WO2011036738A1 - ヒートポンプ発電システム - Google Patents

ヒートポンプ発電システム Download PDF

Info

Publication number
WO2011036738A1
WO2011036738A1 PCT/JP2009/006457 JP2009006457W WO2011036738A1 WO 2011036738 A1 WO2011036738 A1 WO 2011036738A1 JP 2009006457 W JP2009006457 W JP 2009006457W WO 2011036738 A1 WO2011036738 A1 WO 2011036738A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
power generation
heat pump
generation system
cold
Prior art date
Application number
PCT/JP2009/006457
Other languages
English (en)
French (fr)
Inventor
矢敷達朗
永渕尚之
Original Assignee
株式会社 日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立製作所 filed Critical 株式会社 日立製作所
Priority to CN200980160785.6A priority Critical patent/CN102472526B/zh
Priority to KR1020127003062A priority patent/KR101346484B1/ko
Priority to EP09849769A priority patent/EP2482002A1/en
Priority to US13/388,830 priority patent/US20120167952A1/en
Publication of WO2011036738A1 publication Critical patent/WO2011036738A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • F03G6/06Devices for producing mechanical power from solar energy with solar energy concentrating means
    • F03G6/065Devices for producing mechanical power from solar energy with solar energy concentrating means having a Rankine cycle
    • F03G6/067Binary cycle plants where the fluid from the solar collector heats the working fluid via a heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • F01K25/10Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • F03G6/001Devices for producing mechanical power from solar energy having photovoltaic cells
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/006Methods of steam generation characterised by form of heating method using solar heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S10/00PV power plants; Combinations of PV energy systems with other systems for the generation of electric power
    • H02S10/10PV power plants; Combinations of PV energy systems with other systems for the generation of electric power including a supplementary source of electric power, e.g. hybrid diesel-PV energy systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/40Thermal components
    • H02S40/44Means to utilise heat energy, e.g. hybrid systems producing warm water and electricity at the same time
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/60Thermal-PV hybrids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the present invention relates to a heat pump power generation system using solar heat and sunlight.
  • Patent Document 1 As a conventional technique related to a system that uses solar heat and sunlight in combination, there is a technique described in Patent Document 1, for example.
  • a hybrid solar collector that performs solar power generation and solar heat collection, a high-temperature heat storage tank, a low-temperature heat storage tank, and a low-temperature heat storage tank as a low-temperature side heat source are used to raise the temperature in the high-temperature heat storage tank.
  • a system that includes a heat pump and supplies hot water using the heat pump as a heat source is described.
  • An object of the present invention is to provide a heat pump power generation system that can effectively use solar energy in a wide wavelength range including a visible light region and an infrared region for power generation.
  • the present invention provides a heat pump power generation system using sunlight and solar heat, and concentrating and collecting sunlight and solar heat, and sunlight condensed by the collector.
  • the power generation panel that receives power, the heat generated by the heat collected by the condenser or the switch that switches the supply destination of the cold generated by cooling, and the cold heat or heat that passes through the switch accumulates
  • a heat pump power generation system comprising: a heat storage device; and a heat pump generator that generates electricity using the cold or warm heat stored in the heat storage device as a heat source.
  • the present invention it is possible to provide a heat pump power generation system that effectively uses solar energy in a wide wavelength region including a visible light region and an infrared region for power generation.
  • FIG. 1 is a schematic diagram of a heat pump power generation system according to a first embodiment of the present invention.
  • a solar battery As a power generation system using solar energy, for example, a solar battery is used to generate electricity directly from solar energy, or sunlight is condensed and water is evaporated by the heat. There is a solar thermal power generation system that generates power by rotating a steam turbine. Therefore, as a comparative example with the present embodiment, a general solar thermal power generation system will be described with reference to FIG.
  • FIG. 4 is a schematic view of a general solar thermal power generation system.
  • the illustrated solar thermal power generation system includes a composite parabolic concentrator 1 that collects sunlight, a heat collecting tube 2 that absorbs heat energy collected by the composite parabolic concentrator 1 in a heat medium, and a composite parabolic concentrator.
  • the heat exchanger 3 that generates heat by heat exchange with the heat medium heated at 1, the regenerator 4 that stores the heat generated by the heat exchanger, the heat of the regenerator 4 and the cold of the seawater 5 generate electricity
  • the Rankine cycle 6 and the circuit breaker 7 that cuts off the electricity supplied from the Rankine cycle 6 to the electric power system.
  • FIG. 5 is a distribution diagram of solar energy intensity with respect to sunlight wavelength.
  • electricity is generated using solar energy in the wavelength region of region A (visible light region), and solar energy in the wavelength region of region B (infrared region) is used. There wasn't. Further, in a general solar thermal power generation system, electricity is generated using the solar energy in the region B, and the solar energy in the region A is not used.
  • the heat pump power generation system of the present embodiment provides a heat pump power generation system that effectively uses solar energy in a wide wavelength region including the visible light region and the infrared region.
  • FIG. 1 is a schematic diagram of a heat pump power generation system according to a first embodiment of the present invention.
  • the heat pump power generation system of the present embodiment includes a composite parabolic concentrator 1 that condenses sunlight, a double-sided solar power generation panel 8 that generates power using sunlight condensed by the composite parabolic concentrator 1, and a composite parabolic concentrator.
  • the heat collecting tube 2 that absorbs the heat energy collected by the optical device 1 into the heat medium, the heat medium heated by the composite parabolic concentrator 1, or the heat medium or heat by heat exchange with the heat medium cooled by radiant cooling.
  • the heat exchanger 3 to be generated the switch 9 that switches the supply destination of the heat or cold obtained by the heat exchanger 3, the heat storage 4 that stores the heat supplied from the heat exchanger 3 through the switch 9, A cooler 10 that stores the cold supplied through the switch 9, a heat pump cycle 11 that uses the heat accumulated in the heat accumulator 4 as a heat source, and a Rankinesa that generates electricity using the heat that is the output of the heat pump cycle 11 as a heat source It has a cycle 6.
  • the heat stored in the heat accumulator 4 is supplied to the heat pump cycle 11 as will be described later, and is then supplied to the heat exchanger 3, but the heat is accumulated directly from the heat accumulator 4 to the heat exchanger 3. It also has a system.
  • the cooling heat of the cooler 10 includes a system that supplies the heat exchanger 3 through the Rankine cycle 6 and a system that directly supplies the heat exchanger 3 without passing through the Rankine cycle 6.
  • an inverter 12 that adjusts the frequency of electricity generated by the double-sided solar power generation panel 8, and a synchronizer that synchronizes the electricity adjusted in frequency by the inverter 12 and the frequency of electricity generated in the Rankine cycle 6.
  • a regulator 14 for adjusting the voltage and current of electricity synchronized by the synchronizer 13
  • a circuit breaker 7 for supplying or cutting off the electricity output from the regulator 14 to the system.
  • the heat pump 11 includes an evaporator 101 to which warm heat accumulated in the heat accumulator 4 is supplied as a heat source for the working medium, a compressor 102 that compresses the working medium evaporated in the evaporator 101 into a gas phase, and a compressor
  • the condenser 104 condenses the high-temperature and high-pressure working medium 102, and the expansion valve 105 expands the high-temperature and high-pressure working medium that has become a liquid phase in the condenser 104.
  • the working medium that is in the liquid phase at low temperature and low pressure by the expansion valve 105 is supplied to the evaporator 101.
  • the condenser 104 heat-exchanges with a low-temperature medium supplied from the Rankine cycle 6 described later, and the medium heated to a high temperature by the heat exchange with the working medium of the heat pump cycle in the condenser 104 serves as a heat source for the Rankine cycle 6.
  • the fuel is again supplied to the Rankine cycle 6.
  • Rankine cycle 6 constituting the heat pump generator is as follows.
  • the evaporator 106 and the evaporator 106 for exchanging heat between the working medium in the liquid phase state of the Rankine cycle and the medium having high-temperature heat supplied from the heat pump 11 are in a high-temperature and high-pressure gas-phase state.
  • a turbine 107 that adiabatically expands the working medium; a generator 108 that is driven by the turbine 107 to generate electricity; and a condenser 109 that condenses the working medium in a gas phase expanded by the turbine 107 with the cold supplied from the regenerator 10.
  • the pump 109 is configured to increase the pressure of the working medium that has become a liquid phase in the condenser 109.
  • Sunlight is collected by the composite parabolic concentrator 1 and absorbed by the heat medium as heat energy in the heat collecting tube 2, and electricity is generated in the double-sided solar power generation panel 8.
  • the heat medium inside the heat collecting tube 2 absorbs heat energy during the daytime when sunlight is radiated, and becomes a high-temperature state. become.
  • This heat medium is guided to the heat exchanger 3, and heat is generated during the daytime and cold is generated during the nighttime.
  • the heat from the heat exchanger 3 is accumulated in the heat accumulator 4 and the cold energy is accumulated in the regenerator 10 by a day / night switch 9 that switches according to the time of heat generation (daytime) and the time of cold heat generation (nighttime). .
  • the heat pump 11 generates heat using the heat accumulated in the regenerator 4 as a heat source. More specifically, in the evaporator 101, the working medium of the heat pump 11 that has flowed in the liquid phase is heated and evaporated by the warm heat supplied from the heat accumulator 4, and becomes a low-temperature and low-pressure gas phase. In the compressor 102, the working medium is adiabatically compressed into a high-temperature and high-pressure gas phase state. In the condenser 104, the working medium is cooled and condensed to be in a high-pressure liquid phase state, and heat is generated outside. In the expansion valve 105, the working medium is squeezed and expanded into a low-temperature and low-pressure liquid phase state.
  • Rankine cycle 6 electricity is generated using heat generated by heat pump 11 and cold energy accumulated in regenerator 10 as heat sources. More specifically, in the evaporator 106, the working medium of the Rankine cycle 6 that has flowed in the liquid phase is heated and evaporated by the heat generated by the heat pump 11, and becomes a high-temperature and high-pressure gas phase. In the turbine 107, the working medium is adiabatically expanded to be in a low-temperature and low-pressure gas phase state, and the generator 108 is driven to generate electricity. In the condenser 109, the working medium is cooled and condensed by the cold heat supplied from the regenerator 10 to be in a liquid phase state. In the pump 110, the working medium is adiabatically compressed to be in a high-pressure liquid phase state.
  • the inverter 12 adjusts the frequency of electricity generated by the double-sided solar power generation panel 8.
  • the frequency of electricity from the inverter 12 and the frequency of electricity from the Rankine cycle 6 are synchronized, the voltage / current is adjusted in the regulator 14, and the electricity generated in the circuit breaker 7 is supplied to the system.
  • the solar collector absorbs solar energy in the infrared wavelength region, generates electricity in the Rankine cycle 6, absorbs solar energy in the visible light region in the double-sided solar power generation panel 8, Is generated.
  • the solar collector absorbs solar energy in the visible light region in the double-sided solar power generation panel 8, Is generated.
  • the combined output of solar thermal power generation and solar power generation can improve output compared to a conventional power generation system using solar energy.
  • Rankine cycle 6 the higher the temperature of the high temperature heat source, the lower the temperature of the low temperature heat source, the higher the power generation efficiency.
  • electricity generated by using the heat generated by the heat pump 11 as a high-temperature heat source and using the cold heat accumulated in the regenerator 10 as a low-temperature heat source that is, when looking at the high-temperature heat source of Rankine cycle 6, in the example of FIG. 4, the heat accumulated in the heat accumulator 4 is the heat source, but in this embodiment, the high-temperature medium that is the output of the heat pump 11 is used as the heat source.
  • the Rankine cycle 6 is advantageous in terms of power generation efficiency. Moreover, when the low-temperature heat source of Rankine cycle 6 is seen, in the example of FIG. 4, seawater 5 is used as the heat source, but in this embodiment, the cold heat of the cooler 10 is cooled by radiant cooling at night. It becomes possible to make it low temperature. Therefore, according to the present embodiment, the power generation efficiency can be improved as compared with the conventional power generation system.
  • the heat from the day / night switch 9 is stored in the heat accumulator 4, heat is generated in the heat pump 11 using the stored heat as a heat source, and electricity is generated in the Rankine cycle 6 using the generated heat as a high-temperature heat source. It was.
  • heat is generated in the heat pump 21 using the heat from the day / night switch 9 as a heat source, the generated heat is stored in the heat accumulator 22, and the stored heat is used in the Rankine cycle 6 as a high-temperature heat source. It is comprised so that it may generate
  • the heat necessary for operating the Rankine cycle 6 is stored in the regenerator 22.
  • the heat pump 21 can supply the heat to the Rankine cycle 6 from the heat accumulator 22 without operating the heat pump 21 while the heat accumulator 22 stores the heat.
  • the operation time can be reduced. As a result, it is possible to reduce the power required to drive the compressor 201 with the motor 202.
  • the feature of this embodiment is that the heat from the day / night switch 9 is branched into two at the branch 31, electricity is generated in the Rankine cycle 6 using one branched heat as a high-temperature heat source, and the other branched heat is
  • the heat pump 32 generates heat as a heat source, and the generated heat is stored in the heat accumulator 33.
  • the heat stored in the heat accumulator 33 is supplied to the Rankine cycle 6 so that the amount of electricity supplied to the system via the circuit breaker 7 is constant, and the amount of electricity generated in the Rankine cycle 6 is adjusted.
  • the fluid is supplied from the valve 34 so that the fluid flow rate in the closed flow path (thick line in FIG. 3) between the condenser 301 and the heat accumulator 33 is constant. .
  • the amount of electricity supplied to the system was difficult to keep constant because the amount of sunlight irradiated fluctuated.
  • the amount of electricity generated in the Rankine cycle 6 can be adjusted by appropriately supplying the heat stored in the heat accumulator 33 to the Rankine cycle 6, so that the amount of electricity supplied to the system is constant. It is possible to keep on.
  • It can be used for heat pump power generation systems that generate power using sunlight and solar heat.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

 可視光領域と赤外領域を含む幅広い波長領域の太陽エネルギーを有効に利用して発電することができるヒートポンプ発電システムを提供する。 太陽光と太陽熱を集光及び集熱する集光器1と、該集光器で集光された太陽光を受けて発電する発電パネル8と、前記集光器で集熱した熱で生成した温熱又は冷却して生成した冷熱の供給先を切替える切替器9と、該切替器を経由した冷熱又は温熱を蓄積する蓄熱装置4,10と、該蓄熱装置で蓄熱された冷熱又は温熱を熱源として発電するヒートポンプ発電機11とを備える。

Description

ヒートポンプ発電システム
 本発明は、太陽熱及び太陽光を利用したヒートポンプ発電システムに関する。
 太陽熱と太陽光とを複合利用したシステムに関する従来技術としては、例えば特許文献1に記載の技術がある。この特許文献1には、太陽光発電と太陽熱集熱とを行うハイブリッド式太陽集熱器と、高温蓄熱槽及び低温蓄熱槽と、低温蓄熱槽を低温側熱源として高温蓄熱槽内を昇温させるヒートポンプを備え、このヒートポンプを熱源として利用して給湯するシステムが記載されている。
特開平7-234020号公報
 ところで、従来の太陽光発電システムにおいては、可視光領域の波長領域の太陽エネルギーを利用して電気を発生させ、赤外領域の波長領域の太陽エネルギーは利用していなかった。また、従来の太陽熱発電システムでは、赤外領域の波長領域の太陽エネルギーを利用して電気を発生させ、可視光領域の波長領域の太陽エネルギーは利用していなかった。
 本発明の目的は、可視光領域と赤外領域を含む幅広い波長領域の太陽エネルギーを発電に有効利用することができるヒートポンプ発電システムを提供することにある。
 上記目的を達成するため、本発明は、太陽光及び太陽熱を利用したヒートポンプ発電システムにおいて、太陽光と太陽熱を集光及び集熱する集光器と、該集光器で集光された太陽光を受けて発電する発電パネルと、前記集光器で集熱した熱で生成した温熱又は冷却して生成した冷熱の供給先を切替える切替器と、該切替器を経由した冷熱又は温熱を蓄積する蓄熱装置と、該蓄熱装置で蓄熱された冷熱又は温熱を熱源として発電するヒートポンプ発電機とを備えたことを特徴とするヒートポンプ発電システム。
 本発明によれば、可視光領域と赤外領域を含む幅広い波長領域の太陽エネルギーを発電に有効利用したヒートポンプ発電システムを提供することができる。
本発明の第1の実施例によるヒートポンプ発電システムの概略図。 本発明の第2の実施例によるヒートポンプ発電システムの概略図。 本発明の第3の実施例によるヒートポンプ発電システムの概略図。 一般的な太陽熱発電システムの概略図。 太陽光波長に対する太陽エネルギー強度の分布図。
 太陽エネルギーを利用した発電システムとしては、例えば、太陽電池を利用し、太陽光のエネルギーから直接的に電気を発生させる太陽光発電システムや、太陽光を集光し、その熱で水を蒸発させることで蒸気タービンを回転させ発電する太陽熱発電システムがある。そこで、先ず本実施例との比較例として、一般的な太陽熱発電システムについて図4を用いて説明する。
 図4は、一般的な太陽熱発電システムの概略図である。図示する太陽熱発電システムは、太陽光を集光する複合放物線式集光器1、複合放物線式集光器1で集熱した熱エネルギーを熱媒体に吸収させる集熱管2、複合放物線式集光器1で昇温した熱媒体との熱交換によって温熱を生成する熱交換器3、熱交換器で生成された温熱を蓄熱する蓄熱器4、蓄熱器4の温熱と海水5の冷熱を熱源として発電するランキンサイクル6、ランキンサイクル6から電力系統に供給される電気を遮断する遮断器7とによって構成されている。
 以上のように構成された太陽熱発電システムでは、太陽光を複合放物線式集光器1で集めて、集熱管2において熱エネルギーとして熱媒体に吸収させ、この熱媒体を熱交換器3に導き温熱を生成させ、蓄熱器4に温熱を蓄積する。蓄熱器4と海水5を熱源として、ランキンサイクル6で電気を発生させ、遮断器7を介して電気を系統に供給する。
 図5は、太陽光波長に対する太陽エネルギー強度の分布図である。一般的な太陽光発電システムでは、領域A(可視光領域)の波長領域の太陽エネルギーを利用して電気を発生させており、領域B(赤外領域)の波長領域の太陽エネルギーは利用していなかった。また、一般的な太陽熱発電システムでは、領域Bの太陽エネルギーを利用して電気を発生させ、領域Aの太陽エネルギーは利用していなかった。
 本実施例のヒートポンプ発電システムは、可視光領域と赤外領域を含む幅広い波長領域の太陽エネルギーを有効に利用したヒートポンプ発電システムを提供するものである。
 以下、図面を用いて本発明の実施の形態について説明する。
 図1は、本発明の第1の実施例であるヒートポンプ発電システムの概略図である。本実施例のヒートポンプ発電システムは、太陽光を集光する複合放物線式集光器1、複合放物線式集光器1で集光した太陽光により発電する両面太陽光発電パネル8、複合放物線式集光器1で集熱した熱エネルギーを熱媒体に吸収させる集熱管2、複合放物線式集光器1で昇温した熱媒体、或いは放射冷却により冷却した熱媒体との熱交換によって温熱又は冷熱を生成する熱交換器3、熱交換器3で得られた温熱又は冷熱の供給先を切替える切替器9、熱交換器3から切替器9を介して供給される温熱を蓄熱する蓄熱器4、同じく切替器9を介して供給される冷熱を蓄熱する冷熱器10、蓄熱器4に蓄積された温熱を熱源とするヒートポンプサイクル11、このヒートポンプサイクル11の出力である熱を熱源に電気を発生させるランキンサイクル6を備えている。
 蓄熱器4に蓄積された温熱は、後述するようにヒートポンプサイクル11に供給された後、熱交換器3に供給するように系統を構成するが、蓄熱器4から熱交換器3に直接供給する系統も備えている。同様に、冷熱器10の冷熱はランキンサイクル6を経て熱交換器3に供給する系統と、ランキンサイクル6を経由させずに熱交換器3に直接供給する系統を備えている。
 また、本実施例では、両面太陽光発電パネル8で発生した電気の周波数を調整するインバータ12、このインバータ12で周波数が調整された電気とランキンサイクル6で発生した電気の周波数を同期させる同期器13、同期器13で同期させた電気の電圧と電流を調整する調整器14、調整器14から出力される電気を系統に供給または遮断する遮断器7を有している。
 次に、ヒートポンプ発電機を構成するヒートポンプ11の詳細構成について説明する。ヒートポンプ11は、その作動媒体の熱源として蓄熱器4に蓄積された温熱が供給される蒸発器101、蒸発器101で蒸発して気相状態となった作動媒体を圧縮する圧縮機102、圧縮機102で高温高圧となった作動媒体を凝縮する凝縮器104、凝縮器104で液相状態となった高温高圧の作動媒体を膨張させる膨張弁105によって構成される。膨張弁105で低温低圧で液相状態となった作動媒体は蒸発器101に供給される。なお、凝縮器104では後述するランキンサイクル6から供給される低温の媒体と熱交換され、凝縮器104でヒートポンプサイクルの作動媒体との熱交換によって高温となった媒体は、ランキンサイクル6の熱源として再びランキンサイクル6に供給される。
 また、ヒートポンプ発電機を構成するランキンサイクル6の詳細構成は次の通りである。ランキンサイクル6は、ランキンサイクルの液相状態の作動媒体とヒートポンプ11から供給される高温の熱を保有する媒体とを熱交換させる蒸発器106、蒸発器106で高温高圧の気相状態となった作動媒体を断熱膨張させるタービン107、タービン107によって駆動されて電気を発生させる発電機108、タービン107で膨張した気相状態の作動媒体を蓄冷器10から供給される冷熱で凝縮させる凝縮器109、凝縮器109で液相状態となった作動媒体を昇圧するポンプ110により構成される。
 以上のように構成されたヒートポンプ発電システムの動作について説明する。太陽光を複合放物線式集光器1で集めて、集熱管2において熱エネルギーとして熱媒体に吸収させるとともに、両面太陽光発電パネル8において電気を生成する。集熱管2内部の熱媒体は、太陽光が照射している昼間は熱エネルギーを吸収して高温状態になるが、太陽光が照射していない夜間は放射冷却により熱エネルギーを放出して低温状態になる。この熱媒体を熱交換器3に導き、昼間は温熱を生成させ、夜間は冷熱を生成させる。熱交換器3からの熱は、温熱生成時(昼間)と冷熱生成時(夜間)に応じて切替える昼夜切替器9によって、温熱は蓄熱器4に蓄積され、冷熱は蓄冷器10に蓄積される。
 ヒートポンプ11では、蓄熱器4に蓄積された温熱を熱源として熱を発生する。より具体的には、蒸発器101において、液相状態で流入したヒートポンプ11の作動媒体は、蓄熱器4から供給される温熱よって加熱されて蒸発し、低温低圧の気相状態になる。圧縮機102において、作動媒体は断熱圧縮され高温高圧の気相状態になる。凝縮器104において、作動媒体は冷却されて凝縮し高圧の液相状態になるとともに、外部に熱を発生する。膨張弁105において、作動媒体は絞り膨張をして低温低圧の液相状態となる。
 ランキンサイクル6では、ヒートポンプ11で発生した熱と、蓄冷器10に蓄積された冷熱を熱源として電気を発生する。より具体的には、蒸発器106において、液相状態で流入したランキンサイクル6の作動媒体は、ヒートポンプ11で発生した熱によって加熱されて蒸発し、高温高圧の気相状態になる。タービン107において、作動媒体は断熱膨張して低温低圧の気相状態となるとともに、発電機108を駆動させ電気を発生する。凝縮器109において、作動媒体は蓄冷器10から供給される冷熱によって冷却されて凝縮し、液相状態になる。ポンプ110において、作動媒体は断熱圧縮されて高圧の液相状態になる。
 インバータ12では、両面太陽光発電パネル8で発生した電気の周波数を調整する。同期器13では、インバータ12からの電気の周波数とランキンサイクル6からの電気の周波数を同期させ、調整器14において電圧・電流を調整し、遮断器7において生成した電気を系統に供給する。
 本実施例では、集熱管2において赤外領域の波長領域の太陽エネルギーを吸収し、ランキンサイクル6において電気を生成するとともに、両面太陽光発電パネル8において可視光領域の太陽エネルギーを吸収し、電気を生成する。これにより、可視光領域と赤外領域を含む幅広い波長領域の太陽エネルギーを有効に利用して、電気を発生させることが可能である。また、太陽熱発電と太陽光発電のコンバインド化により、従来の太陽エネルギーを利用した発電システムと比較して、出力を向上させることができる。
 ランキンサイクル6では、高温熱源の温度が高温であるほど、低温熱源の温度が低温であるほど、発電効率が高くなる。本実施例では、ランキンサイクル6において、ヒートポンプ11で発生した熱を高温熱源として利用し、蓄冷器10に蓄積された冷熱を低温熱源として利用して電気を生成している。すなわち、ランキンサイクル6の高温熱源を見た場合、図4の例では蓄熱器4に蓄積した温熱が熱源となるが、本実施例ではヒートポンプ11の出力である高温媒体を熱源としている。このヒートポンプ11で発生する熱は蓄熱器4の温熱より高温であるため、ランキンサイクル6では発電効率の面で有利となる。また、ランキンサイクル6の低温熱源を見た場合、図4の例では海水5を熱源としているが、本実施例では冷熱器10の冷熱は夜間の放射冷却によって冷却されたものであるため、より低温にすることが可能となる。従って、本実施例により、従来の発電システムよりも発電効率を向上させることができる。
 また、ランキンサイクル6を用いた従来の太陽熱発電システムでは、プラントを起動する際に、作動媒体が蒸発を開始し、発電機を駆動して電気を生成するまでに時間がかかるので、プラントの起動時間が長くなるという問題点があった。しかし、本実施例ではプラント起動と同時に、両面太陽光発電パネル8で電気を生成することができるので、プラントの起動時間を短くすることができる。
 以上説明した本実施例によれば、可視光領域と赤外領域を含む幅広い波長領域の太陽エネルギーを発電に有効利用したヒートポンプ発電システムを提供することが可能となる。
 次に、図2を用いて、本発明の第2の実施例について説明する。 
 図1の実施例では、昼夜切替器9からの温熱を蓄熱器4に蓄え、蓄えた温熱を熱源としてヒートポンプ11において熱を発生し、発生した熱を高温熱源としてランキンサイクル6で電気を発生させていた。これに対して、本実施例では、昼夜切替器9からの温熱を熱源としてヒートポンプ21において熱を発生し、発生した熱を蓄熱器22に蓄え、蓄えた熱を高温熱源としてランキンサイクル6で電気を発生するように構成したものである。
 本実施例では、ランキンサイクル6を運転するために必要な温熱が蓄熱器22に蓄えられている。ランキンサイクル6を連続運転する場合に、蓄熱器22に温熱が蓄えられている間は、ヒートポンプ21を運転しなくても蓄熱器22からランキンサイクル6に温熱を供給することができるので、ヒートポンプ21の稼動時間を少なくすることができる。これにより、圧縮機201をモータ202で駆動するために必要となる動力を低減することが可能である。
 次に、図3を用いて、本発明の第3の実施例について説明する。 
 本実施例の特徴は、昼夜切替器9からの温熱を分岐31にて二つに分岐させ、分岐した一方の温熱を高温熱源としてランキンサイクル6で電気を発生させ、分岐したもう一方の温熱を熱源としてヒートポンプ32において熱を発生し、発生した熱を蓄熱器33に蓄えるように構成したことにある。そそて、遮断器7を介して系統に供給する電気量が一定となるように、蓄熱器33に蓄えられた温熱をランキンサイクル6に供給し、ランキンサイクル6で発生する電気量を調整する。ランキンサイクル6に温熱が供給された場合は、凝縮器301と蓄熱器33の間の閉流路(図3中の太線)中の流体流量が一定となるように、弁34から流体を供給する。
 従来の太陽光発電システムあるいは太陽熱発電システムでは、太陽光の照射量が変動するために、系統に供給する電気量を一定に保つことが難しかった。これに対して、本実施例では、蓄熱器33に蓄えられた温熱をランキンサイクル6に適宜供給することにより、ランキンサイクル6で発生する電気量を調整できるため、系統に供給する電気量を一定に保つことが可能である。
 太陽光および太陽熱を利用して発電するヒートポンプ発電システムに利用可能である。
1 複合放物線式集光器
2 集熱管
3 熱交換器
4,22,33 蓄熱器
5 海水
6 ランキンサイクル
7 遮断器
8 両面太陽光発電パネル
9 昼夜切替器
10 蓄冷器
11,21,32 ヒートポンプ
12 インバータ
13 同期器
14 調整器
31 分岐
34 弁
101,106 蒸発器
102,201 圧縮機
103,202 モータ
104,109,301 凝縮器
105 膨張弁
107 タービン
108 発電機
110 ポンプ

Claims (10)

  1.  太陽光及び太陽熱を利用したヒートポンプ発電システムにおいて、
     太陽光と太陽熱を集光及び集熱する集光器と、該集光器で集光された太陽光を受けて発電する発電パネルと、前記集光器で集熱した熱で生成した温熱又は冷却して生成した冷熱の供給先を切替える切替器と、該切替器を経由した冷熱又は温熱を蓄積する蓄熱装置と、該蓄熱装置で蓄熱された冷熱又は温熱を熱源として発電するヒートポンプ発電機とを備えたことを特徴とするヒートポンプ発電システム。
  2.  太陽光及び太陽熱を利用したヒートポンプ発電システムにおいて、
     太陽光と太陽熱を集光及び集熱する集光器と、該集光器で集光された可視光領域の波長領域の太陽エネルギーを利用して発電する発電パネルと、前記集光器で集熱された赤外領域の波長領域の太陽エネルギーを利用して生成した温熱又は冷熱の供給先を切替える切替器と、該切替器を経由した冷熱又は温熱を蓄積する蓄熱装置と、該蓄熱装置で蓄熱された冷熱又は温熱を熱源として発電するヒートポンプ発電機とを備えたことを特徴とするヒートポンプ発電システム。
  3.  太陽光及び太陽熱を利用したヒートポンプ発電システムにおいて、
     太陽光を集光する集光器と、該集光器で集光された太陽光を受けて発電する発電パネルと、前記集光器で集光された太陽光によって加熱される集熱管と、該集熱管と接続された熱交換器と、該熱交換器で回収した冷熱及び温熱の供給先を切替える切替器と、前記冷熱を蓄積する蓄冷器と、前記温熱を蓄積する蓄熱装置と、前記蓄冷器の冷熱及び前記蓄熱器の温熱を熱源として発電するヒートポンプ発電機と、前記発電パネルで発電した電気の周波数を調整するインバータと、該インバータ及び前記ヒートポンプ発電機で発電した電気の周波数を同期させる同期器と、該同期器で同期させた電気の電圧,電流を調整する調整器と、該調整器を経由した電気の系統に対する供給を遮断する遮断器を備えたことを特徴とするヒートポンプ発電システム。
  4.  請求項1に記載のヒートポンプ発電システムにおいて、
     前記蓄熱装置は、温熱を蓄積する蓄熱器と、冷熱を蓄積する蓄冷器によって構成したことを特徴とするヒートポンプ発電システム。
  5.  請求項1に記載のヒートポンプ発電システムにおいて、
     前記切替器は、太陽光が照射している時間帯は集熱して生成した前記温熱に、太陽光が照射していない時間帯は冷却して生成した前記冷熱に切替えることを特徴とするヒートポンプ発電システム。
  6.  請求項1に記載のヒートポンプ発電システムにおいて、
     前記ヒートポンプ発電機は、ヒートポンプサイクルとランキンサイクルの組み合わせにより構成したものであって、前記ヒートポンプサイクルは前記温熱を熱源として前記温熱より高温の熱を出力し、前記ランキンサイクルは前記ヒートポンプサイクルから出力される熱と前記冷熱を熱源として電気を発生させるように構成したことを特徴とするヒートポンプ発電システム。
  7.  請求項4に記載のヒートポンプ発電システムにおいて、
     前記切替器は、太陽光が照射している時間帯は前記温熱を前記蓄熱器又は前記ヒートポンプ発電機の熱源として該ヒートポンプ発電機に直接供給し、太陽光が照射していない時間帯は前記冷熱を蓄冷器に供給するように切替えることを特徴とするヒートポンプ発電システム。
  8.  請求項4に記載のヒートポンプ発電システムにおいて、
     前記ヒートポンプ発電機は、ヒートポンプサイクルとランキンサイクルを組み合わせて構成したものであって、前記ヒートポンプサイクルは前記切替器から供給される温熱を熱源として熱を発生させて前記蓄熱器に供給し、前記ランキンサイクルは前記蓄熱器の温熱と前記蓄冷器の冷熱を熱源として電気を発生させるように構成したことを特徴とするヒートポンプ発電システム。
  9.  請求項4に記載のヒートポンプ発電システムにおいて、
     前記ヒートポンプ発電機は、ヒートポンプサイクルとランキンサイクルを組み合わせて構成したものであって、前記ヒートポンプサイクルは前記切替器を経て分岐した一方の温熱を熱源として発生させた熱を前記蓄熱器に供給し、前記ランキンサイクルは前記蓄熱器の温熱又は前記分岐した他方の温熱と、前記蓄冷器の冷熱を熱源として電気を発生させるように構成したことを特徴とするヒートポンプ発電システム。
  10.  請求項8,9に記載のヒートポンプ発電システムにおいて、
     前記蓄熱器は、前記ヒートポンプ発電機で発電する電気が一定となるように、前記蓄熱器に蓄積した温熱を前記ランキンサイクルに供給することを特徴とするヒートポンプ発電システム。
PCT/JP2009/006457 2009-09-24 2009-11-30 ヒートポンプ発電システム WO2011036738A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN200980160785.6A CN102472526B (zh) 2009-09-24 2009-11-30 热泵发电系统
KR1020127003062A KR101346484B1 (ko) 2009-09-24 2009-11-30 히트 펌프 발전 시스템
EP09849769A EP2482002A1 (en) 2009-09-24 2009-11-30 Heat pump power generation system
US13/388,830 US20120167952A1 (en) 2009-09-24 2009-11-30 Heat Pump Power Generation System

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009218406A JP5205353B2 (ja) 2009-09-24 2009-09-24 ヒートポンプ発電システム
JP2009-218406 2009-09-24

Publications (1)

Publication Number Publication Date
WO2011036738A1 true WO2011036738A1 (ja) 2011-03-31

Family

ID=43795510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/006457 WO2011036738A1 (ja) 2009-09-24 2009-11-30 ヒートポンプ発電システム

Country Status (6)

Country Link
US (1) US20120167952A1 (ja)
EP (1) EP2482002A1 (ja)
JP (1) JP5205353B2 (ja)
KR (1) KR101346484B1 (ja)
CN (1) CN102472526B (ja)
WO (1) WO2011036738A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012159763A3 (de) * 2011-05-26 2013-05-10 Willi Bihler Kombinierte photovoltaik- und solarthermieanlage
EP2594753A1 (en) * 2011-11-21 2013-05-22 Siemens Aktiengesellschaft Thermal energy storage and recovery system comprising a storage arrangement and a charging/discharging arrangement being connected via a heat exchanger
FR2986042A1 (fr) * 2012-01-24 2013-07-26 Univ Montpellier Ii Systeme a rendement eleve de production d'electricite a partir d'energie solaire recoltee par des capteurs solaires thermiques et utilisant un moteur ditherme a source de chaleur externe.
EP2653668A1 (de) * 2012-04-17 2013-10-23 Siemens Aktiengesellschaft Verfahren zum Laden und Entladen eines Wärmespeichers und Anlage zur Speicherung und Abgabe von thermischer Energie, geeignet für dieses Verfahren
WO2013180685A1 (en) * 2012-05-28 2013-12-05 William Armstrong System and method for energy storage
WO2013135761A3 (de) * 2012-03-16 2014-09-25 Siemens Aktiengesellschaft Leistungsregelung und/oder frequenzregelung bei einem solarthermischen dampfkraftwerk
CN110319600A (zh) * 2019-04-26 2019-10-11 云南电网有限责任公司电力科学研究院 一种蒸汽热泵与光热蓄热锅炉联合系统
WO2022031179A1 (en) 2020-08-06 2022-02-10 FIRMA HANDLOWO USŁUGOWA URZĄDZENIA CHŁODNICZE - Marek CZAMARA System for emission-free year-round generation, storage and processing of thermal and electrical energy

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10094219B2 (en) 2010-03-04 2018-10-09 X Development Llc Adiabatic salt energy storage
JP2012112369A (ja) * 2010-11-19 2012-06-14 Atsuo Morikawa ヒートポンプ発電装置
NO20120734A1 (no) * 2012-06-25 2013-12-26 Vacuwatt As Varmepumpeanlegg
US20140053557A1 (en) * 2012-08-21 2014-02-27 Cogenra Solar, Inc. Maximizing value from a concentrating solar energy system
WO2014052927A1 (en) 2012-09-27 2014-04-03 Gigawatt Day Storage Systems, Inc. Systems and methods for energy storage and retrieval
TWI545257B (zh) * 2012-10-29 2016-08-11 Atomic Energy Council 多功能太陽能熱電共生系統
JP5923619B2 (ja) * 2012-10-29 2016-05-24 株式会社日立製作所 蓄熱システム、発電システム
KR101445266B1 (ko) 2012-11-13 2014-10-14 주식회사 제이앤에스에너지 냉난방을 위한 신재생에너지 중앙제어 연동관리시스템
CN104420886A (zh) * 2013-08-23 2015-03-18 上海科斗电子科技有限公司 气体热交换发电系统
ITPV20130011A1 (it) * 2013-12-30 2015-07-01 Antonio Covello Gruppo fornitore integrato di energia termica e di acqua a temperatura controllata
US9207003B2 (en) * 2014-04-02 2015-12-08 King Fahd University Of Petroleum And Minerals Intermittent absorption system with a liquid-liquid heat exchanger
JP5917591B2 (ja) * 2014-04-17 2016-05-18 三菱日立パワーシステムズ株式会社 水素ガス発生システム
CN104061646B (zh) * 2014-07-04 2016-08-31 温州泓呈祥科技有限公司 一种太阳能辅助空调制冷设备
CN104775862B (zh) * 2015-03-10 2016-05-25 王宝华 一种低温热能机
GB2552963A (en) * 2016-08-15 2018-02-21 Futurebay Ltd Thermodynamic cycle apparatus and method
US10458284B2 (en) 2016-12-28 2019-10-29 Malta Inc. Variable pressure inventory control of closed cycle system with a high pressure tank and an intermediate pressure tank
US11053847B2 (en) 2016-12-28 2021-07-06 Malta Inc. Baffled thermoclines in thermodynamic cycle systems
US10082045B2 (en) 2016-12-28 2018-09-25 X Development Llc Use of regenerator in thermodynamic cycle system
US10233833B2 (en) 2016-12-28 2019-03-19 Malta Inc. Pump control of closed cycle power generation system
US10233787B2 (en) 2016-12-28 2019-03-19 Malta Inc. Storage of excess heat in cold side of heat engine
US10221775B2 (en) 2016-12-29 2019-03-05 Malta Inc. Use of external air for closed cycle inventory control
US10280804B2 (en) 2016-12-29 2019-05-07 Malta Inc. Thermocline arrays
US10082104B2 (en) 2016-12-30 2018-09-25 X Development Llc Atmospheric storage and transfer of thermal energy
US10801404B2 (en) 2016-12-30 2020-10-13 Malta Inc. Variable pressure turbine
US10436109B2 (en) * 2016-12-31 2019-10-08 Malta Inc. Modular thermal storage
JP6882973B2 (ja) 2017-11-13 2021-06-02 株式会社日立製作所 エネルギー管理システム、及びエネルギー管理方法
CA3088184A1 (en) 2018-01-11 2019-07-18 Lancium Llc Method and system for dynamic power delivery to a flexible datacenter using unutilized energy sources
AU2020384893A1 (en) 2019-11-16 2022-06-09 Malta Inc. Pumped heat electric storage system
US11454167B1 (en) 2020-08-12 2022-09-27 Malta Inc. Pumped heat energy storage system with hot-side thermal integration
US11286804B2 (en) 2020-08-12 2022-03-29 Malta Inc. Pumped heat energy storage system with charge cycle thermal integration
US11486305B2 (en) 2020-08-12 2022-11-01 Malta Inc. Pumped heat energy storage system with load following
CA3188991A1 (en) 2020-08-12 2022-02-17 Benjamin R. Bollinger Pumped heat energy storage system with thermal plant integration
US11396826B2 (en) 2020-08-12 2022-07-26 Malta Inc. Pumped heat energy storage system with electric heating integration
US11480067B2 (en) 2020-08-12 2022-10-25 Malta Inc. Pumped heat energy storage system with generation cycle thermal integration
US20220146151A1 (en) * 2020-11-09 2022-05-12 Photon Vault, Llc Multi-temperature heat collection system
US11658605B2 (en) * 2021-06-28 2023-05-23 Yonghua Wang Hybrid solar thermal and photovoltaic power generation system with a pumped thermal storage through a heat pump/heat engine mode switchable apparatus
KR102513013B1 (ko) * 2022-08-26 2023-03-23 하이랩스 주식회사 에너지 자립형 태양광 발전 시스템
WO2024062451A1 (en) * 2022-09-22 2024-03-28 Energypier Ag Hybrid solar power generation system and civil engineering work with such system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6196262U (ja) * 1984-11-29 1986-06-20
JP2006200434A (ja) * 2005-01-20 2006-08-03 Sanden Corp 発電装置
JP2008111650A (ja) * 2006-10-05 2008-05-15 Matsushita Electric Ind Co Ltd 太陽光発電・集熱複合利用装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1532542A (en) * 1975-01-14 1978-11-15 Awalt T Hot or cold storage system
US4103493A (en) * 1975-03-06 1978-08-01 Hansen, Lind, Meyer Solar power system
US4278829A (en) * 1979-03-12 1981-07-14 Powell Roger A Solar energy conversion apparatus
JPS58148331A (ja) * 1982-03-31 1983-09-03 Toshiba Jutaku Sangyo Kk 太陽熱利用空気調和装置
IL96989A0 (en) * 1991-01-21 1992-03-29 Amitec Information Industry Lt Multi-purpose solar energy conversion system
JPH07234020A (ja) * 1994-02-24 1995-09-05 Showa Alum Corp ハイブリッド式ソーラーシステム
US7605326B2 (en) * 2003-11-24 2009-10-20 Anderson Christopher M Solar electrolysis power co-generation system
US20080149163A1 (en) * 2004-08-31 2008-06-26 Ron Gangemi System and method for mounting photovoltaic cells
US20080115823A1 (en) * 2006-11-21 2008-05-22 Kinsey Geoffrey S Curved focal plane receiver for concentrating light in a photovoltaic system
US20090179429A1 (en) * 2007-11-09 2009-07-16 Erik Ellis Efficient low temperature thermal energy storage

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6196262U (ja) * 1984-11-29 1986-06-20
JP2006200434A (ja) * 2005-01-20 2006-08-03 Sanden Corp 発電装置
JP2008111650A (ja) * 2006-10-05 2008-05-15 Matsushita Electric Ind Co Ltd 太陽光発電・集熱複合利用装置

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012159763A3 (de) * 2011-05-26 2013-05-10 Willi Bihler Kombinierte photovoltaik- und solarthermieanlage
EP2594753A1 (en) * 2011-11-21 2013-05-22 Siemens Aktiengesellschaft Thermal energy storage and recovery system comprising a storage arrangement and a charging/discharging arrangement being connected via a heat exchanger
CN103133071A (zh) * 2011-11-21 2013-06-05 西门子公司 热能量储存和回收系统
FR2986042A1 (fr) * 2012-01-24 2013-07-26 Univ Montpellier Ii Systeme a rendement eleve de production d'electricite a partir d'energie solaire recoltee par des capteurs solaires thermiques et utilisant un moteur ditherme a source de chaleur externe.
WO2013110703A1 (fr) * 2012-01-24 2013-08-01 Universite Montpellier 2, Sciences Et Techniques Système à rendement élevé de production d'électricité à partir d'énergie solaire récoltée par des capteurs solaires thermiques et utilisant un moteur ditherme à source de chaleur externe
WO2013135761A3 (de) * 2012-03-16 2014-09-25 Siemens Aktiengesellschaft Leistungsregelung und/oder frequenzregelung bei einem solarthermischen dampfkraftwerk
WO2013156291A1 (de) * 2012-04-17 2013-10-24 Siemens Aktiengesellschaft Verfahren zum laden und entladen eines wärmespeichers und anlage zur speicherung und abgabe von thermischer energie, geeignet für dieses verfahren
EP2653668A1 (de) * 2012-04-17 2013-10-23 Siemens Aktiengesellschaft Verfahren zum Laden und Entladen eines Wärmespeichers und Anlage zur Speicherung und Abgabe von thermischer Energie, geeignet für dieses Verfahren
CN104271896A (zh) * 2012-04-17 2015-01-07 西门子公司 用于蓄充和释放热存储器的方法和适合于此方法的存储和放出热能的设备
WO2013180685A1 (en) * 2012-05-28 2013-12-05 William Armstrong System and method for energy storage
CN110319600A (zh) * 2019-04-26 2019-10-11 云南电网有限责任公司电力科学研究院 一种蒸汽热泵与光热蓄热锅炉联合系统
CN110319600B (zh) * 2019-04-26 2021-01-29 云南电网有限责任公司电力科学研究院 一种蒸汽热泵与光热蓄热锅炉联合系统
WO2022031179A1 (en) 2020-08-06 2022-02-10 FIRMA HANDLOWO USŁUGOWA URZĄDZENIA CHŁODNICZE - Marek CZAMARA System for emission-free year-round generation, storage and processing of thermal and electrical energy

Also Published As

Publication number Publication date
US20120167952A1 (en) 2012-07-05
CN102472526B (zh) 2014-05-07
KR20120042921A (ko) 2012-05-03
EP2482002A1 (en) 2012-08-01
KR101346484B1 (ko) 2014-01-10
JP2011069233A (ja) 2011-04-07
CN102472526A (zh) 2012-05-23
JP5205353B2 (ja) 2013-06-05

Similar Documents

Publication Publication Date Title
JP5205353B2 (ja) ヒートポンプ発電システム
US7964787B2 (en) Hybrid solar power generator
US9316404B2 (en) Heat pump with integral solar collector
US20090228150A1 (en) HVAC system
US10598392B2 (en) Solar energy system
JP5685485B2 (ja) 太陽光熱利用蒸気吸収式冷凍機及び太陽光熱利用システム
US20110030404A1 (en) Heat pump with intgeral solar collector
JP2011069233A5 (ja)
CN102563987A (zh) 有机朗肯循环驱动的蒸气压缩制冷装置及方法
WO2013065492A1 (ja) 太陽熱タービン発電装置およびその制御方法
CA2736418A1 (en) A low temperature solar power system
WO2012131860A1 (ja) 定容加熱器利用装置
WO2015077235A1 (en) Concentrated solar power systems and methods utilizing cold thermal energy storage
KR101481010B1 (ko) 해양온도차발전 시스템 및 그 작동방법
JP2014122576A (ja) 太陽熱利用システム
JP2009022123A (ja) ヒートポンプの集熱を利用した発電方法
CN104390389A (zh) 家用太阳能光伏-空气源复合一体式热泵
AU2010211201B2 (en) Thermal power plant, in particular solar thermal power plant
JP2010223439A (ja) 太陽熱利用蒸気発生システムとそれを利用した太陽熱利用吸収冷凍機
CN202946330U (zh) 热泵发电系统
CN115306507B (zh) 移动式车载电源系统
CN101162014A (zh) 复合太阳能热发电系统
JP2012098003A (ja) 熱発電コジェネシステム
CN106968903B (zh) 混合式太阳能热发电系统及其方法
JP2014035139A (ja) 太陽光熱利用冷熱発生システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980160785.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09849769

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127003062

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2009849769

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009849769

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13388830

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE