WO2011036407A1 - Système adapté pour le transfert de fortes charges notamment entre une unité flottante et une tourelle montée en pivot dans l'unité flottante et amarrée sur le fond marin - Google Patents
Système adapté pour le transfert de fortes charges notamment entre une unité flottante et une tourelle montée en pivot dans l'unité flottante et amarrée sur le fond marin Download PDFInfo
- Publication number
- WO2011036407A1 WO2011036407A1 PCT/FR2010/051987 FR2010051987W WO2011036407A1 WO 2011036407 A1 WO2011036407 A1 WO 2011036407A1 FR 2010051987 W FR2010051987 W FR 2010051987W WO 2011036407 A1 WO2011036407 A1 WO 2011036407A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- turret
- well
- floating unit
- wheels
- unit
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63B—SHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING
- B63B21/00—Tying-up; Shifting, towing, or pushing equipment; Anchoring
- B63B21/50—Anchoring arrangements or methods for special vessels, e.g. for floating drilling platforms or dredgers
- B63B21/507—Anchoring arrangements or methods for special vessels, e.g. for floating drilling platforms or dredgers with mooring turrets
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C19/00—Bearings with rolling contact, for exclusively rotary movement
- F16C19/22—Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
- F16C19/34—Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
- F16C19/38—Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers
- F16C19/381—Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers with at least one row for radial load in combination with at least one row for axial load
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C19/00—Bearings with rolling contact, for exclusively rotary movement
- F16C19/50—Other types of ball or roller bearings
- F16C19/507—Other types of ball or roller bearings with rolling elements journaled in one of the moving parts, e.g. stationary rollers to support a rotating part
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C27/00—Elastic or yielding bearings or bearing supports, for exclusively rotary movement
- F16C27/04—Ball or roller bearings, e.g. with resilient rolling bodies
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/30—Parts of ball or roller bearings
- F16C33/34—Rollers; Needles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/30—Parts of ball or roller bearings
- F16C33/46—Cages for rollers or needles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2300/00—Application independent of particular apparatuses
- F16C2300/10—Application independent of particular apparatuses related to size
- F16C2300/14—Large applications, e.g. bearings having an inner diameter exceeding 500 mm
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2326/00—Articles relating to transporting
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2326/00—Articles relating to transporting
- F16C2326/30—Ships, e.g. propelling shafts and bearings therefor
Definitions
- the invention relates to a system adapted for the transfer of heavy loads, in particular between a first unit such as a single-point rotary mooring floating unit and a second unit substantially immobile relative to the seabed and pivoted in the first unit, such as a turret pivotally mounted in a well extending vertically through the hull of the floating unit, moored to the seabed and traversed by fluid transfer conduits to installations on the floating unit, the system comprising, for the transfer of charges between the second unit and the first unit, a guiding arrangement comprising rotation elements interposed between the two units as well as deformation absorbing means, in particular of the first unit, produced, where appropriate by the stresses exerted to 1 1 environment.
- the invention particularly relates to the case of floating units with turrets of large diameter, for example 25 meters, necessary to accommodate a large number of fluid transfer lines, for example 50 pipes.
- the guidance system of the turret rotating in the well of the floating unit must withstand high loads, namely the static and dynamic anchoring loads, the loads transmitted by the transfer lines, also static and dynamic , turret weights and on-board equipment, including rotating fluid transfer systems, which are static, as well as dynamic due to the mass of the rotating turret and its equipment, undergoing accelerations due to the movements of the unit floating.
- vertical forces that must be taken up by the guidance system could be for example of the order of 10000 to 15000 tons and the radial forces for example of the order of 1000 to 1500 tons.
- the invention aims to provide the problems posed by the turret of a large diameter, a simpler solution than that given in the US patent.
- the system according to the invention is characterized in that the guide arrangement comprises an axial abutment which comprises a large number of rotation elements, which are regularly distributed in the form of at least one coaxial crown to the axis of rotation and in that the rotation elements (15) are elastically deformable elements for the absorption of said charges and deformations.
- the system is characterized in that the axial abutment comprises a plurality of crowns superimposed and spaced in the direction of the axis of the well.
- the system is characterized in that in each ring the rotation elements are arranged between an annular platform, integral with the turret and a platform integral with the floating unit.
- the system is characterized in that the platforms of the turret are mounted on the cylindrical outer face thereof, coaxial with the axis of the turret.
- the system is characterized in that at least some of the integral platforms of the floating unit (1) are mounted on an annular support structure established on the upper deck of the floating unit around of Wells.
- the system is characterized in that some of the platforms of the floating unit are placed in an upper part on a larger diameter than that of the well.
- the system is characterized in that the rings of the axial abutment are juxtaposed between the bridge of the floating unit and a wide platform of the turret, coaxially with the axis of the well.
- the system is characterized in that the surfaces of the bridge and the platform are inclined downwards towards the axis of the well or vice versa.
- the system is characterized in that it comprises a radial bearing which comprises at least one ring of elements of elastic rotation, placed in an annular space of the well, between the turret and the unit floating.
- the system is characterized in that the radial bearing comprises a plurality of coaxial rings superimposed spaced in the direction of the axis of the well.
- the system is characterized in that the radial bearing may comprise at least one ring of rigid cylindrical rollers interposed between the turret and a surface of the floating unit.
- the system is characterized in that the rotation elements consist of wheels which are grouped in pairs whose axles are axially aligned and therefore common and in that the aligned axles are oriented radially by relative to the axis of the well.
- the system is characterized in that the wheels of the axial abutment are carrying axles, that the common axle is carried by a support fixed on the platform of the turret or the floating unit. and in that the wheels are in rolling contact with the lower surface of the adjacent upper platform of the floating unit or turret.
- the system is characterized in that the radial bearing wheels are axle bearing and are grouped in pairs having a common axle.
- the system is characterized in that the common axle is carried by a support which is fixed on the cylindrical outer face of the turret or the floating unit and that the wheels are in position. bearing contact with the surface facing the surface provided with the supports of the pairs of wheels.
- the system is characterized in that the rotation elements are non-load bearing wheels or rollers which are in rolling contact with a surface of the turret and a surface of the floating unit.
- the system is characterized in that a plurality of wheels or rollers are grouped so as to form a vehicle which moves on a circular path coaxial with the axis of the well around it and in this respect that each crown is formed by a succession of vehicles coaxial with the axis of the well.
- the system is characterized in that the rollers of the axial stop are cylindrical or conical rollers.
- the system is characterized in that the conical roller axles are inclined downwards towards the axis of the well or vice versa.
- the system is characterized in that the rollers of the radial bearing are cylindrical or conical rollers.
- the system is characterized in that the wheels are tires or wheels with elastically deformable solid tires.
- the system is characterized in that the rollers are made of an elastically deformable material or elastic bandage or consist of a pressurized envelope.
- the system is characterized in that the rotation elements are elastic balls interposed between the bearing contact surfaces of the turret and the floating unit and which are arranged in rotation cages. .
- the system is characterized in that the balls are arranged in a ring for the transfer axial loads for use in an axial abutment.
- the system is characterized in that the balls are arranged in a ring for the transfer of radial loads for use in a radial bearing.
- the system is characterized in that the balls are arranged in a ring for axial and radial load transfer, which is used simultaneously as axial stop and radial bearing, the balls being in angular contact. .
- the system is characterized in that a ring is provided with an outer raceway connected to the outer face of the turret to ensure that in case of a deflection of the turret of its central position in the well, not only the rotation elements on the side of the deviation, but also located diametrically opposite participating in the absorption of stresses.
- FIG. 1 is a diagrammatic view of a floating unit provided with a turret mounted pivotally in a vertical well-shaped opening through the body of the floating unit, the turret being moored to the seabed by lines anchoring and traversing by transfer lines of a fluid such as oil;
- FIG. 2A is a sectional view in a vertical plane, perpendicular to the longitudinal direction of the floating unit and shown, in elevation, a first embodiment of a turret guidance system in the well of the floating unit;
- FIGS. 2B and 2D are top views of elastic wheel rings respectively of an axial stop and of a radial bearing of the system according to FIG. 2A;
- FIGS. 2Ca to 2Cc are three views showing a pair of elastic wheels in views respectively along the indicated direction IICa-IICa of FIG. 2B, perpendicular to this direction and from above;
- FIG. 3A is a view similar to FIG. 2A and shows a first embodiment version of the mode represented in FIG. 2A;
- Figure 3B is a view corresponding to Figure 2Ca, however with a rolling element consisting of two twin wheels;
- FIG. 4A is a view similar to view 2A, of another embodiment of this embodiment.
- Figure 4B is a top view of a portion of the radial bearing of Figure 4A;
- FIGS. 5A to 5D are schematic views explaining the effect produced by the radial bearing of FIGS. 4A and 4B;
- FIG. 6 is a view similar to FIG. 2A of another embodiment of the system according to FIG. 2A;
- Figures 7A to 9 are views similar to Figure 2A, three different versions of a second embodiment of the system according to the invention, Figure 7B is a top view of the ring of Figure 7A;
- FIG. 10A is a view from above of a ring of elastic wheels according to a third embodiment, the ring being formed by a succession of vehicles with four elastic wheels, arranged around the axis of the well;
- FIGS. 10B to 10D are three different views of a vehicle according to Figure 10, respectively in section along the line Xb-Xb, perpendicular to this direction and from above;
- FIG. 11A is a view similar to FIG. 2A, showing a fourth embodiment of the invention.
- Figure 11B is a top view of the ring of the axial abutment of Figure 11A;
- FIG. 11C is a sectional view along the line XIc-XIc of FIG. 11B, but on a larger scale;
- Figure 11D is a top view, on a larger scale, of a two-roller vehicle of Figure 11B;
- FIG. 11E is a view from above of the radial bearing of FIG. 11A;
- Fig. 11F is a partial sectional view, on a larger scale, along line XI-XIf of Fig. 11E;
- FIG. 11G is a view, on a larger scale, with tear, in the direction of the arrow Xlg of Figure 11E;
- FIG. 12A is a view from above of a part of the crown of a radial bearing of a fifth embodiment of the invention, in which the rotation elements are formed by elastic balls;
- Figure 12B is a sectional view along the line XIIIb-XIIb of Figure 10B, on a larger scale;
- FIG. 12C is a view, broken away, and on a larger scale in the direction of the arrow XIIc of FIG. 12A;
- Fig. 12D is a view in the direction of arrow X11d of Fig. 12C;
- - Figure 13A is a top view of a portion of a ring of an axial stop whose rotation elements are formed by elastic beads;
- Figure 13B is a sectional view, on a larger scale, along line XIIIb-XIIIb of Figure 13A;
- FIG. 13C is a view, broken away and on a larger scale, in the direction of the arrow XIIIc of FIG. 13A;
- Fig. 13D is a top view of a portion of Fig. 13A;
- FIG. 14A is a top view of another embodiment of a resilient ball ring according to the invention, which can serve as an axial stop and radial bearing;
- Figure 14B is a sectional view, on a larger scale, along the line XIVb-XIVb of Figure 14A;
- Figures 15 and 16 are views similar to Figure 2A of an elastic ball system respectively comprising an axial stop and a radial bearing and a ring of balls forming both the axial stop and the radial bearing;
- Figure 17A is a view similar to Figure 2A but the axial stop is provided with damping devices;
- FIG. 17B is a top view of the axial stop of Figure 17A, equipped with the damping device;
- FIG. 17C is a plan view of the radial bearing of FIG. 17A, which is provided with damping devices;
- Figures 17D and 17E are views of a damping device according to the invention respectively in elevation and from above;
- FIGS. 18A and 18B schematically illustrate two possibilities of implementing a pair of elastic wheels according to the invention that can be used in the context of the first embodiment of the invention ( Figure 2A);
- Figure 19 is a view similar to Figure 7A, but shows a plate and a facing face, which have inclined housing surfaces of the ring.
- FIGS. 20A and 20B illustrate the possibility of producing cylindrical and conical rollers by assembling individual wheels.
- FIG. 1 This installation comprises a floating unit 1 for producing, storing and discharging a fluid, particularly a petroleum fluid, and a turret 2 which is pivotally mounted in a well-shaped opening 3 extending entirely vertically through the body of the floating unit.
- the turret is moored to the sea floor by anchor lines 4 which are fixed at 5 to the base plate 6 of the turret.
- the figure shows two of a large number of fluid transfer lines 7, for example oil, one end of which goes to unrepresented well heads, while the upper portion of the lines passes through the turret to transport the fluids to different equipment of the floating unit.
- the turret 2 is guided in the well 3 by guide arrangements which comprise an axial abutment device and a radial bearing, which will be described below and which are able to absorb the large loads produced by the turret and the displacements of supports resulting from the deformations that the floating unit undergoes under the effect of wind and waves.
- the guide arrangements are adapted for the transfer of heavy loads between the turret and the floating unit.
- the turret may have a large diameter for example greater than 25m and the floating unit may have a length greater than 300m.
- FIGS 2A to 2D illustrate a first embodiment of the invention.
- the axial guide arrangement 9 which constitutes an axial abutment comprises a plurality of annular platforms 12, 13 in particular horizontally and coaxial with the axis of the turret and the well and superimposed in the direction of these axes.
- the platforms 12 are secured to the turret 2 which at least in the example shown above the bridge 10 of the floating unit.
- the platforms 13 are mounted on a support structure in the form of an annular tower 19 mounted on the bridge 10 coaxial with the axis of the well 3.
- the annular platforms 12 and 13 are arranged so that each platform 12 is associated a platform 13 so as to form a pair. Between each pair of platforms 12 and 13 is interposed a ring 14 of rotating elements in the form of 15 elastically deformable wheels.
- the trays 12 of the turret are mounted on the outer cylindrical surface thereof and are spaced apart by a distance allowing the engagement between two platforms 12 of a platform 13 of the floating unit and the arrangement between the lower face of the the platform 12 below this platform 13 and the latter of a ring 14 of rotating elements.
- FIG. 2B shows the circular arrangement in the form of a ring 14 of the rotary elements 15 of the axial stop.
- the cylindrical wheel shaped rotating members 15 are arranged in pairs, the wheels of each pair being mounted on a support post 21 which extends vertically upwards from the upper face of the bridge 10 of the floating unit or the upper face 22 of the annular platforms 13.
- the two wheels are rotatably mounted on the support pole 21 by a horizontal axle 23, the two axles 23 of the wheels being aligned and oriented radially to the axis of the well.
- the two wheels are in rolling contact with the lower face of the plate 12 located above the plate 13, this surface therefore constituting a raceway.
- the wheels could be of various natures, provided they can deform elastically in the directions of absorption of the charges.
- the wheels could be, for example, tires or wheels with a solid elastically deformable tire.
- the platform 12 is continuous and annular because it constitutes the track; the platform 13 is not necessarily continuous because it supports discontinuous elements.
- the 20 of the well 3 and the outer face 26 of the turret 2 has a plurality of rings 25, for example four pairs of wheels 15, which are superimposed in the axis of the well and the turret, being spaced between the bridge upper 10 of the floating unit to a level a little below the half-height of the floating unit.
- the pairs of wheels are arranged in the manner shown in Figures 2Ca to 2Cb, the support posts 21 being secured to the inner face 4 of the well.
- each axial stop may comprise forty pairs of wheels, that is to say 80 wheels. Since the abutment comprises 6 crowns, the axial abutment thus comprises, in total, 480 wheels.
- the radial bearing in the example shown, it comprises, in each ring, 40 pairs of wheels, that is to say 80 wheels. In total, the radial bearing therefore comprises 320 wheels.
- Figure 3A shows another implementation version of the axial abutment and the radial bearing, the concept of Figure 2A.
- the well 3 is stepped and has an upper portion 27 of larger diameter, extending, in the example shown, approximately one third of the height of the floating unit and a lower well portion 28 of smaller diameter.
- the diameter of the upper well portion 27 is chosen such that the annular space formed between the inner cylindrical wall of the well portion 27 and the outer cylindrical surface of the turret 2 allows the reception of two axial abutment crowns 14 such as as shown in Figure 2 and described with reference to it.
- Twin wheels could also be used, if necessary, in the axial stop. In this case, however, the wheels are independent, that is to say they can rotate independently relative to each other around the same geometric axis.
- FIGS. 4A and 4B show an embodiment which comprises an axial stop 9 corresponding to that of FIG. 2.
- the radial bearing 24 has a feature which ensures a better use of the rotation elements 15.
- FIGS. 5A to 5D illustrate the advantageous effect produced by the outer track 30 by comparing a single-track radial bearing according to Figures 5A and 5B.
- Figures 5C and 5D illustrate the operation of the dual track radial bearing.
- FIG. 5A shows a radial single track bearing according to FIGS. 2 and 3, in the state without radial load and therefore without radial deviation of the turret.
- the turret 2 has moved slightly to the right, which results in a deformation of the wheels 15 by the cylindrical outer surface 26 of the turret.
- the wheels on the left are no longer in contact with this inner surface and therefore do not participate in the absorption of the radial loads produced by radial deflection of the turret.
- FIGS. 5C and 5D show that the presence of the outer race 30 which is integral with the outer cylindrical surface 26 of the turret, results in a radial deviation to the right, in accordance with FIG. 5D, also causing a displacement towards the right of the outer race 30, so that the wheels 15 diametrically opposed to the wheels deformed by the outer surface 26 of the turret are also deformed and therefore participate in the absorption of radial loads. Thanks to the participation not only of the wheels on the deflection side but also of the radially opposed wheels, the number of wheel crowns, in the version shown in FIGS. 4A and 4B, using a dual-track radial bearing, is reduced from 4 to 2, compared with Figure 2.
- FIG. 6 illustrates an embodiment which is similar to that shown in FIG. 3A, inasmuch as two rings 14 of the axial abutment are disposed in an upper zone of larger diameter of the well 3.
- the turret comprises three portions, an upper portion 37 of smaller diameter and whose cylindrical outer face supports six superimposed annular platforms 12, an intermediate portion.
- the radial bearing is also different from that of FIG.
- the support tower comprises at the top and at the bottom an annular radial projection 44 which extends radially towards the axis of the well. It can be seen that the two rings of rollers 42 are arranged at the level of the radially reduced portion 37 of the turret 2.
- FIGS. 7A and 7B show a second embodiment of the invention, the particularity of which lies in the fact that the axial stop 9 comprises five rings 14 of wheels 15 which are arranged in the radial direction of the well and the turret, between the upper deck 10 of the floating unit and a very wide single radial platform 46 at the head of the turret 2. Due to this arrangement of the axial abutment, the radial bearing 24 has only one crown 25 of twin wheels 15 'disposed near the upper deck 10 of the well. This arrangement makes it necessary to obtain a greater resistance to the rotation of the axial abutment 9. Between each concentric row there can be sufficient room for operator access and maintenance.
- the diameter of the well 3 is reduced in a cylindrical upper portion 47 of the floating unit, the intermediate portions 48 and lower 49 being respectively frustoconical and cylindrical.
- the turret 2 has a complementary shape and comprises therefore a reduced cylindrical upper cylindrical portion 50, a frustoconical intermediate portion 51 and a cylindrical lower portion 52 which is provided with the lower anchoring line anchoring platform 4. It is also possible to use in the radial bearing 24 to the place of the twin wheel crown 15 ', a ring of metal rollers 45, as shown in FIG. 8.
- FIG. 9 shows another version of the system according to FIG. 7A, which is distinguished from the latter by the fact that the bearing track denoted 54 of the upper bridge 10 is inclined downwards in the direction of the axis of the well.
- This inclined track is advantageous in particular to reduce or cancel the efforts to be taken by the radial bearing.
- FIG. 19 shows yet another embodiment of the system according to the invention, which comprises a wide turret plate with juxtaposition of a plurality of rings 14 of wheels, which are in rolling contact with the lower face of the plate 46 and whose support posts 21 are mounted on a suitable surface of the floating unit, around the well 3.
- the rolling surface of the plate 46 which is conical and the mounting surface of the support posts are inclined downwards the axis of the well, an important angle of, for example 30 °, which allows the removal of a specific radial bearing.
- the taper is chosen according to the forces applied to the turret. Of course, it would also be possible to incline downwardly when the axis is moved away.
- FIGS. 10A to 10D show a third embodiment of the invention, the particularity of which lies in the implementation of the axial stop.
- the axles of the wheels are no longer carrying axles but are in direct rolling contact with the surfaces forming the bearing tracks of the platforms 12, 13 integral with the turret 2 and the floating unit 1.
- the wheels 15 are arranged in pairs whose axles 23 are axially aligned. Each time two pairs of adjacent wheels are connected to each other by a connection bar 56 to form a vehicle 54 with four wheels. The aligned axles of the two pairs are oriented radially with respect to the axis of the well.
- Each pair of wheels of a vehicle is mounted by a roller 55 in a guide rail 57 which is fixed on the lower face forming the bearing track of the upper plate of each pair of plates 12, 13 between which the wheels are arranged.
- the use of the principle of non-load bearing axles has the advantage of ensuring a balance achieved directly at the level of the elastic tire of the wheels, whereas, in the case of axles, the load taken up by the wheel at its tire is fully transmitted to the axle via the sidewalls of the tire. Moreover the capacity of absorption of the deformations is doubled.
- the axial abutment thus consists of a vehicle train 54 with four wheels, each vehicle following a circular path coaxial with the axis of the well.
- FIG. 11A illustrates a fourth embodiment of the invention, which differs from the preceding embodiments in that the rotation elements of the axial stop 9 are formed by elastic conical rollers 60, the axis of which is oriented horizontally and whose diameter decreases towards the axis of the well.
- These tapered bearings are arranged between bearing tracks 61 and 62 respectively inclined complementary to the upper deck 10 of the floating unit and a suitable platform 63 to the head of the turret 2.
- FIGS. 11C and 11D illustrate the assembly tapered rollers 60.
- each pair constitutes a vehicle 64 which comprises a radially inner connecting bar 65 and a radially outer connecting bar 66 of the rollers, each bar being bent and oriented so that the axles of the rollers extend radially with respect to the axis of the well.
- the elastic rollers may be of any material or suitable arrangement, for example pneumatic rollers or elastic tread rollers.
- Each vehicle is connected to a guide rail 67 coaxial with the axis of the well via two devices of two rollers 68, each disposed in the axial alignment of the axle of a roller 60, so that the two rollers engage in a guide path, about the axis of the well, which is formed by the rail 67.
- the guide path is made so that the rollers have only one degree of freedom which is moving towards the periphery of the well.
- the radial bearing 24 comprises a ring of cylindrical elastic rollers 70 which are mounted between an upper support 71 and a lower support 72, which extend coaxially with the well axis and are formed by elements 74, articulated to each other in the manner of the elements of a chain at the axles of the rollers so that a member or chain link retains two adjacent rollers.
- each roller 70 carries a piece 77 in the shape of an L whose one branch is secured to the end of the axle while the other leg which extends parallel to the axis of the axle 76, door at its free end one or two rollers 78 whose axis of rotation is oriented perpendicular to the axis of the roller and which are retained in a guide rail 80 in the shape of an L of which one end is fixed on the upper surface of an annular support 82 itself fixed on the surface of the well 3.
- the cylindrical rollers 70 are arranged between the turret and the surface of the well, in rolling contact with the outer and inner surfaces of the turret and the well respectively, and are immobilized in the direction of the axis of the well.
- the rollers of the axial stop 9 may also be cylindrical rollers. In this case it is advantageous that the rollers consist of independent twin wheels.
- FIGS. 12A to 12D illustrate a fifth embodiment of a radial bearing 24, which has the particularity that the rotation elements are formed by a row of radial contact elastic balls 82, which are retained in a rolling cage 84 between an inner ring 85 connected to the turret and an outer ring 86 connected to the well, which constitute rolling tracks respectively fixed to the turret and the face of the well.
- the rolling cage 84 comprises four circular rails 88 arranged coaxially with the axis of the well, two rails at the inner ring 85 and two near the outer ring 86.
- the cage is supported by two support rollers 89 on a platform radial annular 91 secured to the turret and by a roller 89 on the outer ring 86.
- the four rails are interconnected by cross members 90 which carry at their center elements in the form of spherical caps 90 'which are in contact with each other. bearing with the balls.
- FIGS. 13A to 13D show an elastic ball thrust bearing, which is intended to act as axial stop 9.
- the balls are arranged between two concave rings 92 and 93 respectively upper and lower in a cage 84 like the balls of the radial bearing.
- the support rollers 89 are in rolling rest on the lower ring 93 and a radial guide member 94 is also provided on the radially inner side.
- the lower and upper rings are then secured respectively to the bridge 10 of the floating platform 1 and the upper plate of the turret.
- the rings have a convex shape trapping the balls and reducing the ball / track contact pressure.
- FIGS. 14A and 14B show an oblique-contact ball bearing which can serve both as an axial abutment and as a radial bearing.
- the lower ring and the upper ring are convex and cover an angular extent of 45 ° in a vertical plane to be able to retain both axial and radial forces.
- the lower rings 93 and 92 are respectively integral with the bridge 10 of the floating unit 1 and the platform 63 of the turret 2, firstly, in the use of axial stop, or the well of the floating unit and the turret on the other hand in the case of use as a radial bearing.
- the cage is turned at an angle of 45 °, the angle can be different, to be chosen according to the forces applied to the turret, with respect to FIG. 10.
- the support rollers 89 are in rolling rest on the lower cage 93 and a piece 92 'projecting outwardly of the upper cage 92.
- Figures 15 and 16 illustrate the guidance of the turret by combining an axial abutment and a radial bearing, described above ( Figure 15) and a row of angular contact balls (Figure 16).
- FIGS. 17A to 17D show a system according to FIGS. 2A to 2C, whose axial abutment and the radial bearing are provided with a damping device denoted 95.
- This device comprises a support 96 of a damping cylinder 97 whose rod mobile 98 carries at its end a roller 99 whose axis of rotation is perpendicular to the axis of the rod.
- damping means is disposed in the ring pairs of wheels 15, a plurality of damping devices 95 whose support is mounted on the bridge or an annular platform of the floating unit while the roller is in bearing contact with the rolling track of the corresponding annular platform of the turret.
- the damping devices are arranged around the well, in the circumferential direction, in the ring here every two pairs of wheels.
- Figure 17C shows the arrangement of the damping devices 95 in the radial bearing, between the turret and the well surfaces.
- the damping devices are arranged in parallel with the rolling elements guiding the turret.
- the device comprises damping cylinders of any known type, for example hydraulic, viscoelastic or friction type.
- the damping properties can also be included in the rolling elements for example by filling the tires. It should be noted that the arrangement and the distribution of the damping devices in the axial abutment and the radial bearing have only been given by way of example and may be different depending on the damping result that it is desired to obtain. .
- FIGS. 18A and 18B illustrate two versions of an axial stop with tapered raceways.
- the wheels comprise a band of cylindrical rollers.
- the taper angle of two tracks is chosen so that the extension lines of the conical surfaces and the axis of the common axle intersect at a single point on the axis of rotation.
- the wheels have a conical tread, the angle of which is chosen so that the extension of the conical faces of the tread tracks as well as the axis of the axle intersect at the same point on the tread. the axis of rotation.
- Another advantage of the arrangements made is to place the tire support on the side of the boat. Not only, it can more easily operate in maintenance, but in addition, it is easy to wire the equipment, including 1 instrumentation monitoring the behavior of rolling elements.
- the cylindrical and conical rollers can be made by assembling and axially juxtaposing several individual elastic tire wheels 100.
- the bearing track could be made of a material promoting sliding, where appropriate by lubrication.
- inflating tires with water can prevent deformation under load. All solutions are applicable to elastic rolling members, which could be formed by fretted elastomers, composites or the like. Many track / tread combinations are possible for the axial stop:
- tapered track / tapered tread (figure 18B): geometrically compatible tread and track with a non-slip bearing and no elastic deformation losses.
- the invention has been described in its application to a single-point mooring floating unit via the turret. Naturally, the invention can be used by any system presenting the same problem or a similar problem.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Ocean & Marine Engineering (AREA)
- Rolling Contact Bearings (AREA)
Abstract
Système adapté pour le transfert de fortes charges, notamment entre une première unité (1) telle qu'une unité flottante à amarrage rotatif à point unique et une deuxième unité (2) sensiblement immobile relativement aux fonds marins monté en pivot dans la première unité, telle qu'une tourelle montée en pivot dans un puits (3) traversant la coque de l'unité flottante, amarrée sur le fond marin, le système comprenant, un arrangement de guidage de la tourelle comprenant des éléments de rotation interposés entre les deux unités ainsi que des moyens d'absorption des déformations notamment de la première unité. Le système est caractérisé en ce que l'agencement de guidage comprend une butée axiale (9) qui comprend un grand nombre d'éléments de rotation (15), qui sont régulièrement répartis sous forme d'au moins une couronne (14) coaxiale à l'axe de rotation et en ce que les éléments de rotation (15) sont des éléments élastiquement déformables pour l'absorption desdites charges. L'invention est utilisable pour des unités flottantes à système d'amarrage rotatif à point unique.
Description
Système adapté pour le transfert de fortes charges notamment entre une unité flottante et une tourelle montée en pivot dans l'unité flottante et amarrée sur le fond marin.
L'invention concerne un système adapté pour le transfert de fortes charges, notamment entre une première unité telle qu'une unité flottante à amarrage rotatif à point unique et une deuxième unité sensiblement immobile relativement aux fonds marins et montée en pivot dans la première unité, telle qu'une tourelle montée en pivot dans un puits s ' étendant verticalement à travers la coque de l'unité flottante, amarrée sur le fond marin et traversée par des conduits de transfert de fluide à des installations sur l'unité flottante, le système comprenant, pour le transfert des charges entre la deuxième unité et la première unité un arrangement de guidage comprenant des éléments de rotation interposés entre les deux unités ainsi que des moyens d'absorption des déformations notamment de la première unité, produite, le cas échéant par des contraintes exercées par 11 environnement .
L'invention concerne particulièrement le cas d'unités flottantes comportant des tourelles de grand diamètre, par exemple de 25 mètres, nécessaires pour accueillir un grand nombre de conduites de transfert de fluide, par exemple 50 conduites. Dans ces conditions, le système de guidage de la tourelle tournant dans le puits de l'unité flottante doit supporter des fortes charges, à savoir les charges d'ancrage statique et dynamique, des charges transmises par les conduites de transfert, également statique et dynamique, les poids de la tourelle et des équipements embarqués, notamment les système de transfert des fluide tournant, qui sont statiques, ainsi que dynamiques dues à la masse de la tourelle tournante et de ses équipements, subissant des accélérations dues aux mouvements de l'unité flottante. Il s'avère que les
efforts verticaux qui doivent être repris par le système de guidage pourraient être par exemple de 1 ' ordre de 10000 à 15000 tonnes et les efforts radiaux par exemple de l'ordre de 1000 à 1500 tonnes.
Pour résoudre le problème de la reprise de charges très importantes dans des systèmes comportant des tourelles tournantes d'un grand diamètre, il est connu par le brevet US 6 990 917 d'utiliser une tourelle qui comporte un plateau supérieur au moins support de la butée axiale et un plateau inférieur de fixation des lignes d'ancrage et un certain nombre de colonnes de connexion des deux plateaux et dont le plateau supérieur est configuré de façon à pouvoir absorber des contraintes. A cette fin, ce plateau supérieur comporte un moyeu et une partie annulaire extérieure reliée au moyeu par une pluralité d'éléments formant rayons radiaux .
L'invention a pour but d'apporter aux problèmes posés par la tourelle d'un grand diamètre, une solution plus simple que celle donnée dans le brevet US.
Pour atteindre ce but, le système selon l'invention est caractérisé en ce que l'agencement de guidage comprend une butée axiale qui comprend un grand nombre d'éléments de rotation, qui sont régulièrement répartis sous forme d'au moins une couronne coaxiale à l'axe de rotation et en ce que les éléments de rotation (15) sont des éléments élastiquement déformable pour l'absorption desdites charges et déformations.
Selon une caractéristique de l'invention le système est caractérisé en ce que la butée axiale comprend une pluralité de couronnes superposées et espacées dans la direction de l'axe du puits.
Selon une autre caractéristique de l'invention le système est caractérisé en ce que dans chaque couronne les éléments de rotation sont disposés entre une plateforme annulaire, solidaire de la tourelle et une plateforme solidaire de l'unité flottante.
Selon encore une autre caractéristique de l'invention le système est caractérisé en ce que les plateformes de la tourelle sont montées sur la face extérieure cylindrique de celle-ci, coaxiale à l'axe de la tourelle.
Selon encore une autre caractéristique de l'invention le système est caractérisé en ce qu'au moins certaines des plateformes solidaires de l'unité flottante (1) sont montées sur une structure annulaire de support établie sur le pont supérieur de l'unité flottante autour du puits.
Selon encore une autre caractéristique de l'invention le système est caractérisé en ce que certaines des plateformes de l'unité flottante sont placées dans une partie supérieure sur un plus grand diamètre que celui du puits.
Selon encore une autre caractéristique de l'invention le système est caractérisé en ce que les couronnes de la butée axiale sont juxtaposées entre le pont de l'unité flottante et une large plateforme de la tourelle, coaxialement à l'axe du puits.
Selon encore une autre caractéristique de l'invention le système est caractérisé en ce que les surfaces du pont et de la plateforme sont inclinées vers le bas en direction de l'axe du puits ou inversement.
Selon encore une autre caractéristique de l'invention le système est caractérisé en ce qu'il comprend un palier radial qui comporte au moins une couronne d'éléments de rotation élastique, placée dans un espace annulaire du puits, entre la tourelle et l'unité flottante .
Selon encore une autre caractéristique de 1 ' invention le système est caractérisé en ce que le palier radial comporte plusieurs couronnes coaxiales, superposées de façon espacée dans la direction de l'axe du puits.
Selon encore une autre caractéristique de 1 ' invention le système est caractérisé en ce que le palier radial peut comprendre au moins une couronne de galets cylindriques rigides interposée entre la tourelle et une surface de l'unité flottante.
Selon encore une autre caractéristique de l'invention le système est caractérisé en ce que les éléments de rotation sont constituées par des roues qui sont groupées par paires dont les essieux sont axialement alignés et donc communs et en ce que les essieux alignés sont orientés radialement par rapport à l'axe du puits.
Selon encore une autre caractéristique de l'invention le système est caractérisé en ce que les roues de la butée axiale sont à essieux porteurs, que l'essieu commun est porté par un support fixé sur la plateforme de la tourelle ou de l'unité flottante et en ce que les roues sont en contact de roulement avec la surface inférieure de la plateforme supérieure adjacente de l'unité flottante ou de la tourelle.
Selon encore une autre caractéristique de l'invention le système est caractérisé en ce que les roues du palier radial sont à essieux porteurs et sont groupés par paire ayant un essieu commun.
Selon encore une autre caractéristique de l'invention le système est caractérisé en ce que l'essieu commun est porté par un support qui est fixé sur la face extérieure cylindrique de la tourelle ou de l'unité flottante et en ce que les roues sont en contact de roulements avec la surface en regard de la surface pourvue des supports des paires de roues.
Selon encore une autre caractéristique de l'invention le système est caractérisé en ce que les éléments de rotation sont des roues ou rouleaux à essieux non porteurs qui sont en contact de roulement avec une surface de la tourelle et une surface de l'unité flottante .
Selon encore une autre caractéristique de l'invention le système est caractérisé en ce que plusieurs roues ou rouleaux sont groupés de façon à former un véhicule qui se déplace sur une trajectoire circulaire coaxiale à l'axe du puits autour de celui-ci et en ce que chaque couronne est formée par une succession de véhicules coaxiale à l'axe du puits.
Selon encore une autre caractéristique de l'invention le système est caractérisé en ce que les rouleaux de la butée axiale sont des rouleaux cylindriques ou coniques.
Selon encore une autre caractéristique de l'invention le système est caractérisé en ce que les essieux de rouleaux coniques sont inclinés vers le bas en direction de l'axe du puits ou inversement.
Selon encore une autre caractéristique de l'invention le système est caractérisé en ce que les rouleaux du palier radial sont des rouleaux cylindriques ou coniques.
Selon encore une autre caractéristique de l'invention le système est caractérisé en ce que les roues sont des pneus ou des roues à bandage plein élastiquement déformable.
Selon encore une autre caractéristique de l'invention le système est caractérisé en ce que les rouleaux sont en un matériau élastiquement déformable ou à bandage élastique ou sont constitués par une enveloppe pressurisée .
Selon encore une autre caractéristique de l'invention le système est caractérisé en ce que les éléments de rotation sont des billes élastiques interposées entre les faces de contact de roulements de la tourelle et de l'unité flottante et qui sont disposées dans des cages de rotation.
Selon encore une autre caractéristique de l'invention le système est caractérisé en ce que les billes sont disposées dans une couronne pour le transfert
des charges axiales pour l'utilisation dans une butée axiale .
Selon encore une autre caractéristique de l'invention le système est caractérisé en ce que les billes sont agencées dans une couronne pour le transfert des charges radiales pour l'utilisation dans un palier radial .
Selon encore une autre caractéristique de l'invention le système est caractérisé en ce que les billes sont agencées dans une couronne pour le transfert des charges axiale et radiale, qui est utilisé simultanément comme butée axiale et de palier radial, les billes étant à contact oblique.
Selon encore une autre caractéristique de l'invention le système est caractérisé en ce qu'une couronne est pourvue d'une piste de roulement extérieure reliée à la face extérieure de la tourelle pour assurer qu'en cas d'une déviation de la tourelle de sa position centrale dans le puits, non seulement les éléments de rotation du côté de la déviation, mais aussi situés diamétralement opposé participant à l'absorption des contraintes .
L'invention sera mieux comprise, et d'autres buts, caractéristiques, détails et avantages de celle-ci apparaîtront plus clairement dans la description explicative qui va suivre faite en référence aux dessins schématiques annexés, donnés uniquement à titre d'exemple, illustrant plusieurs modes de réalisation de l'invention et dans lesquels :
- la figure 1 est une vue schématique d'une unité flottante pourvue d'une tourelle montée en pivot dans une ouverture en forme de puits vertical à travers le corps de l'unité flottante, la tourelle étant amarrée au sol marin par des lignes d'ancrage et traversée par des conduites de transfert d'un fluide tel que du pétrole ;
- la figure 2A est une vue en coupe dans un plan vertical, perpendiculaire à la direction longitudinale de
l'unité flottante et montré, en élévation, un premier mode de réalisation d'un système de guidage de la tourelle dans le puits de l'unité flottante ;
- les figures 2B et 2D sont des vues de dessus de couronnes de roues élastiques respectivement d'une butée axiale et d'un palier radial du système selon la figure 2A ;
- les figures 2Ca à 2Cc sont trois vues montrant une paire de roues élastiques dans des vues respectivement selon la direction indiquée IlCa-IICa de la figure 2B, perpendiculaire à cette direction et de dessus ;
- la figure 3A est une vue similaire à la figure 2A et montre une première version de réalisation du mode représenté à la figure 2A ;
la figure 3B est une vue correspondant à la figure 2Ca, avec cependant un élément roulant composé de deux roues jumelées;
- la figure 4A est une vue similaire à la vue 2A, d'une autre version de réalisation de celle-ci ;
- la figure 4B est une vue de dessus d'une partie du palier radial de la figure 4A ;
- les figures 5A à 5D sont des vues schématiques expliquant l'effet produit par le palier radial des figures 4A et 4B ;
- la figure 6 est une vue similaire à la figure 2A d'une autre version de réalisation du système selon la figure 2A ;
- les figures 7A à 9 sont des vues similaires à la figure 2A, de trois versions différentes d'un deuxième mode de réalisation du système selon l'invention, la figure 7B est une vue de dessus de la couronne de la figure 7A ;
la figure 10A est une vue de dessus d'une couronne de roues élastiques selon un troisième mode de réalisation, la couronne étant formée par une succession
de véhicules à quatre roues élastiques, disposée autour de l'axe du puits ;
- les figures 10B à 10D sont trois vues différentes d'un véhicule selon la figure 10, respectivement en coupe selon la ligne Xb-Xb, perpendiculaire à cette direction et de-dessus ;
- la figure 11A est une vue similaire à la figure 2A, démontrant un quatrième mode de réalisation de 1 ' invention ;
- la figure 11B est une vue de dessus de la couronne de la butée axiale de la figure 11A ;
- la figure 11C est une vue en coupe selon la ligne XIc - XIc de la figure 11B, mais à plus grande échelle ;
la figure 11D est une vue de dessus, à plus grande échelle, d'un véhicule à deux rouleaux de la figure 11B ;
- la figure 11E est une vue de dessus du palier radial de la figure 11A ;
- la figure 11F est une vue en coupe partielle, à plus grande échelle, le long de la ligne Xlf-XIf de la figure 11E ;
- la figure 11G est une vue, à plus grande échelle, avec arrachement, en direction de la flèche Xlg de la figure 11E ;
- la figure 12A est une vue de dessus d'une partie de la couronne d'un palier radial d'un cinquième mode de réalisation de l'invention, dans lesquels les éléments de rotation sont formés par des billes élastiques ;
- la figure 12B est une vue en coupe selon la ligne XlIb-XIIb de la figure 10B, à une plus grande échelle ;
- la figure 12C est une vue, avec arrachement, et à plus grande échelle en direction de la flèche XIIc de la figure 12A ;
- la figure 12D est une vue en direction de la flèche Xlld de la figure 12C ;
- la figure 13A est une vue de dessus d'une partie d'une couronne d'une butée axiale dont les éléments de rotation sont formés par des billes élastiques ;
- la figure 13B est une vue en coupe, à plus grande échelle, selon la ligne XlIIb-XIIIb de la figure 13A ;
- la figure 13C est une vue, avec arrachement, et à plus grande échelle, en direction de la flèche XIIIc de la figure 13A ;
- la figure 13D est une vue de dessus d'une partie de la figure 13A ;
- la figure 14A est une vue de dessus d'une autre version de réalisation d'une couronne à billes élastiques selon l'invention, qui peut servir de butée axiale et de palier radial ;
- la figure 14B est une vue en coupe, à plus grande échelle, le long de la ligne XlVb-XIVb de la figure 14A ;
- les figures 15 et 16 sont des vues similaires à la figure 2A d'un système à billes élastiques comprenant respectivement une butée axiale et un palier radial et une couronne de billes formant à la fois la butée axiale et le palier radial ;
- la figure 17A est une vue similaire à la figure 2A mais dont la butée axiale est pourvue de dispositifs d'amortissement ;
- la figure 17B est une vue de dessus de la butée axiale de la figure 17A, équipée du dispositif d'amortissement ;
- la figure 17C est une vue de dessus du palier radial de la figure 17A, qui est pourvue de dispositifs d'amortissements ;
les figures 17D et 17E sont des vues d'un dispositif amortisseur selon l'invention respectivement en élévation et de dessus ;
les figures 18A et 18B illustrent, de façon schématique, deux possibilités de mise en œuvre d'une paire de roues élastiques selon l'invention, utilisable
dans le cadre du premier mode de réalisation de l'invention (figure 2A) ;
- la figure 19 est une vue similaire à la figure 7A, mais montre un plateau et une face en regard, qui présentent des surfaces inclinées de logement de la couronne .
- les figures 20A et 20B illustrent la possibilité de réaliser des rouleaux cylindriques et coniques par assemblage de roues individuelles.
L'invention sera décrite ci-après dans son application à une installation telle que représentée à la figure 1. Cette installation comprend une unité flottante 1 de production, de stockage et de déchargement d'un fluide notamment de pétrole, et une tourelle 2 qui est notamment montée en pivot dans une ouverture 3 en forme de puits s 'étendant entièrement verticalement à travers le corps de l'unité flottante. La tourelle est amarrée au sol marin par des lignes d'ancrage 4 qui sont fixés en 5 au plateau de base 6 de la tourelle. La figure montre deux parmi un grand nombre de conduites 7 de transfert de fluide, par exemple de pétrole, dont une extrémité va vers des têtes de puits non représentées, tandis que la partie supérieure des conduites passe à travers la tourelle pour transporter les fluides aux différents équipements de l'unité flottante.
La tourelle 2 est guidée dans le puits 3 par des agencements de guidage qui comportent un dispositif de butée axiale et un palier radial, qui seront décrites ci- après et qui sont aptes à absorber les grandes charges produites par la tourelle et les déplacements d'appuis résultant des déformations que subit l'unité flottante sous l'effet du vent et des vagues.
Les agencements de guidage sont adaptés pour le transfert de fortes charges entre la tourelle et l'unité flottante. La tourelle peut avoir un grand diamètre par exemple supérieur à 25m et l'unité flottante peut avoir une longueur supérieure à 300m. Ces indications n'ont été
données qu'à tire d'exemple pour donner une idée des dimensions. C'est dans le même but que certaines figures montrent des personnes à titre de référence.
Les figures 2A à 2D illustrent un premier mode de réalisation de l'invention. L'agencement de guidage axial 9 qui constitue une butée axiale comprend une pluralité de plateformes 12, 13 annulaires notamment horizontalement et coaxiales à l'axe de la tourelle et du puits et superposées dans la direction de ces axes. Les plateformes 12 sont solidaires de la tourelle 2 qui dépasse au moins dans l'exemple représenté vers le haut le pont 10 de l'unité flottante. Les plateformes 13 sont montées sur une structure de support en forme d'une tour annulaire 19 montée sur le pont 10 coaxial à l'axe du puits 3. Les plateformes annulaires 12 et 13 sont disposées de façon qu'à chaque plateforme 12 est associée une plateforme 13 de façon à former une paire. Entre chaque paire de plateformes 12 et 13 est interposée une couronne 14 d'éléments rotatifs en forme de roues 15 élastiquement déformables.
Les plateaux 12 de la tourelle sont montés sur la surface cylindrique extérieure de celle-ci et sont espacés d'une distance permettant l'engagement entre deux plateformes 12 d'une plateforme 13 de l'unité flottante et la disposition entre la face inférieure de la plateforme 12 au-dessous de cette plateforme 13 et celle- ci d'une couronne 14 d'éléments rotatifs.
La figure 2B montre l'arrangement circulaire en forme d'une couronne 14 des éléments rotatifs 15 de la butée axiale. Comme on le voit sur les figures 2B et 2Ca et 2Cb, les éléments rotatifs en forme de roues cylindriques 15 sont arrangés par paires, les roues de chaque paire étant montées sur un poteau de support 21 qui s'étend verticalement vers le haut à partir de la face supérieure du pont 10 de l'unité flottante ou de la face supérieur 22 des plateformes annulaires 13. Les deux roues sont montées rotatives sur le poteau de support 21
par un essieu 23 horizontal, les deux essieux 23 des roues étant alignés et orientés radialement à l'axe du puits. Les deux roues sont en contact de roulement avec la face inférieure du plateau 12 situées au-dessus du plateau 13, cette surface constituant donc une piste de roulement. Il est à noter que les roues pourraient être de natures diverses, à condition de pouvoir se déformer élastiquement dans les directions d'absorption des charges. Les roues pourraient être par exemple des pneus ou des roues à bandage plein élastiquement déformable.
Il est à noter que la plateforme 12 est continue et annulaire car elle constitue la piste ; la plateforme 13 n'est pas nécessairement continue car elle supporte des éléments discontinus.
Le palier radial 24 interposé entre la face interne
20 du puits 3 et la face externe 26 de la tourelle 2 comporte une pluralité de couronnes 25, par exemple quatre, de paires de roues 15, qui sont superposées dans l'axe du puits et de la tourelle, en étant espacé entre le pont supérieur 10 de l'unité flottante jusqu'à un niveau un peu au-dessous de la mi-hauteur de l'unité flottante. Les paires de roues sont agencées de la manière représentée aux figures 2Ca à 2Cb, les poteaux de support 21 étant solidaires de la face interne 4 du puits.
Grâce aux configurations de la butée axiale et du palier radial, qui viennent d'être décrites, l'invention permet la présence d'un grand nombre de roues élastiquement déformables 15 dont le diamètre correspond à la hauteur d'homme, comme cela est indiqué schématiquement . A titre d'exemple, chaque butée axiale peut comprendre quarante paires de roues, c'est-à-dire 80 roues. Etant donné que la butée comporte 6 couronnes, la butée axiale comprend donc, au total, 480 roues. Concernant le palier radial, dans l'exemple représenté, il comporte, dans chaque couronne, 40 paires de roues,
c'est-à-dire 80 roues. Au total, le palier radial comporte donc 320 roues.
La figure 3A montre une autre version de mise en œuvre de la butée axiale et du palier radial, du concept de la figure 2A. Dans le cas de la figure 3A, le puits 3 est étagé et comporte une partie supérieure 27 d'un diamètre plus important, s 'étendant, dans l'exemple représenté, sur approximativement un tiers de la hauteur de l'unité flottante et une portion de puits inférieur 28 d'un diamètre plus faible. Le diamètre de la partie de puits supérieur 27 est choisi de façon que l'espace annulaire formé entre la paroi cylindrique interne de la partie de puits 27 et la surface cylindrique extérieure de la tourelle 2 permette la réception de deux couronnes de butée axiale 14 telles que représentée à la figure 2 et décrites en se référant à celle-ci.
Dans la version de mise en œuvre du palier radial de la figure 3, seulement deux couronnes 25 sont nécessaires, chaque paire de roues comportant cependant des roues jumelées 15', représentées plus en détail sur la figure 3B.
Des roues jumelées pourraient également être utilisées, le cas échéant, dans la butée axiale. Dans ce cas, les roues sont cependant indépendantes c'est-à-dire peuvent tourner indépendamment l'une par rapport à l'autre autour d'un même axe géométrique.
Les figures 4A et 4B montrent une version de réalisation qui comporte une butée axiale 9 correspondant à celle de la figure 2. Par contre le palier radial 24 présente une particularité qui assure une meilleure utilisation des éléments de rotation 15. Pour obtenir cet effet, on prévoit pour chaque couronne 25 du palier radial une piste de roulement extérieure 30 qui est relié à la face extérieure de la tourelle 26 par des traverses 31.
Les figures schématiques 5A à 5D illustrent l'effet avantageux produit par la piste extérieure 30 par
comparaison d'un palier radial à piste unique selon les figures 5A et 5B. Les figures 5C et 5D illustrent le fonctionnement du palier radial double piste.
La figure 5A montre un palier radial à simple piste conformément aux figures 2 et 3, à l'état sans charge radiale et donc sans déviation radiale de la tourelle. A la figure 5B, la tourelle 2 s'est déplacée légèrement vers la droite, ce qui a pour conséquence une déformation des roues 15 par la surface extérieure cylindrique 26 de la tourelle. Les roues situées à gauche ne sont plus en contact avec cette surface intérieure et ne participent donc pas à l'absorption des charges radiales produites par déviation radiale de la tourelle.
Les figures 5C et 5D montrent que la présence de la piste extérieure 30 qui est solidaire de la surface cylindrique extérieure 26 de la tourelle, a pour résultat qu'une déviation radiale vers la droite, conformément à la figure 5D, provoque également un déplacement vers la droite de la piste extérieure 30, ce qui fait que les roues 15 diamétralement opposées aux roues déformées par la surface extérieure 26 de la tourelle sont également déformées et participent donc à l'absorption des charges radiales. Grâce à la participation non seulement des roues du côté de la déviation mais également des roues radialement opposées, le nombre de couronnes 25 de roues, dans la version représentée aux figures 4A et 4B, utilisant un palier radial double piste, est réduit de 4 à 2, en comparaison à la figure 2.
La figure 6 illustre une version de réalisation qui est similaire à celle montrée à la figure 3A dans la mesure où deux couronnes 14 de la butée axiale sont disposées dans une zone supérieure de plus grand diamètre 35 du puits 3. Par contre, différemment de la figure 3, la tourelle comporte trois portions, une portion supérieure 37 d'un diamètre plus faible et dont la face extérieure cylindrique supporte six plateformes annulaires superposées 12, une portion intermédiaire
tronconique 38 s ' élargissant coniquement vers le bas et une portion inférieure 39 cylindrique qui est pourvue du plateau de fixation des lignes d'ancrage 4 et de l'arrivée des conduites de transfert 7 du fluide. Le palier radial est également différent de celui de la figure 3 puisqu'il ne comporte que deux couronnes de galets 42 non déformables, éventuellement métalliques, à savoir une couronne en bas de la structure 43 de support des plateformes annulaires 13 et une autre en haut de cette structure de support. La tour de support comporte à cette fin en haut et en bas une saillie radiale annulaire 44 qui s'étend radialement vers l'axe du puits. On constate que les deux couronnes de galets 42 sont disposées au niveau de la partie radialement réduite 37 de la tourelle 2.
Les figures 7A et 7B montrent un deuxième mode de réalisation de l'invention dont la particularité réside dans le fait que la butée axiale 9 comporte cinq couronnes 14 de roues 15 qui sont disposés dans la direction radiale du puits et de la tourelle, entre le pont supérieur 10 de l'unité flottante et une plateforme unique radiale très large 46 au niveau de la tête de la tourelle 2. En raison de cet agencement de la butée axiale, le palier radial 24 ne comporte qu'une couronne 25 de roues jumelées 15' disposée près du pont supérieur 10 du puits. Cet agencement permet ci nécessaire d'obtenir une plus grande résistance à la rotation de la butée axiale 9. Entre chaque rangée concentrique on peut disposer d'une place suffisante à l'accès d'un opérateur et la maintenance.
Pour avoir suffisamment de place pour la disposition des couronnes radialement juxtaposées 14 de la butée axiale, le diamètre du puits 3 est réduit dans une portion supérieure cylindrique 47 de l'unité flottante, les parties intermédiaires 48 et inférieures 49 étant respectivement tronconiques et cylindriques. La tourelle 2 présente une forme complémentaire et comporte
donc une partie cylindrique supérieure à diamètre réduit 50, une partie intermédiaire tronconique 51 et une partie inférieure cylindrique 52 qui est pourvue de la plateforme inférieure de fixation de lignes d'ancrage 4. II est également possible d'utiliser dans le palier radial 24 à la place de la couronne de roues jumelées 15', une couronne de galets métalliques 45, comme le montre la figure 8.
La figure 9 montre une autre version du système selon la figure 7A, qui se distingue de cette dernière par le fait que la piste de roulements notée 54 du pont supérieur 10 est inclinée vers le bas en direction de l'axe du puits. Cette piste inclinée est avantageuse notamment pour réduire, voire annuler, les efforts à reprendre par le palier radial.
La figure 19 montre encore une autre version de réalisation du système selon l'invention, qui comporte un plateau de tourelle large avec juxtaposition d'une pluralité de couronnes 14 de roues, qui sont en contact de roulement avec la face inférieure du plateau 46 et dont les poteaux de support 21 sont montés sur une surface appropriée de l'unité flottante, autour du puits 3. La surface de roulement du plateau 46 qui est conique et la surface d'installation des poteaux de support sont inclinés vers le bas en direction de l'axe du puits, d'un angle important de par exemple de 30°, ce qui permet la suppression d'un palier radial spécifique. Ainsi le guidage de la tourelle est réalisé par un unique roulement conique. La conicité est choisie en fonction des efforts appliqués à la tourelle. Bien entendu on pourrait aussi prévoir que l'inclinaison vers le bas se fasse lors de 1 ' éloignement de l'axe.
Les figures 10A à 10D montrent un troisième mode de réalisation de l'invention dont la particularité réside dans la mise en œuvre de la butée axiale. Dans ce mode de réalisation les essieux des roues ne sont plus des essieux porteurs mais sont en contact de roulement direct
avec les surfaces formant les pistes de roulements des plateformes 12, 13 solidaires de la tourelle 2 et de l'unité flottante 1. Comme le montre les figures 10B à 10D, les roues 15 sont arrangées par paires dont les essieux 23 sont axialement alignés. Chaque fois deux paires de roues adjacentes sont reliées l'une à l'autre par une barre de connexion 56 pour former un véhicule 54 à quatre roues. Les essieux alignés des deux paires sont orientés radialement par rapport à l'axe du puits. Chaque paire de roues d'un véhicule est montée par un galet 55 dans un rail de guidage 57 qui est fixé sur la face inférieure formant piste de roulements du plateau supérieur de chaque paire de plateaux 12, 13 entre lesquelles les roues sont disposées. L'utilisation du principe des essieux non porteurs présente l'avantage d'assurer un équilibre réalisé directement au niveau du bandage élastique des roues, alors que, dans le cas des essieux porteurs, la charge reprise par la roue au niveau de son bandage est intégralement transmise à l'essieu via les flancs du pneu. De plus la capacité d'absorption des déformations est doublée.
La butée axiale est ainsi constituée d'un train de véhicules 54 à quatre roues, chaque véhicule suivant une trajectoire circulaire coaxiale à l'axe du puits.
La figure 11A illustre un quatrième mode de réalisation de l'invention, qui se distingue des modes de réalisation précédents par le fait que les éléments de rotation de la butée axiale 9 sont formés par des rouleaux coniques élastiques 60, dont l'axe est orienté horizontalement et dont le diamètre diminue en direction de l'axe du puits. Ces roulements coniques sont disposés entre des pistes de roulements 61 et 62 inclinées de façon complémentaire respectivement du pont supérieur 10 de l'unité flottante et d'une plateforme appropriée 63 à la tête de la tourelle 2. Les figures 11C et 11D illustrent le montage des rouleaux coniques 60. Ceux-ci sont agencés par paires de façon que chaque paire
constitue un véhicule 64 qui comporte une barre de connexion radialement interne 65 et une barre de connexion radialement externe 66 des rouleaux, chaque barre étant coudée et orientée de façon que les essieux des rouleaux s'étendent radialement par rapport à l'axe du puits. Les rouleaux élastiques peuvent être de toute matière ou agencement approprié, par exemple être des rouleaux pneumatiques ou à bande de roulement élastique. Chaque véhicule est relié à un rail de guidage 67 coaxial à l'axe du puits par l'intermédiaire de deux dispositifs de deux galets 68, chacun disposés dans l'alignement axial de l'essieu d'un rouleau 60, de façon que les deux galets s'engagent dans un chemin de guidage, autour de l'axe du puits, qui est formé par le rail 67. Le chemin de guidage est fait de manière que les rouleaux n'ont qu'un seul degré de liberté qui est le déplacement en direction de la périphérie du puits.
Comme le montre les figures 11A, 11E à 11G le palier radial 24 comporte une couronne de rouleaux élastiques cylindriques 70 qui sont montés entre un support supérieur 71 et un support inférieur 72, qui s'étendent coaxialement à l'axe du puits et sont formés par des éléments 74, articulés les uns aux autres à la manière des éléments d'une chaîne au niveau des essieux des rouleaux de façon qu'un élément ou maillon de chaîne retienne deux rouleaux adjacents.
L'essieu 76 de chaque rouleau 70 porte une pièce 77 en forme d'un L dont une branche est solidaire de l'extrémité de l'essieu tandis que l'autre branche qui s'étend parallèlement à l'axe de l'essieu 76, porte au niveau de son extrémité libre un ou deux galets 78 dont l'axe de rotation est orienté perpendiculairement à l'axe du rouleau et qui sont retenus dans un rail de guidage 80 en forme d'un L dont une extrémité est fixée sur la surface supérieure d'un support annulaire 82 lui-même fixée sur la surface du puits 3. On constate que les rouleaux cylindriques 70 sont disposés entre la tourelle
et la surface du puits, en contact de roulement avec les surfaces respectivement externe et interne de la tourelle et du puits et sont immobilisées dans la direction de l'axe du puits. Il est à noter que les rouleaux de la butée axiale 9 peuvent aussi être des rouleaux cylindriques. Dans ce cas il est avantageux que les rouleaux soient constitués des roues jumelées indépendantes .
Les figures 12A à 12D illustrent un cinquième mode de réalisation d'un palier radial 24, qui a pour particularité que les éléments de rotation sont formés par une rangée de billes élastiques à contact radial 82, qui sont retenues dans une cage à roulement 84 entre une bague intérieure 85 liée à la tourelle et une bague extérieure 86 liée au puits, qui constituent des pistes de roulement fixées respectivement à la tourelle et la face du puits. On constate que les pistes sont concaves. La cage de roulement 84 comporte quatre rails circulaires 88 disposé coaxialement à l'axe du puits, deux rails au niveau de la bague intérieure 85 et deux près de la bague extérieure 86. La cage est en appui par deux galets supports 89 sur une plateforme annulaire radiale 91 solidaire de la tourelle et par un galet 89 sur la bague extérieure 86. Les quatre rails sont reliés entre eux par des traverses 90 qui portent au niveau de leur milieu des éléments en forme de calottes sphériques 90 ' qui sont en contact de roulement avec les billes.
Les figures 13A à 13D montrent une butée à billes élastiques, qui est destinée à servir de butée axiale 9. Les billes sont disposées entre deux bagues concaves 92 et 93 respectivement supérieure et inférieure dans une cage 84 comme les billes du palier radial. Les galets supports 89 sont en appui roulant sur la bague inférieure 93 et un organe de guide radial 94 est également prévu au côté radialement intérieur. Les bagues inférieure et supérieure sont alors solidaires respectivement du pont 10 de la plateforme flottante 1 et du plateau supérieur
de la tourelle. Les bagues présentent une forme convexe emprisonnant les billes et réduisant la pression de contact bille/piste.
Les figures 14A et 14B montrent une butée à billes élastiques à contact oblique qui peut à la fois servir de butée axiale que de palier radial. Dans ce cas la bague inférieure et la bague supérieure sont convexes et couvrent une étendue angulaire de 45° dans un plan vertical pour pouvoir retenir aussi bien des efforts axiaux que radiaux. Les bagues inférieure 93 et supérieure 92 sont solidaires respectivement du pont 10 de l'unité flottante 1 et de la plateforme 63 de la tourelle 2, d'une part, dans l'utilisation de butée axiale, ou du puits de l'unité flottante et de la tourelle d'autre part dans le cas de l'utilisation comme palier radial. On constate que la cage est tournée d'un angle de 45°, l'angle peut être différent, à choisir en fonction des efforts appliqués à la tourelle, par rapport à la figure 10. Les galets de support 89 sont en appui roulant sur la cage inférieure 93 et sur une pièce 92' en saillie vers l'extérieur de la cage supérieure 92.
Les figures 15 et 16 illustrent le guidage de la tourelle par association d'une butée axiale et d'un palier radial, décrits ci-dessus (figure 15) et par une rangée de billes à contact oblique (figure 16) .
Les figures 17A à 17D montrent un système selon les figures 2A à 2C, dont la butée axiale et le palier radial sont pourvus d'un dispositif d'amortissement noté 95. Ce dispositif comprend un support 96 d'un vérin amortisseur 97 dont la tige mobile 98 porte à son extrémité un galet 99 dont l'axe de rotation est perpendiculaire à l'axe de la tige.
Pour équiper la butée axiale 9 de moyens amortisseur, on dispose dans la couronne des paires de roues 15, une pluralité de dispositifs amortisseur 95 dont le support est monté sur le pont ou une plateforme annulaire de l'unité flottante tandis que le galet est en
contact de roulements avec la piste de roulement de la plateforme annulaire correspondant de la tourelle. Comme le montre la figure 17B, les dispositifs amortisseurs sont disposés autour du puits, dans la direction périphérique, dans la couronne ici toutes les deux paires de roues.
La figure 17C montre la disposition des dispositifs amortisseurs 95 dans le palier radial, entre la tourelle et les surfaces de puits.
On constate que les dispositifs d'amortisseurs sont disposés en parallèle aux éléments roulant de guidage de la tourelle. Le dispositif comporte des vérins amortisseurs de tout type connus, par exemple de type hydraulique, viscoélastique ou à friction. Les propriétés d'amortissement peuvent aussi être incluses dans les éléments roulant par exemple par remplissage des pneus. Il est à noter que la disposition et la répartition des dispositifs amortisseurs dans la butée axiale et le palier radial n'ont été données qu'à titre d'exemple et peuvent être différentes en fonction du résultat d'amortissement que l'on souhaite obtenir.
Les figures 18A et 18B illustrent deux versions d'une butée axiale à pistes de roulement coniques. Dans le cas de la figure 18A les roues comportent une bande de rouleaux cylindriques. Il est à noter que l'angle de conicité de deux pistes est choisie de façon que les lignes de prolongement des surfaces coniques et l'axe de l'essieu commun s'entrecoupent en un seul point sur l'axe de rotation.
Sur la figure 18B les roues possèdent une bande de roulement conique, dont l'angle est choisi de façon que le prolongement des faces coniques des pistes de bande de roulement ainsi que l'axe de l'essieu s'entrecoupent en un même point sur l'axe de rotation.
II est à noter que le fait de placer la piste de la butée axiale en partie inférieure de la structure d'appui de la tourelle, en sous-face, constitue un avantage des
dispositions proposées dans l'invention car cela permet d'éviter qu'un obstacle ou objet contendant pouvant endommager les pneus puisse se trouver sur la piste au moment du passage du pneu (et également réduit naturellement l'accumulation de graisse et poussières pouvant venir souiller la piste.
De plus, un autre avantage des dispositions prises est de placer le support des pneus du côté du bateau. Non seulement, on peut plus aisément opérer en maintenance, mais de plus, il est aisé de câbler les équipements, notamment 1 ' instrumentation de suivi du comportement des éléments roulants.
Bien entendu de diverses modifications peuvent être apportées à l'invention telles que décrites et représentées aux figures. En effet, les différentes versions et modes de réalisation n'ont été donnés qu'à titre d'exemple. Ainsi, comme le montre les figure 20A et 20B, les rouleaux cylindriques et coniques peuvent être réalisés par assemblage et juxtaposition axiale de plusieurs roues à bandage élastique individuelles 100. Dans le cadre de l'invention, notamment en cas de pneus, il peut être envisagé de minimiser le coefficient de résistance au roulement des pneus, dans la mesure où les bonnes performances d'adhérence des pneus ne sont pas recherchées. Il pourrait même être avantageux de minimiser le frottement piste/pneus. Par exemple la piste de roulements pourrait être faite en un matériau favorisant un glissement, le cas échéant par lubrification. Il est également possible d'envisager le gonflage des pneus à l'eau pour éviter les déformations sous charge. Toutes les solutions sont applicables à des éléments roulant élastiques, qui pourraient être formés par des élastomères frettés, composites ou analogue. De nombreuses combinaisons piste/bande de roulement sont possibles pour la butée axiale :
piste plane / bande de roulement cylindrique (figure 2A) : roulement avec glissement du fait de la
différence entre les vitesses circonférentielles extérieure et intérieure ;
- piste conique / bande de roulement cylindrique (figure 18A) : la bande de roulement s'adapte par déformation propre à la conicité de la piste pour un roulement sans glissement et sans pertes par déformations élastiques ;
piste conique / bande de roulement conique (figure 18B) : bande de roulement et piste géométriquement compatibles par un roulement sans glissement et sans pertes par déformation élastique.
Il est encore à noter que les fonctions des plateformes solidaires de la tourelle et de l'unité flottante sont interchangeables.
D'autre part, l'invention a été décrite dans son application à une unité flottante à amarrage à point unique par l'intermédiaire de la tourelle. Bien entendu l'invention est utilisable par tout système présentant la même problématique ou une problématique similaire.
Claims
1. Système adapté pour le transfert de fortes charges, notamment entre une première unité (1) telle qu'une unité flottante à amarrage rotatif à point unique et une deuxième unité (2) sensiblement immobile relativement aux fonds marins monté en pivot dans la première unité, telle qu'une tourelle montée en pivot dans un puits (3) s 'étendant verticalement entièrement à travers la coque de l'unité flottante, amarrée sur le fond marin et traversée par des conduits (7) de transfert de fluide à des installations sur l'unité flottante, le système comprenant, pour le transfert des charges entre la deuxième unité (2) et la première unité (1) un arrangement de guidage comprenant des éléments de rotation interposés entre les deux unités ainsi que des moyens d'absorption des déformations notamment de la première unité, produite, le cas échéant par des contraintes exercées par l'environnement, caractérisé en ce que l'agencement de guidage comprend une butée axiale (9) qui comprend un grand nombre d'éléments de rotation (15), qui sont régulièrement répartis sous forme d'au moins une couronne (14) coaxiale à l'axe de rotation et en ce que les éléments de rotation (15) sont des éléments élastiquement déformables pour l'absorption desdites charges .
2. Système selon la revendication 1, caractérisé en ce que la butée axiale (9) comprend une pluralité de couronnes (14) superposées et espacées dans la direction de l'axe du puits.
3. Système selon la revendication 2, caractérisé en ce que dans chaque couronne (14) les éléments de rotation sont disposés entre une plateforme annulaire (12), solidaire de la tourelle (2) et une plateforme solidaire (13) de l'unité flottante (1).
4. Système selon la revendication 3, caractérisé en ce que les plateformes (12) de la tourelle (2) sont montées sur la face extérieure cylindrique de celle-ci, coaxiale à l'axe de la tourelle.
5. Système selon une des revendications 2 ou 3, caractérisé en ce qu'au moins certaines des plateformes (13) solidaires de l'unité flottante (1) sont montées sur une structure annulaire de support (19) établie sur le pont supérieur (10) de l'unité flottante (1) autour du puits (3) .
6. Système selon la revendication 5, caractérisé en ce que certaines des plateformes (13) de l'unité flottante (1) sont placées dans une partie supérieure sur un plus grand diamètre que celui du puits.
7. Système selon la revendication 1, caractérisé en ce que les couronnes de la butée axiale sont juxtaposées entre le pont (10) de l'unité flottante (1) et une large plateforme (46) de la tourelle (2), coaxialement à l'axe du puits.
8. Système selon la revendication 7, caractérisé en ce que les surfaces du pont et de la plateforme sont inclinées vers le bas en direction de l'axe du puits ou inversement .
9. Système selon la revendication 8, caractérisé en ce qu'il comprend un palier radial (24) qui comporte au moins une couronne (25) d'éléments de rotation élastique (15), placée dans un espace annulaire du puits (3), entre la tourelle (2) et l'unité flottante (1).
10. Système selon la revendication 9, caractérisé en ce que le palier radial (24) comporte plusieurs couronnes (25) coaxiales, superposées de façon espacée dans la direction de l'axe du puits (3) .
11. Système selon l'une des revendications 1 à 7, caractérisé en ce que le palier radial (24) peut comprendre au moins une couronne de galets cylindriques rigides interposée entre la tourelle et une surface de l'unité flottante.
12. Système selon l'une des revendications 1 à 10, caractérisé en ce que les éléments de rotation (15, 15') sont constituées par des roues qui sont groupées par paires dont les essieux (23) sont axialement alignés et donc communs et en ce que les essieux alignés sont orientés radialement par rapport à l'axe du puits.
13. Système selon la revendication 12, caractérisé en ce que les roues (15) de la butée axiale (19) sont à essieux porteurs (23), que l'essieu commun est porté par un support (21) fixé sur la plateforme (12, 13) de la tourelle (2) ou de l'unité flottante (1) et en ce que les roues (15) sont en contact de roulement avec la surface inférieure de la plateforme (13, 12) supérieure adjacente de l'unité flottante (1) ou de la tourelle (2) .
14. Système selon la revendication 13, caractérisé en ce que les roues (15) du palier radial (24) sont à essieux porteurs et sont groupés par paire ayant un essieu (23) commun.
15. Système selon la revendication 14, caractérisé en ce que l'essieu commun (23) est porté par un support (21) qui est fixé sur la face extérieure cylindrique (26) de la tourelle (2) ou de l'unité flottante (1) et en ce que les roues (15') sont en contact de roulements avec la surface en regard de la surface pourvue des supports des paires de roues.
16. Système selon l'une des revendications 1 à 12, caractérisé en ce que les éléments de rotation (15') sont des roues ou rouleaux à essieux non porteurs qui sont en contact de roulement avec une surface de la tourelle et une surface de l'unité flottante.
17. Système selon la revendication 16, caractérisé en ce que plusieurs roues (15, 15') ou rouleaux (60) sont groupés de façon à former un véhicule (34, 64) qui se déplace sur une trajectoire circulaire coaxiale à l'axe du puits autour de celui-ci et en ce que chaque couronne (24) est formée par une succession de véhicules coaxiale à l'axe du puits.
18. Système selon la revendication 17, caractérisé en ce que les rouleaux (60) de la butée axiale (9) sont des rouleaux cylindriques ou coniques.
19. Système selon la revendication 18, caractérisé en ce que les essieux (23) de rouleaux coniques (60) sont inclinés vers le bas en direction de l'axe du puits ou inversement .
20. Système selon la revendication 19, caractérisé en ce que les rouleaux (70) du palier radial (24) sont des rouleaux cylindriques ou coniques.
21. Système selon l'une des revendications 1 à 17, caractérisé en ce que les roues (15) sont des pneus ou des roues à bandage plein élastiquement déformable.
22. Système selon l'une des revendications 16 à 20, caractérisé en ce que les rouleaux (60, 70) sont en un matériau élastiquement déformable ou à bandage élastique ou sont constitués par une enveloppe pressurisée.
23. Système selon l'une des revendications 1 à 13, caractérisé en ce que les éléments de rotation sont des billes élastiques (82) interposées entre les faces de contact de roulements de la tourelle (3) et de l'unité flottante (1) et qui sont disposées dans des cages de rotation ( 84 ) .
24. Système selon la revendication 23, caractérisé en ce que les billes (82) sont disposées dans une couronne pour le transfert des charges axiales pour l'utilisation dans une butée axiale.
25. Système selon la revendication 23, caractérisé en ce que les billes (82) sont agencées dans une couronne pour le transfert des charges radiales pour l'utilisation dans un palier radial (24) .
26. Système selon la revendication 23, caractérisé en ce que les billes (82) sont agencées dans une couronne pour le transfert des charges axiale et radiale, qui est utilisé simultanément comme butée axiale (9) et de palier radial (24), les billes étant à contact oblique.
27. Système selon l'une des revendications 9 à 26, caractérisé en ce qu'une couronne (25) est pourvue d'une piste de roulement extérieure (30) reliée à la face extérieure (26) de la tourelle (2) pour assurer qu'en cas d'une déviation de la tourelle de sa position centrale dans le puits, non seulement les éléments de rotation du côté de la déviation, mais aussi situés diamétralement opposé participant à l'absorption des contraintes.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0956599A FR2950314A1 (fr) | 2009-09-24 | 2009-09-24 | Systeme adapte pour le transfert de fortes charges notamment entre une unite flottante a tourelle montee en pivot dans l'unite flottante et amarre sur le fond marin |
FR0956599 | 2009-09-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011036407A1 true WO2011036407A1 (fr) | 2011-03-31 |
Family
ID=42267031
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/FR2010/051987 WO2011036407A1 (fr) | 2009-09-24 | 2010-09-22 | Système adapté pour le transfert de fortes charges notamment entre une unité flottante et une tourelle montée en pivot dans l'unité flottante et amarrée sur le fond marin |
Country Status (2)
Country | Link |
---|---|
FR (1) | FR2950314A1 (fr) |
WO (1) | WO2011036407A1 (fr) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NO20161883A1 (en) * | 2016-11-28 | 2018-05-29 | Apl Tech As | Suspension of turret bearing units |
US10227111B2 (en) * | 2014-08-05 | 2019-03-12 | Bluewater Energy Services B.V. | Lower bearing for mooring assembly for a vessel |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3525312A (en) * | 1967-10-06 | 1970-08-25 | Exxon Production Research Co | Storage or similar vessel |
US3774562A (en) * | 1972-06-12 | 1973-11-27 | Global Marine Inc | 360{20 {11 rotary anchoring system with differential drive capability |
US4343055A (en) * | 1979-01-18 | 1982-08-10 | Aktiebolaget Skf | Roller suspension |
FR2670742A1 (fr) * | 1990-12-20 | 1992-06-26 | Technip Geoproduction | Installation de mouillage d'ancres. |
US5746148A (en) * | 1994-11-14 | 1998-05-05 | Delago; Pierre C. | Radial support assembly for an apparatus for positioning a vessel |
US6990917B2 (en) | 2001-12-28 | 2006-01-31 | Fmc/Sofec Floating Systems, Inc. | Large diameter mooring turret with compliant deck and frame |
-
2009
- 2009-09-24 FR FR0956599A patent/FR2950314A1/fr not_active Withdrawn
-
2010
- 2010-09-22 WO PCT/FR2010/051987 patent/WO2011036407A1/fr active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3525312A (en) * | 1967-10-06 | 1970-08-25 | Exxon Production Research Co | Storage or similar vessel |
US3774562A (en) * | 1972-06-12 | 1973-11-27 | Global Marine Inc | 360{20 {11 rotary anchoring system with differential drive capability |
US4343055A (en) * | 1979-01-18 | 1982-08-10 | Aktiebolaget Skf | Roller suspension |
FR2670742A1 (fr) * | 1990-12-20 | 1992-06-26 | Technip Geoproduction | Installation de mouillage d'ancres. |
US5746148A (en) * | 1994-11-14 | 1998-05-05 | Delago; Pierre C. | Radial support assembly for an apparatus for positioning a vessel |
US6990917B2 (en) | 2001-12-28 | 2006-01-31 | Fmc/Sofec Floating Systems, Inc. | Large diameter mooring turret with compliant deck and frame |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10227111B2 (en) * | 2014-08-05 | 2019-03-12 | Bluewater Energy Services B.V. | Lower bearing for mooring assembly for a vessel |
GB2543009B (en) * | 2014-08-05 | 2020-08-19 | Bluewater Energy Services Bv | Lower bearing for mooring assembly for a vessel |
NO20161883A1 (en) * | 2016-11-28 | 2018-05-29 | Apl Tech As | Suspension of turret bearing units |
WO2018097732A1 (fr) | 2016-11-28 | 2018-05-31 | Apl Technology As | Suspension d'unités de palier de tourelle |
NO343119B1 (en) * | 2016-11-28 | 2018-11-05 | Apl Tech As | Suspension of turret bearing units |
US11072397B2 (en) | 2016-11-28 | 2021-07-27 | Apl Technology As | Suspension of turret bearing units |
Also Published As
Publication number | Publication date |
---|---|
FR2950314A1 (fr) | 2011-03-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2516248B1 (fr) | Installation notamment pour la production et le traitement de fluides, du type comprenant une unité flottante, pourvu d'un système d'amarrage à point unique | |
CH656357A5 (fr) | Vehicule motorise suspendu. | |
EP0667271A1 (fr) | Articulation d'accouplement et procédé d'absorption d'énergie entre deux véhicules ferroviaires | |
FR2759340A1 (fr) | Systeme de guidage le long d'au moins un rail au sol pour un essieu d'un vehicule routier | |
EP0052549B1 (fr) | Dispositif d'appui disposé entre un élément de masse importante et un support fixe | |
FR2953188A1 (fr) | Installation notamment pour la production et le traitement de fluides comprenant une unite flottante pourvue d'un systeme d'amarrage rotatif a point unique par l'intermediaire d'une tourelle montee en pivot dans un puits de l'unite flottante | |
WO2005002889A2 (fr) | Ensemble d’articulation d’attelage a amortissement des mouvements de lacet d’une remorque | |
EP1052198B1 (fr) | Convoyeur utilisé dans l'industrie pour acheminer des pièces en nombre important | |
EP0143052B1 (fr) | Dispositif de centrage et de guidage d'un rouleau de support d'un élément de masse importante | |
WO2011036407A1 (fr) | Système adapté pour le transfert de fortes charges notamment entre une unité flottante et une tourelle montée en pivot dans l'unité flottante et amarrée sur le fond marin | |
WO2014091122A1 (fr) | Installation de convoyage de vehicules automobiles a transmission d'efforts equilibree | |
FR2531055A1 (fr) | Grue de levage | |
EP0112778B1 (fr) | Plateau porteur destiné à recevoir un fourgon ou conteneur de marchandises, muni de moyens d'adaptation au transport par route, rail et mer | |
EP1065125A1 (fr) | Bogie de roulement à écartement variable autopropulsé | |
FR2670742A1 (fr) | Installation de mouillage d'ancres. | |
EP4056519A1 (fr) | Grue, en particulier pour application offshore | |
EP0169120B1 (fr) | Dispositif d'articulation entre une installation marine et un bras d'amarrage d'une installation flottante | |
FR2748265A1 (fr) | Moufle de support et de manutention d'une charge, dispositif de manutention correspondant et son utilisation | |
EP4153434B1 (fr) | Dispositif de roulement et véhicule muni de celui-ci | |
FR2694532A1 (fr) | Système de transport à correction statique d'assiette. | |
FR2758434A1 (fr) | Dispositif de suspension pour rampe de pulverisation agricole | |
FR2951513A1 (fr) | Roulement a billes et butee de suspension associee | |
FR2994112A1 (fr) | Carrousel rotatif | |
CA1246940A (fr) | Systeme de liaison entre un corps principal et une superstructure | |
FR3060464A1 (fr) | Dispositif et procede d'entrainement d'un cable de traction pour le transport de vehicules, et installation comprenant un tel dispositif |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10770606 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10770606 Country of ref document: EP Kind code of ref document: A1 |