ES2374910T3 (en) THERMOSTABLE DNA POLYMERASES MODIFIED FOR SEQUENCING.
ES2882646T3 (en) Polymerases lacking exonuclease activity
CN107257854A (en) Polymerase mutants
CN107636004A (en) Polymerase mutants and application thereof
US9840698B2 (en) DNA polymerases with increased 3′-mismatch discrimination
JP2010532979A (en) Mutant DNA polymerase and related methods
RU2721920C2 (en) Recombinase mutants
JP5926248B2 (en) DNA polymerase with increased 3 'terminal mismatch discrimination
US10647967B2 (en) DNA polymerases with increased 3′-mismatch discrimination
CN109477127A (en) Uht-stable lysine-saltant type ssDNA/RNA ligase
WO2011039390A8 (en) Mutants of dna polymerase mu
JP5926246B2 (en) DNA polymerase with increased 3 'terminal mismatch discrimination
US20180023063A1 (en) Dna polymerases with increased 3'-mismatch discrimination
WO2020072715A1 (en) Compositions and methods comprising mutants of terminal deoxynucleotidyl transferase
US20180119116A1 (en) Dna polymerases with increased 3'-mismatch discrimination
WO2023060420A1 (en) Mutant of porin monomer, protein pore, and use thereof
JP5926247B2 (en) DNA polymerase with increased 3 'terminal mismatch discrimination
WO2023050031A1 (en) Mutant of porin monomer, protein pore and use thereof
US10144918B2 (en) DNA polymerases with increased 3′-mismatch discrimination

Legal Events

Date Code Title Description
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10819938

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10819938

Country of ref document: EP

Kind code of ref document: A2